VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 74791

Last change on this file since 74791 was 74791, checked in by vboxsync, 6 years ago

vm.h,VMM,REM: s/VM_FF_IS_PENDING/VM_FF_IS_ANY_SET/g to emphasize the plurality of the flags argument and encourage using VM_FF_IS_SET. bugref:9180

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 217.2 KB
Line 
1/* $Id: PGMAllBth.h 74791 2018-10-12 10:44:17Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
6 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
7 * bird: WTF does this mean these days? Looking at PGMAll.cpp it's
8 *
9 * @remarks This file is one big \#ifdef-orgy!
10 *
11 */
12
13/*
14 * Copyright (C) 2006-2017 Oracle Corporation
15 *
16 * This file is part of VirtualBox Open Source Edition (OSE), as
17 * available from http://www.virtualbox.org. This file is free software;
18 * you can redistribute it and/or modify it under the terms of the GNU
19 * General Public License (GPL) as published by the Free Software
20 * Foundation, in version 2 as it comes in the "COPYING" file of the
21 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
22 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
23 */
24
25#ifdef _MSC_VER
26/** @todo we're generating unnecessary code in nested/ept shadow mode and for
27 * real/prot-guest+RC mode. */
28# pragma warning(disable: 4505)
29#endif
30
31
32/*********************************************************************************************************************************
33* Internal Functions *
34*********************************************************************************************************************************/
35RT_C_DECLS_BEGIN
36PGM_BTH_DECL(int, Enter)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
37#ifndef IN_RING3
38PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
39#endif
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46# else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
57
58#ifdef IN_RING3
59PGM_BTH_DECL(int, Relocate)(PVMCPU pVCpu, RTGCPTR offDelta);
60#endif
61RT_C_DECLS_END
62
63
64
65
66/*
67 * Filter out some illegal combinations of guest and shadow paging, so we can
68 * remove redundant checks inside functions.
69 */
70#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \
71 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
72# error "Invalid combination; PAE guest implies PAE shadow"
73#endif
74
75#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
76 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \
77 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
78# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
79#endif
80
81#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
82 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \
83 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
84# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
85#endif
86
87#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \
88 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
89# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
90#endif
91
92
93/**
94 * Enters the shadow+guest mode.
95 *
96 * @returns VBox status code.
97 * @param pVCpu The cross context virtual CPU structure.
98 * @param GCPhysCR3 The physical address from the CR3 register.
99 */
100PGM_BTH_DECL(int, Enter)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
101{
102 /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches;
103 * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables.
104 */
105#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
106 || PGM_SHW_TYPE == PGM_TYPE_PAE \
107 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
108 && ( PGM_GST_TYPE == PGM_TYPE_REAL \
109 || PGM_GST_TYPE == PGM_TYPE_PROT))
110
111 PVM pVM = pVCpu->CTX_SUFF(pVM);
112
113 Assert((HMIsNestedPagingActive(pVM) || VM_IS_NEM_ENABLED(pVM)) == pVM->pgm.s.fNestedPaging);
114 Assert(!pVM->pgm.s.fNestedPaging);
115
116 pgmLock(pVM);
117 /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes),
118 * but any calls to GC need a proper shadow page setup as well.
119 */
120 /* Free the previous root mapping if still active. */
121 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
122 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
123 if (pOldShwPageCR3)
124 {
125 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
126
127 /* Mark the page as unlocked; allow flushing again. */
128 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
129
130# ifndef PGM_WITHOUT_MAPPINGS
131 /* Remove the hypervisor mappings from the shadow page table. */
132 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
133# endif
134
135 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
136 pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR;
137 pVCpu->pgm.s.pShwPageCR3RC = NIL_RTRCPTR;
138 pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR;
139 }
140
141 /* construct a fake address. */
142 GCPhysCR3 = RT_BIT_64(63);
143 PPGMPOOLPAGE pNewShwPageCR3;
144 int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
145 NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/,
146 &pNewShwPageCR3);
147 AssertRCReturn(rc, rc);
148
149 pVCpu->pgm.s.pShwPageCR3R3 = (R3PTRTYPE(PPGMPOOLPAGE))MMHyperCCToR3(pVM, pNewShwPageCR3);
150 pVCpu->pgm.s.pShwPageCR3RC = (RCPTRTYPE(PPGMPOOLPAGE))MMHyperCCToRC(pVM, pNewShwPageCR3);
151 pVCpu->pgm.s.pShwPageCR3R0 = (R0PTRTYPE(PPGMPOOLPAGE))MMHyperCCToR0(pVM, pNewShwPageCR3);
152
153 /* Mark the page as locked; disallow flushing. */
154 pgmPoolLockPage(pPool, pNewShwPageCR3);
155
156 /* Set the current hypervisor CR3. */
157 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
158
159# ifndef PGM_WITHOUT_MAPPINGS
160 /* Apply all hypervisor mappings to the new CR3. */
161 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
162# endif
163
164 pgmUnlock(pVM);
165 return rc;
166#else
167 NOREF(pVCpu); NOREF(GCPhysCR3);
168 return VINF_SUCCESS;
169#endif
170}
171
172
173#ifndef IN_RING3
174
175# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
176/**
177 * Deal with a guest page fault.
178 *
179 * @returns Strict VBox status code.
180 * @retval VINF_EM_RAW_GUEST_TRAP
181 * @retval VINF_EM_RAW_EMULATE_INSTR
182 *
183 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
184 * @param pGstWalk The guest page table walk result.
185 * @param uErr The error code.
186 */
187PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
188{
189# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
190 /*
191 * Check for write conflicts with our hypervisor mapping.
192 *
193 * If the guest happens to access a non-present page, where our hypervisor
194 * is currently mapped, then we'll create a #PF storm in the guest.
195 */
196 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
197 && pgmMapAreMappingsEnabled(pVCpu->CTX_SUFF(pVM))
198 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
199 {
200 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
201 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
202 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
203 return VINF_EM_RAW_EMULATE_INSTR;
204 }
205# endif
206
207 /*
208 * Calc the error code for the guest trap.
209 */
210 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
211 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
212 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
213 if ( pGstWalk->Core.fRsvdError
214 || pGstWalk->Core.fBadPhysAddr)
215 {
216 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
217 Assert(!pGstWalk->Core.fNotPresent);
218 }
219 else if (!pGstWalk->Core.fNotPresent)
220 uNewErr |= X86_TRAP_PF_P;
221 TRPMSetErrorCode(pVCpu, uNewErr);
222
223 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
224 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
225 return VINF_EM_RAW_GUEST_TRAP;
226}
227# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
228
229
230#if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
231/**
232 * Deal with a guest page fault.
233 *
234 * The caller has taken the PGM lock.
235 *
236 * @returns Strict VBox status code.
237 *
238 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
239 * @param uErr The error code.
240 * @param pRegFrame The register frame.
241 * @param pvFault The fault address.
242 * @param pPage The guest page at @a pvFault.
243 * @param pGstWalk The guest page table walk result.
244 * @param pfLockTaken PGM lock taken here or not (out). This is true
245 * when we're called.
246 */
247static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
248 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
249# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
250 , PGSTPTWALK pGstWalk
251# endif
252 )
253{
254# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
255 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
256# endif
257 PVM pVM = pVCpu->CTX_SUFF(pVM);
258 VBOXSTRICTRC rcStrict;
259
260 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
261 {
262 /*
263 * Physical page access handler.
264 */
265# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
266 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
267# else
268 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
269# endif
270 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
271 if (pCur)
272 {
273 PPGMPHYSHANDLERTYPEINT pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
274
275# ifdef PGM_SYNC_N_PAGES
276 /*
277 * If the region is write protected and we got a page not present fault, then sync
278 * the pages. If the fault was caused by a read, then restart the instruction.
279 * In case of write access continue to the GC write handler.
280 *
281 * ASSUMES that there is only one handler per page or that they have similar write properties.
282 */
283 if ( !(uErr & X86_TRAP_PF_P)
284 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
285 {
286# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
287 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
288# else
289 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
290# endif
291 if ( RT_FAILURE(rcStrict)
292 || !(uErr & X86_TRAP_PF_RW)
293 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
294 {
295 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
296 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
297 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
298 return rcStrict;
299 }
300 }
301# endif
302# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
303 /*
304 * If the access was not thru a #PF(RSVD|...) resync the page.
305 */
306 if ( !(uErr & X86_TRAP_PF_RSVD)
307 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
308# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
309 && pGstWalk->Core.fEffectiveRW
310 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
311# endif
312 )
313 {
314# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
315 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
316# else
317 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
318# endif
319 if ( RT_FAILURE(rcStrict)
320 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
321 {
322 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
323 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
324 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
325 return rcStrict;
326 }
327 }
328# endif
329
330 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
331 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
332 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
333 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
334 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
335 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
336 else
337 {
338 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
339 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
340 }
341
342 if (pCurType->CTX_SUFF(pfnPfHandler))
343 {
344 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
345 void *pvUser = pCur->CTX_SUFF(pvUser);
346
347 STAM_PROFILE_START(&pCur->Stat, h);
348 if (pCur->hType != pPool->hAccessHandlerType)
349 {
350 pgmUnlock(pVM);
351 *pfLockTaken = false;
352 }
353
354 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
355
356# ifdef VBOX_WITH_STATISTICS
357 pgmLock(pVM);
358 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
359 if (pCur)
360 STAM_PROFILE_STOP(&pCur->Stat, h);
361 pgmUnlock(pVM);
362# endif
363 }
364 else
365 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
366
367 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
368 return rcStrict;
369 }
370 }
371# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
372 else
373 {
374# ifdef PGM_SYNC_N_PAGES
375 /*
376 * If the region is write protected and we got a page not present fault, then sync
377 * the pages. If the fault was caused by a read, then restart the instruction.
378 * In case of write access continue to the GC write handler.
379 */
380 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
381 && !(uErr & X86_TRAP_PF_P))
382 {
383 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
384 if ( RT_FAILURE(rcStrict)
385 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
386 || !(uErr & X86_TRAP_PF_RW))
387 {
388 AssertRC(rcStrict);
389 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
390 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
391 return rcStrict;
392 }
393 }
394# endif
395 /*
396 * Ok, it's an virtual page access handler.
397 *
398 * Since it's faster to search by address, we'll do that first
399 * and then retry by GCPhys if that fails.
400 */
401 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
402 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
403 * out of sync, because the page was changed without us noticing it (not-present -> present
404 * without invlpg or mov cr3, xxx).
405 */
406 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
407 if (pCur)
408 {
409 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
410 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
411 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
412 || !(uErr & X86_TRAP_PF_P)
413 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
414 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enumKind=%d\n",
415 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCurType->enmKind));
416
417 if ( pvFault - pCur->Core.Key < pCur->cb
418 && ( uErr & X86_TRAP_PF_RW
419 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
420 {
421# ifdef IN_RC
422 STAM_PROFILE_START(&pCur->Stat, h);
423 RTGCPTR GCPtrStart = pCur->Core.Key;
424 void *pvUser = pCur->CTX_SUFF(pvUser);
425 pgmUnlock(pVM);
426 *pfLockTaken = false;
427
428 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart,
429 pvFault - GCPtrStart, pvUser);
430
431# ifdef VBOX_WITH_STATISTICS
432 pgmLock(pVM);
433 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
434 if (pCur)
435 STAM_PROFILE_STOP(&pCur->Stat, h);
436 pgmUnlock(pVM);
437# endif
438# else
439 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
440# endif
441 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
442 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
443 return rcStrict;
444 }
445 /* Unhandled part of a monitored page */
446 Log(("Unhandled part of monitored page %RGv\n", pvFault));
447 }
448 else
449 {
450 /* Check by physical address. */
451 unsigned iPage;
452 pCur = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &iPage);
453 if (pCur)
454 {
455 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
456 if ( uErr & X86_TRAP_PF_RW
457 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE )
458 {
459 Assert( (pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK)
460 == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
461# ifdef IN_RC
462 STAM_PROFILE_START(&pCur->Stat, h);
463 RTGCPTR GCPtrStart = pCur->Core.Key;
464 void *pvUser = pCur->CTX_SUFF(pvUser);
465 pgmUnlock(pVM);
466 *pfLockTaken = false;
467
468 RTGCPTR off = (iPage << PAGE_SHIFT)
469 + (pvFault & PAGE_OFFSET_MASK)
470 - (GCPtrStart & PAGE_OFFSET_MASK);
471 Assert(off < pCur->cb);
472 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart, off, pvUser);
473
474# ifdef VBOX_WITH_STATISTICS
475 pgmLock(pVM);
476 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
477 if (pCur)
478 STAM_PROFILE_STOP(&pCur->Stat, h);
479 pgmUnlock(pVM);
480# endif
481# else
482 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
483# endif
484 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
485 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
486 return rcStrict;
487 }
488 }
489 }
490 }
491# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
492
493 /*
494 * There is a handled area of the page, but this fault doesn't belong to it.
495 * We must emulate the instruction.
496 *
497 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
498 * we first check if this was a page-not-present fault for a page with only
499 * write access handlers. Restart the instruction if it wasn't a write access.
500 */
501 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
502
503 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
504 && !(uErr & X86_TRAP_PF_P))
505 {
506# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
507 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
508# else
509 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
510# endif
511 if ( RT_FAILURE(rcStrict)
512 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
513 || !(uErr & X86_TRAP_PF_RW))
514 {
515 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
516 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
517 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
518 return rcStrict;
519 }
520 }
521
522 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
523 * It's writing to an unhandled part of the LDT page several million times.
524 */
525 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
526 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
527 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
528 return rcStrict;
529} /* if any kind of handler */
530# endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/
531
532
533/**
534 * \#PF Handler for raw-mode guest execution.
535 *
536 * @returns VBox status code (appropriate for trap handling and GC return).
537 *
538 * @param pVCpu The cross context virtual CPU structure.
539 * @param uErr The trap error code.
540 * @param pRegFrame Trap register frame.
541 * @param pvFault The fault address.
542 * @param pfLockTaken PGM lock taken here or not (out)
543 */
544PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
545{
546 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
547
548 *pfLockTaken = false;
549
550# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
551 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
552 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
553 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
554 && PGM_SHW_TYPE != PGM_TYPE_NONE
555 int rc;
556
557# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
558 /*
559 * Walk the guest page translation tables and check if it's a guest fault.
560 */
561 GSTPTWALK GstWalk;
562 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
563 if (RT_FAILURE_NP(rc))
564 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
565
566 /* assert some GstWalk sanity. */
567# if PGM_GST_TYPE == PGM_TYPE_AMD64
568 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
569# endif
570# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
571 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
572# endif
573 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
574 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
575 Assert(GstWalk.Core.fSucceeded);
576
577 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
578 {
579 if ( ( (uErr & X86_TRAP_PF_RW)
580 && !GstWalk.Core.fEffectiveRW
581 && ( (uErr & X86_TRAP_PF_US)
582 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
583 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
584 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
585 )
586 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
587 }
588
589 /*
590 * Set the accessed and dirty flags.
591 */
592# if PGM_GST_TYPE == PGM_TYPE_AMD64
593 GstWalk.Pml4e.u |= X86_PML4E_A;
594 GstWalk.pPml4e->u |= X86_PML4E_A;
595 GstWalk.Pdpe.u |= X86_PDPE_A;
596 GstWalk.pPdpe->u |= X86_PDPE_A;
597# endif
598 if (GstWalk.Core.fBigPage)
599 {
600 Assert(GstWalk.Pde.b.u1Size);
601 if (uErr & X86_TRAP_PF_RW)
602 {
603 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
604 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
605 }
606 else
607 {
608 GstWalk.Pde.u |= X86_PDE4M_A;
609 GstWalk.pPde->u |= X86_PDE4M_A;
610 }
611 }
612 else
613 {
614 Assert(!GstWalk.Pde.b.u1Size);
615 GstWalk.Pde.u |= X86_PDE_A;
616 GstWalk.pPde->u |= X86_PDE_A;
617 if (uErr & X86_TRAP_PF_RW)
618 {
619# ifdef VBOX_WITH_STATISTICS
620 if (!GstWalk.Pte.n.u1Dirty)
621 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
622 else
623 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
624# endif
625 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
626 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
627 }
628 else
629 {
630 GstWalk.Pte.u |= X86_PTE_A;
631 GstWalk.pPte->u |= X86_PTE_A;
632 }
633 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
634 }
635 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
636 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
637# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
638 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
639# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
640
641 /* Take the big lock now. */
642 *pfLockTaken = true;
643 pgmLock(pVM);
644
645# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
646 /*
647 * If it is a reserved bit fault we know that it is an MMIO (access
648 * handler) related fault and can skip some 200 lines of code.
649 */
650 if (uErr & X86_TRAP_PF_RSVD)
651 {
652 Assert(uErr & X86_TRAP_PF_P);
653 PPGMPAGE pPage;
654# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
655 rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
656 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
657 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
658 pfLockTaken, &GstWalk));
659 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
660# else
661 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
662 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
663 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
664 pfLockTaken));
665 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
666# endif
667 AssertRC(rc);
668 PGM_INVL_PG(pVCpu, pvFault);
669 return rc; /* Restart with the corrected entry. */
670 }
671# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
672
673 /*
674 * Fetch the guest PDE, PDPE and PML4E.
675 */
676# if PGM_SHW_TYPE == PGM_TYPE_32BIT
677 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
678 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
679
680# elif PGM_SHW_TYPE == PGM_TYPE_PAE
681 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
682 PX86PDPAE pPDDst;
683# if PGM_GST_TYPE == PGM_TYPE_PAE
684 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
685# else
686 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
687# endif
688 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
689
690# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
691 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
692 PX86PDPAE pPDDst;
693# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
694 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
695 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
696# else
697 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
698# endif
699 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
700
701# elif PGM_SHW_TYPE == PGM_TYPE_EPT
702 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
703 PEPTPD pPDDst;
704 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
705 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
706# endif
707 Assert(pPDDst);
708
709# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
710 /*
711 * Dirty page handling.
712 *
713 * If we successfully correct the write protection fault due to dirty bit
714 * tracking, then return immediately.
715 */
716 if (uErr & X86_TRAP_PF_RW) /* write fault? */
717 {
718 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
719 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
720 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
721 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
722 {
723 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
724 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
725 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
726 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
727 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
728 return VINF_SUCCESS;
729 }
730#ifdef DEBUG_bird
731 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests.
732 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto.
733#endif
734 }
735
736# if 0 /* rarely useful; leave for debugging. */
737 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
738# endif
739# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
740
741 /*
742 * A common case is the not-present error caused by lazy page table syncing.
743 *
744 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
745 * here so we can safely assume that the shadow PT is present when calling
746 * SyncPage later.
747 *
748 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
749 * of mapping conflict and defer to SyncCR3 in R3.
750 * (Again, we do NOT support access handlers for non-present guest pages.)
751 *
752 */
753# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
754 Assert(GstWalk.Pde.n.u1Present);
755# endif
756 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
757 && !pPDDst->a[iPDDst].n.u1Present)
758 {
759 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
760# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
761 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
762 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
763# else
764 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
765 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
766# endif
767 if (RT_SUCCESS(rc))
768 return rc;
769 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
770 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
771 return VINF_PGM_SYNC_CR3;
772 }
773
774# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
775 /*
776 * Check if this address is within any of our mappings.
777 *
778 * This is *very* fast and it's gonna save us a bit of effort below and prevent
779 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
780 * (BTW, it's impossible to have physical access handlers in a mapping.)
781 */
782 if (pgmMapAreMappingsEnabled(pVM))
783 {
784 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
785 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
786 {
787 if (pvFault < pMapping->GCPtr)
788 break;
789 if (pvFault - pMapping->GCPtr < pMapping->cb)
790 {
791 /*
792 * The first thing we check is if we've got an undetected conflict.
793 */
794 if (pgmMapAreMappingsFloating(pVM))
795 {
796 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
797 while (iPT-- > 0)
798 if (GstWalk.pPde[iPT].n.u1Present)
799 {
800 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
801 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
802 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
803 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
804 return VINF_PGM_SYNC_CR3;
805 }
806 }
807
808 /*
809 * Check if the fault address is in a virtual page access handler range.
810 */
811 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers,
812 pvFault);
813 if ( pCur
814 && pvFault - pCur->Core.Key < pCur->cb
815 && uErr & X86_TRAP_PF_RW)
816 {
817 VBOXSTRICTRC rcStrict;
818# ifdef IN_RC
819 STAM_PROFILE_START(&pCur->Stat, h);
820 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
821 void *pvUser = pCur->CTX_SUFF(pvUser);
822 pgmUnlock(pVM);
823 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
824 pvFault - pCur->Core.Key, pvUser);
825 pgmLock(pVM);
826 STAM_PROFILE_STOP(&pCur->Stat, h);
827# else
828 AssertFailed();
829 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
830# endif
831 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
832 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
833 return VBOXSTRICTRC_TODO(rcStrict);
834 }
835
836 /*
837 * Pretend we're not here and let the guest handle the trap.
838 */
839 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
840 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
841 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
842 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
843 return VINF_EM_RAW_GUEST_TRAP;
844 }
845 }
846 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
847# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
848
849 /*
850 * Check if this fault address is flagged for special treatment,
851 * which means we'll have to figure out the physical address and
852 * check flags associated with it.
853 *
854 * ASSUME that we can limit any special access handling to pages
855 * in page tables which the guest believes to be present.
856 */
857# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
858 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
859# else
860 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
861# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
862 PPGMPAGE pPage;
863 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
864 if (RT_FAILURE(rc))
865 {
866 /*
867 * When the guest accesses invalid physical memory (e.g. probing
868 * of RAM or accessing a remapped MMIO range), then we'll fall
869 * back to the recompiler to emulate the instruction.
870 */
871 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
872 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
873 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
874 return VINF_EM_RAW_EMULATE_INSTR;
875 }
876
877 /*
878 * Any handlers for this page?
879 */
880 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
881# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
882 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
883 &GstWalk));
884# else
885 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
886# endif
887
888# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
889 if (uErr & X86_TRAP_PF_P)
890 {
891 /*
892 * The page isn't marked, but it might still be monitored by a virtual page access handler.
893 * (ASSUMES no temporary disabling of virtual handlers.)
894 */
895 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
896 * we should correct both the shadow page table and physical memory flags, and not only check for
897 * accesses within the handler region but for access to pages with virtual handlers. */
898 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
899 if (pCur)
900 {
901 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
902 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
903 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
904 || !(uErr & X86_TRAP_PF_P)
905 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
906 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enumKind=%d\n",
907 pvFault, GCPhys, pPage, uErr, pCurType->enmKind));
908
909 if ( pvFault - pCur->Core.Key < pCur->cb
910 && ( uErr & X86_TRAP_PF_RW
911 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
912 {
913 VBOXSTRICTRC rcStrict;
914# ifdef IN_RC
915 STAM_PROFILE_START(&pCur->Stat, h);
916 void *pvUser = pCur->CTX_SUFF(pvUser);
917 pgmUnlock(pVM);
918 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
919 pvFault - pCur->Core.Key, pvUser);
920 pgmLock(pVM);
921 STAM_PROFILE_STOP(&pCur->Stat, h);
922# else
923 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
924# endif
925 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
926 return VBOXSTRICTRC_TODO(rcStrict);
927 }
928 }
929 }
930# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
931
932 /*
933 * We are here only if page is present in Guest page tables and
934 * trap is not handled by our handlers.
935 *
936 * Check it for page out-of-sync situation.
937 */
938 if (!(uErr & X86_TRAP_PF_P))
939 {
940 /*
941 * Page is not present in our page tables. Try to sync it!
942 */
943 if (uErr & X86_TRAP_PF_US)
944 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
945 else /* supervisor */
946 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
947
948 if (PGM_PAGE_IS_BALLOONED(pPage))
949 {
950 /* Emulate reads from ballooned pages as they are not present in
951 our shadow page tables. (Required for e.g. Solaris guests; soft
952 ecc, random nr generator.) */
953 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
954 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
955 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
956 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
957 return rc;
958 }
959
960# if defined(LOG_ENABLED) && !defined(IN_RING0)
961 RTGCPHYS GCPhys2;
962 uint64_t fPageGst2;
963 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
964# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
965 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
966 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
967# else
968 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
969 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
970# endif
971# endif /* LOG_ENABLED */
972
973# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
974 if ( !GstWalk.Core.fEffectiveUS
975 && CSAMIsEnabled(pVM)
976 && CPUMGetGuestCPL(pVCpu) == 0)
977 {
978 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
979 if ( pvFault == (RTGCPTR)pRegFrame->eip
980 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
981# ifdef CSAM_DETECT_NEW_CODE_PAGES
982 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
983 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
984# endif /* CSAM_DETECT_NEW_CODE_PAGES */
985 )
986 {
987 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
988 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
989 if (rc != VINF_SUCCESS)
990 {
991 /*
992 * CSAM needs to perform a job in ring 3.
993 *
994 * Sync the page before going to the host context; otherwise we'll end up in a loop if
995 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
996 */
997 LogFlow(("CSAM ring 3 job\n"));
998 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
999 AssertRC(rc2);
1000
1001 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
1002 return rc;
1003 }
1004 }
1005# ifdef CSAM_DETECT_NEW_CODE_PAGES
1006 else if ( uErr == X86_TRAP_PF_RW
1007 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
1008 && pRegFrame->ecx < 0x10000)
1009 {
1010 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
1011 * to detect loading of new code pages.
1012 */
1013
1014 /*
1015 * Decode the instruction.
1016 */
1017 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
1018 uint32_t cbOp;
1019 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
1020
1021 /* For now we'll restrict this to rep movsw/d instructions */
1022 if ( rc == VINF_SUCCESS
1023 && pDis->pCurInstr->opcode == OP_MOVSWD
1024 && (pDis->prefix & DISPREFIX_REP))
1025 {
1026 CSAMMarkPossibleCodePage(pVM, pvFault);
1027 }
1028 }
1029# endif /* CSAM_DETECT_NEW_CODE_PAGES */
1030
1031 /*
1032 * Mark this page as safe.
1033 */
1034 /** @todo not correct for pages that contain both code and data!! */
1035 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
1036 CSAMMarkPage(pVM, pvFault, true);
1037 }
1038# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
1039# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1040 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
1041# else
1042 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
1043# endif
1044 if (RT_SUCCESS(rc))
1045 {
1046 /* The page was successfully synced, return to the guest. */
1047 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
1048 return VINF_SUCCESS;
1049 }
1050 }
1051 else /* uErr & X86_TRAP_PF_P: */
1052 {
1053 /*
1054 * Write protected pages are made writable when the guest makes the
1055 * first write to it. This happens for pages that are shared, write
1056 * monitored or not yet allocated.
1057 *
1058 * We may also end up here when CR0.WP=0 in the guest.
1059 *
1060 * Also, a side effect of not flushing global PDEs are out of sync
1061 * pages due to physical monitored regions, that are no longer valid.
1062 * Assume for now it only applies to the read/write flag.
1063 */
1064 if (uErr & X86_TRAP_PF_RW)
1065 {
1066 /*
1067 * Check if it is a read-only page.
1068 */
1069 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1070 {
1071 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
1072 Assert(!PGM_PAGE_IS_ZERO(pPage));
1073 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1074 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
1075
1076 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1077 if (rc != VINF_SUCCESS)
1078 {
1079 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
1080 return rc;
1081 }
1082 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
1083 return VINF_EM_NO_MEMORY;
1084 }
1085
1086# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1087 /*
1088 * Check to see if we need to emulate the instruction if CR0.WP=0.
1089 */
1090 if ( !GstWalk.Core.fEffectiveRW
1091 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
1092 && CPUMGetGuestCPL(pVCpu) < 3)
1093 {
1094 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
1095
1096 /*
1097 * The Netware WP0+RO+US hack.
1098 *
1099 * Netware sometimes(/always?) runs with WP0. It has been observed doing
1100 * excessive write accesses to pages which are mapped with US=1 and RW=0
1101 * while WP=0. This causes a lot of exits and extremely slow execution.
1102 * To avoid trapping and emulating every write here, we change the shadow
1103 * page table entry to map it as US=0 and RW=1 until user mode tries to
1104 * access it again (see further below). We count these shadow page table
1105 * changes so we can avoid having to clear the page pool every time the WP
1106 * bit changes to 1 (see PGMCr0WpEnabled()).
1107 */
1108# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
1109 if ( GstWalk.Core.fEffectiveUS
1110 && !GstWalk.Core.fEffectiveRW
1111 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1112 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
1113 {
1114 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, GstWalk.Core.fBigPage));
1115 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, GstWalk.Core.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
1116 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
1117 {
1118 PGM_INVL_PG(pVCpu, pvFault);
1119 pVCpu->pgm.s.cNetwareWp0Hacks++;
1120 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsHack; });
1121 return rc;
1122 }
1123 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
1124 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
1125 }
1126# endif
1127
1128 /* Interpret the access. */
1129 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
1130 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), GstWalk.Core.fBigPage, GstWalk.Core.fEffectiveUS));
1131 if (RT_SUCCESS(rc))
1132 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
1133 else
1134 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
1135 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
1136 return rc;
1137 }
1138# endif
1139 /// @todo count the above case; else
1140 if (uErr & X86_TRAP_PF_US)
1141 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
1142 else /* supervisor */
1143 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1144
1145 /*
1146 * Sync the page.
1147 *
1148 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1149 * page is not present, which is not true in this case.
1150 */
1151# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1152 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1153# else
1154 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1155# endif
1156 if (RT_SUCCESS(rc))
1157 {
1158 /*
1159 * Page was successfully synced, return to guest but invalidate
1160 * the TLB first as the page is very likely to be in it.
1161 */
1162# if PGM_SHW_TYPE == PGM_TYPE_EPT
1163 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1164# else
1165 PGM_INVL_PG(pVCpu, pvFault);
1166# endif
1167# ifdef VBOX_STRICT
1168 RTGCPHYS GCPhys2 = RTGCPHYS_MAX;
1169 uint64_t fPageGst = UINT64_MAX;
1170 if (!pVM->pgm.s.fNestedPaging)
1171 {
1172 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1173 AssertMsg(RT_SUCCESS(rc) && ((fPageGst & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1174 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1175 }
1176# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */
1177 uint64_t fPageShw = 0;
1178 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1179 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1180 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GCPhys2, fPageGst, pvFault));
1181# endif
1182# endif /* VBOX_STRICT */
1183 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1184 return VINF_SUCCESS;
1185 }
1186 }
1187# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1188 /*
1189 * Check for Netware WP0+RO+US hack from above and undo it when user
1190 * mode accesses the page again.
1191 */
1192 else if ( GstWalk.Core.fEffectiveUS
1193 && !GstWalk.Core.fEffectiveRW
1194 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1195 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
1196 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
1197 && CPUMGetGuestCPL(pVCpu) == 3
1198 && pVM->cCpus == 1
1199 )
1200 {
1201 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
1202 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1203 if (RT_SUCCESS(rc))
1204 {
1205 PGM_INVL_PG(pVCpu, pvFault);
1206 pVCpu->pgm.s.cNetwareWp0Hacks--;
1207 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsUnhack; });
1208 return VINF_SUCCESS;
1209 }
1210 }
1211# endif /* PGM_WITH_PAGING */
1212
1213 /** @todo else: why are we here? */
1214
1215# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1216 /*
1217 * Check for VMM page flags vs. Guest page flags consistency.
1218 * Currently only for debug purposes.
1219 */
1220 if (RT_SUCCESS(rc))
1221 {
1222 /* Get guest page flags. */
1223 uint64_t fPageGst;
1224 int rc2 = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1225 if (RT_SUCCESS(rc2))
1226 {
1227 uint64_t fPageShw = 0;
1228 rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1229
1230#if 0
1231 /*
1232 * Compare page flags.
1233 * Note: we have AVL, A, D bits desynced.
1234 */
1235 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1236 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1237 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
1238 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1239 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1240 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
1241 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
1242 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n",
1243 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc));
124401:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
124501:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0
1246
124701:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
124801:01:15.625516 00:08:43.268051 Location :
1249e:\vbox\svn\trunk\srcPage flags mismatch!
1250pvFault=fffff801b0d7b000
1251 uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P
1252GCPhys=0000000019b52000
1253fPageShw=0
1254fPageGst=77b0000000000121
1255rc=0
1256#endif
1257
1258 }
1259 else
1260 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1261 }
1262 else
1263 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1264# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1265 }
1266
1267
1268 /*
1269 * If we get here it is because something failed above, i.e. most like guru
1270 * meditiation time.
1271 */
1272 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1273 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1274 return rc;
1275
1276# else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */
1277 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
1278 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
1279 return VERR_PGM_NOT_USED_IN_MODE;
1280# endif
1281}
1282#endif /* !IN_RING3 */
1283
1284
1285/**
1286 * Emulation of the invlpg instruction.
1287 *
1288 *
1289 * @returns VBox status code.
1290 *
1291 * @param pVCpu The cross context virtual CPU structure.
1292 * @param GCPtrPage Page to invalidate.
1293 *
1294 * @remark ASSUMES that the guest is updating before invalidating. This order
1295 * isn't required by the CPU, so this is speculative and could cause
1296 * trouble.
1297 * @remark No TLB shootdown is done on any other VCPU as we assume that
1298 * invlpg emulation is the *only* reason for calling this function.
1299 * (The guest has to shoot down TLB entries on other CPUs itself)
1300 * Currently true, but keep in mind!
1301 *
1302 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1303 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1304 */
1305PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1306{
1307#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1308 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
1309 && PGM_SHW_TYPE != PGM_TYPE_NONE
1310 int rc;
1311 PVM pVM = pVCpu->CTX_SUFF(pVM);
1312 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1313
1314 PGM_LOCK_ASSERT_OWNER(pVM);
1315
1316 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1317
1318 /*
1319 * Get the shadow PD entry and skip out if this PD isn't present.
1320 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1321 */
1322# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1323 const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT;
1324 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1325
1326 /* Fetch the pgm pool shadow descriptor. */
1327 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1328# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1329 if (!pShwPde)
1330 {
1331 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1332 return VINF_SUCCESS;
1333 }
1334# else
1335 Assert(pShwPde);
1336# endif
1337
1338# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1339 const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT;
1340 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1341
1342 /* If the shadow PDPE isn't present, then skip the invalidate. */
1343# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1344 if (!pPdptDst || !pPdptDst->a[iPdpt].n.u1Present)
1345# else
1346 if (!pPdptDst->a[iPdpt].n.u1Present)
1347# endif
1348 {
1349 Assert(!pPdptDst || !(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1350 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1351 PGM_INVL_PG(pVCpu, GCPtrPage);
1352 return VINF_SUCCESS;
1353 }
1354
1355 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1356 PPGMPOOLPAGE pShwPde = NULL;
1357 PX86PDPAE pPDDst;
1358
1359 /* Fetch the pgm pool shadow descriptor. */
1360 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1361 AssertRCSuccessReturn(rc, rc);
1362 Assert(pShwPde);
1363
1364 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1365 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1366
1367# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1368 /* PML4 */
1369 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1370 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1371 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1372 PX86PDPAE pPDDst;
1373 PX86PDPT pPdptDst;
1374 PX86PML4E pPml4eDst;
1375 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1376 if (rc != VINF_SUCCESS)
1377 {
1378 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1379 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1380 PGM_INVL_PG(pVCpu, GCPtrPage);
1381 return VINF_SUCCESS;
1382 }
1383 Assert(pPDDst);
1384
1385 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1386 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1387
1388 if (!pPdpeDst->n.u1Present)
1389 {
1390 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1391 PGM_INVL_PG(pVCpu, GCPtrPage);
1392 return VINF_SUCCESS;
1393 }
1394
1395 /* Fetch the pgm pool shadow descriptor. */
1396 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1397 Assert(pShwPde);
1398
1399# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1400
1401 const SHWPDE PdeDst = *pPdeDst;
1402 if (!PdeDst.n.u1Present)
1403 {
1404 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1405 PGM_INVL_PG(pVCpu, GCPtrPage);
1406 return VINF_SUCCESS;
1407 }
1408
1409 /*
1410 * Get the guest PD entry and calc big page.
1411 */
1412# if PGM_GST_TYPE == PGM_TYPE_32BIT
1413 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1414 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
1415 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1416# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1417 unsigned iPDSrc = 0;
1418# if PGM_GST_TYPE == PGM_TYPE_PAE
1419 X86PDPE PdpeSrcIgn;
1420 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1421# else /* AMD64 */
1422 PX86PML4E pPml4eSrcIgn;
1423 X86PDPE PdpeSrcIgn;
1424 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1425# endif
1426 GSTPDE PdeSrc;
1427
1428 if (pPDSrc)
1429 PdeSrc = pPDSrc->a[iPDSrc];
1430 else
1431 PdeSrc.u = 0;
1432# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1433 const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE);
1434 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1435 if (fWasBigPage != fIsBigPage)
1436 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1437
1438# ifdef IN_RING3
1439 /*
1440 * If a CR3 Sync is pending we may ignore the invalidate page operation
1441 * depending on the kind of sync and if it's a global page or not.
1442 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1443 */
1444# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1445 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1446 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1447 && fIsBigPage
1448 && PdeSrc.b.u1Global
1449 )
1450 )
1451# else
1452 if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1453# endif
1454 {
1455 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1456 return VINF_SUCCESS;
1457 }
1458# endif /* IN_RING3 */
1459
1460 /*
1461 * Deal with the Guest PDE.
1462 */
1463 rc = VINF_SUCCESS;
1464 if (PdeSrc.n.u1Present)
1465 {
1466 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1467 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1468# ifndef PGM_WITHOUT_MAPPING
1469 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1470 {
1471 /*
1472 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1473 */
1474 Assert(pgmMapAreMappingsEnabled(pVM));
1475 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1476 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1477 }
1478 else
1479# endif /* !PGM_WITHOUT_MAPPING */
1480 if (!fIsBigPage)
1481 {
1482 /*
1483 * 4KB - page.
1484 */
1485 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1486 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1487
1488# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1489 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1490 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1491# endif
1492 if (pShwPage->GCPhys == GCPhys)
1493 {
1494 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1495 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1496
1497 PGSTPT pPTSrc;
1498 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1499 if (RT_SUCCESS(rc))
1500 {
1501 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1502 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1503 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1504 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1505 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1506 GCPtrPage, PteSrc.n.u1Present,
1507 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1508 PteSrc.n.u1User & PdeSrc.n.u1User,
1509 (uint64_t)PteSrc.u,
1510 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1511 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1512 }
1513 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1514 PGM_INVL_PG(pVCpu, GCPtrPage);
1515 }
1516 else
1517 {
1518 /*
1519 * The page table address changed.
1520 */
1521 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1522 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1523 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1524 ASMAtomicWriteSize(pPdeDst, 0);
1525 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1526 PGM_INVL_VCPU_TLBS(pVCpu);
1527 }
1528 }
1529 else
1530 {
1531 /*
1532 * 2/4MB - page.
1533 */
1534 /* Before freeing the page, check if anything really changed. */
1535 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1536 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1537# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1538 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1539 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1540# endif
1541 if ( pShwPage->GCPhys == GCPhys
1542 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1543 {
1544 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1545 /** @todo This test is wrong as it cannot check the G bit!
1546 * FIXME */
1547 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1548 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1549 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1550 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1551 {
1552 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1553 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1554 return VINF_SUCCESS;
1555 }
1556 }
1557
1558 /*
1559 * Ok, the page table is present and it's been changed in the guest.
1560 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1561 * We could do this for some flushes in GC too, but we need an algorithm for
1562 * deciding which 4MB pages containing code likely to be executed very soon.
1563 */
1564 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1565 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1566 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1567 ASMAtomicWriteSize(pPdeDst, 0);
1568 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1569 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1570 }
1571 }
1572 else
1573 {
1574 /*
1575 * Page directory is not present, mark shadow PDE not present.
1576 */
1577 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1578 {
1579 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1580 ASMAtomicWriteSize(pPdeDst, 0);
1581 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1582 PGM_INVL_PG(pVCpu, GCPtrPage);
1583 }
1584 else
1585 {
1586 Assert(pgmMapAreMappingsEnabled(pVM));
1587 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1588 }
1589 }
1590 return rc;
1591
1592#else /* guest real and protected mode, nested + ept, none. */
1593 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1594 NOREF(pVCpu); NOREF(GCPtrPage);
1595 return VINF_SUCCESS;
1596#endif
1597}
1598
1599#if PGM_SHW_TYPE != PGM_TYPE_NONE
1600
1601/**
1602 * Update the tracking of shadowed pages.
1603 *
1604 * @param pVCpu The cross context virtual CPU structure.
1605 * @param pShwPage The shadow page.
1606 * @param HCPhys The physical page we is being dereferenced.
1607 * @param iPte Shadow PTE index
1608 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1609 */
1610DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1611 RTGCPHYS GCPhysPage)
1612{
1613 PVM pVM = pVCpu->CTX_SUFF(pVM);
1614
1615# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1616 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1617 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1618
1619 /* Use the hint we retrieved from the cached guest PT. */
1620 if (pShwPage->fDirty)
1621 {
1622 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1623
1624 Assert(pShwPage->cPresent);
1625 Assert(pPool->cPresent);
1626 pShwPage->cPresent--;
1627 pPool->cPresent--;
1628
1629 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1630 AssertRelease(pPhysPage);
1631 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1632 return;
1633 }
1634# else
1635 NOREF(GCPhysPage);
1636# endif
1637
1638 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1639 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1640
1641 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1642 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1643 * 2. write protect all shadowed pages. I.e. implement caching.
1644 */
1645 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1646
1647 /*
1648 * Find the guest address.
1649 */
1650 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1651 pRam;
1652 pRam = pRam->CTX_SUFF(pNext))
1653 {
1654 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1655 while (iPage-- > 0)
1656 {
1657 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1658 {
1659 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1660
1661 Assert(pShwPage->cPresent);
1662 Assert(pPool->cPresent);
1663 pShwPage->cPresent--;
1664 pPool->cPresent--;
1665
1666 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1667 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1668 return;
1669 }
1670 }
1671 }
1672
1673 for (;;)
1674 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1675}
1676
1677
1678/**
1679 * Update the tracking of shadowed pages.
1680 *
1681 * @param pVCpu The cross context virtual CPU structure.
1682 * @param pShwPage The shadow page.
1683 * @param u16 The top 16-bit of the pPage->HCPhys.
1684 * @param pPage Pointer to the guest page. this will be modified.
1685 * @param iPTDst The index into the shadow table.
1686 */
1687DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1688{
1689 PVM pVM = pVCpu->CTX_SUFF(pVM);
1690
1691 /*
1692 * Just deal with the simple first time here.
1693 */
1694 if (!u16)
1695 {
1696 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1697 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1698 /* Save the page table index. */
1699 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1700 }
1701 else
1702 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1703
1704 /* write back */
1705 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1706 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1707
1708 /* update statistics. */
1709 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1710 pShwPage->cPresent++;
1711 if (pShwPage->iFirstPresent > iPTDst)
1712 pShwPage->iFirstPresent = iPTDst;
1713}
1714
1715
1716/**
1717 * Modifies a shadow PTE to account for access handlers.
1718 *
1719 * @param pVM The cross context VM structure.
1720 * @param pPage The page in question.
1721 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1722 * A (accessed) bit so it can be emulated correctly.
1723 * @param pPteDst The shadow PTE (output). This is temporary storage and
1724 * does not need to be set atomically.
1725 */
1726DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1727{
1728 NOREF(pVM); RT_NOREF_PV(fPteSrc);
1729
1730 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1731 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1732 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1733 {
1734 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1735# if PGM_SHW_TYPE == PGM_TYPE_EPT
1736 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1737 pPteDst->n.u1Present = 1;
1738 pPteDst->n.u1Execute = 1;
1739 pPteDst->n.u1IgnorePAT = 1;
1740 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1741 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1742# else
1743 if (fPteSrc & X86_PTE_A)
1744 {
1745 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1746 SHW_PTE_SET_RO(*pPteDst);
1747 }
1748 else
1749 SHW_PTE_SET(*pPteDst, 0);
1750# endif
1751 }
1752# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1753# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1754 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1755 && ( BTH_IS_NP_ACTIVE(pVM)
1756 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1757# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1758 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1759# endif
1760 )
1761 {
1762 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1763# if PGM_SHW_TYPE == PGM_TYPE_EPT
1764 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1765 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1766 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1767 pPteDst->n.u1Present = 0;
1768 pPteDst->n.u1Write = 1;
1769 pPteDst->n.u1Execute = 0;
1770 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1771 pPteDst->n.u3EMT = 7;
1772# else
1773 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1774 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1775# endif
1776 }
1777# endif
1778# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1779 else
1780 {
1781 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1782 SHW_PTE_SET(*pPteDst, 0);
1783 }
1784 /** @todo count these kinds of entries. */
1785}
1786
1787
1788/**
1789 * Creates a 4K shadow page for a guest page.
1790 *
1791 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1792 * physical address. The PdeSrc argument only the flags are used. No page
1793 * structured will be mapped in this function.
1794 *
1795 * @param pVCpu The cross context virtual CPU structure.
1796 * @param pPteDst Destination page table entry.
1797 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1798 * Can safely assume that only the flags are being used.
1799 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1800 * @param pShwPage Pointer to the shadow page.
1801 * @param iPTDst The index into the shadow table.
1802 *
1803 * @remark Not used for 2/4MB pages!
1804 */
1805# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1806static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1807 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1808# else
1809static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1810 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1811# endif
1812{
1813 PVM pVM = pVCpu->CTX_SUFF(pVM);
1814 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1815
1816# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1817 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1818 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1819
1820 if (pShwPage->fDirty)
1821 {
1822 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1823 PGSTPT pGstPT;
1824
1825 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1826 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1827 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1828 pGstPT->a[iPTDst].u = PteSrc.u;
1829 }
1830# else
1831 Assert(!pShwPage->fDirty);
1832# endif
1833
1834# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1835 if ( PteSrc.n.u1Present
1836 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1837# endif
1838 {
1839# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1840 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1841# endif
1842 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1843
1844 /*
1845 * Find the ram range.
1846 */
1847 PPGMPAGE pPage;
1848 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1849 if (RT_SUCCESS(rc))
1850 {
1851 /* Ignore ballooned pages.
1852 Don't return errors or use a fatal assert here as part of a
1853 shadow sync range might included ballooned pages. */
1854 if (PGM_PAGE_IS_BALLOONED(pPage))
1855 {
1856 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1857 return;
1858 }
1859
1860# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1861 /* Make the page writable if necessary. */
1862 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1863 && ( PGM_PAGE_IS_ZERO(pPage)
1864# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1865 || ( PteSrc.n.u1Write
1866# else
1867 || ( 1
1868# endif
1869 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1870# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1871 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1872# endif
1873# ifdef VBOX_WITH_PAGE_SHARING
1874 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1875# endif
1876 )
1877 )
1878 )
1879 {
1880 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1881 AssertRC(rc);
1882 }
1883# endif
1884
1885 /*
1886 * Make page table entry.
1887 */
1888 SHWPTE PteDst;
1889# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1890 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1891# else
1892 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1893# endif
1894 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1895 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1896 else
1897 {
1898# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1899 /*
1900 * If the page or page directory entry is not marked accessed,
1901 * we mark the page not present.
1902 */
1903 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1904 {
1905 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1906 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1907 SHW_PTE_SET(PteDst, 0);
1908 }
1909 /*
1910 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1911 * when the page is modified.
1912 */
1913 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1914 {
1915 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1916 SHW_PTE_SET(PteDst,
1917 fGstShwPteFlags
1918 | PGM_PAGE_GET_HCPHYS(pPage)
1919 | PGM_PTFLAGS_TRACK_DIRTY);
1920 SHW_PTE_SET_RO(PteDst);
1921 }
1922 else
1923# endif
1924 {
1925 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1926# if PGM_SHW_TYPE == PGM_TYPE_EPT
1927 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1928 PteDst.n.u1Present = 1;
1929 PteDst.n.u1Write = 1;
1930 PteDst.n.u1Execute = 1;
1931 PteDst.n.u1IgnorePAT = 1;
1932 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1933 /* PteDst.n.u1Size = 0 */
1934# else
1935 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1936# endif
1937 }
1938
1939 /*
1940 * Make sure only allocated pages are mapped writable.
1941 */
1942 if ( SHW_PTE_IS_P_RW(PteDst)
1943 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1944 {
1945 /* Still applies to shared pages. */
1946 Assert(!PGM_PAGE_IS_ZERO(pPage));
1947 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1948 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1949 }
1950 }
1951
1952 /*
1953 * Keep user track up to date.
1954 */
1955 if (SHW_PTE_IS_P(PteDst))
1956 {
1957 if (!SHW_PTE_IS_P(*pPteDst))
1958 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1959 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1960 {
1961 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1962 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1963 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1964 }
1965 }
1966 else if (SHW_PTE_IS_P(*pPteDst))
1967 {
1968 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1969 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1970 }
1971
1972 /*
1973 * Update statistics and commit the entry.
1974 */
1975# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1976 if (!PteSrc.n.u1Global)
1977 pShwPage->fSeenNonGlobal = true;
1978# endif
1979 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1980 return;
1981 }
1982
1983/** @todo count these three different kinds. */
1984 Log2(("SyncPageWorker: invalid address in Pte\n"));
1985 }
1986# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1987 else if (!PteSrc.n.u1Present)
1988 Log2(("SyncPageWorker: page not present in Pte\n"));
1989 else
1990 Log2(("SyncPageWorker: invalid Pte\n"));
1991# endif
1992
1993 /*
1994 * The page is not present or the PTE is bad. Replace the shadow PTE by
1995 * an empty entry, making sure to keep the user tracking up to date.
1996 */
1997 if (SHW_PTE_IS_P(*pPteDst))
1998 {
1999 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
2000 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
2001 }
2002 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
2003}
2004
2005
2006/**
2007 * Syncs a guest OS page.
2008 *
2009 * There are no conflicts at this point, neither is there any need for
2010 * page table allocations.
2011 *
2012 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
2013 * When called in AMD64 guest mode, the guest PML4E shall be valid.
2014 *
2015 * @returns VBox status code.
2016 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
2017 * @param pVCpu The cross context virtual CPU structure.
2018 * @param PdeSrc Page directory entry of the guest.
2019 * @param GCPtrPage Guest context page address.
2020 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
2021 * @param uErr Fault error (X86_TRAP_PF_*).
2022 */
2023static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
2024{
2025 PVM pVM = pVCpu->CTX_SUFF(pVM);
2026 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2027 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
2028 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage);
2029
2030 PGM_LOCK_ASSERT_OWNER(pVM);
2031
2032# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2033 || PGM_GST_TYPE == PGM_TYPE_PAE \
2034 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2035 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
2036
2037 /*
2038 * Assert preconditions.
2039 */
2040 Assert(PdeSrc.n.u1Present);
2041 Assert(cPages);
2042# if 0 /* rarely useful; leave for debugging. */
2043 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
2044# endif
2045
2046 /*
2047 * Get the shadow PDE, find the shadow page table in the pool.
2048 */
2049# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2050 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2051 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2052
2053 /* Fetch the pgm pool shadow descriptor. */
2054 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2055 Assert(pShwPde);
2056
2057# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2058 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2059 PPGMPOOLPAGE pShwPde = NULL;
2060 PX86PDPAE pPDDst;
2061
2062 /* Fetch the pgm pool shadow descriptor. */
2063 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2064 AssertRCSuccessReturn(rc2, rc2);
2065 Assert(pShwPde);
2066
2067 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2068 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
2069
2070# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2071 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2072 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2073 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2074 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2075
2076 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2077 AssertRCSuccessReturn(rc2, rc2);
2078 Assert(pPDDst && pPdptDst);
2079 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
2080# endif
2081 SHWPDE PdeDst = *pPdeDst;
2082
2083 /*
2084 * - In the guest SMP case we could have blocked while another VCPU reused
2085 * this page table.
2086 * - With W7-64 we may also take this path when the A bit is cleared on
2087 * higher level tables (PDPE/PML4E). The guest does not invalidate the
2088 * relevant TLB entries. If we're write monitoring any page mapped by
2089 * the modified entry, we may end up here with a "stale" TLB entry.
2090 */
2091 if (!PdeDst.n.u1Present)
2092 {
2093 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
2094 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
2095 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
2096 if (uErr & X86_TRAP_PF_P)
2097 PGM_INVL_PG(pVCpu, GCPtrPage);
2098 return VINF_SUCCESS; /* force the instruction to be executed again. */
2099 }
2100
2101 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2102 Assert(pShwPage);
2103
2104# if PGM_GST_TYPE == PGM_TYPE_AMD64
2105 /* Fetch the pgm pool shadow descriptor. */
2106 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2107 Assert(pShwPde);
2108# endif
2109
2110 /*
2111 * Check that the page is present and that the shadow PDE isn't out of sync.
2112 */
2113 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
2114 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
2115 RTGCPHYS GCPhys;
2116 if (!fBigPage)
2117 {
2118 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2119# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2120 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2121 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2122# endif
2123 }
2124 else
2125 {
2126 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2127# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2128 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2129 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2130# endif
2131 }
2132 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
2133 if ( fPdeValid
2134 && pShwPage->GCPhys == GCPhys
2135 && PdeSrc.n.u1Present
2136 && PdeSrc.n.u1User == PdeDst.n.u1User
2137 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
2138# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2139 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
2140# endif
2141 )
2142 {
2143 /*
2144 * Check that the PDE is marked accessed already.
2145 * Since we set the accessed bit *before* getting here on a #PF, this
2146 * check is only meant for dealing with non-#PF'ing paths.
2147 */
2148 if (PdeSrc.n.u1Accessed)
2149 {
2150 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2151 if (!fBigPage)
2152 {
2153 /*
2154 * 4KB Page - Map the guest page table.
2155 */
2156 PGSTPT pPTSrc;
2157 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2158 if (RT_SUCCESS(rc))
2159 {
2160# ifdef PGM_SYNC_N_PAGES
2161 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2162 if ( cPages > 1
2163 && !(uErr & X86_TRAP_PF_P)
2164 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2165 {
2166 /*
2167 * This code path is currently only taken when the caller is PGMTrap0eHandler
2168 * for non-present pages!
2169 *
2170 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2171 * deal with locality.
2172 */
2173 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2174# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2175 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2176 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2177# else
2178 const unsigned offPTSrc = 0;
2179# endif
2180 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2181 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2182 iPTDst = 0;
2183 else
2184 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2185
2186 for (; iPTDst < iPTDstEnd; iPTDst++)
2187 {
2188 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
2189
2190 if ( pPteSrc->n.u1Present
2191 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2192 {
2193 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
2194 NOREF(GCPtrCurPage);
2195# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2196 /*
2197 * Assuming kernel code will be marked as supervisor - and not as user level
2198 * and executed using a conforming code selector - And marked as readonly.
2199 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2200 */
2201 PPGMPAGE pPage;
2202 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
2203 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
2204 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
2205 || ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK))
2206 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2207 )
2208# endif /* else: CSAM not active */
2209 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
2210 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2211 GCPtrCurPage, pPteSrc->n.u1Present,
2212 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
2213 pPteSrc->n.u1User & PdeSrc.n.u1User,
2214 (uint64_t)pPteSrc->u,
2215 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2216 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2217 }
2218 }
2219 }
2220 else
2221# endif /* PGM_SYNC_N_PAGES */
2222 {
2223 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2224 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2225 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2226 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2227 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2228 GCPtrPage, PteSrc.n.u1Present,
2229 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2230 PteSrc.n.u1User & PdeSrc.n.u1User,
2231 (uint64_t)PteSrc.u,
2232 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2233 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2234 }
2235 }
2236 else /* MMIO or invalid page: emulated in #PF handler. */
2237 {
2238 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2239 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2240 }
2241 }
2242 else
2243 {
2244 /*
2245 * 4/2MB page - lazy syncing shadow 4K pages.
2246 * (There are many causes of getting here, it's no longer only CSAM.)
2247 */
2248 /* Calculate the GC physical address of this 4KB shadow page. */
2249 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2250 /* Find ram range. */
2251 PPGMPAGE pPage;
2252 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2253 if (RT_SUCCESS(rc))
2254 {
2255 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2256
2257# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2258 /* Try to make the page writable if necessary. */
2259 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2260 && ( PGM_PAGE_IS_ZERO(pPage)
2261 || ( PdeSrc.n.u1Write
2262 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2263# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2264 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2265# endif
2266# ifdef VBOX_WITH_PAGE_SHARING
2267 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2268# endif
2269 )
2270 )
2271 )
2272 {
2273 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2274 AssertRC(rc);
2275 }
2276# endif
2277
2278 /*
2279 * Make shadow PTE entry.
2280 */
2281 SHWPTE PteDst;
2282 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2283 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2284 else
2285 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2286
2287 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2288 if ( SHW_PTE_IS_P(PteDst)
2289 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2290 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2291
2292 /* Make sure only allocated pages are mapped writable. */
2293 if ( SHW_PTE_IS_P_RW(PteDst)
2294 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2295 {
2296 /* Still applies to shared pages. */
2297 Assert(!PGM_PAGE_IS_ZERO(pPage));
2298 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2299 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2300 }
2301
2302 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2303
2304 /*
2305 * If the page is not flagged as dirty and is writable, then make it read-only
2306 * at PD level, so we can set the dirty bit when the page is modified.
2307 *
2308 * ASSUMES that page access handlers are implemented on page table entry level.
2309 * Thus we will first catch the dirty access and set PDE.D and restart. If
2310 * there is an access handler, we'll trap again and let it work on the problem.
2311 */
2312 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2313 * As for invlpg, it simply frees the whole shadow PT.
2314 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2315 if ( !PdeSrc.b.u1Dirty
2316 && PdeSrc.b.u1Write)
2317 {
2318 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2319 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2320 PdeDst.n.u1Write = 0;
2321 }
2322 else
2323 {
2324 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2325 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2326 }
2327 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2328 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2329 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2330 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2331 }
2332 else
2333 {
2334 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2335 /** @todo must wipe the shadow page table entry in this
2336 * case. */
2337 }
2338 }
2339 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2340 return VINF_SUCCESS;
2341 }
2342
2343 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2344 }
2345 else if (fPdeValid)
2346 {
2347 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2348 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2349 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2350 }
2351 else
2352 {
2353/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2354 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2355 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2356 }
2357
2358 /*
2359 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2360 * Yea, I'm lazy.
2361 */
2362 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2363 ASMAtomicWriteSize(pPdeDst, 0);
2364
2365 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2366 PGM_INVL_VCPU_TLBS(pVCpu);
2367 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2368
2369
2370# elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2371 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2372 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2373 && !defined(IN_RC)
2374 NOREF(PdeSrc);
2375
2376# ifdef PGM_SYNC_N_PAGES
2377 /*
2378 * Get the shadow PDE, find the shadow page table in the pool.
2379 */
2380# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2381 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2382
2383# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2384 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2385
2386# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2387 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2388 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2389 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2390 X86PDEPAE PdeDst;
2391 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2392
2393 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2394 AssertRCSuccessReturn(rc, rc);
2395 Assert(pPDDst && pPdptDst);
2396 PdeDst = pPDDst->a[iPDDst];
2397# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2398 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2399 PEPTPD pPDDst;
2400 EPTPDE PdeDst;
2401
2402 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2403 if (rc != VINF_SUCCESS)
2404 {
2405 AssertRC(rc);
2406 return rc;
2407 }
2408 Assert(pPDDst);
2409 PdeDst = pPDDst->a[iPDDst];
2410# endif
2411 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2412 if (!PdeDst.n.u1Present)
2413 {
2414 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2415 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2416 return VINF_SUCCESS; /* force the instruction to be executed again. */
2417 }
2418
2419 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2420 if (PdeDst.n.u1Size)
2421 {
2422 Assert(pVM->pgm.s.fNestedPaging);
2423 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2424 return VINF_SUCCESS;
2425 }
2426
2427 /* Mask away the page offset. */
2428 GCPtrPage &= ~((RTGCPTR)0xfff);
2429
2430 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2431 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2432
2433 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2434 if ( cPages > 1
2435 && !(uErr & X86_TRAP_PF_P)
2436 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2437 {
2438 /*
2439 * This code path is currently only taken when the caller is PGMTrap0eHandler
2440 * for non-present pages!
2441 *
2442 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2443 * deal with locality.
2444 */
2445 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2446 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2447 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2448 iPTDst = 0;
2449 else
2450 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2451 for (; iPTDst < iPTDstEnd; iPTDst++)
2452 {
2453 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2454 {
2455 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2456 | (iPTDst << PAGE_SHIFT));
2457
2458 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2459 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2460 GCPtrCurPage,
2461 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2462 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2463
2464 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2465 break;
2466 }
2467 else
2468 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2469 }
2470 }
2471 else
2472# endif /* PGM_SYNC_N_PAGES */
2473 {
2474 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2475 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2476 | (iPTDst << PAGE_SHIFT));
2477
2478 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2479
2480 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2481 GCPtrPage,
2482 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2483 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2484 }
2485 return VINF_SUCCESS;
2486
2487# else
2488 NOREF(PdeSrc);
2489 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2490 return VERR_PGM_NOT_USED_IN_MODE;
2491# endif
2492}
2493
2494#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */
2495#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
2496
2497/**
2498 * CheckPageFault helper for returning a page fault indicating a non-present
2499 * (NP) entry in the page translation structures.
2500 *
2501 * @returns VINF_EM_RAW_GUEST_TRAP.
2502 * @param pVCpu The cross context virtual CPU structure.
2503 * @param uErr The error code of the shadow fault. Corrections to
2504 * TRPM's copy will be made if necessary.
2505 * @param GCPtrPage For logging.
2506 * @param uPageFaultLevel For logging.
2507 */
2508DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2509{
2510 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2511 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2512 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2513 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2514 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2515
2516 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2517 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2518 return VINF_EM_RAW_GUEST_TRAP;
2519}
2520
2521
2522/**
2523 * CheckPageFault helper for returning a page fault indicating a reserved bit
2524 * (RSVD) error in the page translation structures.
2525 *
2526 * @returns VINF_EM_RAW_GUEST_TRAP.
2527 * @param pVCpu The cross context virtual CPU structure.
2528 * @param uErr The error code of the shadow fault. Corrections to
2529 * TRPM's copy will be made if necessary.
2530 * @param GCPtrPage For logging.
2531 * @param uPageFaultLevel For logging.
2532 */
2533DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2534{
2535 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2536 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2537 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2538
2539 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2540 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2541 return VINF_EM_RAW_GUEST_TRAP;
2542}
2543
2544
2545/**
2546 * CheckPageFault helper for returning a page protection fault (P).
2547 *
2548 * @returns VINF_EM_RAW_GUEST_TRAP.
2549 * @param pVCpu The cross context virtual CPU structure.
2550 * @param uErr The error code of the shadow fault. Corrections to
2551 * TRPM's copy will be made if necessary.
2552 * @param GCPtrPage For logging.
2553 * @param uPageFaultLevel For logging.
2554 */
2555DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2556{
2557 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2558 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2559 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2560 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2561
2562 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2563 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2564 return VINF_EM_RAW_GUEST_TRAP;
2565}
2566
2567
2568/**
2569 * Handle dirty bit tracking faults.
2570 *
2571 * @returns VBox status code.
2572 * @param pVCpu The cross context virtual CPU structure.
2573 * @param uErr Page fault error code.
2574 * @param pPdeSrc Guest page directory entry.
2575 * @param pPdeDst Shadow page directory entry.
2576 * @param GCPtrPage Guest context page address.
2577 */
2578static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2579 RTGCPTR GCPtrPage)
2580{
2581 PVM pVM = pVCpu->CTX_SUFF(pVM);
2582 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2583 NOREF(uErr);
2584
2585 PGM_LOCK_ASSERT_OWNER(pVM);
2586
2587 /*
2588 * Handle big page.
2589 */
2590 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2591 {
2592 if ( pPdeDst->n.u1Present
2593 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2594 {
2595 SHWPDE PdeDst = *pPdeDst;
2596
2597 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2598 Assert(pPdeSrc->b.u1Write);
2599
2600 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2601 * fault again and take this path to only invalidate the entry (see below).
2602 */
2603 PdeDst.n.u1Write = 1;
2604 PdeDst.n.u1Accessed = 1;
2605 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2606 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2607 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2608 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2609 }
2610
2611# ifdef IN_RING0
2612 /* Check for stale TLB entry; only applies to the SMP guest case. */
2613 if ( pVM->cCpus > 1
2614 && pPdeDst->n.u1Write
2615 && pPdeDst->n.u1Accessed)
2616 {
2617 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2618 if (pShwPage)
2619 {
2620 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2621 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2622 if (SHW_PTE_IS_P_RW(*pPteDst))
2623 {
2624 /* Stale TLB entry. */
2625 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2626 PGM_INVL_PG(pVCpu, GCPtrPage);
2627 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2628 }
2629 }
2630 }
2631# endif /* IN_RING0 */
2632 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2633 }
2634
2635 /*
2636 * Map the guest page table.
2637 */
2638 PGSTPT pPTSrc;
2639 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2640 if (RT_FAILURE(rc))
2641 {
2642 AssertRC(rc);
2643 return rc;
2644 }
2645
2646 if (pPdeDst->n.u1Present)
2647 {
2648 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2649 const GSTPTE PteSrc = *pPteSrc;
2650
2651#ifdef VBOX_WITH_RAW_MODE_NOT_R0
2652 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2653 * Our individual shadow handlers will provide more information and force a fatal exit.
2654 */
2655 if ( VM_IS_RAW_MODE_ENABLED(pVM)
2656 && MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2657 {
2658 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2659 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2660 }
2661#endif
2662 /*
2663 * Map shadow page table.
2664 */
2665 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2666 if (pShwPage)
2667 {
2668 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2669 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2670 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2671 {
2672 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2673 {
2674 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2675 SHWPTE PteDst = *pPteDst;
2676
2677 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2678 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2679
2680 Assert(PteSrc.n.u1Write);
2681
2682 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2683 * entry will not harm; write access will simply fault again and
2684 * take this path to only invalidate the entry.
2685 */
2686 if (RT_LIKELY(pPage))
2687 {
2688 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2689 {
2690 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2691 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2692 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2693 SHW_PTE_SET_RO(PteDst);
2694 }
2695 else
2696 {
2697 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2698 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2699 {
2700 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2701 AssertRC(rc);
2702 }
2703 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2704 SHW_PTE_SET_RW(PteDst);
2705 else
2706 {
2707 /* Still applies to shared pages. */
2708 Assert(!PGM_PAGE_IS_ZERO(pPage));
2709 SHW_PTE_SET_RO(PteDst);
2710 }
2711 }
2712 }
2713 else
2714 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2715
2716 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2717 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2718 PGM_INVL_PG(pVCpu, GCPtrPage);
2719 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2720 }
2721
2722# ifdef IN_RING0
2723 /* Check for stale TLB entry; only applies to the SMP guest case. */
2724 if ( pVM->cCpus > 1
2725 && SHW_PTE_IS_RW(*pPteDst)
2726 && SHW_PTE_IS_A(*pPteDst))
2727 {
2728 /* Stale TLB entry. */
2729 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2730 PGM_INVL_PG(pVCpu, GCPtrPage);
2731 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2732 }
2733# endif
2734 }
2735 }
2736 else
2737 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2738 }
2739
2740 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2741}
2742
2743#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
2744
2745/**
2746 * Sync a shadow page table.
2747 *
2748 * The shadow page table is not present in the shadow PDE.
2749 *
2750 * Handles mapping conflicts.
2751 *
2752 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2753 * conflict), and Trap0eHandler.
2754 *
2755 * A precondition for this method is that the shadow PDE is not present. The
2756 * caller must take the PGM lock before checking this and continue to hold it
2757 * when calling this method.
2758 *
2759 * @returns VBox status code.
2760 * @param pVCpu The cross context virtual CPU structure.
2761 * @param iPDSrc Page directory index.
2762 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2763 * Assume this is a temporary mapping.
2764 * @param GCPtrPage GC Pointer of the page that caused the fault
2765 */
2766static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2767{
2768 PVM pVM = pVCpu->CTX_SUFF(pVM);
2769 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2770
2771#if 0 /* rarely useful; leave for debugging. */
2772 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2773#endif
2774 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
2775
2776 PGM_LOCK_ASSERT_OWNER(pVM);
2777
2778#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2779 || PGM_GST_TYPE == PGM_TYPE_PAE \
2780 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2781 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
2782 && PGM_SHW_TYPE != PGM_TYPE_NONE
2783 int rc = VINF_SUCCESS;
2784
2785 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2786
2787 /*
2788 * Some input validation first.
2789 */
2790 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2791
2792 /*
2793 * Get the relevant shadow PDE entry.
2794 */
2795# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2796 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2797 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2798
2799 /* Fetch the pgm pool shadow descriptor. */
2800 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2801 Assert(pShwPde);
2802
2803# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2804 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2805 PPGMPOOLPAGE pShwPde = NULL;
2806 PX86PDPAE pPDDst;
2807 PSHWPDE pPdeDst;
2808
2809 /* Fetch the pgm pool shadow descriptor. */
2810 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2811 AssertRCSuccessReturn(rc, rc);
2812 Assert(pShwPde);
2813
2814 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2815 pPdeDst = &pPDDst->a[iPDDst];
2816
2817# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2818 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2819 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2820 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2821 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2822 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2823 AssertRCSuccessReturn(rc, rc);
2824 Assert(pPDDst);
2825 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2826# endif
2827 SHWPDE PdeDst = *pPdeDst;
2828
2829# if PGM_GST_TYPE == PGM_TYPE_AMD64
2830 /* Fetch the pgm pool shadow descriptor. */
2831 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2832 Assert(pShwPde);
2833# endif
2834
2835# ifndef PGM_WITHOUT_MAPPINGS
2836 /*
2837 * Check for conflicts.
2838 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2839 * R3: Simply resolve the conflict.
2840 */
2841 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2842 {
2843 Assert(pgmMapAreMappingsEnabled(pVM));
2844# ifndef IN_RING3
2845 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2846 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2847 return VERR_ADDRESS_CONFLICT;
2848
2849# else /* IN_RING3 */
2850 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2851 Assert(pMapping);
2852# if PGM_GST_TYPE == PGM_TYPE_32BIT
2853 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2854# elif PGM_GST_TYPE == PGM_TYPE_PAE
2855 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2856# else
2857 AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
2858# endif
2859 if (RT_FAILURE(rc))
2860 {
2861 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2862 return rc;
2863 }
2864 PdeDst = *pPdeDst;
2865# endif /* IN_RING3 */
2866 }
2867# endif /* !PGM_WITHOUT_MAPPINGS */
2868 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2869
2870 /*
2871 * Sync the page directory entry.
2872 */
2873 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2874 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2875 if ( PdeSrc.n.u1Present
2876 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2877 {
2878 /*
2879 * Allocate & map the page table.
2880 */
2881 PSHWPT pPTDst;
2882 PPGMPOOLPAGE pShwPage;
2883 RTGCPHYS GCPhys;
2884 if (fPageTable)
2885 {
2886 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2887# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2888 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2889 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2890# endif
2891 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2892 pShwPde->idx, iPDDst, false /*fLockPage*/,
2893 &pShwPage);
2894 }
2895 else
2896 {
2897 PGMPOOLACCESS enmAccess;
2898# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2899 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2900# else
2901 const bool fNoExecute = false;
2902# endif
2903
2904 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2905# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2906 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2907 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2908# endif
2909 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2910 if (PdeSrc.n.u1User)
2911 {
2912 if (PdeSrc.n.u1Write)
2913 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2914 else
2915 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2916 }
2917 else
2918 {
2919 if (PdeSrc.n.u1Write)
2920 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2921 else
2922 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2923 }
2924 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2925 pShwPde->idx, iPDDst, false /*fLockPage*/,
2926 &pShwPage);
2927 }
2928 if (rc == VINF_SUCCESS)
2929 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2930 else if (rc == VINF_PGM_CACHED_PAGE)
2931 {
2932 /*
2933 * The PT was cached, just hook it up.
2934 */
2935 if (fPageTable)
2936 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2937 else
2938 {
2939 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2940 /* (see explanation and assumptions further down.) */
2941 if ( !PdeSrc.b.u1Dirty
2942 && PdeSrc.b.u1Write)
2943 {
2944 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2945 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2946 PdeDst.b.u1Write = 0;
2947 }
2948 }
2949 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2950 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2951 return VINF_SUCCESS;
2952 }
2953 else
2954 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2955 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2956 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2957 * irrelevant at this point. */
2958 PdeDst.u &= X86_PDE_AVL_MASK;
2959 PdeDst.u |= pShwPage->Core.Key;
2960
2961 /*
2962 * Page directory has been accessed (this is a fault situation, remember).
2963 */
2964 /** @todo
2965 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2966 * fault situation. What's more, the Trap0eHandler has already set the
2967 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2968 * might need setting the accessed flag.
2969 *
2970 * The best idea is to leave this change to the caller and add an
2971 * assertion that it's set already. */
2972 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2973 if (fPageTable)
2974 {
2975 /*
2976 * Page table - 4KB.
2977 *
2978 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2979 */
2980 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2981 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2982 PGSTPT pPTSrc;
2983 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2984 if (RT_SUCCESS(rc))
2985 {
2986 /*
2987 * Start by syncing the page directory entry so CSAM's TLB trick works.
2988 */
2989 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2990 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2991 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2992 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2993
2994 /*
2995 * Directory/page user or supervisor privilege: (same goes for read/write)
2996 *
2997 * Directory Page Combined
2998 * U/S U/S U/S
2999 * 0 0 0
3000 * 0 1 0
3001 * 1 0 0
3002 * 1 1 1
3003 *
3004 * Simple AND operation. Table listed for completeness.
3005 *
3006 */
3007 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
3008# ifdef PGM_SYNC_N_PAGES
3009 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
3010 unsigned iPTDst = iPTBase;
3011 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
3012 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
3013 iPTDst = 0;
3014 else
3015 iPTDst -= PGM_SYNC_NR_PAGES / 2;
3016# else /* !PGM_SYNC_N_PAGES */
3017 unsigned iPTDst = 0;
3018 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
3019# endif /* !PGM_SYNC_N_PAGES */
3020 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
3021 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
3022# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3023 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3024 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
3025# else
3026 const unsigned offPTSrc = 0;
3027# endif
3028 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
3029 {
3030 const unsigned iPTSrc = iPTDst + offPTSrc;
3031 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
3032
3033 if (PteSrc.n.u1Present)
3034 {
3035# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3036 /*
3037 * Assuming kernel code will be marked as supervisor - and not as user level
3038 * and executed using a conforming code selector - And marked as readonly.
3039 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
3040 */
3041 PPGMPAGE pPage;
3042 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
3043 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
3044 || ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)))
3045 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3046 )
3047# endif
3048 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
3049 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
3050 GCPtrCur,
3051 PteSrc.n.u1Present,
3052 PteSrc.n.u1Write & PdeSrc.n.u1Write,
3053 PteSrc.n.u1User & PdeSrc.n.u1User,
3054 (uint64_t)PteSrc.u,
3055 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
3056 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
3057 }
3058 /* else: the page table was cleared by the pool */
3059 } /* for PTEs */
3060 }
3061 }
3062 else
3063 {
3064 /*
3065 * Big page - 2/4MB.
3066 *
3067 * We'll walk the ram range list in parallel and optimize lookups.
3068 * We will only sync one shadow page table at a time.
3069 */
3070 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
3071
3072 /**
3073 * @todo It might be more efficient to sync only a part of the 4MB
3074 * page (similar to what we do for 4KB PDs).
3075 */
3076
3077 /*
3078 * Start by syncing the page directory entry.
3079 */
3080 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
3081 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3082
3083 /*
3084 * If the page is not flagged as dirty and is writable, then make it read-only
3085 * at PD level, so we can set the dirty bit when the page is modified.
3086 *
3087 * ASSUMES that page access handlers are implemented on page table entry level.
3088 * Thus we will first catch the dirty access and set PDE.D and restart. If
3089 * there is an access handler, we'll trap again and let it work on the problem.
3090 */
3091 /** @todo move the above stuff to a section in the PGM documentation. */
3092 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
3093 if ( !PdeSrc.b.u1Dirty
3094 && PdeSrc.b.u1Write)
3095 {
3096 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
3097 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
3098 PdeDst.b.u1Write = 0;
3099 }
3100 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3101 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3102
3103 /*
3104 * Fill the shadow page table.
3105 */
3106 /* Get address and flags from the source PDE. */
3107 SHWPTE PteDstBase;
3108 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
3109
3110 /* Loop thru the entries in the shadow PT. */
3111 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
3112 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
3113 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
3114 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
3115 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
3116 unsigned iPTDst = 0;
3117 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3118 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
3119 {
3120 if (pRam && GCPhys >= pRam->GCPhys)
3121 {
3122# ifndef PGM_WITH_A20
3123 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
3124# endif
3125 do
3126 {
3127 /* Make shadow PTE. */
3128# ifdef PGM_WITH_A20
3129 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3130# else
3131 PPGMPAGE pPage = &pRam->aPages[iHCPage];
3132# endif
3133 SHWPTE PteDst;
3134
3135# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3136 /* Try to make the page writable if necessary. */
3137 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
3138 && ( PGM_PAGE_IS_ZERO(pPage)
3139 || ( SHW_PTE_IS_RW(PteDstBase)
3140 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
3141# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
3142 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
3143# endif
3144# ifdef VBOX_WITH_PAGE_SHARING
3145 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
3146# endif
3147 && !PGM_PAGE_IS_BALLOONED(pPage))
3148 )
3149 )
3150 {
3151 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
3152 AssertRCReturn(rc, rc);
3153 if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
3154 break;
3155 }
3156# endif
3157
3158 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3159 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
3160 else if (PGM_PAGE_IS_BALLOONED(pPage))
3161 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
3162# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3163 /*
3164 * Assuming kernel code will be marked as supervisor and not as user level and executed
3165 * using a conforming code selector. Don't check for readonly, as that implies the whole
3166 * 4MB can be code or readonly data. Linux enables write access for its large pages.
3167 */
3168 else if ( !PdeSrc.n.u1User
3169 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
3170 SHW_PTE_SET(PteDst, 0);
3171# endif
3172 else
3173 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
3174
3175 /* Only map writable pages writable. */
3176 if ( SHW_PTE_IS_P_RW(PteDst)
3177 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
3178 {
3179 /* Still applies to shared pages. */
3180 Assert(!PGM_PAGE_IS_ZERO(pPage));
3181 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
3182 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
3183 }
3184
3185 if (SHW_PTE_IS_P(PteDst))
3186 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
3187
3188 /* commit it (not atomic, new table) */
3189 pPTDst->a[iPTDst] = PteDst;
3190 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
3191 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
3192 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
3193
3194 /* advance */
3195 GCPhys += PAGE_SIZE;
3196 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
3197# ifndef PGM_WITH_A20
3198 iHCPage++;
3199# endif
3200 iPTDst++;
3201 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3202 && GCPhys <= pRam->GCPhysLast);
3203
3204 /* Advance ram range list. */
3205 while (pRam && GCPhys > pRam->GCPhysLast)
3206 pRam = pRam->CTX_SUFF(pNext);
3207 }
3208 else if (pRam)
3209 {
3210 Log(("Invalid pages at %RGp\n", GCPhys));
3211 do
3212 {
3213 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3214 GCPhys += PAGE_SIZE;
3215 iPTDst++;
3216 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3217 && GCPhys < pRam->GCPhys);
3218 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3219 }
3220 else
3221 {
3222 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3223 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3224 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3225 }
3226 } /* while more PTEs */
3227 } /* 4KB / 4MB */
3228 }
3229 else
3230 AssertRelease(!PdeDst.n.u1Present);
3231
3232 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3233 if (RT_FAILURE(rc))
3234 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3235 return rc;
3236
3237#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3238 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
3239 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3240 && PGM_SHW_TYPE != PGM_TYPE_NONE \
3241 && !defined(IN_RC)
3242 NOREF(iPDSrc); NOREF(pPDSrc);
3243
3244 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3245
3246 /*
3247 * Validate input a little bit.
3248 */
3249 int rc = VINF_SUCCESS;
3250# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3251 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3252 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3253
3254 /* Fetch the pgm pool shadow descriptor. */
3255 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3256 Assert(pShwPde);
3257
3258# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3259 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3260 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3261 PX86PDPAE pPDDst;
3262 PSHWPDE pPdeDst;
3263
3264 /* Fetch the pgm pool shadow descriptor. */
3265 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3266 AssertRCSuccessReturn(rc, rc);
3267 Assert(pShwPde);
3268
3269 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3270 pPdeDst = &pPDDst->a[iPDDst];
3271
3272# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3273 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3274 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3275 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3276 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3277 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3278 AssertRCSuccessReturn(rc, rc);
3279 Assert(pPDDst);
3280 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3281
3282 /* Fetch the pgm pool shadow descriptor. */
3283 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3284 Assert(pShwPde);
3285
3286# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3287 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3288 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3289 PEPTPD pPDDst;
3290 PEPTPDPT pPdptDst;
3291
3292 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3293 if (rc != VINF_SUCCESS)
3294 {
3295 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3296 AssertRC(rc);
3297 return rc;
3298 }
3299 Assert(pPDDst);
3300 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3301
3302 /* Fetch the pgm pool shadow descriptor. */
3303 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3304 Assert(pShwPde);
3305# endif
3306 SHWPDE PdeDst = *pPdeDst;
3307
3308 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3309 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3310
3311# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3312 if ( BTH_IS_NP_ACTIVE(pVM)
3313 && !VM_IS_NEM_ENABLED(pVM)) /** @todo NEM: Large page support. */
3314 {
3315 /* Check if we allocated a big page before for this 2 MB range. */
3316 PPGMPAGE pPage;
3317 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3318 if (RT_SUCCESS(rc))
3319 {
3320 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3321 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3322 {
3323 if (PGM_A20_IS_ENABLED(pVCpu))
3324 {
3325 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3326 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3327 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3328 }
3329 else
3330 {
3331 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3332 pVM->pgm.s.cLargePagesDisabled++;
3333 }
3334 }
3335 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3336 && PGM_A20_IS_ENABLED(pVCpu))
3337 {
3338 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3339 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3340 if (RT_SUCCESS(rc))
3341 {
3342 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3343 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3344 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3345 }
3346 }
3347 else if ( PGMIsUsingLargePages(pVM)
3348 && PGM_A20_IS_ENABLED(pVCpu))
3349 {
3350 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3351 if (RT_SUCCESS(rc))
3352 {
3353 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3354 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3355 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3356 }
3357 else
3358 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3359 }
3360
3361 if (HCPhys != NIL_RTHCPHYS)
3362 {
3363 PdeDst.u &= X86_PDE_AVL_MASK;
3364 PdeDst.u |= HCPhys;
3365 PdeDst.n.u1Present = 1;
3366 PdeDst.n.u1Write = 1;
3367 PdeDst.b.u1Size = 1;
3368# if PGM_SHW_TYPE == PGM_TYPE_EPT
3369 PdeDst.n.u1Execute = 1;
3370 PdeDst.b.u1IgnorePAT = 1;
3371 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3372# else
3373 PdeDst.n.u1User = 1;
3374# endif
3375 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3376
3377 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3378 /* Add a reference to the first page only. */
3379 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3380
3381 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3382 return VINF_SUCCESS;
3383 }
3384 }
3385 }
3386# endif /* HC_ARCH_BITS == 64 */
3387
3388 /*
3389 * Allocate & map the page table.
3390 */
3391 PSHWPT pPTDst;
3392 PPGMPOOLPAGE pShwPage;
3393 RTGCPHYS GCPhys;
3394
3395 /* Virtual address = physical address */
3396 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3397 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3398 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3399 &pShwPage);
3400 if ( rc == VINF_SUCCESS
3401 || rc == VINF_PGM_CACHED_PAGE)
3402 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3403 else
3404 {
3405 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3406 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3407 }
3408
3409 if (rc == VINF_SUCCESS)
3410 {
3411 /* New page table; fully set it up. */
3412 Assert(pPTDst);
3413
3414 /* Mask away the page offset. */
3415 GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3416
3417 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3418 {
3419 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3420 | (iPTDst << PAGE_SHIFT));
3421
3422 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3423 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3424 GCPtrCurPage,
3425 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3426 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3427
3428 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
3429 break;
3430 }
3431 }
3432 else
3433 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3434
3435 /* Save the new PDE. */
3436 PdeDst.u &= X86_PDE_AVL_MASK;
3437 PdeDst.u |= pShwPage->Core.Key;
3438 PdeDst.n.u1Present = 1;
3439 PdeDst.n.u1Write = 1;
3440# if PGM_SHW_TYPE == PGM_TYPE_EPT
3441 PdeDst.n.u1Execute = 1;
3442# else
3443 PdeDst.n.u1User = 1;
3444 PdeDst.n.u1Accessed = 1;
3445# endif
3446 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3447
3448 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3449 if (RT_FAILURE(rc))
3450 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3451 return rc;
3452
3453#else
3454 NOREF(iPDSrc); NOREF(pPDSrc);
3455 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3456 return VERR_PGM_NOT_USED_IN_MODE;
3457#endif
3458}
3459
3460
3461
3462/**
3463 * Prefetch a page/set of pages.
3464 *
3465 * Typically used to sync commonly used pages before entering raw mode
3466 * after a CR3 reload.
3467 *
3468 * @returns VBox status code.
3469 * @param pVCpu The cross context virtual CPU structure.
3470 * @param GCPtrPage Page to invalidate.
3471 */
3472PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3473{
3474#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3475 || PGM_GST_TYPE == PGM_TYPE_REAL \
3476 || PGM_GST_TYPE == PGM_TYPE_PROT \
3477 || PGM_GST_TYPE == PGM_TYPE_PAE \
3478 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3479 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3480 && PGM_SHW_TYPE != PGM_TYPE_NONE
3481 /*
3482 * Check that all Guest levels thru the PDE are present, getting the
3483 * PD and PDE in the processes.
3484 */
3485 int rc = VINF_SUCCESS;
3486# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3487# if PGM_GST_TYPE == PGM_TYPE_32BIT
3488 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3489 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3490# elif PGM_GST_TYPE == PGM_TYPE_PAE
3491 unsigned iPDSrc;
3492 X86PDPE PdpeSrc;
3493 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3494 if (!pPDSrc)
3495 return VINF_SUCCESS; /* not present */
3496# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3497 unsigned iPDSrc;
3498 PX86PML4E pPml4eSrc;
3499 X86PDPE PdpeSrc;
3500 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3501 if (!pPDSrc)
3502 return VINF_SUCCESS; /* not present */
3503# endif
3504 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3505# else
3506 PGSTPD pPDSrc = NULL;
3507 const unsigned iPDSrc = 0;
3508 GSTPDE PdeSrc;
3509
3510 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3511 PdeSrc.n.u1Present = 1;
3512 PdeSrc.n.u1Write = 1;
3513 PdeSrc.n.u1Accessed = 1;
3514 PdeSrc.n.u1User = 1;
3515# endif
3516
3517 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3518 {
3519 PVM pVM = pVCpu->CTX_SUFF(pVM);
3520 pgmLock(pVM);
3521
3522# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3523 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3524# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3525 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3526 PX86PDPAE pPDDst;
3527 X86PDEPAE PdeDst;
3528# if PGM_GST_TYPE != PGM_TYPE_PAE
3529 X86PDPE PdpeSrc;
3530
3531 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3532 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3533# endif
3534 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3535 if (rc != VINF_SUCCESS)
3536 {
3537 pgmUnlock(pVM);
3538 AssertRC(rc);
3539 return rc;
3540 }
3541 Assert(pPDDst);
3542 PdeDst = pPDDst->a[iPDDst];
3543
3544# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3545 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3546 PX86PDPAE pPDDst;
3547 X86PDEPAE PdeDst;
3548
3549# if PGM_GST_TYPE == PGM_TYPE_PROT
3550 /* AMD-V nested paging */
3551 X86PML4E Pml4eSrc;
3552 X86PDPE PdpeSrc;
3553 PX86PML4E pPml4eSrc = &Pml4eSrc;
3554
3555 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3556 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3557 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3558# endif
3559
3560 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3561 if (rc != VINF_SUCCESS)
3562 {
3563 pgmUnlock(pVM);
3564 AssertRC(rc);
3565 return rc;
3566 }
3567 Assert(pPDDst);
3568 PdeDst = pPDDst->a[iPDDst];
3569# endif
3570 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3571 {
3572 if (!PdeDst.n.u1Present)
3573 {
3574 /** @todo r=bird: This guy will set the A bit on the PDE,
3575 * probably harmless. */
3576 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3577 }
3578 else
3579 {
3580 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3581 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3582 * makes no sense to prefetch more than one page.
3583 */
3584 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3585 if (RT_SUCCESS(rc))
3586 rc = VINF_SUCCESS;
3587 }
3588 }
3589 pgmUnlock(pVM);
3590 }
3591 return rc;
3592
3593#elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3594 NOREF(pVCpu); NOREF(GCPtrPage);
3595 return VINF_SUCCESS; /* ignore */
3596#else
3597 AssertCompile(0);
3598#endif
3599}
3600
3601
3602
3603
3604/**
3605 * Syncs a page during a PGMVerifyAccess() call.
3606 *
3607 * @returns VBox status code (informational included).
3608 * @param pVCpu The cross context virtual CPU structure.
3609 * @param GCPtrPage The address of the page to sync.
3610 * @param fPage The effective guest page flags.
3611 * @param uErr The trap error code.
3612 * @remarks This will normally never be called on invalid guest page
3613 * translation entries.
3614 */
3615PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3616{
3617 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3618
3619 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3620 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr);
3621
3622 Assert(!pVM->pgm.s.fNestedPaging);
3623#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3624 || PGM_GST_TYPE == PGM_TYPE_REAL \
3625 || PGM_GST_TYPE == PGM_TYPE_PROT \
3626 || PGM_GST_TYPE == PGM_TYPE_PAE \
3627 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3628 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3629 && PGM_SHW_TYPE != PGM_TYPE_NONE
3630
3631# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3632 if (!(fPage & X86_PTE_US))
3633 {
3634 /*
3635 * Mark this page as safe.
3636 */
3637 /** @todo not correct for pages that contain both code and data!! */
3638 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3639 CSAMMarkPage(pVM, GCPtrPage, true);
3640 }
3641# endif
3642
3643 /*
3644 * Get guest PD and index.
3645 */
3646 /** @todo Performance: We've done all this a jiffy ago in the
3647 * PGMGstGetPage call. */
3648# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3649# if PGM_GST_TYPE == PGM_TYPE_32BIT
3650 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3651 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3652
3653# elif PGM_GST_TYPE == PGM_TYPE_PAE
3654 unsigned iPDSrc = 0;
3655 X86PDPE PdpeSrc;
3656 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3657 if (RT_UNLIKELY(!pPDSrc))
3658 {
3659 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3660 return VINF_EM_RAW_GUEST_TRAP;
3661 }
3662
3663# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3664 unsigned iPDSrc = 0; /* shut up gcc */
3665 PX86PML4E pPml4eSrc = NULL; /* ditto */
3666 X86PDPE PdpeSrc;
3667 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3668 if (RT_UNLIKELY(!pPDSrc))
3669 {
3670 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3671 return VINF_EM_RAW_GUEST_TRAP;
3672 }
3673# endif
3674
3675# else /* !PGM_WITH_PAGING */
3676 PGSTPD pPDSrc = NULL;
3677 const unsigned iPDSrc = 0;
3678# endif /* !PGM_WITH_PAGING */
3679 int rc = VINF_SUCCESS;
3680
3681 pgmLock(pVM);
3682
3683 /*
3684 * First check if the shadow pd is present.
3685 */
3686# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3687 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3688
3689# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3690 PX86PDEPAE pPdeDst;
3691 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3692 PX86PDPAE pPDDst;
3693# if PGM_GST_TYPE != PGM_TYPE_PAE
3694 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3695 X86PDPE PdpeSrc;
3696 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3697# endif
3698 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3699 if (rc != VINF_SUCCESS)
3700 {
3701 pgmUnlock(pVM);
3702 AssertRC(rc);
3703 return rc;
3704 }
3705 Assert(pPDDst);
3706 pPdeDst = &pPDDst->a[iPDDst];
3707
3708# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3709 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3710 PX86PDPAE pPDDst;
3711 PX86PDEPAE pPdeDst;
3712
3713# if PGM_GST_TYPE == PGM_TYPE_PROT
3714 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3715 X86PML4E Pml4eSrc;
3716 X86PDPE PdpeSrc;
3717 PX86PML4E pPml4eSrc = &Pml4eSrc;
3718 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3719 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3720# endif
3721
3722 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3723 if (rc != VINF_SUCCESS)
3724 {
3725 pgmUnlock(pVM);
3726 AssertRC(rc);
3727 return rc;
3728 }
3729 Assert(pPDDst);
3730 pPdeDst = &pPDDst->a[iPDDst];
3731# endif
3732
3733 if (!pPdeDst->n.u1Present)
3734 {
3735 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3736 if (rc != VINF_SUCCESS)
3737 {
3738 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3739 pgmUnlock(pVM);
3740 AssertRC(rc);
3741 return rc;
3742 }
3743 }
3744
3745# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3746 /* Check for dirty bit fault */
3747 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3748 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3749 Log(("PGMVerifyAccess: success (dirty)\n"));
3750 else
3751# endif
3752 {
3753# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3754 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3755# else
3756 GSTPDE PdeSrc;
3757 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3758 PdeSrc.n.u1Present = 1;
3759 PdeSrc.n.u1Write = 1;
3760 PdeSrc.n.u1Accessed = 1;
3761 PdeSrc.n.u1User = 1;
3762# endif
3763
3764 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3765 if (uErr & X86_TRAP_PF_US)
3766 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3767 else /* supervisor */
3768 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3769
3770 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3771 if (RT_SUCCESS(rc))
3772 {
3773 /* Page was successfully synced */
3774 Log2(("PGMVerifyAccess: success (sync)\n"));
3775 rc = VINF_SUCCESS;
3776 }
3777 else
3778 {
3779 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3780 rc = VINF_EM_RAW_GUEST_TRAP;
3781 }
3782 }
3783 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3784 pgmUnlock(pVM);
3785 return rc;
3786
3787#else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
3788
3789 AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3790 return VERR_PGM_NOT_USED_IN_MODE;
3791#endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
3792}
3793
3794
3795/**
3796 * Syncs the paging hierarchy starting at CR3.
3797 *
3798 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
3799 * informational status codes.
3800 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
3801 * the VMM into guest context.
3802 * @param pVCpu The cross context virtual CPU structure.
3803 * @param cr0 Guest context CR0 register.
3804 * @param cr3 Guest context CR3 register. Not subjected to the A20
3805 * mask.
3806 * @param cr4 Guest context CR4 register.
3807 * @param fGlobal Including global page directories or not
3808 */
3809PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3810{
3811 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3812 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3813
3814 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3815
3816#if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
3817
3818 pgmLock(pVM);
3819
3820# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3821 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3822 if (pPool->cDirtyPages)
3823 pgmPoolResetDirtyPages(pVM);
3824# endif
3825
3826 /*
3827 * Update page access handlers.
3828 * The virtual are always flushed, while the physical are only on demand.
3829 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3830 * have to look into that later because it will have a bad influence on the performance.
3831 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3832 * bird: Yes, but that won't work for aliases.
3833 */
3834 /** @todo this MUST go away. See @bugref{1557}. */
3835 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3836 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3837 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3838 pgmUnlock(pVM);
3839#endif /* !NESTED && !EPT */
3840
3841#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3842 /*
3843 * Nested / EPT / None - No work.
3844 */
3845 Assert(!pgmMapAreMappingsEnabled(pVM));
3846 return VINF_SUCCESS;
3847
3848#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3849 /*
3850 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3851 * out the shadow parts when the guest modifies its tables.
3852 */
3853 Assert(!pgmMapAreMappingsEnabled(pVM));
3854 return VINF_SUCCESS;
3855
3856#else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3857
3858# ifndef PGM_WITHOUT_MAPPINGS
3859 /*
3860 * Check for and resolve conflicts with our guest mappings if they
3861 * are enabled and not fixed.
3862 */
3863 if (pgmMapAreMappingsFloating(pVM))
3864 {
3865 int rc = pgmMapResolveConflicts(pVM);
3866 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3867 if (rc == VINF_SUCCESS)
3868 { /* likely */ }
3869 else if (rc == VINF_PGM_SYNC_CR3)
3870 {
3871 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3872 return VINF_PGM_SYNC_CR3;
3873 }
3874 else if (RT_FAILURE(rc))
3875 return rc;
3876 else
3877 AssertMsgFailed(("%Rrc\n", rc));
3878 }
3879# else
3880 Assert(!pgmMapAreMappingsEnabled(pVM));
3881# endif
3882 return VINF_SUCCESS;
3883#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3884}
3885
3886
3887
3888
3889#ifdef VBOX_STRICT
3890# ifdef IN_RC
3891# undef AssertMsgFailed
3892# define AssertMsgFailed Log
3893# endif
3894
3895/**
3896 * Checks that the shadow page table is in sync with the guest one.
3897 *
3898 * @returns The number of errors.
3899 * @param pVCpu The cross context virtual CPU structure.
3900 * @param cr3 Guest context CR3 register.
3901 * @param cr4 Guest context CR4 register.
3902 * @param GCPtr Where to start. Defaults to 0.
3903 * @param cb How much to check. Defaults to everything.
3904 */
3905PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3906{
3907 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3908#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3909 return 0;
3910#else
3911 unsigned cErrors = 0;
3912 PVM pVM = pVCpu->CTX_SUFF(pVM);
3913 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3914
3915# if PGM_GST_TYPE == PGM_TYPE_PAE
3916 /** @todo currently broken; crashes below somewhere */
3917 AssertFailed();
3918# endif
3919
3920# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3921 || PGM_GST_TYPE == PGM_TYPE_PAE \
3922 || PGM_GST_TYPE == PGM_TYPE_AMD64
3923
3924 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3925 PPGMCPU pPGM = &pVCpu->pgm.s;
3926 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3927 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3928# ifndef IN_RING0
3929 RTHCPHYS HCPhys; /* general usage. */
3930# endif
3931 int rc;
3932
3933 /*
3934 * Check that the Guest CR3 and all its mappings are correct.
3935 */
3936 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3937 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3938 false);
3939# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3940# if PGM_GST_TYPE == PGM_TYPE_32BIT
3941 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3942# else
3943 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3944# endif
3945 AssertRCReturn(rc, 1);
3946 HCPhys = NIL_RTHCPHYS;
3947 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3948 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3949# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3950 pgmGstGet32bitPDPtr(pVCpu);
3951 RTGCPHYS GCPhys;
3952 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3953 AssertRCReturn(rc, 1);
3954 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3955# endif
3956# endif /* !IN_RING0 */
3957
3958 /*
3959 * Get and check the Shadow CR3.
3960 */
3961# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3962 unsigned cPDEs = X86_PG_ENTRIES;
3963 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3964# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3965# if PGM_GST_TYPE == PGM_TYPE_32BIT
3966 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3967# else
3968 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3969# endif
3970 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3971# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3972 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3973 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3974# endif
3975 if (cb != ~(RTGCPTR)0)
3976 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3977
3978/** @todo call the other two PGMAssert*() functions. */
3979
3980# if PGM_GST_TYPE == PGM_TYPE_AMD64
3981 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3982
3983 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3984 {
3985 PPGMPOOLPAGE pShwPdpt = NULL;
3986 PX86PML4E pPml4eSrc;
3987 PX86PML4E pPml4eDst;
3988 RTGCPHYS GCPhysPdptSrc;
3989
3990 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3991 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3992
3993 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3994 if (!pPml4eDst->n.u1Present)
3995 {
3996 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3997 continue;
3998 }
3999
4000 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
4001 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
4002
4003 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
4004 {
4005 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
4006 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4007 cErrors++;
4008 continue;
4009 }
4010
4011 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
4012 {
4013 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
4014 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4015 cErrors++;
4016 continue;
4017 }
4018
4019 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
4020 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
4021 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
4022 {
4023 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
4024 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4025 cErrors++;
4026 continue;
4027 }
4028# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
4029 {
4030# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
4031
4032# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
4033 /*
4034 * Check the PDPTEs too.
4035 */
4036 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
4037
4038 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
4039 {
4040 unsigned iPDSrc = 0; /* initialized to shut up gcc */
4041 PPGMPOOLPAGE pShwPde = NULL;
4042 PX86PDPE pPdpeDst;
4043 RTGCPHYS GCPhysPdeSrc;
4044 X86PDPE PdpeSrc;
4045 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
4046# if PGM_GST_TYPE == PGM_TYPE_PAE
4047 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
4048 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
4049# else
4050 PX86PML4E pPml4eSrcIgn;
4051 PX86PDPT pPdptDst;
4052 PX86PDPAE pPDDst;
4053 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
4054
4055 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
4056 if (rc != VINF_SUCCESS)
4057 {
4058 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
4059 GCPtr += 512 * _2M;
4060 continue; /* next PDPTE */
4061 }
4062 Assert(pPDDst);
4063# endif
4064 Assert(iPDSrc == 0);
4065
4066 pPdpeDst = &pPdptDst->a[iPdpt];
4067
4068 if (!pPdpeDst->n.u1Present)
4069 {
4070 GCPtr += 512 * _2M;
4071 continue; /* next PDPTE */
4072 }
4073
4074 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
4075 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
4076
4077 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
4078 {
4079 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4080 GCPtr += 512 * _2M;
4081 cErrors++;
4082 continue;
4083 }
4084
4085 if (GCPhysPdeSrc != pShwPde->GCPhys)
4086 {
4087# if PGM_GST_TYPE == PGM_TYPE_AMD64
4088 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
4089# else
4090 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
4091# endif
4092 GCPtr += 512 * _2M;
4093 cErrors++;
4094 continue;
4095 }
4096
4097# if PGM_GST_TYPE == PGM_TYPE_AMD64
4098 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
4099 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
4100 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
4101 {
4102 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4103 GCPtr += 512 * _2M;
4104 cErrors++;
4105 continue;
4106 }
4107# endif
4108
4109# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4110 {
4111# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4112# if PGM_GST_TYPE == PGM_TYPE_32BIT
4113 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
4114# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4115 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
4116# endif
4117# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
4118 /*
4119 * Iterate the shadow page directory.
4120 */
4121 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
4122 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
4123
4124 for (;
4125 iPDDst < cPDEs;
4126 iPDDst++, GCPtr += cIncrement)
4127 {
4128# if PGM_SHW_TYPE == PGM_TYPE_PAE
4129 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
4130# else
4131 const SHWPDE PdeDst = pPDDst->a[iPDDst];
4132# endif
4133 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
4134 {
4135 Assert(pgmMapAreMappingsEnabled(pVM));
4136 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
4137 {
4138 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
4139 cErrors++;
4140 continue;
4141 }
4142 }
4143 else if ( (PdeDst.u & X86_PDE_P)
4144 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
4145 )
4146 {
4147 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
4148 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
4149 if (!pPoolPage)
4150 {
4151 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4152 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4153 cErrors++;
4154 continue;
4155 }
4156 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
4157
4158 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4159 {
4160 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4161 GCPtr, (uint64_t)PdeDst.u));
4162 cErrors++;
4163 }
4164
4165 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4166 {
4167 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4168 GCPtr, (uint64_t)PdeDst.u));
4169 cErrors++;
4170 }
4171
4172 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4173 if (!PdeSrc.n.u1Present)
4174 {
4175 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4176 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4177 cErrors++;
4178 continue;
4179 }
4180
4181 if ( !PdeSrc.b.u1Size
4182 || !fBigPagesSupported)
4183 {
4184 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
4185# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4186 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
4187# endif
4188 }
4189 else
4190 {
4191# if PGM_GST_TYPE == PGM_TYPE_32BIT
4192 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4193 {
4194 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4195 GCPtr, (uint64_t)PdeSrc.u));
4196 cErrors++;
4197 continue;
4198 }
4199# endif
4200 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
4201# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4202 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
4203# endif
4204 }
4205
4206 if ( pPoolPage->enmKind
4207 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4208 {
4209 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4210 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4211 cErrors++;
4212 }
4213
4214 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4215 if (!pPhysPage)
4216 {
4217 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4218 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4219 cErrors++;
4220 continue;
4221 }
4222
4223 if (GCPhysGst != pPoolPage->GCPhys)
4224 {
4225 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4226 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4227 cErrors++;
4228 continue;
4229 }
4230
4231 if ( !PdeSrc.b.u1Size
4232 || !fBigPagesSupported)
4233 {
4234 /*
4235 * Page Table.
4236 */
4237 const GSTPT *pPTSrc;
4238 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
4239 &pPTSrc);
4240 if (RT_FAILURE(rc))
4241 {
4242 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4243 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4244 cErrors++;
4245 continue;
4246 }
4247 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4248 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4249 {
4250 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4251 // (This problem will go away when/if we shadow multiple CR3s.)
4252 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4253 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4254 cErrors++;
4255 continue;
4256 }
4257 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4258 {
4259 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4260 GCPtr, (uint64_t)PdeDst.u));
4261 cErrors++;
4262 continue;
4263 }
4264
4265 /* iterate the page table. */
4266# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4267 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4268 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4269# else
4270 const unsigned offPTSrc = 0;
4271# endif
4272 for (unsigned iPT = 0, off = 0;
4273 iPT < RT_ELEMENTS(pPTDst->a);
4274 iPT++, off += PAGE_SIZE)
4275 {
4276 const SHWPTE PteDst = pPTDst->a[iPT];
4277
4278 /* skip not-present and dirty tracked entries. */
4279 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4280 continue;
4281 Assert(SHW_PTE_IS_P(PteDst));
4282
4283 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4284 if (!PteSrc.n.u1Present)
4285 {
4286# ifdef IN_RING3
4287 PGMAssertHandlerAndFlagsInSync(pVM);
4288 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4289 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4290 0, 0, UINT64_MAX, 99, NULL);
4291# endif
4292 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4293 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4294 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4295 cErrors++;
4296 continue;
4297 }
4298
4299 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4300# if 1 /** @todo sync accessed bit properly... */
4301 fIgnoreFlags |= X86_PTE_A;
4302# endif
4303
4304 /* match the physical addresses */
4305 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4306 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4307
4308# ifdef IN_RING3
4309 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4310 if (RT_FAILURE(rc))
4311 {
4312 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4313 {
4314 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4315 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4316 cErrors++;
4317 continue;
4318 }
4319 }
4320 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4321 {
4322 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4323 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4324 cErrors++;
4325 continue;
4326 }
4327# endif
4328
4329 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4330 if (!pPhysPage)
4331 {
4332# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4333 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4334 {
4335 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4336 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4337 cErrors++;
4338 continue;
4339 }
4340# endif
4341 if (SHW_PTE_IS_RW(PteDst))
4342 {
4343 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4344 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4345 cErrors++;
4346 }
4347 fIgnoreFlags |= X86_PTE_RW;
4348 }
4349 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4350 {
4351 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4352 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4353 cErrors++;
4354 continue;
4355 }
4356
4357 /* flags */
4358 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4359 {
4360 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4361 {
4362 if (SHW_PTE_IS_RW(PteDst))
4363 {
4364 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4365 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4366 cErrors++;
4367 continue;
4368 }
4369 fIgnoreFlags |= X86_PTE_RW;
4370 }
4371 else
4372 {
4373 if ( SHW_PTE_IS_P(PteDst)
4374# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4375 && !PGM_PAGE_IS_MMIO(pPhysPage)
4376# endif
4377 )
4378 {
4379 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4380 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4381 cErrors++;
4382 continue;
4383 }
4384 fIgnoreFlags |= X86_PTE_P;
4385 }
4386 }
4387 else
4388 {
4389 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4390 {
4391 if (SHW_PTE_IS_RW(PteDst))
4392 {
4393 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4394 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4395 cErrors++;
4396 continue;
4397 }
4398 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4399 {
4400 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4401 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4402 cErrors++;
4403 continue;
4404 }
4405 if (SHW_PTE_IS_D(PteDst))
4406 {
4407 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4408 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4409 cErrors++;
4410 }
4411# if 0 /** @todo sync access bit properly... */
4412 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4413 {
4414 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4415 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4416 cErrors++;
4417 }
4418 fIgnoreFlags |= X86_PTE_RW;
4419# else
4420 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4421# endif
4422 }
4423 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4424 {
4425 /* access bit emulation (not implemented). */
4426 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4427 {
4428 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4429 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4430 cErrors++;
4431 continue;
4432 }
4433 if (!SHW_PTE_IS_A(PteDst))
4434 {
4435 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4436 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4437 cErrors++;
4438 }
4439 fIgnoreFlags |= X86_PTE_P;
4440 }
4441# ifdef DEBUG_sandervl
4442 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4443# endif
4444 }
4445
4446 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4447 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4448 )
4449 {
4450 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4451 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4452 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4453 cErrors++;
4454 continue;
4455 }
4456 } /* foreach PTE */
4457 }
4458 else
4459 {
4460 /*
4461 * Big Page.
4462 */
4463 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4464 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4465 {
4466 if (PdeDst.n.u1Write)
4467 {
4468 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4469 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4470 cErrors++;
4471 continue;
4472 }
4473 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4474 {
4475 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4476 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4477 cErrors++;
4478 continue;
4479 }
4480# if 0 /** @todo sync access bit properly... */
4481 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4482 {
4483 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4484 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4485 cErrors++;
4486 }
4487 fIgnoreFlags |= X86_PTE_RW;
4488# else
4489 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4490# endif
4491 }
4492 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4493 {
4494 /* access bit emulation (not implemented). */
4495 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4496 {
4497 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4498 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4499 cErrors++;
4500 continue;
4501 }
4502 if (!PdeDst.n.u1Accessed)
4503 {
4504 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4505 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4506 cErrors++;
4507 }
4508 fIgnoreFlags |= X86_PTE_P;
4509 }
4510
4511 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4512 {
4513 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4514 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4515 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4516 cErrors++;
4517 }
4518
4519 /* iterate the page table. */
4520 for (unsigned iPT = 0, off = 0;
4521 iPT < RT_ELEMENTS(pPTDst->a);
4522 iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
4523 {
4524 const SHWPTE PteDst = pPTDst->a[iPT];
4525
4526 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4527 {
4528 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4529 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4530 cErrors++;
4531 }
4532
4533 /* skip not-present entries. */
4534 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4535 continue;
4536
4537 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4538
4539 /* match the physical addresses */
4540 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4541
4542# ifdef IN_RING3
4543 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4544 if (RT_FAILURE(rc))
4545 {
4546 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4547 {
4548 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4549 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4550 cErrors++;
4551 }
4552 }
4553 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4554 {
4555 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4556 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4557 cErrors++;
4558 continue;
4559 }
4560# endif
4561 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4562 if (!pPhysPage)
4563 {
4564# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4565 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4566 {
4567 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4568 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4569 cErrors++;
4570 continue;
4571 }
4572# endif
4573 if (SHW_PTE_IS_RW(PteDst))
4574 {
4575 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4576 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4577 cErrors++;
4578 }
4579 fIgnoreFlags |= X86_PTE_RW;
4580 }
4581 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4582 {
4583 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4584 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4585 cErrors++;
4586 continue;
4587 }
4588
4589 /* flags */
4590 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4591 {
4592 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4593 {
4594 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4595 {
4596 if (SHW_PTE_IS_RW(PteDst))
4597 {
4598 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4599 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4600 cErrors++;
4601 continue;
4602 }
4603 fIgnoreFlags |= X86_PTE_RW;
4604 }
4605 }
4606 else
4607 {
4608 if ( SHW_PTE_IS_P(PteDst)
4609# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4610 && !PGM_PAGE_IS_MMIO(pPhysPage)
4611# endif
4612 )
4613 {
4614 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4615 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4616 cErrors++;
4617 continue;
4618 }
4619 fIgnoreFlags |= X86_PTE_P;
4620 }
4621 }
4622
4623 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4624 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4625 )
4626 {
4627 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4628 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4629 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4630 cErrors++;
4631 continue;
4632 }
4633 } /* for each PTE */
4634 }
4635 }
4636 /* not present */
4637
4638 } /* for each PDE */
4639
4640 } /* for each PDPTE */
4641
4642 } /* for each PML4E */
4643
4644# ifdef DEBUG
4645 if (cErrors)
4646 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4647# endif
4648# endif /* GST is in {32BIT, PAE, AMD64} */
4649 return cErrors;
4650#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
4651}
4652#endif /* VBOX_STRICT */
4653
4654
4655/**
4656 * Sets up the CR3 for shadow paging
4657 *
4658 * @returns Strict VBox status code.
4659 * @retval VINF_SUCCESS.
4660 *
4661 * @param pVCpu The cross context virtual CPU structure.
4662 * @param GCPhysCR3 The physical address in the CR3 register. (A20
4663 * mask already applied.)
4664 */
4665PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4666{
4667 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4668
4669 /* Update guest paging info. */
4670#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4671 || PGM_GST_TYPE == PGM_TYPE_PAE \
4672 || PGM_GST_TYPE == PGM_TYPE_AMD64
4673
4674 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4675 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4676
4677 /*
4678 * Map the page CR3 points at.
4679 */
4680 RTHCPTR HCPtrGuestCR3;
4681 RTHCPHYS HCPhysGuestCR3;
4682 pgmLock(pVM);
4683 PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
4684 AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
4685 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4686 /** @todo this needs some reworking wrt. locking? */
4687# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4688 HCPtrGuestCR3 = NIL_RTHCPTR;
4689 int rc = VINF_SUCCESS;
4690# else
4691 int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4692# endif
4693 pgmUnlock(pVM);
4694 if (RT_SUCCESS(rc))
4695 {
4696 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4697 if (RT_SUCCESS(rc))
4698 {
4699# ifdef IN_RC
4700 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4701# endif
4702# if PGM_GST_TYPE == PGM_TYPE_32BIT
4703 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4704# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4705 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4706# endif
4707 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4708
4709# elif PGM_GST_TYPE == PGM_TYPE_PAE
4710 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4711 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4712# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4713 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4714# endif
4715 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4716 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4717
4718 /*
4719 * Map the 4 PDs too.
4720 */
4721 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4722 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4723 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4724 {
4725 pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
4726 if (pGuestPDPT->a[i].n.u1Present)
4727 {
4728 RTHCPTR HCPtr;
4729 RTHCPHYS HCPhys;
4730 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
4731 pgmLock(pVM);
4732 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4733 AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
4734 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4735# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4736 HCPtr = NIL_RTHCPTR;
4737 int rc2 = VINF_SUCCESS;
4738# else
4739 int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
4740# endif
4741 pgmUnlock(pVM);
4742 if (RT_SUCCESS(rc2))
4743 {
4744 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4745 AssertRCReturn(rc, rc);
4746
4747 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4748# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4749 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4750# endif
4751 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4752 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4753# ifdef IN_RC
4754 PGM_INVL_PG(pVCpu, GCPtr);
4755# endif
4756 continue;
4757 }
4758 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4759 }
4760
4761 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4762# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4763 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4764# endif
4765 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4766 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4767# ifdef IN_RC
4768 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4769# endif
4770 }
4771
4772# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4773 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4774# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4775 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4776# endif
4777# endif
4778 }
4779 else
4780 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4781 }
4782 else
4783 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4784
4785#else /* prot/real stub */
4786 int rc = VINF_SUCCESS;
4787#endif
4788
4789 /*
4790 * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64).
4791 */
4792# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4793 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4794 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4795 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4796 && PGM_GST_TYPE != PGM_TYPE_PROT))
4797
4798 Assert(!pVM->pgm.s.fNestedPaging);
4799 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4800
4801 /*
4802 * Update the shadow root page as well since that's not fixed.
4803 */
4804 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4805 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4806 PPGMPOOLPAGE pNewShwPageCR3;
4807
4808 pgmLock(pVM);
4809
4810# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4811 if (pPool->cDirtyPages)
4812 pgmPoolResetDirtyPages(pVM);
4813# endif
4814
4815 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4816 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
4817 NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
4818 &pNewShwPageCR3);
4819 AssertFatalRC(rc);
4820 rc = VINF_SUCCESS;
4821
4822# ifdef IN_RC
4823 /*
4824 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4825 * state will be inconsistent! Flush important things now while
4826 * we still can and then make sure there are no ring-3 calls.
4827 */
4828# ifdef VBOX_WITH_REM
4829 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4830# endif
4831 VMMRZCallRing3Disable(pVCpu);
4832# endif
4833
4834 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4835# ifdef IN_RING0
4836 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4837 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4838# elif defined(IN_RC)
4839 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4840 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4841# else
4842 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4843 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4844# endif
4845
4846# ifndef PGM_WITHOUT_MAPPINGS
4847 /*
4848 * Apply all hypervisor mappings to the new CR3.
4849 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4850 * make sure we check for conflicts in the new CR3 root.
4851 */
4852# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4853 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4854# endif
4855 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4856 AssertRCReturn(rc, rc);
4857# endif
4858
4859 /* Set the current hypervisor CR3. */
4860 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4861 SELMShadowCR3Changed(pVM, pVCpu);
4862
4863# ifdef IN_RC
4864 /* NOTE: The state is consistent again. */
4865 VMMRZCallRing3Enable(pVCpu);
4866# endif
4867
4868 /* Clean up the old CR3 root. */
4869 if ( pOldShwPageCR3
4870 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4871 {
4872 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4873# ifndef PGM_WITHOUT_MAPPINGS
4874 /* Remove the hypervisor mappings from the shadow page table. */
4875 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4876# endif
4877 /* Mark the page as unlocked; allow flushing again. */
4878 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4879
4880 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4881 }
4882 pgmUnlock(pVM);
4883# else
4884 NOREF(GCPhysCR3);
4885# endif
4886
4887 return rc;
4888}
4889
4890/**
4891 * Unmaps the shadow CR3.
4892 *
4893 * @returns VBox status, no specials.
4894 * @param pVCpu The cross context virtual CPU structure.
4895 */
4896PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4897{
4898 LogFlow(("UnmapCR3\n"));
4899
4900 int rc = VINF_SUCCESS;
4901 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4902
4903 /*
4904 * Update guest paging info.
4905 */
4906#if PGM_GST_TYPE == PGM_TYPE_32BIT
4907 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4908# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4909 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4910# endif
4911 pVCpu->pgm.s.pGst32BitPdRC = 0;
4912
4913#elif PGM_GST_TYPE == PGM_TYPE_PAE
4914 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4915# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4916 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4917# endif
4918 pVCpu->pgm.s.pGstPaePdptRC = 0;
4919 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4920 {
4921 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4922# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4923 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4924# endif
4925 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4926 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4927 }
4928
4929#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4930 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4931# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4932 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4933# endif
4934
4935#else /* prot/real mode stub */
4936 /* nothing to do */
4937#endif
4938
4939#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4940 /*
4941 * Update shadow paging info.
4942 */
4943# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4944 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4945 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4946
4947# if PGM_GST_TYPE != PGM_TYPE_REAL
4948 Assert(!pVM->pgm.s.fNestedPaging);
4949# endif
4950
4951 pgmLock(pVM);
4952
4953# ifndef PGM_WITHOUT_MAPPINGS
4954 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4955 /* Remove the hypervisor mappings from the shadow page table. */
4956 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4957# endif
4958
4959 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4960 {
4961 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4962
4963# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4964 if (pPool->cDirtyPages)
4965 pgmPoolResetDirtyPages(pVM);
4966# endif
4967
4968 /* Mark the page as unlocked; allow flushing again. */
4969 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4970
4971 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4972 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4973 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4974 pVCpu->pgm.s.pShwPageCR3RC = 0;
4975 }
4976 pgmUnlock(pVM);
4977# endif
4978#endif /* !IN_RC*/
4979
4980 return rc;
4981}
4982
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette