VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 61628

Last change on this file since 61628 was 61628, checked in by vboxsync, 8 years ago

DBGF: Added bsod_msr event, stubbed bsod_efi event. Since we cannot return VINF_EM_DBG_EVENT from an MSR handler, VMCPU_FF_DBGF was introduced as an alternative.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 211.3 KB
Line 
1/* $Id: PGMAllBth.h 61628 2016-06-09 17:52:51Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2015 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29#ifdef _MSC_VER
30/** @todo we're generating unnecessary code in nested/ept shadow mode and for
31 * real/prot-guest+RC mode. */
32# pragma warning(disable: 4505)
33#endif
34
35/*******************************************************************************
36* Internal Functions *
37*******************************************************************************/
38RT_C_DECLS_BEGIN
39PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46# else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
57RT_C_DECLS_END
58
59
60/*
61 * Filter out some illegal combinations of guest and shadow paging, so we can
62 * remove redundant checks inside functions.
63 */
64#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
65# error "Invalid combination; PAE guest implies PAE shadow"
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
69 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
70# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
71#endif
72
73#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
74 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
75# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
76#endif
77
78#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
79 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
80# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
81#endif
82
83#ifndef IN_RING3
84
85# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
86/**
87 * Deal with a guest page fault.
88 *
89 * @returns Strict VBox status code.
90 * @retval VINF_EM_RAW_GUEST_TRAP
91 * @retval VINF_EM_RAW_EMULATE_INSTR
92 *
93 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
94 * @param pGstWalk The guest page table walk result.
95 * @param uErr The error code.
96 */
97PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
98{
99# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
100 /*
101 * Check for write conflicts with our hypervisor mapping.
102 *
103 * If the guest happens to access a non-present page, where our hypervisor
104 * is currently mapped, then we'll create a #PF storm in the guest.
105 */
106 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
107 && pgmMapAreMappingsEnabled(pVCpu->CTX_SUFF(pVM))
108 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
109 {
110 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
111 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
112 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
113 return VINF_EM_RAW_EMULATE_INSTR;
114 }
115# endif
116
117 /*
118 * Calc the error code for the guest trap.
119 */
120 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
121 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
122 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
123 if (pGstWalk->Core.fBadPhysAddr)
124 {
125 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
126 Assert(!pGstWalk->Core.fNotPresent);
127 }
128 else if (!pGstWalk->Core.fNotPresent)
129 uNewErr |= X86_TRAP_PF_P;
130 TRPMSetErrorCode(pVCpu, uNewErr);
131
132 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
133 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
134 return VINF_EM_RAW_GUEST_TRAP;
135}
136# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
137
138
139/**
140 * Deal with a guest page fault.
141 *
142 * The caller has taken the PGM lock.
143 *
144 * @returns Strict VBox status code.
145 *
146 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
147 * @param uErr The error code.
148 * @param pRegFrame The register frame.
149 * @param pvFault The fault address.
150 * @param pPage The guest page at @a pvFault.
151 * @param pGstWalk The guest page table walk result.
152 * @param pfLockTaken PGM lock taken here or not (out). This is true
153 * when we're called.
154 */
155static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
156 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
157# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
158 , PGSTPTWALK pGstWalk
159# endif
160 )
161{
162# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
164#endif
165 PVM pVM = pVCpu->CTX_SUFF(pVM);
166 VBOXSTRICTRC rcStrict;
167
168 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
169 {
170 /*
171 * Physical page access handler.
172 */
173# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
174 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
175# else
176 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
177# endif
178 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
179 if (pCur)
180 {
181 PPGMPHYSHANDLERTYPEINT pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
182
183# ifdef PGM_SYNC_N_PAGES
184 /*
185 * If the region is write protected and we got a page not present fault, then sync
186 * the pages. If the fault was caused by a read, then restart the instruction.
187 * In case of write access continue to the GC write handler.
188 *
189 * ASSUMES that there is only one handler per page or that they have similar write properties.
190 */
191 if ( !(uErr & X86_TRAP_PF_P)
192 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
193 {
194# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
195 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
196# else
197 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
198# endif
199 if ( RT_FAILURE(rcStrict)
200 || !(uErr & X86_TRAP_PF_RW)
201 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
202 {
203 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
204 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
205 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
206 return rcStrict;
207 }
208 }
209# endif
210# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
211 /*
212 * If the access was not thru a #PF(RSVD|...) resync the page.
213 */
214 if ( !(uErr & X86_TRAP_PF_RSVD)
215 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
216# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
217 && pGstWalk->Core.fEffectiveRW
218 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
219# endif
220 )
221 {
222# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
223 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
224# else
225 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
226# endif
227 if ( RT_FAILURE(rcStrict)
228 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
229 {
230 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
231 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
232 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
233 return rcStrict;
234 }
235 }
236# endif
237
238 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
239 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
240 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
241 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
242 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
243 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
244 else
245 {
246 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
247 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
248 }
249
250 if (pCurType->CTX_SUFF(pfnPfHandler))
251 {
252 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
253 void *pvUser = pCur->CTX_SUFF(pvUser);
254
255 STAM_PROFILE_START(&pCur->Stat, h);
256 if (pCur->hType != pPool->hAccessHandlerType)
257 {
258 pgmUnlock(pVM);
259 *pfLockTaken = false;
260 }
261
262 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
263
264# ifdef VBOX_WITH_STATISTICS
265 pgmLock(pVM);
266 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
267 if (pCur)
268 STAM_PROFILE_STOP(&pCur->Stat, h);
269 pgmUnlock(pVM);
270# endif
271 }
272 else
273 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
274
275 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
276 return rcStrict;
277 }
278 }
279# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
280 else
281 {
282# ifdef PGM_SYNC_N_PAGES
283 /*
284 * If the region is write protected and we got a page not present fault, then sync
285 * the pages. If the fault was caused by a read, then restart the instruction.
286 * In case of write access continue to the GC write handler.
287 */
288 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
289 && !(uErr & X86_TRAP_PF_P))
290 {
291 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
292 if ( RT_FAILURE(rcStrict)
293 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
294 || !(uErr & X86_TRAP_PF_RW))
295 {
296 AssertRC(rcStrict);
297 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
298 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
299 return rcStrict;
300 }
301 }
302# endif
303 /*
304 * Ok, it's an virtual page access handler.
305 *
306 * Since it's faster to search by address, we'll do that first
307 * and then retry by GCPhys if that fails.
308 */
309 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
310 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
311 * out of sync, because the page was changed without us noticing it (not-present -> present
312 * without invlpg or mov cr3, xxx).
313 */
314 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
315 if (pCur)
316 {
317 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
318 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
319 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
320 || !(uErr & X86_TRAP_PF_P)
321 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
322 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enumKind=%d\n",
323 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCurType->enmKind));
324
325 if ( pvFault - pCur->Core.Key < pCur->cb
326 && ( uErr & X86_TRAP_PF_RW
327 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
328 {
329# ifdef IN_RC
330 STAM_PROFILE_START(&pCur->Stat, h);
331 RTGCPTR GCPtrStart = pCur->Core.Key;
332 void *pvUser = pCur->CTX_SUFF(pvUser);
333 pgmUnlock(pVM);
334 *pfLockTaken = false;
335
336 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart,
337 pvFault - GCPtrStart, pvUser);
338
339# ifdef VBOX_WITH_STATISTICS
340 pgmLock(pVM);
341 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
342 if (pCur)
343 STAM_PROFILE_STOP(&pCur->Stat, h);
344 pgmUnlock(pVM);
345# endif
346# else
347 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
348# endif
349 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
350 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
351 return rcStrict;
352 }
353 /* Unhandled part of a monitored page */
354 Log(("Unhandled part of monitored page %RGv\n", pvFault));
355 }
356 else
357 {
358 /* Check by physical address. */
359 unsigned iPage;
360 pCur = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &iPage);
361 if (pCur)
362 {
363 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
364 if ( uErr & X86_TRAP_PF_RW
365 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE )
366 {
367 Assert( (pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK)
368 == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
369# ifdef IN_RC
370 STAM_PROFILE_START(&pCur->Stat, h);
371 RTGCPTR GCPtrStart = pCur->Core.Key;
372 void *pvUser = pCur->CTX_SUFF(pvUser);
373 pgmUnlock(pVM);
374 *pfLockTaken = false;
375
376 RTGCPTR off = (iPage << PAGE_SHIFT)
377 + (pvFault & PAGE_OFFSET_MASK)
378 - (GCPtrStart & PAGE_OFFSET_MASK);
379 Assert(off < pCur->cb);
380 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart, off, pvUser);
381
382# ifdef VBOX_WITH_STATISTICS
383 pgmLock(pVM);
384 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
385 if (pCur)
386 STAM_PROFILE_STOP(&pCur->Stat, h);
387 pgmUnlock(pVM);
388# endif
389# else
390 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
391# endif
392 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
393 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
394 return rcStrict;
395 }
396 }
397 }
398 }
399# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
400
401 /*
402 * There is a handled area of the page, but this fault doesn't belong to it.
403 * We must emulate the instruction.
404 *
405 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
406 * we first check if this was a page-not-present fault for a page with only
407 * write access handlers. Restart the instruction if it wasn't a write access.
408 */
409 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
410
411 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
412 && !(uErr & X86_TRAP_PF_P))
413 {
414# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
415 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
416# else
417 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
418# endif
419 if ( RT_FAILURE(rcStrict)
420 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
421 || !(uErr & X86_TRAP_PF_RW))
422 {
423 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
424 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
425 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
426 return rcStrict;
427 }
428 }
429
430 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
431 * It's writing to an unhandled part of the LDT page several million times.
432 */
433 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
434 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
435 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
436 return rcStrict;
437} /* if any kind of handler */
438
439
440/**
441 * \#PF Handler for raw-mode guest execution.
442 *
443 * @returns VBox status code (appropriate for trap handling and GC return).
444 *
445 * @param pVCpu The cross context virtual CPU structure.
446 * @param uErr The trap error code.
447 * @param pRegFrame Trap register frame.
448 * @param pvFault The fault address.
449 * @param pfLockTaken PGM lock taken here or not (out)
450 */
451PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
452{
453 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
454
455 *pfLockTaken = false;
456
457# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
458 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
459 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
460 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
461 int rc;
462
463# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
464 /*
465 * Walk the guest page translation tables and check if it's a guest fault.
466 */
467 GSTPTWALK GstWalk;
468 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
469 if (RT_FAILURE_NP(rc))
470 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
471
472 /* assert some GstWalk sanity. */
473# if PGM_GST_TYPE == PGM_TYPE_AMD64
474 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
475# endif
476# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
477 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
478# endif
479 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
480 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
481 Assert(GstWalk.Core.fSucceeded);
482
483 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
484 {
485 if ( ( (uErr & X86_TRAP_PF_RW)
486 && !GstWalk.Core.fEffectiveRW
487 && ( (uErr & X86_TRAP_PF_US)
488 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
489 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
490 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
491 )
492 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
493 }
494
495 /*
496 * Set the accessed and dirty flags.
497 */
498# if PGM_GST_TYPE == PGM_TYPE_AMD64
499 GstWalk.Pml4e.u |= X86_PML4E_A;
500 GstWalk.pPml4e->u |= X86_PML4E_A;
501 GstWalk.Pdpe.u |= X86_PDPE_A;
502 GstWalk.pPdpe->u |= X86_PDPE_A;
503# endif
504 if (GstWalk.Core.fBigPage)
505 {
506 Assert(GstWalk.Pde.b.u1Size);
507 if (uErr & X86_TRAP_PF_RW)
508 {
509 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
510 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
511 }
512 else
513 {
514 GstWalk.Pde.u |= X86_PDE4M_A;
515 GstWalk.pPde->u |= X86_PDE4M_A;
516 }
517 }
518 else
519 {
520 Assert(!GstWalk.Pde.b.u1Size);
521 GstWalk.Pde.u |= X86_PDE_A;
522 GstWalk.pPde->u |= X86_PDE_A;
523 if (uErr & X86_TRAP_PF_RW)
524 {
525# ifdef VBOX_WITH_STATISTICS
526 if (!GstWalk.Pte.n.u1Dirty)
527 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
528 else
529 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
530# endif
531 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
532 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
533 }
534 else
535 {
536 GstWalk.Pte.u |= X86_PTE_A;
537 GstWalk.pPte->u |= X86_PTE_A;
538 }
539 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
540 }
541 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
542 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
543# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
544 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
545# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
546
547 /* Take the big lock now. */
548 *pfLockTaken = true;
549 pgmLock(pVM);
550
551# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
552 /*
553 * If it is a reserved bit fault we know that it is an MMIO (access
554 * handler) related fault and can skip some 200 lines of code.
555 */
556 if (uErr & X86_TRAP_PF_RSVD)
557 {
558 Assert(uErr & X86_TRAP_PF_P);
559 PPGMPAGE pPage;
560# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
561 rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
562 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
563 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
564 pfLockTaken, &GstWalk));
565 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
566# else
567 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
568 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
569 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
570 pfLockTaken));
571 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
572#endif
573 AssertRC(rc);
574 PGM_INVL_PG(pVCpu, pvFault);
575 return rc; /* Restart with the corrected entry. */
576 }
577# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
578
579 /*
580 * Fetch the guest PDE, PDPE and PML4E.
581 */
582# if PGM_SHW_TYPE == PGM_TYPE_32BIT
583 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
584 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
585
586# elif PGM_SHW_TYPE == PGM_TYPE_PAE
587 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
588 PX86PDPAE pPDDst;
589# if PGM_GST_TYPE == PGM_TYPE_PAE
590 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
591# else
592 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
593# endif
594 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
595
596# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
597 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
598 PX86PDPAE pPDDst;
599# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
600 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
601 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
602# else
603 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
604# endif
605 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
606
607# elif PGM_SHW_TYPE == PGM_TYPE_EPT
608 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
609 PEPTPD pPDDst;
610 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
611 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
612# endif
613 Assert(pPDDst);
614
615# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
616 /*
617 * Dirty page handling.
618 *
619 * If we successfully correct the write protection fault due to dirty bit
620 * tracking, then return immediately.
621 */
622 if (uErr & X86_TRAP_PF_RW) /* write fault? */
623 {
624 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
625 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
626 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
627 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
628 {
629 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
630 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
631 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
632 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
633 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
634 return VINF_SUCCESS;
635 }
636 //AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - triggers with smp w7 guests.
637 //AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto.
638 }
639
640# if 0 /* rarely useful; leave for debugging. */
641 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
642# endif
643# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
644
645 /*
646 * A common case is the not-present error caused by lazy page table syncing.
647 *
648 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
649 * here so we can safely assume that the shadow PT is present when calling
650 * SyncPage later.
651 *
652 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
653 * of mapping conflict and defer to SyncCR3 in R3.
654 * (Again, we do NOT support access handlers for non-present guest pages.)
655 *
656 */
657# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
658 Assert(GstWalk.Pde.n.u1Present);
659# endif
660 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
661 && !pPDDst->a[iPDDst].n.u1Present)
662 {
663 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
664# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
665 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
666 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
667# else
668 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
669 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
670# endif
671 if (RT_SUCCESS(rc))
672 return rc;
673 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
674 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
675 return VINF_PGM_SYNC_CR3;
676 }
677
678# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
679 /*
680 * Check if this address is within any of our mappings.
681 *
682 * This is *very* fast and it's gonna save us a bit of effort below and prevent
683 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
684 * (BTW, it's impossible to have physical access handlers in a mapping.)
685 */
686 if (pgmMapAreMappingsEnabled(pVM))
687 {
688 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
689 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
690 {
691 if (pvFault < pMapping->GCPtr)
692 break;
693 if (pvFault - pMapping->GCPtr < pMapping->cb)
694 {
695 /*
696 * The first thing we check is if we've got an undetected conflict.
697 */
698 if (pgmMapAreMappingsFloating(pVM))
699 {
700 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
701 while (iPT-- > 0)
702 if (GstWalk.pPde[iPT].n.u1Present)
703 {
704 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
705 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
706 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
707 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
708 return VINF_PGM_SYNC_CR3;
709 }
710 }
711
712 /*
713 * Check if the fault address is in a virtual page access handler range.
714 */
715 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers,
716 pvFault);
717 if ( pCur
718 && pvFault - pCur->Core.Key < pCur->cb
719 && uErr & X86_TRAP_PF_RW)
720 {
721 VBOXSTRICTRC rcStrict;
722# ifdef IN_RC
723 STAM_PROFILE_START(&pCur->Stat, h);
724 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
725 void *pvUser = pCur->CTX_SUFF(pvUser);
726 pgmUnlock(pVM);
727 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
728 pvFault - pCur->Core.Key, pvUser);
729 pgmLock(pVM);
730 STAM_PROFILE_STOP(&pCur->Stat, h);
731# else
732 AssertFailed();
733 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
734# endif
735 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
736 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
737 return VBOXSTRICTRC_TODO(rcStrict);
738 }
739
740 /*
741 * Pretend we're not here and let the guest handle the trap.
742 */
743 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
744 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
745 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
746 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
747 return VINF_EM_RAW_GUEST_TRAP;
748 }
749 }
750 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
751# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
752
753 /*
754 * Check if this fault address is flagged for special treatment,
755 * which means we'll have to figure out the physical address and
756 * check flags associated with it.
757 *
758 * ASSUME that we can limit any special access handling to pages
759 * in page tables which the guest believes to be present.
760 */
761# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
762 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
763# else
764 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
765# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
766 PPGMPAGE pPage;
767 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
768 if (RT_FAILURE(rc))
769 {
770 /*
771 * When the guest accesses invalid physical memory (e.g. probing
772 * of RAM or accessing a remapped MMIO range), then we'll fall
773 * back to the recompiler to emulate the instruction.
774 */
775 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
776 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
777 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
778 return VINF_EM_RAW_EMULATE_INSTR;
779 }
780
781 /*
782 * Any handlers for this page?
783 */
784 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
785# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
786 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
787 &GstWalk));
788# else
789 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
790# endif
791
792# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
793 if (uErr & X86_TRAP_PF_P)
794 {
795 /*
796 * The page isn't marked, but it might still be monitored by a virtual page access handler.
797 * (ASSUMES no temporary disabling of virtual handlers.)
798 */
799 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
800 * we should correct both the shadow page table and physical memory flags, and not only check for
801 * accesses within the handler region but for access to pages with virtual handlers. */
802 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
803 if (pCur)
804 {
805 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
806 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
807 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
808 || !(uErr & X86_TRAP_PF_P)
809 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
810 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enumKind=%d\n",
811 pvFault, GCPhys, pPage, uErr, pCurType->enmKind));
812
813 if ( pvFault - pCur->Core.Key < pCur->cb
814 && ( uErr & X86_TRAP_PF_RW
815 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
816 {
817 VBOXSTRICTRC rcStrict;
818# ifdef IN_RC
819 STAM_PROFILE_START(&pCur->Stat, h);
820 void *pvUser = pCur->CTX_SUFF(pvUser);
821 pgmUnlock(pVM);
822 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
823 pvFault - pCur->Core.Key, pvUser);
824 pgmLock(pVM);
825 STAM_PROFILE_STOP(&pCur->Stat, h);
826# else
827 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
828# endif
829 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
830 return VBOXSTRICTRC_TODO(rcStrict);
831 }
832 }
833 }
834# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
835
836 /*
837 * We are here only if page is present in Guest page tables and
838 * trap is not handled by our handlers.
839 *
840 * Check it for page out-of-sync situation.
841 */
842 if (!(uErr & X86_TRAP_PF_P))
843 {
844 /*
845 * Page is not present in our page tables. Try to sync it!
846 */
847 if (uErr & X86_TRAP_PF_US)
848 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
849 else /* supervisor */
850 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
851
852 if (PGM_PAGE_IS_BALLOONED(pPage))
853 {
854 /* Emulate reads from ballooned pages as they are not present in
855 our shadow page tables. (Required for e.g. Solaris guests; soft
856 ecc, random nr generator.) */
857 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
858 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
859 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
860 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
861 return rc;
862 }
863
864# if defined(LOG_ENABLED) && !defined(IN_RING0)
865 RTGCPHYS GCPhys2;
866 uint64_t fPageGst2;
867 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
868# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
869 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
870 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
871# else
872 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
873 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
874# endif
875# endif /* LOG_ENABLED */
876
877# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
878 if ( !GstWalk.Core.fEffectiveUS
879 && CSAMIsEnabled(pVM)
880 && CPUMGetGuestCPL(pVCpu) == 0)
881 {
882 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
883 if ( pvFault == (RTGCPTR)pRegFrame->eip
884 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
885# ifdef CSAM_DETECT_NEW_CODE_PAGES
886 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
887 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
888# endif /* CSAM_DETECT_NEW_CODE_PAGES */
889 )
890 {
891 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
892 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
893 if (rc != VINF_SUCCESS)
894 {
895 /*
896 * CSAM needs to perform a job in ring 3.
897 *
898 * Sync the page before going to the host context; otherwise we'll end up in a loop if
899 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
900 */
901 LogFlow(("CSAM ring 3 job\n"));
902 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
903 AssertRC(rc2);
904
905 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
906 return rc;
907 }
908 }
909# ifdef CSAM_DETECT_NEW_CODE_PAGES
910 else if ( uErr == X86_TRAP_PF_RW
911 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
912 && pRegFrame->ecx < 0x10000)
913 {
914 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
915 * to detect loading of new code pages.
916 */
917
918 /*
919 * Decode the instruction.
920 */
921 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
922 uint32_t cbOp;
923 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
924
925 /* For now we'll restrict this to rep movsw/d instructions */
926 if ( rc == VINF_SUCCESS
927 && pDis->pCurInstr->opcode == OP_MOVSWD
928 && (pDis->prefix & DISPREFIX_REP))
929 {
930 CSAMMarkPossibleCodePage(pVM, pvFault);
931 }
932 }
933# endif /* CSAM_DETECT_NEW_CODE_PAGES */
934
935 /*
936 * Mark this page as safe.
937 */
938 /** @todo not correct for pages that contain both code and data!! */
939 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
940 CSAMMarkPage(pVM, pvFault, true);
941 }
942# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
943# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
944 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
945# else
946 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
947# endif
948 if (RT_SUCCESS(rc))
949 {
950 /* The page was successfully synced, return to the guest. */
951 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
952 return VINF_SUCCESS;
953 }
954 }
955 else /* uErr & X86_TRAP_PF_P: */
956 {
957 /*
958 * Write protected pages are made writable when the guest makes the
959 * first write to it. This happens for pages that are shared, write
960 * monitored or not yet allocated.
961 *
962 * We may also end up here when CR0.WP=0 in the guest.
963 *
964 * Also, a side effect of not flushing global PDEs are out of sync
965 * pages due to physical monitored regions, that are no longer valid.
966 * Assume for now it only applies to the read/write flag.
967 */
968 if (uErr & X86_TRAP_PF_RW)
969 {
970 /*
971 * Check if it is a read-only page.
972 */
973 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
974 {
975 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
976 Assert(!PGM_PAGE_IS_ZERO(pPage));
977 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
978 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
979
980 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
981 if (rc != VINF_SUCCESS)
982 {
983 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
984 return rc;
985 }
986 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
987 return VINF_EM_NO_MEMORY;
988 }
989
990# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
991 /*
992 * Check to see if we need to emulate the instruction if CR0.WP=0.
993 */
994 if ( !GstWalk.Core.fEffectiveRW
995 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
996 && CPUMGetGuestCPL(pVCpu) < 3)
997 {
998 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
999
1000 /*
1001 * The Netware WP0+RO+US hack.
1002 *
1003 * Netware sometimes(/always?) runs with WP0. It has been observed doing
1004 * excessive write accesses to pages which are mapped with US=1 and RW=0
1005 * while WP=0. This causes a lot of exits and extremely slow execution.
1006 * To avoid trapping and emulating every write here, we change the shadow
1007 * page table entry to map it as US=0 and RW=1 until user mode tries to
1008 * access it again (see further below). We count these shadow page table
1009 * changes so we can avoid having to clear the page pool every time the WP
1010 * bit changes to 1 (see PGMCr0WpEnabled()).
1011 */
1012# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
1013 if ( GstWalk.Core.fEffectiveUS
1014 && !GstWalk.Core.fEffectiveRW
1015 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1016 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
1017 {
1018 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, GstWalk.Core.fBigPage));
1019 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, GstWalk.Core.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
1020 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
1021 {
1022 PGM_INVL_PG(pVCpu, pvFault);
1023 pVCpu->pgm.s.cNetwareWp0Hacks++;
1024 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsHack; });
1025 return rc;
1026 }
1027 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
1028 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
1029 }
1030# endif
1031
1032 /* Interpret the access. */
1033 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
1034 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), GstWalk.Core.fBigPage, GstWalk.Core.fEffectiveUS));
1035 if (RT_SUCCESS(rc))
1036 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
1037 else
1038 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
1039 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
1040 return rc;
1041 }
1042# endif
1043 /// @todo count the above case; else
1044 if (uErr & X86_TRAP_PF_US)
1045 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
1046 else /* supervisor */
1047 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1048
1049 /*
1050 * Sync the page.
1051 *
1052 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1053 * page is not present, which is not true in this case.
1054 */
1055# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1056 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1057# else
1058 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1059# endif
1060 if (RT_SUCCESS(rc))
1061 {
1062 /*
1063 * Page was successfully synced, return to guest but invalidate
1064 * the TLB first as the page is very likely to be in it.
1065 */
1066# if PGM_SHW_TYPE == PGM_TYPE_EPT
1067 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1068# else
1069 PGM_INVL_PG(pVCpu, pvFault);
1070# endif
1071# ifdef VBOX_STRICT
1072 RTGCPHYS GCPhys2 = RTGCPHYS_MAX;
1073 uint64_t fPageGst = UINT64_MAX;
1074 if (!pVM->pgm.s.fNestedPaging)
1075 {
1076 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1077 AssertMsg(RT_SUCCESS(rc) && ((fPageGst & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1078 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1079 }
1080# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */
1081 uint64_t fPageShw = 0;
1082 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1083 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1084 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GCPhys2, fPageGst, pvFault));
1085# endif
1086# endif /* VBOX_STRICT */
1087 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1088 return VINF_SUCCESS;
1089 }
1090 }
1091# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1092 /*
1093 * Check for Netware WP0+RO+US hack from above and undo it when user
1094 * mode accesses the page again.
1095 */
1096 else if ( GstWalk.Core.fEffectiveUS
1097 && !GstWalk.Core.fEffectiveRW
1098 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1099 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
1100 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
1101 && CPUMGetGuestCPL(pVCpu) == 3
1102 && pVM->cCpus == 1
1103 )
1104 {
1105 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
1106 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1107 if (RT_SUCCESS(rc))
1108 {
1109 PGM_INVL_PG(pVCpu, pvFault);
1110 pVCpu->pgm.s.cNetwareWp0Hacks--;
1111 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsUnhack; });
1112 return VINF_SUCCESS;
1113 }
1114 }
1115# endif /* PGM_WITH_PAGING */
1116
1117 /** @todo else: why are we here? */
1118
1119# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1120 /*
1121 * Check for VMM page flags vs. Guest page flags consistency.
1122 * Currently only for debug purposes.
1123 */
1124 if (RT_SUCCESS(rc))
1125 {
1126 /* Get guest page flags. */
1127 uint64_t fPageGst;
1128 int rc2 = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1129 if (RT_SUCCESS(rc2))
1130 {
1131 uint64_t fPageShw = 0;
1132 rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1133
1134 /*
1135 * Compare page flags.
1136 * Note: we have AVL, A, D bits desynced.
1137 */
1138 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1139 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1140 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
1141 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1142 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1143 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
1144 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
1145 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n",
1146 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc));
1147 }
1148 else
1149 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1150 }
1151 else
1152 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1153# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1154 }
1155
1156
1157 /*
1158 * If we get here it is because something failed above, i.e. most like guru
1159 * meditiation time.
1160 */
1161 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1162 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1163 return rc;
1164
1165# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1166 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
1167 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1168 return VERR_PGM_NOT_USED_IN_MODE;
1169# endif
1170}
1171#endif /* !IN_RING3 */
1172
1173
1174/**
1175 * Emulation of the invlpg instruction.
1176 *
1177 *
1178 * @returns VBox status code.
1179 *
1180 * @param pVCpu The cross context virtual CPU structure.
1181 * @param GCPtrPage Page to invalidate.
1182 *
1183 * @remark ASSUMES that the guest is updating before invalidating. This order
1184 * isn't required by the CPU, so this is speculative and could cause
1185 * trouble.
1186 * @remark No TLB shootdown is done on any other VCPU as we assume that
1187 * invlpg emulation is the *only* reason for calling this function.
1188 * (The guest has to shoot down TLB entries on other CPUs itself)
1189 * Currently true, but keep in mind!
1190 *
1191 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1192 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1193 */
1194PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1195{
1196#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1197 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1198 && PGM_SHW_TYPE != PGM_TYPE_EPT
1199 int rc;
1200 PVM pVM = pVCpu->CTX_SUFF(pVM);
1201 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1202
1203 PGM_LOCK_ASSERT_OWNER(pVM);
1204
1205 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1206
1207 /*
1208 * Get the shadow PD entry and skip out if this PD isn't present.
1209 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1210 */
1211# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1212 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1213 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1214
1215 /* Fetch the pgm pool shadow descriptor. */
1216 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1217 Assert(pShwPde);
1218
1219# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1220 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1221 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1222
1223 /* If the shadow PDPE isn't present, then skip the invalidate. */
1224 if (!pPdptDst->a[iPdpt].n.u1Present)
1225 {
1226 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1227 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1228 PGM_INVL_PG(pVCpu, GCPtrPage);
1229 return VINF_SUCCESS;
1230 }
1231
1232 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1233 PPGMPOOLPAGE pShwPde = NULL;
1234 PX86PDPAE pPDDst;
1235
1236 /* Fetch the pgm pool shadow descriptor. */
1237 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1238 AssertRCSuccessReturn(rc, rc);
1239 Assert(pShwPde);
1240
1241 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1242 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1243
1244# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1245 /* PML4 */
1246 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1247 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1248 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1249 PX86PDPAE pPDDst;
1250 PX86PDPT pPdptDst;
1251 PX86PML4E pPml4eDst;
1252 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1253 if (rc != VINF_SUCCESS)
1254 {
1255 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1256 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1257 PGM_INVL_PG(pVCpu, GCPtrPage);
1258 return VINF_SUCCESS;
1259 }
1260 Assert(pPDDst);
1261
1262 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1263 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1264
1265 if (!pPdpeDst->n.u1Present)
1266 {
1267 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1268 PGM_INVL_PG(pVCpu, GCPtrPage);
1269 return VINF_SUCCESS;
1270 }
1271
1272 /* Fetch the pgm pool shadow descriptor. */
1273 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1274 Assert(pShwPde);
1275
1276# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1277
1278 const SHWPDE PdeDst = *pPdeDst;
1279 if (!PdeDst.n.u1Present)
1280 {
1281 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1282 PGM_INVL_PG(pVCpu, GCPtrPage);
1283 return VINF_SUCCESS;
1284 }
1285
1286 /*
1287 * Get the guest PD entry and calc big page.
1288 */
1289# if PGM_GST_TYPE == PGM_TYPE_32BIT
1290 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1291 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1292 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1293# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1294 unsigned iPDSrc = 0;
1295# if PGM_GST_TYPE == PGM_TYPE_PAE
1296 X86PDPE PdpeSrcIgn;
1297 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1298# else /* AMD64 */
1299 PX86PML4E pPml4eSrcIgn;
1300 X86PDPE PdpeSrcIgn;
1301 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1302# endif
1303 GSTPDE PdeSrc;
1304
1305 if (pPDSrc)
1306 PdeSrc = pPDSrc->a[iPDSrc];
1307 else
1308 PdeSrc.u = 0;
1309# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1310 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1311
1312# ifdef IN_RING3
1313 /*
1314 * If a CR3 Sync is pending we may ignore the invalidate page operation
1315 * depending on the kind of sync and if it's a global page or not.
1316 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1317 */
1318# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1319 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1320 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1321 && fIsBigPage
1322 && PdeSrc.b.u1Global
1323 )
1324 )
1325# else
1326 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1327# endif
1328 {
1329 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1330 return VINF_SUCCESS;
1331 }
1332# endif /* IN_RING3 */
1333
1334 /*
1335 * Deal with the Guest PDE.
1336 */
1337 rc = VINF_SUCCESS;
1338 if (PdeSrc.n.u1Present)
1339 {
1340 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1341 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1342# ifndef PGM_WITHOUT_MAPPING
1343 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1344 {
1345 /*
1346 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1347 */
1348 Assert(pgmMapAreMappingsEnabled(pVM));
1349 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1350 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1351 }
1352 else
1353# endif /* !PGM_WITHOUT_MAPPING */
1354 if (!fIsBigPage)
1355 {
1356 /*
1357 * 4KB - page.
1358 */
1359 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1360 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1361
1362# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1363 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1364 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1365# endif
1366 if (pShwPage->GCPhys == GCPhys)
1367 {
1368 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1369 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1370
1371 PGSTPT pPTSrc;
1372 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1373 if (RT_SUCCESS(rc))
1374 {
1375 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1376 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1377 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1378 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1379 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1380 GCPtrPage, PteSrc.n.u1Present,
1381 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1382 PteSrc.n.u1User & PdeSrc.n.u1User,
1383 (uint64_t)PteSrc.u,
1384 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1385 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1386 }
1387 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1388 PGM_INVL_PG(pVCpu, GCPtrPage);
1389 }
1390 else
1391 {
1392 /*
1393 * The page table address changed.
1394 */
1395 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1396 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1397 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1398 ASMAtomicWriteSize(pPdeDst, 0);
1399 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1400 PGM_INVL_VCPU_TLBS(pVCpu);
1401 }
1402 }
1403 else
1404 {
1405 /*
1406 * 2/4MB - page.
1407 */
1408 /* Before freeing the page, check if anything really changed. */
1409 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1410 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1411# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1412 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1413 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1414# endif
1415 if ( pShwPage->GCPhys == GCPhys
1416 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1417 {
1418 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1419 /** @todo This test is wrong as it cannot check the G bit!
1420 * FIXME */
1421 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1422 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1423 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1424 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1425 {
1426 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1427 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1428 return VINF_SUCCESS;
1429 }
1430 }
1431
1432 /*
1433 * Ok, the page table is present and it's been changed in the guest.
1434 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1435 * We could do this for some flushes in GC too, but we need an algorithm for
1436 * deciding which 4MB pages containing code likely to be executed very soon.
1437 */
1438 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1439 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1440 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1441 ASMAtomicWriteSize(pPdeDst, 0);
1442 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1443 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1444 }
1445 }
1446 else
1447 {
1448 /*
1449 * Page directory is not present, mark shadow PDE not present.
1450 */
1451 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1452 {
1453 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1454 ASMAtomicWriteSize(pPdeDst, 0);
1455 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1456 PGM_INVL_PG(pVCpu, GCPtrPage);
1457 }
1458 else
1459 {
1460 Assert(pgmMapAreMappingsEnabled(pVM));
1461 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1462 }
1463 }
1464 return rc;
1465
1466#else /* guest real and protected mode */
1467 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1468 NOREF(pVCpu); NOREF(GCPtrPage);
1469 return VINF_SUCCESS;
1470#endif
1471}
1472
1473
1474/**
1475 * Update the tracking of shadowed pages.
1476 *
1477 * @param pVCpu The cross context virtual CPU structure.
1478 * @param pShwPage The shadow page.
1479 * @param HCPhys The physical page we is being dereferenced.
1480 * @param iPte Shadow PTE index
1481 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1482 */
1483DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1484 RTGCPHYS GCPhysPage)
1485{
1486 PVM pVM = pVCpu->CTX_SUFF(pVM);
1487
1488# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1489 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1490 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1491
1492 /* Use the hint we retrieved from the cached guest PT. */
1493 if (pShwPage->fDirty)
1494 {
1495 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1496
1497 Assert(pShwPage->cPresent);
1498 Assert(pPool->cPresent);
1499 pShwPage->cPresent--;
1500 pPool->cPresent--;
1501
1502 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1503 AssertRelease(pPhysPage);
1504 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1505 return;
1506 }
1507# else
1508 NOREF(GCPhysPage);
1509# endif
1510
1511 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1512 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1513
1514 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1515 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1516 * 2. write protect all shadowed pages. I.e. implement caching.
1517 */
1518 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1519
1520 /*
1521 * Find the guest address.
1522 */
1523 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1524 pRam;
1525 pRam = pRam->CTX_SUFF(pNext))
1526 {
1527 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1528 while (iPage-- > 0)
1529 {
1530 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1531 {
1532 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1533
1534 Assert(pShwPage->cPresent);
1535 Assert(pPool->cPresent);
1536 pShwPage->cPresent--;
1537 pPool->cPresent--;
1538
1539 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1540 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1541 return;
1542 }
1543 }
1544 }
1545
1546 for (;;)
1547 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1548}
1549
1550
1551/**
1552 * Update the tracking of shadowed pages.
1553 *
1554 * @param pVCpu The cross context virtual CPU structure.
1555 * @param pShwPage The shadow page.
1556 * @param u16 The top 16-bit of the pPage->HCPhys.
1557 * @param pPage Pointer to the guest page. this will be modified.
1558 * @param iPTDst The index into the shadow table.
1559 */
1560DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1561{
1562 PVM pVM = pVCpu->CTX_SUFF(pVM);
1563
1564 /*
1565 * Just deal with the simple first time here.
1566 */
1567 if (!u16)
1568 {
1569 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1570 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1571 /* Save the page table index. */
1572 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1573 }
1574 else
1575 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1576
1577 /* write back */
1578 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1579 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1580
1581 /* update statistics. */
1582 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1583 pShwPage->cPresent++;
1584 if (pShwPage->iFirstPresent > iPTDst)
1585 pShwPage->iFirstPresent = iPTDst;
1586}
1587
1588
1589/**
1590 * Modifies a shadow PTE to account for access handlers.
1591 *
1592 * @param pVM The cross context VM structure.
1593 * @param pPage The page in question.
1594 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1595 * A (accessed) bit so it can be emulated correctly.
1596 * @param pPteDst The shadow PTE (output). This is temporary storage and
1597 * does not need to be set atomically.
1598 */
1599DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1600{
1601 NOREF(pVM);
1602 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1603 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1604 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1605 {
1606 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1607#if PGM_SHW_TYPE == PGM_TYPE_EPT
1608 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1609 pPteDst->n.u1Present = 1;
1610 pPteDst->n.u1Execute = 1;
1611 pPteDst->n.u1IgnorePAT = 1;
1612 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1613 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1614#else
1615 if (fPteSrc & X86_PTE_A)
1616 {
1617 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1618 SHW_PTE_SET_RO(*pPteDst);
1619 }
1620 else
1621 SHW_PTE_SET(*pPteDst, 0);
1622#endif
1623 }
1624#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1625# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1626 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1627 && ( BTH_IS_NP_ACTIVE(pVM)
1628 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1629# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1630 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1631# endif
1632 )
1633 {
1634 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1635# if PGM_SHW_TYPE == PGM_TYPE_EPT
1636 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1637 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1638 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1639 pPteDst->n.u1Present = 0;
1640 pPteDst->n.u1Write = 1;
1641 pPteDst->n.u1Execute = 0;
1642 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1643 pPteDst->n.u3EMT = 7;
1644# else
1645 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1646 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1647# endif
1648 }
1649# endif
1650#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1651 else
1652 {
1653 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1654 SHW_PTE_SET(*pPteDst, 0);
1655 }
1656 /** @todo count these kinds of entries. */
1657}
1658
1659
1660/**
1661 * Creates a 4K shadow page for a guest page.
1662 *
1663 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1664 * physical address. The PdeSrc argument only the flags are used. No page
1665 * structured will be mapped in this function.
1666 *
1667 * @param pVCpu The cross context virtual CPU structure.
1668 * @param pPteDst Destination page table entry.
1669 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1670 * Can safely assume that only the flags are being used.
1671 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1672 * @param pShwPage Pointer to the shadow page.
1673 * @param iPTDst The index into the shadow table.
1674 *
1675 * @remark Not used for 2/4MB pages!
1676 */
1677#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1678static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1679 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1680#else
1681static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1682 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1683#endif
1684{
1685 PVM pVM = pVCpu->CTX_SUFF(pVM);
1686 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1687
1688#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1689 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1690 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1691
1692 if (pShwPage->fDirty)
1693 {
1694 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1695 PGSTPT pGstPT;
1696
1697 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1698 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1699 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1700 pGstPT->a[iPTDst].u = PteSrc.u;
1701 }
1702#else
1703 Assert(!pShwPage->fDirty);
1704#endif
1705
1706#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1707 if ( PteSrc.n.u1Present
1708 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1709#endif
1710 {
1711# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1712 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1713# endif
1714 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1715
1716 /*
1717 * Find the ram range.
1718 */
1719 PPGMPAGE pPage;
1720 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1721 if (RT_SUCCESS(rc))
1722 {
1723 /* Ignore ballooned pages.
1724 Don't return errors or use a fatal assert here as part of a
1725 shadow sync range might included ballooned pages. */
1726 if (PGM_PAGE_IS_BALLOONED(pPage))
1727 {
1728 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1729 return;
1730 }
1731
1732#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1733 /* Make the page writable if necessary. */
1734 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1735 && ( PGM_PAGE_IS_ZERO(pPage)
1736# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1737 || ( PteSrc.n.u1Write
1738# else
1739 || ( 1
1740# endif
1741 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1742# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1743 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1744# endif
1745# ifdef VBOX_WITH_PAGE_SHARING
1746 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1747# endif
1748 )
1749 )
1750 )
1751 {
1752 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1753 AssertRC(rc);
1754 }
1755#endif
1756
1757 /*
1758 * Make page table entry.
1759 */
1760 SHWPTE PteDst;
1761# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1762 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1763# else
1764 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1765# endif
1766 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1767 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1768 else
1769 {
1770#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1771 /*
1772 * If the page or page directory entry is not marked accessed,
1773 * we mark the page not present.
1774 */
1775 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1776 {
1777 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1778 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1779 SHW_PTE_SET(PteDst, 0);
1780 }
1781 /*
1782 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1783 * when the page is modified.
1784 */
1785 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1786 {
1787 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1788 SHW_PTE_SET(PteDst,
1789 fGstShwPteFlags
1790 | PGM_PAGE_GET_HCPHYS(pPage)
1791 | PGM_PTFLAGS_TRACK_DIRTY);
1792 SHW_PTE_SET_RO(PteDst);
1793 }
1794 else
1795#endif
1796 {
1797 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1798#if PGM_SHW_TYPE == PGM_TYPE_EPT
1799 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1800 PteDst.n.u1Present = 1;
1801 PteDst.n.u1Write = 1;
1802 PteDst.n.u1Execute = 1;
1803 PteDst.n.u1IgnorePAT = 1;
1804 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1805 /* PteDst.n.u1Size = 0 */
1806#else
1807 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1808#endif
1809 }
1810
1811 /*
1812 * Make sure only allocated pages are mapped writable.
1813 */
1814 if ( SHW_PTE_IS_P_RW(PteDst)
1815 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1816 {
1817 /* Still applies to shared pages. */
1818 Assert(!PGM_PAGE_IS_ZERO(pPage));
1819 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1820 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1821 }
1822 }
1823
1824 /*
1825 * Keep user track up to date.
1826 */
1827 if (SHW_PTE_IS_P(PteDst))
1828 {
1829 if (!SHW_PTE_IS_P(*pPteDst))
1830 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1831 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1832 {
1833 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1834 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1835 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1836 }
1837 }
1838 else if (SHW_PTE_IS_P(*pPteDst))
1839 {
1840 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1841 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1842 }
1843
1844 /*
1845 * Update statistics and commit the entry.
1846 */
1847#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1848 if (!PteSrc.n.u1Global)
1849 pShwPage->fSeenNonGlobal = true;
1850#endif
1851 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1852 return;
1853 }
1854
1855/** @todo count these three different kinds. */
1856 Log2(("SyncPageWorker: invalid address in Pte\n"));
1857 }
1858#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1859 else if (!PteSrc.n.u1Present)
1860 Log2(("SyncPageWorker: page not present in Pte\n"));
1861 else
1862 Log2(("SyncPageWorker: invalid Pte\n"));
1863#endif
1864
1865 /*
1866 * The page is not present or the PTE is bad. Replace the shadow PTE by
1867 * an empty entry, making sure to keep the user tracking up to date.
1868 */
1869 if (SHW_PTE_IS_P(*pPteDst))
1870 {
1871 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1872 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1873 }
1874 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1875}
1876
1877
1878/**
1879 * Syncs a guest OS page.
1880 *
1881 * There are no conflicts at this point, neither is there any need for
1882 * page table allocations.
1883 *
1884 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1885 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1886 *
1887 * @returns VBox status code.
1888 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1889 * @param pVCpu The cross context virtual CPU structure.
1890 * @param PdeSrc Page directory entry of the guest.
1891 * @param GCPtrPage Guest context page address.
1892 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1893 * @param uErr Fault error (X86_TRAP_PF_*).
1894 */
1895static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1896{
1897 PVM pVM = pVCpu->CTX_SUFF(pVM);
1898 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1899 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1900
1901 PGM_LOCK_ASSERT_OWNER(pVM);
1902
1903#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1904 || PGM_GST_TYPE == PGM_TYPE_PAE \
1905 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1906 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1907 && PGM_SHW_TYPE != PGM_TYPE_EPT
1908
1909 /*
1910 * Assert preconditions.
1911 */
1912 Assert(PdeSrc.n.u1Present);
1913 Assert(cPages);
1914# if 0 /* rarely useful; leave for debugging. */
1915 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1916# endif
1917
1918 /*
1919 * Get the shadow PDE, find the shadow page table in the pool.
1920 */
1921# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1922 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1923 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1924
1925 /* Fetch the pgm pool shadow descriptor. */
1926 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1927 Assert(pShwPde);
1928
1929# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1930 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1931 PPGMPOOLPAGE pShwPde = NULL;
1932 PX86PDPAE pPDDst;
1933
1934 /* Fetch the pgm pool shadow descriptor. */
1935 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1936 AssertRCSuccessReturn(rc2, rc2);
1937 Assert(pShwPde);
1938
1939 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1940 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1941
1942# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1943 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1944 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1945 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1946 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1947
1948 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1949 AssertRCSuccessReturn(rc2, rc2);
1950 Assert(pPDDst && pPdptDst);
1951 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1952# endif
1953 SHWPDE PdeDst = *pPdeDst;
1954
1955 /*
1956 * - In the guest SMP case we could have blocked while another VCPU reused
1957 * this page table.
1958 * - With W7-64 we may also take this path when the A bit is cleared on
1959 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1960 * relevant TLB entries. If we're write monitoring any page mapped by
1961 * the modified entry, we may end up here with a "stale" TLB entry.
1962 */
1963 if (!PdeDst.n.u1Present)
1964 {
1965 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1966 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1967 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1968 if (uErr & X86_TRAP_PF_P)
1969 PGM_INVL_PG(pVCpu, GCPtrPage);
1970 return VINF_SUCCESS; /* force the instruction to be executed again. */
1971 }
1972
1973 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1974 Assert(pShwPage);
1975
1976# if PGM_GST_TYPE == PGM_TYPE_AMD64
1977 /* Fetch the pgm pool shadow descriptor. */
1978 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1979 Assert(pShwPde);
1980# endif
1981
1982 /*
1983 * Check that the page is present and that the shadow PDE isn't out of sync.
1984 */
1985 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1986 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1987 RTGCPHYS GCPhys;
1988 if (!fBigPage)
1989 {
1990 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1991# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1992 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1993 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1994# endif
1995 }
1996 else
1997 {
1998 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1999# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2000 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2001 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2002# endif
2003 }
2004 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
2005 if ( fPdeValid
2006 && pShwPage->GCPhys == GCPhys
2007 && PdeSrc.n.u1Present
2008 && PdeSrc.n.u1User == PdeDst.n.u1User
2009 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
2010# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2011 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
2012# endif
2013 )
2014 {
2015 /*
2016 * Check that the PDE is marked accessed already.
2017 * Since we set the accessed bit *before* getting here on a #PF, this
2018 * check is only meant for dealing with non-#PF'ing paths.
2019 */
2020 if (PdeSrc.n.u1Accessed)
2021 {
2022 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2023 if (!fBigPage)
2024 {
2025 /*
2026 * 4KB Page - Map the guest page table.
2027 */
2028 PGSTPT pPTSrc;
2029 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2030 if (RT_SUCCESS(rc))
2031 {
2032# ifdef PGM_SYNC_N_PAGES
2033 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2034 if ( cPages > 1
2035 && !(uErr & X86_TRAP_PF_P)
2036 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2037 {
2038 /*
2039 * This code path is currently only taken when the caller is PGMTrap0eHandler
2040 * for non-present pages!
2041 *
2042 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2043 * deal with locality.
2044 */
2045 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2046# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2047 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2048 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2049# else
2050 const unsigned offPTSrc = 0;
2051# endif
2052 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2053 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2054 iPTDst = 0;
2055 else
2056 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2057
2058 for (; iPTDst < iPTDstEnd; iPTDst++)
2059 {
2060 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
2061
2062 if ( pPteSrc->n.u1Present
2063 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2064 {
2065 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
2066 NOREF(GCPtrCurPage);
2067# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2068 /*
2069 * Assuming kernel code will be marked as supervisor - and not as user level
2070 * and executed using a conforming code selector - And marked as readonly.
2071 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2072 */
2073 PPGMPAGE pPage;
2074 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
2075 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
2076 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
2077 || ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK))
2078 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2079 )
2080# endif /* else: CSAM not active */
2081 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
2082 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2083 GCPtrCurPage, pPteSrc->n.u1Present,
2084 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
2085 pPteSrc->n.u1User & PdeSrc.n.u1User,
2086 (uint64_t)pPteSrc->u,
2087 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2088 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2089 }
2090 }
2091 }
2092 else
2093# endif /* PGM_SYNC_N_PAGES */
2094 {
2095 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2096 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2097 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2098 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2099 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2100 GCPtrPage, PteSrc.n.u1Present,
2101 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2102 PteSrc.n.u1User & PdeSrc.n.u1User,
2103 (uint64_t)PteSrc.u,
2104 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2105 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2106 }
2107 }
2108 else /* MMIO or invalid page: emulated in #PF handler. */
2109 {
2110 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2111 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2112 }
2113 }
2114 else
2115 {
2116 /*
2117 * 4/2MB page - lazy syncing shadow 4K pages.
2118 * (There are many causes of getting here, it's no longer only CSAM.)
2119 */
2120 /* Calculate the GC physical address of this 4KB shadow page. */
2121 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2122 /* Find ram range. */
2123 PPGMPAGE pPage;
2124 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2125 if (RT_SUCCESS(rc))
2126 {
2127 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2128
2129# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2130 /* Try to make the page writable if necessary. */
2131 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2132 && ( PGM_PAGE_IS_ZERO(pPage)
2133 || ( PdeSrc.n.u1Write
2134 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2135# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2136 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2137# endif
2138# ifdef VBOX_WITH_PAGE_SHARING
2139 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2140# endif
2141 )
2142 )
2143 )
2144 {
2145 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2146 AssertRC(rc);
2147 }
2148# endif
2149
2150 /*
2151 * Make shadow PTE entry.
2152 */
2153 SHWPTE PteDst;
2154 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2155 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2156 else
2157 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2158
2159 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2160 if ( SHW_PTE_IS_P(PteDst)
2161 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2162 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2163
2164 /* Make sure only allocated pages are mapped writable. */
2165 if ( SHW_PTE_IS_P_RW(PteDst)
2166 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2167 {
2168 /* Still applies to shared pages. */
2169 Assert(!PGM_PAGE_IS_ZERO(pPage));
2170 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2171 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2172 }
2173
2174 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2175
2176 /*
2177 * If the page is not flagged as dirty and is writable, then make it read-only
2178 * at PD level, so we can set the dirty bit when the page is modified.
2179 *
2180 * ASSUMES that page access handlers are implemented on page table entry level.
2181 * Thus we will first catch the dirty access and set PDE.D and restart. If
2182 * there is an access handler, we'll trap again and let it work on the problem.
2183 */
2184 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2185 * As for invlpg, it simply frees the whole shadow PT.
2186 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2187 if ( !PdeSrc.b.u1Dirty
2188 && PdeSrc.b.u1Write)
2189 {
2190 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2191 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2192 PdeDst.n.u1Write = 0;
2193 }
2194 else
2195 {
2196 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2197 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2198 }
2199 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2200 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2201 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2202 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2203 }
2204 else
2205 {
2206 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2207 /** @todo must wipe the shadow page table entry in this
2208 * case. */
2209 }
2210 }
2211 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2212 return VINF_SUCCESS;
2213 }
2214
2215 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2216 }
2217 else if (fPdeValid)
2218 {
2219 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2220 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2221 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2222 }
2223 else
2224 {
2225/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2226 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2227 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2228 }
2229
2230 /*
2231 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2232 * Yea, I'm lazy.
2233 */
2234 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2235 ASMAtomicWriteSize(pPdeDst, 0);
2236
2237 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2238 PGM_INVL_VCPU_TLBS(pVCpu);
2239 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2240
2241
2242#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2243 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2244 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2245 && !defined(IN_RC)
2246 NOREF(PdeSrc);
2247
2248# ifdef PGM_SYNC_N_PAGES
2249 /*
2250 * Get the shadow PDE, find the shadow page table in the pool.
2251 */
2252# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2253 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2254
2255# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2256 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2257
2258# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2259 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2260 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2261 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2262 X86PDEPAE PdeDst;
2263 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2264
2265 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2266 AssertRCSuccessReturn(rc, rc);
2267 Assert(pPDDst && pPdptDst);
2268 PdeDst = pPDDst->a[iPDDst];
2269# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2270 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2271 PEPTPD pPDDst;
2272 EPTPDE PdeDst;
2273
2274 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2275 if (rc != VINF_SUCCESS)
2276 {
2277 AssertRC(rc);
2278 return rc;
2279 }
2280 Assert(pPDDst);
2281 PdeDst = pPDDst->a[iPDDst];
2282# endif
2283 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2284 if (!PdeDst.n.u1Present)
2285 {
2286 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2287 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2288 return VINF_SUCCESS; /* force the instruction to be executed again. */
2289 }
2290
2291 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2292 if (PdeDst.n.u1Size)
2293 {
2294 Assert(pVM->pgm.s.fNestedPaging);
2295 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2296 return VINF_SUCCESS;
2297 }
2298
2299 /* Mask away the page offset. */
2300 GCPtrPage &= ~((RTGCPTR)0xfff);
2301
2302 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2303 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2304
2305 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2306 if ( cPages > 1
2307 && !(uErr & X86_TRAP_PF_P)
2308 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2309 {
2310 /*
2311 * This code path is currently only taken when the caller is PGMTrap0eHandler
2312 * for non-present pages!
2313 *
2314 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2315 * deal with locality.
2316 */
2317 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2318 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2319 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2320 iPTDst = 0;
2321 else
2322 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2323 for (; iPTDst < iPTDstEnd; iPTDst++)
2324 {
2325 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2326 {
2327 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2328 | (iPTDst << PAGE_SHIFT));
2329
2330 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2331 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2332 GCPtrCurPage,
2333 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2334 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2335
2336 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2337 break;
2338 }
2339 else
2340 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2341 }
2342 }
2343 else
2344# endif /* PGM_SYNC_N_PAGES */
2345 {
2346 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2347 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2348 | (iPTDst << PAGE_SHIFT));
2349
2350 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2351
2352 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2353 GCPtrPage,
2354 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2355 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2356 }
2357 return VINF_SUCCESS;
2358
2359#else
2360 NOREF(PdeSrc);
2361 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2362 return VERR_PGM_NOT_USED_IN_MODE;
2363#endif
2364}
2365
2366
2367#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2368
2369/**
2370 * CheckPageFault helper for returning a page fault indicating a non-present
2371 * (NP) entry in the page translation structures.
2372 *
2373 * @returns VINF_EM_RAW_GUEST_TRAP.
2374 * @param pVCpu The cross context virtual CPU structure.
2375 * @param uErr The error code of the shadow fault. Corrections to
2376 * TRPM's copy will be made if necessary.
2377 * @param GCPtrPage For logging.
2378 * @param uPageFaultLevel For logging.
2379 */
2380DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2381{
2382 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2383 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2384 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2385 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2386 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2387
2388 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2389 return VINF_EM_RAW_GUEST_TRAP;
2390}
2391
2392
2393/**
2394 * CheckPageFault helper for returning a page fault indicating a reserved bit
2395 * (RSVD) error in the page translation structures.
2396 *
2397 * @returns VINF_EM_RAW_GUEST_TRAP.
2398 * @param pVCpu The cross context virtual CPU structure.
2399 * @param uErr The error code of the shadow fault. Corrections to
2400 * TRPM's copy will be made if necessary.
2401 * @param GCPtrPage For logging.
2402 * @param uPageFaultLevel For logging.
2403 */
2404DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2405{
2406 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2407 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2408 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2409
2410 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2411 return VINF_EM_RAW_GUEST_TRAP;
2412}
2413
2414
2415/**
2416 * CheckPageFault helper for returning a page protection fault (P).
2417 *
2418 * @returns VINF_EM_RAW_GUEST_TRAP.
2419 * @param pVCpu The cross context virtual CPU structure.
2420 * @param uErr The error code of the shadow fault. Corrections to
2421 * TRPM's copy will be made if necessary.
2422 * @param GCPtrPage For logging.
2423 * @param uPageFaultLevel For logging.
2424 */
2425DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2426{
2427 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2428 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2429 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2430 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2431
2432 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2433 return VINF_EM_RAW_GUEST_TRAP;
2434}
2435
2436
2437/**
2438 * Handle dirty bit tracking faults.
2439 *
2440 * @returns VBox status code.
2441 * @param pVCpu The cross context virtual CPU structure.
2442 * @param uErr Page fault error code.
2443 * @param pPdeSrc Guest page directory entry.
2444 * @param pPdeDst Shadow page directory entry.
2445 * @param GCPtrPage Guest context page address.
2446 */
2447static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2448 RTGCPTR GCPtrPage)
2449{
2450 PVM pVM = pVCpu->CTX_SUFF(pVM);
2451 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2452 NOREF(uErr);
2453
2454 PGM_LOCK_ASSERT_OWNER(pVM);
2455
2456 /*
2457 * Handle big page.
2458 */
2459 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2460 {
2461 if ( pPdeDst->n.u1Present
2462 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2463 {
2464 SHWPDE PdeDst = *pPdeDst;
2465
2466 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2467 Assert(pPdeSrc->b.u1Write);
2468
2469 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2470 * fault again and take this path to only invalidate the entry (see below).
2471 */
2472 PdeDst.n.u1Write = 1;
2473 PdeDst.n.u1Accessed = 1;
2474 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2475 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2476 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2477 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2478 }
2479
2480# ifdef IN_RING0
2481 /* Check for stale TLB entry; only applies to the SMP guest case. */
2482 if ( pVM->cCpus > 1
2483 && pPdeDst->n.u1Write
2484 && pPdeDst->n.u1Accessed)
2485 {
2486 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2487 if (pShwPage)
2488 {
2489 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2490 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2491 if (SHW_PTE_IS_P_RW(*pPteDst))
2492 {
2493 /* Stale TLB entry. */
2494 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2495 PGM_INVL_PG(pVCpu, GCPtrPage);
2496 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2497 }
2498 }
2499 }
2500# endif /* IN_RING0 */
2501 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2502 }
2503
2504 /*
2505 * Map the guest page table.
2506 */
2507 PGSTPT pPTSrc;
2508 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2509 if (RT_FAILURE(rc))
2510 {
2511 AssertRC(rc);
2512 return rc;
2513 }
2514
2515 if (pPdeDst->n.u1Present)
2516 {
2517 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2518 const GSTPTE PteSrc = *pPteSrc;
2519
2520#ifdef VBOX_WITH_RAW_MODE_NOT_R0
2521 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2522 * Our individual shadow handlers will provide more information and force a fatal exit.
2523 */
2524 if ( !HMIsEnabled(pVM)
2525 && MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2526 {
2527 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2528 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2529 }
2530#endif
2531 /*
2532 * Map shadow page table.
2533 */
2534 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2535 if (pShwPage)
2536 {
2537 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2538 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2539 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2540 {
2541 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2542 {
2543 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2544 SHWPTE PteDst = *pPteDst;
2545
2546 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2547 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2548
2549 Assert(PteSrc.n.u1Write);
2550
2551 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2552 * entry will not harm; write access will simply fault again and
2553 * take this path to only invalidate the entry.
2554 */
2555 if (RT_LIKELY(pPage))
2556 {
2557 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2558 {
2559 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2560 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2561 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2562 SHW_PTE_SET_RO(PteDst);
2563 }
2564 else
2565 {
2566 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2567 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2568 {
2569 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2570 AssertRC(rc);
2571 }
2572 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2573 SHW_PTE_SET_RW(PteDst);
2574 else
2575 {
2576 /* Still applies to shared pages. */
2577 Assert(!PGM_PAGE_IS_ZERO(pPage));
2578 SHW_PTE_SET_RO(PteDst);
2579 }
2580 }
2581 }
2582 else
2583 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2584
2585 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2586 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2587 PGM_INVL_PG(pVCpu, GCPtrPage);
2588 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2589 }
2590
2591# ifdef IN_RING0
2592 /* Check for stale TLB entry; only applies to the SMP guest case. */
2593 if ( pVM->cCpus > 1
2594 && SHW_PTE_IS_RW(*pPteDst)
2595 && SHW_PTE_IS_A(*pPteDst))
2596 {
2597 /* Stale TLB entry. */
2598 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2599 PGM_INVL_PG(pVCpu, GCPtrPage);
2600 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2601 }
2602# endif
2603 }
2604 }
2605 else
2606 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2607 }
2608
2609 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2610}
2611
2612#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2613
2614
2615/**
2616 * Sync a shadow page table.
2617 *
2618 * The shadow page table is not present in the shadow PDE.
2619 *
2620 * Handles mapping conflicts.
2621 *
2622 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2623 * conflict), and Trap0eHandler.
2624 *
2625 * A precondition for this method is that the shadow PDE is not present. The
2626 * caller must take the PGM lock before checking this and continue to hold it
2627 * when calling this method.
2628 *
2629 * @returns VBox status code.
2630 * @param pVCpu The cross context virtual CPU structure.
2631 * @param iPDSrc Page directory index.
2632 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2633 * Assume this is a temporary mapping.
2634 * @param GCPtrPage GC Pointer of the page that caused the fault
2635 */
2636static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2637{
2638 PVM pVM = pVCpu->CTX_SUFF(pVM);
2639 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2640
2641#if 0 /* rarely useful; leave for debugging. */
2642 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2643#endif
2644 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2645
2646 PGM_LOCK_ASSERT_OWNER(pVM);
2647
2648#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2649 || PGM_GST_TYPE == PGM_TYPE_PAE \
2650 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2651 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2652 && PGM_SHW_TYPE != PGM_TYPE_EPT
2653
2654 int rc = VINF_SUCCESS;
2655
2656 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2657
2658 /*
2659 * Some input validation first.
2660 */
2661 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2662
2663 /*
2664 * Get the relevant shadow PDE entry.
2665 */
2666# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2667 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2668 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2669
2670 /* Fetch the pgm pool shadow descriptor. */
2671 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2672 Assert(pShwPde);
2673
2674# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2675 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2676 PPGMPOOLPAGE pShwPde = NULL;
2677 PX86PDPAE pPDDst;
2678 PSHWPDE pPdeDst;
2679
2680 /* Fetch the pgm pool shadow descriptor. */
2681 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2682 AssertRCSuccessReturn(rc, rc);
2683 Assert(pShwPde);
2684
2685 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2686 pPdeDst = &pPDDst->a[iPDDst];
2687
2688# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2689 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2690 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2691 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2692 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2693 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2694 AssertRCSuccessReturn(rc, rc);
2695 Assert(pPDDst);
2696 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2697# endif
2698 SHWPDE PdeDst = *pPdeDst;
2699
2700# if PGM_GST_TYPE == PGM_TYPE_AMD64
2701 /* Fetch the pgm pool shadow descriptor. */
2702 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2703 Assert(pShwPde);
2704# endif
2705
2706# ifndef PGM_WITHOUT_MAPPINGS
2707 /*
2708 * Check for conflicts.
2709 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2710 * R3: Simply resolve the conflict.
2711 */
2712 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2713 {
2714 Assert(pgmMapAreMappingsEnabled(pVM));
2715# ifndef IN_RING3
2716 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2717 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2718 return VERR_ADDRESS_CONFLICT;
2719
2720# else /* IN_RING3 */
2721 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2722 Assert(pMapping);
2723# if PGM_GST_TYPE == PGM_TYPE_32BIT
2724 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2725# elif PGM_GST_TYPE == PGM_TYPE_PAE
2726 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2727# else
2728 AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
2729# endif
2730 if (RT_FAILURE(rc))
2731 {
2732 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2733 return rc;
2734 }
2735 PdeDst = *pPdeDst;
2736# endif /* IN_RING3 */
2737 }
2738# endif /* !PGM_WITHOUT_MAPPINGS */
2739 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2740
2741 /*
2742 * Sync the page directory entry.
2743 */
2744 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2745 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2746 if ( PdeSrc.n.u1Present
2747 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2748 {
2749 /*
2750 * Allocate & map the page table.
2751 */
2752 PSHWPT pPTDst;
2753 PPGMPOOLPAGE pShwPage;
2754 RTGCPHYS GCPhys;
2755 if (fPageTable)
2756 {
2757 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2758# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2759 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2760 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2761# endif
2762 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2763 pShwPde->idx, iPDDst, false /*fLockPage*/,
2764 &pShwPage);
2765 }
2766 else
2767 {
2768 PGMPOOLACCESS enmAccess;
2769# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2770 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2771# else
2772 const bool fNoExecute = false;
2773# endif
2774
2775 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2776# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2777 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2778 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2779# endif
2780 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2781 if (PdeSrc.n.u1User)
2782 {
2783 if (PdeSrc.n.u1Write)
2784 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2785 else
2786 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2787 }
2788 else
2789 {
2790 if (PdeSrc.n.u1Write)
2791 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2792 else
2793 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2794 }
2795 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2796 pShwPde->idx, iPDDst, false /*fLockPage*/,
2797 &pShwPage);
2798 }
2799 if (rc == VINF_SUCCESS)
2800 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2801 else if (rc == VINF_PGM_CACHED_PAGE)
2802 {
2803 /*
2804 * The PT was cached, just hook it up.
2805 */
2806 if (fPageTable)
2807 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2808 else
2809 {
2810 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2811 /* (see explanation and assumptions further down.) */
2812 if ( !PdeSrc.b.u1Dirty
2813 && PdeSrc.b.u1Write)
2814 {
2815 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2816 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2817 PdeDst.b.u1Write = 0;
2818 }
2819 }
2820 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2821 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2822 return VINF_SUCCESS;
2823 }
2824 else if (rc == VERR_PGM_POOL_FLUSHED)
2825 {
2826 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2827 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2828 return VINF_PGM_SYNC_CR3;
2829 }
2830 else
2831 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2832 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2833 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2834 * irrelevant at this point. */
2835 PdeDst.u &= X86_PDE_AVL_MASK;
2836 PdeDst.u |= pShwPage->Core.Key;
2837
2838 /*
2839 * Page directory has been accessed (this is a fault situation, remember).
2840 */
2841 /** @todo
2842 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2843 * fault situation. What's more, the Trap0eHandler has already set the
2844 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2845 * might need setting the accessed flag.
2846 *
2847 * The best idea is to leave this change to the caller and add an
2848 * assertion that it's set already. */
2849 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2850 if (fPageTable)
2851 {
2852 /*
2853 * Page table - 4KB.
2854 *
2855 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2856 */
2857 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2858 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2859 PGSTPT pPTSrc;
2860 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2861 if (RT_SUCCESS(rc))
2862 {
2863 /*
2864 * Start by syncing the page directory entry so CSAM's TLB trick works.
2865 */
2866 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2867 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2868 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2869 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2870
2871 /*
2872 * Directory/page user or supervisor privilege: (same goes for read/write)
2873 *
2874 * Directory Page Combined
2875 * U/S U/S U/S
2876 * 0 0 0
2877 * 0 1 0
2878 * 1 0 0
2879 * 1 1 1
2880 *
2881 * Simple AND operation. Table listed for completeness.
2882 *
2883 */
2884 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2885# ifdef PGM_SYNC_N_PAGES
2886 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2887 unsigned iPTDst = iPTBase;
2888 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2889 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2890 iPTDst = 0;
2891 else
2892 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2893# else /* !PGM_SYNC_N_PAGES */
2894 unsigned iPTDst = 0;
2895 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2896# endif /* !PGM_SYNC_N_PAGES */
2897 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2898 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2899# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2900 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2901 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2902# else
2903 const unsigned offPTSrc = 0;
2904# endif
2905 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2906 {
2907 const unsigned iPTSrc = iPTDst + offPTSrc;
2908 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2909
2910 if (PteSrc.n.u1Present)
2911 {
2912# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2913 /*
2914 * Assuming kernel code will be marked as supervisor - and not as user level
2915 * and executed using a conforming code selector - And marked as readonly.
2916 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2917 */
2918 PPGMPAGE pPage;
2919 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2920 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2921 || ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)))
2922 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2923 )
2924# endif
2925 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2926 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2927 GCPtrCur,
2928 PteSrc.n.u1Present,
2929 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2930 PteSrc.n.u1User & PdeSrc.n.u1User,
2931 (uint64_t)PteSrc.u,
2932 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2933 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2934 }
2935 /* else: the page table was cleared by the pool */
2936 } /* for PTEs */
2937 }
2938 }
2939 else
2940 {
2941 /*
2942 * Big page - 2/4MB.
2943 *
2944 * We'll walk the ram range list in parallel and optimize lookups.
2945 * We will only sync one shadow page table at a time.
2946 */
2947 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2948
2949 /**
2950 * @todo It might be more efficient to sync only a part of the 4MB
2951 * page (similar to what we do for 4KB PDs).
2952 */
2953
2954 /*
2955 * Start by syncing the page directory entry.
2956 */
2957 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2958 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2959
2960 /*
2961 * If the page is not flagged as dirty and is writable, then make it read-only
2962 * at PD level, so we can set the dirty bit when the page is modified.
2963 *
2964 * ASSUMES that page access handlers are implemented on page table entry level.
2965 * Thus we will first catch the dirty access and set PDE.D and restart. If
2966 * there is an access handler, we'll trap again and let it work on the problem.
2967 */
2968 /** @todo move the above stuff to a section in the PGM documentation. */
2969 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2970 if ( !PdeSrc.b.u1Dirty
2971 && PdeSrc.b.u1Write)
2972 {
2973 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2974 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2975 PdeDst.b.u1Write = 0;
2976 }
2977 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2978 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2979
2980 /*
2981 * Fill the shadow page table.
2982 */
2983 /* Get address and flags from the source PDE. */
2984 SHWPTE PteDstBase;
2985 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2986
2987 /* Loop thru the entries in the shadow PT. */
2988 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2989 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2990 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2991 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2992 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2993 unsigned iPTDst = 0;
2994 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2995 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2996 {
2997 if (pRam && GCPhys >= pRam->GCPhys)
2998 {
2999# ifndef PGM_WITH_A20
3000 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
3001# endif
3002 do
3003 {
3004 /* Make shadow PTE. */
3005# ifdef PGM_WITH_A20
3006 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3007# else
3008 PPGMPAGE pPage = &pRam->aPages[iHCPage];
3009# endif
3010 SHWPTE PteDst;
3011
3012# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3013 /* Try to make the page writable if necessary. */
3014 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
3015 && ( PGM_PAGE_IS_ZERO(pPage)
3016 || ( SHW_PTE_IS_RW(PteDstBase)
3017 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
3018# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
3019 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
3020# endif
3021# ifdef VBOX_WITH_PAGE_SHARING
3022 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
3023# endif
3024 && !PGM_PAGE_IS_BALLOONED(pPage))
3025 )
3026 )
3027 {
3028 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
3029 AssertRCReturn(rc, rc);
3030 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
3031 break;
3032 }
3033# endif
3034
3035 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3036 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
3037 else if (PGM_PAGE_IS_BALLOONED(pPage))
3038 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
3039# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3040 /*
3041 * Assuming kernel code will be marked as supervisor and not as user level and executed
3042 * using a conforming code selector. Don't check for readonly, as that implies the whole
3043 * 4MB can be code or readonly data. Linux enables write access for its large pages.
3044 */
3045 else if ( !PdeSrc.n.u1User
3046 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
3047 SHW_PTE_SET(PteDst, 0);
3048# endif
3049 else
3050 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
3051
3052 /* Only map writable pages writable. */
3053 if ( SHW_PTE_IS_P_RW(PteDst)
3054 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
3055 {
3056 /* Still applies to shared pages. */
3057 Assert(!PGM_PAGE_IS_ZERO(pPage));
3058 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
3059 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
3060 }
3061
3062 if (SHW_PTE_IS_P(PteDst))
3063 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
3064
3065 /* commit it (not atomic, new table) */
3066 pPTDst->a[iPTDst] = PteDst;
3067 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
3068 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
3069 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
3070
3071 /* advance */
3072 GCPhys += PAGE_SIZE;
3073 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
3074# ifndef PGM_WITH_A20
3075 iHCPage++;
3076# endif
3077 iPTDst++;
3078 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3079 && GCPhys <= pRam->GCPhysLast);
3080
3081 /* Advance ram range list. */
3082 while (pRam && GCPhys > pRam->GCPhysLast)
3083 pRam = pRam->CTX_SUFF(pNext);
3084 }
3085 else if (pRam)
3086 {
3087 Log(("Invalid pages at %RGp\n", GCPhys));
3088 do
3089 {
3090 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3091 GCPhys += PAGE_SIZE;
3092 iPTDst++;
3093 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3094 && GCPhys < pRam->GCPhys);
3095 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3096 }
3097 else
3098 {
3099 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3100 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3101 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3102 }
3103 } /* while more PTEs */
3104 } /* 4KB / 4MB */
3105 }
3106 else
3107 AssertRelease(!PdeDst.n.u1Present);
3108
3109 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3110 if (RT_FAILURE(rc))
3111 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3112 return rc;
3113
3114#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3115 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3116 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3117 && !defined(IN_RC)
3118 NOREF(iPDSrc); NOREF(pPDSrc);
3119
3120 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3121
3122 /*
3123 * Validate input a little bit.
3124 */
3125 int rc = VINF_SUCCESS;
3126# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3127 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3128 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3129
3130 /* Fetch the pgm pool shadow descriptor. */
3131 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3132 Assert(pShwPde);
3133
3134# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3135 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3136 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3137 PX86PDPAE pPDDst;
3138 PSHWPDE pPdeDst;
3139
3140 /* Fetch the pgm pool shadow descriptor. */
3141 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3142 AssertRCSuccessReturn(rc, rc);
3143 Assert(pShwPde);
3144
3145 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3146 pPdeDst = &pPDDst->a[iPDDst];
3147
3148# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3149 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3150 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3151 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3152 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3153 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3154 AssertRCSuccessReturn(rc, rc);
3155 Assert(pPDDst);
3156 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3157
3158 /* Fetch the pgm pool shadow descriptor. */
3159 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3160 Assert(pShwPde);
3161
3162# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3163 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3164 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3165 PEPTPD pPDDst;
3166 PEPTPDPT pPdptDst;
3167
3168 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3169 if (rc != VINF_SUCCESS)
3170 {
3171 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3172 AssertRC(rc);
3173 return rc;
3174 }
3175 Assert(pPDDst);
3176 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3177
3178 /* Fetch the pgm pool shadow descriptor. */
3179 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3180 Assert(pShwPde);
3181# endif
3182 SHWPDE PdeDst = *pPdeDst;
3183
3184 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3185 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3186
3187# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3188 if (BTH_IS_NP_ACTIVE(pVM))
3189 {
3190 /* Check if we allocated a big page before for this 2 MB range. */
3191 PPGMPAGE pPage;
3192 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3193 if (RT_SUCCESS(rc))
3194 {
3195 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3196 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3197 {
3198 if (PGM_A20_IS_ENABLED(pVCpu))
3199 {
3200 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3201 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3202 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3203 }
3204 else
3205 {
3206 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3207 pVM->pgm.s.cLargePagesDisabled++;
3208 }
3209 }
3210 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3211 && PGM_A20_IS_ENABLED(pVCpu))
3212 {
3213 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3214 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3215 if (RT_SUCCESS(rc))
3216 {
3217 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3218 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3219 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3220 }
3221 }
3222 else if ( PGMIsUsingLargePages(pVM)
3223 && PGM_A20_IS_ENABLED(pVCpu))
3224 {
3225 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3226 if (RT_SUCCESS(rc))
3227 {
3228 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3229 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3230 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3231 }
3232 else
3233 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3234 }
3235
3236 if (HCPhys != NIL_RTHCPHYS)
3237 {
3238 PdeDst.u &= X86_PDE_AVL_MASK;
3239 PdeDst.u |= HCPhys;
3240 PdeDst.n.u1Present = 1;
3241 PdeDst.n.u1Write = 1;
3242 PdeDst.b.u1Size = 1;
3243# if PGM_SHW_TYPE == PGM_TYPE_EPT
3244 PdeDst.n.u1Execute = 1;
3245 PdeDst.b.u1IgnorePAT = 1;
3246 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3247# else
3248 PdeDst.n.u1User = 1;
3249# endif
3250 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3251
3252 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3253 /* Add a reference to the first page only. */
3254 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3255
3256 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3257 return VINF_SUCCESS;
3258 }
3259 }
3260 }
3261# endif /* HC_ARCH_BITS == 64 */
3262
3263 /*
3264 * Allocate & map the page table.
3265 */
3266 PSHWPT pPTDst;
3267 PPGMPOOLPAGE pShwPage;
3268 RTGCPHYS GCPhys;
3269
3270 /* Virtual address = physical address */
3271 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3272 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3273 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3274 &pShwPage);
3275 if ( rc == VINF_SUCCESS
3276 || rc == VINF_PGM_CACHED_PAGE)
3277 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3278 else
3279 {
3280 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3281 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3282 }
3283
3284 if (rc == VINF_SUCCESS)
3285 {
3286 /* New page table; fully set it up. */
3287 Assert(pPTDst);
3288
3289 /* Mask away the page offset. */
3290 GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3291
3292 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3293 {
3294 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3295 | (iPTDst << PAGE_SHIFT));
3296
3297 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3298 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3299 GCPtrCurPage,
3300 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3301 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3302
3303 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
3304 break;
3305 }
3306 }
3307 else
3308 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3309
3310 /* Save the new PDE. */
3311 PdeDst.u &= X86_PDE_AVL_MASK;
3312 PdeDst.u |= pShwPage->Core.Key;
3313 PdeDst.n.u1Present = 1;
3314 PdeDst.n.u1Write = 1;
3315# if PGM_SHW_TYPE == PGM_TYPE_EPT
3316 PdeDst.n.u1Execute = 1;
3317# else
3318 PdeDst.n.u1User = 1;
3319 PdeDst.n.u1Accessed = 1;
3320# endif
3321 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3322
3323 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3324 if (RT_FAILURE(rc))
3325 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3326 return rc;
3327
3328#else
3329 NOREF(iPDSrc); NOREF(pPDSrc);
3330 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3331 return VERR_PGM_NOT_USED_IN_MODE;
3332#endif
3333}
3334
3335
3336
3337/**
3338 * Prefetch a page/set of pages.
3339 *
3340 * Typically used to sync commonly used pages before entering raw mode
3341 * after a CR3 reload.
3342 *
3343 * @returns VBox status code.
3344 * @param pVCpu The cross context virtual CPU structure.
3345 * @param GCPtrPage Page to invalidate.
3346 */
3347PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3348{
3349#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3350 || PGM_GST_TYPE == PGM_TYPE_REAL \
3351 || PGM_GST_TYPE == PGM_TYPE_PROT \
3352 || PGM_GST_TYPE == PGM_TYPE_PAE \
3353 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3354 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3355 && PGM_SHW_TYPE != PGM_TYPE_EPT
3356
3357 /*
3358 * Check that all Guest levels thru the PDE are present, getting the
3359 * PD and PDE in the processes.
3360 */
3361 int rc = VINF_SUCCESS;
3362# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3363# if PGM_GST_TYPE == PGM_TYPE_32BIT
3364 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3365 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3366# elif PGM_GST_TYPE == PGM_TYPE_PAE
3367 unsigned iPDSrc;
3368 X86PDPE PdpeSrc;
3369 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3370 if (!pPDSrc)
3371 return VINF_SUCCESS; /* not present */
3372# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3373 unsigned iPDSrc;
3374 PX86PML4E pPml4eSrc;
3375 X86PDPE PdpeSrc;
3376 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3377 if (!pPDSrc)
3378 return VINF_SUCCESS; /* not present */
3379# endif
3380 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3381# else
3382 PGSTPD pPDSrc = NULL;
3383 const unsigned iPDSrc = 0;
3384 GSTPDE PdeSrc;
3385
3386 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3387 PdeSrc.n.u1Present = 1;
3388 PdeSrc.n.u1Write = 1;
3389 PdeSrc.n.u1Accessed = 1;
3390 PdeSrc.n.u1User = 1;
3391# endif
3392
3393 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3394 {
3395 PVM pVM = pVCpu->CTX_SUFF(pVM);
3396 pgmLock(pVM);
3397
3398# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3399 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3400# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3401 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3402 PX86PDPAE pPDDst;
3403 X86PDEPAE PdeDst;
3404# if PGM_GST_TYPE != PGM_TYPE_PAE
3405 X86PDPE PdpeSrc;
3406
3407 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3408 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3409# endif
3410 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3411 if (rc != VINF_SUCCESS)
3412 {
3413 pgmUnlock(pVM);
3414 AssertRC(rc);
3415 return rc;
3416 }
3417 Assert(pPDDst);
3418 PdeDst = pPDDst->a[iPDDst];
3419
3420# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3421 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3422 PX86PDPAE pPDDst;
3423 X86PDEPAE PdeDst;
3424
3425# if PGM_GST_TYPE == PGM_TYPE_PROT
3426 /* AMD-V nested paging */
3427 X86PML4E Pml4eSrc;
3428 X86PDPE PdpeSrc;
3429 PX86PML4E pPml4eSrc = &Pml4eSrc;
3430
3431 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3432 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3433 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3434# endif
3435
3436 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3437 if (rc != VINF_SUCCESS)
3438 {
3439 pgmUnlock(pVM);
3440 AssertRC(rc);
3441 return rc;
3442 }
3443 Assert(pPDDst);
3444 PdeDst = pPDDst->a[iPDDst];
3445# endif
3446 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3447 {
3448 if (!PdeDst.n.u1Present)
3449 {
3450 /** @todo r=bird: This guy will set the A bit on the PDE,
3451 * probably harmless. */
3452 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3453 }
3454 else
3455 {
3456 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3457 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3458 * makes no sense to prefetch more than one page.
3459 */
3460 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3461 if (RT_SUCCESS(rc))
3462 rc = VINF_SUCCESS;
3463 }
3464 }
3465 pgmUnlock(pVM);
3466 }
3467 return rc;
3468
3469#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3470 NOREF(pVCpu); NOREF(GCPtrPage);
3471 return VINF_SUCCESS; /* ignore */
3472#else
3473 AssertCompile(0);
3474#endif
3475}
3476
3477
3478
3479
3480/**
3481 * Syncs a page during a PGMVerifyAccess() call.
3482 *
3483 * @returns VBox status code (informational included).
3484 * @param pVCpu The cross context virtual CPU structure.
3485 * @param GCPtrPage The address of the page to sync.
3486 * @param fPage The effective guest page flags.
3487 * @param uErr The trap error code.
3488 * @remarks This will normally never be called on invalid guest page
3489 * translation entries.
3490 */
3491PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3492{
3493 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3494
3495 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3496
3497 Assert(!pVM->pgm.s.fNestedPaging);
3498#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3499 || PGM_GST_TYPE == PGM_TYPE_REAL \
3500 || PGM_GST_TYPE == PGM_TYPE_PROT \
3501 || PGM_GST_TYPE == PGM_TYPE_PAE \
3502 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3503 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3504 && PGM_SHW_TYPE != PGM_TYPE_EPT
3505
3506# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3507 if (!(fPage & X86_PTE_US))
3508 {
3509 /*
3510 * Mark this page as safe.
3511 */
3512 /** @todo not correct for pages that contain both code and data!! */
3513 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3514 CSAMMarkPage(pVM, GCPtrPage, true);
3515 }
3516# endif
3517
3518 /*
3519 * Get guest PD and index.
3520 */
3521 /** @todo Performance: We've done all this a jiffy ago in the
3522 * PGMGstGetPage call. */
3523# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3524# if PGM_GST_TYPE == PGM_TYPE_32BIT
3525 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3526 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3527
3528# elif PGM_GST_TYPE == PGM_TYPE_PAE
3529 unsigned iPDSrc = 0;
3530 X86PDPE PdpeSrc;
3531 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3532 if (RT_UNLIKELY(!pPDSrc))
3533 {
3534 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3535 return VINF_EM_RAW_GUEST_TRAP;
3536 }
3537
3538# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3539 unsigned iPDSrc = 0; /* shut up gcc */
3540 PX86PML4E pPml4eSrc = NULL; /* ditto */
3541 X86PDPE PdpeSrc;
3542 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3543 if (RT_UNLIKELY(!pPDSrc))
3544 {
3545 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3546 return VINF_EM_RAW_GUEST_TRAP;
3547 }
3548# endif
3549
3550# else /* !PGM_WITH_PAGING */
3551 PGSTPD pPDSrc = NULL;
3552 const unsigned iPDSrc = 0;
3553# endif /* !PGM_WITH_PAGING */
3554 int rc = VINF_SUCCESS;
3555
3556 pgmLock(pVM);
3557
3558 /*
3559 * First check if the shadow pd is present.
3560 */
3561# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3562 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3563
3564# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3565 PX86PDEPAE pPdeDst;
3566 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3567 PX86PDPAE pPDDst;
3568# if PGM_GST_TYPE != PGM_TYPE_PAE
3569 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3570 X86PDPE PdpeSrc;
3571 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3572# endif
3573 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3574 if (rc != VINF_SUCCESS)
3575 {
3576 pgmUnlock(pVM);
3577 AssertRC(rc);
3578 return rc;
3579 }
3580 Assert(pPDDst);
3581 pPdeDst = &pPDDst->a[iPDDst];
3582
3583# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3584 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3585 PX86PDPAE pPDDst;
3586 PX86PDEPAE pPdeDst;
3587
3588# if PGM_GST_TYPE == PGM_TYPE_PROT
3589 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3590 X86PML4E Pml4eSrc;
3591 X86PDPE PdpeSrc;
3592 PX86PML4E pPml4eSrc = &Pml4eSrc;
3593 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3594 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3595# endif
3596
3597 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3598 if (rc != VINF_SUCCESS)
3599 {
3600 pgmUnlock(pVM);
3601 AssertRC(rc);
3602 return rc;
3603 }
3604 Assert(pPDDst);
3605 pPdeDst = &pPDDst->a[iPDDst];
3606# endif
3607
3608 if (!pPdeDst->n.u1Present)
3609 {
3610 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3611 if (rc != VINF_SUCCESS)
3612 {
3613 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3614 pgmUnlock(pVM);
3615 AssertRC(rc);
3616 return rc;
3617 }
3618 }
3619
3620# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3621 /* Check for dirty bit fault */
3622 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3623 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3624 Log(("PGMVerifyAccess: success (dirty)\n"));
3625 else
3626# endif
3627 {
3628# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3629 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3630# else
3631 GSTPDE PdeSrc;
3632 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3633 PdeSrc.n.u1Present = 1;
3634 PdeSrc.n.u1Write = 1;
3635 PdeSrc.n.u1Accessed = 1;
3636 PdeSrc.n.u1User = 1;
3637# endif
3638
3639 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3640 if (uErr & X86_TRAP_PF_US)
3641 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3642 else /* supervisor */
3643 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3644
3645 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3646 if (RT_SUCCESS(rc))
3647 {
3648 /* Page was successfully synced */
3649 Log2(("PGMVerifyAccess: success (sync)\n"));
3650 rc = VINF_SUCCESS;
3651 }
3652 else
3653 {
3654 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3655 rc = VINF_EM_RAW_GUEST_TRAP;
3656 }
3657 }
3658 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3659 pgmUnlock(pVM);
3660 return rc;
3661
3662#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3663
3664 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3665 return VERR_PGM_NOT_USED_IN_MODE;
3666#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3667}
3668
3669
3670/**
3671 * Syncs the paging hierarchy starting at CR3.
3672 *
3673 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
3674 * informational status codes.
3675 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
3676 * the VMM into guest context.
3677 * @param pVCpu The cross context virtual CPU structure.
3678 * @param cr0 Guest context CR0 register.
3679 * @param cr3 Guest context CR3 register. Not subjected to the A20
3680 * mask.
3681 * @param cr4 Guest context CR4 register.
3682 * @param fGlobal Including global page directories or not
3683 */
3684PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3685{
3686 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3687 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3688
3689 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3690
3691#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3692
3693 pgmLock(pVM);
3694
3695# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3696 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3697 if (pPool->cDirtyPages)
3698 pgmPoolResetDirtyPages(pVM);
3699# endif
3700
3701 /*
3702 * Update page access handlers.
3703 * The virtual are always flushed, while the physical are only on demand.
3704 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3705 * have to look into that later because it will have a bad influence on the performance.
3706 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3707 * bird: Yes, but that won't work for aliases.
3708 */
3709 /** @todo this MUST go away. See @bugref{1557}. */
3710 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3711 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3712 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3713 pgmUnlock(pVM);
3714#endif /* !NESTED && !EPT */
3715
3716#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3717 /*
3718 * Nested / EPT - almost no work.
3719 */
3720 Assert(!pgmMapAreMappingsEnabled(pVM));
3721 return VINF_SUCCESS;
3722
3723#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3724 /*
3725 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3726 * out the shadow parts when the guest modifies its tables.
3727 */
3728 Assert(!pgmMapAreMappingsEnabled(pVM));
3729 return VINF_SUCCESS;
3730
3731#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3732
3733# ifndef PGM_WITHOUT_MAPPINGS
3734 /*
3735 * Check for and resolve conflicts with our guest mappings if they
3736 * are enabled and not fixed.
3737 */
3738 if (pgmMapAreMappingsFloating(pVM))
3739 {
3740 int rc = pgmMapResolveConflicts(pVM);
3741 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3742 if (rc == VINF_SUCCESS)
3743 { /* likely */ }
3744 else if (rc == VINF_PGM_SYNC_CR3)
3745 {
3746 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3747 return VINF_PGM_SYNC_CR3;
3748 }
3749 else if (RT_FAILURE(rc))
3750 return rc;
3751 else
3752 AssertMsgFailed(("%Rrc\n", rc));
3753 }
3754# else
3755 Assert(!pgmMapAreMappingsEnabled(pVM));
3756# endif
3757 return VINF_SUCCESS;
3758#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3759}
3760
3761
3762
3763
3764#ifdef VBOX_STRICT
3765# ifdef IN_RC
3766# undef AssertMsgFailed
3767# define AssertMsgFailed Log
3768# endif
3769
3770/**
3771 * Checks that the shadow page table is in sync with the guest one.
3772 *
3773 * @returns The number of errors.
3774 * @param pVCpu The cross context virtual CPU structure.
3775 * @param cr3 Guest context CR3 register.
3776 * @param cr4 Guest context CR4 register.
3777 * @param GCPtr Where to start. Defaults to 0.
3778 * @param cb How much to check. Defaults to everything.
3779 */
3780PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3781{
3782 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3783#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3784 return 0;
3785#else
3786 unsigned cErrors = 0;
3787 PVM pVM = pVCpu->CTX_SUFF(pVM);
3788 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3789
3790# if PGM_GST_TYPE == PGM_TYPE_PAE
3791 /** @todo currently broken; crashes below somewhere */
3792 AssertFailed();
3793# endif
3794
3795# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3796 || PGM_GST_TYPE == PGM_TYPE_PAE \
3797 || PGM_GST_TYPE == PGM_TYPE_AMD64
3798
3799 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3800 PPGMCPU pPGM = &pVCpu->pgm.s;
3801 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3802 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3803# ifndef IN_RING0
3804 RTHCPHYS HCPhys; /* general usage. */
3805# endif
3806 int rc;
3807
3808 /*
3809 * Check that the Guest CR3 and all its mappings are correct.
3810 */
3811 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3812 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3813 false);
3814# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3815# if PGM_GST_TYPE == PGM_TYPE_32BIT
3816 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3817# else
3818 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3819# endif
3820 AssertRCReturn(rc, 1);
3821 HCPhys = NIL_RTHCPHYS;
3822 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3823 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3824# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3825 pgmGstGet32bitPDPtr(pVCpu);
3826 RTGCPHYS GCPhys;
3827 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3828 AssertRCReturn(rc, 1);
3829 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3830# endif
3831# endif /* !IN_RING0 */
3832
3833 /*
3834 * Get and check the Shadow CR3.
3835 */
3836# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3837 unsigned cPDEs = X86_PG_ENTRIES;
3838 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3839# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3840# if PGM_GST_TYPE == PGM_TYPE_32BIT
3841 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3842# else
3843 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3844# endif
3845 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3846# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3847 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3848 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3849# endif
3850 if (cb != ~(RTGCPTR)0)
3851 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3852
3853/** @todo call the other two PGMAssert*() functions. */
3854
3855# if PGM_GST_TYPE == PGM_TYPE_AMD64
3856 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3857
3858 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3859 {
3860 PPGMPOOLPAGE pShwPdpt = NULL;
3861 PX86PML4E pPml4eSrc;
3862 PX86PML4E pPml4eDst;
3863 RTGCPHYS GCPhysPdptSrc;
3864
3865 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3866 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3867
3868 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3869 if (!pPml4eDst->n.u1Present)
3870 {
3871 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3872 continue;
3873 }
3874
3875 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3876 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3877
3878 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3879 {
3880 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3881 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3882 cErrors++;
3883 continue;
3884 }
3885
3886 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3887 {
3888 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3889 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3890 cErrors++;
3891 continue;
3892 }
3893
3894 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3895 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3896 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3897 {
3898 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3899 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3900 cErrors++;
3901 continue;
3902 }
3903# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3904 {
3905# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3906
3907# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3908 /*
3909 * Check the PDPTEs too.
3910 */
3911 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3912
3913 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3914 {
3915 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3916 PPGMPOOLPAGE pShwPde = NULL;
3917 PX86PDPE pPdpeDst;
3918 RTGCPHYS GCPhysPdeSrc;
3919 X86PDPE PdpeSrc;
3920 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3921# if PGM_GST_TYPE == PGM_TYPE_PAE
3922 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3923 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3924# else
3925 PX86PML4E pPml4eSrcIgn;
3926 PX86PDPT pPdptDst;
3927 PX86PDPAE pPDDst;
3928 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3929
3930 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3931 if (rc != VINF_SUCCESS)
3932 {
3933 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3934 GCPtr += 512 * _2M;
3935 continue; /* next PDPTE */
3936 }
3937 Assert(pPDDst);
3938# endif
3939 Assert(iPDSrc == 0);
3940
3941 pPdpeDst = &pPdptDst->a[iPdpt];
3942
3943 if (!pPdpeDst->n.u1Present)
3944 {
3945 GCPtr += 512 * _2M;
3946 continue; /* next PDPTE */
3947 }
3948
3949 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3950 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3951
3952 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3953 {
3954 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3955 GCPtr += 512 * _2M;
3956 cErrors++;
3957 continue;
3958 }
3959
3960 if (GCPhysPdeSrc != pShwPde->GCPhys)
3961 {
3962# if PGM_GST_TYPE == PGM_TYPE_AMD64
3963 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3964# else
3965 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3966# endif
3967 GCPtr += 512 * _2M;
3968 cErrors++;
3969 continue;
3970 }
3971
3972# if PGM_GST_TYPE == PGM_TYPE_AMD64
3973 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3974 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3975 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3976 {
3977 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3978 GCPtr += 512 * _2M;
3979 cErrors++;
3980 continue;
3981 }
3982# endif
3983
3984# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3985 {
3986# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3987# if PGM_GST_TYPE == PGM_TYPE_32BIT
3988 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3989# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3990 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3991# endif
3992# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3993 /*
3994 * Iterate the shadow page directory.
3995 */
3996 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3997 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3998
3999 for (;
4000 iPDDst < cPDEs;
4001 iPDDst++, GCPtr += cIncrement)
4002 {
4003# if PGM_SHW_TYPE == PGM_TYPE_PAE
4004 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
4005# else
4006 const SHWPDE PdeDst = pPDDst->a[iPDDst];
4007# endif
4008 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
4009 {
4010 Assert(pgmMapAreMappingsEnabled(pVM));
4011 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
4012 {
4013 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
4014 cErrors++;
4015 continue;
4016 }
4017 }
4018 else if ( (PdeDst.u & X86_PDE_P)
4019 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
4020 )
4021 {
4022 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
4023 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
4024 if (!pPoolPage)
4025 {
4026 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4027 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4028 cErrors++;
4029 continue;
4030 }
4031 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
4032
4033 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4034 {
4035 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4036 GCPtr, (uint64_t)PdeDst.u));
4037 cErrors++;
4038 }
4039
4040 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4041 {
4042 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4043 GCPtr, (uint64_t)PdeDst.u));
4044 cErrors++;
4045 }
4046
4047 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4048 if (!PdeSrc.n.u1Present)
4049 {
4050 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4051 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4052 cErrors++;
4053 continue;
4054 }
4055
4056 if ( !PdeSrc.b.u1Size
4057 || !fBigPagesSupported)
4058 {
4059 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
4060# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4061 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
4062# endif
4063 }
4064 else
4065 {
4066# if PGM_GST_TYPE == PGM_TYPE_32BIT
4067 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4068 {
4069 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4070 GCPtr, (uint64_t)PdeSrc.u));
4071 cErrors++;
4072 continue;
4073 }
4074# endif
4075 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
4076# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4077 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
4078# endif
4079 }
4080
4081 if ( pPoolPage->enmKind
4082 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4083 {
4084 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4085 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4086 cErrors++;
4087 }
4088
4089 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4090 if (!pPhysPage)
4091 {
4092 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4093 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4094 cErrors++;
4095 continue;
4096 }
4097
4098 if (GCPhysGst != pPoolPage->GCPhys)
4099 {
4100 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4101 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4102 cErrors++;
4103 continue;
4104 }
4105
4106 if ( !PdeSrc.b.u1Size
4107 || !fBigPagesSupported)
4108 {
4109 /*
4110 * Page Table.
4111 */
4112 const GSTPT *pPTSrc;
4113 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
4114 &pPTSrc);
4115 if (RT_FAILURE(rc))
4116 {
4117 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4118 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4119 cErrors++;
4120 continue;
4121 }
4122 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4123 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4124 {
4125 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4126 // (This problem will go away when/if we shadow multiple CR3s.)
4127 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4128 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4129 cErrors++;
4130 continue;
4131 }
4132 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4133 {
4134 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4135 GCPtr, (uint64_t)PdeDst.u));
4136 cErrors++;
4137 continue;
4138 }
4139
4140 /* iterate the page table. */
4141# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4142 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4143 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4144# else
4145 const unsigned offPTSrc = 0;
4146# endif
4147 for (unsigned iPT = 0, off = 0;
4148 iPT < RT_ELEMENTS(pPTDst->a);
4149 iPT++, off += PAGE_SIZE)
4150 {
4151 const SHWPTE PteDst = pPTDst->a[iPT];
4152
4153 /* skip not-present and dirty tracked entries. */
4154 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4155 continue;
4156 Assert(SHW_PTE_IS_P(PteDst));
4157
4158 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4159 if (!PteSrc.n.u1Present)
4160 {
4161# ifdef IN_RING3
4162 PGMAssertHandlerAndFlagsInSync(pVM);
4163 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4164 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4165 0, 0, UINT64_MAX, 99, NULL);
4166# endif
4167 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4168 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4169 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4170 cErrors++;
4171 continue;
4172 }
4173
4174 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4175# if 1 /** @todo sync accessed bit properly... */
4176 fIgnoreFlags |= X86_PTE_A;
4177# endif
4178
4179 /* match the physical addresses */
4180 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4181 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4182
4183# ifdef IN_RING3
4184 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4185 if (RT_FAILURE(rc))
4186 {
4187 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4188 {
4189 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4190 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4191 cErrors++;
4192 continue;
4193 }
4194 }
4195 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4196 {
4197 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4198 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4199 cErrors++;
4200 continue;
4201 }
4202# endif
4203
4204 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4205 if (!pPhysPage)
4206 {
4207# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4208 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4209 {
4210 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4211 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4212 cErrors++;
4213 continue;
4214 }
4215# endif
4216 if (SHW_PTE_IS_RW(PteDst))
4217 {
4218 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4219 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4220 cErrors++;
4221 }
4222 fIgnoreFlags |= X86_PTE_RW;
4223 }
4224 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4225 {
4226 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4227 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4228 cErrors++;
4229 continue;
4230 }
4231
4232 /* flags */
4233 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4234 {
4235 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4236 {
4237 if (SHW_PTE_IS_RW(PteDst))
4238 {
4239 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4240 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4241 cErrors++;
4242 continue;
4243 }
4244 fIgnoreFlags |= X86_PTE_RW;
4245 }
4246 else
4247 {
4248 if ( SHW_PTE_IS_P(PteDst)
4249# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4250 && !PGM_PAGE_IS_MMIO(pPhysPage)
4251# endif
4252 )
4253 {
4254 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4255 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4256 cErrors++;
4257 continue;
4258 }
4259 fIgnoreFlags |= X86_PTE_P;
4260 }
4261 }
4262 else
4263 {
4264 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4265 {
4266 if (SHW_PTE_IS_RW(PteDst))
4267 {
4268 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4269 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4270 cErrors++;
4271 continue;
4272 }
4273 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4274 {
4275 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4276 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4277 cErrors++;
4278 continue;
4279 }
4280 if (SHW_PTE_IS_D(PteDst))
4281 {
4282 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4283 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4284 cErrors++;
4285 }
4286# if 0 /** @todo sync access bit properly... */
4287 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4288 {
4289 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4290 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4291 cErrors++;
4292 }
4293 fIgnoreFlags |= X86_PTE_RW;
4294# else
4295 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4296# endif
4297 }
4298 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4299 {
4300 /* access bit emulation (not implemented). */
4301 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4302 {
4303 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4304 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4305 cErrors++;
4306 continue;
4307 }
4308 if (!SHW_PTE_IS_A(PteDst))
4309 {
4310 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4311 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4312 cErrors++;
4313 }
4314 fIgnoreFlags |= X86_PTE_P;
4315 }
4316# ifdef DEBUG_sandervl
4317 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4318# endif
4319 }
4320
4321 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4322 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4323 )
4324 {
4325 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4326 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4327 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4328 cErrors++;
4329 continue;
4330 }
4331 } /* foreach PTE */
4332 }
4333 else
4334 {
4335 /*
4336 * Big Page.
4337 */
4338 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4339 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4340 {
4341 if (PdeDst.n.u1Write)
4342 {
4343 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4344 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4345 cErrors++;
4346 continue;
4347 }
4348 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4349 {
4350 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4351 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4352 cErrors++;
4353 continue;
4354 }
4355# if 0 /** @todo sync access bit properly... */
4356 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4357 {
4358 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4359 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4360 cErrors++;
4361 }
4362 fIgnoreFlags |= X86_PTE_RW;
4363# else
4364 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4365# endif
4366 }
4367 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4368 {
4369 /* access bit emulation (not implemented). */
4370 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4371 {
4372 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4373 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4374 cErrors++;
4375 continue;
4376 }
4377 if (!PdeDst.n.u1Accessed)
4378 {
4379 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4380 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4381 cErrors++;
4382 }
4383 fIgnoreFlags |= X86_PTE_P;
4384 }
4385
4386 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4387 {
4388 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4389 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4390 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4391 cErrors++;
4392 }
4393
4394 /* iterate the page table. */
4395 for (unsigned iPT = 0, off = 0;
4396 iPT < RT_ELEMENTS(pPTDst->a);
4397 iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
4398 {
4399 const SHWPTE PteDst = pPTDst->a[iPT];
4400
4401 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4402 {
4403 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4404 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4405 cErrors++;
4406 }
4407
4408 /* skip not-present entries. */
4409 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4410 continue;
4411
4412 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4413
4414 /* match the physical addresses */
4415 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4416
4417# ifdef IN_RING3
4418 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4419 if (RT_FAILURE(rc))
4420 {
4421 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4422 {
4423 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4424 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4425 cErrors++;
4426 }
4427 }
4428 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4429 {
4430 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4431 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4432 cErrors++;
4433 continue;
4434 }
4435# endif
4436 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4437 if (!pPhysPage)
4438 {
4439# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4440 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4441 {
4442 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4443 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4444 cErrors++;
4445 continue;
4446 }
4447# endif
4448 if (SHW_PTE_IS_RW(PteDst))
4449 {
4450 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4451 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4452 cErrors++;
4453 }
4454 fIgnoreFlags |= X86_PTE_RW;
4455 }
4456 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4457 {
4458 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4459 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4460 cErrors++;
4461 continue;
4462 }
4463
4464 /* flags */
4465 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4466 {
4467 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4468 {
4469 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4470 {
4471 if (SHW_PTE_IS_RW(PteDst))
4472 {
4473 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4474 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4475 cErrors++;
4476 continue;
4477 }
4478 fIgnoreFlags |= X86_PTE_RW;
4479 }
4480 }
4481 else
4482 {
4483 if ( SHW_PTE_IS_P(PteDst)
4484# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4485 && !PGM_PAGE_IS_MMIO(pPhysPage)
4486# endif
4487 )
4488 {
4489 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4490 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4491 cErrors++;
4492 continue;
4493 }
4494 fIgnoreFlags |= X86_PTE_P;
4495 }
4496 }
4497
4498 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4499 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4500 )
4501 {
4502 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4503 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4504 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4505 cErrors++;
4506 continue;
4507 }
4508 } /* for each PTE */
4509 }
4510 }
4511 /* not present */
4512
4513 } /* for each PDE */
4514
4515 } /* for each PDPTE */
4516
4517 } /* for each PML4E */
4518
4519# ifdef DEBUG
4520 if (cErrors)
4521 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4522# endif
4523# endif /* GST is in {32BIT, PAE, AMD64} */
4524 return cErrors;
4525#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4526}
4527#endif /* VBOX_STRICT */
4528
4529
4530/**
4531 * Sets up the CR3 for shadow paging
4532 *
4533 * @returns Strict VBox status code.
4534 * @retval VINF_SUCCESS.
4535 *
4536 * @param pVCpu The cross context virtual CPU structure.
4537 * @param GCPhysCR3 The physical address in the CR3 register. (A20
4538 * mask already applied.)
4539 */
4540PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4541{
4542 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4543
4544 /* Update guest paging info. */
4545#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4546 || PGM_GST_TYPE == PGM_TYPE_PAE \
4547 || PGM_GST_TYPE == PGM_TYPE_AMD64
4548
4549 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4550 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4551
4552 /*
4553 * Map the page CR3 points at.
4554 */
4555 RTHCPTR HCPtrGuestCR3;
4556 RTHCPHYS HCPhysGuestCR3;
4557 pgmLock(pVM);
4558 PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
4559 AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
4560 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4561 /** @todo this needs some reworking wrt. locking? */
4562# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4563 HCPtrGuestCR3 = NIL_RTHCPTR;
4564 int rc = VINF_SUCCESS;
4565# else
4566 int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4567# endif
4568 pgmUnlock(pVM);
4569 if (RT_SUCCESS(rc))
4570 {
4571 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4572 if (RT_SUCCESS(rc))
4573 {
4574# ifdef IN_RC
4575 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4576# endif
4577# if PGM_GST_TYPE == PGM_TYPE_32BIT
4578 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4579# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4580 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4581# endif
4582 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4583
4584# elif PGM_GST_TYPE == PGM_TYPE_PAE
4585 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4586 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4587# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4588 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4589# endif
4590 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4591 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4592
4593 /*
4594 * Map the 4 PDs too.
4595 */
4596 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4597 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4598 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4599 {
4600 pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
4601 if (pGuestPDPT->a[i].n.u1Present)
4602 {
4603 RTHCPTR HCPtr;
4604 RTHCPHYS HCPhys;
4605 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
4606 pgmLock(pVM);
4607 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4608 AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
4609 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4610# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4611 HCPtr = NIL_RTHCPTR;
4612 int rc2 = VINF_SUCCESS;
4613# else
4614 int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
4615# endif
4616 pgmUnlock(pVM);
4617 if (RT_SUCCESS(rc2))
4618 {
4619 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4620 AssertRCReturn(rc, rc);
4621
4622 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4623# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4624 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4625# endif
4626 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4627 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4628# ifdef IN_RC
4629 PGM_INVL_PG(pVCpu, GCPtr);
4630# endif
4631 continue;
4632 }
4633 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4634 }
4635
4636 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4637# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4638 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4639# endif
4640 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4641 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4642# ifdef IN_RC
4643 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4644# endif
4645 }
4646
4647# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4648 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4649# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4650 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4651# endif
4652# endif
4653 }
4654 else
4655 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4656 }
4657 else
4658 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4659
4660#else /* prot/real stub */
4661 int rc = VINF_SUCCESS;
4662#endif
4663
4664 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4665# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4666 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4667 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4668 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4669 && PGM_GST_TYPE != PGM_TYPE_PROT))
4670
4671 Assert(!pVM->pgm.s.fNestedPaging);
4672 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4673
4674 /*
4675 * Update the shadow root page as well since that's not fixed.
4676 */
4677 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4678 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4679 PPGMPOOLPAGE pNewShwPageCR3;
4680
4681 pgmLock(pVM);
4682
4683# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4684 if (pPool->cDirtyPages)
4685 pgmPoolResetDirtyPages(pVM);
4686# endif
4687
4688 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4689 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
4690 NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
4691 &pNewShwPageCR3);
4692 AssertFatalRC(rc);
4693 rc = VINF_SUCCESS;
4694
4695# ifdef IN_RC
4696 /*
4697 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4698 * state will be inconsistent! Flush important things now while
4699 * we still can and then make sure there are no ring-3 calls.
4700 */
4701# ifdef VBOX_WITH_REM
4702 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4703# endif
4704 VMMRZCallRing3Disable(pVCpu);
4705# endif
4706
4707 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4708# ifdef IN_RING0
4709 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4710 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4711# elif defined(IN_RC)
4712 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4713 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4714# else
4715 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4716 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4717# endif
4718
4719# ifndef PGM_WITHOUT_MAPPINGS
4720 /*
4721 * Apply all hypervisor mappings to the new CR3.
4722 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4723 * make sure we check for conflicts in the new CR3 root.
4724 */
4725# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4726 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4727# endif
4728 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4729 AssertRCReturn(rc, rc);
4730# endif
4731
4732 /* Set the current hypervisor CR3. */
4733 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4734 SELMShadowCR3Changed(pVM, pVCpu);
4735
4736# ifdef IN_RC
4737 /* NOTE: The state is consistent again. */
4738 VMMRZCallRing3Enable(pVCpu);
4739# endif
4740
4741 /* Clean up the old CR3 root. */
4742 if ( pOldShwPageCR3
4743 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4744 {
4745 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4746# ifndef PGM_WITHOUT_MAPPINGS
4747 /* Remove the hypervisor mappings from the shadow page table. */
4748 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4749# endif
4750 /* Mark the page as unlocked; allow flushing again. */
4751 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4752
4753 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4754 }
4755 pgmUnlock(pVM);
4756# else
4757 NOREF(GCPhysCR3);
4758# endif
4759
4760 return rc;
4761}
4762
4763/**
4764 * Unmaps the shadow CR3.
4765 *
4766 * @returns VBox status, no specials.
4767 * @param pVCpu The cross context virtual CPU structure.
4768 */
4769PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4770{
4771 LogFlow(("UnmapCR3\n"));
4772
4773 int rc = VINF_SUCCESS;
4774 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4775
4776 /*
4777 * Update guest paging info.
4778 */
4779#if PGM_GST_TYPE == PGM_TYPE_32BIT
4780 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4781# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4782 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4783# endif
4784 pVCpu->pgm.s.pGst32BitPdRC = 0;
4785
4786#elif PGM_GST_TYPE == PGM_TYPE_PAE
4787 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4788# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4789 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4790# endif
4791 pVCpu->pgm.s.pGstPaePdptRC = 0;
4792 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4793 {
4794 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4795# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4796 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4797# endif
4798 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4799 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4800 }
4801
4802#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4803 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4804# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4805 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4806# endif
4807
4808#else /* prot/real mode stub */
4809 /* nothing to do */
4810#endif
4811
4812#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4813 /*
4814 * Update shadow paging info.
4815 */
4816# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4817 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4818 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4819
4820# if PGM_GST_TYPE != PGM_TYPE_REAL
4821 Assert(!pVM->pgm.s.fNestedPaging);
4822# endif
4823
4824 pgmLock(pVM);
4825
4826# ifndef PGM_WITHOUT_MAPPINGS
4827 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4828 /* Remove the hypervisor mappings from the shadow page table. */
4829 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4830# endif
4831
4832 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4833 {
4834 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4835
4836# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4837 if (pPool->cDirtyPages)
4838 pgmPoolResetDirtyPages(pVM);
4839# endif
4840
4841 /* Mark the page as unlocked; allow flushing again. */
4842 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4843
4844 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4845 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4846 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4847 pVCpu->pgm.s.pShwPageCR3RC = 0;
4848 }
4849 pgmUnlock(pVM);
4850# endif
4851#endif /* !IN_RC*/
4852
4853 return rc;
4854}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette