VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 60899

Last change on this file since 60899 was 60899, checked in by vboxsync, 9 years ago

PGMAllBth.h: Improved assertion so it's possible to tell if it's valid.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 211.3 KB
Line 
1/* $Id: PGMAllBth.h 60899 2016-05-09 15:44:49Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2015 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29#ifdef _MSC_VER
30/** @todo we're generating unnecessary code in nested/ept shadow mode and for
31 * real/prot-guest+RC mode. */
32# pragma warning(disable: 4505)
33#endif
34
35/*******************************************************************************
36* Internal Functions *
37*******************************************************************************/
38RT_C_DECLS_BEGIN
39PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46# else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
57RT_C_DECLS_END
58
59
60/*
61 * Filter out some illegal combinations of guest and shadow paging, so we can
62 * remove redundant checks inside functions.
63 */
64#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
65# error "Invalid combination; PAE guest implies PAE shadow"
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
69 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
70# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
71#endif
72
73#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
74 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
75# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
76#endif
77
78#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
79 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
80# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
81#endif
82
83#ifndef IN_RING3
84
85# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
86/**
87 * Deal with a guest page fault.
88 *
89 * @returns Strict VBox status code.
90 * @retval VINF_EM_RAW_GUEST_TRAP
91 * @retval VINF_EM_RAW_EMULATE_INSTR
92 *
93 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
94 * @param pGstWalk The guest page table walk result.
95 * @param uErr The error code.
96 */
97PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
98{
99# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
100 /*
101 * Check for write conflicts with our hypervisor mapping.
102 *
103 * If the guest happens to access a non-present page, where our hypervisor
104 * is currently mapped, then we'll create a #PF storm in the guest.
105 */
106 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
107 && pgmMapAreMappingsEnabled(pVCpu->CTX_SUFF(pVM))
108 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
109 {
110 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
111 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
112 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
113 return VINF_EM_RAW_EMULATE_INSTR;
114 }
115# endif
116
117 /*
118 * Calc the error code for the guest trap.
119 */
120 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
121 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
122 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
123 if (pGstWalk->Core.fBadPhysAddr)
124 {
125 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
126 Assert(!pGstWalk->Core.fNotPresent);
127 }
128 else if (!pGstWalk->Core.fNotPresent)
129 uNewErr |= X86_TRAP_PF_P;
130 TRPMSetErrorCode(pVCpu, uNewErr);
131
132 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
133 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
134 return VINF_EM_RAW_GUEST_TRAP;
135}
136# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
137
138
139/**
140 * Deal with a guest page fault.
141 *
142 * The caller has taken the PGM lock.
143 *
144 * @returns Strict VBox status code.
145 *
146 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
147 * @param uErr The error code.
148 * @param pRegFrame The register frame.
149 * @param pvFault The fault address.
150 * @param pPage The guest page at @a pvFault.
151 * @param pGstWalk The guest page table walk result.
152 * @param pfLockTaken PGM lock taken here or not (out). This is true
153 * when we're called.
154 */
155static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
156 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
157# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
158 , PGSTPTWALK pGstWalk
159# endif
160 )
161{
162# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
164#endif
165 PVM pVM = pVCpu->CTX_SUFF(pVM);
166 VBOXSTRICTRC rcStrict;
167
168 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
169 {
170 /*
171 * Physical page access handler.
172 */
173# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
174 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
175# else
176 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
177# endif
178 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
179 if (pCur)
180 {
181 PPGMPHYSHANDLERTYPEINT pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
182
183# ifdef PGM_SYNC_N_PAGES
184 /*
185 * If the region is write protected and we got a page not present fault, then sync
186 * the pages. If the fault was caused by a read, then restart the instruction.
187 * In case of write access continue to the GC write handler.
188 *
189 * ASSUMES that there is only one handler per page or that they have similar write properties.
190 */
191 if ( !(uErr & X86_TRAP_PF_P)
192 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
193 {
194# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
195 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
196# else
197 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
198# endif
199 if ( RT_FAILURE(rcStrict)
200 || !(uErr & X86_TRAP_PF_RW)
201 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
202 {
203 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
204 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
205 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
206 return rcStrict;
207 }
208 }
209# endif
210# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
211 /*
212 * If the access was not thru a #PF(RSVD|...) resync the page.
213 */
214 if ( !(uErr & X86_TRAP_PF_RSVD)
215 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
216# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
217 && pGstWalk->Core.fEffectiveRW
218 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
219# endif
220 )
221 {
222# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
223 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
224# else
225 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
226# endif
227 if ( RT_FAILURE(rcStrict)
228 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
229 {
230 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
231 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
232 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
233 return rcStrict;
234 }
235 }
236# endif
237
238 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
239 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
240 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
241 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
242 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
243 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
244 else
245 {
246 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
247 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
248 }
249
250 if (pCurType->CTX_SUFF(pfnPfHandler))
251 {
252 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
253 void *pvUser = pCur->CTX_SUFF(pvUser);
254
255 STAM_PROFILE_START(&pCur->Stat, h);
256 if (pCur->hType != pPool->hAccessHandlerType)
257 {
258 pgmUnlock(pVM);
259 *pfLockTaken = false;
260 }
261
262 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
263
264# ifdef VBOX_WITH_STATISTICS
265 pgmLock(pVM);
266 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
267 if (pCur)
268 STAM_PROFILE_STOP(&pCur->Stat, h);
269 pgmUnlock(pVM);
270# endif
271 }
272 else
273 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
274
275 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
276 return rcStrict;
277 }
278 }
279# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
280 else
281 {
282# ifdef PGM_SYNC_N_PAGES
283 /*
284 * If the region is write protected and we got a page not present fault, then sync
285 * the pages. If the fault was caused by a read, then restart the instruction.
286 * In case of write access continue to the GC write handler.
287 */
288 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
289 && !(uErr & X86_TRAP_PF_P))
290 {
291 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
292 if ( RT_FAILURE(rcStrict)
293 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
294 || !(uErr & X86_TRAP_PF_RW))
295 {
296 AssertRC(rcStrict);
297 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
298 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
299 return rcStrict;
300 }
301 }
302# endif
303 /*
304 * Ok, it's an virtual page access handler.
305 *
306 * Since it's faster to search by address, we'll do that first
307 * and then retry by GCPhys if that fails.
308 */
309 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
310 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
311 * out of sync, because the page was changed without us noticing it (not-present -> present
312 * without invlpg or mov cr3, xxx).
313 */
314 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
315 if (pCur)
316 {
317 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
318 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
319 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
320 || !(uErr & X86_TRAP_PF_P)
321 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
322 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enumKind=%d\n",
323 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCurType->enmKind));
324
325 if ( pvFault - pCur->Core.Key < pCur->cb
326 && ( uErr & X86_TRAP_PF_RW
327 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
328 {
329# ifdef IN_RC
330 STAM_PROFILE_START(&pCur->Stat, h);
331 RTGCPTR GCPtrStart = pCur->Core.Key;
332 void *pvUser = pCur->CTX_SUFF(pvUser);
333 pgmUnlock(pVM);
334 *pfLockTaken = false;
335
336 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart,
337 pvFault - GCPtrStart, pvUser);
338
339# ifdef VBOX_WITH_STATISTICS
340 pgmLock(pVM);
341 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
342 if (pCur)
343 STAM_PROFILE_STOP(&pCur->Stat, h);
344 pgmUnlock(pVM);
345# endif
346# else
347 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
348# endif
349 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
350 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
351 return rcStrict;
352 }
353 /* Unhandled part of a monitored page */
354 Log(("Unhandled part of monitored page %RGv\n", pvFault));
355 }
356 else
357 {
358 /* Check by physical address. */
359 unsigned iPage;
360 pCur = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &iPage);
361 if (pCur)
362 {
363 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
364 if ( uErr & X86_TRAP_PF_RW
365 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE )
366 {
367 Assert( (pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK)
368 == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
369# ifdef IN_RC
370 STAM_PROFILE_START(&pCur->Stat, h);
371 RTGCPTR GCPtrStart = pCur->Core.Key;
372 void *pvUser = pCur->CTX_SUFF(pvUser);
373 pgmUnlock(pVM);
374 *pfLockTaken = false;
375
376 RTGCPTR off = (iPage << PAGE_SHIFT)
377 + (pvFault & PAGE_OFFSET_MASK)
378 - (GCPtrStart & PAGE_OFFSET_MASK);
379 Assert(off < pCur->cb);
380 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart, off, pvUser);
381
382# ifdef VBOX_WITH_STATISTICS
383 pgmLock(pVM);
384 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
385 if (pCur)
386 STAM_PROFILE_STOP(&pCur->Stat, h);
387 pgmUnlock(pVM);
388# endif
389# else
390 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
391# endif
392 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
393 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
394 return rcStrict;
395 }
396 }
397 }
398 }
399# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
400
401 /*
402 * There is a handled area of the page, but this fault doesn't belong to it.
403 * We must emulate the instruction.
404 *
405 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
406 * we first check if this was a page-not-present fault for a page with only
407 * write access handlers. Restart the instruction if it wasn't a write access.
408 */
409 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
410
411 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
412 && !(uErr & X86_TRAP_PF_P))
413 {
414# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
415 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
416# else
417 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
418# endif
419 if ( RT_FAILURE(rcStrict)
420 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
421 || !(uErr & X86_TRAP_PF_RW))
422 {
423 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
424 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
425 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
426 return rcStrict;
427 }
428 }
429
430 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
431 * It's writing to an unhandled part of the LDT page several million times.
432 */
433 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
434 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
435 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
436 return rcStrict;
437} /* if any kind of handler */
438
439
440/**
441 * \#PF Handler for raw-mode guest execution.
442 *
443 * @returns VBox status code (appropriate for trap handling and GC return).
444 *
445 * @param pVCpu The cross context virtual CPU structure.
446 * @param uErr The trap error code.
447 * @param pRegFrame Trap register frame.
448 * @param pvFault The fault address.
449 * @param pfLockTaken PGM lock taken here or not (out)
450 */
451PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
452{
453 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
454
455 *pfLockTaken = false;
456
457# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
458 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
459 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
460 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
461 int rc;
462
463# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
464 /*
465 * Walk the guest page translation tables and check if it's a guest fault.
466 */
467 GSTPTWALK GstWalk;
468 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
469 if (RT_FAILURE_NP(rc))
470 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
471
472 /* assert some GstWalk sanity. */
473# if PGM_GST_TYPE == PGM_TYPE_AMD64
474 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
475# endif
476# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
477 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
478# endif
479 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
480 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
481 Assert(GstWalk.Core.fSucceeded);
482
483 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
484 {
485 if ( ( (uErr & X86_TRAP_PF_RW)
486 && !GstWalk.Core.fEffectiveRW
487 && ( (uErr & X86_TRAP_PF_US)
488 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
489 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
490 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
491 )
492 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
493 }
494
495 /*
496 * Set the accessed and dirty flags.
497 */
498# if PGM_GST_TYPE == PGM_TYPE_AMD64
499 GstWalk.Pml4e.u |= X86_PML4E_A;
500 GstWalk.pPml4e->u |= X86_PML4E_A;
501 GstWalk.Pdpe.u |= X86_PDPE_A;
502 GstWalk.pPdpe->u |= X86_PDPE_A;
503# endif
504 if (GstWalk.Core.fBigPage)
505 {
506 Assert(GstWalk.Pde.b.u1Size);
507 if (uErr & X86_TRAP_PF_RW)
508 {
509 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
510 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
511 }
512 else
513 {
514 GstWalk.Pde.u |= X86_PDE4M_A;
515 GstWalk.pPde->u |= X86_PDE4M_A;
516 }
517 }
518 else
519 {
520 Assert(!GstWalk.Pde.b.u1Size);
521 GstWalk.Pde.u |= X86_PDE_A;
522 GstWalk.pPde->u |= X86_PDE_A;
523 if (uErr & X86_TRAP_PF_RW)
524 {
525# ifdef VBOX_WITH_STATISTICS
526 if (!GstWalk.Pte.n.u1Dirty)
527 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
528 else
529 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
530# endif
531 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
532 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
533 }
534 else
535 {
536 GstWalk.Pte.u |= X86_PTE_A;
537 GstWalk.pPte->u |= X86_PTE_A;
538 }
539 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
540 }
541 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
542 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
543# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
544 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
545# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
546
547 /* Take the big lock now. */
548 *pfLockTaken = true;
549 pgmLock(pVM);
550
551# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
552 /*
553 * If it is a reserved bit fault we know that it is an MMIO (access
554 * handler) related fault and can skip some 200 lines of code.
555 */
556 if (uErr & X86_TRAP_PF_RSVD)
557 {
558 Assert(uErr & X86_TRAP_PF_P);
559 PPGMPAGE pPage;
560# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
561 rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
562 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
563 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
564 pfLockTaken, &GstWalk));
565 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
566# else
567 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
568 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
569 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
570 pfLockTaken));
571 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
572# endif
573 AssertRC(rc);
574 PGM_INVL_PG(pVCpu, pvFault);
575 return rc; /* Restart with the corrected entry. */
576 }
577# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
578
579 /*
580 * Fetch the guest PDE, PDPE and PML4E.
581 */
582# if PGM_SHW_TYPE == PGM_TYPE_32BIT
583 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
584 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
585
586# elif PGM_SHW_TYPE == PGM_TYPE_PAE
587 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
588 PX86PDPAE pPDDst;
589# if PGM_GST_TYPE == PGM_TYPE_PAE
590 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
591# else
592 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
593# endif
594 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
595
596# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
597 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
598 PX86PDPAE pPDDst;
599# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
600 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
601 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
602# else
603 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
604# endif
605 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
606
607# elif PGM_SHW_TYPE == PGM_TYPE_EPT
608 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
609 PEPTPD pPDDst;
610 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
611 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
612# endif
613 Assert(pPDDst);
614
615# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
616 /*
617 * Dirty page handling.
618 *
619 * If we successfully correct the write protection fault due to dirty bit
620 * tracking, then return immediately.
621 */
622 if (uErr & X86_TRAP_PF_RW) /* write fault? */
623 {
624 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
625 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
626 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
627 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
628 {
629 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
630 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
631 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
632 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
633 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
634 return VINF_SUCCESS;
635 }
636 //AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - triggers with smp w7 guests.
637 //AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto.
638 }
639
640# if 0 /* rarely useful; leave for debugging. */
641 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
642# endif
643# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
644
645 /*
646 * A common case is the not-present error caused by lazy page table syncing.
647 *
648 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
649 * here so we can safely assume that the shadow PT is present when calling
650 * SyncPage later.
651 *
652 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
653 * of mapping conflict and defer to SyncCR3 in R3.
654 * (Again, we do NOT support access handlers for non-present guest pages.)
655 *
656 */
657# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
658 Assert(GstWalk.Pde.n.u1Present);
659# endif
660 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
661 && !pPDDst->a[iPDDst].n.u1Present)
662 {
663 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
664# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
665 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
666 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
667# else
668 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
669 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
670# endif
671 if (RT_SUCCESS(rc))
672 return rc;
673 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
674 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
675 return VINF_PGM_SYNC_CR3;
676 }
677
678# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
679 /*
680 * Check if this address is within any of our mappings.
681 *
682 * This is *very* fast and it's gonna save us a bit of effort below and prevent
683 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
684 * (BTW, it's impossible to have physical access handlers in a mapping.)
685 */
686 if (pgmMapAreMappingsEnabled(pVM))
687 {
688 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
689 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
690 {
691 if (pvFault < pMapping->GCPtr)
692 break;
693 if (pvFault - pMapping->GCPtr < pMapping->cb)
694 {
695 /*
696 * The first thing we check is if we've got an undetected conflict.
697 */
698 if (pgmMapAreMappingsFloating(pVM))
699 {
700 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
701 while (iPT-- > 0)
702 if (GstWalk.pPde[iPT].n.u1Present)
703 {
704 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
705 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
706 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
707 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
708 return VINF_PGM_SYNC_CR3;
709 }
710 }
711
712 /*
713 * Check if the fault address is in a virtual page access handler range.
714 */
715 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers,
716 pvFault);
717 if ( pCur
718 && pvFault - pCur->Core.Key < pCur->cb
719 && uErr & X86_TRAP_PF_RW)
720 {
721 VBOXSTRICTRC rcStrict;
722# ifdef IN_RC
723 STAM_PROFILE_START(&pCur->Stat, h);
724 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
725 void *pvUser = pCur->CTX_SUFF(pvUser);
726 pgmUnlock(pVM);
727 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
728 pvFault - pCur->Core.Key, pvUser);
729 pgmLock(pVM);
730 STAM_PROFILE_STOP(&pCur->Stat, h);
731# else
732 AssertFailed();
733 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
734# endif
735 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
736 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
737 return VBOXSTRICTRC_TODO(rcStrict);
738 }
739
740 /*
741 * Pretend we're not here and let the guest handle the trap.
742 */
743 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
744 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
745 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
746 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
747 return VINF_EM_RAW_GUEST_TRAP;
748 }
749 }
750 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
751# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
752
753 /*
754 * Check if this fault address is flagged for special treatment,
755 * which means we'll have to figure out the physical address and
756 * check flags associated with it.
757 *
758 * ASSUME that we can limit any special access handling to pages
759 * in page tables which the guest believes to be present.
760 */
761# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
762 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
763# else
764 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
765# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
766 PPGMPAGE pPage;
767 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
768 if (RT_FAILURE(rc))
769 {
770 /*
771 * When the guest accesses invalid physical memory (e.g. probing
772 * of RAM or accessing a remapped MMIO range), then we'll fall
773 * back to the recompiler to emulate the instruction.
774 */
775 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
776 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
777 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
778 return VINF_EM_RAW_EMULATE_INSTR;
779 }
780
781 /*
782 * Any handlers for this page?
783 */
784 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
785# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
786 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
787 &GstWalk));
788# else
789 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
790# endif
791
792# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
793 if (uErr & X86_TRAP_PF_P)
794 {
795 /*
796 * The page isn't marked, but it might still be monitored by a virtual page access handler.
797 * (ASSUMES no temporary disabling of virtual handlers.)
798 */
799 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
800 * we should correct both the shadow page table and physical memory flags, and not only check for
801 * accesses within the handler region but for access to pages with virtual handlers. */
802 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
803 if (pCur)
804 {
805 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
806 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
807 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
808 || !(uErr & X86_TRAP_PF_P)
809 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
810 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enumKind=%d\n",
811 pvFault, GCPhys, pPage, uErr, pCurType->enmKind));
812
813 if ( pvFault - pCur->Core.Key < pCur->cb
814 && ( uErr & X86_TRAP_PF_RW
815 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
816 {
817 VBOXSTRICTRC rcStrict;
818# ifdef IN_RC
819 STAM_PROFILE_START(&pCur->Stat, h);
820 void *pvUser = pCur->CTX_SUFF(pvUser);
821 pgmUnlock(pVM);
822 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
823 pvFault - pCur->Core.Key, pvUser);
824 pgmLock(pVM);
825 STAM_PROFILE_STOP(&pCur->Stat, h);
826# else
827 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
828# endif
829 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
830 return VBOXSTRICTRC_TODO(rcStrict);
831 }
832 }
833 }
834# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
835
836 /*
837 * We are here only if page is present in Guest page tables and
838 * trap is not handled by our handlers.
839 *
840 * Check it for page out-of-sync situation.
841 */
842 if (!(uErr & X86_TRAP_PF_P))
843 {
844 /*
845 * Page is not present in our page tables. Try to sync it!
846 */
847 if (uErr & X86_TRAP_PF_US)
848 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
849 else /* supervisor */
850 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
851
852 if (PGM_PAGE_IS_BALLOONED(pPage))
853 {
854 /* Emulate reads from ballooned pages as they are not present in
855 our shadow page tables. (Required for e.g. Solaris guests; soft
856 ecc, random nr generator.) */
857 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
858 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
859 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
860 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
861 return rc;
862 }
863
864# if defined(LOG_ENABLED) && !defined(IN_RING0)
865 RTGCPHYS GCPhys2;
866 uint64_t fPageGst2;
867 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
868# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
869 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
870 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
871# else
872 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
873 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
874# endif
875# endif /* LOG_ENABLED */
876
877# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
878 if ( !GstWalk.Core.fEffectiveUS
879 && CSAMIsEnabled(pVM)
880 && CPUMGetGuestCPL(pVCpu) == 0)
881 {
882 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
883 if ( pvFault == (RTGCPTR)pRegFrame->eip
884 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
885# ifdef CSAM_DETECT_NEW_CODE_PAGES
886 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
887 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
888# endif /* CSAM_DETECT_NEW_CODE_PAGES */
889 )
890 {
891 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
892 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
893 if (rc != VINF_SUCCESS)
894 {
895 /*
896 * CSAM needs to perform a job in ring 3.
897 *
898 * Sync the page before going to the host context; otherwise we'll end up in a loop if
899 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
900 */
901 LogFlow(("CSAM ring 3 job\n"));
902 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
903 AssertRC(rc2);
904
905 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
906 return rc;
907 }
908 }
909# ifdef CSAM_DETECT_NEW_CODE_PAGES
910 else if ( uErr == X86_TRAP_PF_RW
911 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
912 && pRegFrame->ecx < 0x10000)
913 {
914 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
915 * to detect loading of new code pages.
916 */
917
918 /*
919 * Decode the instruction.
920 */
921 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
922 uint32_t cbOp;
923 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
924
925 /* For now we'll restrict this to rep movsw/d instructions */
926 if ( rc == VINF_SUCCESS
927 && pDis->pCurInstr->opcode == OP_MOVSWD
928 && (pDis->prefix & DISPREFIX_REP))
929 {
930 CSAMMarkPossibleCodePage(pVM, pvFault);
931 }
932 }
933# endif /* CSAM_DETECT_NEW_CODE_PAGES */
934
935 /*
936 * Mark this page as safe.
937 */
938 /** @todo not correct for pages that contain both code and data!! */
939 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
940 CSAMMarkPage(pVM, pvFault, true);
941 }
942# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
943# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
944 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
945# else
946 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
947# endif
948 if (RT_SUCCESS(rc))
949 {
950 /* The page was successfully synced, return to the guest. */
951 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
952 return VINF_SUCCESS;
953 }
954 }
955 else /* uErr & X86_TRAP_PF_P: */
956 {
957 /*
958 * Write protected pages are made writable when the guest makes the
959 * first write to it. This happens for pages that are shared, write
960 * monitored or not yet allocated.
961 *
962 * We may also end up here when CR0.WP=0 in the guest.
963 *
964 * Also, a side effect of not flushing global PDEs are out of sync
965 * pages due to physical monitored regions, that are no longer valid.
966 * Assume for now it only applies to the read/write flag.
967 */
968 if (uErr & X86_TRAP_PF_RW)
969 {
970 /*
971 * Check if it is a read-only page.
972 */
973 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
974 {
975 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
976 Assert(!PGM_PAGE_IS_ZERO(pPage));
977 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
978 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
979
980 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
981 if (rc != VINF_SUCCESS)
982 {
983 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
984 return rc;
985 }
986 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
987 return VINF_EM_NO_MEMORY;
988 }
989
990# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
991 /*
992 * Check to see if we need to emulate the instruction if CR0.WP=0.
993 */
994 if ( !GstWalk.Core.fEffectiveRW
995 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
996 && CPUMGetGuestCPL(pVCpu) < 3)
997 {
998 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
999
1000 /*
1001 * The Netware WP0+RO+US hack.
1002 *
1003 * Netware sometimes(/always?) runs with WP0. It has been observed doing
1004 * excessive write accesses to pages which are mapped with US=1 and RW=0
1005 * while WP=0. This causes a lot of exits and extremely slow execution.
1006 * To avoid trapping and emulating every write here, we change the shadow
1007 * page table entry to map it as US=0 and RW=1 until user mode tries to
1008 * access it again (see further below). We count these shadow page table
1009 * changes so we can avoid having to clear the page pool every time the WP
1010 * bit changes to 1 (see PGMCr0WpEnabled()).
1011 */
1012# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
1013 if ( GstWalk.Core.fEffectiveUS
1014 && !GstWalk.Core.fEffectiveRW
1015 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1016 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
1017 {
1018 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, GstWalk.Core.fBigPage));
1019 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, GstWalk.Core.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
1020 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
1021 {
1022 PGM_INVL_PG(pVCpu, pvFault);
1023 pVCpu->pgm.s.cNetwareWp0Hacks++;
1024 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsHack; });
1025 return rc;
1026 }
1027 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
1028 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
1029 }
1030# endif
1031
1032 /* Interpret the access. */
1033 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
1034 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), GstWalk.Core.fBigPage, GstWalk.Core.fEffectiveUS));
1035 if (RT_SUCCESS(rc))
1036 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
1037 else
1038 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
1039 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
1040 return rc;
1041 }
1042# endif
1043 /// @todo count the above case; else
1044 if (uErr & X86_TRAP_PF_US)
1045 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
1046 else /* supervisor */
1047 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1048
1049 /*
1050 * Sync the page.
1051 *
1052 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1053 * page is not present, which is not true in this case.
1054 */
1055# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1056 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1057# else
1058 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1059# endif
1060 if (RT_SUCCESS(rc))
1061 {
1062 /*
1063 * Page was successfully synced, return to guest but invalidate
1064 * the TLB first as the page is very likely to be in it.
1065 */
1066# if PGM_SHW_TYPE == PGM_TYPE_EPT
1067 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1068# else
1069 PGM_INVL_PG(pVCpu, pvFault);
1070# endif
1071# ifdef VBOX_STRICT
1072 RTGCPHYS GCPhys2 = RTGCPHYS_MAX;
1073 uint64_t fPageGst = UINT64_MAX;
1074 if (!pVM->pgm.s.fNestedPaging)
1075 {
1076 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1077 AssertMsg(RT_SUCCESS(rc) && ((fPageGst & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1078 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1079 }
1080 uint64_t fPageShw;
1081 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1082 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1083 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64\n", rc, fPageShw, GCPhys2, fPageGst)); /* Bogus? Can we end up mapping MMIO here for instance, or is that handled above already? */
1084# endif /* VBOX_STRICT */
1085 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1086 return VINF_SUCCESS;
1087 }
1088 }
1089# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1090 /*
1091 * Check for Netware WP0+RO+US hack from above and undo it when user
1092 * mode accesses the page again.
1093 */
1094 else if ( GstWalk.Core.fEffectiveUS
1095 && !GstWalk.Core.fEffectiveRW
1096 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1097 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
1098 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
1099 && CPUMGetGuestCPL(pVCpu) == 3
1100 && pVM->cCpus == 1
1101 )
1102 {
1103 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
1104 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1105 if (RT_SUCCESS(rc))
1106 {
1107 PGM_INVL_PG(pVCpu, pvFault);
1108 pVCpu->pgm.s.cNetwareWp0Hacks--;
1109 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsUnhack; });
1110 return VINF_SUCCESS;
1111 }
1112 }
1113# endif /* PGM_WITH_PAGING */
1114
1115 /** @todo else: why are we here? */
1116
1117# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1118 /*
1119 * Check for VMM page flags vs. Guest page flags consistency.
1120 * Currently only for debug purposes.
1121 */
1122 if (RT_SUCCESS(rc))
1123 {
1124 /* Get guest page flags. */
1125 uint64_t fPageGst;
1126 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1127 if (RT_SUCCESS(rc))
1128 {
1129 uint64_t fPageShw;
1130 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1131
1132 /*
1133 * Compare page flags.
1134 * Note: we have AVL, A, D bits desynced.
1135 */
1136 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1137 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1138 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
1139 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1140 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1141 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
1142 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
1143 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1144 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1145 }
1146 else
1147 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1148 }
1149 else
1150 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1151# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1152 }
1153
1154
1155 /*
1156 * If we get here it is because something failed above, i.e. most like guru
1157 * meditiation time.
1158 */
1159 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1160 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1161 return rc;
1162
1163# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1164 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
1165 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1166 return VERR_PGM_NOT_USED_IN_MODE;
1167# endif
1168}
1169#endif /* !IN_RING3 */
1170
1171
1172/**
1173 * Emulation of the invlpg instruction.
1174 *
1175 *
1176 * @returns VBox status code.
1177 *
1178 * @param pVCpu The cross context virtual CPU structure.
1179 * @param GCPtrPage Page to invalidate.
1180 *
1181 * @remark ASSUMES that the guest is updating before invalidating. This order
1182 * isn't required by the CPU, so this is speculative and could cause
1183 * trouble.
1184 * @remark No TLB shootdown is done on any other VCPU as we assume that
1185 * invlpg emulation is the *only* reason for calling this function.
1186 * (The guest has to shoot down TLB entries on other CPUs itself)
1187 * Currently true, but keep in mind!
1188 *
1189 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1190 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1191 */
1192PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1193{
1194#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1195 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1196 && PGM_SHW_TYPE != PGM_TYPE_EPT
1197 int rc;
1198 PVM pVM = pVCpu->CTX_SUFF(pVM);
1199 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1200
1201 PGM_LOCK_ASSERT_OWNER(pVM);
1202
1203 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1204
1205 /*
1206 * Get the shadow PD entry and skip out if this PD isn't present.
1207 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1208 */
1209# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1210 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1211 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1212
1213 /* Fetch the pgm pool shadow descriptor. */
1214 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1215 Assert(pShwPde);
1216
1217# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1218 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1219 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1220
1221 /* If the shadow PDPE isn't present, then skip the invalidate. */
1222 if (!pPdptDst->a[iPdpt].n.u1Present)
1223 {
1224 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1225 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1226 PGM_INVL_PG(pVCpu, GCPtrPage);
1227 return VINF_SUCCESS;
1228 }
1229
1230 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1231 PPGMPOOLPAGE pShwPde = NULL;
1232 PX86PDPAE pPDDst;
1233
1234 /* Fetch the pgm pool shadow descriptor. */
1235 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1236 AssertRCSuccessReturn(rc, rc);
1237 Assert(pShwPde);
1238
1239 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1240 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1241
1242# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1243 /* PML4 */
1244 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1245 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1246 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1247 PX86PDPAE pPDDst;
1248 PX86PDPT pPdptDst;
1249 PX86PML4E pPml4eDst;
1250 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1251 if (rc != VINF_SUCCESS)
1252 {
1253 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1254 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1255 PGM_INVL_PG(pVCpu, GCPtrPage);
1256 return VINF_SUCCESS;
1257 }
1258 Assert(pPDDst);
1259
1260 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1261 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1262
1263 if (!pPdpeDst->n.u1Present)
1264 {
1265 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1266 PGM_INVL_PG(pVCpu, GCPtrPage);
1267 return VINF_SUCCESS;
1268 }
1269
1270 /* Fetch the pgm pool shadow descriptor. */
1271 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1272 Assert(pShwPde);
1273
1274# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1275
1276 const SHWPDE PdeDst = *pPdeDst;
1277 if (!PdeDst.n.u1Present)
1278 {
1279 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1280 PGM_INVL_PG(pVCpu, GCPtrPage);
1281 return VINF_SUCCESS;
1282 }
1283
1284 /*
1285 * Get the guest PD entry and calc big page.
1286 */
1287# if PGM_GST_TYPE == PGM_TYPE_32BIT
1288 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1289 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1290 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1291# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1292 unsigned iPDSrc = 0;
1293# if PGM_GST_TYPE == PGM_TYPE_PAE
1294 X86PDPE PdpeSrcIgn;
1295 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1296# else /* AMD64 */
1297 PX86PML4E pPml4eSrcIgn;
1298 X86PDPE PdpeSrcIgn;
1299 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1300# endif
1301 GSTPDE PdeSrc;
1302
1303 if (pPDSrc)
1304 PdeSrc = pPDSrc->a[iPDSrc];
1305 else
1306 PdeSrc.u = 0;
1307# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1308 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1309
1310# ifdef IN_RING3
1311 /*
1312 * If a CR3 Sync is pending we may ignore the invalidate page operation
1313 * depending on the kind of sync and if it's a global page or not.
1314 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1315 */
1316# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1317 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1318 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1319 && fIsBigPage
1320 && PdeSrc.b.u1Global
1321 )
1322 )
1323# else
1324 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1325# endif
1326 {
1327 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1328 return VINF_SUCCESS;
1329 }
1330# endif /* IN_RING3 */
1331
1332 /*
1333 * Deal with the Guest PDE.
1334 */
1335 rc = VINF_SUCCESS;
1336 if (PdeSrc.n.u1Present)
1337 {
1338 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1339 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1340# ifndef PGM_WITHOUT_MAPPING
1341 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1342 {
1343 /*
1344 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1345 */
1346 Assert(pgmMapAreMappingsEnabled(pVM));
1347 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1348 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1349 }
1350 else
1351# endif /* !PGM_WITHOUT_MAPPING */
1352 if (!fIsBigPage)
1353 {
1354 /*
1355 * 4KB - page.
1356 */
1357 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1358 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1359
1360# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1361 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1362 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1363# endif
1364 if (pShwPage->GCPhys == GCPhys)
1365 {
1366 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1367 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1368
1369 PGSTPT pPTSrc;
1370 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1371 if (RT_SUCCESS(rc))
1372 {
1373 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1374 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1375 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1376 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1377 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1378 GCPtrPage, PteSrc.n.u1Present,
1379 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1380 PteSrc.n.u1User & PdeSrc.n.u1User,
1381 (uint64_t)PteSrc.u,
1382 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1383 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1384 }
1385 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1386 PGM_INVL_PG(pVCpu, GCPtrPage);
1387 }
1388 else
1389 {
1390 /*
1391 * The page table address changed.
1392 */
1393 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1394 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1395 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1396 ASMAtomicWriteSize(pPdeDst, 0);
1397 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1398 PGM_INVL_VCPU_TLBS(pVCpu);
1399 }
1400 }
1401 else
1402 {
1403 /*
1404 * 2/4MB - page.
1405 */
1406 /* Before freeing the page, check if anything really changed. */
1407 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1408 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1409# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1410 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1411 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1412# endif
1413 if ( pShwPage->GCPhys == GCPhys
1414 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1415 {
1416 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1417 /** @todo This test is wrong as it cannot check the G bit!
1418 * FIXME */
1419 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1420 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1421 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1422 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1423 {
1424 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1425 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1426 return VINF_SUCCESS;
1427 }
1428 }
1429
1430 /*
1431 * Ok, the page table is present and it's been changed in the guest.
1432 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1433 * We could do this for some flushes in GC too, but we need an algorithm for
1434 * deciding which 4MB pages containing code likely to be executed very soon.
1435 */
1436 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1437 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1438 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1439 ASMAtomicWriteSize(pPdeDst, 0);
1440 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1441 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1442 }
1443 }
1444 else
1445 {
1446 /*
1447 * Page directory is not present, mark shadow PDE not present.
1448 */
1449 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1450 {
1451 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1452 ASMAtomicWriteSize(pPdeDst, 0);
1453 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1454 PGM_INVL_PG(pVCpu, GCPtrPage);
1455 }
1456 else
1457 {
1458 Assert(pgmMapAreMappingsEnabled(pVM));
1459 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1460 }
1461 }
1462 return rc;
1463
1464#else /* guest real and protected mode */
1465 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1466 NOREF(pVCpu); NOREF(GCPtrPage);
1467 return VINF_SUCCESS;
1468#endif
1469}
1470
1471
1472/**
1473 * Update the tracking of shadowed pages.
1474 *
1475 * @param pVCpu The cross context virtual CPU structure.
1476 * @param pShwPage The shadow page.
1477 * @param HCPhys The physical page we is being dereferenced.
1478 * @param iPte Shadow PTE index
1479 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1480 */
1481DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1482 RTGCPHYS GCPhysPage)
1483{
1484 PVM pVM = pVCpu->CTX_SUFF(pVM);
1485
1486# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1487 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1488 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1489
1490 /* Use the hint we retrieved from the cached guest PT. */
1491 if (pShwPage->fDirty)
1492 {
1493 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1494
1495 Assert(pShwPage->cPresent);
1496 Assert(pPool->cPresent);
1497 pShwPage->cPresent--;
1498 pPool->cPresent--;
1499
1500 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1501 AssertRelease(pPhysPage);
1502 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1503 return;
1504 }
1505# else
1506 NOREF(GCPhysPage);
1507# endif
1508
1509 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1510 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1511
1512 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1513 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1514 * 2. write protect all shadowed pages. I.e. implement caching.
1515 */
1516 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1517
1518 /*
1519 * Find the guest address.
1520 */
1521 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1522 pRam;
1523 pRam = pRam->CTX_SUFF(pNext))
1524 {
1525 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1526 while (iPage-- > 0)
1527 {
1528 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1529 {
1530 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1531
1532 Assert(pShwPage->cPresent);
1533 Assert(pPool->cPresent);
1534 pShwPage->cPresent--;
1535 pPool->cPresent--;
1536
1537 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1538 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1539 return;
1540 }
1541 }
1542 }
1543
1544 for (;;)
1545 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1546}
1547
1548
1549/**
1550 * Update the tracking of shadowed pages.
1551 *
1552 * @param pVCpu The cross context virtual CPU structure.
1553 * @param pShwPage The shadow page.
1554 * @param u16 The top 16-bit of the pPage->HCPhys.
1555 * @param pPage Pointer to the guest page. this will be modified.
1556 * @param iPTDst The index into the shadow table.
1557 */
1558DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1559{
1560 PVM pVM = pVCpu->CTX_SUFF(pVM);
1561
1562 /*
1563 * Just deal with the simple first time here.
1564 */
1565 if (!u16)
1566 {
1567 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1568 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1569 /* Save the page table index. */
1570 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1571 }
1572 else
1573 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1574
1575 /* write back */
1576 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1577 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1578
1579 /* update statistics. */
1580 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1581 pShwPage->cPresent++;
1582 if (pShwPage->iFirstPresent > iPTDst)
1583 pShwPage->iFirstPresent = iPTDst;
1584}
1585
1586
1587/**
1588 * Modifies a shadow PTE to account for access handlers.
1589 *
1590 * @param pVM The cross context VM structure.
1591 * @param pPage The page in question.
1592 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1593 * A (accessed) bit so it can be emulated correctly.
1594 * @param pPteDst The shadow PTE (output). This is temporary storage and
1595 * does not need to be set atomically.
1596 */
1597DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1598{
1599 NOREF(pVM);
1600 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1601 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1602 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1603 {
1604 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1605#if PGM_SHW_TYPE == PGM_TYPE_EPT
1606 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1607 pPteDst->n.u1Present = 1;
1608 pPteDst->n.u1Execute = 1;
1609 pPteDst->n.u1IgnorePAT = 1;
1610 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1611 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1612#else
1613 if (fPteSrc & X86_PTE_A)
1614 {
1615 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1616 SHW_PTE_SET_RO(*pPteDst);
1617 }
1618 else
1619 SHW_PTE_SET(*pPteDst, 0);
1620#endif
1621 }
1622#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1623# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1624 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1625 && ( BTH_IS_NP_ACTIVE(pVM)
1626 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1627# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1628 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1629# endif
1630 )
1631 {
1632 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1633# if PGM_SHW_TYPE == PGM_TYPE_EPT
1634 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1635 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1636 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1637 pPteDst->n.u1Present = 0;
1638 pPteDst->n.u1Write = 1;
1639 pPteDst->n.u1Execute = 0;
1640 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1641 pPteDst->n.u3EMT = 7;
1642# else
1643 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1644 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1645# endif
1646 }
1647# endif
1648#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1649 else
1650 {
1651 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1652 SHW_PTE_SET(*pPteDst, 0);
1653 }
1654 /** @todo count these kinds of entries. */
1655}
1656
1657
1658/**
1659 * Creates a 4K shadow page for a guest page.
1660 *
1661 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1662 * physical address. The PdeSrc argument only the flags are used. No page
1663 * structured will be mapped in this function.
1664 *
1665 * @param pVCpu The cross context virtual CPU structure.
1666 * @param pPteDst Destination page table entry.
1667 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1668 * Can safely assume that only the flags are being used.
1669 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1670 * @param pShwPage Pointer to the shadow page.
1671 * @param iPTDst The index into the shadow table.
1672 *
1673 * @remark Not used for 2/4MB pages!
1674 */
1675#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1676static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1677 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1678#else
1679static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1680 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1681#endif
1682{
1683 PVM pVM = pVCpu->CTX_SUFF(pVM);
1684 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1685
1686#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1687 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1688 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1689
1690 if (pShwPage->fDirty)
1691 {
1692 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1693 PGSTPT pGstPT;
1694
1695 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1696 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1697 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1698 pGstPT->a[iPTDst].u = PteSrc.u;
1699 }
1700#else
1701 Assert(!pShwPage->fDirty);
1702#endif
1703
1704#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1705 if ( PteSrc.n.u1Present
1706 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1707#endif
1708 {
1709# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1710 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1711# endif
1712 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1713
1714 /*
1715 * Find the ram range.
1716 */
1717 PPGMPAGE pPage;
1718 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1719 if (RT_SUCCESS(rc))
1720 {
1721 /* Ignore ballooned pages.
1722 Don't return errors or use a fatal assert here as part of a
1723 shadow sync range might included ballooned pages. */
1724 if (PGM_PAGE_IS_BALLOONED(pPage))
1725 {
1726 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1727 return;
1728 }
1729
1730#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1731 /* Make the page writable if necessary. */
1732 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1733 && ( PGM_PAGE_IS_ZERO(pPage)
1734# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1735 || ( PteSrc.n.u1Write
1736# else
1737 || ( 1
1738# endif
1739 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1740# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1741 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1742# endif
1743# ifdef VBOX_WITH_PAGE_SHARING
1744 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1745# endif
1746 )
1747 )
1748 )
1749 {
1750 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1751 AssertRC(rc);
1752 }
1753#endif
1754
1755 /*
1756 * Make page table entry.
1757 */
1758 SHWPTE PteDst;
1759# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1760 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1761# else
1762 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1763# endif
1764 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1765 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1766 else
1767 {
1768#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1769 /*
1770 * If the page or page directory entry is not marked accessed,
1771 * we mark the page not present.
1772 */
1773 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1774 {
1775 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1776 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1777 SHW_PTE_SET(PteDst, 0);
1778 }
1779 /*
1780 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1781 * when the page is modified.
1782 */
1783 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1784 {
1785 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1786 SHW_PTE_SET(PteDst,
1787 fGstShwPteFlags
1788 | PGM_PAGE_GET_HCPHYS(pPage)
1789 | PGM_PTFLAGS_TRACK_DIRTY);
1790 SHW_PTE_SET_RO(PteDst);
1791 }
1792 else
1793#endif
1794 {
1795 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1796#if PGM_SHW_TYPE == PGM_TYPE_EPT
1797 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1798 PteDst.n.u1Present = 1;
1799 PteDst.n.u1Write = 1;
1800 PteDst.n.u1Execute = 1;
1801 PteDst.n.u1IgnorePAT = 1;
1802 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1803 /* PteDst.n.u1Size = 0 */
1804#else
1805 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1806#endif
1807 }
1808
1809 /*
1810 * Make sure only allocated pages are mapped writable.
1811 */
1812 if ( SHW_PTE_IS_P_RW(PteDst)
1813 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1814 {
1815 /* Still applies to shared pages. */
1816 Assert(!PGM_PAGE_IS_ZERO(pPage));
1817 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1818 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1819 }
1820 }
1821
1822 /*
1823 * Keep user track up to date.
1824 */
1825 if (SHW_PTE_IS_P(PteDst))
1826 {
1827 if (!SHW_PTE_IS_P(*pPteDst))
1828 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1829 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1830 {
1831 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1832 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1833 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1834 }
1835 }
1836 else if (SHW_PTE_IS_P(*pPteDst))
1837 {
1838 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1839 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1840 }
1841
1842 /*
1843 * Update statistics and commit the entry.
1844 */
1845#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1846 if (!PteSrc.n.u1Global)
1847 pShwPage->fSeenNonGlobal = true;
1848#endif
1849 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1850 return;
1851 }
1852
1853/** @todo count these three different kinds. */
1854 Log2(("SyncPageWorker: invalid address in Pte\n"));
1855 }
1856#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1857 else if (!PteSrc.n.u1Present)
1858 Log2(("SyncPageWorker: page not present in Pte\n"));
1859 else
1860 Log2(("SyncPageWorker: invalid Pte\n"));
1861#endif
1862
1863 /*
1864 * The page is not present or the PTE is bad. Replace the shadow PTE by
1865 * an empty entry, making sure to keep the user tracking up to date.
1866 */
1867 if (SHW_PTE_IS_P(*pPteDst))
1868 {
1869 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1870 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1871 }
1872 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1873}
1874
1875
1876/**
1877 * Syncs a guest OS page.
1878 *
1879 * There are no conflicts at this point, neither is there any need for
1880 * page table allocations.
1881 *
1882 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1883 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1884 *
1885 * @returns VBox status code.
1886 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1887 * @param pVCpu The cross context virtual CPU structure.
1888 * @param PdeSrc Page directory entry of the guest.
1889 * @param GCPtrPage Guest context page address.
1890 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1891 * @param uErr Fault error (X86_TRAP_PF_*).
1892 */
1893static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1894{
1895 PVM pVM = pVCpu->CTX_SUFF(pVM);
1896 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1897 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1898
1899 PGM_LOCK_ASSERT_OWNER(pVM);
1900
1901#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1902 || PGM_GST_TYPE == PGM_TYPE_PAE \
1903 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1904 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1905 && PGM_SHW_TYPE != PGM_TYPE_EPT
1906
1907 /*
1908 * Assert preconditions.
1909 */
1910 Assert(PdeSrc.n.u1Present);
1911 Assert(cPages);
1912# if 0 /* rarely useful; leave for debugging. */
1913 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1914# endif
1915
1916 /*
1917 * Get the shadow PDE, find the shadow page table in the pool.
1918 */
1919# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1920 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1921 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1922
1923 /* Fetch the pgm pool shadow descriptor. */
1924 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1925 Assert(pShwPde);
1926
1927# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1928 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1929 PPGMPOOLPAGE pShwPde = NULL;
1930 PX86PDPAE pPDDst;
1931
1932 /* Fetch the pgm pool shadow descriptor. */
1933 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1934 AssertRCSuccessReturn(rc2, rc2);
1935 Assert(pShwPde);
1936
1937 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1938 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1939
1940# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1941 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1942 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1943 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1944 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1945
1946 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1947 AssertRCSuccessReturn(rc2, rc2);
1948 Assert(pPDDst && pPdptDst);
1949 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1950# endif
1951 SHWPDE PdeDst = *pPdeDst;
1952
1953 /*
1954 * - In the guest SMP case we could have blocked while another VCPU reused
1955 * this page table.
1956 * - With W7-64 we may also take this path when the A bit is cleared on
1957 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1958 * relevant TLB entries. If we're write monitoring any page mapped by
1959 * the modified entry, we may end up here with a "stale" TLB entry.
1960 */
1961 if (!PdeDst.n.u1Present)
1962 {
1963 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1964 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1965 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1966 if (uErr & X86_TRAP_PF_P)
1967 PGM_INVL_PG(pVCpu, GCPtrPage);
1968 return VINF_SUCCESS; /* force the instruction to be executed again. */
1969 }
1970
1971 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1972 Assert(pShwPage);
1973
1974# if PGM_GST_TYPE == PGM_TYPE_AMD64
1975 /* Fetch the pgm pool shadow descriptor. */
1976 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1977 Assert(pShwPde);
1978# endif
1979
1980 /*
1981 * Check that the page is present and that the shadow PDE isn't out of sync.
1982 */
1983 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1984 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1985 RTGCPHYS GCPhys;
1986 if (!fBigPage)
1987 {
1988 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1989# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1990 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1991 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1992# endif
1993 }
1994 else
1995 {
1996 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1997# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1998 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1999 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2000# endif
2001 }
2002 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
2003 if ( fPdeValid
2004 && pShwPage->GCPhys == GCPhys
2005 && PdeSrc.n.u1Present
2006 && PdeSrc.n.u1User == PdeDst.n.u1User
2007 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
2008# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2009 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
2010# endif
2011 )
2012 {
2013 /*
2014 * Check that the PDE is marked accessed already.
2015 * Since we set the accessed bit *before* getting here on a #PF, this
2016 * check is only meant for dealing with non-#PF'ing paths.
2017 */
2018 if (PdeSrc.n.u1Accessed)
2019 {
2020 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2021 if (!fBigPage)
2022 {
2023 /*
2024 * 4KB Page - Map the guest page table.
2025 */
2026 PGSTPT pPTSrc;
2027 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2028 if (RT_SUCCESS(rc))
2029 {
2030# ifdef PGM_SYNC_N_PAGES
2031 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2032 if ( cPages > 1
2033 && !(uErr & X86_TRAP_PF_P)
2034 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2035 {
2036 /*
2037 * This code path is currently only taken when the caller is PGMTrap0eHandler
2038 * for non-present pages!
2039 *
2040 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2041 * deal with locality.
2042 */
2043 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2044# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2045 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2046 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2047# else
2048 const unsigned offPTSrc = 0;
2049# endif
2050 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2051 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2052 iPTDst = 0;
2053 else
2054 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2055
2056 for (; iPTDst < iPTDstEnd; iPTDst++)
2057 {
2058 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
2059
2060 if ( pPteSrc->n.u1Present
2061 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2062 {
2063 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
2064 NOREF(GCPtrCurPage);
2065# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2066 /*
2067 * Assuming kernel code will be marked as supervisor - and not as user level
2068 * and executed using a conforming code selector - And marked as readonly.
2069 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2070 */
2071 PPGMPAGE pPage;
2072 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
2073 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
2074 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
2075 || ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK))
2076 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2077 )
2078# endif /* else: CSAM not active */
2079 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
2080 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2081 GCPtrCurPage, pPteSrc->n.u1Present,
2082 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
2083 pPteSrc->n.u1User & PdeSrc.n.u1User,
2084 (uint64_t)pPteSrc->u,
2085 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2086 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2087 }
2088 }
2089 }
2090 else
2091# endif /* PGM_SYNC_N_PAGES */
2092 {
2093 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2094 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2095 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2096 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2097 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2098 GCPtrPage, PteSrc.n.u1Present,
2099 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2100 PteSrc.n.u1User & PdeSrc.n.u1User,
2101 (uint64_t)PteSrc.u,
2102 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2103 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2104 }
2105 }
2106 else /* MMIO or invalid page: emulated in #PF handler. */
2107 {
2108 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2109 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2110 }
2111 }
2112 else
2113 {
2114 /*
2115 * 4/2MB page - lazy syncing shadow 4K pages.
2116 * (There are many causes of getting here, it's no longer only CSAM.)
2117 */
2118 /* Calculate the GC physical address of this 4KB shadow page. */
2119 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2120 /* Find ram range. */
2121 PPGMPAGE pPage;
2122 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2123 if (RT_SUCCESS(rc))
2124 {
2125 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2126
2127# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2128 /* Try to make the page writable if necessary. */
2129 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2130 && ( PGM_PAGE_IS_ZERO(pPage)
2131 || ( PdeSrc.n.u1Write
2132 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2133# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2134 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2135# endif
2136# ifdef VBOX_WITH_PAGE_SHARING
2137 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2138# endif
2139 )
2140 )
2141 )
2142 {
2143 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2144 AssertRC(rc);
2145 }
2146# endif
2147
2148 /*
2149 * Make shadow PTE entry.
2150 */
2151 SHWPTE PteDst;
2152 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2153 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2154 else
2155 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2156
2157 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2158 if ( SHW_PTE_IS_P(PteDst)
2159 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2160 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2161
2162 /* Make sure only allocated pages are mapped writable. */
2163 if ( SHW_PTE_IS_P_RW(PteDst)
2164 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2165 {
2166 /* Still applies to shared pages. */
2167 Assert(!PGM_PAGE_IS_ZERO(pPage));
2168 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2169 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2170 }
2171
2172 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2173
2174 /*
2175 * If the page is not flagged as dirty and is writable, then make it read-only
2176 * at PD level, so we can set the dirty bit when the page is modified.
2177 *
2178 * ASSUMES that page access handlers are implemented on page table entry level.
2179 * Thus we will first catch the dirty access and set PDE.D and restart. If
2180 * there is an access handler, we'll trap again and let it work on the problem.
2181 */
2182 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2183 * As for invlpg, it simply frees the whole shadow PT.
2184 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2185 if ( !PdeSrc.b.u1Dirty
2186 && PdeSrc.b.u1Write)
2187 {
2188 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2189 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2190 PdeDst.n.u1Write = 0;
2191 }
2192 else
2193 {
2194 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2195 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2196 }
2197 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2198 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2199 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2200 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2201 }
2202 else
2203 {
2204 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2205 /** @todo must wipe the shadow page table entry in this
2206 * case. */
2207 }
2208 }
2209 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2210 return VINF_SUCCESS;
2211 }
2212
2213 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2214 }
2215 else if (fPdeValid)
2216 {
2217 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2218 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2219 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2220 }
2221 else
2222 {
2223/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2224 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2225 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2226 }
2227
2228 /*
2229 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2230 * Yea, I'm lazy.
2231 */
2232 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2233 ASMAtomicWriteSize(pPdeDst, 0);
2234
2235 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2236 PGM_INVL_VCPU_TLBS(pVCpu);
2237 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2238
2239
2240#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2241 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2242 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2243 && !defined(IN_RC)
2244 NOREF(PdeSrc);
2245
2246# ifdef PGM_SYNC_N_PAGES
2247 /*
2248 * Get the shadow PDE, find the shadow page table in the pool.
2249 */
2250# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2251 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2252
2253# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2254 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2255
2256# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2257 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2258 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2259 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2260 X86PDEPAE PdeDst;
2261 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2262
2263 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2264 AssertRCSuccessReturn(rc, rc);
2265 Assert(pPDDst && pPdptDst);
2266 PdeDst = pPDDst->a[iPDDst];
2267# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2268 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2269 PEPTPD pPDDst;
2270 EPTPDE PdeDst;
2271
2272 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2273 if (rc != VINF_SUCCESS)
2274 {
2275 AssertRC(rc);
2276 return rc;
2277 }
2278 Assert(pPDDst);
2279 PdeDst = pPDDst->a[iPDDst];
2280# endif
2281 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2282 if (!PdeDst.n.u1Present)
2283 {
2284 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2285 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2286 return VINF_SUCCESS; /* force the instruction to be executed again. */
2287 }
2288
2289 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2290 if (PdeDst.n.u1Size)
2291 {
2292 Assert(pVM->pgm.s.fNestedPaging);
2293 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2294 return VINF_SUCCESS;
2295 }
2296
2297 /* Mask away the page offset. */
2298 GCPtrPage &= ~((RTGCPTR)0xfff);
2299
2300 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2301 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2302
2303 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2304 if ( cPages > 1
2305 && !(uErr & X86_TRAP_PF_P)
2306 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2307 {
2308 /*
2309 * This code path is currently only taken when the caller is PGMTrap0eHandler
2310 * for non-present pages!
2311 *
2312 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2313 * deal with locality.
2314 */
2315 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2316 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2317 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2318 iPTDst = 0;
2319 else
2320 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2321 for (; iPTDst < iPTDstEnd; iPTDst++)
2322 {
2323 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2324 {
2325 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2326 | (iPTDst << PAGE_SHIFT));
2327
2328 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2329 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2330 GCPtrCurPage,
2331 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2332 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2333
2334 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2335 break;
2336 }
2337 else
2338 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2339 }
2340 }
2341 else
2342# endif /* PGM_SYNC_N_PAGES */
2343 {
2344 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2345 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2346 | (iPTDst << PAGE_SHIFT));
2347
2348 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2349
2350 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2351 GCPtrPage,
2352 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2353 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2354 }
2355 return VINF_SUCCESS;
2356
2357#else
2358 NOREF(PdeSrc);
2359 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2360 return VERR_PGM_NOT_USED_IN_MODE;
2361#endif
2362}
2363
2364
2365#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2366
2367/**
2368 * CheckPageFault helper for returning a page fault indicating a non-present
2369 * (NP) entry in the page translation structures.
2370 *
2371 * @returns VINF_EM_RAW_GUEST_TRAP.
2372 * @param pVCpu The cross context virtual CPU structure.
2373 * @param uErr The error code of the shadow fault. Corrections to
2374 * TRPM's copy will be made if necessary.
2375 * @param GCPtrPage For logging.
2376 * @param uPageFaultLevel For logging.
2377 */
2378DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2379{
2380 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2381 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2382 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2383 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2384 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2385
2386 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2387 return VINF_EM_RAW_GUEST_TRAP;
2388}
2389
2390
2391/**
2392 * CheckPageFault helper for returning a page fault indicating a reserved bit
2393 * (RSVD) error in the page translation structures.
2394 *
2395 * @returns VINF_EM_RAW_GUEST_TRAP.
2396 * @param pVCpu The cross context virtual CPU structure.
2397 * @param uErr The error code of the shadow fault. Corrections to
2398 * TRPM's copy will be made if necessary.
2399 * @param GCPtrPage For logging.
2400 * @param uPageFaultLevel For logging.
2401 */
2402DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2403{
2404 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2405 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2406 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2407
2408 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2409 return VINF_EM_RAW_GUEST_TRAP;
2410}
2411
2412
2413/**
2414 * CheckPageFault helper for returning a page protection fault (P).
2415 *
2416 * @returns VINF_EM_RAW_GUEST_TRAP.
2417 * @param pVCpu The cross context virtual CPU structure.
2418 * @param uErr The error code of the shadow fault. Corrections to
2419 * TRPM's copy will be made if necessary.
2420 * @param GCPtrPage For logging.
2421 * @param uPageFaultLevel For logging.
2422 */
2423DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2424{
2425 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2426 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2427 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2428 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2429
2430 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2431 return VINF_EM_RAW_GUEST_TRAP;
2432}
2433
2434
2435/**
2436 * Handle dirty bit tracking faults.
2437 *
2438 * @returns VBox status code.
2439 * @param pVCpu The cross context virtual CPU structure.
2440 * @param uErr Page fault error code.
2441 * @param pPdeSrc Guest page directory entry.
2442 * @param pPdeDst Shadow page directory entry.
2443 * @param GCPtrPage Guest context page address.
2444 */
2445static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2446 RTGCPTR GCPtrPage)
2447{
2448 PVM pVM = pVCpu->CTX_SUFF(pVM);
2449 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2450 NOREF(uErr);
2451
2452 PGM_LOCK_ASSERT_OWNER(pVM);
2453
2454 /*
2455 * Handle big page.
2456 */
2457 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2458 {
2459 if ( pPdeDst->n.u1Present
2460 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2461 {
2462 SHWPDE PdeDst = *pPdeDst;
2463
2464 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2465 Assert(pPdeSrc->b.u1Write);
2466
2467 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2468 * fault again and take this path to only invalidate the entry (see below).
2469 */
2470 PdeDst.n.u1Write = 1;
2471 PdeDst.n.u1Accessed = 1;
2472 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2473 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2474 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2475 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2476 }
2477
2478# ifdef IN_RING0
2479 /* Check for stale TLB entry; only applies to the SMP guest case. */
2480 if ( pVM->cCpus > 1
2481 && pPdeDst->n.u1Write
2482 && pPdeDst->n.u1Accessed)
2483 {
2484 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2485 if (pShwPage)
2486 {
2487 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2488 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2489 if (SHW_PTE_IS_P_RW(*pPteDst))
2490 {
2491 /* Stale TLB entry. */
2492 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2493 PGM_INVL_PG(pVCpu, GCPtrPage);
2494 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2495 }
2496 }
2497 }
2498# endif /* IN_RING0 */
2499 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2500 }
2501
2502 /*
2503 * Map the guest page table.
2504 */
2505 PGSTPT pPTSrc;
2506 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2507 if (RT_FAILURE(rc))
2508 {
2509 AssertRC(rc);
2510 return rc;
2511 }
2512
2513 if (pPdeDst->n.u1Present)
2514 {
2515 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2516 const GSTPTE PteSrc = *pPteSrc;
2517
2518#ifdef VBOX_WITH_RAW_MODE_NOT_R0
2519 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2520 * Our individual shadow handlers will provide more information and force a fatal exit.
2521 */
2522 if ( !HMIsEnabled(pVM)
2523 && MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2524 {
2525 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2526 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2527 }
2528#endif
2529 /*
2530 * Map shadow page table.
2531 */
2532 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2533 if (pShwPage)
2534 {
2535 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2536 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2537 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2538 {
2539 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2540 {
2541 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2542 SHWPTE PteDst = *pPteDst;
2543
2544 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2545 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2546
2547 Assert(PteSrc.n.u1Write);
2548
2549 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2550 * entry will not harm; write access will simply fault again and
2551 * take this path to only invalidate the entry.
2552 */
2553 if (RT_LIKELY(pPage))
2554 {
2555 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2556 {
2557 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2558 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2559 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2560 SHW_PTE_SET_RO(PteDst);
2561 }
2562 else
2563 {
2564 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2565 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2566 {
2567 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2568 AssertRC(rc);
2569 }
2570 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2571 SHW_PTE_SET_RW(PteDst);
2572 else
2573 {
2574 /* Still applies to shared pages. */
2575 Assert(!PGM_PAGE_IS_ZERO(pPage));
2576 SHW_PTE_SET_RO(PteDst);
2577 }
2578 }
2579 }
2580 else
2581 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2582
2583 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2584 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2585 PGM_INVL_PG(pVCpu, GCPtrPage);
2586 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2587 }
2588
2589# ifdef IN_RING0
2590 /* Check for stale TLB entry; only applies to the SMP guest case. */
2591 if ( pVM->cCpus > 1
2592 && SHW_PTE_IS_RW(*pPteDst)
2593 && SHW_PTE_IS_A(*pPteDst))
2594 {
2595 /* Stale TLB entry. */
2596 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2597 PGM_INVL_PG(pVCpu, GCPtrPage);
2598 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2599 }
2600# endif
2601 }
2602 }
2603 else
2604 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2605 }
2606
2607 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2608}
2609
2610#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2611
2612
2613/**
2614 * Sync a shadow page table.
2615 *
2616 * The shadow page table is not present in the shadow PDE.
2617 *
2618 * Handles mapping conflicts.
2619 *
2620 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2621 * conflict), and Trap0eHandler.
2622 *
2623 * A precondition for this method is that the shadow PDE is not present. The
2624 * caller must take the PGM lock before checking this and continue to hold it
2625 * when calling this method.
2626 *
2627 * @returns VBox status code.
2628 * @param pVCpu The cross context virtual CPU structure.
2629 * @param iPDSrc Page directory index.
2630 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2631 * Assume this is a temporary mapping.
2632 * @param GCPtrPage GC Pointer of the page that caused the fault
2633 */
2634static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2635{
2636 PVM pVM = pVCpu->CTX_SUFF(pVM);
2637 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2638
2639#if 0 /* rarely useful; leave for debugging. */
2640 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2641#endif
2642 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2643
2644 PGM_LOCK_ASSERT_OWNER(pVM);
2645
2646#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2647 || PGM_GST_TYPE == PGM_TYPE_PAE \
2648 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2649 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2650 && PGM_SHW_TYPE != PGM_TYPE_EPT
2651
2652 int rc = VINF_SUCCESS;
2653
2654 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2655
2656 /*
2657 * Some input validation first.
2658 */
2659 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2660
2661 /*
2662 * Get the relevant shadow PDE entry.
2663 */
2664# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2665 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2666 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2667
2668 /* Fetch the pgm pool shadow descriptor. */
2669 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2670 Assert(pShwPde);
2671
2672# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2673 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2674 PPGMPOOLPAGE pShwPde = NULL;
2675 PX86PDPAE pPDDst;
2676 PSHWPDE pPdeDst;
2677
2678 /* Fetch the pgm pool shadow descriptor. */
2679 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2680 AssertRCSuccessReturn(rc, rc);
2681 Assert(pShwPde);
2682
2683 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2684 pPdeDst = &pPDDst->a[iPDDst];
2685
2686# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2687 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2688 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2689 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2690 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2691 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2692 AssertRCSuccessReturn(rc, rc);
2693 Assert(pPDDst);
2694 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2695# endif
2696 SHWPDE PdeDst = *pPdeDst;
2697
2698# if PGM_GST_TYPE == PGM_TYPE_AMD64
2699 /* Fetch the pgm pool shadow descriptor. */
2700 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2701 Assert(pShwPde);
2702# endif
2703
2704# ifndef PGM_WITHOUT_MAPPINGS
2705 /*
2706 * Check for conflicts.
2707 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2708 * R3: Simply resolve the conflict.
2709 */
2710 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2711 {
2712 Assert(pgmMapAreMappingsEnabled(pVM));
2713# ifndef IN_RING3
2714 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2715 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2716 return VERR_ADDRESS_CONFLICT;
2717
2718# else /* IN_RING3 */
2719 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2720 Assert(pMapping);
2721# if PGM_GST_TYPE == PGM_TYPE_32BIT
2722 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2723# elif PGM_GST_TYPE == PGM_TYPE_PAE
2724 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2725# else
2726 AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
2727# endif
2728 if (RT_FAILURE(rc))
2729 {
2730 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2731 return rc;
2732 }
2733 PdeDst = *pPdeDst;
2734# endif /* IN_RING3 */
2735 }
2736# endif /* !PGM_WITHOUT_MAPPINGS */
2737 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2738
2739 /*
2740 * Sync the page directory entry.
2741 */
2742 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2743 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2744 if ( PdeSrc.n.u1Present
2745 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2746 {
2747 /*
2748 * Allocate & map the page table.
2749 */
2750 PSHWPT pPTDst;
2751 PPGMPOOLPAGE pShwPage;
2752 RTGCPHYS GCPhys;
2753 if (fPageTable)
2754 {
2755 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2756# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2757 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2758 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2759# endif
2760 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2761 pShwPde->idx, iPDDst, false /*fLockPage*/,
2762 &pShwPage);
2763 }
2764 else
2765 {
2766 PGMPOOLACCESS enmAccess;
2767# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2768 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2769# else
2770 const bool fNoExecute = false;
2771# endif
2772
2773 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2774# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2775 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2776 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2777# endif
2778 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2779 if (PdeSrc.n.u1User)
2780 {
2781 if (PdeSrc.n.u1Write)
2782 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2783 else
2784 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2785 }
2786 else
2787 {
2788 if (PdeSrc.n.u1Write)
2789 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2790 else
2791 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2792 }
2793 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2794 pShwPde->idx, iPDDst, false /*fLockPage*/,
2795 &pShwPage);
2796 }
2797 if (rc == VINF_SUCCESS)
2798 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2799 else if (rc == VINF_PGM_CACHED_PAGE)
2800 {
2801 /*
2802 * The PT was cached, just hook it up.
2803 */
2804 if (fPageTable)
2805 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2806 else
2807 {
2808 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2809 /* (see explanation and assumptions further down.) */
2810 if ( !PdeSrc.b.u1Dirty
2811 && PdeSrc.b.u1Write)
2812 {
2813 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2814 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2815 PdeDst.b.u1Write = 0;
2816 }
2817 }
2818 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2819 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2820 return VINF_SUCCESS;
2821 }
2822 else if (rc == VERR_PGM_POOL_FLUSHED)
2823 {
2824 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2825 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2826 return VINF_PGM_SYNC_CR3;
2827 }
2828 else
2829 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2830 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2831 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2832 * irrelevant at this point. */
2833 PdeDst.u &= X86_PDE_AVL_MASK;
2834 PdeDst.u |= pShwPage->Core.Key;
2835
2836 /*
2837 * Page directory has been accessed (this is a fault situation, remember).
2838 */
2839 /** @todo
2840 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2841 * fault situation. What's more, the Trap0eHandler has already set the
2842 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2843 * might need setting the accessed flag.
2844 *
2845 * The best idea is to leave this change to the caller and add an
2846 * assertion that it's set already. */
2847 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2848 if (fPageTable)
2849 {
2850 /*
2851 * Page table - 4KB.
2852 *
2853 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2854 */
2855 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2856 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2857 PGSTPT pPTSrc;
2858 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2859 if (RT_SUCCESS(rc))
2860 {
2861 /*
2862 * Start by syncing the page directory entry so CSAM's TLB trick works.
2863 */
2864 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2865 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2866 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2867 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2868
2869 /*
2870 * Directory/page user or supervisor privilege: (same goes for read/write)
2871 *
2872 * Directory Page Combined
2873 * U/S U/S U/S
2874 * 0 0 0
2875 * 0 1 0
2876 * 1 0 0
2877 * 1 1 1
2878 *
2879 * Simple AND operation. Table listed for completeness.
2880 *
2881 */
2882 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2883# ifdef PGM_SYNC_N_PAGES
2884 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2885 unsigned iPTDst = iPTBase;
2886 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2887 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2888 iPTDst = 0;
2889 else
2890 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2891# else /* !PGM_SYNC_N_PAGES */
2892 unsigned iPTDst = 0;
2893 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2894# endif /* !PGM_SYNC_N_PAGES */
2895 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2896 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2897# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2898 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2899 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2900# else
2901 const unsigned offPTSrc = 0;
2902# endif
2903 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2904 {
2905 const unsigned iPTSrc = iPTDst + offPTSrc;
2906 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2907
2908 if (PteSrc.n.u1Present)
2909 {
2910# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2911 /*
2912 * Assuming kernel code will be marked as supervisor - and not as user level
2913 * and executed using a conforming code selector - And marked as readonly.
2914 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2915 */
2916 PPGMPAGE pPage;
2917 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2918 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2919 || ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)))
2920 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2921 )
2922# endif
2923 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2924 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2925 GCPtrCur,
2926 PteSrc.n.u1Present,
2927 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2928 PteSrc.n.u1User & PdeSrc.n.u1User,
2929 (uint64_t)PteSrc.u,
2930 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2931 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2932 }
2933 /* else: the page table was cleared by the pool */
2934 } /* for PTEs */
2935 }
2936 }
2937 else
2938 {
2939 /*
2940 * Big page - 2/4MB.
2941 *
2942 * We'll walk the ram range list in parallel and optimize lookups.
2943 * We will only sync one shadow page table at a time.
2944 */
2945 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2946
2947 /**
2948 * @todo It might be more efficient to sync only a part of the 4MB
2949 * page (similar to what we do for 4KB PDs).
2950 */
2951
2952 /*
2953 * Start by syncing the page directory entry.
2954 */
2955 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2956 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2957
2958 /*
2959 * If the page is not flagged as dirty and is writable, then make it read-only
2960 * at PD level, so we can set the dirty bit when the page is modified.
2961 *
2962 * ASSUMES that page access handlers are implemented on page table entry level.
2963 * Thus we will first catch the dirty access and set PDE.D and restart. If
2964 * there is an access handler, we'll trap again and let it work on the problem.
2965 */
2966 /** @todo move the above stuff to a section in the PGM documentation. */
2967 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2968 if ( !PdeSrc.b.u1Dirty
2969 && PdeSrc.b.u1Write)
2970 {
2971 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2972 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2973 PdeDst.b.u1Write = 0;
2974 }
2975 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2976 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2977
2978 /*
2979 * Fill the shadow page table.
2980 */
2981 /* Get address and flags from the source PDE. */
2982 SHWPTE PteDstBase;
2983 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2984
2985 /* Loop thru the entries in the shadow PT. */
2986 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2987 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2988 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2989 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2990 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2991 unsigned iPTDst = 0;
2992 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2993 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2994 {
2995 if (pRam && GCPhys >= pRam->GCPhys)
2996 {
2997# ifndef PGM_WITH_A20
2998 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2999# endif
3000 do
3001 {
3002 /* Make shadow PTE. */
3003# ifdef PGM_WITH_A20
3004 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3005# else
3006 PPGMPAGE pPage = &pRam->aPages[iHCPage];
3007# endif
3008 SHWPTE PteDst;
3009
3010# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3011 /* Try to make the page writable if necessary. */
3012 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
3013 && ( PGM_PAGE_IS_ZERO(pPage)
3014 || ( SHW_PTE_IS_RW(PteDstBase)
3015 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
3016# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
3017 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
3018# endif
3019# ifdef VBOX_WITH_PAGE_SHARING
3020 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
3021# endif
3022 && !PGM_PAGE_IS_BALLOONED(pPage))
3023 )
3024 )
3025 {
3026 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
3027 AssertRCReturn(rc, rc);
3028 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
3029 break;
3030 }
3031# endif
3032
3033 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3034 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
3035 else if (PGM_PAGE_IS_BALLOONED(pPage))
3036 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
3037# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3038 /*
3039 * Assuming kernel code will be marked as supervisor and not as user level and executed
3040 * using a conforming code selector. Don't check for readonly, as that implies the whole
3041 * 4MB can be code or readonly data. Linux enables write access for its large pages.
3042 */
3043 else if ( !PdeSrc.n.u1User
3044 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
3045 SHW_PTE_SET(PteDst, 0);
3046# endif
3047 else
3048 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
3049
3050 /* Only map writable pages writable. */
3051 if ( SHW_PTE_IS_P_RW(PteDst)
3052 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
3053 {
3054 /* Still applies to shared pages. */
3055 Assert(!PGM_PAGE_IS_ZERO(pPage));
3056 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
3057 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
3058 }
3059
3060 if (SHW_PTE_IS_P(PteDst))
3061 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
3062
3063 /* commit it (not atomic, new table) */
3064 pPTDst->a[iPTDst] = PteDst;
3065 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
3066 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
3067 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
3068
3069 /* advance */
3070 GCPhys += PAGE_SIZE;
3071 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
3072# ifndef PGM_WITH_A20
3073 iHCPage++;
3074# endif
3075 iPTDst++;
3076 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3077 && GCPhys <= pRam->GCPhysLast);
3078
3079 /* Advance ram range list. */
3080 while (pRam && GCPhys > pRam->GCPhysLast)
3081 pRam = pRam->CTX_SUFF(pNext);
3082 }
3083 else if (pRam)
3084 {
3085 Log(("Invalid pages at %RGp\n", GCPhys));
3086 do
3087 {
3088 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3089 GCPhys += PAGE_SIZE;
3090 iPTDst++;
3091 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3092 && GCPhys < pRam->GCPhys);
3093 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3094 }
3095 else
3096 {
3097 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3098 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3099 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3100 }
3101 } /* while more PTEs */
3102 } /* 4KB / 4MB */
3103 }
3104 else
3105 AssertRelease(!PdeDst.n.u1Present);
3106
3107 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3108 if (RT_FAILURE(rc))
3109 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3110 return rc;
3111
3112#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3113 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3114 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3115 && !defined(IN_RC)
3116 NOREF(iPDSrc); NOREF(pPDSrc);
3117
3118 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3119
3120 /*
3121 * Validate input a little bit.
3122 */
3123 int rc = VINF_SUCCESS;
3124# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3125 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3126 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3127
3128 /* Fetch the pgm pool shadow descriptor. */
3129 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3130 Assert(pShwPde);
3131
3132# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3133 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3134 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3135 PX86PDPAE pPDDst;
3136 PSHWPDE pPdeDst;
3137
3138 /* Fetch the pgm pool shadow descriptor. */
3139 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3140 AssertRCSuccessReturn(rc, rc);
3141 Assert(pShwPde);
3142
3143 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3144 pPdeDst = &pPDDst->a[iPDDst];
3145
3146# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3147 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3148 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3149 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3150 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3151 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3152 AssertRCSuccessReturn(rc, rc);
3153 Assert(pPDDst);
3154 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3155
3156 /* Fetch the pgm pool shadow descriptor. */
3157 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3158 Assert(pShwPde);
3159
3160# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3161 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3162 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3163 PEPTPD pPDDst;
3164 PEPTPDPT pPdptDst;
3165
3166 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3167 if (rc != VINF_SUCCESS)
3168 {
3169 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3170 AssertRC(rc);
3171 return rc;
3172 }
3173 Assert(pPDDst);
3174 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3175
3176 /* Fetch the pgm pool shadow descriptor. */
3177 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3178 Assert(pShwPde);
3179# endif
3180 SHWPDE PdeDst = *pPdeDst;
3181
3182 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3183 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3184
3185# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3186 if (BTH_IS_NP_ACTIVE(pVM))
3187 {
3188 /* Check if we allocated a big page before for this 2 MB range. */
3189 PPGMPAGE pPage;
3190 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3191 if (RT_SUCCESS(rc))
3192 {
3193 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3194 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3195 {
3196 if (PGM_A20_IS_ENABLED(pVCpu))
3197 {
3198 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3199 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3200 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3201 }
3202 else
3203 {
3204 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3205 pVM->pgm.s.cLargePagesDisabled++;
3206 }
3207 }
3208 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3209 && PGM_A20_IS_ENABLED(pVCpu))
3210 {
3211 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3212 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3213 if (RT_SUCCESS(rc))
3214 {
3215 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3216 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3217 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3218 }
3219 }
3220 else if ( PGMIsUsingLargePages(pVM)
3221 && PGM_A20_IS_ENABLED(pVCpu))
3222 {
3223 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3224 if (RT_SUCCESS(rc))
3225 {
3226 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3227 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3228 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3229 }
3230 else
3231 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3232 }
3233
3234 if (HCPhys != NIL_RTHCPHYS)
3235 {
3236 PdeDst.u &= X86_PDE_AVL_MASK;
3237 PdeDst.u |= HCPhys;
3238 PdeDst.n.u1Present = 1;
3239 PdeDst.n.u1Write = 1;
3240 PdeDst.b.u1Size = 1;
3241# if PGM_SHW_TYPE == PGM_TYPE_EPT
3242 PdeDst.n.u1Execute = 1;
3243 PdeDst.b.u1IgnorePAT = 1;
3244 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3245# else
3246 PdeDst.n.u1User = 1;
3247# endif
3248 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3249
3250 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3251 /* Add a reference to the first page only. */
3252 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3253
3254 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3255 return VINF_SUCCESS;
3256 }
3257 }
3258 }
3259# endif /* HC_ARCH_BITS == 64 */
3260
3261 /*
3262 * Allocate & map the page table.
3263 */
3264 PSHWPT pPTDst;
3265 PPGMPOOLPAGE pShwPage;
3266 RTGCPHYS GCPhys;
3267
3268 /* Virtual address = physical address */
3269 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3270 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3271 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3272 &pShwPage);
3273 if ( rc == VINF_SUCCESS
3274 || rc == VINF_PGM_CACHED_PAGE)
3275 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3276 else
3277 {
3278 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3279 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3280 }
3281
3282 if (rc == VINF_SUCCESS)
3283 {
3284 /* New page table; fully set it up. */
3285 Assert(pPTDst);
3286
3287 /* Mask away the page offset. */
3288 GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3289
3290 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3291 {
3292 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3293 | (iPTDst << PAGE_SHIFT));
3294
3295 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3296 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3297 GCPtrCurPage,
3298 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3299 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3300
3301 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
3302 break;
3303 }
3304 }
3305 else
3306 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3307
3308 /* Save the new PDE. */
3309 PdeDst.u &= X86_PDE_AVL_MASK;
3310 PdeDst.u |= pShwPage->Core.Key;
3311 PdeDst.n.u1Present = 1;
3312 PdeDst.n.u1Write = 1;
3313# if PGM_SHW_TYPE == PGM_TYPE_EPT
3314 PdeDst.n.u1Execute = 1;
3315# else
3316 PdeDst.n.u1User = 1;
3317 PdeDst.n.u1Accessed = 1;
3318# endif
3319 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3320
3321 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3322 if (RT_FAILURE(rc))
3323 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3324 return rc;
3325
3326#else
3327 NOREF(iPDSrc); NOREF(pPDSrc);
3328 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3329 return VERR_PGM_NOT_USED_IN_MODE;
3330#endif
3331}
3332
3333
3334
3335/**
3336 * Prefetch a page/set of pages.
3337 *
3338 * Typically used to sync commonly used pages before entering raw mode
3339 * after a CR3 reload.
3340 *
3341 * @returns VBox status code.
3342 * @param pVCpu The cross context virtual CPU structure.
3343 * @param GCPtrPage Page to invalidate.
3344 */
3345PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3346{
3347#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3348 || PGM_GST_TYPE == PGM_TYPE_REAL \
3349 || PGM_GST_TYPE == PGM_TYPE_PROT \
3350 || PGM_GST_TYPE == PGM_TYPE_PAE \
3351 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3352 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3353 && PGM_SHW_TYPE != PGM_TYPE_EPT
3354
3355 /*
3356 * Check that all Guest levels thru the PDE are present, getting the
3357 * PD and PDE in the processes.
3358 */
3359 int rc = VINF_SUCCESS;
3360# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3361# if PGM_GST_TYPE == PGM_TYPE_32BIT
3362 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3363 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3364# elif PGM_GST_TYPE == PGM_TYPE_PAE
3365 unsigned iPDSrc;
3366 X86PDPE PdpeSrc;
3367 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3368 if (!pPDSrc)
3369 return VINF_SUCCESS; /* not present */
3370# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3371 unsigned iPDSrc;
3372 PX86PML4E pPml4eSrc;
3373 X86PDPE PdpeSrc;
3374 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3375 if (!pPDSrc)
3376 return VINF_SUCCESS; /* not present */
3377# endif
3378 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3379# else
3380 PGSTPD pPDSrc = NULL;
3381 const unsigned iPDSrc = 0;
3382 GSTPDE PdeSrc;
3383
3384 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3385 PdeSrc.n.u1Present = 1;
3386 PdeSrc.n.u1Write = 1;
3387 PdeSrc.n.u1Accessed = 1;
3388 PdeSrc.n.u1User = 1;
3389# endif
3390
3391 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3392 {
3393 PVM pVM = pVCpu->CTX_SUFF(pVM);
3394 pgmLock(pVM);
3395
3396# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3397 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3398# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3399 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3400 PX86PDPAE pPDDst;
3401 X86PDEPAE PdeDst;
3402# if PGM_GST_TYPE != PGM_TYPE_PAE
3403 X86PDPE PdpeSrc;
3404
3405 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3406 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3407# endif
3408 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3409 if (rc != VINF_SUCCESS)
3410 {
3411 pgmUnlock(pVM);
3412 AssertRC(rc);
3413 return rc;
3414 }
3415 Assert(pPDDst);
3416 PdeDst = pPDDst->a[iPDDst];
3417
3418# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3419 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3420 PX86PDPAE pPDDst;
3421 X86PDEPAE PdeDst;
3422
3423# if PGM_GST_TYPE == PGM_TYPE_PROT
3424 /* AMD-V nested paging */
3425 X86PML4E Pml4eSrc;
3426 X86PDPE PdpeSrc;
3427 PX86PML4E pPml4eSrc = &Pml4eSrc;
3428
3429 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3430 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3431 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3432# endif
3433
3434 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3435 if (rc != VINF_SUCCESS)
3436 {
3437 pgmUnlock(pVM);
3438 AssertRC(rc);
3439 return rc;
3440 }
3441 Assert(pPDDst);
3442 PdeDst = pPDDst->a[iPDDst];
3443# endif
3444 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3445 {
3446 if (!PdeDst.n.u1Present)
3447 {
3448 /** @todo r=bird: This guy will set the A bit on the PDE,
3449 * probably harmless. */
3450 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3451 }
3452 else
3453 {
3454 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3455 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3456 * makes no sense to prefetch more than one page.
3457 */
3458 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3459 if (RT_SUCCESS(rc))
3460 rc = VINF_SUCCESS;
3461 }
3462 }
3463 pgmUnlock(pVM);
3464 }
3465 return rc;
3466
3467#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3468 NOREF(pVCpu); NOREF(GCPtrPage);
3469 return VINF_SUCCESS; /* ignore */
3470#else
3471 AssertCompile(0);
3472#endif
3473}
3474
3475
3476
3477
3478/**
3479 * Syncs a page during a PGMVerifyAccess() call.
3480 *
3481 * @returns VBox status code (informational included).
3482 * @param pVCpu The cross context virtual CPU structure.
3483 * @param GCPtrPage The address of the page to sync.
3484 * @param fPage The effective guest page flags.
3485 * @param uErr The trap error code.
3486 * @remarks This will normally never be called on invalid guest page
3487 * translation entries.
3488 */
3489PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3490{
3491 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3492
3493 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3494
3495 Assert(!pVM->pgm.s.fNestedPaging);
3496#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3497 || PGM_GST_TYPE == PGM_TYPE_REAL \
3498 || PGM_GST_TYPE == PGM_TYPE_PROT \
3499 || PGM_GST_TYPE == PGM_TYPE_PAE \
3500 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3501 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3502 && PGM_SHW_TYPE != PGM_TYPE_EPT
3503
3504# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3505 if (!(fPage & X86_PTE_US))
3506 {
3507 /*
3508 * Mark this page as safe.
3509 */
3510 /** @todo not correct for pages that contain both code and data!! */
3511 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3512 CSAMMarkPage(pVM, GCPtrPage, true);
3513 }
3514# endif
3515
3516 /*
3517 * Get guest PD and index.
3518 */
3519 /** @todo Performance: We've done all this a jiffy ago in the
3520 * PGMGstGetPage call. */
3521# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3522# if PGM_GST_TYPE == PGM_TYPE_32BIT
3523 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3524 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3525
3526# elif PGM_GST_TYPE == PGM_TYPE_PAE
3527 unsigned iPDSrc = 0;
3528 X86PDPE PdpeSrc;
3529 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3530 if (RT_UNLIKELY(!pPDSrc))
3531 {
3532 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3533 return VINF_EM_RAW_GUEST_TRAP;
3534 }
3535
3536# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3537 unsigned iPDSrc = 0; /* shut up gcc */
3538 PX86PML4E pPml4eSrc = NULL; /* ditto */
3539 X86PDPE PdpeSrc;
3540 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3541 if (RT_UNLIKELY(!pPDSrc))
3542 {
3543 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3544 return VINF_EM_RAW_GUEST_TRAP;
3545 }
3546# endif
3547
3548# else /* !PGM_WITH_PAGING */
3549 PGSTPD pPDSrc = NULL;
3550 const unsigned iPDSrc = 0;
3551# endif /* !PGM_WITH_PAGING */
3552 int rc = VINF_SUCCESS;
3553
3554 pgmLock(pVM);
3555
3556 /*
3557 * First check if the shadow pd is present.
3558 */
3559# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3560 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3561
3562# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3563 PX86PDEPAE pPdeDst;
3564 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3565 PX86PDPAE pPDDst;
3566# if PGM_GST_TYPE != PGM_TYPE_PAE
3567 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3568 X86PDPE PdpeSrc;
3569 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3570# endif
3571 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3572 if (rc != VINF_SUCCESS)
3573 {
3574 pgmUnlock(pVM);
3575 AssertRC(rc);
3576 return rc;
3577 }
3578 Assert(pPDDst);
3579 pPdeDst = &pPDDst->a[iPDDst];
3580
3581# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3582 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3583 PX86PDPAE pPDDst;
3584 PX86PDEPAE pPdeDst;
3585
3586# if PGM_GST_TYPE == PGM_TYPE_PROT
3587 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3588 X86PML4E Pml4eSrc;
3589 X86PDPE PdpeSrc;
3590 PX86PML4E pPml4eSrc = &Pml4eSrc;
3591 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3592 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3593# endif
3594
3595 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3596 if (rc != VINF_SUCCESS)
3597 {
3598 pgmUnlock(pVM);
3599 AssertRC(rc);
3600 return rc;
3601 }
3602 Assert(pPDDst);
3603 pPdeDst = &pPDDst->a[iPDDst];
3604# endif
3605
3606 if (!pPdeDst->n.u1Present)
3607 {
3608 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3609 if (rc != VINF_SUCCESS)
3610 {
3611 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3612 pgmUnlock(pVM);
3613 AssertRC(rc);
3614 return rc;
3615 }
3616 }
3617
3618# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3619 /* Check for dirty bit fault */
3620 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3621 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3622 Log(("PGMVerifyAccess: success (dirty)\n"));
3623 else
3624# endif
3625 {
3626# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3627 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3628# else
3629 GSTPDE PdeSrc;
3630 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3631 PdeSrc.n.u1Present = 1;
3632 PdeSrc.n.u1Write = 1;
3633 PdeSrc.n.u1Accessed = 1;
3634 PdeSrc.n.u1User = 1;
3635# endif
3636
3637 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3638 if (uErr & X86_TRAP_PF_US)
3639 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3640 else /* supervisor */
3641 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3642
3643 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3644 if (RT_SUCCESS(rc))
3645 {
3646 /* Page was successfully synced */
3647 Log2(("PGMVerifyAccess: success (sync)\n"));
3648 rc = VINF_SUCCESS;
3649 }
3650 else
3651 {
3652 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3653 rc = VINF_EM_RAW_GUEST_TRAP;
3654 }
3655 }
3656 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3657 pgmUnlock(pVM);
3658 return rc;
3659
3660#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3661
3662 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3663 return VERR_PGM_NOT_USED_IN_MODE;
3664#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3665}
3666
3667
3668/**
3669 * Syncs the paging hierarchy starting at CR3.
3670 *
3671 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
3672 * informational status codes.
3673 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
3674 * the VMM into guest context.
3675 * @param pVCpu The cross context virtual CPU structure.
3676 * @param cr0 Guest context CR0 register.
3677 * @param cr3 Guest context CR3 register. Not subjected to the A20
3678 * mask.
3679 * @param cr4 Guest context CR4 register.
3680 * @param fGlobal Including global page directories or not
3681 */
3682PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3683{
3684 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3685 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3686
3687 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3688
3689#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3690
3691 pgmLock(pVM);
3692
3693# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3694 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3695 if (pPool->cDirtyPages)
3696 pgmPoolResetDirtyPages(pVM);
3697# endif
3698
3699 /*
3700 * Update page access handlers.
3701 * The virtual are always flushed, while the physical are only on demand.
3702 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3703 * have to look into that later because it will have a bad influence on the performance.
3704 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3705 * bird: Yes, but that won't work for aliases.
3706 */
3707 /** @todo this MUST go away. See @bugref{1557}. */
3708 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3709 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3710 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3711 pgmUnlock(pVM);
3712#endif /* !NESTED && !EPT */
3713
3714#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3715 /*
3716 * Nested / EPT - almost no work.
3717 */
3718 Assert(!pgmMapAreMappingsEnabled(pVM));
3719 return VINF_SUCCESS;
3720
3721#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3722 /*
3723 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3724 * out the shadow parts when the guest modifies its tables.
3725 */
3726 Assert(!pgmMapAreMappingsEnabled(pVM));
3727 return VINF_SUCCESS;
3728
3729#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3730
3731# ifndef PGM_WITHOUT_MAPPINGS
3732 /*
3733 * Check for and resolve conflicts with our guest mappings if they
3734 * are enabled and not fixed.
3735 */
3736 if (pgmMapAreMappingsFloating(pVM))
3737 {
3738 int rc = pgmMapResolveConflicts(pVM);
3739 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3740 if (rc == VINF_SUCCESS)
3741 { /* likely */ }
3742 else if (rc == VINF_PGM_SYNC_CR3)
3743 {
3744 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3745 return VINF_PGM_SYNC_CR3;
3746 }
3747 else if (RT_FAILURE(rc))
3748 return rc;
3749 else
3750 AssertMsgFailed(("%Rrc\n", rc));
3751 }
3752# else
3753 Assert(!pgmMapAreMappingsEnabled(pVM));
3754# endif
3755 return VINF_SUCCESS;
3756#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3757}
3758
3759
3760
3761
3762#ifdef VBOX_STRICT
3763# ifdef IN_RC
3764# undef AssertMsgFailed
3765# define AssertMsgFailed Log
3766# endif
3767
3768/**
3769 * Checks that the shadow page table is in sync with the guest one.
3770 *
3771 * @returns The number of errors.
3772 * @param pVCpu The cross context virtual CPU structure.
3773 * @param cr3 Guest context CR3 register.
3774 * @param cr4 Guest context CR4 register.
3775 * @param GCPtr Where to start. Defaults to 0.
3776 * @param cb How much to check. Defaults to everything.
3777 */
3778PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3779{
3780 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3781#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3782 return 0;
3783#else
3784 unsigned cErrors = 0;
3785 PVM pVM = pVCpu->CTX_SUFF(pVM);
3786 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3787
3788# if PGM_GST_TYPE == PGM_TYPE_PAE
3789 /** @todo currently broken; crashes below somewhere */
3790 AssertFailed();
3791# endif
3792
3793# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3794 || PGM_GST_TYPE == PGM_TYPE_PAE \
3795 || PGM_GST_TYPE == PGM_TYPE_AMD64
3796
3797 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3798 PPGMCPU pPGM = &pVCpu->pgm.s;
3799 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3800 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3801# ifndef IN_RING0
3802 RTHCPHYS HCPhys; /* general usage. */
3803# endif
3804 int rc;
3805
3806 /*
3807 * Check that the Guest CR3 and all its mappings are correct.
3808 */
3809 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3810 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3811 false);
3812# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3813# if PGM_GST_TYPE == PGM_TYPE_32BIT
3814 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3815# else
3816 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3817# endif
3818 AssertRCReturn(rc, 1);
3819 HCPhys = NIL_RTHCPHYS;
3820 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3821 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3822# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3823 pgmGstGet32bitPDPtr(pVCpu);
3824 RTGCPHYS GCPhys;
3825 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3826 AssertRCReturn(rc, 1);
3827 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3828# endif
3829# endif /* !IN_RING0 */
3830
3831 /*
3832 * Get and check the Shadow CR3.
3833 */
3834# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3835 unsigned cPDEs = X86_PG_ENTRIES;
3836 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3837# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3838# if PGM_GST_TYPE == PGM_TYPE_32BIT
3839 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3840# else
3841 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3842# endif
3843 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3844# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3845 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3846 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3847# endif
3848 if (cb != ~(RTGCPTR)0)
3849 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3850
3851/** @todo call the other two PGMAssert*() functions. */
3852
3853# if PGM_GST_TYPE == PGM_TYPE_AMD64
3854 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3855
3856 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3857 {
3858 PPGMPOOLPAGE pShwPdpt = NULL;
3859 PX86PML4E pPml4eSrc;
3860 PX86PML4E pPml4eDst;
3861 RTGCPHYS GCPhysPdptSrc;
3862
3863 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3864 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3865
3866 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3867 if (!pPml4eDst->n.u1Present)
3868 {
3869 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3870 continue;
3871 }
3872
3873 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3874 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3875
3876 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3877 {
3878 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3879 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3880 cErrors++;
3881 continue;
3882 }
3883
3884 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3885 {
3886 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3887 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3888 cErrors++;
3889 continue;
3890 }
3891
3892 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3893 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3894 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3895 {
3896 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3897 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3898 cErrors++;
3899 continue;
3900 }
3901# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3902 {
3903# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3904
3905# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3906 /*
3907 * Check the PDPTEs too.
3908 */
3909 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3910
3911 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3912 {
3913 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3914 PPGMPOOLPAGE pShwPde = NULL;
3915 PX86PDPE pPdpeDst;
3916 RTGCPHYS GCPhysPdeSrc;
3917 X86PDPE PdpeSrc;
3918 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3919# if PGM_GST_TYPE == PGM_TYPE_PAE
3920 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3921 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3922# else
3923 PX86PML4E pPml4eSrcIgn;
3924 PX86PDPT pPdptDst;
3925 PX86PDPAE pPDDst;
3926 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3927
3928 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3929 if (rc != VINF_SUCCESS)
3930 {
3931 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3932 GCPtr += 512 * _2M;
3933 continue; /* next PDPTE */
3934 }
3935 Assert(pPDDst);
3936# endif
3937 Assert(iPDSrc == 0);
3938
3939 pPdpeDst = &pPdptDst->a[iPdpt];
3940
3941 if (!pPdpeDst->n.u1Present)
3942 {
3943 GCPtr += 512 * _2M;
3944 continue; /* next PDPTE */
3945 }
3946
3947 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3948 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3949
3950 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3951 {
3952 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3953 GCPtr += 512 * _2M;
3954 cErrors++;
3955 continue;
3956 }
3957
3958 if (GCPhysPdeSrc != pShwPde->GCPhys)
3959 {
3960# if PGM_GST_TYPE == PGM_TYPE_AMD64
3961 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3962# else
3963 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3964# endif
3965 GCPtr += 512 * _2M;
3966 cErrors++;
3967 continue;
3968 }
3969
3970# if PGM_GST_TYPE == PGM_TYPE_AMD64
3971 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3972 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3973 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3974 {
3975 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3976 GCPtr += 512 * _2M;
3977 cErrors++;
3978 continue;
3979 }
3980# endif
3981
3982# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3983 {
3984# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3985# if PGM_GST_TYPE == PGM_TYPE_32BIT
3986 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3987# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3988 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3989# endif
3990# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3991 /*
3992 * Iterate the shadow page directory.
3993 */
3994 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3995 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3996
3997 for (;
3998 iPDDst < cPDEs;
3999 iPDDst++, GCPtr += cIncrement)
4000 {
4001# if PGM_SHW_TYPE == PGM_TYPE_PAE
4002 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
4003# else
4004 const SHWPDE PdeDst = pPDDst->a[iPDDst];
4005# endif
4006 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
4007 {
4008 Assert(pgmMapAreMappingsEnabled(pVM));
4009 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
4010 {
4011 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
4012 cErrors++;
4013 continue;
4014 }
4015 }
4016 else if ( (PdeDst.u & X86_PDE_P)
4017 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
4018 )
4019 {
4020 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
4021 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
4022 if (!pPoolPage)
4023 {
4024 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4025 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4026 cErrors++;
4027 continue;
4028 }
4029 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
4030
4031 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4032 {
4033 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4034 GCPtr, (uint64_t)PdeDst.u));
4035 cErrors++;
4036 }
4037
4038 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4039 {
4040 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4041 GCPtr, (uint64_t)PdeDst.u));
4042 cErrors++;
4043 }
4044
4045 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4046 if (!PdeSrc.n.u1Present)
4047 {
4048 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4049 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4050 cErrors++;
4051 continue;
4052 }
4053
4054 if ( !PdeSrc.b.u1Size
4055 || !fBigPagesSupported)
4056 {
4057 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
4058# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4059 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
4060# endif
4061 }
4062 else
4063 {
4064# if PGM_GST_TYPE == PGM_TYPE_32BIT
4065 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4066 {
4067 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4068 GCPtr, (uint64_t)PdeSrc.u));
4069 cErrors++;
4070 continue;
4071 }
4072# endif
4073 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
4074# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4075 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
4076# endif
4077 }
4078
4079 if ( pPoolPage->enmKind
4080 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4081 {
4082 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4083 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4084 cErrors++;
4085 }
4086
4087 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4088 if (!pPhysPage)
4089 {
4090 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4091 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4092 cErrors++;
4093 continue;
4094 }
4095
4096 if (GCPhysGst != pPoolPage->GCPhys)
4097 {
4098 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4099 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4100 cErrors++;
4101 continue;
4102 }
4103
4104 if ( !PdeSrc.b.u1Size
4105 || !fBigPagesSupported)
4106 {
4107 /*
4108 * Page Table.
4109 */
4110 const GSTPT *pPTSrc;
4111 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
4112 &pPTSrc);
4113 if (RT_FAILURE(rc))
4114 {
4115 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4116 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4117 cErrors++;
4118 continue;
4119 }
4120 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4121 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4122 {
4123 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4124 // (This problem will go away when/if we shadow multiple CR3s.)
4125 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4126 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4127 cErrors++;
4128 continue;
4129 }
4130 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4131 {
4132 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4133 GCPtr, (uint64_t)PdeDst.u));
4134 cErrors++;
4135 continue;
4136 }
4137
4138 /* iterate the page table. */
4139# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4140 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4141 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4142# else
4143 const unsigned offPTSrc = 0;
4144# endif
4145 for (unsigned iPT = 0, off = 0;
4146 iPT < RT_ELEMENTS(pPTDst->a);
4147 iPT++, off += PAGE_SIZE)
4148 {
4149 const SHWPTE PteDst = pPTDst->a[iPT];
4150
4151 /* skip not-present and dirty tracked entries. */
4152 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4153 continue;
4154 Assert(SHW_PTE_IS_P(PteDst));
4155
4156 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4157 if (!PteSrc.n.u1Present)
4158 {
4159# ifdef IN_RING3
4160 PGMAssertHandlerAndFlagsInSync(pVM);
4161 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4162 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4163 0, 0, UINT64_MAX, 99, NULL);
4164# endif
4165 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4166 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4167 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4168 cErrors++;
4169 continue;
4170 }
4171
4172 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4173# if 1 /** @todo sync accessed bit properly... */
4174 fIgnoreFlags |= X86_PTE_A;
4175# endif
4176
4177 /* match the physical addresses */
4178 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4179 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4180
4181# ifdef IN_RING3
4182 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4183 if (RT_FAILURE(rc))
4184 {
4185 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4186 {
4187 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4188 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4189 cErrors++;
4190 continue;
4191 }
4192 }
4193 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4194 {
4195 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4196 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4197 cErrors++;
4198 continue;
4199 }
4200# endif
4201
4202 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4203 if (!pPhysPage)
4204 {
4205# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4206 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4207 {
4208 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4209 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4210 cErrors++;
4211 continue;
4212 }
4213# endif
4214 if (SHW_PTE_IS_RW(PteDst))
4215 {
4216 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4217 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4218 cErrors++;
4219 }
4220 fIgnoreFlags |= X86_PTE_RW;
4221 }
4222 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4223 {
4224 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4225 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4226 cErrors++;
4227 continue;
4228 }
4229
4230 /* flags */
4231 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4232 {
4233 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4234 {
4235 if (SHW_PTE_IS_RW(PteDst))
4236 {
4237 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4238 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4239 cErrors++;
4240 continue;
4241 }
4242 fIgnoreFlags |= X86_PTE_RW;
4243 }
4244 else
4245 {
4246 if ( SHW_PTE_IS_P(PteDst)
4247# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4248 && !PGM_PAGE_IS_MMIO(pPhysPage)
4249# endif
4250 )
4251 {
4252 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4253 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4254 cErrors++;
4255 continue;
4256 }
4257 fIgnoreFlags |= X86_PTE_P;
4258 }
4259 }
4260 else
4261 {
4262 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4263 {
4264 if (SHW_PTE_IS_RW(PteDst))
4265 {
4266 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4267 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4268 cErrors++;
4269 continue;
4270 }
4271 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4272 {
4273 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4274 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4275 cErrors++;
4276 continue;
4277 }
4278 if (SHW_PTE_IS_D(PteDst))
4279 {
4280 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4281 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4282 cErrors++;
4283 }
4284# if 0 /** @todo sync access bit properly... */
4285 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4286 {
4287 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4288 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4289 cErrors++;
4290 }
4291 fIgnoreFlags |= X86_PTE_RW;
4292# else
4293 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4294# endif
4295 }
4296 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4297 {
4298 /* access bit emulation (not implemented). */
4299 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4300 {
4301 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4302 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4303 cErrors++;
4304 continue;
4305 }
4306 if (!SHW_PTE_IS_A(PteDst))
4307 {
4308 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4309 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4310 cErrors++;
4311 }
4312 fIgnoreFlags |= X86_PTE_P;
4313 }
4314# ifdef DEBUG_sandervl
4315 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4316# endif
4317 }
4318
4319 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4320 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4321 )
4322 {
4323 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4324 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4325 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4326 cErrors++;
4327 continue;
4328 }
4329 } /* foreach PTE */
4330 }
4331 else
4332 {
4333 /*
4334 * Big Page.
4335 */
4336 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4337 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4338 {
4339 if (PdeDst.n.u1Write)
4340 {
4341 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4342 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4343 cErrors++;
4344 continue;
4345 }
4346 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4347 {
4348 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4349 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4350 cErrors++;
4351 continue;
4352 }
4353# if 0 /** @todo sync access bit properly... */
4354 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4355 {
4356 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4357 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4358 cErrors++;
4359 }
4360 fIgnoreFlags |= X86_PTE_RW;
4361# else
4362 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4363# endif
4364 }
4365 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4366 {
4367 /* access bit emulation (not implemented). */
4368 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4369 {
4370 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4371 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4372 cErrors++;
4373 continue;
4374 }
4375 if (!PdeDst.n.u1Accessed)
4376 {
4377 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4378 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4379 cErrors++;
4380 }
4381 fIgnoreFlags |= X86_PTE_P;
4382 }
4383
4384 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4385 {
4386 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4387 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4388 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4389 cErrors++;
4390 }
4391
4392 /* iterate the page table. */
4393 for (unsigned iPT = 0, off = 0;
4394 iPT < RT_ELEMENTS(pPTDst->a);
4395 iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
4396 {
4397 const SHWPTE PteDst = pPTDst->a[iPT];
4398
4399 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4400 {
4401 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4402 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4403 cErrors++;
4404 }
4405
4406 /* skip not-present entries. */
4407 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4408 continue;
4409
4410 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4411
4412 /* match the physical addresses */
4413 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4414
4415# ifdef IN_RING3
4416 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4417 if (RT_FAILURE(rc))
4418 {
4419 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4420 {
4421 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4422 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4423 cErrors++;
4424 }
4425 }
4426 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4427 {
4428 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4429 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4430 cErrors++;
4431 continue;
4432 }
4433# endif
4434 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4435 if (!pPhysPage)
4436 {
4437# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4438 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4439 {
4440 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4441 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4442 cErrors++;
4443 continue;
4444 }
4445# endif
4446 if (SHW_PTE_IS_RW(PteDst))
4447 {
4448 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4449 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4450 cErrors++;
4451 }
4452 fIgnoreFlags |= X86_PTE_RW;
4453 }
4454 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4455 {
4456 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4457 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4458 cErrors++;
4459 continue;
4460 }
4461
4462 /* flags */
4463 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4464 {
4465 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4466 {
4467 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4468 {
4469 if (SHW_PTE_IS_RW(PteDst))
4470 {
4471 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4472 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4473 cErrors++;
4474 continue;
4475 }
4476 fIgnoreFlags |= X86_PTE_RW;
4477 }
4478 }
4479 else
4480 {
4481 if ( SHW_PTE_IS_P(PteDst)
4482# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4483 && !PGM_PAGE_IS_MMIO(pPhysPage)
4484# endif
4485 )
4486 {
4487 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4488 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4489 cErrors++;
4490 continue;
4491 }
4492 fIgnoreFlags |= X86_PTE_P;
4493 }
4494 }
4495
4496 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4497 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4498 )
4499 {
4500 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4501 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4502 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4503 cErrors++;
4504 continue;
4505 }
4506 } /* for each PTE */
4507 }
4508 }
4509 /* not present */
4510
4511 } /* for each PDE */
4512
4513 } /* for each PDPTE */
4514
4515 } /* for each PML4E */
4516
4517# ifdef DEBUG
4518 if (cErrors)
4519 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4520# endif
4521# endif /* GST is in {32BIT, PAE, AMD64} */
4522 return cErrors;
4523#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4524}
4525#endif /* VBOX_STRICT */
4526
4527
4528/**
4529 * Sets up the CR3 for shadow paging
4530 *
4531 * @returns Strict VBox status code.
4532 * @retval VINF_SUCCESS.
4533 *
4534 * @param pVCpu The cross context virtual CPU structure.
4535 * @param GCPhysCR3 The physical address in the CR3 register. (A20
4536 * mask already applied.)
4537 */
4538PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4539{
4540 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4541
4542 /* Update guest paging info. */
4543#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4544 || PGM_GST_TYPE == PGM_TYPE_PAE \
4545 || PGM_GST_TYPE == PGM_TYPE_AMD64
4546
4547 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4548 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4549
4550 /*
4551 * Map the page CR3 points at.
4552 */
4553 RTHCPTR HCPtrGuestCR3;
4554 RTHCPHYS HCPhysGuestCR3;
4555 pgmLock(pVM);
4556 PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
4557 AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
4558 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4559 /** @todo this needs some reworking wrt. locking? */
4560# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4561 HCPtrGuestCR3 = NIL_RTHCPTR;
4562 int rc = VINF_SUCCESS;
4563# else
4564 int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4565# endif
4566 pgmUnlock(pVM);
4567 if (RT_SUCCESS(rc))
4568 {
4569 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4570 if (RT_SUCCESS(rc))
4571 {
4572# ifdef IN_RC
4573 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4574# endif
4575# if PGM_GST_TYPE == PGM_TYPE_32BIT
4576 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4577# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4578 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4579# endif
4580 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4581
4582# elif PGM_GST_TYPE == PGM_TYPE_PAE
4583 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4584 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4585# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4586 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4587# endif
4588 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4589 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4590
4591 /*
4592 * Map the 4 PDs too.
4593 */
4594 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4595 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4596 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4597 {
4598 pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
4599 if (pGuestPDPT->a[i].n.u1Present)
4600 {
4601 RTHCPTR HCPtr;
4602 RTHCPHYS HCPhys;
4603 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
4604 pgmLock(pVM);
4605 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4606 AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
4607 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4608# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4609 HCPtr = NIL_RTHCPTR;
4610 int rc2 = VINF_SUCCESS;
4611# else
4612 int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
4613# endif
4614 pgmUnlock(pVM);
4615 if (RT_SUCCESS(rc2))
4616 {
4617 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4618 AssertRCReturn(rc, rc);
4619
4620 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4621# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4622 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4623# endif
4624 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4625 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4626# ifdef IN_RC
4627 PGM_INVL_PG(pVCpu, GCPtr);
4628# endif
4629 continue;
4630 }
4631 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4632 }
4633
4634 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4635# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4636 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4637# endif
4638 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4639 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4640# ifdef IN_RC
4641 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4642# endif
4643 }
4644
4645# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4646 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4647# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4648 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4649# endif
4650# endif
4651 }
4652 else
4653 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4654 }
4655 else
4656 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4657
4658#else /* prot/real stub */
4659 int rc = VINF_SUCCESS;
4660#endif
4661
4662 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4663# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4664 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4665 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4666 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4667 && PGM_GST_TYPE != PGM_TYPE_PROT))
4668
4669 Assert(!pVM->pgm.s.fNestedPaging);
4670 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4671
4672 /*
4673 * Update the shadow root page as well since that's not fixed.
4674 */
4675 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4676 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4677 PPGMPOOLPAGE pNewShwPageCR3;
4678
4679 pgmLock(pVM);
4680
4681# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4682 if (pPool->cDirtyPages)
4683 pgmPoolResetDirtyPages(pVM);
4684# endif
4685
4686 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4687 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
4688 NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
4689 &pNewShwPageCR3);
4690 AssertFatalRC(rc);
4691 rc = VINF_SUCCESS;
4692
4693# ifdef IN_RC
4694 /*
4695 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4696 * state will be inconsistent! Flush important things now while
4697 * we still can and then make sure there are no ring-3 calls.
4698 */
4699# ifdef VBOX_WITH_REM
4700 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4701# endif
4702 VMMRZCallRing3Disable(pVCpu);
4703# endif
4704
4705 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4706# ifdef IN_RING0
4707 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4708 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4709# elif defined(IN_RC)
4710 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4711 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4712# else
4713 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4714 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4715# endif
4716
4717# ifndef PGM_WITHOUT_MAPPINGS
4718 /*
4719 * Apply all hypervisor mappings to the new CR3.
4720 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4721 * make sure we check for conflicts in the new CR3 root.
4722 */
4723# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4724 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4725# endif
4726 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4727 AssertRCReturn(rc, rc);
4728# endif
4729
4730 /* Set the current hypervisor CR3. */
4731 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4732 SELMShadowCR3Changed(pVM, pVCpu);
4733
4734# ifdef IN_RC
4735 /* NOTE: The state is consistent again. */
4736 VMMRZCallRing3Enable(pVCpu);
4737# endif
4738
4739 /* Clean up the old CR3 root. */
4740 if ( pOldShwPageCR3
4741 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4742 {
4743 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4744# ifndef PGM_WITHOUT_MAPPINGS
4745 /* Remove the hypervisor mappings from the shadow page table. */
4746 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4747# endif
4748 /* Mark the page as unlocked; allow flushing again. */
4749 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4750
4751 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4752 }
4753 pgmUnlock(pVM);
4754# else
4755 NOREF(GCPhysCR3);
4756# endif
4757
4758 return rc;
4759}
4760
4761/**
4762 * Unmaps the shadow CR3.
4763 *
4764 * @returns VBox status, no specials.
4765 * @param pVCpu The cross context virtual CPU structure.
4766 */
4767PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4768{
4769 LogFlow(("UnmapCR3\n"));
4770
4771 int rc = VINF_SUCCESS;
4772 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4773
4774 /*
4775 * Update guest paging info.
4776 */
4777#if PGM_GST_TYPE == PGM_TYPE_32BIT
4778 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4779# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4780 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4781# endif
4782 pVCpu->pgm.s.pGst32BitPdRC = 0;
4783
4784#elif PGM_GST_TYPE == PGM_TYPE_PAE
4785 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4786# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4787 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4788# endif
4789 pVCpu->pgm.s.pGstPaePdptRC = 0;
4790 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4791 {
4792 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4793# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4794 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4795# endif
4796 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4797 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4798 }
4799
4800#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4801 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4802# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4803 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4804# endif
4805
4806#else /* prot/real mode stub */
4807 /* nothing to do */
4808#endif
4809
4810#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4811 /*
4812 * Update shadow paging info.
4813 */
4814# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4815 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4816 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4817
4818# if PGM_GST_TYPE != PGM_TYPE_REAL
4819 Assert(!pVM->pgm.s.fNestedPaging);
4820# endif
4821
4822 pgmLock(pVM);
4823
4824# ifndef PGM_WITHOUT_MAPPINGS
4825 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4826 /* Remove the hypervisor mappings from the shadow page table. */
4827 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4828# endif
4829
4830 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4831 {
4832 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4833
4834# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4835 if (pPool->cDirtyPages)
4836 pgmPoolResetDirtyPages(pVM);
4837# endif
4838
4839 /* Mark the page as unlocked; allow flushing again. */
4840 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4841
4842 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4843 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4844 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4845 pVCpu->pgm.s.pShwPageCR3RC = 0;
4846 }
4847 pgmUnlock(pVM);
4848# endif
4849#endif /* !IN_RC*/
4850
4851 return rc;
4852}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette