1 | /* $Id: PGMAllBth.h 6927 2008-02-12 20:44:35Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
|
---|
4 | *
|
---|
5 | * This file is a big challenge!
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * Copyright (C) 2006-2007 innotek GmbH
|
---|
10 | *
|
---|
11 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
12 | * available from http://www.virtualbox.org. This file is free software;
|
---|
13 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
14 | * General Public License (GPL) as published by the Free Software
|
---|
15 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
16 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
17 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
18 | */
|
---|
19 |
|
---|
20 | /*******************************************************************************
|
---|
21 | * Internal Functions *
|
---|
22 | *******************************************************************************/
|
---|
23 | __BEGIN_DECLS
|
---|
24 | PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
|
---|
25 | PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage);
|
---|
26 | PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr);
|
---|
27 | PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage);
|
---|
28 | PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage);
|
---|
29 | PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR Addr, unsigned fPage, unsigned uErr);
|
---|
30 | PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage);
|
---|
31 | PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal);
|
---|
32 | #ifdef VBOX_STRICT
|
---|
33 | PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr = 0, RTGCUINTPTR cb = ~(RTGCUINTPTR)0);
|
---|
34 | #endif
|
---|
35 | #ifdef PGMPOOL_WITH_USER_TRACKING
|
---|
36 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
|
---|
37 | #endif
|
---|
38 | __END_DECLS
|
---|
39 |
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * #PF Handler for raw-mode guest execution.
|
---|
43 | *
|
---|
44 | * @returns VBox status code (appropriate for trap handling and GC return).
|
---|
45 | * @param pVM VM Handle.
|
---|
46 | * @param uErr The trap error code.
|
---|
47 | * @param pRegFrame Trap register frame.
|
---|
48 | * @param pvFault The fault address.
|
---|
49 | */
|
---|
50 | PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
|
---|
51 | {
|
---|
52 | #if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE) && PGM_SHW_TYPE != PGM_TYPE_AMD64
|
---|
53 |
|
---|
54 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
|
---|
55 | # error "32-bit guest mode is only implemented for 32-bit and PAE shadow modes."
|
---|
56 | # endif
|
---|
57 |
|
---|
58 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
|
---|
59 | /*
|
---|
60 | * Hide the instruction fetch trap indicator for now.
|
---|
61 | */
|
---|
62 | /** @todo NXE will change this and we must fix NXE in the switcher too! */
|
---|
63 | if (uErr & X86_TRAP_PF_ID)
|
---|
64 | {
|
---|
65 | uErr &= ~X86_TRAP_PF_ID;
|
---|
66 | TRPMSetErrorCode(pVM, uErr);
|
---|
67 | }
|
---|
68 | # endif
|
---|
69 |
|
---|
70 | /*
|
---|
71 | * Get PDs.
|
---|
72 | */
|
---|
73 | int rc;
|
---|
74 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
75 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
76 | const unsigned iPDSrc = (RTGCUINTPTR)pvFault >> GST_PD_SHIFT;
|
---|
77 | PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
|
---|
78 | # else /* PAE */
|
---|
79 | unsigned iPDSrc;
|
---|
80 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, (RTGCUINTPTR)pvFault, &iPDSrc);
|
---|
81 | # endif
|
---|
82 | # else
|
---|
83 | PGSTPD pPDSrc = NULL;
|
---|
84 | const unsigned iPDSrc = 0;
|
---|
85 | # endif
|
---|
86 |
|
---|
87 | const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
|
---|
88 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
89 | PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
|
---|
90 | # else /* PAE */
|
---|
91 | PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries. */
|
---|
92 | # endif
|
---|
93 |
|
---|
94 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
95 | # ifdef PGM_SYNC_DIRTY_BIT
|
---|
96 | /*
|
---|
97 | * If we successfully correct the write protection fault due to dirty bit
|
---|
98 | * tracking, or this page fault is a genuine one, then return immediately.
|
---|
99 | */
|
---|
100 | STAM_PROFILE_START(&pVM->pgm.s.StatCheckPageFault, e);
|
---|
101 | rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], (RTGCUINTPTR)pvFault);
|
---|
102 | STAM_PROFILE_STOP(&pVM->pgm.s.StatCheckPageFault, e);
|
---|
103 | if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
|
---|
104 | || rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
105 | {
|
---|
106 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution)
|
---|
107 | = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatTrap0eDirtyAndAccessedBits : &pVM->pgm.s.StatTrap0eGuestTrap; });
|
---|
108 | LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
|
---|
109 | return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
|
---|
110 | }
|
---|
111 | # endif
|
---|
112 |
|
---|
113 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0ePD[iPDSrc]);
|
---|
114 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
115 |
|
---|
116 | /*
|
---|
117 | * A common case is the not-present error caused by lazy page table syncing.
|
---|
118 | *
|
---|
119 | * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
|
---|
120 | * so we can safely assume that the shadow PT is present when calling SyncPage later.
|
---|
121 | *
|
---|
122 | * On failure, we ASSUME that SyncPT is out of memory or detected some kind
|
---|
123 | * of mapping conflict and defer to SyncCR3 in R3.
|
---|
124 | * (Again, we do NOT support access handlers for non-present guest pages.)
|
---|
125 | *
|
---|
126 | */
|
---|
127 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
128 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
129 | # else
|
---|
130 | GSTPDE PdeSrc;
|
---|
131 | PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
|
---|
132 | PdeSrc.n.u1Present = 1;
|
---|
133 | PdeSrc.n.u1Write = 1;
|
---|
134 | PdeSrc.n.u1Accessed = 1;
|
---|
135 | PdeSrc.n.u1User = 1;
|
---|
136 | # endif
|
---|
137 | if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
|
---|
138 | && !pPDDst->a[iPDDst].n.u1Present
|
---|
139 | && PdeSrc.n.u1Present
|
---|
140 | )
|
---|
141 |
|
---|
142 | {
|
---|
143 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eSyncPT; });
|
---|
144 | STAM_PROFILE_START(&pVM->pgm.s.StatLazySyncPT, f);
|
---|
145 | LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
|
---|
146 | rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, (RTGCUINTPTR)pvFault);
|
---|
147 | if (VBOX_SUCCESS(rc))
|
---|
148 | {
|
---|
149 | STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
|
---|
150 | return rc;
|
---|
151 | }
|
---|
152 | Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
|
---|
153 | VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
|
---|
154 | STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
|
---|
155 | return VINF_PGM_SYNC_CR3;
|
---|
156 | }
|
---|
157 |
|
---|
158 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
159 | /*
|
---|
160 | * Check if this address is within any of our mappings.
|
---|
161 | *
|
---|
162 | * This is *very* fast and it's gonna save us a bit of effort below and prevent
|
---|
163 | * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
|
---|
164 | * (BTW, it's impossible to have physical access handlers in a mapping.)
|
---|
165 | */
|
---|
166 | if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
|
---|
167 | {
|
---|
168 | STAM_PROFILE_START(&pVM->pgm.s.StatMapping, a);
|
---|
169 | PPGMMAPPING pMapping = CTXALLSUFF(pVM->pgm.s.pMappings);
|
---|
170 | for ( ; pMapping; pMapping = CTXALLSUFF(pMapping->pNext))
|
---|
171 | {
|
---|
172 | if ((RTGCUINTPTR)pvFault < (RTGCUINTPTR)pMapping->GCPtr)
|
---|
173 | break;
|
---|
174 | if ((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pMapping->GCPtr < pMapping->cb)
|
---|
175 | {
|
---|
176 | /*
|
---|
177 | * The first thing we check is if we've got an undetected conflict.
|
---|
178 | */
|
---|
179 | if (!pVM->pgm.s.fMappingsFixed)
|
---|
180 | {
|
---|
181 | unsigned iPT = pMapping->cPTs;
|
---|
182 | while (iPT-- > 0)
|
---|
183 | if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
|
---|
184 | {
|
---|
185 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eConflicts);
|
---|
186 | Log(("Trap0e: Detected Conflict %VGv-%VGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
|
---|
187 | VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
|
---|
188 | STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
|
---|
189 | return VINF_PGM_SYNC_CR3;
|
---|
190 | }
|
---|
191 | }
|
---|
192 |
|
---|
193 | /*
|
---|
194 | * Check if the fault address is in a virtual page access handler range.
|
---|
195 | */
|
---|
196 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->HyperVirtHandlers, pvFault);
|
---|
197 | if ( pCur
|
---|
198 | && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
|
---|
199 | && uErr & X86_TRAP_PF_RW)
|
---|
200 | {
|
---|
201 | # ifdef IN_GC
|
---|
202 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
203 | rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
|
---|
204 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
205 | # else
|
---|
206 | AssertFailed();
|
---|
207 | rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
|
---|
208 | # endif
|
---|
209 | STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eMapHandler);
|
---|
210 | STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
|
---|
211 | return rc;
|
---|
212 | }
|
---|
213 |
|
---|
214 | /*
|
---|
215 | * Pretend we're not here and let the guest handle the trap.
|
---|
216 | */
|
---|
217 | TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
|
---|
218 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eMap);
|
---|
219 | LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
|
---|
220 | STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
|
---|
221 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
222 | }
|
---|
223 | }
|
---|
224 | STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
|
---|
225 | } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
|
---|
226 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
227 |
|
---|
228 | /*
|
---|
229 | * Check if this fault address is flagged for special treatment,
|
---|
230 | * which means we'll have to figure out the physical address and
|
---|
231 | * check flags associated with it.
|
---|
232 | *
|
---|
233 | * ASSUME that we can limit any special access handling to pages
|
---|
234 | * in page tables which the guest believes to be present.
|
---|
235 | */
|
---|
236 | if (PdeSrc.n.u1Present)
|
---|
237 | {
|
---|
238 | RTGCPHYS GCPhys = ~0U;
|
---|
239 |
|
---|
240 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
241 | uint32_t cr4 = CPUMGetGuestCR4(pVM);
|
---|
242 | if ( PdeSrc.b.u1Size
|
---|
243 | && (cr4 & X86_CR4_PSE))
|
---|
244 | GCPhys = (PdeSrc.u & GST_PDE4M_PG_MASK)
|
---|
245 | | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
|
---|
246 | else
|
---|
247 | {
|
---|
248 | PVBOXPT pPTSrc;
|
---|
249 | # ifdef IN_GC
|
---|
250 | rc = PGMGCDynMapGCPage(pVM, PdeSrc.u & GST_PDE_PG_MASK, (void **)&pPTSrc);
|
---|
251 | # else
|
---|
252 | pPTSrc = (PVBOXPT)MMPhysGCPhys2HCVirt(pVM, PdeSrc.u & GST_PDE_PG_MASK, sizeof(*pPTSrc));
|
---|
253 | if (pPTSrc == 0)
|
---|
254 | rc = VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
|
---|
255 | # endif
|
---|
256 | if (VBOX_SUCCESS(rc))
|
---|
257 | {
|
---|
258 | unsigned iPTESrc = ((RTGCUINTPTR)pvFault >> PAGE_SHIFT) & GST_PT_MASK;
|
---|
259 | if (pPTSrc->a[iPTESrc].n.u1Present)
|
---|
260 | GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
|
---|
261 | }
|
---|
262 | }
|
---|
263 | # else
|
---|
264 | /* No paging so the fault address is the physical address */
|
---|
265 | GCPhys = (RTGCPHYS)((RTGCUINTPTR)pvFault & ~PAGE_OFFSET_MASK);
|
---|
266 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
267 |
|
---|
268 | /*
|
---|
269 | * If we have a GC address we'll check if it has any flags set.
|
---|
270 | */
|
---|
271 | if (GCPhys != ~0U)
|
---|
272 | {
|
---|
273 | STAM_PROFILE_START(&pVM->pgm.s.StatHandlers, b);
|
---|
274 |
|
---|
275 | PPGMPAGE pPage;
|
---|
276 | rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
|
---|
277 | if (VBOX_SUCCESS(rc))
|
---|
278 | {
|
---|
279 | if (PGM_PAGE_HAVE_ANY_HANDLERS(pPage))
|
---|
280 | {
|
---|
281 | if (PGM_PAGE_HAVE_ANY_PHYSICAL_HANDLERS(pPage))
|
---|
282 | {
|
---|
283 | /*
|
---|
284 | * Physical page access handler.
|
---|
285 | */
|
---|
286 | const RTGCPHYS GCPhysFault = GCPhys | ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK);
|
---|
287 | PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->PhysHandlers, GCPhysFault);
|
---|
288 | if (pCur)
|
---|
289 | {
|
---|
290 | # ifdef PGM_SYNC_N_PAGES
|
---|
291 | /*
|
---|
292 | * If the region is write protected and we got a page not present fault, then sync
|
---|
293 | * the pages. If the fault was caused by a read, then restart the instruction.
|
---|
294 | * In case of write access continue to the GC write handler.
|
---|
295 | *
|
---|
296 | * ASSUMES that there is only one handler per page or that they have similar write properties.
|
---|
297 | */
|
---|
298 | if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|
---|
299 | && !(uErr & X86_TRAP_PF_P))
|
---|
300 | {
|
---|
301 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
302 | if ( VBOX_FAILURE(rc)
|
---|
303 | || !(uErr & X86_TRAP_PF_RW)
|
---|
304 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
|
---|
305 | {
|
---|
306 | AssertRC(rc);
|
---|
307 | STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
|
---|
308 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
309 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
|
---|
310 | return rc;
|
---|
311 | }
|
---|
312 | }
|
---|
313 | # endif
|
---|
314 |
|
---|
315 | AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|
---|
316 | || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
|
---|
317 | ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
|
---|
318 |
|
---|
319 | #if defined(IN_GC) || defined(IN_RING0)
|
---|
320 | if (CTXALLSUFF(pCur->pfnHandler))
|
---|
321 | {
|
---|
322 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
323 | rc = pCur->CTXALLSUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, CTXALLSUFF(pCur->pvUser));
|
---|
324 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
325 | }
|
---|
326 | else
|
---|
327 | #endif
|
---|
328 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
329 | STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersPhysical);
|
---|
330 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
331 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndPhys; });
|
---|
332 | return rc;
|
---|
333 | }
|
---|
334 | }
|
---|
335 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
336 | else
|
---|
337 | {
|
---|
338 | # ifdef PGM_SYNC_N_PAGES
|
---|
339 | /*
|
---|
340 | * If the region is write protected and we got a page not present fault, then sync
|
---|
341 | * the pages. If the fault was caused by a read, then restart the instruction.
|
---|
342 | * In case of write access continue to the GC write handler.
|
---|
343 | */
|
---|
344 | if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
|
---|
345 | && !(uErr & X86_TRAP_PF_P))
|
---|
346 | {
|
---|
347 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
348 | if ( VBOX_FAILURE(rc)
|
---|
349 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
|
---|
350 | || !(uErr & X86_TRAP_PF_RW))
|
---|
351 | {
|
---|
352 | AssertRC(rc);
|
---|
353 | STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
|
---|
354 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
355 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndVirt; });
|
---|
356 | return rc;
|
---|
357 | }
|
---|
358 | }
|
---|
359 | # endif
|
---|
360 | /*
|
---|
361 | * Ok, it's an virtual page access handler.
|
---|
362 | *
|
---|
363 | * Since it's faster to search by address, we'll do that first
|
---|
364 | * and then retry by GCPhys if that fails.
|
---|
365 | */
|
---|
366 | /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
|
---|
367 | /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
|
---|
368 | * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
|
---|
369 | */
|
---|
370 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
|
---|
371 | if (pCur)
|
---|
372 | {
|
---|
373 | AssertMsg(!((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
|
---|
374 | || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
|
---|
375 | || !(uErr & X86_TRAP_PF_P)
|
---|
376 | || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
|
---|
377 | ("Unexpected trap for virtual handler: %VGv (phys=%VGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
|
---|
378 |
|
---|
379 | if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
|
---|
380 | && ( uErr & X86_TRAP_PF_RW
|
---|
381 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
382 | {
|
---|
383 | # ifdef IN_GC
|
---|
384 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
385 | rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
|
---|
386 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
387 | # else
|
---|
388 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
389 | # endif
|
---|
390 | STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtual);
|
---|
391 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
392 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
|
---|
393 | return rc;
|
---|
394 | }
|
---|
395 | /* Unhandled part of a monitored page */
|
---|
396 | }
|
---|
397 | else
|
---|
398 | {
|
---|
399 | /* Check by physical address. */
|
---|
400 | PPGMVIRTHANDLER pCur;
|
---|
401 | unsigned iPage;
|
---|
402 | rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK),
|
---|
403 | &pCur, &iPage);
|
---|
404 | Assert(VBOX_SUCCESS(rc) || !pCur);
|
---|
405 | if ( pCur
|
---|
406 | && ( uErr & X86_TRAP_PF_RW
|
---|
407 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
408 | {
|
---|
409 | Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
|
---|
410 | # ifdef IN_GC
|
---|
411 | RTGCUINTPTR off = (iPage << PAGE_SHIFT) + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK) - ((RTGCUINTPTR)pCur->GCPtr & PAGE_OFFSET_MASK);
|
---|
412 | Assert(off < pCur->cb);
|
---|
413 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
414 | rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, off);
|
---|
415 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
416 | # else
|
---|
417 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
418 | # endif
|
---|
419 | STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualByPhys);
|
---|
420 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
421 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
|
---|
422 | return rc;
|
---|
423 | }
|
---|
424 | }
|
---|
425 | }
|
---|
426 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
427 |
|
---|
428 | /*
|
---|
429 | * There is a handled area of the page, but this fault doesn't belong to it.
|
---|
430 | * We must emulate the instruction.
|
---|
431 | *
|
---|
432 | * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
|
---|
433 | * we first check if this was a page-not-present fault for a page with only
|
---|
434 | * write access handlers. Restart the instruction if it wasn't a write access.
|
---|
435 | */
|
---|
436 | STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersUnhandled);
|
---|
437 |
|
---|
438 | if ( !PGM_PAGE_HAVE_ACTIVE_ALL_HANDLERS(pPage)
|
---|
439 | && !(uErr & X86_TRAP_PF_P))
|
---|
440 | {
|
---|
441 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
442 | if ( VBOX_FAILURE(rc)
|
---|
443 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
|
---|
444 | || !(uErr & X86_TRAP_PF_RW))
|
---|
445 | {
|
---|
446 | AssertRC(rc);
|
---|
447 | STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
|
---|
448 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
449 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
|
---|
450 | return rc;
|
---|
451 | }
|
---|
452 | }
|
---|
453 |
|
---|
454 | /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
|
---|
455 | * It's writing to an unhandled part of the LDT page several million times.
|
---|
456 | */
|
---|
457 | rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
|
---|
458 | LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
|
---|
459 | rc, pPage->HCPhys,
|
---|
460 | PGM_PAGE_HAVE_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
|
---|
461 | PGM_PAGE_HAVE_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
|
---|
462 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
463 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndUnhandled; });
|
---|
464 | return rc;
|
---|
465 | } /* if any kind of handler */
|
---|
466 |
|
---|
467 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
468 | if (uErr & X86_TRAP_PF_P)
|
---|
469 | {
|
---|
470 | /*
|
---|
471 | * The page isn't marked, but it might still be monitored by a virtual page access handler.
|
---|
472 | * (ASSUMES no temporary disabling of virtual handlers.)
|
---|
473 | */
|
---|
474 | /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
|
---|
475 | * we should correct both the shadow page table and physical memory flags, and not only check for
|
---|
476 | * accesses within the handler region but for access to pages with virtual handlers. */
|
---|
477 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
|
---|
478 | if (pCur)
|
---|
479 | {
|
---|
480 | AssertMsg( !((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
|
---|
481 | || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
|
---|
482 | || !(uErr & X86_TRAP_PF_P)
|
---|
483 | || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
|
---|
484 | ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
|
---|
485 |
|
---|
486 | if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
|
---|
487 | && ( uErr & X86_TRAP_PF_RW
|
---|
488 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
489 | {
|
---|
490 | # ifdef IN_GC
|
---|
491 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
492 | rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
|
---|
493 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
494 | # else
|
---|
495 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
496 | # endif
|
---|
497 | STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualUnmarked);
|
---|
498 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
499 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
|
---|
500 | return rc;
|
---|
501 | }
|
---|
502 | }
|
---|
503 | }
|
---|
504 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
505 | }
|
---|
506 | STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
|
---|
507 |
|
---|
508 | # ifdef PGM_OUT_OF_SYNC_IN_GC
|
---|
509 | /*
|
---|
510 | * We are here only if page is present in Guest page tables and trap is not handled
|
---|
511 | * by our handlers.
|
---|
512 | * Check it for page out-of-sync situation.
|
---|
513 | */
|
---|
514 | STAM_PROFILE_START(&pVM->pgm.s.StatOutOfSync, c);
|
---|
515 |
|
---|
516 | if (!(uErr & X86_TRAP_PF_P))
|
---|
517 | {
|
---|
518 | /*
|
---|
519 | * Page is not present in our page tables.
|
---|
520 | * Try to sync it!
|
---|
521 | * BTW, fPageShw is invalid in this branch!
|
---|
522 | */
|
---|
523 | if (uErr & X86_TRAP_PF_US)
|
---|
524 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
|
---|
525 | else /* supervisor */
|
---|
526 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
|
---|
527 |
|
---|
528 | # if defined(LOG_ENABLED) && !defined(IN_RING0)
|
---|
529 | RTGCPHYS GCPhys;
|
---|
530 | uint64_t fPageGst;
|
---|
531 | PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
|
---|
532 | Log(("Page out of sync: %p eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%VGp scan=%d\n",
|
---|
533 | pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTGCPTR)pRegFrame->eip)));
|
---|
534 | # endif /* LOG_ENABLED */
|
---|
535 |
|
---|
536 | # if PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0)
|
---|
537 | if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
|
---|
538 | {
|
---|
539 | uint64_t fPageGst;
|
---|
540 | rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
|
---|
541 | if ( VBOX_SUCCESS(rc)
|
---|
542 | && !(fPageGst & X86_PTE_US))
|
---|
543 | {
|
---|
544 | /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
|
---|
545 | if ( pvFault == (RTGCPTR)pRegFrame->eip
|
---|
546 | || (RTGCUINTPTR)pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
|
---|
547 | # ifdef CSAM_DETECT_NEW_CODE_PAGES
|
---|
548 | || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
|
---|
549 | && CSAMDoesPageNeedScanning(pVM, (RTGCPTR)pRegFrame->eip)) /* any new code we encounter here */
|
---|
550 | # endif /* CSAM_DETECT_NEW_CODE_PAGES */
|
---|
551 | )
|
---|
552 | {
|
---|
553 | LogFlow(("CSAMExecFault %VGv\n", pRegFrame->eip));
|
---|
554 | rc = CSAMExecFault(pVM, (RTGCPTR)pRegFrame->eip);
|
---|
555 | if (rc != VINF_SUCCESS)
|
---|
556 | {
|
---|
557 | /*
|
---|
558 | * CSAM needs to perform a job in ring 3.
|
---|
559 | *
|
---|
560 | * Sync the page before going to the host context; otherwise we'll end up in a loop if
|
---|
561 | * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
|
---|
562 | */
|
---|
563 | LogFlow(("CSAM ring 3 job\n"));
|
---|
564 | int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
|
---|
565 | AssertRC(rc2);
|
---|
566 |
|
---|
567 | STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
|
---|
568 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eCSAM; });
|
---|
569 | return rc;
|
---|
570 | }
|
---|
571 | }
|
---|
572 | # ifdef CSAM_DETECT_NEW_CODE_PAGES
|
---|
573 | else
|
---|
574 | if ( uErr == X86_TRAP_PF_RW
|
---|
575 | && pRegFrame->ecx >= 0x100 /* early check for movswd count */
|
---|
576 | && pRegFrame->ecx < 0x10000
|
---|
577 | )
|
---|
578 | {
|
---|
579 | /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
|
---|
580 | * to detect loading of new code pages.
|
---|
581 | */
|
---|
582 |
|
---|
583 | /*
|
---|
584 | * Decode the instruction.
|
---|
585 | */
|
---|
586 | RTGCPTR PC;
|
---|
587 | rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
|
---|
588 | if (rc == VINF_SUCCESS)
|
---|
589 | {
|
---|
590 | DISCPUSTATE Cpu;
|
---|
591 | uint32_t cbOp;
|
---|
592 | rc = EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)PC, pRegFrame, &Cpu, &cbOp);
|
---|
593 |
|
---|
594 | /* For now we'll restrict this to rep movsw/d instructions */
|
---|
595 | if ( rc == VINF_SUCCESS
|
---|
596 | && Cpu.pCurInstr->opcode == OP_MOVSWD
|
---|
597 | && (Cpu.prefix & PREFIX_REP))
|
---|
598 | {
|
---|
599 | CSAMMarkPossibleCodePage(pVM, pvFault);
|
---|
600 | }
|
---|
601 | }
|
---|
602 | }
|
---|
603 | # endif /* CSAM_DETECT_NEW_CODE_PAGES */
|
---|
604 |
|
---|
605 | /*
|
---|
606 | * Mark this page as safe.
|
---|
607 | */
|
---|
608 | /** @todo not correct for pages that contain both code and data!! */
|
---|
609 | Log2(("CSAMMarkPage %p; scanned=%d\n", pvFault, true));
|
---|
610 | CSAMMarkPage(pVM, pvFault, true);
|
---|
611 | }
|
---|
612 | }
|
---|
613 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
614 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
615 | if (VBOX_SUCCESS(rc))
|
---|
616 | {
|
---|
617 | /* The page was successfully synced, return to the guest. */
|
---|
618 | STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
|
---|
619 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSync; });
|
---|
620 | return VINF_SUCCESS;
|
---|
621 | }
|
---|
622 | }
|
---|
623 | else
|
---|
624 | {
|
---|
625 | /*
|
---|
626 | * A side effect of not flushing global PDEs are out of sync pages due
|
---|
627 | * to physical monitored regions, that are no longer valid.
|
---|
628 | * Assume for now it only applies to the read/write flag
|
---|
629 | */
|
---|
630 | if (VBOX_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
|
---|
631 | {
|
---|
632 | if (uErr & X86_TRAP_PF_US)
|
---|
633 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
|
---|
634 | else /* supervisor */
|
---|
635 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
|
---|
636 |
|
---|
637 |
|
---|
638 | /*
|
---|
639 | * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
|
---|
640 | */
|
---|
641 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
|
---|
642 | if (VBOX_SUCCESS(rc))
|
---|
643 | {
|
---|
644 | /*
|
---|
645 | * Page was successfully synced, return to guest.
|
---|
646 | */
|
---|
647 | # ifdef VBOX_STRICT
|
---|
648 | RTGCPHYS GCPhys;
|
---|
649 | uint64_t fPageGst;
|
---|
650 | rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
|
---|
651 | Assert(VBOX_SUCCESS(rc) && fPageGst & X86_PTE_RW);
|
---|
652 | LogFlow(("Obsolete physical monitor page out of sync %VGv - phys %VGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
|
---|
653 |
|
---|
654 | uint64_t fPageShw;
|
---|
655 | rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
|
---|
656 | Assert(VBOX_SUCCESS(rc) && fPageShw & X86_PTE_RW);
|
---|
657 | # endif /* VBOX_STRICT */
|
---|
658 | STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
|
---|
659 | STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncObsHnd; });
|
---|
660 | return VINF_SUCCESS;
|
---|
661 | }
|
---|
662 | }
|
---|
663 |
|
---|
664 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
665 | # ifdef VBOX_STRICT
|
---|
666 | /*
|
---|
667 | * Check for VMM page flags vs. Guest page flags consistency.
|
---|
668 | * Currently only for debug purposes.
|
---|
669 | */
|
---|
670 | if (VBOX_SUCCESS(rc))
|
---|
671 | {
|
---|
672 | /* Get guest page flags. */
|
---|
673 | uint64_t fPageGst;
|
---|
674 | rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
|
---|
675 | if (VBOX_SUCCESS(rc))
|
---|
676 | {
|
---|
677 | uint64_t fPageShw;
|
---|
678 | rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
|
---|
679 |
|
---|
680 | /*
|
---|
681 | * Compare page flags.
|
---|
682 | * Note: we have AVL, A, D bits desynched.
|
---|
683 | */
|
---|
684 | AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
|
---|
685 | ("Page flags mismatch! pvFault=%p GCPhys=%VGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
|
---|
686 | }
|
---|
687 | else
|
---|
688 | AssertMsgFailed(("PGMGstGetPage rc=%Vrc\n", rc));
|
---|
689 | }
|
---|
690 | else
|
---|
691 | AssertMsgFailed(("PGMGCGetPage rc=%Vrc\n", rc));
|
---|
692 | # endif /* VBOX_STRICT */
|
---|
693 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
694 | }
|
---|
695 | STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
|
---|
696 | # endif /* PGM_OUT_OF_SYNC_IN_GC */
|
---|
697 | }
|
---|
698 | else
|
---|
699 | {
|
---|
700 | /*
|
---|
701 | * Page not present in Guest OS or invalid page table address.
|
---|
702 | * This is potential virtual page access handler food.
|
---|
703 | *
|
---|
704 | * For the present we'll say that our access handlers don't
|
---|
705 | * work for this case - we've already discarded the page table
|
---|
706 | * not present case which is identical to this.
|
---|
707 | *
|
---|
708 | * When we perchance find we need this, we will probably have AVL
|
---|
709 | * trees (offset based) to operate on and we can measure their speed
|
---|
710 | * agains mapping a page table and probably rearrange this handling
|
---|
711 | * a bit. (Like, searching virtual ranges before checking the
|
---|
712 | * physical address.)
|
---|
713 | */
|
---|
714 | }
|
---|
715 | }
|
---|
716 |
|
---|
717 |
|
---|
718 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
719 | /*
|
---|
720 | * Conclusion, this is a guest trap.
|
---|
721 | */
|
---|
722 | LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
|
---|
723 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUnhandled);
|
---|
724 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
725 | # else
|
---|
726 | /* present, but not a monitored page; perhaps the guest is probing physical memory */
|
---|
727 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
728 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
729 |
|
---|
730 |
|
---|
731 | #else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
732 |
|
---|
733 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
734 | return VERR_INTERNAL_ERROR;
|
---|
735 | #endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
736 | }
|
---|
737 |
|
---|
738 |
|
---|
739 | /**
|
---|
740 | * Emulation of the invlpg instruction.
|
---|
741 | *
|
---|
742 | *
|
---|
743 | * @returns VBox status code.
|
---|
744 | *
|
---|
745 | * @param pVM VM handle.
|
---|
746 | * @param GCPtrPage Page to invalidate.
|
---|
747 | *
|
---|
748 | * @remark ASSUMES that the guest is updating before invalidating. This order
|
---|
749 | * isn't required by the CPU, so this is speculative and could cause
|
---|
750 | * trouble.
|
---|
751 | *
|
---|
752 | * @todo Flush page or page directory only if necessary!
|
---|
753 | * @todo Add a #define for simply invalidating the page.
|
---|
754 | */
|
---|
755 | PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage)
|
---|
756 | {
|
---|
757 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
758 |
|
---|
759 | LogFlow(("InvalidatePage %x\n", GCPtrPage));
|
---|
760 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
761 | /*
|
---|
762 | * Get the shadow PD entry and skip out if this PD isn't present.
|
---|
763 | * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
|
---|
764 | */
|
---|
765 | const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
|
---|
766 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
767 | PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
|
---|
768 | # else
|
---|
769 | PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs[0])->a[iPDDst];
|
---|
770 | # endif
|
---|
771 | const SHWPDE PdeDst = *pPdeDst;
|
---|
772 | if (!PdeDst.n.u1Present)
|
---|
773 | {
|
---|
774 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
|
---|
775 | return VINF_SUCCESS;
|
---|
776 | }
|
---|
777 |
|
---|
778 | /*
|
---|
779 | * Get the guest PD entry and calc big page.
|
---|
780 | */
|
---|
781 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
782 | PX86PD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
|
---|
783 | const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
|
---|
784 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
785 | # else /* PAE */
|
---|
786 | unsigned iPDSrc;
|
---|
787 | PX86PD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
|
---|
788 |
|
---|
789 | GSTPDE PdeSrc;;
|
---|
790 | PdeSrc.u = pgmGstGetPaePDE(&pVM->pgm.s, GCPtrPage);
|
---|
791 | # endif
|
---|
792 |
|
---|
793 | const uint32_t cr4 = CPUMGetGuestCR4(pVM);
|
---|
794 | const bool fIsBigPage = PdeSrc.b.u1Size && (cr4 & X86_CR4_PSE);
|
---|
795 |
|
---|
796 | # ifdef IN_RING3
|
---|
797 | /*
|
---|
798 | * If a CR3 Sync is pending we may ignore the invalidate page operation
|
---|
799 | * depending on the kind of sync and if it's a global page or not.
|
---|
800 | * This doesn't make sense in GC/R0 so we'll skip it entirely there.
|
---|
801 | */
|
---|
802 | # ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
|
---|
803 | if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
|
---|
804 | || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
|
---|
805 | && fIsBigPage
|
---|
806 | && PdeSrc.b.u1Global
|
---|
807 | && (cr4 & X86_CR4_PGE)
|
---|
808 | )
|
---|
809 | )
|
---|
810 | # else
|
---|
811 | if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
|
---|
812 | # endif
|
---|
813 | {
|
---|
814 | STAM_COUNTER_INC(&pVM->pgm.s.StatHCInvalidatePageSkipped);
|
---|
815 | return VINF_SUCCESS;
|
---|
816 | }
|
---|
817 | # endif /* IN_RING3 */
|
---|
818 |
|
---|
819 |
|
---|
820 | /*
|
---|
821 | * Deal with the Guest PDE.
|
---|
822 | */
|
---|
823 | int rc = VINF_SUCCESS;
|
---|
824 | if (PdeSrc.n.u1Present)
|
---|
825 | {
|
---|
826 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
827 | {
|
---|
828 | /*
|
---|
829 | * Conflict - Let SyncPT deal with it to avoid duplicate code.
|
---|
830 | */
|
---|
831 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
832 | rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
|
---|
833 | }
|
---|
834 | else if ( PdeSrc.n.u1User != PdeDst.n.u1User
|
---|
835 | || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
|
---|
836 | {
|
---|
837 | /*
|
---|
838 | * Mark not present so we can resync the PDE when it's used.
|
---|
839 | */
|
---|
840 | LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
|
---|
841 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
842 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
|
---|
843 | pPdeDst->u = 0;
|
---|
844 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
|
---|
845 | PGM_INVL_GUEST_TLBS();
|
---|
846 | }
|
---|
847 | # ifdef PGM_SYNC_ACCESSED_BIT
|
---|
848 | else if (!PdeSrc.n.u1Accessed)
|
---|
849 | {
|
---|
850 | /*
|
---|
851 | * Mark not present so we can set the accessed bit.
|
---|
852 | */
|
---|
853 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
|
---|
854 | pPdeDst->u = 0;
|
---|
855 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
|
---|
856 | PGM_INVL_GUEST_TLBS();
|
---|
857 | }
|
---|
858 | # endif
|
---|
859 | else if (!fIsBigPage)
|
---|
860 | {
|
---|
861 | /*
|
---|
862 | * 4KB - page.
|
---|
863 | */
|
---|
864 | PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
865 | RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
866 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT
|
---|
867 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
|
---|
868 | # endif
|
---|
869 | if (pShwPage->GCPhys == GCPhys)
|
---|
870 | {
|
---|
871 | #if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
|
---|
872 | const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
873 | PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
874 | if (pPT->a[iPTEDst].n.u1Present)
|
---|
875 | {
|
---|
876 | # ifdef PGMPOOL_WITH_USER_TRACKING
|
---|
877 | /* This is very unlikely with caching/monitoring enabled. */
|
---|
878 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
|
---|
879 | # endif
|
---|
880 | pPT->a[iPTEDst].u = 0;
|
---|
881 | }
|
---|
882 | #else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
|
---|
883 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
|
---|
884 | if (VBOX_SUCCESS(rc))
|
---|
885 | rc = VINF_SUCCESS;
|
---|
886 | #endif
|
---|
887 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4KBPages));
|
---|
888 | PGM_INVL_PG(GCPtrPage);
|
---|
889 | }
|
---|
890 | else
|
---|
891 | {
|
---|
892 | /*
|
---|
893 | * The page table address changed.
|
---|
894 | */
|
---|
895 | LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%VGp iPDDst=%#x\n",
|
---|
896 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
|
---|
897 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
|
---|
898 | pPdeDst->u = 0;
|
---|
899 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
|
---|
900 | PGM_INVL_GUEST_TLBS();
|
---|
901 | }
|
---|
902 | }
|
---|
903 | else
|
---|
904 | {
|
---|
905 | /*
|
---|
906 | * 4MB - page.
|
---|
907 | */
|
---|
908 | /* Before freeing the page, check if anything really changed. */
|
---|
909 | PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
910 | RTGCPHYS GCPhys = PdeSrc.u & GST_PDE4M_PG_MASK;
|
---|
911 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT
|
---|
912 | GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
|
---|
913 | # endif
|
---|
914 | if ( pShwPage->GCPhys == GCPhys
|
---|
915 | && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
|
---|
916 | {
|
---|
917 | /* ASSUMES a the given bits are identical for 4M and normal PDEs */
|
---|
918 | /** @todo PAT */
|
---|
919 | # ifdef PGM_SYNC_DIRTY_BIT
|
---|
920 | if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
|
---|
921 | == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
|
---|
922 | && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
|
---|
923 | || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
|
---|
924 | # else
|
---|
925 | if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
|
---|
926 | == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD)))
|
---|
927 | # endif
|
---|
928 | {
|
---|
929 | LogFlow(("Skipping flush for big page containing %VGv (PD=%X)-> nothing has changed!\n", GCPtrPage, iPDSrc));
|
---|
930 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPagesSkip));
|
---|
931 | return VINF_SUCCESS;
|
---|
932 | }
|
---|
933 | }
|
---|
934 |
|
---|
935 | /*
|
---|
936 | * Ok, the page table is present and it's been changed in the guest.
|
---|
937 | * If we're in host context, we'll just mark it as not present taking the lazy approach.
|
---|
938 | * We could do this for some flushes in GC too, but we need an algorithm for
|
---|
939 | * deciding which 4MB pages containing code likely to be executed very soon.
|
---|
940 | */
|
---|
941 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
|
---|
942 | pPdeDst->u = 0;
|
---|
943 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPages));
|
---|
944 | DUMP_PDE_BIG("PGMInvalidatePage", iPDSrc, PdeSrc);
|
---|
945 | PGM_INVL_BIG_PG(GCPtrPage);
|
---|
946 | }
|
---|
947 | }
|
---|
948 | else
|
---|
949 | {
|
---|
950 | /*
|
---|
951 | * Page directory is not present, mark shadow PDE not present.
|
---|
952 | */
|
---|
953 | if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
|
---|
954 | {
|
---|
955 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
|
---|
956 | pPdeDst->u = 0;
|
---|
957 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
|
---|
958 | PGM_INVL_PG(GCPtrPage);
|
---|
959 | }
|
---|
960 | else
|
---|
961 | {
|
---|
962 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
963 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDMappings));
|
---|
964 | }
|
---|
965 | }
|
---|
966 |
|
---|
967 | return rc;
|
---|
968 |
|
---|
969 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
970 | # error "Guest 32-bit mode and shadow AMD64 mode doesn't add up!"
|
---|
971 | # endif
|
---|
972 | return VINF_SUCCESS;
|
---|
973 |
|
---|
974 | #elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
975 | # if PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
976 | //# error not implemented
|
---|
977 | return VERR_INTERNAL_ERROR;
|
---|
978 |
|
---|
979 | # else /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
980 | # error "Guest PAE mode, but not the shadow mode ; 32bit - maybe, but amd64 no."
|
---|
981 | # endif /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
982 |
|
---|
983 | #elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
984 | # if PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
985 | //# error not implemented
|
---|
986 | return VERR_INTERNAL_ERROR;
|
---|
987 |
|
---|
988 | # else /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
989 | # error "Guest AMD64 mode, but not the shadow mode - that can't be right!"
|
---|
990 | # endif /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
991 |
|
---|
992 | #else /* guest real and protected mode */
|
---|
993 | /* There's no such thing when paging is disabled. */
|
---|
994 | return VINF_SUCCESS;
|
---|
995 | #endif
|
---|
996 | }
|
---|
997 |
|
---|
998 |
|
---|
999 | #ifdef PGMPOOL_WITH_USER_TRACKING
|
---|
1000 | /**
|
---|
1001 | * Update the tracking of shadowed pages.
|
---|
1002 | *
|
---|
1003 | * @param pVM The VM handle.
|
---|
1004 | * @param pShwPage The shadow page.
|
---|
1005 | * @param HCPhys The physical page we is being dereferenced.
|
---|
1006 | */
|
---|
1007 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
|
---|
1008 | {
|
---|
1009 | # ifdef PGMPOOL_WITH_GCPHYS_TRACKING
|
---|
1010 | STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
|
---|
1011 | LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%VHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
|
---|
1012 |
|
---|
1013 | /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
|
---|
1014 | * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
|
---|
1015 | * 2. write protect all shadowed pages. I.e. implement caching.
|
---|
1016 | */
|
---|
1017 | /*
|
---|
1018 | * Find the guest address.
|
---|
1019 | */
|
---|
1020 | for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
|
---|
1021 | pRam;
|
---|
1022 | pRam = CTXALLSUFF(pRam->pNext))
|
---|
1023 | {
|
---|
1024 | unsigned iPage = pRam->cb >> PAGE_SHIFT;
|
---|
1025 | while (iPage-- > 0)
|
---|
1026 | {
|
---|
1027 | if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
|
---|
1028 | {
|
---|
1029 | PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
|
---|
1030 | pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
|
---|
1031 | pShwPage->cPresent--;
|
---|
1032 | pPool->cPresent--;
|
---|
1033 | STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
|
---|
1034 | return;
|
---|
1035 | }
|
---|
1036 | }
|
---|
1037 | }
|
---|
1038 |
|
---|
1039 | for (;;)
|
---|
1040 | AssertReleaseMsgFailed(("HCPhys=%VHp wasn't found!\n", HCPhys));
|
---|
1041 | # else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
|
---|
1042 | pShwPage->cPresent--;
|
---|
1043 | pVM->pgm.s.CTXSUFF(pPool)->cPresent--;
|
---|
1044 | # endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 |
|
---|
1048 | /**
|
---|
1049 | * Update the tracking of shadowed pages.
|
---|
1050 | *
|
---|
1051 | * @param pVM The VM handle.
|
---|
1052 | * @param pShwPage The shadow page.
|
---|
1053 | * @param u16 The top 16-bit of the pPage->HCPhys.
|
---|
1054 | * @param pPage Pointer to the guest page. this will be modified.
|
---|
1055 | * @param iPTDst The index into the shadow table.
|
---|
1056 | */
|
---|
1057 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
|
---|
1058 | {
|
---|
1059 | # ifdef PGMPOOL_WITH_GCPHYS_TRACKING
|
---|
1060 | /*
|
---|
1061 | * We're making certain assumptions about the placement of cRef and idx.
|
---|
1062 | */
|
---|
1063 | Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
|
---|
1064 | Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
|
---|
1065 |
|
---|
1066 | /*
|
---|
1067 | * Just deal with the simple first time here.
|
---|
1068 | */
|
---|
1069 | if (!u16)
|
---|
1070 | {
|
---|
1071 | STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
|
---|
1072 | u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
|
---|
1073 | }
|
---|
1074 | else
|
---|
1075 | u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
|
---|
1076 |
|
---|
1077 | /* write back, trying to be clever... */
|
---|
1078 | Log2(("SyncPageWorkerTrackAddRef: u16=%#x pPage->HCPhys=%VHp->%VHp iPTDst=%#x\n",
|
---|
1079 | u16, pPage->HCPhys, (pPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
|
---|
1080 | *((uint16_t *)&pPage->HCPhys + 3) = u16; /** @todo PAGE FLAGS */
|
---|
1081 | # endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
|
---|
1082 |
|
---|
1083 | /* update statistics. */
|
---|
1084 | pVM->pgm.s.CTXSUFF(pPool)->cPresent++;
|
---|
1085 | pShwPage->cPresent++;
|
---|
1086 | if (pShwPage->iFirstPresent > iPTDst)
|
---|
1087 | pShwPage->iFirstPresent = iPTDst;
|
---|
1088 | }
|
---|
1089 | #endif /* PGMPOOL_WITH_USER_TRACKING */
|
---|
1090 |
|
---|
1091 |
|
---|
1092 | /**
|
---|
1093 | * Creates a 4K shadow page for a guest page.
|
---|
1094 | *
|
---|
1095 | * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
|
---|
1096 | * physical address. The PdeSrc argument only the flags are used. No page structured
|
---|
1097 | * will be mapped in this function.
|
---|
1098 | *
|
---|
1099 | * @param pVM VM handle.
|
---|
1100 | * @param pPteDst Destination page table entry.
|
---|
1101 | * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
|
---|
1102 | * Can safely assume that only the flags are being used.
|
---|
1103 | * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
|
---|
1104 | * @param pShwPage Pointer to the shadow page.
|
---|
1105 | * @param iPTDst The index into the shadow table.
|
---|
1106 | *
|
---|
1107 | * @remark Not used for 2/4MB pages!
|
---|
1108 | */
|
---|
1109 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, VBOXPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
|
---|
1110 | {
|
---|
1111 | if (PteSrc.n.u1Present)
|
---|
1112 | {
|
---|
1113 | /*
|
---|
1114 | * Find the ram range.
|
---|
1115 | */
|
---|
1116 | PPGMPAGE pPage;
|
---|
1117 | int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
|
---|
1118 | if (VBOX_SUCCESS(rc))
|
---|
1119 | {
|
---|
1120 | /** @todo investiage PWT, PCD and PAT. */
|
---|
1121 | /*
|
---|
1122 | * Make page table entry.
|
---|
1123 | */
|
---|
1124 | const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
|
---|
1125 | SHWPTE PteDst;
|
---|
1126 | if (PGM_PAGE_HAVE_ACTIVE_HANDLERS(pPage))
|
---|
1127 | {
|
---|
1128 | /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
|
---|
1129 | if (!PGM_PAGE_HAVE_ACTIVE_ALL_HANDLERS(pPage))
|
---|
1130 | PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
|
---|
1131 | | (HCPhys & X86_PTE_PAE_PG_MASK);
|
---|
1132 | else
|
---|
1133 | {
|
---|
1134 | LogFlow(("SyncPageWorker: monitored page (%VGp) -> mark not present\n", HCPhys));
|
---|
1135 | PteDst.u = 0;
|
---|
1136 | }
|
---|
1137 | /** @todo count these two kinds. */
|
---|
1138 | }
|
---|
1139 | else
|
---|
1140 | {
|
---|
1141 | #ifdef PGM_SYNC_DIRTY_BIT
|
---|
1142 | # ifdef PGM_SYNC_ACCESSED_BIT
|
---|
1143 | /*
|
---|
1144 | * If the page or page directory entry is not marked accessed,
|
---|
1145 | * we mark the page not present.
|
---|
1146 | */
|
---|
1147 | if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
|
---|
1148 | {
|
---|
1149 | LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
|
---|
1150 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,AccessedPage));
|
---|
1151 | PteDst.u = 0;
|
---|
1152 | }
|
---|
1153 | else
|
---|
1154 | # endif
|
---|
1155 | /*
|
---|
1156 | * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
|
---|
1157 | * when the page is modified.
|
---|
1158 | */
|
---|
1159 | if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
|
---|
1160 | {
|
---|
1161 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPage));
|
---|
1162 | PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
|
---|
1163 | | (HCPhys & X86_PTE_PAE_PG_MASK)
|
---|
1164 | | PGM_PTFLAGS_TRACK_DIRTY;
|
---|
1165 | }
|
---|
1166 | else
|
---|
1167 | {
|
---|
1168 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageSkipped));
|
---|
1169 | PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
|
---|
1170 | | (HCPhys & X86_PTE_PAE_PG_MASK);
|
---|
1171 | }
|
---|
1172 | #endif
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | #ifdef PGMPOOL_WITH_USER_TRACKING
|
---|
1176 | /*
|
---|
1177 | * Keep user track up to date.
|
---|
1178 | */
|
---|
1179 | if (PteDst.n.u1Present)
|
---|
1180 | {
|
---|
1181 | if (!pPteDst->n.u1Present)
|
---|
1182 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
|
---|
1183 | else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
|
---|
1184 | {
|
---|
1185 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
|
---|
1186 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
|
---|
1187 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
|
---|
1188 | }
|
---|
1189 | }
|
---|
1190 | else if (pPteDst->n.u1Present)
|
---|
1191 | {
|
---|
1192 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
|
---|
1193 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
|
---|
1194 | }
|
---|
1195 | #endif /* PGMPOOL_WITH_USER_TRACKING */
|
---|
1196 |
|
---|
1197 | /*
|
---|
1198 | * Update statistics and commit the entry.
|
---|
1199 | */
|
---|
1200 | if (!PteSrc.n.u1Global)
|
---|
1201 | pShwPage->fSeenNonGlobal = true;
|
---|
1202 | *pPteDst = PteDst;
|
---|
1203 | }
|
---|
1204 | /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
|
---|
1205 | /** @todo count these. */
|
---|
1206 | }
|
---|
1207 | else
|
---|
1208 | {
|
---|
1209 | /*
|
---|
1210 | * Page not-present.
|
---|
1211 | */
|
---|
1212 | LogFlow(("SyncPageWorker: page not present in Pte\n"));
|
---|
1213 | #ifdef PGMPOOL_WITH_USER_TRACKING
|
---|
1214 | /* Keep user track up to date. */
|
---|
1215 | if (pPteDst->n.u1Present)
|
---|
1216 | {
|
---|
1217 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
|
---|
1218 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
|
---|
1219 | }
|
---|
1220 | #endif /* PGMPOOL_WITH_USER_TRACKING */
|
---|
1221 | pPteDst->u = 0;
|
---|
1222 | /** @todo count these. */
|
---|
1223 | }
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 |
|
---|
1227 | /**
|
---|
1228 | * Syncs a guest OS page.
|
---|
1229 | *
|
---|
1230 | * There are no conflicts at this point, neither is there any need for
|
---|
1231 | * page table allocations.
|
---|
1232 | *
|
---|
1233 | * @returns VBox status code.
|
---|
1234 | * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
|
---|
1235 | * @param pVM VM handle.
|
---|
1236 | * @param PdeSrc Page directory entry of the guest.
|
---|
1237 | * @param GCPtrPage Guest context page address.
|
---|
1238 | * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
|
---|
1239 | * @param uErr Fault error (X86_TRAP_PF_*).
|
---|
1240 | */
|
---|
1241 | PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr)
|
---|
1242 | {
|
---|
1243 | LogFlow(("SyncPage: GCPtrPage=%VGv cPages=%d uErr=%#x\n", GCPtrPage, cPages, uErr));
|
---|
1244 |
|
---|
1245 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1246 |
|
---|
1247 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
|
---|
1248 | # error "Invalid shadow mode for 32-bit guest mode!"
|
---|
1249 | # endif
|
---|
1250 |
|
---|
1251 | /*
|
---|
1252 | * Assert preconditions.
|
---|
1253 | */
|
---|
1254 | # if GC_ARCH_BITS != 32
|
---|
1255 | Assert(GCPtrPage < _4G); //???
|
---|
1256 | # endif
|
---|
1257 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPagePD[(GCPtrPage >> X86_PD_SHIFT) & GST_PD_MASK]);
|
---|
1258 | Assert(PdeSrc.n.u1Present);
|
---|
1259 | Assert(cPages);
|
---|
1260 |
|
---|
1261 | /*
|
---|
1262 | * Get the shadow PDE, find the shadow page table in the pool.
|
---|
1263 | */
|
---|
1264 | const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
|
---|
1265 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1266 | X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
|
---|
1267 | # else /* PAE */
|
---|
1268 | X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
|
---|
1269 | # endif
|
---|
1270 | Assert(PdeDst.n.u1Present);
|
---|
1271 | PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
1272 |
|
---|
1273 | /*
|
---|
1274 | * Check that the page is present and that the shadow PDE isn't out of sync.
|
---|
1275 | */
|
---|
1276 | const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
|
---|
1277 | RTGCPHYS GCPhys;
|
---|
1278 | if (!fBigPage)
|
---|
1279 | {
|
---|
1280 | GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
1281 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT
|
---|
1282 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
|
---|
1283 | # endif
|
---|
1284 | }
|
---|
1285 | else
|
---|
1286 | {
|
---|
1287 | GCPhys = PdeSrc.u & GST_PDE4M_PG_MASK;
|
---|
1288 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT
|
---|
1289 | GCPhys |= GCPtrPage & X86_PAGE_2M_SIZE;
|
---|
1290 | # endif
|
---|
1291 | }
|
---|
1292 | if ( pShwPage->GCPhys == GCPhys
|
---|
1293 | && PdeSrc.n.u1Present
|
---|
1294 | && (PdeSrc.n.u1User == PdeDst.n.u1User)
|
---|
1295 | && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
|
---|
1296 | )
|
---|
1297 | {
|
---|
1298 | # ifdef PGM_SYNC_ACCESSED_BIT
|
---|
1299 | /*
|
---|
1300 | * Check that the PDE is marked accessed already.
|
---|
1301 | * Since we set the accessed bit *before* getting here on a #PF, this
|
---|
1302 | * check is only meant for dealing with non-#PF'ing paths.
|
---|
1303 | */
|
---|
1304 | if (PdeSrc.n.u1Accessed)
|
---|
1305 | # endif
|
---|
1306 | {
|
---|
1307 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
1308 | if (!fBigPage)
|
---|
1309 | {
|
---|
1310 | /*
|
---|
1311 | * 4KB Page - Map the guest page table.
|
---|
1312 | */
|
---|
1313 | PVBOXPT pPTSrc;
|
---|
1314 | int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
|
---|
1315 | if (VBOX_SUCCESS(rc))
|
---|
1316 | {
|
---|
1317 | # ifdef PGM_SYNC_N_PAGES
|
---|
1318 | Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
|
---|
1319 | if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
|
---|
1320 | {
|
---|
1321 | /*
|
---|
1322 | * This code path is currently only taken when the caller is PGMTrap0eHandler
|
---|
1323 | * for non-present pages!
|
---|
1324 | *
|
---|
1325 | * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
|
---|
1326 | * deal with locality.
|
---|
1327 | */
|
---|
1328 | unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1329 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1330 | const unsigned offPTSrc = 0;
|
---|
1331 | # else
|
---|
1332 | const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
|
---|
1333 | # endif
|
---|
1334 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
|
---|
1335 | if (iPTDst < PGM_SYNC_NR_PAGES / 2)
|
---|
1336 | iPTDst = 0;
|
---|
1337 | else
|
---|
1338 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
1339 | for (; iPTDst < iPTDstEnd; iPTDst++)
|
---|
1340 | {
|
---|
1341 | if (!pPTDst->a[iPTDst].n.u1Present)
|
---|
1342 | {
|
---|
1343 | VBOXPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
|
---|
1344 | RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
|
---|
1345 | NOREF(GCPtrCurPage);
|
---|
1346 | #ifndef IN_RING0
|
---|
1347 | /*
|
---|
1348 | * Assuming kernel code will be marked as supervisor - and not as user level
|
---|
1349 | * and executed using a conforming code selector - And marked as readonly.
|
---|
1350 | * Also assume that if we're monitoring a page, it's of no interest to CSAM.
|
---|
1351 | */
|
---|
1352 | PPGMPAGE pPage;
|
---|
1353 | if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
|
---|
1354 | || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
|
---|
1355 | || !CSAMDoesPageNeedScanning(pVM, (RTGCPTR)GCPtrCurPage)
|
---|
1356 | || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
|
---|
1357 | && PGM_PAGE_HAVE_ACTIVE_HANDLERS(pPage))
|
---|
1358 | )
|
---|
1359 | #endif /* else: CSAM not active */
|
---|
1360 | PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
1361 | Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
|
---|
1362 | GCPtrCurPage, PteSrc.n.u1Present,
|
---|
1363 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
1364 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
1365 | (uint64_t)PteSrc.u,
|
---|
1366 | (uint64_t)pPTDst->a[iPTDst].u,
|
---|
1367 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
1368 | }
|
---|
1369 | }
|
---|
1370 | }
|
---|
1371 | else
|
---|
1372 | # endif /* PGM_SYNC_N_PAGES */
|
---|
1373 | {
|
---|
1374 | const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
|
---|
1375 | VBOXPTE PteSrc = pPTSrc->a[iPTSrc];
|
---|
1376 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1377 | PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
1378 | Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
|
---|
1379 | GCPtrPage, PteSrc.n.u1Present,
|
---|
1380 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
1381 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
1382 | (uint64_t)PteSrc.u,
|
---|
1383 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
1384 | }
|
---|
1385 | }
|
---|
1386 | else /* MMIO or invalid page: emulated in #PF handler. */
|
---|
1387 | {
|
---|
1388 | LogFlow(("PGM_GCPHYS_2_PTR %VGp failed with %Vrc\n", GCPhys, rc));
|
---|
1389 | Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
|
---|
1390 | }
|
---|
1391 | }
|
---|
1392 | else
|
---|
1393 | {
|
---|
1394 | /*
|
---|
1395 | * 4/2MB page - lazy syncing shadow 4K pages.
|
---|
1396 | * (There are many causes of getting here, it's no longer only CSAM.)
|
---|
1397 | */
|
---|
1398 | /* Calculate the GC physical address of this 4KB shadow page. */
|
---|
1399 | RTGCPHYS GCPhys = (PdeSrc.u & X86_PDE4M_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
|
---|
1400 | /* Find ram range. */
|
---|
1401 | PPGMPAGE pPage;
|
---|
1402 | int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
|
---|
1403 | if (VBOX_SUCCESS(rc))
|
---|
1404 | {
|
---|
1405 | /*
|
---|
1406 | * Make shadow PTE entry.
|
---|
1407 | */
|
---|
1408 | const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
|
---|
1409 | SHWPTE PteDst;
|
---|
1410 | PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
|
---|
1411 | | (HCPhys & X86_PTE_PAE_PG_MASK);
|
---|
1412 | if (PGM_PAGE_HAVE_ACTIVE_HANDLERS(pPage))
|
---|
1413 | {
|
---|
1414 | if (!PGM_PAGE_HAVE_ACTIVE_ALL_HANDLERS(pPage))
|
---|
1415 | PteDst.n.u1Write = 0;
|
---|
1416 | else
|
---|
1417 | PteDst.u = 0;
|
---|
1418 | }
|
---|
1419 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1420 | # ifdef PGMPOOL_WITH_USER_TRACKING
|
---|
1421 | if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
|
---|
1422 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
|
---|
1423 | # endif
|
---|
1424 | pPTDst->a[iPTDst] = PteDst;
|
---|
1425 |
|
---|
1426 |
|
---|
1427 | # ifdef PGM_SYNC_DIRTY_BIT
|
---|
1428 | /*
|
---|
1429 | * If the page is not flagged as dirty and is writable, then make it read-only
|
---|
1430 | * at PD level, so we can set the dirty bit when the page is modified.
|
---|
1431 | *
|
---|
1432 | * ASSUMES that page access handlers are implemented on page table entry level.
|
---|
1433 | * Thus we will first catch the dirty access and set PDE.D and restart. If
|
---|
1434 | * there is an access handler, we'll trap again and let it work on the problem.
|
---|
1435 | */
|
---|
1436 | /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
|
---|
1437 | * As for invlpg, it simply frees the whole shadow PT.
|
---|
1438 | * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
|
---|
1439 | if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
|
---|
1440 | {
|
---|
1441 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
|
---|
1442 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
1443 | PdeDst.n.u1Write = 0;
|
---|
1444 | }
|
---|
1445 | else
|
---|
1446 | {
|
---|
1447 | PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
|
---|
1448 | PdeDst.n.u1Write = PdeSrc.n.u1Write;
|
---|
1449 | }
|
---|
1450 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1451 | pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
|
---|
1452 | # else /* PAE */
|
---|
1453 | pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst] = PdeDst;
|
---|
1454 | # endif
|
---|
1455 | # endif /* PGM_SYNC_DIRTY_BIT */
|
---|
1456 | Log2(("SyncPage: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%VGp%s\n",
|
---|
1457 | GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
|
---|
1458 | PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
1459 | }
|
---|
1460 | else
|
---|
1461 | LogFlow(("PGM_GCPHYS_2_PTR %VGp (big) failed with %Vrc\n", GCPhys, rc));
|
---|
1462 | }
|
---|
1463 | return VINF_SUCCESS;
|
---|
1464 | }
|
---|
1465 | # ifdef PGM_SYNC_ACCESSED_BIT
|
---|
1466 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDNAs));
|
---|
1467 | #endif
|
---|
1468 | }
|
---|
1469 | else
|
---|
1470 | {
|
---|
1471 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDOutOfSync));
|
---|
1472 | Log2(("SyncPage: Out-Of-Sync PDE at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
|
---|
1473 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
1474 | }
|
---|
1475 |
|
---|
1476 | /*
|
---|
1477 | * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
|
---|
1478 | * Yea, I'm lazy.
|
---|
1479 | */
|
---|
1480 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
|
---|
1481 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1482 | pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
|
---|
1483 | # else /* PAE */
|
---|
1484 | pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst].u = 0;
|
---|
1485 | # endif
|
---|
1486 | PGM_INVL_GUEST_TLBS();
|
---|
1487 | return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
|
---|
1488 |
|
---|
1489 | #elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
|
---|
1490 |
|
---|
1491 | # ifdef PGM_SYNC_N_PAGES
|
---|
1492 | /*
|
---|
1493 | * Get the shadow PDE, find the shadow page table in the pool.
|
---|
1494 | */
|
---|
1495 | const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
|
---|
1496 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1497 | X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
|
---|
1498 | # else /* PAE */
|
---|
1499 | X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
|
---|
1500 | # endif
|
---|
1501 | Assert(PdeDst.n.u1Present);
|
---|
1502 | PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
1503 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
1504 |
|
---|
1505 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1506 | const unsigned offPTSrc = 0;
|
---|
1507 | # else
|
---|
1508 | const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
|
---|
1509 | # endif
|
---|
1510 |
|
---|
1511 | Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
|
---|
1512 | if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
|
---|
1513 | {
|
---|
1514 | /*
|
---|
1515 | * This code path is currently only taken when the caller is PGMTrap0eHandler
|
---|
1516 | * for non-present pages!
|
---|
1517 | *
|
---|
1518 | * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
|
---|
1519 | * deal with locality.
|
---|
1520 | */
|
---|
1521 | unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1522 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
|
---|
1523 | if (iPTDst < PGM_SYNC_NR_PAGES / 2)
|
---|
1524 | iPTDst = 0;
|
---|
1525 | else
|
---|
1526 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
1527 | for (; iPTDst < iPTDstEnd; iPTDst++)
|
---|
1528 | {
|
---|
1529 | if (!pPTDst->a[iPTDst].n.u1Present)
|
---|
1530 | {
|
---|
1531 | VBOXPTE PteSrc;
|
---|
1532 |
|
---|
1533 | RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
|
---|
1534 |
|
---|
1535 | /* Fake the page table entry */
|
---|
1536 | PteSrc.u = GCPtrCurPage;
|
---|
1537 | PteSrc.n.u1Present = 1;
|
---|
1538 | PteSrc.n.u1Dirty = 1;
|
---|
1539 | PteSrc.n.u1Accessed = 1;
|
---|
1540 | PteSrc.n.u1Write = 1;
|
---|
1541 | PteSrc.n.u1User = 1;
|
---|
1542 |
|
---|
1543 | PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
1544 |
|
---|
1545 | Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
|
---|
1546 | GCPtrCurPage, PteSrc.n.u1Present,
|
---|
1547 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
1548 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
1549 | (uint64_t)PteSrc.u,
|
---|
1550 | (uint64_t)pPTDst->a[iPTDst].u,
|
---|
1551 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
1552 | }
|
---|
1553 | }
|
---|
1554 | }
|
---|
1555 | else
|
---|
1556 | # endif /* PGM_SYNC_N_PAGES */
|
---|
1557 | {
|
---|
1558 | VBOXPTE PteSrc;
|
---|
1559 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1560 | RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
|
---|
1561 |
|
---|
1562 | /* Fake the page table entry */
|
---|
1563 | PteSrc.u = GCPtrCurPage;
|
---|
1564 | PteSrc.n.u1Present = 1;
|
---|
1565 | PteSrc.n.u1Dirty = 1;
|
---|
1566 | PteSrc.n.u1Accessed = 1;
|
---|
1567 | PteSrc.n.u1Write = 1;
|
---|
1568 | PteSrc.n.u1User = 1;
|
---|
1569 | PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
1570 |
|
---|
1571 | Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
|
---|
1572 | GCPtrPage, PteSrc.n.u1Present,
|
---|
1573 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
1574 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
1575 | (uint64_t)PteSrc.u,
|
---|
1576 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
1577 | }
|
---|
1578 | return VINF_SUCCESS;
|
---|
1579 |
|
---|
1580 | #else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
1581 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
1582 | return VERR_INTERNAL_ERROR;
|
---|
1583 | #endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
1584 | }
|
---|
1585 |
|
---|
1586 |
|
---|
1587 |
|
---|
1588 | #if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
1589 |
|
---|
1590 | # ifdef PGM_SYNC_DIRTY_BIT
|
---|
1591 |
|
---|
1592 | /**
|
---|
1593 | * Investigate page fault and handle write protection page faults caused by
|
---|
1594 | * dirty bit tracking.
|
---|
1595 | *
|
---|
1596 | * @returns VBox status code.
|
---|
1597 | * @param pVM VM handle.
|
---|
1598 | * @param uErr Page fault error code.
|
---|
1599 | * @param pPdeDst Shadow page directory entry.
|
---|
1600 | * @param pPdeSrc Guest page directory entry.
|
---|
1601 | * @param GCPtrPage Guest context page address.
|
---|
1602 | */
|
---|
1603 | PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage)
|
---|
1604 | {
|
---|
1605 | STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
|
---|
1606 | LogFlow(("CheckPageFault: GCPtrPage=%VGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
|
---|
1607 |
|
---|
1608 | /*
|
---|
1609 | * Real page fault?
|
---|
1610 | */
|
---|
1611 | if ( (uErr & X86_TRAP_PF_RSVD)
|
---|
1612 | || !pPdeSrc->n.u1Present
|
---|
1613 | #if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
1614 | || ((uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
|
---|
1615 | #endif
|
---|
1616 | || ((uErr & X86_TRAP_PF_RW) && !pPdeSrc->n.u1Write)
|
---|
1617 | || ((uErr & X86_TRAP_PF_US) && !pPdeSrc->n.u1User) )
|
---|
1618 | {
|
---|
1619 | # ifdef IN_GC
|
---|
1620 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
|
---|
1621 | # endif
|
---|
1622 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
|
---|
1623 | LogFlow(("CheckPageFault: real page fault at %VGv (1)\n", GCPtrPage));
|
---|
1624 |
|
---|
1625 | if (pPdeSrc->n.u1Present)
|
---|
1626 | {
|
---|
1627 | /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
|
---|
1628 | * See the 2nd case below as well.
|
---|
1629 | */
|
---|
1630 | if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
|
---|
1631 | {
|
---|
1632 | TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
|
---|
1633 | }
|
---|
1634 | else
|
---|
1635 | {
|
---|
1636 | /*
|
---|
1637 | * Map the guest page table.
|
---|
1638 | */
|
---|
1639 | PGSTPT pPTSrc;
|
---|
1640 | int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
|
---|
1641 | if (VBOX_SUCCESS(rc))
|
---|
1642 | {
|
---|
1643 | PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> PAGE_SHIFT) & GST_PT_MASK];
|
---|
1644 | const GSTPTE PteSrc = *pPteSrc;
|
---|
1645 | if (pPteSrc->n.u1Present)
|
---|
1646 | TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
|
---|
1647 | }
|
---|
1648 | AssertRC(rc);
|
---|
1649 | }
|
---|
1650 | }
|
---|
1651 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 | /*
|
---|
1655 | * First check the easy case where the page directory has been marked read-only to track
|
---|
1656 | * the dirty bit of an emulated BIG page
|
---|
1657 | */
|
---|
1658 | if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
|
---|
1659 | {
|
---|
1660 | /* Mark guest page directory as accessed */
|
---|
1661 | pPdeSrc->b.u1Accessed = 1;
|
---|
1662 |
|
---|
1663 | /*
|
---|
1664 | * Only write protection page faults are relevant here.
|
---|
1665 | */
|
---|
1666 | if (uErr & X86_TRAP_PF_RW)
|
---|
1667 | {
|
---|
1668 | /* Mark guest page directory as dirty (BIG page only). */
|
---|
1669 | pPdeSrc->b.u1Dirty = 1;
|
---|
1670 |
|
---|
1671 | if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
|
---|
1672 | {
|
---|
1673 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
|
---|
1674 |
|
---|
1675 | Assert(pPdeSrc->b.u1Write);
|
---|
1676 |
|
---|
1677 | pPdeDst->n.u1Write = 1;
|
---|
1678 | pPdeDst->n.u1Accessed = 1;
|
---|
1679 | pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
|
---|
1680 | PGM_INVL_BIG_PG(GCPtrPage);
|
---|
1681 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
|
---|
1682 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
|
---|
1683 | }
|
---|
1684 | }
|
---|
1685 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
|
---|
1686 | return VINF_PGM_NO_DIRTY_BIT_TRACKING;
|
---|
1687 | }
|
---|
1688 | /* else: 4KB page table */
|
---|
1689 |
|
---|
1690 | /*
|
---|
1691 | * Map the guest page table.
|
---|
1692 | */
|
---|
1693 | PGSTPT pPTSrc;
|
---|
1694 | int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
|
---|
1695 | if (VBOX_SUCCESS(rc))
|
---|
1696 | {
|
---|
1697 | /*
|
---|
1698 | * Real page fault?
|
---|
1699 | */
|
---|
1700 | PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> PAGE_SHIFT) & GST_PT_MASK];
|
---|
1701 | const GSTPTE PteSrc = *pPteSrc;
|
---|
1702 | if ( !PteSrc.n.u1Present
|
---|
1703 | #if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
1704 | || ((uErr & X86_TRAP_PF_ID) && !PteSrc.n.u1NoExecute)
|
---|
1705 | #endif
|
---|
1706 | || ((uErr & X86_TRAP_PF_RW) && !PteSrc.n.u1Write)
|
---|
1707 | || ((uErr & X86_TRAP_PF_US) && !PteSrc.n.u1User)
|
---|
1708 | )
|
---|
1709 | {
|
---|
1710 | # ifdef IN_GC
|
---|
1711 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
|
---|
1712 | # endif
|
---|
1713 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
|
---|
1714 | LogFlow(("CheckPageFault: real page fault at %VGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
|
---|
1715 |
|
---|
1716 | /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
|
---|
1717 | * See the 2nd case above as well.
|
---|
1718 | */
|
---|
1719 | if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
|
---|
1720 | TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
|
---|
1721 |
|
---|
1722 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
|
---|
1723 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
1724 | }
|
---|
1725 | LogFlow(("CheckPageFault: page fault at %VGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
|
---|
1726 |
|
---|
1727 | /*
|
---|
1728 | * Set the accessed bits in the page directory and the page table.
|
---|
1729 | */
|
---|
1730 | pPdeSrc->n.u1Accessed = 1;
|
---|
1731 | pPteSrc->n.u1Accessed = 1;
|
---|
1732 |
|
---|
1733 | /*
|
---|
1734 | * Only write protection page faults are relevant here.
|
---|
1735 | */
|
---|
1736 | if (uErr & X86_TRAP_PF_RW)
|
---|
1737 | {
|
---|
1738 | /* Write access, so mark guest entry as dirty. */
|
---|
1739 | # if defined(IN_GC) && defined(VBOX_WITH_STATISTICS)
|
---|
1740 | if (!pPteSrc->n.u1Dirty)
|
---|
1741 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtiedPage);
|
---|
1742 | else
|
---|
1743 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageAlreadyDirty);
|
---|
1744 | # endif
|
---|
1745 | pPteSrc->n.u1Dirty = 1;
|
---|
1746 |
|
---|
1747 | if (pPdeDst->n.u1Present)
|
---|
1748 | {
|
---|
1749 | /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
|
---|
1750 | * Our individual shadow handlers will provide more information and force a fatal exit.
|
---|
1751 | */
|
---|
1752 | if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
|
---|
1753 | {
|
---|
1754 | LogRel(("CheckPageFault: write to hypervisor region %VGv\n", GCPtrPage));
|
---|
1755 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
|
---|
1756 | return VINF_SUCCESS;
|
---|
1757 | }
|
---|
1758 |
|
---|
1759 | /*
|
---|
1760 | * Map shadow page table.
|
---|
1761 | */
|
---|
1762 | PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
|
---|
1763 | if (pShwPage)
|
---|
1764 | {
|
---|
1765 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
1766 | PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
|
---|
1767 | if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
|
---|
1768 | && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
|
---|
1769 | {
|
---|
1770 | LogFlow(("DIRTY page trap addr=%VGv\n", GCPtrPage));
|
---|
1771 | # ifdef VBOX_STRICT
|
---|
1772 | PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
|
---|
1773 | if (pPage)
|
---|
1774 | AssertMsg(!PGM_PAGE_HAVE_ACTIVE_HANDLERS(pPage),
|
---|
1775 | ("Unexpected dirty bit tracking on monitored page %VGv (phys %VGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
|
---|
1776 | # endif
|
---|
1777 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
|
---|
1778 |
|
---|
1779 | Assert(pPteSrc->n.u1Write);
|
---|
1780 |
|
---|
1781 | pPteDst->n.u1Write = 1;
|
---|
1782 | pPteDst->n.u1Dirty = 1;
|
---|
1783 | pPteDst->n.u1Accessed = 1;
|
---|
1784 | pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
|
---|
1785 | PGM_INVL_PG(GCPtrPage);
|
---|
1786 |
|
---|
1787 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
|
---|
1788 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
|
---|
1789 | }
|
---|
1790 | }
|
---|
1791 | else
|
---|
1792 | AssertMsgFailed(("pgmPoolGetPageByHCPhys %VGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
|
---|
1793 | }
|
---|
1794 | }
|
---|
1795 | /** @todo Optimize accessed bit emulation? */
|
---|
1796 | # ifdef VBOX_STRICT
|
---|
1797 | /*
|
---|
1798 | * Sanity check.
|
---|
1799 | */
|
---|
1800 | else if ( !pPteSrc->n.u1Dirty
|
---|
1801 | && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
|
---|
1802 | && pPdeDst->n.u1Present)
|
---|
1803 | {
|
---|
1804 | PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
|
---|
1805 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
1806 | PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
|
---|
1807 | if ( pPteDst->n.u1Present
|
---|
1808 | && pPteDst->n.u1Write)
|
---|
1809 | LogFlow(("Writable present page %VGv not marked for dirty bit tracking!!!\n", GCPtrPage));
|
---|
1810 | }
|
---|
1811 | # endif /* VBOX_STRICT */
|
---|
1812 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
|
---|
1813 | return VINF_PGM_NO_DIRTY_BIT_TRACKING;
|
---|
1814 | }
|
---|
1815 | AssertRC(rc);
|
---|
1816 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
|
---|
1817 | return rc;
|
---|
1818 | }
|
---|
1819 |
|
---|
1820 | # endif
|
---|
1821 |
|
---|
1822 | #endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
1823 |
|
---|
1824 |
|
---|
1825 | /**
|
---|
1826 | * Sync a shadow page table.
|
---|
1827 | *
|
---|
1828 | * The shadow page table is not present. This includes the case where
|
---|
1829 | * there is a conflict with a mapping.
|
---|
1830 | *
|
---|
1831 | * @returns VBox status code.
|
---|
1832 | * @param pVM VM handle.
|
---|
1833 | * @param iPD Page directory index.
|
---|
1834 | * @param pPDSrc Source page directory (i.e. Guest OS page directory).
|
---|
1835 | * Assume this is a temporary mapping.
|
---|
1836 | * @param GCPtrPage GC Pointer of the page that caused the fault
|
---|
1837 | */
|
---|
1838 | PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage)
|
---|
1839 | {
|
---|
1840 | STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
|
---|
1841 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPtPD[iPDSrc]);
|
---|
1842 | LogFlow(("SyncPT: GCPtrPage=%VGv\n", GCPtrPage));
|
---|
1843 |
|
---|
1844 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1845 |
|
---|
1846 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
|
---|
1847 | # error "Invalid shadow mode for 32-bit guest mode!"
|
---|
1848 | # endif
|
---|
1849 |
|
---|
1850 | /*
|
---|
1851 | * Validate input a little bit.
|
---|
1852 | */
|
---|
1853 | Assert(iPDSrc == (GCPtrPage >> GST_PD_SHIFT));
|
---|
1854 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1855 | PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
|
---|
1856 | # else
|
---|
1857 | PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
|
---|
1858 | # endif
|
---|
1859 | const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
|
---|
1860 | PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1861 | SHWPDE PdeDst = *pPdeDst;
|
---|
1862 |
|
---|
1863 | /*
|
---|
1864 | * Check for conflicts.
|
---|
1865 | * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
|
---|
1866 | * HC: Simply resolve the conflict.
|
---|
1867 | */
|
---|
1868 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
1869 | {
|
---|
1870 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
1871 | # ifndef IN_RING3
|
---|
1872 | Log(("SyncPT: Conflict at %VGv\n", GCPtrPage));
|
---|
1873 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
|
---|
1874 | return VERR_ADDRESS_CONFLICT;
|
---|
1875 | # else
|
---|
1876 | PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
|
---|
1877 | Assert(pMapping);
|
---|
1878 | int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPDSrc);
|
---|
1879 | if (VBOX_FAILURE(rc))
|
---|
1880 | {
|
---|
1881 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
|
---|
1882 | return rc;
|
---|
1883 | }
|
---|
1884 | PdeDst = *pPdeDst;
|
---|
1885 | # endif
|
---|
1886 | }
|
---|
1887 | Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
|
---|
1888 |
|
---|
1889 | /*
|
---|
1890 | * Sync page directory entry.
|
---|
1891 | */
|
---|
1892 | int rc = VINF_SUCCESS;
|
---|
1893 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
1894 | if (PdeSrc.n.u1Present)
|
---|
1895 | {
|
---|
1896 | /*
|
---|
1897 | * Allocate & map the page table.
|
---|
1898 | */
|
---|
1899 | PSHWPT pPTDst;
|
---|
1900 | const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
|
---|
1901 | PPGMPOOLPAGE pShwPage;
|
---|
1902 | RTGCPHYS GCPhys;
|
---|
1903 | if (fPageTable)
|
---|
1904 | {
|
---|
1905 | GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
1906 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1907 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
|
---|
1908 | # endif
|
---|
1909 | rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
|
---|
1910 | }
|
---|
1911 | else
|
---|
1912 | {
|
---|
1913 | GCPhys = PdeSrc.u & GST_PDE4M_PG_MASK;
|
---|
1914 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1915 | GCPhys |= GCPtrPage & RT_BIT(X86_PAGE_2M_SHIFT);
|
---|
1916 | # endif
|
---|
1917 | rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
|
---|
1918 | }
|
---|
1919 | if (rc == VINF_SUCCESS)
|
---|
1920 | pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
1921 | else if (rc == VINF_PGM_CACHED_PAGE)
|
---|
1922 | {
|
---|
1923 | /*
|
---|
1924 | * The PT was cached, just hook it up.
|
---|
1925 | */
|
---|
1926 | if (fPageTable)
|
---|
1927 | PdeDst.u = pShwPage->Core.Key
|
---|
1928 | | (PdeSrc.u & ~(X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
|
---|
1929 | else
|
---|
1930 | {
|
---|
1931 | PdeDst.u = pShwPage->Core.Key
|
---|
1932 | | (PdeSrc.u & ~(X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
|
---|
1933 | # ifdef PGM_SYNC_DIRTY_BIT /* (see explanation and assumtions further down.) */
|
---|
1934 | if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
|
---|
1935 | {
|
---|
1936 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
|
---|
1937 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
1938 | PdeDst.b.u1Write = 0;
|
---|
1939 | }
|
---|
1940 | # endif
|
---|
1941 | }
|
---|
1942 | *pPdeDst = PdeDst;
|
---|
1943 | return VINF_SUCCESS;
|
---|
1944 | }
|
---|
1945 | else if (rc == VERR_PGM_POOL_FLUSHED)
|
---|
1946 | return VINF_PGM_SYNC_CR3;
|
---|
1947 | else
|
---|
1948 | AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
|
---|
1949 | PdeDst.u &= X86_PDE_AVL_MASK;
|
---|
1950 | PdeDst.u |= pShwPage->Core.Key;
|
---|
1951 |
|
---|
1952 | # ifdef PGM_SYNC_DIRTY_BIT
|
---|
1953 | /*
|
---|
1954 | * Page directory has been accessed (this is a fault situation, remember).
|
---|
1955 | */
|
---|
1956 | pPDSrc->a[iPDSrc].n.u1Accessed = 1;
|
---|
1957 | # endif
|
---|
1958 | if (fPageTable)
|
---|
1959 | {
|
---|
1960 | /*
|
---|
1961 | * Page table - 4KB.
|
---|
1962 | *
|
---|
1963 | * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
|
---|
1964 | */
|
---|
1965 | Log2(("SyncPT: 4K %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
|
---|
1966 | GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
|
---|
1967 | PGSTPT pPTSrc;
|
---|
1968 | rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
|
---|
1969 | if (VBOX_SUCCESS(rc))
|
---|
1970 | {
|
---|
1971 | /*
|
---|
1972 | * Start by syncing the page directory entry so CSAM's TLB trick works.
|
---|
1973 | */
|
---|
1974 | PdeDst.u = (PdeDst.u & (X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK))
|
---|
1975 | | (PdeSrc.u & ~(X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
|
---|
1976 | *pPdeDst = PdeDst;
|
---|
1977 |
|
---|
1978 | /*
|
---|
1979 | * Directory/page user or supervisor privilege: (same goes for read/write)
|
---|
1980 | *
|
---|
1981 | * Directory Page Combined
|
---|
1982 | * U/S U/S U/S
|
---|
1983 | * 0 0 0
|
---|
1984 | * 0 1 0
|
---|
1985 | * 1 0 0
|
---|
1986 | * 1 1 1
|
---|
1987 | *
|
---|
1988 | * Simple AND operation. Table listed for completeness.
|
---|
1989 | *
|
---|
1990 | */
|
---|
1991 | STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4k));
|
---|
1992 | # ifdef PGM_SYNC_N_PAGES
|
---|
1993 | unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1994 | unsigned iPTDst = iPTBase;
|
---|
1995 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
|
---|
1996 | if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
|
---|
1997 | iPTDst = 0;
|
---|
1998 | else
|
---|
1999 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
2000 | # else /* !PGM_SYNC_N_PAGES */
|
---|
2001 | unsigned iPTDst = 0;
|
---|
2002 | const unsigned iPTDstEnd = ELEMENTS(pPTDst->a);
|
---|
2003 | # endif /* !PGM_SYNC_N_PAGES */
|
---|
2004 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2005 | const unsigned offPTSrc = 0;
|
---|
2006 | # else
|
---|
2007 | const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
|
---|
2008 | # endif
|
---|
2009 | for (; iPTDst < iPTDstEnd; iPTDst++)
|
---|
2010 | {
|
---|
2011 | const unsigned iPTSrc = iPTDst + offPTSrc;
|
---|
2012 | const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
|
---|
2013 |
|
---|
2014 | if (PteSrc.n.u1Present) /* we've already cleared it above */
|
---|
2015 | {
|
---|
2016 | #ifndef IN_RING0
|
---|
2017 | /*
|
---|
2018 | * Assuming kernel code will be marked as supervisor - and not as user level
|
---|
2019 | * and executed using a conforming code selector - And marked as readonly.
|
---|
2020 | * Also assume that if we're monitoring a page, it's of no interest to CSAM.
|
---|
2021 | */
|
---|
2022 | PPGMPAGE pPage;
|
---|
2023 | if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
|
---|
2024 | || !CSAMDoesPageNeedScanning(pVM, (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
|
---|
2025 | || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
|
---|
2026 | && PGM_PAGE_HAVE_ACTIVE_HANDLERS(pPage))
|
---|
2027 | )
|
---|
2028 | #endif
|
---|
2029 | PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
2030 | Log2(("SyncPT: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%VGp\n",
|
---|
2031 | (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
|
---|
2032 | PteSrc.n.u1Present,
|
---|
2033 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
2034 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
2035 | (uint64_t)PteSrc.u,
|
---|
2036 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
|
---|
2037 | (PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)));
|
---|
2038 | }
|
---|
2039 | } /* for PTEs */
|
---|
2040 | }
|
---|
2041 | }
|
---|
2042 | else
|
---|
2043 | {
|
---|
2044 | /*
|
---|
2045 | * Big page - 2/4MB.
|
---|
2046 | *
|
---|
2047 | * We'll walk the ram range list in parallel and optimize lookups.
|
---|
2048 | * We will only sync on shadow page table at a time.
|
---|
2049 | */
|
---|
2050 | STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4M));
|
---|
2051 |
|
---|
2052 | /**
|
---|
2053 | * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
|
---|
2054 | */
|
---|
2055 |
|
---|
2056 | /*
|
---|
2057 | * Start by syncing the page directory entry.
|
---|
2058 | */
|
---|
2059 | PdeDst.u = (PdeDst.u & (X86_PDE_PAE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
|
---|
2060 | | (PdeSrc.u & ~(X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
|
---|
2061 |
|
---|
2062 | # ifdef PGM_SYNC_DIRTY_BIT
|
---|
2063 | /*
|
---|
2064 | * If the page is not flagged as dirty and is writable, then make it read-only
|
---|
2065 | * at PD level, so we can set the dirty bit when the page is modified.
|
---|
2066 | *
|
---|
2067 | * ASSUMES that page access handlers are implemented on page table entry level.
|
---|
2068 | * Thus we will first catch the dirty access and set PDE.D and restart. If
|
---|
2069 | * there is an access handler, we'll trap again and let it work on the problem.
|
---|
2070 | */
|
---|
2071 | /** @todo move the above stuff to a section in the PGM documentation. */
|
---|
2072 | Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
|
---|
2073 | if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
|
---|
2074 | {
|
---|
2075 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
|
---|
2076 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2077 | PdeDst.b.u1Write = 0;
|
---|
2078 | }
|
---|
2079 | # endif /* PGM_SYNC_DIRTY_BIT */
|
---|
2080 | *pPdeDst = PdeDst;
|
---|
2081 |
|
---|
2082 | /*
|
---|
2083 | * Fill the shadow page table.
|
---|
2084 | */
|
---|
2085 | /* Get address and flags from the source PDE. */
|
---|
2086 | SHWPTE PteDstBase;
|
---|
2087 | PteDstBase.u = PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
|
---|
2088 |
|
---|
2089 | /* Loop thru the entries in the shadow PT. */
|
---|
2090 | const RTGCUINTPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
|
---|
2091 | Log2(("SyncPT: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%VGv GCPhys=%VGp %s\n",
|
---|
2092 | GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
|
---|
2093 | GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
2094 | PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
|
---|
2095 | unsigned iPTDst = 0;
|
---|
2096 | while (iPTDst < ELEMENTS(pPTDst->a))
|
---|
2097 | {
|
---|
2098 | /* Advance ram range list. */
|
---|
2099 | while (pRam && GCPhys > pRam->GCPhysLast)
|
---|
2100 | pRam = CTXALLSUFF(pRam->pNext);
|
---|
2101 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
2102 | {
|
---|
2103 | unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
|
---|
2104 | do
|
---|
2105 | {
|
---|
2106 | /* Make shadow PTE. */
|
---|
2107 | PPGMPAGE pPage = &pRam->aPages[iHCPage];
|
---|
2108 | SHWPTE PteDst;
|
---|
2109 |
|
---|
2110 | /* Make sure the RAM has already been allocated. */
|
---|
2111 | if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
|
---|
2112 | {
|
---|
2113 | if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
|
---|
2114 | {
|
---|
2115 | # ifdef IN_RING3
|
---|
2116 | int rc = pgmr3PhysGrowRange(pVM, GCPhys);
|
---|
2117 | # else
|
---|
2118 | int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
|
---|
2119 | # endif
|
---|
2120 | if (rc != VINF_SUCCESS)
|
---|
2121 | return rc;
|
---|
2122 | }
|
---|
2123 | }
|
---|
2124 |
|
---|
2125 | if (PGM_PAGE_HAVE_ACTIVE_HANDLERS(pPage))
|
---|
2126 | {
|
---|
2127 | if (!PGM_PAGE_HAVE_ACTIVE_ALL_HANDLERS(pPage))
|
---|
2128 | {
|
---|
2129 | PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
|
---|
2130 | PteDst.n.u1Write = 0;
|
---|
2131 | }
|
---|
2132 | else
|
---|
2133 | PteDst.u = 0;
|
---|
2134 | }
|
---|
2135 | # ifndef IN_RING0
|
---|
2136 | /*
|
---|
2137 | * Assuming kernel code will be marked as supervisor and not as user level and executed
|
---|
2138 | * using a conforming code selector. Don't check for readonly, as that implies the whole
|
---|
2139 | * 4MB can be code or readonly data. Linux enables write access for its large pages.
|
---|
2140 | */
|
---|
2141 | else if ( !PdeSrc.n.u1User
|
---|
2142 | && CSAMDoesPageNeedScanning(pVM, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
|
---|
2143 | PteDst.u = 0;
|
---|
2144 | # endif
|
---|
2145 | else
|
---|
2146 | PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
|
---|
2147 | # ifdef PGMPOOL_WITH_USER_TRACKING
|
---|
2148 | if (PteDst.n.u1Present)
|
---|
2149 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
|
---|
2150 | # endif
|
---|
2151 | /* commit it */
|
---|
2152 | pPTDst->a[iPTDst] = PteDst;
|
---|
2153 | Log4(("SyncPT: BIG %VGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
|
---|
2154 | (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
|
---|
2155 | PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
2156 |
|
---|
2157 | /* advance */
|
---|
2158 | GCPhys += PAGE_SIZE;
|
---|
2159 | iHCPage++;
|
---|
2160 | iPTDst++;
|
---|
2161 | } while ( iPTDst < ELEMENTS(pPTDst->a)
|
---|
2162 | && GCPhys <= pRam->GCPhysLast);
|
---|
2163 | }
|
---|
2164 | else if (pRam)
|
---|
2165 | {
|
---|
2166 | Log(("Invalid pages at %VGp\n", GCPhys));
|
---|
2167 | do
|
---|
2168 | {
|
---|
2169 | pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
|
---|
2170 | GCPhys += PAGE_SIZE;
|
---|
2171 | iPTDst++;
|
---|
2172 | } while ( iPTDst < ELEMENTS(pPTDst->a)
|
---|
2173 | && GCPhys < pRam->GCPhys);
|
---|
2174 | }
|
---|
2175 | else
|
---|
2176 | {
|
---|
2177 | Log(("Invalid pages at %VGp (2)\n", GCPhys));
|
---|
2178 | for ( ; iPTDst < ELEMENTS(pPTDst->a); iPTDst++)
|
---|
2179 | pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
|
---|
2180 | }
|
---|
2181 | } /* while more PTEs */
|
---|
2182 | } /* 4KB / 4MB */
|
---|
2183 | }
|
---|
2184 | else
|
---|
2185 | AssertRelease(!PdeDst.n.u1Present);
|
---|
2186 |
|
---|
2187 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
|
---|
2188 | # ifdef IN_GC
|
---|
2189 | if (VBOX_FAILURE(rc))
|
---|
2190 | STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPTFailed));
|
---|
2191 | # endif
|
---|
2192 | return rc;
|
---|
2193 |
|
---|
2194 | #elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
|
---|
2195 |
|
---|
2196 | int rc = VINF_SUCCESS;
|
---|
2197 |
|
---|
2198 | /*
|
---|
2199 | * Validate input a little bit.
|
---|
2200 | */
|
---|
2201 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2202 | PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
|
---|
2203 | # else
|
---|
2204 | PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
|
---|
2205 | # endif
|
---|
2206 | const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
|
---|
2207 | PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
|
---|
2208 | SHWPDE PdeDst = *pPdeDst;
|
---|
2209 |
|
---|
2210 | Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
|
---|
2211 | Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
|
---|
2212 |
|
---|
2213 | GSTPDE PdeSrc;
|
---|
2214 | PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
|
---|
2215 | PdeSrc.n.u1Present = 1;
|
---|
2216 | PdeSrc.n.u1Write = 1;
|
---|
2217 | PdeSrc.n.u1Accessed = 1;
|
---|
2218 | PdeSrc.n.u1User = 1;
|
---|
2219 |
|
---|
2220 | /*
|
---|
2221 | * Allocate & map the page table.
|
---|
2222 | */
|
---|
2223 | PSHWPT pPTDst;
|
---|
2224 | PPGMPOOLPAGE pShwPage;
|
---|
2225 | RTGCPHYS GCPhys;
|
---|
2226 |
|
---|
2227 | /* Virtual address = physical address */
|
---|
2228 | GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK_32;
|
---|
2229 | rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
|
---|
2230 |
|
---|
2231 | if ( rc == VINF_SUCCESS
|
---|
2232 | || rc == VINF_PGM_CACHED_PAGE)
|
---|
2233 | pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
2234 | else
|
---|
2235 | AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
|
---|
2236 |
|
---|
2237 | PdeDst.u &= X86_PDE_AVL_MASK;
|
---|
2238 | PdeDst.u |= pShwPage->Core.Key;
|
---|
2239 | PdeDst.n.u1Present = 1;
|
---|
2240 | *pPdeDst = PdeDst;
|
---|
2241 |
|
---|
2242 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
|
---|
2243 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
|
---|
2244 | return rc;
|
---|
2245 |
|
---|
2246 | #else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
2247 |
|
---|
2248 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
2249 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
|
---|
2250 | return VERR_INTERNAL_ERROR;
|
---|
2251 | #endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
2252 | }
|
---|
2253 |
|
---|
2254 |
|
---|
2255 |
|
---|
2256 | /**
|
---|
2257 | * Prefetch a page/set of pages.
|
---|
2258 | *
|
---|
2259 | * Typically used to sync commonly used pages before entering raw mode
|
---|
2260 | * after a CR3 reload.
|
---|
2261 | *
|
---|
2262 | * @returns VBox status code.
|
---|
2263 | * @param pVM VM handle.
|
---|
2264 | * @param GCPtrPage Page to invalidate.
|
---|
2265 | */
|
---|
2266 | PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage)
|
---|
2267 | {
|
---|
2268 | #if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) && PGM_SHW_TYPE != PGM_TYPE_AMD64
|
---|
2269 |
|
---|
2270 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
|
---|
2271 | # error "Invalid shadow mode for 32-bit guest mode!"
|
---|
2272 | # endif
|
---|
2273 |
|
---|
2274 | /*
|
---|
2275 | * Check that all Guest levels thru the PDE are present, getting the
|
---|
2276 | * PD and PDE in the processes.
|
---|
2277 | */
|
---|
2278 | int rc = VINF_SUCCESS;
|
---|
2279 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
2280 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2281 | const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
|
---|
2282 | PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
|
---|
2283 | # else /* PAE */
|
---|
2284 | unsigned iPDSrc
|
---|
2285 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
|
---|
2286 | # endif
|
---|
2287 | # else
|
---|
2288 | PGSTPD pPDSrc = NULL;
|
---|
2289 | const unsigned iPDSrc = 0;
|
---|
2290 | # endif
|
---|
2291 |
|
---|
2292 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
2293 | const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
2294 | # else
|
---|
2295 | GSTPDE PdeSrc;
|
---|
2296 | PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
|
---|
2297 | PdeSrc.n.u1Present = 1;
|
---|
2298 | PdeSrc.n.u1Write = 1;
|
---|
2299 | PdeSrc.n.u1Accessed = 1;
|
---|
2300 | PdeSrc.n.u1User = 1;
|
---|
2301 | # endif
|
---|
2302 |
|
---|
2303 | # ifdef PGM_SYNC_ACCESSED_BIT
|
---|
2304 | if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
|
---|
2305 | # else
|
---|
2306 | if (PdeSrc.n.u1Present)
|
---|
2307 | # endif
|
---|
2308 | {
|
---|
2309 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2310 | const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
|
---|
2311 | # else
|
---|
2312 | const X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
|
---|
2313 | # endif
|
---|
2314 | if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
|
---|
2315 | {
|
---|
2316 | if (!PdeDst.n.u1Present)
|
---|
2317 | /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
|
---|
2318 | rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
|
---|
2319 | else
|
---|
2320 | {
|
---|
2321 | /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
|
---|
2322 | * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
|
---|
2323 | * makes no sense to prefetch more than one page.
|
---|
2324 | */
|
---|
2325 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
|
---|
2326 | if (VBOX_SUCCESS(rc))
|
---|
2327 | rc = VINF_SUCCESS;
|
---|
2328 | }
|
---|
2329 | }
|
---|
2330 | }
|
---|
2331 | return rc;
|
---|
2332 |
|
---|
2333 | #else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
2334 |
|
---|
2335 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
|
---|
2336 | return VERR_INTERNAL_ERROR;
|
---|
2337 | #endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
2338 | }
|
---|
2339 |
|
---|
2340 |
|
---|
2341 |
|
---|
2342 |
|
---|
2343 | /**
|
---|
2344 | * Syncs a page during a PGMVerifyAccess() call.
|
---|
2345 | *
|
---|
2346 | * @returns VBox status code (informational included).
|
---|
2347 | * @param GCPtrPage The address of the page to sync.
|
---|
2348 | * @param fPage The effective guest page flags.
|
---|
2349 | * @param uErr The trap error code.
|
---|
2350 | */
|
---|
2351 | PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fPage, unsigned uErr)
|
---|
2352 | {
|
---|
2353 | LogFlow(("VerifyAccessSyncPage: GCPtrPage=%VGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
|
---|
2354 |
|
---|
2355 | #if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE) && PGM_SHW_TYPE != PGM_TYPE_AMD64
|
---|
2356 |
|
---|
2357 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
|
---|
2358 | # error "Invalid shadow mode for 32-bit guest mode!"
|
---|
2359 | # endif
|
---|
2360 |
|
---|
2361 | #ifndef IN_RING0
|
---|
2362 | if (!(fPage & X86_PTE_US))
|
---|
2363 | {
|
---|
2364 | /*
|
---|
2365 | * Mark this page as safe.
|
---|
2366 | */
|
---|
2367 | /** @todo not correct for pages that contain both code and data!! */
|
---|
2368 | Log(("CSAMMarkPage %VGv; scanned=%d\n", GCPtrPage, true));
|
---|
2369 | CSAMMarkPage(pVM, (RTGCPTR)GCPtrPage, true);
|
---|
2370 | }
|
---|
2371 | #endif
|
---|
2372 | /*
|
---|
2373 | * Get guest PD and index.
|
---|
2374 | */
|
---|
2375 |
|
---|
2376 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
2377 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2378 | const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
|
---|
2379 | PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
|
---|
2380 | # else /* PAE */
|
---|
2381 | unsigned iPDSrc;
|
---|
2382 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
|
---|
2383 | # endif
|
---|
2384 | # else
|
---|
2385 | PGSTPD pPDSrc = NULL;
|
---|
2386 | const unsigned iPDSrc = 0;
|
---|
2387 | # endif
|
---|
2388 | int rc = VINF_SUCCESS;
|
---|
2389 |
|
---|
2390 | /*
|
---|
2391 | * First check if the shadow pd is present.
|
---|
2392 | */
|
---|
2393 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2394 | PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
|
---|
2395 | # else
|
---|
2396 | PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
|
---|
2397 | # endif
|
---|
2398 | if (!pPdeDst->n.u1Present)
|
---|
2399 | {
|
---|
2400 | rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
|
---|
2401 | AssertRC(rc);
|
---|
2402 | if (rc != VINF_SUCCESS)
|
---|
2403 | return rc;
|
---|
2404 | }
|
---|
2405 |
|
---|
2406 | # if PGM_WITH_PAGING(PGM_GST_TYPE)
|
---|
2407 | /* Check for dirty bit fault */
|
---|
2408 | rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
|
---|
2409 | if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
|
---|
2410 | Log(("PGMVerifyAccess: success (dirty)\n"));
|
---|
2411 | else
|
---|
2412 | {
|
---|
2413 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
2414 | #else
|
---|
2415 | {
|
---|
2416 | GSTPDE PdeSrc;
|
---|
2417 | PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
|
---|
2418 | PdeSrc.n.u1Present = 1;
|
---|
2419 | PdeSrc.n.u1Write = 1;
|
---|
2420 | PdeSrc.n.u1Accessed = 1;
|
---|
2421 | PdeSrc.n.u1User = 1;
|
---|
2422 |
|
---|
2423 | #endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
|
---|
2424 | Assert(rc != VINF_EM_RAW_GUEST_TRAP);
|
---|
2425 | if (uErr & X86_TRAP_PF_US)
|
---|
2426 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
|
---|
2427 | else /* supervisor */
|
---|
2428 | STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
|
---|
2429 |
|
---|
2430 | rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
|
---|
2431 | if (VBOX_SUCCESS(rc))
|
---|
2432 | {
|
---|
2433 | /* Page was successfully synced */
|
---|
2434 | Log2(("PGMVerifyAccess: success (sync)\n"));
|
---|
2435 | rc = VINF_SUCCESS;
|
---|
2436 | }
|
---|
2437 | else
|
---|
2438 | {
|
---|
2439 | Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", GCPtrPage, rc));
|
---|
2440 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
2441 | }
|
---|
2442 | }
|
---|
2443 | return rc;
|
---|
2444 |
|
---|
2445 | #else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
2446 |
|
---|
2447 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
2448 | return VERR_INTERNAL_ERROR;
|
---|
2449 | #endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
2450 | }
|
---|
2451 |
|
---|
2452 |
|
---|
2453 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2454 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
2455 | /**
|
---|
2456 | * Figures out which kind of shadow page this guest PDE warrants.
|
---|
2457 | *
|
---|
2458 | * @returns Shadow page kind.
|
---|
2459 | * @param pPdeSrc The guest PDE in question.
|
---|
2460 | * @param cr4 The current guest cr4 value.
|
---|
2461 | */
|
---|
2462 | DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
|
---|
2463 | {
|
---|
2464 | if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
|
---|
2465 | return BTH_PGMPOOLKIND_PT_FOR_PT;
|
---|
2466 | //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
|
---|
2467 | //{
|
---|
2468 | // case 0:
|
---|
2469 | // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
|
---|
2470 | // case X86_PDE4M_RW:
|
---|
2471 | // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
|
---|
2472 | // case X86_PDE4M_US:
|
---|
2473 | // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
|
---|
2474 | // case X86_PDE4M_RW | X86_PDE4M_US:
|
---|
2475 | // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
|
---|
2476 | # if 0
|
---|
2477 | // case X86_PDE4M_PAE_NX:
|
---|
2478 | // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
|
---|
2479 | // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
|
---|
2480 | // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
|
---|
2481 | // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
|
---|
2482 | // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
|
---|
2483 | // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
|
---|
2484 | // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
|
---|
2485 | # endif
|
---|
2486 | return BTH_PGMPOOLKIND_PT_FOR_BIG;
|
---|
2487 | //}
|
---|
2488 | }
|
---|
2489 | # endif
|
---|
2490 | #endif
|
---|
2491 |
|
---|
2492 | #undef MY_STAM_COUNTER_INC
|
---|
2493 | #define MY_STAM_COUNTER_INC(a) do { } while (0)
|
---|
2494 |
|
---|
2495 |
|
---|
2496 | /**
|
---|
2497 | * Syncs the paging hierarchy starting at CR3.
|
---|
2498 | *
|
---|
2499 | * @returns VBox status code, no specials.
|
---|
2500 | * @param pVM The virtual machine.
|
---|
2501 | * @param cr0 Guest context CR0 register
|
---|
2502 | * @param cr3 Guest context CR3 register
|
---|
2503 | * @param cr4 Guest context CR4 register
|
---|
2504 | * @param fGlobal Including global page directories or not
|
---|
2505 | */
|
---|
2506 | PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)
|
---|
2507 | {
|
---|
2508 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2509 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
2510 | if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
|
---|
2511 | fGlobal = true; /* Change this CR3 reload to be a global one. */
|
---|
2512 | # endif
|
---|
2513 | #endif
|
---|
2514 |
|
---|
2515 | /*
|
---|
2516 | * Update page access handlers.
|
---|
2517 | * The virtual are always flushed, while the physical are only on demand.
|
---|
2518 | * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
|
---|
2519 | * have to look into that later because it will have a bad influence on the performance.
|
---|
2520 | * @note SvL: There's no need for that. Just invalidate the virtual range(s).
|
---|
2521 | * bird: Yes, but that won't work for aliases.
|
---|
2522 | */
|
---|
2523 | /** @todo this MUST go away. See #1557. */
|
---|
2524 | STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
|
---|
2525 | PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
|
---|
2526 | STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
|
---|
2527 |
|
---|
2528 | #ifdef PGMPOOL_WITH_MONITORING
|
---|
2529 | /*
|
---|
2530 | * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
|
---|
2531 | * Occationally we will have to clear all the shadow page tables because we wanted
|
---|
2532 | * to monitor a page which was mapped by too many shadowed page tables. This operation
|
---|
2533 | * sometimes refered to as a 'lightweight flush'.
|
---|
2534 | */
|
---|
2535 | if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL))
|
---|
2536 | pgmPoolMonitorModifiedClearAll(pVM);
|
---|
2537 | else
|
---|
2538 | {
|
---|
2539 | # ifdef IN_RING3
|
---|
2540 | pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
|
---|
2541 | pgmPoolClearAll(pVM);
|
---|
2542 | # else
|
---|
2543 | LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
|
---|
2544 | return VINF_PGM_SYNC_CR3;
|
---|
2545 | # endif
|
---|
2546 | }
|
---|
2547 | #endif
|
---|
2548 |
|
---|
2549 | Assert(fGlobal || (cr4 & X86_CR4_PGE));
|
---|
2550 | MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTXMID(Stat,SyncCR3Global) : &pVM->pgm.s.CTXMID(Stat,SyncCR3NotGlobal));
|
---|
2551 |
|
---|
2552 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2553 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
2554 | /*
|
---|
2555 | * Get page directory addresses.
|
---|
2556 | */
|
---|
2557 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2558 | PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
|
---|
2559 | # else
|
---|
2560 | PX86PDEPAE pPDEDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[0];
|
---|
2561 | # endif
|
---|
2562 |
|
---|
2563 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2564 | PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
|
---|
2565 | # else /* PAE */
|
---|
2566 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, 0);
|
---|
2567 | # endif
|
---|
2568 |
|
---|
2569 | Assert(pPDSrc);
|
---|
2570 | #ifndef IN_GC
|
---|
2571 | Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
|
---|
2572 | #endif
|
---|
2573 |
|
---|
2574 | /*
|
---|
2575 | * Iterate the page directory.
|
---|
2576 | */
|
---|
2577 | PPGMMAPPING pMapping;
|
---|
2578 | unsigned iPdNoMapping;
|
---|
2579 | const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
|
---|
2580 | PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
|
---|
2581 |
|
---|
2582 | /* Only check mappings if they are supposed to be put into the shadow page table. */
|
---|
2583 | if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
|
---|
2584 | {
|
---|
2585 | pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
|
---|
2586 | iPdNoMapping = (pMapping) ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U; /** PAE todo */
|
---|
2587 | }
|
---|
2588 | else
|
---|
2589 | {
|
---|
2590 | pMapping = 0;
|
---|
2591 | iPdNoMapping = ~0U;
|
---|
2592 | }
|
---|
2593 |
|
---|
2594 | for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
|
---|
2595 | {
|
---|
2596 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2597 | Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
|
---|
2598 | # else
|
---|
2599 | Assert(&pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512] == pPDEDst);
|
---|
2600 | # endif
|
---|
2601 | register GSTPDE PdeSrc = pPDSrc->a[iPD];
|
---|
2602 | if ( PdeSrc.n.u1Present
|
---|
2603 | && (PdeSrc.n.u1User || fRawR0Enabled))
|
---|
2604 | {
|
---|
2605 | /*
|
---|
2606 | * Check for conflicts with GC mappings.
|
---|
2607 | */
|
---|
2608 | if (iPD == iPdNoMapping)
|
---|
2609 | {
|
---|
2610 | if (pVM->pgm.s.fMappingsFixed)
|
---|
2611 | {
|
---|
2612 | /* It's fixed, just skip the mapping. */
|
---|
2613 | const unsigned cPTs = pMapping->cPTs;
|
---|
2614 | iPD += cPTs - 1;
|
---|
2615 | pPDEDst += cPTs + (PGM_SHW_TYPE != PGM_TYPE_32BIT) * cPTs;
|
---|
2616 | pMapping = pMapping->CTXALLSUFF(pNext);
|
---|
2617 | iPdNoMapping = pMapping ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U;
|
---|
2618 | continue;
|
---|
2619 | }
|
---|
2620 |
|
---|
2621 | #ifdef IN_RING3
|
---|
2622 | int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD);
|
---|
2623 | if (VBOX_FAILURE(rc))
|
---|
2624 | return rc;
|
---|
2625 |
|
---|
2626 | /*
|
---|
2627 | * Update iPdNoMapping and pMapping.
|
---|
2628 | */
|
---|
2629 | pMapping = pVM->pgm.s.pMappingsR3;
|
---|
2630 | while (pMapping && pMapping->GCPtr < (iPD << X86_PD_SHIFT))
|
---|
2631 | pMapping = pMapping->pNextR3;
|
---|
2632 | iPdNoMapping = pMapping ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U;
|
---|
2633 | #else
|
---|
2634 | LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
|
---|
2635 | return VINF_PGM_SYNC_CR3;
|
---|
2636 | #endif
|
---|
2637 | }
|
---|
2638 |
|
---|
2639 | /*
|
---|
2640 | * Sync page directory entry.
|
---|
2641 | *
|
---|
2642 | * The current approach is to allocated the page table but to set
|
---|
2643 | * the entry to not-present and postpone the page table synching till
|
---|
2644 | * it's actually used.
|
---|
2645 | */
|
---|
2646 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2647 | const unsigned iPdShw = iPD; NOREF(iPdShw);
|
---|
2648 | # else
|
---|
2649 | for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
|
---|
2650 | # endif
|
---|
2651 | {
|
---|
2652 | SHWPDE PdeDst = *pPDEDst;
|
---|
2653 | if (PdeDst.n.u1Present)
|
---|
2654 | {
|
---|
2655 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
2656 | RTGCPHYS GCPhys;
|
---|
2657 | if ( !PdeSrc.b.u1Size
|
---|
2658 | || !(cr4 & X86_CR4_PSE))
|
---|
2659 | {
|
---|
2660 | GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
2661 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2662 | GCPhys |= i * (PAGE_SIZE / 2);
|
---|
2663 | # endif
|
---|
2664 | }
|
---|
2665 | else
|
---|
2666 | {
|
---|
2667 | GCPhys = PdeSrc.u & GST_PDE4M_PG_MASK;
|
---|
2668 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2669 | GCPhys |= i * X86_PAGE_2M_SIZE;
|
---|
2670 | # endif
|
---|
2671 | }
|
---|
2672 |
|
---|
2673 | if ( pShwPage->GCPhys == GCPhys
|
---|
2674 | && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
|
---|
2675 | && ( pShwPage->fCached
|
---|
2676 | || ( !fGlobal
|
---|
2677 | && ( false
|
---|
2678 | # ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
|
---|
2679 | || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
|
---|
2680 | && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
|
---|
2681 | || ( !pShwPage->fSeenNonGlobal
|
---|
2682 | && (cr4 & X86_CR4_PGE))
|
---|
2683 | # endif
|
---|
2684 | )
|
---|
2685 | )
|
---|
2686 | )
|
---|
2687 | && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
|
---|
2688 | || ( (cr4 & X86_CR4_PSE)
|
---|
2689 | && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
|
---|
2690 | == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
|
---|
2691 | )
|
---|
2692 | )
|
---|
2693 | {
|
---|
2694 | # ifdef VBOX_WITH_STATISTICS
|
---|
2695 | if ( !fGlobal
|
---|
2696 | && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
|
---|
2697 | && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
|
---|
2698 | MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPD));
|
---|
2699 | else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
|
---|
2700 | MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPT));
|
---|
2701 | else
|
---|
2702 | MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstCacheHit));
|
---|
2703 | # endif /* VBOX_WITH_STATISTICS */
|
---|
2704 | /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
|
---|
2705 | * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
|
---|
2706 | //# ifdef PGMPOOL_WITH_CACHE
|
---|
2707 | // pgmPoolCacheUsed(pPool, pShwPage);
|
---|
2708 | //# endif
|
---|
2709 | }
|
---|
2710 | else
|
---|
2711 | {
|
---|
2712 | pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
|
---|
2713 | pPDEDst->u = 0;
|
---|
2714 | MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreed));
|
---|
2715 | }
|
---|
2716 | }
|
---|
2717 | else
|
---|
2718 | MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstNotPresent));
|
---|
2719 | pPDEDst++;
|
---|
2720 | }
|
---|
2721 | }
|
---|
2722 | else if (iPD != iPdNoMapping)
|
---|
2723 | {
|
---|
2724 | /*
|
---|
2725 | * Check if there is any page directory to mark not present here.
|
---|
2726 | */
|
---|
2727 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2728 | const unsigned iPdShw = iPD; NOREF(iPdShw);
|
---|
2729 | # else
|
---|
2730 | for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
|
---|
2731 | # endif
|
---|
2732 | {
|
---|
2733 | if (pPDEDst->n.u1Present)
|
---|
2734 | {
|
---|
2735 | pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdShw);
|
---|
2736 | pPDEDst->u = 0;
|
---|
2737 | MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreedSrcNP));
|
---|
2738 | }
|
---|
2739 | pPDEDst++;
|
---|
2740 | }
|
---|
2741 | }
|
---|
2742 | else
|
---|
2743 | {
|
---|
2744 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
2745 | const unsigned cPTs = pMapping->cPTs;
|
---|
2746 | if (pVM->pgm.s.fMappingsFixed)
|
---|
2747 | {
|
---|
2748 | /* It's fixed, just skip the mapping. */
|
---|
2749 | pMapping = pMapping->CTXALLSUFF(pNext);
|
---|
2750 | iPdNoMapping = pMapping ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U;
|
---|
2751 | }
|
---|
2752 | else
|
---|
2753 | {
|
---|
2754 | /*
|
---|
2755 | * Check for conflicts for subsequent pagetables
|
---|
2756 | * and advance to the next mapping.
|
---|
2757 | */
|
---|
2758 | iPdNoMapping = ~0U;
|
---|
2759 | unsigned iPT = cPTs;
|
---|
2760 | while (iPT-- > 1)
|
---|
2761 | {
|
---|
2762 | if ( pPDSrc->a[iPD + iPT].n.u1Present
|
---|
2763 | && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
|
---|
2764 | {
|
---|
2765 | # ifdef IN_RING3
|
---|
2766 | int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD);
|
---|
2767 | if (VBOX_FAILURE(rc))
|
---|
2768 | return rc;
|
---|
2769 |
|
---|
2770 | /*
|
---|
2771 | * Update iPdNoMapping and pMapping.
|
---|
2772 | */
|
---|
2773 | pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
|
---|
2774 | while (pMapping && pMapping->GCPtr < (iPD << X86_PD_SHIFT))
|
---|
2775 | pMapping = pMapping->CTXALLSUFF(pNext);
|
---|
2776 | iPdNoMapping = pMapping ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U;
|
---|
2777 | break;
|
---|
2778 | # else
|
---|
2779 | LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
|
---|
2780 | return VINF_PGM_SYNC_CR3;
|
---|
2781 | # endif
|
---|
2782 | }
|
---|
2783 | }
|
---|
2784 | if (iPdNoMapping == ~0U && pMapping)
|
---|
2785 | {
|
---|
2786 | pMapping = pMapping->CTXALLSUFF(pNext);
|
---|
2787 | if (pMapping)
|
---|
2788 | iPdNoMapping = pMapping->GCPtr >> X86_PD_SHIFT;
|
---|
2789 | }
|
---|
2790 | }
|
---|
2791 | /* advance. */
|
---|
2792 | iPD += cPTs - 1;
|
---|
2793 | pPDEDst += cPTs + (PGM_SHW_TYPE != PGM_TYPE_32BIT) * cPTs;
|
---|
2794 | }
|
---|
2795 |
|
---|
2796 | } /* for iPD */
|
---|
2797 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
2798 | # error "Guest 32-bit mode and shadow AMD64 mode doesn't add up!"
|
---|
2799 | # endif
|
---|
2800 |
|
---|
2801 | return VINF_SUCCESS;
|
---|
2802 |
|
---|
2803 | #elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
2804 | # if PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
2805 | //# error not implemented
|
---|
2806 | return VERR_INTERNAL_ERROR;
|
---|
2807 |
|
---|
2808 | # else /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
2809 | # error "Guest PAE mode, but not the shadow mode ; 32bit - maybe, but amd64 no."
|
---|
2810 | # endif /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
2811 |
|
---|
2812 | #elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
2813 | # if PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
2814 | //# error not implemented
|
---|
2815 | return VERR_INTERNAL_ERROR;
|
---|
2816 |
|
---|
2817 | # else /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
2818 | # error "Guest AMD64 mode, but not the shadow mode - that can't be right!"
|
---|
2819 | # endif /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
2820 |
|
---|
2821 | #else /* guest real and protected mode */
|
---|
2822 |
|
---|
2823 | return VINF_SUCCESS;
|
---|
2824 | #endif
|
---|
2825 | }
|
---|
2826 |
|
---|
2827 |
|
---|
2828 |
|
---|
2829 |
|
---|
2830 | #ifdef VBOX_STRICT
|
---|
2831 | #ifdef IN_GC
|
---|
2832 | # undef AssertMsgFailed
|
---|
2833 | # define AssertMsgFailed Log
|
---|
2834 | #endif
|
---|
2835 | #ifdef IN_RING3
|
---|
2836 | # include <VBox/dbgf.h>
|
---|
2837 |
|
---|
2838 | /**
|
---|
2839 | * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
|
---|
2840 | *
|
---|
2841 | * @returns VBox status code (VINF_SUCCESS).
|
---|
2842 | * @param pVM The VM handle.
|
---|
2843 | * @param cr3 The root of the hierarchy.
|
---|
2844 | * @param crr The cr4, only PAE and PSE is currently used.
|
---|
2845 | * @param fLongMode Set if long mode, false if not long mode.
|
---|
2846 | * @param cMaxDepth Number of levels to dump.
|
---|
2847 | * @param pHlp Pointer to the output functions.
|
---|
2848 | */
|
---|
2849 | __BEGIN_DECLS
|
---|
2850 | PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
|
---|
2851 | __END_DECLS
|
---|
2852 |
|
---|
2853 | #endif
|
---|
2854 |
|
---|
2855 | /**
|
---|
2856 | * Checks that the shadow page table is in sync with the guest one.
|
---|
2857 | *
|
---|
2858 | * @returns The number of errors.
|
---|
2859 | * @param pVM The virtual machine.
|
---|
2860 | * @param cr3 Guest context CR3 register
|
---|
2861 | * @param cr4 Guest context CR4 register
|
---|
2862 | * @param GCPtr Where to start. Defaults to 0.
|
---|
2863 | * @param cb How much to check. Defaults to everything.
|
---|
2864 | */
|
---|
2865 | PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)
|
---|
2866 | {
|
---|
2867 | unsigned cErrors = 0;
|
---|
2868 |
|
---|
2869 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2870 |
|
---|
2871 | # if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
|
---|
2872 | # error "Invalid shadow mode for 32-bit guest paging."
|
---|
2873 | # endif
|
---|
2874 |
|
---|
2875 | PPGM pPGM = &pVM->pgm.s;
|
---|
2876 | RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
|
---|
2877 | RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
|
---|
2878 | RTHCPHYS HCPhys; /* general usage. */
|
---|
2879 | int rc;
|
---|
2880 |
|
---|
2881 | /*
|
---|
2882 | * Check that the Guest CR3 and all it's mappings are correct.
|
---|
2883 | */
|
---|
2884 | AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & X86_CR3_PAGE_MASK),
|
---|
2885 | ("Invalid GCPhysCR3=%VGp cr3=%VGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
|
---|
2886 | false);
|
---|
2887 | rc = PGMShwGetPage(pVM, pPGM->pGuestPDGC, NULL, &HCPhysShw);
|
---|
2888 | AssertRCReturn(rc, 1);
|
---|
2889 | HCPhys = NIL_RTHCPHYS;
|
---|
2890 | rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & X86_CR3_PAGE_MASK, &HCPhys);
|
---|
2891 | AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%VHp HCPhyswShw=%VHp (cr3)\n", HCPhys, HCPhysShw), false);
|
---|
2892 | # ifdef IN_RING3
|
---|
2893 | RTGCPHYS GCPhys;
|
---|
2894 | rc = PGMR3DbgHCPtr2GCPhys(pVM, pPGM->pGuestPDHC, &GCPhys);
|
---|
2895 | AssertRCReturn(rc, 1);
|
---|
2896 | AssertMsgReturn((cr3 & X86_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%VGp cr3=%VGp\n", GCPhys, (RTGCPHYS)cr3), false);
|
---|
2897 | # endif
|
---|
2898 | const X86PD *pPDSrc = CTXSUFF(pPGM->pGuestPD);
|
---|
2899 |
|
---|
2900 | /*
|
---|
2901 | * Get and check the Shadow CR3.
|
---|
2902 | */
|
---|
2903 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2904 | const X86PD *pPDDst = pPGM->CTXMID(p,32BitPD);
|
---|
2905 | unsigned cPDEs = ELEMENTS(pPDDst->a);
|
---|
2906 | # else
|
---|
2907 | const X86PDPAE *pPDDst = pPGM->CTXMID(ap,PaePDs[0]); /* use it as a 2048 entry PD */
|
---|
2908 | unsigned cPDEs = ELEMENTS(pPDDst->a) * ELEMENTS(pPGM->apHCPaePDs);
|
---|
2909 | # endif
|
---|
2910 | if (cb != ~(RTGCUINTPTR)0)
|
---|
2911 | cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
|
---|
2912 |
|
---|
2913 | /** @todo call the other two PGMAssert*() functions. */
|
---|
2914 |
|
---|
2915 | /*
|
---|
2916 | * Iterate the shadow page directory.
|
---|
2917 | */
|
---|
2918 | GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
|
---|
2919 | unsigned iPDDst = GCPtr >> SHW_PD_SHIFT;
|
---|
2920 | cPDEs += iPDDst;
|
---|
2921 | for (;
|
---|
2922 | iPDDst < cPDEs;
|
---|
2923 | iPDDst++, GCPtr += _4G / cPDEs)
|
---|
2924 | {
|
---|
2925 | const SHWPDE PdeDst = pPDDst->a[iPDDst];
|
---|
2926 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
2927 | {
|
---|
2928 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
2929 | if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
|
---|
2930 | {
|
---|
2931 | AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
|
---|
2932 | cErrors++;
|
---|
2933 | continue;
|
---|
2934 | }
|
---|
2935 | }
|
---|
2936 | else if ( (PdeDst.u & X86_PDE_P)
|
---|
2937 | || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
|
---|
2938 | )
|
---|
2939 | {
|
---|
2940 | HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
|
---|
2941 | PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
|
---|
2942 | if (!pPoolPage)
|
---|
2943 | {
|
---|
2944 | AssertMsgFailed(("Invalid page table address %VGp at %VGv! PdeDst=%#RX64\n",
|
---|
2945 | HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
|
---|
2946 | cErrors++;
|
---|
2947 | continue;
|
---|
2948 | }
|
---|
2949 | const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
|
---|
2950 |
|
---|
2951 | if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
|
---|
2952 | {
|
---|
2953 | AssertMsgFailed(("PDE flags PWT and/or PCD is set at %VGv! These flags are not virtualized! PdeDst=%#RX64\n",
|
---|
2954 | GCPtr, (uint64_t)PdeDst.u));
|
---|
2955 | cErrors++;
|
---|
2956 | }
|
---|
2957 |
|
---|
2958 | if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
|
---|
2959 | {
|
---|
2960 | AssertMsgFailed(("4K PDE reserved flags at %VGv! PdeDst=%#RX64\n",
|
---|
2961 | GCPtr, (uint64_t)PdeDst.u));
|
---|
2962 | cErrors++;
|
---|
2963 | }
|
---|
2964 |
|
---|
2965 | const X86PDE PdeSrc = pPDSrc->a[iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)];
|
---|
2966 | if (!PdeSrc.n.u1Present)
|
---|
2967 | {
|
---|
2968 | AssertMsgFailed(("Guest PDE at %VGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
|
---|
2969 | GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
|
---|
2970 | cErrors++;
|
---|
2971 | continue;
|
---|
2972 | }
|
---|
2973 |
|
---|
2974 | if ( !PdeSrc.b.u1Size
|
---|
2975 | || !(cr4 & X86_CR4_PSE))
|
---|
2976 | {
|
---|
2977 | GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
2978 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2979 | GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
|
---|
2980 | # endif
|
---|
2981 | }
|
---|
2982 | else
|
---|
2983 | {
|
---|
2984 | if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
|
---|
2985 | {
|
---|
2986 | AssertMsgFailed(("Guest PDE at %VGv is using PSE36 or similar! PdeSrc=%#RX64\n",
|
---|
2987 | GCPtr, (uint64_t)PdeSrc.u));
|
---|
2988 | cErrors++;
|
---|
2989 | continue;
|
---|
2990 | }
|
---|
2991 | GCPhysGst = PdeSrc.u & GST_PDE4M_PG_MASK;
|
---|
2992 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2993 | GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
|
---|
2994 | # endif
|
---|
2995 | }
|
---|
2996 |
|
---|
2997 | if ( pPoolPage->enmKind
|
---|
2998 | != (!PdeSrc.b.u1Size || !(cr4 & X86_CR4_PSE) ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
|
---|
2999 | {
|
---|
3000 | AssertMsgFailed(("Invalid shadow page table kind %d at %VGv! PdeSrc=%#RX64\n",
|
---|
3001 | pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
|
---|
3002 | cErrors++;
|
---|
3003 | }
|
---|
3004 |
|
---|
3005 | PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
|
---|
3006 | if (!pPhysPage)
|
---|
3007 | {
|
---|
3008 | AssertMsgFailed(("Cannot find guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
|
---|
3009 | GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
|
---|
3010 | cErrors++;
|
---|
3011 | continue;
|
---|
3012 | }
|
---|
3013 |
|
---|
3014 | if (GCPhysGst != pPoolPage->GCPhys)
|
---|
3015 | {
|
---|
3016 | AssertMsgFailed(("GCPhysGst=%VGp != pPage->GCPhys=%VGp at %VGv\n",
|
---|
3017 | GCPhysGst, pPoolPage->GCPhys, GCPtr));
|
---|
3018 | cErrors++;
|
---|
3019 | continue;
|
---|
3020 | }
|
---|
3021 |
|
---|
3022 | if ( !PdeSrc.b.u1Size
|
---|
3023 | || !(cr4 & X86_CR4_PSE))
|
---|
3024 | {
|
---|
3025 | /*
|
---|
3026 | * Page Table.
|
---|
3027 | */
|
---|
3028 | const GSTPT *pPTSrc;
|
---|
3029 | rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
|
---|
3030 | if (VBOX_FAILURE(rc))
|
---|
3031 | {
|
---|
3032 | AssertMsgFailed(("Cannot map/convert guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
|
---|
3033 | GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
|
---|
3034 | cErrors++;
|
---|
3035 | continue;
|
---|
3036 | }
|
---|
3037 | if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
|
---|
3038 | != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
|
---|
3039 | {
|
---|
3040 | /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
|
---|
3041 | // (This problem will go away when/if we shadow multiple CR3s.)
|
---|
3042 | AssertMsgFailed(("4K PDE flags mismatch at %VGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
3043 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
3044 | cErrors++;
|
---|
3045 | continue;
|
---|
3046 | }
|
---|
3047 | if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
|
---|
3048 | {
|
---|
3049 | AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%VGv PdeDst=%#RX64\n",
|
---|
3050 | GCPtr, (uint64_t)PdeDst.u));
|
---|
3051 | cErrors++;
|
---|
3052 | continue;
|
---|
3053 | }
|
---|
3054 |
|
---|
3055 | /* iterate the page table. */
|
---|
3056 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3057 | const unsigned offPTSrc = 0;
|
---|
3058 | # else
|
---|
3059 | const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
|
---|
3060 | # endif
|
---|
3061 | for (unsigned iPT = 0, off = 0;
|
---|
3062 | iPT < ELEMENTS(pPTDst->a);
|
---|
3063 | iPT++, off += PAGE_SIZE)
|
---|
3064 | {
|
---|
3065 | const SHWPTE PteDst = pPTDst->a[iPT];
|
---|
3066 |
|
---|
3067 | /* skip not-present entries. */
|
---|
3068 | if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
|
---|
3069 | continue;
|
---|
3070 | Assert(PteDst.n.u1Present);
|
---|
3071 |
|
---|
3072 | const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
|
---|
3073 | if (!PteSrc.n.u1Present)
|
---|
3074 | {
|
---|
3075 | #ifdef IN_RING3
|
---|
3076 | PGMAssertHandlerAndFlagsInSync(pVM);
|
---|
3077 | PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
|
---|
3078 | #endif
|
---|
3079 | AssertMsgFailed(("Out of sync (!P) PTE at %VGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%VGv iPTSrc=%x PdeSrc=%x physpte=%VGp\n",
|
---|
3080 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
|
---|
3081 | (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
|
---|
3082 | cErrors++;
|
---|
3083 | continue;
|
---|
3084 | }
|
---|
3085 |
|
---|
3086 | uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
|
---|
3087 | # if 1 /** @todo sync accessed bit properly... */
|
---|
3088 | fIgnoreFlags |= X86_PTE_A;
|
---|
3089 | # endif
|
---|
3090 |
|
---|
3091 | /* match the physical addresses */
|
---|
3092 | HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
|
---|
3093 | GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
|
---|
3094 |
|
---|
3095 | # ifdef IN_RING3
|
---|
3096 | rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
|
---|
3097 | if (VBOX_FAILURE(rc))
|
---|
3098 | {
|
---|
3099 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
|
---|
3100 | {
|
---|
3101 | AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3102 | GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3103 | cErrors++;
|
---|
3104 | continue;
|
---|
3105 | }
|
---|
3106 | }
|
---|
3107 | else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
|
---|
3108 | {
|
---|
3109 | AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3110 | GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3111 | cErrors++;
|
---|
3112 | continue;
|
---|
3113 | }
|
---|
3114 | # endif
|
---|
3115 |
|
---|
3116 | pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
|
---|
3117 | if (!pPhysPage)
|
---|
3118 | {
|
---|
3119 | # ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
|
---|
3120 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
|
---|
3121 | {
|
---|
3122 | AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3123 | GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3124 | cErrors++;
|
---|
3125 | continue;
|
---|
3126 | }
|
---|
3127 | # endif
|
---|
3128 | if (PteDst.n.u1Write)
|
---|
3129 | {
|
---|
3130 | AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3131 | GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3132 | cErrors++;
|
---|
3133 | }
|
---|
3134 | fIgnoreFlags |= X86_PTE_RW;
|
---|
3135 | }
|
---|
3136 | else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
|
---|
3137 | {
|
---|
3138 | AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3139 | GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3140 | cErrors++;
|
---|
3141 | continue;
|
---|
3142 | }
|
---|
3143 |
|
---|
3144 | /* flags */
|
---|
3145 | if (PGM_PAGE_HAVE_ACTIVE_HANDLERS(pPhysPage))
|
---|
3146 | {
|
---|
3147 | if (!PGM_PAGE_HAVE_ACTIVE_ALL_HANDLERS(pPhysPage))
|
---|
3148 | {
|
---|
3149 | if (PteDst.n.u1Write)
|
---|
3150 | {
|
---|
3151 | AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3152 | GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3153 | cErrors++;
|
---|
3154 | continue;
|
---|
3155 | }
|
---|
3156 | fIgnoreFlags |= X86_PTE_RW;
|
---|
3157 | }
|
---|
3158 | else
|
---|
3159 | {
|
---|
3160 | if (PteDst.n.u1Present)
|
---|
3161 | {
|
---|
3162 | AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VHp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3163 | GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3164 | cErrors++;
|
---|
3165 | continue;
|
---|
3166 | }
|
---|
3167 | fIgnoreFlags |= X86_PTE_P;
|
---|
3168 | }
|
---|
3169 | }
|
---|
3170 | else
|
---|
3171 | {
|
---|
3172 | if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
|
---|
3173 | {
|
---|
3174 | if (PteDst.n.u1Write)
|
---|
3175 | {
|
---|
3176 | AssertMsgFailed(("!DIRTY page at %VGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3177 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3178 | cErrors++;
|
---|
3179 | continue;
|
---|
3180 | }
|
---|
3181 | if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
|
---|
3182 | {
|
---|
3183 | AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3184 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3185 | cErrors++;
|
---|
3186 | continue;
|
---|
3187 | }
|
---|
3188 | if (PteDst.n.u1Dirty)
|
---|
3189 | {
|
---|
3190 | AssertMsgFailed(("!DIRTY page at %VGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3191 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3192 | cErrors++;
|
---|
3193 | }
|
---|
3194 | # if 0 /** @todo sync access bit properly... */
|
---|
3195 | if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
|
---|
3196 | {
|
---|
3197 | AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3198 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3199 | cErrors++;
|
---|
3200 | }
|
---|
3201 | fIgnoreFlags |= X86_PTE_RW;
|
---|
3202 | # else
|
---|
3203 | fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
|
---|
3204 | # endif
|
---|
3205 | }
|
---|
3206 | else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
|
---|
3207 | {
|
---|
3208 | /* access bit emulation (not implemented). */
|
---|
3209 | if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
|
---|
3210 | {
|
---|
3211 | AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3212 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3213 | cErrors++;
|
---|
3214 | continue;
|
---|
3215 | }
|
---|
3216 | if (!PteDst.n.u1Accessed)
|
---|
3217 | {
|
---|
3218 | AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3219 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3220 | cErrors++;
|
---|
3221 | }
|
---|
3222 | fIgnoreFlags |= X86_PTE_P;
|
---|
3223 | }
|
---|
3224 | # ifdef DEBUG_sandervl
|
---|
3225 | fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
|
---|
3226 | # endif
|
---|
3227 | }
|
---|
3228 |
|
---|
3229 | if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
|
---|
3230 | && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
|
---|
3231 | )
|
---|
3232 | {
|
---|
3233 | AssertMsgFailed(("Flags mismatch at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3234 | GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
|
---|
3235 | fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
3236 | cErrors++;
|
---|
3237 | continue;
|
---|
3238 | }
|
---|
3239 | } /* foreach PTE */
|
---|
3240 | }
|
---|
3241 | else
|
---|
3242 | {
|
---|
3243 | /*
|
---|
3244 | * Big Page.
|
---|
3245 | */
|
---|
3246 | uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | X86_PDE_PAE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
|
---|
3247 | if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
|
---|
3248 | {
|
---|
3249 | if (PdeDst.n.u1Write)
|
---|
3250 | {
|
---|
3251 | AssertMsgFailed(("!DIRTY page at %VGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
3252 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
3253 | cErrors++;
|
---|
3254 | continue;
|
---|
3255 | }
|
---|
3256 | if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
|
---|
3257 | {
|
---|
3258 | AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3259 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
3260 | cErrors++;
|
---|
3261 | continue;
|
---|
3262 | }
|
---|
3263 | # if 0 /** @todo sync access bit properly... */
|
---|
3264 | if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
|
---|
3265 | {
|
---|
3266 | AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3267 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
3268 | cErrors++;
|
---|
3269 | }
|
---|
3270 | fIgnoreFlags |= X86_PTE_RW;
|
---|
3271 | # else
|
---|
3272 | fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
|
---|
3273 | # endif
|
---|
3274 | }
|
---|
3275 | else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
|
---|
3276 | {
|
---|
3277 | /* access bit emulation (not implemented). */
|
---|
3278 | if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
|
---|
3279 | {
|
---|
3280 | AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
3281 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
3282 | cErrors++;
|
---|
3283 | continue;
|
---|
3284 | }
|
---|
3285 | if (!PdeDst.n.u1Accessed)
|
---|
3286 | {
|
---|
3287 | AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
3288 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
3289 | cErrors++;
|
---|
3290 | }
|
---|
3291 | fIgnoreFlags |= X86_PTE_P;
|
---|
3292 | }
|
---|
3293 |
|
---|
3294 | if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
|
---|
3295 | {
|
---|
3296 | AssertMsgFailed(("Flags mismatch (B) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
3297 | GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
|
---|
3298 | fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
3299 | cErrors++;
|
---|
3300 | }
|
---|
3301 |
|
---|
3302 | /* iterate the page table. */
|
---|
3303 | for (unsigned iPT = 0, off = 0;
|
---|
3304 | iPT < ELEMENTS(pPTDst->a);
|
---|
3305 | iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
|
---|
3306 | {
|
---|
3307 | const SHWPTE PteDst = pPTDst->a[iPT];
|
---|
3308 |
|
---|
3309 | if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
|
---|
3310 | {
|
---|
3311 | AssertMsgFailed(("The PTE at %VGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3312 | GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3313 | cErrors++;
|
---|
3314 | }
|
---|
3315 |
|
---|
3316 | /* skip not-present entries. */
|
---|
3317 | if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
|
---|
3318 | continue;
|
---|
3319 |
|
---|
3320 | fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
|
---|
3321 |
|
---|
3322 | /* match the physical addresses */
|
---|
3323 | HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
|
---|
3324 |
|
---|
3325 | # ifdef IN_RING3
|
---|
3326 | rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
|
---|
3327 | if (VBOX_FAILURE(rc))
|
---|
3328 | {
|
---|
3329 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
|
---|
3330 | {
|
---|
3331 | AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3332 | GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3333 | cErrors++;
|
---|
3334 | }
|
---|
3335 | }
|
---|
3336 | else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
|
---|
3337 | {
|
---|
3338 | AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3339 | GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3340 | cErrors++;
|
---|
3341 | continue;
|
---|
3342 | }
|
---|
3343 | # endif
|
---|
3344 |
|
---|
3345 | pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
|
---|
3346 | if (!pPhysPage)
|
---|
3347 | {
|
---|
3348 | # ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
|
---|
3349 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
|
---|
3350 | {
|
---|
3351 | AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3352 | GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3353 | cErrors++;
|
---|
3354 | continue;
|
---|
3355 | }
|
---|
3356 | # endif
|
---|
3357 | if (PteDst.n.u1Write)
|
---|
3358 | {
|
---|
3359 | AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3360 | GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3361 | cErrors++;
|
---|
3362 | }
|
---|
3363 | fIgnoreFlags |= X86_PTE_RW;
|
---|
3364 | }
|
---|
3365 | else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
|
---|
3366 | {
|
---|
3367 | AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3368 | GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3369 | cErrors++;
|
---|
3370 | continue;
|
---|
3371 | }
|
---|
3372 |
|
---|
3373 | /* flags */
|
---|
3374 | if (PGM_PAGE_HAVE_ACTIVE_HANDLERS(pPhysPage))
|
---|
3375 | {
|
---|
3376 | if (!PGM_PAGE_HAVE_ACTIVE_ALL_HANDLERS(pPhysPage))
|
---|
3377 | {
|
---|
3378 | if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
|
---|
3379 | {
|
---|
3380 | if (PteDst.n.u1Write)
|
---|
3381 | {
|
---|
3382 | AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3383 | GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3384 | cErrors++;
|
---|
3385 | continue;
|
---|
3386 | }
|
---|
3387 | fIgnoreFlags |= X86_PTE_RW;
|
---|
3388 | }
|
---|
3389 | }
|
---|
3390 | else
|
---|
3391 | {
|
---|
3392 | if (PteDst.n.u1Present)
|
---|
3393 | {
|
---|
3394 | AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3395 | GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3396 | cErrors++;
|
---|
3397 | continue;
|
---|
3398 | }
|
---|
3399 | fIgnoreFlags |= X86_PTE_P;
|
---|
3400 | }
|
---|
3401 | }
|
---|
3402 |
|
---|
3403 | if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
|
---|
3404 | && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
|
---|
3405 | )
|
---|
3406 | {
|
---|
3407 | AssertMsgFailed(("Flags mismatch (BT) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
3408 | GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
|
---|
3409 | fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
3410 | cErrors++;
|
---|
3411 | continue;
|
---|
3412 | }
|
---|
3413 | } /* foreach PTE */
|
---|
3414 | }
|
---|
3415 | }
|
---|
3416 | /* not present */
|
---|
3417 |
|
---|
3418 | } /* forearch PDE */
|
---|
3419 |
|
---|
3420 | # ifdef DEBUG
|
---|
3421 | if (cErrors)
|
---|
3422 | LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
|
---|
3423 | # endif
|
---|
3424 |
|
---|
3425 | #elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3426 | //# error not implemented
|
---|
3427 |
|
---|
3428 |
|
---|
3429 | #elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3430 | //# error not implemented
|
---|
3431 |
|
---|
3432 | /*#else: guest real and protected mode */
|
---|
3433 | #endif
|
---|
3434 | return cErrors;
|
---|
3435 | }
|
---|
3436 | #endif /* VBOX_STRICT */
|
---|
3437 |
|
---|