VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 7747

Last change on this file since 7747 was 7747, checked in by vboxsync, 17 years ago

PAE correction

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 152.7 KB
Line 
1/* $Id: PGMAllBth.h 7747 2008-04-04 15:23:58Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 innotek GmbH
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 */
19
20/*******************************************************************************
21* Internal Functions *
22*******************************************************************************/
23__BEGIN_DECLS
24PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
25PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage);
26PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr);
27PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage);
28PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage);
29PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR Addr, unsigned fPage, unsigned uErr);
30PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage);
31PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal);
32#ifdef VBOX_STRICT
33PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr = 0, RTGCUINTPTR cb = ~(RTGCUINTPTR)0);
34#endif
35#ifdef PGMPOOL_WITH_USER_TRACKING
36DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
37#endif
38__END_DECLS
39
40
41/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
42#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE
43#error "Invalid combination; PAE guest implies PAE shadow"
44#endif
45
46#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
47 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE)
48#error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
49#endif
50
51#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
52 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE)
53#error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
54#endif
55
56#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64)
57 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64)
58#error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
59#endif
60
61/**
62 * #PF Handler for raw-mode guest execution.
63 *
64 * @returns VBox status code (appropriate for trap handling and GC return).
65 * @param pVM VM Handle.
66 * @param uErr The trap error code.
67 * @param pRegFrame Trap register frame.
68 * @param pvFault The fault address.
69 */
70PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
71{
72#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE) && PGM_SHW_TYPE != PGM_TYPE_AMD64
73
74# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
75 /*
76 * Hide the instruction fetch trap indicator for now.
77 */
78 /** @todo NXE will change this and we must fix NXE in the switcher too! */
79 if (uErr & X86_TRAP_PF_ID)
80 {
81 uErr &= ~X86_TRAP_PF_ID;
82 TRPMSetErrorCode(pVM, uErr);
83 }
84# endif
85
86 /*
87 * Get PDs.
88 */
89 int rc;
90# if PGM_WITH_PAGING(PGM_GST_TYPE)
91# if PGM_GST_TYPE == PGM_TYPE_32BIT
92 const unsigned iPDSrc = (RTGCUINTPTR)pvFault >> GST_PD_SHIFT;
93 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
94# else /* PAE */
95 unsigned iPDSrc;
96 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, (RTGCUINTPTR)pvFault, &iPDSrc);
97# endif
98# else
99 PGSTPD pPDSrc = NULL;
100 const unsigned iPDSrc = 0;
101# endif
102
103 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
104# if PGM_SHW_TYPE == PGM_TYPE_32BIT
105 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
106# else /* PAE */
107 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries. */
108# endif
109
110# if PGM_WITH_PAGING(PGM_GST_TYPE)
111# ifdef PGM_SYNC_DIRTY_BIT
112 /*
113 * If we successfully correct the write protection fault due to dirty bit
114 * tracking, or this page fault is a genuine one, then return immediately.
115 */
116 STAM_PROFILE_START(&pVM->pgm.s.StatCheckPageFault, e);
117 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], (RTGCUINTPTR)pvFault);
118 STAM_PROFILE_STOP(&pVM->pgm.s.StatCheckPageFault, e);
119 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
120 || rc == VINF_EM_RAW_GUEST_TRAP)
121 {
122 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution)
123 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatTrap0eDirtyAndAccessedBits : &pVM->pgm.s.StatTrap0eGuestTrap; });
124 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
125 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
126 }
127# endif
128
129 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0ePD[iPDSrc]);
130# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
131
132 /*
133 * A common case is the not-present error caused by lazy page table syncing.
134 *
135 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
136 * so we can safely assume that the shadow PT is present when calling SyncPage later.
137 *
138 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
139 * of mapping conflict and defer to SyncCR3 in R3.
140 * (Again, we do NOT support access handlers for non-present guest pages.)
141 *
142 */
143# if PGM_WITH_PAGING(PGM_GST_TYPE)
144 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
145# else
146 GSTPDE PdeSrc;
147 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
148 PdeSrc.n.u1Present = 1;
149 PdeSrc.n.u1Write = 1;
150 PdeSrc.n.u1Accessed = 1;
151 PdeSrc.n.u1User = 1;
152# endif
153 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
154 && !pPDDst->a[iPDDst].n.u1Present
155 && PdeSrc.n.u1Present
156 )
157
158 {
159 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eSyncPT; });
160 STAM_PROFILE_START(&pVM->pgm.s.StatLazySyncPT, f);
161 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
162 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, (RTGCUINTPTR)pvFault);
163 if (VBOX_SUCCESS(rc))
164 {
165 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
166 return rc;
167 }
168 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
169 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
170 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
171 return VINF_PGM_SYNC_CR3;
172 }
173
174# if PGM_WITH_PAGING(PGM_GST_TYPE)
175 /*
176 * Check if this address is within any of our mappings.
177 *
178 * This is *very* fast and it's gonna save us a bit of effort below and prevent
179 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
180 * (BTW, it's impossible to have physical access handlers in a mapping.)
181 */
182 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
183 {
184 STAM_PROFILE_START(&pVM->pgm.s.StatMapping, a);
185 PPGMMAPPING pMapping = CTXALLSUFF(pVM->pgm.s.pMappings);
186 for ( ; pMapping; pMapping = CTXALLSUFF(pMapping->pNext))
187 {
188 if ((RTGCUINTPTR)pvFault < (RTGCUINTPTR)pMapping->GCPtr)
189 break;
190 if ((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pMapping->GCPtr < pMapping->cb)
191 {
192 /*
193 * The first thing we check is if we've got an undetected conflict.
194 */
195 if (!pVM->pgm.s.fMappingsFixed)
196 {
197 unsigned iPT = pMapping->cPTs;
198 while (iPT-- > 0)
199 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
200 {
201 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eConflicts);
202 Log(("Trap0e: Detected Conflict %VGv-%VGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
203 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
204 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
205 return VINF_PGM_SYNC_CR3;
206 }
207 }
208
209 /*
210 * Check if the fault address is in a virtual page access handler range.
211 */
212 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->HyperVirtHandlers, pvFault);
213 if ( pCur
214 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
215 && uErr & X86_TRAP_PF_RW)
216 {
217# ifdef IN_GC
218 STAM_PROFILE_START(&pCur->Stat, h);
219 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
220 STAM_PROFILE_STOP(&pCur->Stat, h);
221# else
222 AssertFailed();
223 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
224# endif
225 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eMapHandler);
226 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
227 return rc;
228 }
229
230 /*
231 * Pretend we're not here and let the guest handle the trap.
232 */
233 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
234 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eMap);
235 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
236 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
237 return VINF_EM_RAW_GUEST_TRAP;
238 }
239 }
240 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
241 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
242# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
243
244 /*
245 * Check if this fault address is flagged for special treatment,
246 * which means we'll have to figure out the physical address and
247 * check flags associated with it.
248 *
249 * ASSUME that we can limit any special access handling to pages
250 * in page tables which the guest believes to be present.
251 */
252 if (PdeSrc.n.u1Present)
253 {
254 RTGCPHYS GCPhys = NIL_RTGCPHYS;
255
256# if PGM_WITH_PAGING(PGM_GST_TYPE)
257 uint32_t cr4 = CPUMGetGuestCR4(pVM);
258 if ( PdeSrc.b.u1Size
259 && (cr4 & X86_CR4_PSE))
260 GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK)
261 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
262 else
263 {
264 PX86PT pPTSrc;
265# ifdef IN_GC
266 rc = PGMGCDynMapGCPage(pVM, PdeSrc.u & GST_PDE_PG_MASK, (void **)&pPTSrc);
267# else
268 pPTSrc = (PX86PT)MMPhysGCPhys2HCVirt(pVM, PdeSrc.u & GST_PDE_PG_MASK, sizeof(*pPTSrc));
269 if (pPTSrc == 0)
270 rc = VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
271# endif
272 if (VBOX_SUCCESS(rc))
273 {
274 unsigned iPTESrc = ((RTGCUINTPTR)pvFault >> PAGE_SHIFT) & GST_PT_MASK;
275 if (pPTSrc->a[iPTESrc].n.u1Present)
276 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
277 }
278 }
279# else
280 /* No paging so the fault address is the physical address */
281 GCPhys = (RTGCPHYS)((RTGCUINTPTR)pvFault & ~PAGE_OFFSET_MASK);
282# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
283
284 /*
285 * If we have a GC address we'll check if it has any flags set.
286 */
287 if (GCPhys != NIL_RTGCPHYS)
288 {
289 STAM_PROFILE_START(&pVM->pgm.s.StatHandlers, b);
290
291 PPGMPAGE pPage;
292 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
293 if (VBOX_SUCCESS(rc))
294 {
295 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
296 {
297 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
298 {
299 /*
300 * Physical page access handler.
301 */
302 const RTGCPHYS GCPhysFault = GCPhys | ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK);
303 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->PhysHandlers, GCPhysFault);
304 if (pCur)
305 {
306# ifdef PGM_SYNC_N_PAGES
307 /*
308 * If the region is write protected and we got a page not present fault, then sync
309 * the pages. If the fault was caused by a read, then restart the instruction.
310 * In case of write access continue to the GC write handler.
311 *
312 * ASSUMES that there is only one handler per page or that they have similar write properties.
313 */
314 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
315 && !(uErr & X86_TRAP_PF_P))
316 {
317 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
318 if ( VBOX_FAILURE(rc)
319 || !(uErr & X86_TRAP_PF_RW)
320 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
321 {
322 AssertRC(rc);
323 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
324 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
325 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
326 return rc;
327 }
328 }
329# endif
330
331 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
332 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
333 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
334
335#if defined(IN_GC) || defined(IN_RING0)
336 if (CTXALLSUFF(pCur->pfnHandler))
337 {
338 STAM_PROFILE_START(&pCur->Stat, h);
339 rc = pCur->CTXALLSUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, CTXALLSUFF(pCur->pvUser));
340 STAM_PROFILE_STOP(&pCur->Stat, h);
341 }
342 else
343#endif
344 rc = VINF_EM_RAW_EMULATE_INSTR;
345 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersPhysical);
346 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
347 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndPhys; });
348 return rc;
349 }
350 }
351# if PGM_WITH_PAGING(PGM_GST_TYPE)
352 else
353 {
354# ifdef PGM_SYNC_N_PAGES
355 /*
356 * If the region is write protected and we got a page not present fault, then sync
357 * the pages. If the fault was caused by a read, then restart the instruction.
358 * In case of write access continue to the GC write handler.
359 */
360 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
361 && !(uErr & X86_TRAP_PF_P))
362 {
363 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
364 if ( VBOX_FAILURE(rc)
365 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
366 || !(uErr & X86_TRAP_PF_RW))
367 {
368 AssertRC(rc);
369 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
370 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
371 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndVirt; });
372 return rc;
373 }
374 }
375# endif
376 /*
377 * Ok, it's an virtual page access handler.
378 *
379 * Since it's faster to search by address, we'll do that first
380 * and then retry by GCPhys if that fails.
381 */
382 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
383 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
384 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
385 */
386 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
387 if (pCur)
388 {
389 AssertMsg(!((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
390 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
391 || !(uErr & X86_TRAP_PF_P)
392 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
393 ("Unexpected trap for virtual handler: %VGv (phys=%VGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
394
395 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
396 && ( uErr & X86_TRAP_PF_RW
397 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
398 {
399# ifdef IN_GC
400 STAM_PROFILE_START(&pCur->Stat, h);
401 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
402 STAM_PROFILE_STOP(&pCur->Stat, h);
403# else
404 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
405# endif
406 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtual);
407 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
408 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
409 return rc;
410 }
411 /* Unhandled part of a monitored page */
412 }
413 else
414 {
415 /* Check by physical address. */
416 PPGMVIRTHANDLER pCur;
417 unsigned iPage;
418 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK),
419 &pCur, &iPage);
420 Assert(VBOX_SUCCESS(rc) || !pCur);
421 if ( pCur
422 && ( uErr & X86_TRAP_PF_RW
423 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
424 {
425 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
426# ifdef IN_GC
427 RTGCUINTPTR off = (iPage << PAGE_SHIFT) + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK) - ((RTGCUINTPTR)pCur->GCPtr & PAGE_OFFSET_MASK);
428 Assert(off < pCur->cb);
429 STAM_PROFILE_START(&pCur->Stat, h);
430 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, off);
431 STAM_PROFILE_STOP(&pCur->Stat, h);
432# else
433 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
434# endif
435 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualByPhys);
436 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
437 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
438 return rc;
439 }
440 }
441 }
442# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
443
444 /*
445 * There is a handled area of the page, but this fault doesn't belong to it.
446 * We must emulate the instruction.
447 *
448 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
449 * we first check if this was a page-not-present fault for a page with only
450 * write access handlers. Restart the instruction if it wasn't a write access.
451 */
452 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersUnhandled);
453
454 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
455 && !(uErr & X86_TRAP_PF_P))
456 {
457 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
458 if ( VBOX_FAILURE(rc)
459 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
460 || !(uErr & X86_TRAP_PF_RW))
461 {
462 AssertRC(rc);
463 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
464 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
465 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
466 return rc;
467 }
468 }
469
470 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
471 * It's writing to an unhandled part of the LDT page several million times.
472 */
473 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
474 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
475 rc, pPage->HCPhys,
476 PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
477 PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
478 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
479 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndUnhandled; });
480 return rc;
481 } /* if any kind of handler */
482
483# if PGM_WITH_PAGING(PGM_GST_TYPE)
484 if (uErr & X86_TRAP_PF_P)
485 {
486 /*
487 * The page isn't marked, but it might still be monitored by a virtual page access handler.
488 * (ASSUMES no temporary disabling of virtual handlers.)
489 */
490 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
491 * we should correct both the shadow page table and physical memory flags, and not only check for
492 * accesses within the handler region but for access to pages with virtual handlers. */
493 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
494 if (pCur)
495 {
496 AssertMsg( !((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
497 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
498 || !(uErr & X86_TRAP_PF_P)
499 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
500 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
501
502 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
503 && ( uErr & X86_TRAP_PF_RW
504 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
505 {
506# ifdef IN_GC
507 STAM_PROFILE_START(&pCur->Stat, h);
508 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
509 STAM_PROFILE_STOP(&pCur->Stat, h);
510# else
511 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
512# endif
513 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualUnmarked);
514 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
515 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
516 return rc;
517 }
518 }
519 }
520# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
521 }
522 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
523
524# ifdef PGM_OUT_OF_SYNC_IN_GC
525 /*
526 * We are here only if page is present in Guest page tables and trap is not handled
527 * by our handlers.
528 * Check it for page out-of-sync situation.
529 */
530 STAM_PROFILE_START(&pVM->pgm.s.StatOutOfSync, c);
531
532 if (!(uErr & X86_TRAP_PF_P))
533 {
534 /*
535 * Page is not present in our page tables.
536 * Try to sync it!
537 * BTW, fPageShw is invalid in this branch!
538 */
539 if (uErr & X86_TRAP_PF_US)
540 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
541 else /* supervisor */
542 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
543
544# if defined(LOG_ENABLED) && !defined(IN_RING0)
545 RTGCPHYS GCPhys;
546 uint64_t fPageGst;
547 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
548 Log(("Page out of sync: %p eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%VGp scan=%d\n",
549 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTGCPTR)pRegFrame->eip)));
550# endif /* LOG_ENABLED */
551
552# if PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0)
553 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
554 {
555 uint64_t fPageGst;
556 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
557 if ( VBOX_SUCCESS(rc)
558 && !(fPageGst & X86_PTE_US))
559 {
560 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
561 if ( pvFault == (RTGCPTR)pRegFrame->eip
562 || (RTGCUINTPTR)pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
563# ifdef CSAM_DETECT_NEW_CODE_PAGES
564 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
565 && CSAMDoesPageNeedScanning(pVM, (RTGCPTR)pRegFrame->eip)) /* any new code we encounter here */
566# endif /* CSAM_DETECT_NEW_CODE_PAGES */
567 )
568 {
569 LogFlow(("CSAMExecFault %VGv\n", pRegFrame->eip));
570 rc = CSAMExecFault(pVM, (RTGCPTR)pRegFrame->eip);
571 if (rc != VINF_SUCCESS)
572 {
573 /*
574 * CSAM needs to perform a job in ring 3.
575 *
576 * Sync the page before going to the host context; otherwise we'll end up in a loop if
577 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
578 */
579 LogFlow(("CSAM ring 3 job\n"));
580 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
581 AssertRC(rc2);
582
583 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
584 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eCSAM; });
585 return rc;
586 }
587 }
588# ifdef CSAM_DETECT_NEW_CODE_PAGES
589 else
590 if ( uErr == X86_TRAP_PF_RW
591 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
592 && pRegFrame->ecx < 0x10000
593 )
594 {
595 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
596 * to detect loading of new code pages.
597 */
598
599 /*
600 * Decode the instruction.
601 */
602 RTGCPTR PC;
603 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
604 if (rc == VINF_SUCCESS)
605 {
606 DISCPUSTATE Cpu;
607 uint32_t cbOp;
608 rc = EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)PC, pRegFrame, &Cpu, &cbOp);
609
610 /* For now we'll restrict this to rep movsw/d instructions */
611 if ( rc == VINF_SUCCESS
612 && Cpu.pCurInstr->opcode == OP_MOVSWD
613 && (Cpu.prefix & PREFIX_REP))
614 {
615 CSAMMarkPossibleCodePage(pVM, pvFault);
616 }
617 }
618 }
619# endif /* CSAM_DETECT_NEW_CODE_PAGES */
620
621 /*
622 * Mark this page as safe.
623 */
624 /** @todo not correct for pages that contain both code and data!! */
625 Log2(("CSAMMarkPage %p; scanned=%d\n", pvFault, true));
626 CSAMMarkPage(pVM, pvFault, true);
627 }
628 }
629# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0) */
630 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
631 if (VBOX_SUCCESS(rc))
632 {
633 /* The page was successfully synced, return to the guest. */
634 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
635 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSync; });
636 return VINF_SUCCESS;
637 }
638 }
639 else
640 {
641 /*
642 * A side effect of not flushing global PDEs are out of sync pages due
643 * to physical monitored regions, that are no longer valid.
644 * Assume for now it only applies to the read/write flag
645 */
646 if (VBOX_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
647 {
648 if (uErr & X86_TRAP_PF_US)
649 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
650 else /* supervisor */
651 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
652
653
654 /*
655 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
656 */
657 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
658 if (VBOX_SUCCESS(rc))
659 {
660 /*
661 * Page was successfully synced, return to guest.
662 */
663# ifdef VBOX_STRICT
664 RTGCPHYS GCPhys;
665 uint64_t fPageGst;
666 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
667 Assert(VBOX_SUCCESS(rc) && fPageGst & X86_PTE_RW);
668 LogFlow(("Obsolete physical monitor page out of sync %VGv - phys %VGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
669
670 uint64_t fPageShw;
671 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
672 Assert(VBOX_SUCCESS(rc) && fPageShw & X86_PTE_RW);
673# endif /* VBOX_STRICT */
674 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
675 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncObsHnd; });
676 return VINF_SUCCESS;
677 }
678
679 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
680 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
681 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP|X86_CR0_PG)) == X86_CR0_PG)
682 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
683 {
684 uint64_t fPageGst;
685 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
686 if ( VBOX_SUCCESS(rc)
687 && !(fPageGst & X86_PTE_RW))
688 {
689 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
690 if (VBOX_SUCCESS(rc))
691 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulGC);
692 else
693 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulR3);
694 return rc;
695 }
696 else
697 AssertMsgFailed(("Unexpected r/w page %x flag=%x\n", pvFault, (uint32_t)fPageGst));
698 }
699
700 }
701
702# if PGM_WITH_PAGING(PGM_GST_TYPE)
703# ifdef VBOX_STRICT
704 /*
705 * Check for VMM page flags vs. Guest page flags consistency.
706 * Currently only for debug purposes.
707 */
708 if (VBOX_SUCCESS(rc))
709 {
710 /* Get guest page flags. */
711 uint64_t fPageGst;
712 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
713 if (VBOX_SUCCESS(rc))
714 {
715 uint64_t fPageShw;
716 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
717
718 /*
719 * Compare page flags.
720 * Note: we have AVL, A, D bits desynched.
721 */
722 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
723 ("Page flags mismatch! pvFault=%p GCPhys=%VGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
724 }
725 else
726 AssertMsgFailed(("PGMGstGetPage rc=%Vrc\n", rc));
727 }
728 else
729 AssertMsgFailed(("PGMGCGetPage rc=%Vrc\n", rc));
730# endif /* VBOX_STRICT */
731# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
732 }
733 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
734# endif /* PGM_OUT_OF_SYNC_IN_GC */
735 }
736 else
737 {
738 /*
739 * Page not present in Guest OS or invalid page table address.
740 * This is potential virtual page access handler food.
741 *
742 * For the present we'll say that our access handlers don't
743 * work for this case - we've already discarded the page table
744 * not present case which is identical to this.
745 *
746 * When we perchance find we need this, we will probably have AVL
747 * trees (offset based) to operate on and we can measure their speed
748 * agains mapping a page table and probably rearrange this handling
749 * a bit. (Like, searching virtual ranges before checking the
750 * physical address.)
751 */
752 }
753 }
754
755
756# if PGM_WITH_PAGING(PGM_GST_TYPE)
757 /*
758 * Conclusion, this is a guest trap.
759 */
760 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
761 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUnhandled);
762 return VINF_EM_RAW_GUEST_TRAP;
763# else
764 /* present, but not a monitored page; perhaps the guest is probing physical memory */
765 return VINF_EM_RAW_EMULATE_INSTR;
766# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
767
768
769#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
770
771 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
772 return VERR_INTERNAL_ERROR;
773#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
774}
775
776
777/**
778 * Emulation of the invlpg instruction.
779 *
780 *
781 * @returns VBox status code.
782 *
783 * @param pVM VM handle.
784 * @param GCPtrPage Page to invalidate.
785 *
786 * @remark ASSUMES that the guest is updating before invalidating. This order
787 * isn't required by the CPU, so this is speculative and could cause
788 * trouble.
789 *
790 * @todo Flush page or page directory only if necessary!
791 * @todo Add a #define for simply invalidating the page.
792 */
793PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage)
794{
795#if PGM_GST_TYPE == PGM_TYPE_32BIT \
796 || PGM_GST_TYPE == PGM_TYPE_PAE
797
798 LogFlow(("InvalidatePage %x\n", GCPtrPage));
799 /*
800 * Get the shadow PD entry and skip out if this PD isn't present.
801 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
802 */
803 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
804# if PGM_SHW_TYPE == PGM_TYPE_32BIT
805 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
806# else
807 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs[0])->a[iPDDst];
808# endif
809 const SHWPDE PdeDst = *pPdeDst;
810 if (!PdeDst.n.u1Present)
811 {
812 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
813 return VINF_SUCCESS;
814 }
815
816 /*
817 * Get the guest PD entry and calc big page.
818 */
819# if PGM_GST_TYPE == PGM_TYPE_32BIT
820 PX86PD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
821 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
822 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
823# else /* PAE */
824 unsigned iPDSrc;
825 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
826 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
827# endif
828
829 const uint32_t cr4 = CPUMGetGuestCR4(pVM);
830 const bool fIsBigPage = PdeSrc.b.u1Size && (cr4 & X86_CR4_PSE);
831
832# ifdef IN_RING3
833 /*
834 * If a CR3 Sync is pending we may ignore the invalidate page operation
835 * depending on the kind of sync and if it's a global page or not.
836 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
837 */
838# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
839 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
840 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
841 && fIsBigPage
842 && PdeSrc.b.u1Global
843 && (cr4 & X86_CR4_PGE)
844 )
845 )
846# else
847 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
848# endif
849 {
850 STAM_COUNTER_INC(&pVM->pgm.s.StatHCInvalidatePageSkipped);
851 return VINF_SUCCESS;
852 }
853# endif /* IN_RING3 */
854
855
856 /*
857 * Deal with the Guest PDE.
858 */
859 int rc = VINF_SUCCESS;
860 if (PdeSrc.n.u1Present)
861 {
862 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
863 {
864 /*
865 * Conflict - Let SyncPT deal with it to avoid duplicate code.
866 */
867 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
868 Assert(PGMGetGuestMode(pVM) <= PGMMODE_32_BIT);
869 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
870 }
871 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
872 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
873 {
874 /*
875 * Mark not present so we can resync the PDE when it's used.
876 */
877 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
878 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
879 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
880 pPdeDst->u = 0;
881 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
882 PGM_INVL_GUEST_TLBS();
883 }
884# ifdef PGM_SYNC_ACCESSED_BIT
885 else if (!PdeSrc.n.u1Accessed)
886 {
887 /*
888 * Mark not present so we can set the accessed bit.
889 */
890 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
891 pPdeDst->u = 0;
892 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
893 PGM_INVL_GUEST_TLBS();
894 }
895# endif
896 else if (!fIsBigPage)
897 {
898 /*
899 * 4KB - page.
900 */
901 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
902 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
903# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
904 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
905 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
906# endif
907 if (pShwPage->GCPhys == GCPhys)
908 {
909# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
910 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
911 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
912 if (pPT->a[iPTEDst].n.u1Present)
913 {
914# ifdef PGMPOOL_WITH_USER_TRACKING
915 /* This is very unlikely with caching/monitoring enabled. */
916 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
917# endif
918 pPT->a[iPTEDst].u = 0;
919 }
920# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
921 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
922 if (VBOX_SUCCESS(rc))
923 rc = VINF_SUCCESS;
924# endif
925 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4KBPages));
926 PGM_INVL_PG(GCPtrPage);
927 }
928 else
929 {
930 /*
931 * The page table address changed.
932 */
933 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%VGp iPDDst=%#x\n",
934 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
935 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
936 pPdeDst->u = 0;
937 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
938 PGM_INVL_GUEST_TLBS();
939 }
940 }
941 else
942 {
943 /*
944 * 4MB - page.
945 */
946 /* Before freeing the page, check if anything really changed. */
947 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
948 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
949# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
950 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
951 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
952# endif
953 if ( pShwPage->GCPhys == GCPhys
954 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
955 {
956 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
957 /** @todo PAT */
958# ifdef PGM_SYNC_DIRTY_BIT
959 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
960 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
961 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
962 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
963# else
964 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
965 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD)))
966# endif
967 {
968 LogFlow(("Skipping flush for big page containing %VGv (PD=%X)-> nothing has changed!\n", GCPtrPage, iPDSrc));
969 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPagesSkip));
970 return VINF_SUCCESS;
971 }
972 }
973
974 /*
975 * Ok, the page table is present and it's been changed in the guest.
976 * If we're in host context, we'll just mark it as not present taking the lazy approach.
977 * We could do this for some flushes in GC too, but we need an algorithm for
978 * deciding which 4MB pages containing code likely to be executed very soon.
979 */
980 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
981 pPdeDst->u = 0;
982 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPages));
983 PGM_INVL_BIG_PG(GCPtrPage);
984 }
985 }
986 else
987 {
988 /*
989 * Page directory is not present, mark shadow PDE not present.
990 */
991 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
992 {
993 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
994 pPdeDst->u = 0;
995 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
996 PGM_INVL_PG(GCPtrPage);
997 }
998 else
999 {
1000 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1001 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDMappings));
1002 }
1003 }
1004
1005 return rc;
1006
1007#elif PGM_GST_TYPE == PGM_TYPE_AMD64
1008//# error not implemented
1009 return VERR_INTERNAL_ERROR;
1010
1011#else /* guest real and protected mode */
1012 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1013 return VINF_SUCCESS;
1014#endif
1015}
1016
1017
1018#ifdef PGMPOOL_WITH_USER_TRACKING
1019/**
1020 * Update the tracking of shadowed pages.
1021 *
1022 * @param pVM The VM handle.
1023 * @param pShwPage The shadow page.
1024 * @param HCPhys The physical page we is being dereferenced.
1025 */
1026DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1027{
1028# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1029 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1030 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%VHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1031
1032 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1033 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1034 * 2. write protect all shadowed pages. I.e. implement caching.
1035 */
1036 /*
1037 * Find the guest address.
1038 */
1039 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1040 pRam;
1041 pRam = CTXALLSUFF(pRam->pNext))
1042 {
1043 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1044 while (iPage-- > 0)
1045 {
1046 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1047 {
1048 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
1049 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1050 pShwPage->cPresent--;
1051 pPool->cPresent--;
1052 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1053 return;
1054 }
1055 }
1056 }
1057
1058 for (;;)
1059 AssertReleaseMsgFailed(("HCPhys=%VHp wasn't found!\n", HCPhys));
1060# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1061 pShwPage->cPresent--;
1062 pVM->pgm.s.CTXSUFF(pPool)->cPresent--;
1063# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1064}
1065
1066
1067/**
1068 * Update the tracking of shadowed pages.
1069 *
1070 * @param pVM The VM handle.
1071 * @param pShwPage The shadow page.
1072 * @param u16 The top 16-bit of the pPage->HCPhys.
1073 * @param pPage Pointer to the guest page. this will be modified.
1074 * @param iPTDst The index into the shadow table.
1075 */
1076DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1077{
1078# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1079 /*
1080 * We're making certain assumptions about the placement of cRef and idx.
1081 */
1082 Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
1083 Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
1084
1085 /*
1086 * Just deal with the simple first time here.
1087 */
1088 if (!u16)
1089 {
1090 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1091 u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
1092 }
1093 else
1094 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1095
1096 /* write back, trying to be clever... */
1097 Log2(("SyncPageWorkerTrackAddRef: u16=%#x pPage->HCPhys=%VHp->%VHp iPTDst=%#x\n",
1098 u16, pPage->HCPhys, (pPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
1099 *((uint16_t *)&pPage->HCPhys + 3) = u16; /** @todo PAGE FLAGS */
1100# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1101
1102 /* update statistics. */
1103 pVM->pgm.s.CTXSUFF(pPool)->cPresent++;
1104 pShwPage->cPresent++;
1105 if (pShwPage->iFirstPresent > iPTDst)
1106 pShwPage->iFirstPresent = iPTDst;
1107}
1108#endif /* PGMPOOL_WITH_USER_TRACKING */
1109
1110
1111/**
1112 * Creates a 4K shadow page for a guest page.
1113 *
1114 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1115 * physical address. The PdeSrc argument only the flags are used. No page structured
1116 * will be mapped in this function.
1117 *
1118 * @param pVM VM handle.
1119 * @param pPteDst Destination page table entry.
1120 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1121 * Can safely assume that only the flags are being used.
1122 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1123 * @param pShwPage Pointer to the shadow page.
1124 * @param iPTDst The index into the shadow table.
1125 *
1126 * @remark Not used for 2/4MB pages!
1127 */
1128DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1129{
1130 if (PteSrc.n.u1Present)
1131 {
1132 /*
1133 * Find the ram range.
1134 */
1135 PPGMPAGE pPage;
1136 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1137 if (VBOX_SUCCESS(rc))
1138 {
1139 /** @todo investiage PWT, PCD and PAT. */
1140 /*
1141 * Make page table entry.
1142 */
1143 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
1144 SHWPTE PteDst;
1145 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1146 {
1147 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1148 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1149 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1150 | (HCPhys & X86_PTE_PAE_PG_MASK);
1151 else
1152 {
1153 LogFlow(("SyncPageWorker: monitored page (%VGp) -> mark not present\n", HCPhys));
1154 PteDst.u = 0;
1155 }
1156 /** @todo count these two kinds. */
1157 }
1158 else
1159 {
1160#ifdef PGM_SYNC_DIRTY_BIT
1161# ifdef PGM_SYNC_ACCESSED_BIT
1162 /*
1163 * If the page or page directory entry is not marked accessed,
1164 * we mark the page not present.
1165 */
1166 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1167 {
1168 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1169 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,AccessedPage));
1170 PteDst.u = 0;
1171 }
1172 else
1173# endif
1174 /*
1175 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1176 * when the page is modified.
1177 */
1178 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1179 {
1180 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPage));
1181 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1182 | (HCPhys & X86_PTE_PAE_PG_MASK)
1183 | PGM_PTFLAGS_TRACK_DIRTY;
1184 }
1185 else
1186 {
1187 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageSkipped));
1188 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1189 | (HCPhys & X86_PTE_PAE_PG_MASK);
1190 }
1191#endif
1192 }
1193
1194#ifdef PGMPOOL_WITH_USER_TRACKING
1195 /*
1196 * Keep user track up to date.
1197 */
1198 if (PteDst.n.u1Present)
1199 {
1200 if (!pPteDst->n.u1Present)
1201 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1202 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1203 {
1204 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1205 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1206 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1207 }
1208 }
1209 else if (pPteDst->n.u1Present)
1210 {
1211 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1212 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1213 }
1214#endif /* PGMPOOL_WITH_USER_TRACKING */
1215
1216 /*
1217 * Update statistics and commit the entry.
1218 */
1219 if (!PteSrc.n.u1Global)
1220 pShwPage->fSeenNonGlobal = true;
1221 *pPteDst = PteDst;
1222 }
1223 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1224 /** @todo count these. */
1225 }
1226 else
1227 {
1228 /*
1229 * Page not-present.
1230 */
1231 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1232#ifdef PGMPOOL_WITH_USER_TRACKING
1233 /* Keep user track up to date. */
1234 if (pPteDst->n.u1Present)
1235 {
1236 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1237 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1238 }
1239#endif /* PGMPOOL_WITH_USER_TRACKING */
1240 pPteDst->u = 0;
1241 /** @todo count these. */
1242 }
1243}
1244
1245
1246/**
1247 * Syncs a guest OS page.
1248 *
1249 * There are no conflicts at this point, neither is there any need for
1250 * page table allocations.
1251 *
1252 * @returns VBox status code.
1253 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1254 * @param pVM VM handle.
1255 * @param PdeSrc Page directory entry of the guest.
1256 * @param GCPtrPage Guest context page address.
1257 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1258 * @param uErr Fault error (X86_TRAP_PF_*).
1259 */
1260PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr)
1261{
1262 LogFlow(("SyncPage: GCPtrPage=%VGv cPages=%d uErr=%#x\n", GCPtrPage, cPages, uErr));
1263
1264#if PGM_GST_TYPE == PGM_TYPE_32BIT \
1265 || PGM_GST_TYPE == PGM_TYPE_PAE
1266
1267 /*
1268 * Assert preconditions.
1269 */
1270 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPagePD[(GCPtrPage >> X86_PD_SHIFT) & GST_PD_MASK]);
1271 Assert(PdeSrc.n.u1Present);
1272 Assert(cPages);
1273
1274 /*
1275 * Get the shadow PDE, find the shadow page table in the pool.
1276 */
1277 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1278# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1279 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1280# else /* PAE */
1281 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1282# endif
1283 Assert(PdeDst.n.u1Present);
1284 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1285
1286 /*
1287 * Check that the page is present and that the shadow PDE isn't out of sync.
1288 */
1289 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1290 RTGCPHYS GCPhys;
1291 if (!fBigPage)
1292 {
1293 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1294# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1295 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1296 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1297# endif
1298 }
1299 else
1300 {
1301 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1302# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1303 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1304 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1305# endif
1306 }
1307 if ( pShwPage->GCPhys == GCPhys
1308 && PdeSrc.n.u1Present
1309 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1310 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1311# if PGM_GST_TYPE == PGM_TYPE_PAE
1312 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1313# endif
1314 )
1315 {
1316# ifdef PGM_SYNC_ACCESSED_BIT
1317 /*
1318 * Check that the PDE is marked accessed already.
1319 * Since we set the accessed bit *before* getting here on a #PF, this
1320 * check is only meant for dealing with non-#PF'ing paths.
1321 */
1322 if (PdeSrc.n.u1Accessed)
1323# endif
1324 {
1325 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1326 if (!fBigPage)
1327 {
1328 /*
1329 * 4KB Page - Map the guest page table.
1330 */
1331 PGSTPT pPTSrc;
1332 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1333 if (VBOX_SUCCESS(rc))
1334 {
1335# ifdef PGM_SYNC_N_PAGES
1336 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1337 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1338 {
1339 /*
1340 * This code path is currently only taken when the caller is PGMTrap0eHandler
1341 * for non-present pages!
1342 *
1343 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1344 * deal with locality.
1345 */
1346 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1347# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1348 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1349 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1350# else
1351 const unsigned offPTSrc = 0;
1352# endif
1353 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1354 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1355 iPTDst = 0;
1356 else
1357 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1358 for (; iPTDst < iPTDstEnd; iPTDst++)
1359 {
1360 if (!pPTDst->a[iPTDst].n.u1Present)
1361 {
1362 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1363 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1364 NOREF(GCPtrCurPage);
1365#ifndef IN_RING0
1366 /*
1367 * Assuming kernel code will be marked as supervisor - and not as user level
1368 * and executed using a conforming code selector - And marked as readonly.
1369 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1370 */
1371 PPGMPAGE pPage;
1372 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1373 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1374 || !CSAMDoesPageNeedScanning(pVM, (RTGCPTR)GCPtrCurPage)
1375 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1376 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1377 )
1378#endif /* else: CSAM not active */
1379 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1380 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1381 GCPtrCurPage, PteSrc.n.u1Present,
1382 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1383 PteSrc.n.u1User & PdeSrc.n.u1User,
1384 (uint64_t)PteSrc.u,
1385 (uint64_t)pPTDst->a[iPTDst].u,
1386 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1387 }
1388 }
1389 }
1390 else
1391# endif /* PGM_SYNC_N_PAGES */
1392 {
1393 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1394 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1395 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1396 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1397 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1398 GCPtrPage, PteSrc.n.u1Present,
1399 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1400 PteSrc.n.u1User & PdeSrc.n.u1User,
1401 (uint64_t)PteSrc.u,
1402 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1403 }
1404 }
1405 else /* MMIO or invalid page: emulated in #PF handler. */
1406 {
1407 LogFlow(("PGM_GCPHYS_2_PTR %VGp failed with %Vrc\n", GCPhys, rc));
1408 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1409 }
1410 }
1411 else
1412 {
1413 /*
1414 * 4/2MB page - lazy syncing shadow 4K pages.
1415 * (There are many causes of getting here, it's no longer only CSAM.)
1416 */
1417 /* Calculate the GC physical address of this 4KB shadow page. */
1418 RTGCPHYS GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK) | ((RTGCUINTPTR)GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1419 /* Find ram range. */
1420 PPGMPAGE pPage;
1421 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1422 if (VBOX_SUCCESS(rc))
1423 {
1424 /*
1425 * Make shadow PTE entry.
1426 */
1427 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
1428 SHWPTE PteDst;
1429 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1430 | (HCPhys & X86_PTE_PAE_PG_MASK);
1431 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1432 {
1433 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1434 PteDst.n.u1Write = 0;
1435 else
1436 PteDst.u = 0;
1437 }
1438 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1439# ifdef PGMPOOL_WITH_USER_TRACKING
1440 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1441 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1442# endif
1443 pPTDst->a[iPTDst] = PteDst;
1444
1445
1446# ifdef PGM_SYNC_DIRTY_BIT
1447 /*
1448 * If the page is not flagged as dirty and is writable, then make it read-only
1449 * at PD level, so we can set the dirty bit when the page is modified.
1450 *
1451 * ASSUMES that page access handlers are implemented on page table entry level.
1452 * Thus we will first catch the dirty access and set PDE.D and restart. If
1453 * there is an access handler, we'll trap again and let it work on the problem.
1454 */
1455 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1456 * As for invlpg, it simply frees the whole shadow PT.
1457 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1458 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1459 {
1460 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
1461 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1462 PdeDst.n.u1Write = 0;
1463 }
1464 else
1465 {
1466 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1467 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1468 }
1469# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1470 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
1471# else /* PAE */
1472 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst] = PdeDst;
1473# endif
1474# endif /* PGM_SYNC_DIRTY_BIT */
1475 Log2(("SyncPage: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%VGp%s\n",
1476 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1477 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1478 }
1479 else
1480 LogFlow(("PGM_GCPHYS_2_PTR %VGp (big) failed with %Vrc\n", GCPhys, rc));
1481 }
1482 return VINF_SUCCESS;
1483 }
1484# ifdef PGM_SYNC_ACCESSED_BIT
1485 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDNAs));
1486#endif
1487 }
1488 else
1489 {
1490 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDOutOfSync));
1491 Log2(("SyncPage: Out-Of-Sync PDE at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1492 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1493 }
1494
1495 /*
1496 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1497 * Yea, I'm lazy.
1498 */
1499 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1500# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1501 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
1502# else /* PAE */
1503 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst].u = 0;
1504# endif
1505 PGM_INVL_GUEST_TLBS();
1506 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1507
1508#elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
1509
1510# ifdef PGM_SYNC_N_PAGES
1511 /*
1512 * Get the shadow PDE, find the shadow page table in the pool.
1513 */
1514 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1515# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1516 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1517# else /* PAE */
1518 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1519# endif
1520 Assert(PdeDst.n.u1Present);
1521 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1522 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1523
1524# if PGM_SHW_TYPE == PGM_TYPE_PAE
1525 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1526 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1527# else
1528 const unsigned offPTSrc = 0;
1529# endif
1530
1531 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1532 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1533 {
1534 /*
1535 * This code path is currently only taken when the caller is PGMTrap0eHandler
1536 * for non-present pages!
1537 *
1538 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1539 * deal with locality.
1540 */
1541 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1542 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1543 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1544 iPTDst = 0;
1545 else
1546 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1547 for (; iPTDst < iPTDstEnd; iPTDst++)
1548 {
1549 if (!pPTDst->a[iPTDst].n.u1Present)
1550 {
1551 GSTPTE PteSrc;
1552
1553 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1554
1555 /* Fake the page table entry */
1556 PteSrc.u = GCPtrCurPage;
1557 PteSrc.n.u1Present = 1;
1558 PteSrc.n.u1Dirty = 1;
1559 PteSrc.n.u1Accessed = 1;
1560 PteSrc.n.u1Write = 1;
1561 PteSrc.n.u1User = 1;
1562
1563 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1564
1565 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1566 GCPtrCurPage, PteSrc.n.u1Present,
1567 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1568 PteSrc.n.u1User & PdeSrc.n.u1User,
1569 (uint64_t)PteSrc.u,
1570 (uint64_t)pPTDst->a[iPTDst].u,
1571 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1572 }
1573 }
1574 }
1575 else
1576# endif /* PGM_SYNC_N_PAGES */
1577 {
1578 GSTPTE PteSrc;
1579 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1580 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1581
1582 /* Fake the page table entry */
1583 PteSrc.u = GCPtrCurPage;
1584 PteSrc.n.u1Present = 1;
1585 PteSrc.n.u1Dirty = 1;
1586 PteSrc.n.u1Accessed = 1;
1587 PteSrc.n.u1Write = 1;
1588 PteSrc.n.u1User = 1;
1589 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1590
1591 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1592 GCPtrPage, PteSrc.n.u1Present,
1593 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1594 PteSrc.n.u1User & PdeSrc.n.u1User,
1595 (uint64_t)PteSrc.u,
1596 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1597 }
1598 return VINF_SUCCESS;
1599
1600#else /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1601 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1602 return VERR_INTERNAL_ERROR;
1603#endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1604}
1605
1606
1607
1608#if PGM_WITH_PAGING(PGM_GST_TYPE)
1609
1610# ifdef PGM_SYNC_DIRTY_BIT
1611
1612/**
1613 * Investigate page fault and handle write protection page faults caused by
1614 * dirty bit tracking.
1615 *
1616 * @returns VBox status code.
1617 * @param pVM VM handle.
1618 * @param uErr Page fault error code.
1619 * @param pPdeDst Shadow page directory entry.
1620 * @param pPdeSrc Guest page directory entry.
1621 * @param GCPtrPage Guest context page address.
1622 */
1623PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage)
1624{
1625 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
1626 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
1627 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
1628# if PGM_WITH_NX(PGM_GST_TYPE)
1629 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1630# endif
1631
1632 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1633 LogFlow(("CheckPageFault: GCPtrPage=%VGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
1634
1635# if PGM_GST_TYPE == PGM_TYPE_AMD64
1636 AssertFailed();
1637# elif PGM_GST_TYPE == PGM_TYPE_PAE
1638 PX86PDPE pPdpeSrc = &pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtrPage >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
1639
1640 /*
1641 * Real page fault?
1642 */
1643 if ( (uErr & X86_TRAP_PF_RSVD)
1644 || !pPdpeSrc->n.u1Present
1645# if PGM_WITH_NX(PGM_GST_TYPE)
1646 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->n.u1NoExecute)
1647# endif
1648 || (fWriteFault && !pPdpeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1649 || (fUserLevelFault && !pPdpeSrc->n.u1User) )
1650 {
1651# ifdef IN_GC
1652 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1653# endif
1654 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1655 LogFlow(("CheckPageFault: real page fault at %VGv (0)\n", GCPtrPage));
1656
1657 if ( pPdpeSrc->n.u1Present
1658 && pPdeSrc->n.u1Present)
1659 {
1660 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1661 * See the 2nd case below as well.
1662 */
1663 if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
1664 {
1665 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1666 }
1667 else
1668 {
1669 /*
1670 * Map the guest page table.
1671 */
1672 PGSTPT pPTSrc;
1673 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
1674 if (VBOX_SUCCESS(rc))
1675 {
1676 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> PAGE_SHIFT) & GST_PT_MASK];
1677 const GSTPTE PteSrc = *pPteSrc;
1678 if (pPteSrc->n.u1Present)
1679 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1680 }
1681 AssertRC(rc);
1682 }
1683 }
1684 return VINF_EM_RAW_GUEST_TRAP;
1685 }
1686# endif
1687
1688 /*
1689 * Real page fault?
1690 */
1691 if ( (uErr & X86_TRAP_PF_RSVD)
1692 || !pPdeSrc->n.u1Present
1693# if PGM_WITH_NX(PGM_GST_TYPE)
1694 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
1695# endif
1696 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1697 || (fUserLevelFault && !pPdeSrc->n.u1User) )
1698 {
1699# ifdef IN_GC
1700 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1701# endif
1702 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1703 LogFlow(("CheckPageFault: real page fault at %VGv (1)\n", GCPtrPage));
1704
1705 if (pPdeSrc->n.u1Present)
1706 {
1707 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1708 * See the 2nd case below as well.
1709 */
1710 if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
1711 {
1712 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1713 }
1714 else
1715 {
1716 /*
1717 * Map the guest page table.
1718 */
1719 PGSTPT pPTSrc;
1720 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
1721 if (VBOX_SUCCESS(rc))
1722 {
1723 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> PAGE_SHIFT) & GST_PT_MASK];
1724 const GSTPTE PteSrc = *pPteSrc;
1725 if (pPteSrc->n.u1Present)
1726 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1727 }
1728 AssertRC(rc);
1729 }
1730 }
1731 return VINF_EM_RAW_GUEST_TRAP;
1732 }
1733
1734 /*
1735 * First check the easy case where the page directory has been marked read-only to track
1736 * the dirty bit of an emulated BIG page
1737 */
1738 if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
1739 {
1740 /* Mark guest page directory as accessed */
1741 pPdeSrc->b.u1Accessed = 1;
1742
1743 /*
1744 * Only write protection page faults are relevant here.
1745 */
1746 if (fWriteFault)
1747 {
1748 /* Mark guest page directory as dirty (BIG page only). */
1749 pPdeSrc->b.u1Dirty = 1;
1750
1751 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
1752 {
1753 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1754
1755 Assert(pPdeSrc->b.u1Write);
1756
1757 pPdeDst->n.u1Write = 1;
1758 pPdeDst->n.u1Accessed = 1;
1759 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1760 PGM_INVL_BIG_PG(GCPtrPage);
1761 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1762 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
1763 }
1764 }
1765 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1766 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
1767 }
1768 /* else: 4KB page table */
1769
1770 /*
1771 * Map the guest page table.
1772 */
1773 PGSTPT pPTSrc;
1774 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
1775 if (VBOX_SUCCESS(rc))
1776 {
1777 /*
1778 * Real page fault?
1779 */
1780 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> PAGE_SHIFT) & GST_PT_MASK];
1781 const GSTPTE PteSrc = *pPteSrc;
1782 if ( !PteSrc.n.u1Present
1783# if PGM_WITH_NX(PGM_GST_TYPE)
1784 || ((uErr & X86_TRAP_PF_ID) && !PteSrc.n.u1NoExecute)
1785# endif
1786 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
1787 || (fUserLevelFault && !PteSrc.n.u1User)
1788 )
1789 {
1790# ifdef IN_GC
1791 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1792# endif
1793 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1794 LogFlow(("CheckPageFault: real page fault at %VGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
1795
1796 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1797 * See the 2nd case above as well.
1798 */
1799 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
1800 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1801
1802 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1803 return VINF_EM_RAW_GUEST_TRAP;
1804 }
1805 LogFlow(("CheckPageFault: page fault at %VGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
1806
1807 /*
1808 * Set the accessed bits in the page directory and the page table.
1809 */
1810 pPdeSrc->n.u1Accessed = 1;
1811 pPteSrc->n.u1Accessed = 1;
1812
1813 /*
1814 * Only write protection page faults are relevant here.
1815 */
1816 if (fWriteFault)
1817 {
1818 /* Write access, so mark guest entry as dirty. */
1819# if defined(IN_GC) && defined(VBOX_WITH_STATISTICS)
1820 if (!pPteSrc->n.u1Dirty)
1821 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtiedPage);
1822 else
1823 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageAlreadyDirty);
1824# endif
1825 pPteSrc->n.u1Dirty = 1;
1826
1827 if (pPdeDst->n.u1Present)
1828 {
1829 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
1830 * Our individual shadow handlers will provide more information and force a fatal exit.
1831 */
1832 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
1833 {
1834 LogRel(("CheckPageFault: write to hypervisor region %VGv\n", GCPtrPage));
1835 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1836 return VINF_SUCCESS;
1837 }
1838
1839 /*
1840 * Map shadow page table.
1841 */
1842 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
1843 if (pShwPage)
1844 {
1845 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1846 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
1847 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
1848 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
1849 {
1850 LogFlow(("DIRTY page trap addr=%VGv\n", GCPtrPage));
1851# ifdef VBOX_STRICT
1852 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
1853 if (pPage)
1854 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
1855 ("Unexpected dirty bit tracking on monitored page %VGv (phys %VGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
1856# endif
1857 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1858
1859 Assert(pPteSrc->n.u1Write);
1860
1861 pPteDst->n.u1Write = 1;
1862 pPteDst->n.u1Dirty = 1;
1863 pPteDst->n.u1Accessed = 1;
1864 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
1865 PGM_INVL_PG(GCPtrPage);
1866
1867 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1868 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
1869 }
1870 }
1871 else
1872 AssertMsgFailed(("pgmPoolGetPageByHCPhys %VGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
1873 }
1874 }
1875/** @todo Optimize accessed bit emulation? */
1876# ifdef VBOX_STRICT
1877 /*
1878 * Sanity check.
1879 */
1880 else if ( !pPteSrc->n.u1Dirty
1881 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
1882 && pPdeDst->n.u1Present)
1883 {
1884 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
1885 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1886 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
1887 if ( pPteDst->n.u1Present
1888 && pPteDst->n.u1Write)
1889 LogFlow(("Writable present page %VGv not marked for dirty bit tracking!!!\n", GCPtrPage));
1890 }
1891# endif /* VBOX_STRICT */
1892 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1893 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
1894 }
1895 AssertRC(rc);
1896 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1897 return rc;
1898}
1899
1900# endif
1901
1902#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
1903
1904
1905/**
1906 * Sync a shadow page table.
1907 *
1908 * The shadow page table is not present. This includes the case where
1909 * there is a conflict with a mapping.
1910 *
1911 * @returns VBox status code.
1912 * @param pVM VM handle.
1913 * @param iPD Page directory index.
1914 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
1915 * Assume this is a temporary mapping.
1916 * @param GCPtrPage GC Pointer of the page that caused the fault
1917 */
1918PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage)
1919{
1920 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1921 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPtPD[iPDSrc]);
1922 LogFlow(("SyncPT: GCPtrPage=%VGv\n", GCPtrPage));
1923
1924#if PGM_GST_TYPE == PGM_TYPE_32BIT \
1925 || PGM_GST_TYPE == PGM_TYPE_PAE
1926
1927 /*
1928 * Validate input a little bit.
1929 */
1930 Assert(iPDSrc == (GCPtrPage >> GST_PD_SHIFT));
1931# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1932 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
1933# else
1934 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
1935# endif
1936 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1937 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
1938 SHWPDE PdeDst = *pPdeDst;
1939
1940# if PGM_GST_TYPE == PGM_TYPE_32BIT
1941 /*
1942 * Check for conflicts.
1943 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
1944 * HC: Simply resolve the conflict.
1945 */
1946 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1947 {
1948 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1949# ifndef IN_RING3
1950 Log(("SyncPT: Conflict at %VGv\n", GCPtrPage));
1951 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1952 return VERR_ADDRESS_CONFLICT;
1953# else
1954 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
1955 Assert(pMapping);
1956 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPDSrc);
1957 if (VBOX_FAILURE(rc))
1958 {
1959 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1960 return rc;
1961 }
1962 PdeDst = *pPdeDst;
1963# endif
1964 }
1965# else /* PGM_GST_TYPE == PGM_TYPE_32BIT */
1966 /* PAE and AMD64 modes are hardware accelerated only, so there are no mappings. */
1967 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
1968# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
1969 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
1970
1971 /*
1972 * Sync page directory entry.
1973 */
1974 int rc = VINF_SUCCESS;
1975 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1976 if (PdeSrc.n.u1Present)
1977 {
1978 /*
1979 * Allocate & map the page table.
1980 */
1981 PSHWPT pPTDst;
1982 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1983 PPGMPOOLPAGE pShwPage;
1984 RTGCPHYS GCPhys;
1985 if (fPageTable)
1986 {
1987 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1988# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1989 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1990 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1991# endif
1992 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
1993 }
1994 else
1995 {
1996 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1997# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1998 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1999 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2000# endif
2001 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2002 }
2003 if (rc == VINF_SUCCESS)
2004 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2005 else if (rc == VINF_PGM_CACHED_PAGE)
2006 {
2007 /*
2008 * The PT was cached, just hook it up.
2009 */
2010 if (fPageTable)
2011 PdeDst.u = pShwPage->Core.Key
2012 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2013 else
2014 {
2015 PdeDst.u = pShwPage->Core.Key
2016 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2017# ifdef PGM_SYNC_DIRTY_BIT /* (see explanation and assumptions further down.) */
2018 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2019 {
2020 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2021 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2022 PdeDst.b.u1Write = 0;
2023 }
2024# endif
2025 }
2026 *pPdeDst = PdeDst;
2027 return VINF_SUCCESS;
2028 }
2029 else if (rc == VERR_PGM_POOL_FLUSHED)
2030 return VINF_PGM_SYNC_CR3;
2031 else
2032 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2033 PdeDst.u &= X86_PDE_AVL_MASK;
2034 PdeDst.u |= pShwPage->Core.Key;
2035
2036# ifdef PGM_SYNC_DIRTY_BIT
2037 /*
2038 * Page directory has been accessed (this is a fault situation, remember).
2039 */
2040 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2041# endif
2042 if (fPageTable)
2043 {
2044 /*
2045 * Page table - 4KB.
2046 *
2047 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2048 */
2049 Log2(("SyncPT: 4K %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2050 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2051 PGSTPT pPTSrc;
2052 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2053 if (VBOX_SUCCESS(rc))
2054 {
2055 /*
2056 * Start by syncing the page directory entry so CSAM's TLB trick works.
2057 */
2058 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2059 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2060 *pPdeDst = PdeDst;
2061
2062 /*
2063 * Directory/page user or supervisor privilege: (same goes for read/write)
2064 *
2065 * Directory Page Combined
2066 * U/S U/S U/S
2067 * 0 0 0
2068 * 0 1 0
2069 * 1 0 0
2070 * 1 1 1
2071 *
2072 * Simple AND operation. Table listed for completeness.
2073 *
2074 */
2075 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4k));
2076# ifdef PGM_SYNC_N_PAGES
2077 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2078 unsigned iPTDst = iPTBase;
2079 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
2080 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2081 iPTDst = 0;
2082 else
2083 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2084# else /* !PGM_SYNC_N_PAGES */
2085 unsigned iPTDst = 0;
2086 const unsigned iPTDstEnd = ELEMENTS(pPTDst->a);
2087# endif /* !PGM_SYNC_N_PAGES */
2088# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2089 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2090 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2091# else
2092 const unsigned offPTSrc = 0;
2093# endif
2094 for (; iPTDst < iPTDstEnd; iPTDst++)
2095 {
2096 const unsigned iPTSrc = iPTDst + offPTSrc;
2097 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2098
2099 if (PteSrc.n.u1Present) /* we've already cleared it above */
2100 {
2101# ifndef IN_RING0
2102 /*
2103 * Assuming kernel code will be marked as supervisor - and not as user level
2104 * and executed using a conforming code selector - And marked as readonly.
2105 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2106 */
2107 PPGMPAGE pPage;
2108 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2109 || !CSAMDoesPageNeedScanning(pVM, (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2110 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2111 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2112 )
2113# endif
2114 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2115 Log2(("SyncPT: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%VGp\n",
2116 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2117 PteSrc.n.u1Present,
2118 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2119 PteSrc.n.u1User & PdeSrc.n.u1User,
2120 (uint64_t)PteSrc.u,
2121 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2122 (PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)));
2123 }
2124 } /* for PTEs */
2125 }
2126 }
2127 else
2128 {
2129 /*
2130 * Big page - 2/4MB.
2131 *
2132 * We'll walk the ram range list in parallel and optimize lookups.
2133 * We will only sync on shadow page table at a time.
2134 */
2135 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4M));
2136
2137 /**
2138 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2139 */
2140
2141 /*
2142 * Start by syncing the page directory entry.
2143 */
2144 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2145 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2146
2147# ifdef PGM_SYNC_DIRTY_BIT
2148 /*
2149 * If the page is not flagged as dirty and is writable, then make it read-only
2150 * at PD level, so we can set the dirty bit when the page is modified.
2151 *
2152 * ASSUMES that page access handlers are implemented on page table entry level.
2153 * Thus we will first catch the dirty access and set PDE.D and restart. If
2154 * there is an access handler, we'll trap again and let it work on the problem.
2155 */
2156 /** @todo move the above stuff to a section in the PGM documentation. */
2157 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2158 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2159 {
2160 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2161 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2162 PdeDst.b.u1Write = 0;
2163 }
2164# endif /* PGM_SYNC_DIRTY_BIT */
2165 *pPdeDst = PdeDst;
2166
2167 /*
2168 * Fill the shadow page table.
2169 */
2170 /* Get address and flags from the source PDE. */
2171 SHWPTE PteDstBase;
2172 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2173
2174 /* Loop thru the entries in the shadow PT. */
2175 const RTGCUINTPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2176 Log2(("SyncPT: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%VGv GCPhys=%VGp %s\n",
2177 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2178 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2179 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
2180 unsigned iPTDst = 0;
2181 while (iPTDst < ELEMENTS(pPTDst->a))
2182 {
2183 /* Advance ram range list. */
2184 while (pRam && GCPhys > pRam->GCPhysLast)
2185 pRam = CTXALLSUFF(pRam->pNext);
2186 if (pRam && GCPhys >= pRam->GCPhys)
2187 {
2188 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2189 do
2190 {
2191 /* Make shadow PTE. */
2192 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2193 SHWPTE PteDst;
2194
2195 /* Make sure the RAM has already been allocated. */
2196 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2197 {
2198 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2199 {
2200# ifdef IN_RING3
2201 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2202# else
2203 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2204# endif
2205 if (rc != VINF_SUCCESS)
2206 return rc;
2207 }
2208 }
2209
2210 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2211 {
2212 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2213 {
2214 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2215 PteDst.n.u1Write = 0;
2216 }
2217 else
2218 PteDst.u = 0;
2219 }
2220# ifndef IN_RING0
2221 /*
2222 * Assuming kernel code will be marked as supervisor and not as user level and executed
2223 * using a conforming code selector. Don't check for readonly, as that implies the whole
2224 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2225 */
2226 else if ( !PdeSrc.n.u1User
2227 && CSAMDoesPageNeedScanning(pVM, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2228 PteDst.u = 0;
2229# endif
2230 else
2231 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2232# ifdef PGMPOOL_WITH_USER_TRACKING
2233 if (PteDst.n.u1Present)
2234 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
2235# endif
2236 /* commit it */
2237 pPTDst->a[iPTDst] = PteDst;
2238 Log4(("SyncPT: BIG %VGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2239 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2240 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2241
2242 /* advance */
2243 GCPhys += PAGE_SIZE;
2244 iHCPage++;
2245 iPTDst++;
2246 } while ( iPTDst < ELEMENTS(pPTDst->a)
2247 && GCPhys <= pRam->GCPhysLast);
2248 }
2249 else if (pRam)
2250 {
2251 Log(("Invalid pages at %VGp\n", GCPhys));
2252 do
2253 {
2254 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2255 GCPhys += PAGE_SIZE;
2256 iPTDst++;
2257 } while ( iPTDst < ELEMENTS(pPTDst->a)
2258 && GCPhys < pRam->GCPhys);
2259 }
2260 else
2261 {
2262 Log(("Invalid pages at %VGp (2)\n", GCPhys));
2263 for ( ; iPTDst < ELEMENTS(pPTDst->a); iPTDst++)
2264 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2265 }
2266 } /* while more PTEs */
2267 } /* 4KB / 4MB */
2268 }
2269 else
2270 AssertRelease(!PdeDst.n.u1Present);
2271
2272 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2273# ifdef IN_GC
2274 if (VBOX_FAILURE(rc))
2275 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPTFailed));
2276# endif
2277 return rc;
2278
2279#elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
2280
2281 int rc = VINF_SUCCESS;
2282
2283 /*
2284 * Validate input a little bit.
2285 */
2286# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2287 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2288# else
2289 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2290# endif
2291 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2292 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2293 SHWPDE PdeDst = *pPdeDst;
2294
2295 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2296 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2297
2298 GSTPDE PdeSrc;
2299 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2300 PdeSrc.n.u1Present = 1;
2301 PdeSrc.n.u1Write = 1;
2302 PdeSrc.n.u1Accessed = 1;
2303 PdeSrc.n.u1User = 1;
2304
2305 /*
2306 * Allocate & map the page table.
2307 */
2308 PSHWPT pPTDst;
2309 PPGMPOOLPAGE pShwPage;
2310 RTGCPHYS GCPhys;
2311
2312 /* Virtual address = physical address */
2313 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK_32;
2314 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2315
2316 if ( rc == VINF_SUCCESS
2317 || rc == VINF_PGM_CACHED_PAGE)
2318 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2319 else
2320 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2321
2322 PdeDst.u &= X86_PDE_AVL_MASK;
2323 PdeDst.u |= pShwPage->Core.Key;
2324 PdeDst.n.u1Present = 1;
2325 *pPdeDst = PdeDst;
2326
2327 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2328 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2329 return rc;
2330
2331#else /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
2332 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2333 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2334 return VERR_INTERNAL_ERROR;
2335#endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
2336}
2337
2338
2339
2340/**
2341 * Prefetch a page/set of pages.
2342 *
2343 * Typically used to sync commonly used pages before entering raw mode
2344 * after a CR3 reload.
2345 *
2346 * @returns VBox status code.
2347 * @param pVM VM handle.
2348 * @param GCPtrPage Page to invalidate.
2349 */
2350PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage)
2351{
2352#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE) && PGM_SHW_TYPE != PGM_TYPE_AMD64
2353 /*
2354 * Check that all Guest levels thru the PDE are present, getting the
2355 * PD and PDE in the processes.
2356 */
2357 int rc = VINF_SUCCESS;
2358# if PGM_WITH_PAGING(PGM_GST_TYPE)
2359# if PGM_GST_TYPE == PGM_TYPE_32BIT
2360 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2361 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2362# else /* PAE */
2363 unsigned iPDSrc;
2364 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2365# endif
2366 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2367# else
2368 PGSTPD pPDSrc = NULL;
2369 const unsigned iPDSrc = 0;
2370 GSTPDE PdeSrc;
2371
2372 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2373 PdeSrc.n.u1Present = 1;
2374 PdeSrc.n.u1Write = 1;
2375 PdeSrc.n.u1Accessed = 1;
2376 PdeSrc.n.u1User = 1;
2377# endif
2378
2379# ifdef PGM_SYNC_ACCESSED_BIT
2380 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2381# else
2382 if (PdeSrc.n.u1Present)
2383# endif
2384 {
2385# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2386 const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2387# else
2388 const X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2389# endif
2390 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2391 {
2392 if (!PdeDst.n.u1Present)
2393 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2394 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2395 else
2396 {
2397 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2398 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2399 * makes no sense to prefetch more than one page.
2400 */
2401 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2402 if (VBOX_SUCCESS(rc))
2403 rc = VINF_SUCCESS;
2404 }
2405 }
2406 }
2407 return rc;
2408
2409#else /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
2410
2411 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
2412 return VERR_INTERNAL_ERROR;
2413#endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
2414}
2415
2416
2417
2418
2419/**
2420 * Syncs a page during a PGMVerifyAccess() call.
2421 *
2422 * @returns VBox status code (informational included).
2423 * @param GCPtrPage The address of the page to sync.
2424 * @param fPage The effective guest page flags.
2425 * @param uErr The trap error code.
2426 */
2427PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fPage, unsigned uErr)
2428{
2429 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%VGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
2430
2431#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE) && PGM_SHW_TYPE != PGM_TYPE_AMD64
2432
2433# ifndef IN_RING0
2434 if (!(fPage & X86_PTE_US))
2435 {
2436 /*
2437 * Mark this page as safe.
2438 */
2439 /** @todo not correct for pages that contain both code and data!! */
2440 Log(("CSAMMarkPage %VGv; scanned=%d\n", GCPtrPage, true));
2441 CSAMMarkPage(pVM, (RTGCPTR)GCPtrPage, true);
2442 }
2443# endif
2444 /*
2445 * Get guest PD and index.
2446 */
2447
2448# if PGM_WITH_PAGING(PGM_GST_TYPE)
2449# if PGM_GST_TYPE == PGM_TYPE_32BIT
2450 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2451 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2452# else /* PAE */
2453 unsigned iPDSrc;
2454 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2455# endif
2456# else
2457 PGSTPD pPDSrc = NULL;
2458 const unsigned iPDSrc = 0;
2459# endif
2460 int rc = VINF_SUCCESS;
2461
2462 /*
2463 * First check if the shadow pd is present.
2464 */
2465# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2466 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2467# else
2468 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2469# endif
2470 if (!pPdeDst->n.u1Present)
2471 {
2472 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2473 AssertRC(rc);
2474 if (rc != VINF_SUCCESS)
2475 return rc;
2476 }
2477
2478# if PGM_WITH_PAGING(PGM_GST_TYPE)
2479 /* Check for dirty bit fault */
2480 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
2481 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
2482 Log(("PGMVerifyAccess: success (dirty)\n"));
2483 else
2484 {
2485 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2486#else
2487 {
2488 GSTPDE PdeSrc;
2489 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2490 PdeSrc.n.u1Present = 1;
2491 PdeSrc.n.u1Write = 1;
2492 PdeSrc.n.u1Accessed = 1;
2493 PdeSrc.n.u1User = 1;
2494
2495#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
2496 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
2497 if (uErr & X86_TRAP_PF_US)
2498 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
2499 else /* supervisor */
2500 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
2501
2502 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2503 if (VBOX_SUCCESS(rc))
2504 {
2505 /* Page was successfully synced */
2506 Log2(("PGMVerifyAccess: success (sync)\n"));
2507 rc = VINF_SUCCESS;
2508 }
2509 else
2510 {
2511 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", GCPtrPage, rc));
2512 return VINF_EM_RAW_GUEST_TRAP;
2513 }
2514 }
2515 return rc;
2516
2517#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2518
2519 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2520 return VERR_INTERNAL_ERROR;
2521#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2522}
2523
2524
2525#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE
2526# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
2527/**
2528 * Figures out which kind of shadow page this guest PDE warrants.
2529 *
2530 * @returns Shadow page kind.
2531 * @param pPdeSrc The guest PDE in question.
2532 * @param cr4 The current guest cr4 value.
2533 */
2534DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
2535{
2536 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
2537 return BTH_PGMPOOLKIND_PT_FOR_PT;
2538 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
2539 //{
2540 // case 0:
2541 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
2542 // case X86_PDE4M_RW:
2543 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
2544 // case X86_PDE4M_US:
2545 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
2546 // case X86_PDE4M_RW | X86_PDE4M_US:
2547 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
2548# if 0
2549 // case X86_PDE4M_PAE_NX:
2550 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
2551 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
2552 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
2553 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
2554 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
2555 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
2556 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
2557# endif
2558 return BTH_PGMPOOLKIND_PT_FOR_BIG;
2559 //}
2560}
2561# endif
2562#endif
2563
2564#undef MY_STAM_COUNTER_INC
2565#define MY_STAM_COUNTER_INC(a) do { } while (0)
2566
2567
2568/**
2569 * Syncs the paging hierarchy starting at CR3.
2570 *
2571 * @returns VBox status code, no specials.
2572 * @param pVM The virtual machine.
2573 * @param cr0 Guest context CR0 register
2574 * @param cr3 Guest context CR3 register
2575 * @param cr4 Guest context CR4 register
2576 * @param fGlobal Including global page directories or not
2577 */
2578PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)
2579{
2580 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
2581 fGlobal = true; /* Change this CR3 reload to be a global one. */
2582
2583 /*
2584 * Update page access handlers.
2585 * The virtual are always flushed, while the physical are only on demand.
2586 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
2587 * have to look into that later because it will have a bad influence on the performance.
2588 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
2589 * bird: Yes, but that won't work for aliases.
2590 */
2591 /** @todo this MUST go away. See #1557. */
2592 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2593 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
2594 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2595
2596#ifdef PGMPOOL_WITH_MONITORING
2597 /*
2598 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2599 * Occationally we will have to clear all the shadow page tables because we wanted
2600 * to monitor a page which was mapped by too many shadowed page tables. This operation
2601 * sometimes refered to as a 'lightweight flush'.
2602 */
2603 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL))
2604 pgmPoolMonitorModifiedClearAll(pVM);
2605 else
2606 {
2607# ifdef IN_RING3
2608 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
2609 pgmPoolClearAll(pVM);
2610# else
2611 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2612 return VINF_PGM_SYNC_CR3;
2613# endif
2614 }
2615#endif
2616
2617 Assert(fGlobal || (cr4 & X86_CR4_PGE));
2618 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTXMID(Stat,SyncCR3Global) : &pVM->pgm.s.CTXMID(Stat,SyncCR3NotGlobal));
2619
2620#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE
2621 /*
2622 * Get page directory addresses.
2623 */
2624# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2625 PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
2626# else
2627 PX86PDEPAE pPDEDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[0];
2628# endif
2629
2630# if PGM_GST_TYPE == PGM_TYPE_32BIT
2631 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2632 Assert(pPDSrc);
2633# ifndef IN_GC
2634 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2635# endif
2636# endif
2637
2638 /*
2639 * Iterate the page directory.
2640 */
2641 PPGMMAPPING pMapping;
2642 unsigned iPdNoMapping;
2643 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
2644 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
2645
2646 /* Only check mappings if they are supposed to be put into the shadow page table. */
2647 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
2648 {
2649 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
2650 iPdNoMapping = (pMapping) ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U; /** PAE todo */
2651 }
2652 else
2653 {
2654 pMapping = 0;
2655 iPdNoMapping = ~0U;
2656 }
2657# if PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
2658 for (unsigned iPDPTE = 0; iPDPTE < GST_PDPE_ENTRIES; iPDPTE++)
2659 {
2660 unsigned iPDSrc;
2661# if PGM_SHW_TYPE == PGM_TYPE_PAE
2662 PX86PDPAE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2663# else
2664 AssertFailed(); /* @todo */
2665 PX86PDPE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[iPDPTE * X86_PG_AMD64_ENTRIES];
2666# endif
2667 PX86PDEPAE pPDEDst = &pPDPAE->a[iPDPTE * X86_PG_PAE_ENTRIES];
2668 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPDPTE << X86_PDPT_SHIFT, &iPDSrc);
2669
2670 if (pPDSrc == NULL)
2671 {
2672 /* PDPT not present */
2673 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPDPTE].n.u1Present = 0;
2674 continue;
2675 }
2676# else /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
2677 {
2678# endif /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
2679 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2680 {
2681# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2682 Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
2683# elif PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2684 Assert(&pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512] == pPDEDst);
2685# endif
2686 register GSTPDE PdeSrc = pPDSrc->a[iPD];
2687 if ( PdeSrc.n.u1Present
2688 && (PdeSrc.n.u1User || fRawR0Enabled))
2689 {
2690# if PGM_GST_TYPE == PGM_TYPE_32BIT
2691 /*
2692 * Check for conflicts with GC mappings.
2693 */
2694 if (iPD == iPdNoMapping)
2695 {
2696 if (pVM->pgm.s.fMappingsFixed)
2697 {
2698 /* It's fixed, just skip the mapping. */
2699 const unsigned cPTs = pMapping->cPTs;
2700 iPD += cPTs - 1;
2701 pPDEDst += cPTs + (PGM_SHW_TYPE != PGM_TYPE_32BIT) * cPTs;
2702 pMapping = pMapping->CTXALLSUFF(pNext);
2703 iPdNoMapping = pMapping ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U;
2704 continue;
2705 }
2706# ifdef IN_RING3
2707 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD);
2708 if (VBOX_FAILURE(rc))
2709 return rc;
2710
2711 /*
2712 * Update iPdNoMapping and pMapping.
2713 */
2714 pMapping = pVM->pgm.s.pMappingsR3;
2715 while (pMapping && pMapping->GCPtr < (iPD << X86_PD_SHIFT))
2716 pMapping = pMapping->pNextR3;
2717 iPdNoMapping = pMapping ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U;
2718# else
2719 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
2720 return VINF_PGM_SYNC_CR3;
2721# endif
2722 }
2723# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2724 /* PAE and AMD64 modes are hardware accelerated only, so there are no mappings. */
2725 Assert(iPD != iPdNoMapping);
2726# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2727 /*
2728 * Sync page directory entry.
2729 *
2730 * The current approach is to allocated the page table but to set
2731 * the entry to not-present and postpone the page table synching till
2732 * it's actually used.
2733 */
2734# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2735 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
2736# else
2737 const unsigned iPdShw = iPD; NOREF(iPdShw);
2738# endif
2739 {
2740 SHWPDE PdeDst = *pPDEDst;
2741 if (PdeDst.n.u1Present)
2742 {
2743 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2744 RTGCPHYS GCPhys;
2745 if ( !PdeSrc.b.u1Size
2746 || !(cr4 & X86_CR4_PSE))
2747 {
2748 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2749# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2750 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2751 GCPhys |= i * (PAGE_SIZE / 2);
2752# endif
2753 }
2754 else
2755 {
2756 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
2757# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2758 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2759 GCPhys |= i * X86_PAGE_2M_SIZE;
2760# endif
2761 }
2762
2763 if ( pShwPage->GCPhys == GCPhys
2764 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
2765 && ( pShwPage->fCached
2766 || ( !fGlobal
2767 && ( false
2768# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
2769 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
2770 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
2771 || ( !pShwPage->fSeenNonGlobal
2772 && (cr4 & X86_CR4_PGE))
2773# endif
2774 )
2775 )
2776 )
2777 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
2778 || ( (cr4 & X86_CR4_PSE)
2779 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
2780 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
2781 )
2782 )
2783 {
2784# ifdef VBOX_WITH_STATISTICS
2785 if ( !fGlobal
2786 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
2787 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
2788 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPD));
2789 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
2790 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPT));
2791 else
2792 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstCacheHit));
2793# endif /* VBOX_WITH_STATISTICS */
2794 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
2795 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
2796 //# ifdef PGMPOOL_WITH_CACHE
2797 // pgmPoolCacheUsed(pPool, pShwPage);
2798 //# endif
2799 }
2800 else
2801 {
2802 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
2803 pPDEDst->u = 0;
2804 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreed));
2805 }
2806 }
2807 else
2808 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstNotPresent));
2809 pPDEDst++;
2810 }
2811 }
2812 else if (iPD != iPdNoMapping)
2813 {
2814 /*
2815 * Check if there is any page directory to mark not present here.
2816 */
2817# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2818 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
2819# else
2820 const unsigned iPdShw = iPD; NOREF(iPdShw);
2821# endif
2822 {
2823 if (pPDEDst->n.u1Present)
2824 {
2825 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdShw);
2826 pPDEDst->u = 0;
2827 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreedSrcNP));
2828 }
2829 pPDEDst++;
2830 }
2831 }
2832 else
2833 {
2834# if PGM_GST_TYPE == PGM_TYPE_32BIT
2835 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2836 const unsigned cPTs = pMapping->cPTs;
2837 if (pVM->pgm.s.fMappingsFixed)
2838 {
2839 /* It's fixed, just skip the mapping. */
2840 pMapping = pMapping->CTXALLSUFF(pNext);
2841 iPdNoMapping = pMapping ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U;
2842 }
2843 else
2844 {
2845 /*
2846 * Check for conflicts for subsequent pagetables
2847 * and advance to the next mapping.
2848 */
2849 iPdNoMapping = ~0U;
2850 unsigned iPT = cPTs;
2851 while (iPT-- > 1)
2852 {
2853 if ( pPDSrc->a[iPD + iPT].n.u1Present
2854 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
2855 {
2856# ifdef IN_RING3
2857 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD);
2858 if (VBOX_FAILURE(rc))
2859 return rc;
2860
2861 /*
2862 * Update iPdNoMapping and pMapping.
2863 */
2864 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
2865 while (pMapping && pMapping->GCPtr < (iPD << X86_PD_SHIFT))
2866 pMapping = pMapping->CTXALLSUFF(pNext);
2867 iPdNoMapping = pMapping ? pMapping->GCPtr >> X86_PD_SHIFT : ~0U;
2868 break;
2869# else
2870 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
2871 return VINF_PGM_SYNC_CR3;
2872# endif
2873 }
2874 }
2875 if (iPdNoMapping == ~0U && pMapping)
2876 {
2877 pMapping = pMapping->CTXALLSUFF(pNext);
2878 if (pMapping)
2879 iPdNoMapping = pMapping->GCPtr >> X86_PD_SHIFT;
2880 }
2881 }
2882
2883 /* advance. */
2884 iPD += cPTs - 1;
2885 pPDEDst += cPTs + (PGM_SHW_TYPE != PGM_TYPE_32BIT) * cPTs;
2886# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2887 /* PAE and AMD64 modes are hardware accelerated only, so there are no mappings. */
2888 AssertFailed();
2889# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2890 }
2891
2892 } /* for iPD */
2893 } /* for each PDPTE (PAE) */
2894
2895 return VINF_SUCCESS;
2896
2897#elif PGM_GST_TYPE == PGM_TYPE_AMD64
2898//# error not implemented
2899 return VERR_INTERNAL_ERROR;
2900#else /* guest real and protected mode */
2901 return VINF_SUCCESS;
2902#endif
2903}
2904
2905
2906
2907
2908#ifdef VBOX_STRICT
2909#ifdef IN_GC
2910# undef AssertMsgFailed
2911# define AssertMsgFailed Log
2912#endif
2913#ifdef IN_RING3
2914# include <VBox/dbgf.h>
2915
2916/**
2917 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
2918 *
2919 * @returns VBox status code (VINF_SUCCESS).
2920 * @param pVM The VM handle.
2921 * @param cr3 The root of the hierarchy.
2922 * @param crr The cr4, only PAE and PSE is currently used.
2923 * @param fLongMode Set if long mode, false if not long mode.
2924 * @param cMaxDepth Number of levels to dump.
2925 * @param pHlp Pointer to the output functions.
2926 */
2927__BEGIN_DECLS
2928PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
2929__END_DECLS
2930
2931#endif
2932
2933/**
2934 * Checks that the shadow page table is in sync with the guest one.
2935 *
2936 * @returns The number of errors.
2937 * @param pVM The virtual machine.
2938 * @param cr3 Guest context CR3 register
2939 * @param cr4 Guest context CR4 register
2940 * @param GCPtr Where to start. Defaults to 0.
2941 * @param cb How much to check. Defaults to everything.
2942 */
2943PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)
2944{
2945 unsigned cErrors = 0;
2946
2947#if PGM_GST_TYPE == PGM_TYPE_32BIT
2948 PPGM pPGM = &pVM->pgm.s;
2949 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
2950 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
2951 RTHCPHYS HCPhys; /* general usage. */
2952 int rc;
2953
2954 /*
2955 * Check that the Guest CR3 and all it's mappings are correct.
2956 */
2957 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
2958 ("Invalid GCPhysCR3=%VGp cr3=%VGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
2959 false);
2960 rc = PGMShwGetPage(pVM, pPGM->pGuestPDGC, NULL, &HCPhysShw);
2961 AssertRCReturn(rc, 1);
2962 HCPhys = NIL_RTHCPHYS;
2963 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
2964 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%VHp HCPhyswShw=%VHp (cr3)\n", HCPhys, HCPhysShw), false);
2965# ifdef IN_RING3
2966 RTGCPHYS GCPhys;
2967 rc = PGMR3DbgHCPtr2GCPhys(pVM, pPGM->pGuestPDHC, &GCPhys);
2968 AssertRCReturn(rc, 1);
2969 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%VGp cr3=%VGp\n", GCPhys, (RTGCPHYS)cr3), false);
2970# endif
2971 const X86PD *pPDSrc = CTXSUFF(pPGM->pGuestPD);
2972
2973 /*
2974 * Get and check the Shadow CR3.
2975 */
2976# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2977 const X86PD *pPDDst = pPGM->CTXMID(p,32BitPD);
2978 unsigned cPDEs = ELEMENTS(pPDDst->a);
2979# else
2980 const X86PDPAE *pPDDst = pPGM->CTXMID(ap,PaePDs[0]); /* use it as a 2048 entry PD */
2981 unsigned cPDEs = ELEMENTS(pPDDst->a) * ELEMENTS(pPGM->apHCPaePDs);
2982# endif
2983 if (cb != ~(RTGCUINTPTR)0)
2984 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
2985
2986/** @todo call the other two PGMAssert*() functions. */
2987
2988 /*
2989 * Iterate the shadow page directory.
2990 */
2991 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
2992 unsigned iPDDst = GCPtr >> SHW_PD_SHIFT;
2993 cPDEs += iPDDst;
2994 for (;
2995 iPDDst < cPDEs;
2996 iPDDst++, GCPtr += _4G / cPDEs)
2997 {
2998 const SHWPDE PdeDst = pPDDst->a[iPDDst];
2999 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3000 {
3001 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3002 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3003 {
3004 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3005 cErrors++;
3006 continue;
3007 }
3008 }
3009 else if ( (PdeDst.u & X86_PDE_P)
3010 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3011 )
3012 {
3013 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3014 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3015 if (!pPoolPage)
3016 {
3017 AssertMsgFailed(("Invalid page table address %VGp at %VGv! PdeDst=%#RX64\n",
3018 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3019 cErrors++;
3020 continue;
3021 }
3022 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3023
3024 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3025 {
3026 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %VGv! These flags are not virtualized! PdeDst=%#RX64\n",
3027 GCPtr, (uint64_t)PdeDst.u));
3028 cErrors++;
3029 }
3030
3031 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3032 {
3033 AssertMsgFailed(("4K PDE reserved flags at %VGv! PdeDst=%#RX64\n",
3034 GCPtr, (uint64_t)PdeDst.u));
3035 cErrors++;
3036 }
3037
3038 const X86PDE PdeSrc = pPDSrc->a[iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)];
3039 if (!PdeSrc.n.u1Present)
3040 {
3041 AssertMsgFailed(("Guest PDE at %VGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3042 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3043 cErrors++;
3044 continue;
3045 }
3046
3047 if ( !PdeSrc.b.u1Size
3048 || !(cr4 & X86_CR4_PSE))
3049 {
3050 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3051# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3052 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3053# endif
3054 }
3055 else
3056 {
3057 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3058 {
3059 AssertMsgFailed(("Guest PDE at %VGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3060 GCPtr, (uint64_t)PdeSrc.u));
3061 cErrors++;
3062 continue;
3063 }
3064 GCPhysGst = PdeSrc.u & GST_PDE_BIG_PG_MASK;
3065# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3066 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3067# endif
3068 }
3069
3070 if ( pPoolPage->enmKind
3071 != (!PdeSrc.b.u1Size || !(cr4 & X86_CR4_PSE) ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3072 {
3073 AssertMsgFailed(("Invalid shadow page table kind %d at %VGv! PdeSrc=%#RX64\n",
3074 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3075 cErrors++;
3076 }
3077
3078 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3079 if (!pPhysPage)
3080 {
3081 AssertMsgFailed(("Cannot find guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3082 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3083 cErrors++;
3084 continue;
3085 }
3086
3087 if (GCPhysGst != pPoolPage->GCPhys)
3088 {
3089 AssertMsgFailed(("GCPhysGst=%VGp != pPage->GCPhys=%VGp at %VGv\n",
3090 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3091 cErrors++;
3092 continue;
3093 }
3094
3095 if ( !PdeSrc.b.u1Size
3096 || !(cr4 & X86_CR4_PSE))
3097 {
3098 /*
3099 * Page Table.
3100 */
3101 const GSTPT *pPTSrc;
3102 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3103 if (VBOX_FAILURE(rc))
3104 {
3105 AssertMsgFailed(("Cannot map/convert guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3106 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3107 cErrors++;
3108 continue;
3109 }
3110 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3111 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3112 {
3113 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3114 // (This problem will go away when/if we shadow multiple CR3s.)
3115 AssertMsgFailed(("4K PDE flags mismatch at %VGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3116 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3117 cErrors++;
3118 continue;
3119 }
3120 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3121 {
3122 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%VGv PdeDst=%#RX64\n",
3123 GCPtr, (uint64_t)PdeDst.u));
3124 cErrors++;
3125 continue;
3126 }
3127
3128 /* iterate the page table. */
3129# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3130 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3131 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3132# else
3133 const unsigned offPTSrc = 0;
3134# endif
3135 for (unsigned iPT = 0, off = 0;
3136 iPT < ELEMENTS(pPTDst->a);
3137 iPT++, off += PAGE_SIZE)
3138 {
3139 const SHWPTE PteDst = pPTDst->a[iPT];
3140
3141 /* skip not-present entries. */
3142 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3143 continue;
3144 Assert(PteDst.n.u1Present);
3145
3146 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3147 if (!PteSrc.n.u1Present)
3148 {
3149#ifdef IN_RING3
3150 PGMAssertHandlerAndFlagsInSync(pVM);
3151 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3152#endif
3153 AssertMsgFailed(("Out of sync (!P) PTE at %VGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%VGv iPTSrc=%x PdeSrc=%x physpte=%VGp\n",
3154 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3155 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3156 cErrors++;
3157 continue;
3158 }
3159
3160 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3161# if 1 /** @todo sync accessed bit properly... */
3162 fIgnoreFlags |= X86_PTE_A;
3163# endif
3164
3165 /* match the physical addresses */
3166 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3167 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3168
3169# ifdef IN_RING3
3170 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3171 if (VBOX_FAILURE(rc))
3172 {
3173 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3174 {
3175 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3176 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3177 cErrors++;
3178 continue;
3179 }
3180 }
3181 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3182 {
3183 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3184 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3185 cErrors++;
3186 continue;
3187 }
3188# endif
3189
3190 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3191 if (!pPhysPage)
3192 {
3193# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3194 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3195 {
3196 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3197 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3198 cErrors++;
3199 continue;
3200 }
3201# endif
3202 if (PteDst.n.u1Write)
3203 {
3204 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3205 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3206 cErrors++;
3207 }
3208 fIgnoreFlags |= X86_PTE_RW;
3209 }
3210 else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
3211 {
3212 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3213 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3214 cErrors++;
3215 continue;
3216 }
3217
3218 /* flags */
3219 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3220 {
3221 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3222 {
3223 if (PteDst.n.u1Write)
3224 {
3225 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PteSrc=%#RX64 PteDst=%#RX64\n",
3226 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3227 cErrors++;
3228 continue;
3229 }
3230 fIgnoreFlags |= X86_PTE_RW;
3231 }
3232 else
3233 {
3234 if (PteDst.n.u1Present)
3235 {
3236 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VHp PteSrc=%#RX64 PteDst=%#RX64\n",
3237 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3238 cErrors++;
3239 continue;
3240 }
3241 fIgnoreFlags |= X86_PTE_P;
3242 }
3243 }
3244 else
3245 {
3246 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3247 {
3248 if (PteDst.n.u1Write)
3249 {
3250 AssertMsgFailed(("!DIRTY page at %VGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3251 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3252 cErrors++;
3253 continue;
3254 }
3255 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
3256 {
3257 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3258 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3259 cErrors++;
3260 continue;
3261 }
3262 if (PteDst.n.u1Dirty)
3263 {
3264 AssertMsgFailed(("!DIRTY page at %VGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3265 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3266 cErrors++;
3267 }
3268# if 0 /** @todo sync access bit properly... */
3269 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3270 {
3271 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3272 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3273 cErrors++;
3274 }
3275 fIgnoreFlags |= X86_PTE_RW;
3276# else
3277 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3278# endif
3279 }
3280 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3281 {
3282 /* access bit emulation (not implemented). */
3283 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
3284 {
3285 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
3286 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3287 cErrors++;
3288 continue;
3289 }
3290 if (!PteDst.n.u1Accessed)
3291 {
3292 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
3293 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3294 cErrors++;
3295 }
3296 fIgnoreFlags |= X86_PTE_P;
3297 }
3298# ifdef DEBUG_sandervl
3299 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
3300# endif
3301 }
3302
3303 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3304 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
3305 )
3306 {
3307 AssertMsgFailed(("Flags mismatch at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
3308 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3309 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3310 cErrors++;
3311 continue;
3312 }
3313 } /* foreach PTE */
3314 }
3315 else
3316 {
3317 /*
3318 * Big Page.
3319 */
3320 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
3321 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
3322 {
3323 if (PdeDst.n.u1Write)
3324 {
3325 AssertMsgFailed(("!DIRTY page at %VGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3326 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3327 cErrors++;
3328 continue;
3329 }
3330 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
3331 {
3332 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3333 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3334 cErrors++;
3335 continue;
3336 }
3337# if 0 /** @todo sync access bit properly... */
3338 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
3339 {
3340 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3341 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3342 cErrors++;
3343 }
3344 fIgnoreFlags |= X86_PTE_RW;
3345# else
3346 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3347# endif
3348 }
3349 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3350 {
3351 /* access bit emulation (not implemented). */
3352 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
3353 {
3354 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3355 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3356 cErrors++;
3357 continue;
3358 }
3359 if (!PdeDst.n.u1Accessed)
3360 {
3361 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3362 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3363 cErrors++;
3364 }
3365 fIgnoreFlags |= X86_PTE_P;
3366 }
3367
3368 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
3369 {
3370 AssertMsgFailed(("Flags mismatch (B) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
3371 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
3372 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3373 cErrors++;
3374 }
3375
3376 /* iterate the page table. */
3377 for (unsigned iPT = 0, off = 0;
3378 iPT < ELEMENTS(pPTDst->a);
3379 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
3380 {
3381 const SHWPTE PteDst = pPTDst->a[iPT];
3382
3383 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3384 {
3385 AssertMsgFailed(("The PTE at %VGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
3386 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3387 cErrors++;
3388 }
3389
3390 /* skip not-present entries. */
3391 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
3392 continue;
3393
3394 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3395
3396 /* match the physical addresses */
3397 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
3398
3399# ifdef IN_RING3
3400 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3401 if (VBOX_FAILURE(rc))
3402 {
3403 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3404 {
3405 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3406 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3407 cErrors++;
3408 }
3409 }
3410 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
3411 {
3412 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3413 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3414 cErrors++;
3415 continue;
3416 }
3417# endif
3418
3419 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3420 if (!pPhysPage)
3421 {
3422# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3423 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3424 {
3425 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3426 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3427 cErrors++;
3428 continue;
3429 }
3430# endif
3431 if (PteDst.n.u1Write)
3432 {
3433 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3434 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3435 cErrors++;
3436 }
3437 fIgnoreFlags |= X86_PTE_RW;
3438 }
3439 else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
3440 {
3441 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3442 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3443 cErrors++;
3444 continue;
3445 }
3446
3447 /* flags */
3448 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3449 {
3450 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3451 {
3452 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
3453 {
3454 if (PteDst.n.u1Write)
3455 {
3456 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
3457 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3458 cErrors++;
3459 continue;
3460 }
3461 fIgnoreFlags |= X86_PTE_RW;
3462 }
3463 }
3464 else
3465 {
3466 if (PteDst.n.u1Present)
3467 {
3468 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
3469 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3470 cErrors++;
3471 continue;
3472 }
3473 fIgnoreFlags |= X86_PTE_P;
3474 }
3475 }
3476
3477 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3478 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
3479 )
3480 {
3481 AssertMsgFailed(("Flags mismatch (BT) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
3482 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3483 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3484 cErrors++;
3485 continue;
3486 }
3487 } /* foreach PTE */
3488 }
3489 }
3490 /* not present */
3491
3492 } /* forearch PDE */
3493
3494# ifdef DEBUG
3495 if (cErrors)
3496 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
3497# endif
3498
3499#elif PGM_GST_TYPE == PGM_TYPE_PAE
3500//# error not implemented
3501
3502
3503#elif PGM_GST_TYPE == PGM_TYPE_AMD64
3504//# error not implemented
3505
3506/*#else: guest real and protected mode */
3507#endif
3508 return cErrors;
3509}
3510#endif /* VBOX_STRICT */
3511
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette