VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 8001

Last change on this file since 8001 was 8001, checked in by vboxsync, 17 years ago

PAE monitoring fixes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 156.0 KB
Line 
1/* $Id: PGMAllBth.h 8001 2008-04-15 15:07:50Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 innotek GmbH
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 */
19
20/*******************************************************************************
21* Internal Functions *
22*******************************************************************************/
23__BEGIN_DECLS
24PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
25PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage);
26PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr);
27PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage);
28PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage);
29PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR Addr, unsigned fPage, unsigned uErr);
30PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage);
31PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
32#ifdef VBOX_STRICT
33PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr = 0, RTGCUINTPTR cb = ~(RTGCUINTPTR)0);
34#endif
35#ifdef PGMPOOL_WITH_USER_TRACKING
36DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
37#endif
38__END_DECLS
39
40
41/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
42#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE
43#error "Invalid combination; PAE guest implies PAE shadow"
44#endif
45
46#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
47 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE)
48#error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
49#endif
50
51#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
52 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE)
53#error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
54#endif
55
56#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64)
57 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64)
58#error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
59#endif
60
61/**
62 * #PF Handler for raw-mode guest execution.
63 *
64 * @returns VBox status code (appropriate for trap handling and GC return).
65 * @param pVM VM Handle.
66 * @param uErr The trap error code.
67 * @param pRegFrame Trap register frame.
68 * @param pvFault The fault address.
69 */
70PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
71{
72#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE) && PGM_SHW_TYPE != PGM_TYPE_AMD64
73
74# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
75 /*
76 * Hide the instruction fetch trap indicator for now.
77 */
78 /** @todo NXE will change this and we must fix NXE in the switcher too! */
79 if (uErr & X86_TRAP_PF_ID)
80 {
81 uErr &= ~X86_TRAP_PF_ID;
82 TRPMSetErrorCode(pVM, uErr);
83 }
84# endif
85
86 /*
87 * Get PDs.
88 */
89 int rc;
90# if PGM_WITH_PAGING(PGM_GST_TYPE)
91# if PGM_GST_TYPE == PGM_TYPE_32BIT
92 const unsigned iPDSrc = (RTGCUINTPTR)pvFault >> GST_PD_SHIFT;
93 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
94# else /* PAE */
95 unsigned iPDSrc;
96 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, (RTGCUINTPTR)pvFault, &iPDSrc);
97
98 /* Quick check for a valid guest trap. */
99 if (!pPDSrc)
100 {
101 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eGuestTrap; });
102 TRPMSetErrorCode(pVM, uErr);
103 return VINF_EM_RAW_GUEST_TRAP;
104 }
105# endif
106# else
107 PGSTPD pPDSrc = NULL;
108 const unsigned iPDSrc = 0;
109# endif
110
111 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
112# if PGM_SHW_TYPE == PGM_TYPE_32BIT
113 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
114# elif PGM_SHW_TYPE == PGM_TYPE_PAE
115 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries. */
116
117# if PGM_GST_TYPE == PGM_TYPE_PAE
118 /* Did we mark the PDPT as not present in SyncCR3? */
119 unsigned iPDPTE = ((RTGCUINTPTR)pvFault >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
120 if (!pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPDPTE].n.u1Present)
121 {
122 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPDPTE].n.u1Present = 1;
123 }
124# endif
125# else
126 AssertFailed();
127# endif
128
129# if PGM_WITH_PAGING(PGM_GST_TYPE)
130# ifdef PGM_SYNC_DIRTY_BIT
131 /*
132 * If we successfully correct the write protection fault due to dirty bit
133 * tracking, or this page fault is a genuine one, then return immediately.
134 */
135 STAM_PROFILE_START(&pVM->pgm.s.StatCheckPageFault, e);
136 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], (RTGCUINTPTR)pvFault);
137 STAM_PROFILE_STOP(&pVM->pgm.s.StatCheckPageFault, e);
138 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
139 || rc == VINF_EM_RAW_GUEST_TRAP)
140 {
141 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution)
142 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatTrap0eDirtyAndAccessedBits : &pVM->pgm.s.StatTrap0eGuestTrap; });
143 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
144 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
145 }
146# endif
147
148 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0ePD[iPDSrc]);
149# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
150
151 /*
152 * A common case is the not-present error caused by lazy page table syncing.
153 *
154 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
155 * so we can safely assume that the shadow PT is present when calling SyncPage later.
156 *
157 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
158 * of mapping conflict and defer to SyncCR3 in R3.
159 * (Again, we do NOT support access handlers for non-present guest pages.)
160 *
161 */
162# if PGM_WITH_PAGING(PGM_GST_TYPE)
163 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
164# else
165 GSTPDE PdeSrc;
166 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
167 PdeSrc.n.u1Present = 1;
168 PdeSrc.n.u1Write = 1;
169 PdeSrc.n.u1Accessed = 1;
170 PdeSrc.n.u1User = 1;
171# endif
172 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
173 && !pPDDst->a[iPDDst].n.u1Present
174 && PdeSrc.n.u1Present
175 )
176
177 {
178 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eSyncPT; });
179 STAM_PROFILE_START(&pVM->pgm.s.StatLazySyncPT, f);
180 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
181 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, (RTGCUINTPTR)pvFault);
182 if (VBOX_SUCCESS(rc))
183 {
184 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
185 return rc;
186 }
187 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
188 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
189 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
190 return VINF_PGM_SYNC_CR3;
191 }
192
193# if PGM_WITH_PAGING(PGM_GST_TYPE)
194 /*
195 * Check if this address is within any of our mappings.
196 *
197 * This is *very* fast and it's gonna save us a bit of effort below and prevent
198 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
199 * (BTW, it's impossible to have physical access handlers in a mapping.)
200 */
201 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
202 {
203 STAM_PROFILE_START(&pVM->pgm.s.StatMapping, a);
204 PPGMMAPPING pMapping = CTXALLSUFF(pVM->pgm.s.pMappings);
205 for ( ; pMapping; pMapping = CTXALLSUFF(pMapping->pNext))
206 {
207 if ((RTGCUINTPTR)pvFault < (RTGCUINTPTR)pMapping->GCPtr)
208 break;
209 if ((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pMapping->GCPtr < pMapping->cb)
210 {
211 /*
212 * The first thing we check is if we've got an undetected conflict.
213 */
214 if (!pVM->pgm.s.fMappingsFixed)
215 {
216 unsigned iPT = pMapping->cPTs;
217 while (iPT-- > 0)
218 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
219 {
220 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eConflicts);
221 Log(("Trap0e: Detected Conflict %VGv-%VGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
222 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
223 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
224 return VINF_PGM_SYNC_CR3;
225 }
226 }
227
228 /*
229 * Check if the fault address is in a virtual page access handler range.
230 */
231 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->HyperVirtHandlers, pvFault);
232 if ( pCur
233 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
234 && uErr & X86_TRAP_PF_RW)
235 {
236# ifdef IN_GC
237 STAM_PROFILE_START(&pCur->Stat, h);
238 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
239 STAM_PROFILE_STOP(&pCur->Stat, h);
240# else
241 AssertFailed();
242 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
243# endif
244 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eMapHandler);
245 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
246 return rc;
247 }
248
249 /*
250 * Pretend we're not here and let the guest handle the trap.
251 */
252 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
253 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eMap);
254 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
255 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
256 return VINF_EM_RAW_GUEST_TRAP;
257 }
258 }
259 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
260 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
261# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
262
263 /*
264 * Check if this fault address is flagged for special treatment,
265 * which means we'll have to figure out the physical address and
266 * check flags associated with it.
267 *
268 * ASSUME that we can limit any special access handling to pages
269 * in page tables which the guest believes to be present.
270 */
271 if (PdeSrc.n.u1Present)
272 {
273 RTGCPHYS GCPhys = NIL_RTGCPHYS;
274
275# if PGM_WITH_PAGING(PGM_GST_TYPE)
276 uint32_t cr4 = CPUMGetGuestCR4(pVM);
277 if ( PdeSrc.b.u1Size
278 && (cr4 & X86_CR4_PSE))
279 GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK)
280 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
281 else
282 {
283 PGSTPT pPTSrc;
284 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
285 if (VBOX_SUCCESS(rc))
286 {
287 unsigned iPTESrc = ((RTGCUINTPTR)pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
288 if (pPTSrc->a[iPTESrc].n.u1Present)
289 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
290 }
291 }
292# else
293 /* No paging so the fault address is the physical address */
294 GCPhys = (RTGCPHYS)((RTGCUINTPTR)pvFault & ~PAGE_OFFSET_MASK);
295# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
296
297 /*
298 * If we have a GC address we'll check if it has any flags set.
299 */
300 if (GCPhys != NIL_RTGCPHYS)
301 {
302 STAM_PROFILE_START(&pVM->pgm.s.StatHandlers, b);
303
304 PPGMPAGE pPage;
305 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
306 if (VBOX_SUCCESS(rc))
307 {
308 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
309 {
310 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
311 {
312 /*
313 * Physical page access handler.
314 */
315 const RTGCPHYS GCPhysFault = GCPhys | ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK);
316 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->PhysHandlers, GCPhysFault);
317 if (pCur)
318 {
319# ifdef PGM_SYNC_N_PAGES
320 /*
321 * If the region is write protected and we got a page not present fault, then sync
322 * the pages. If the fault was caused by a read, then restart the instruction.
323 * In case of write access continue to the GC write handler.
324 *
325 * ASSUMES that there is only one handler per page or that they have similar write properties.
326 */
327 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
328 && !(uErr & X86_TRAP_PF_P))
329 {
330 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
331 if ( VBOX_FAILURE(rc)
332 || !(uErr & X86_TRAP_PF_RW)
333 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
334 {
335 AssertRC(rc);
336 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
337 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
338 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
339 return rc;
340 }
341 }
342# endif
343
344 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
345 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
346 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
347
348#if defined(IN_GC) || defined(IN_RING0)
349 if (CTXALLSUFF(pCur->pfnHandler))
350 {
351 STAM_PROFILE_START(&pCur->Stat, h);
352 rc = pCur->CTXALLSUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, CTXALLSUFF(pCur->pvUser));
353 STAM_PROFILE_STOP(&pCur->Stat, h);
354 }
355 else
356#endif
357 rc = VINF_EM_RAW_EMULATE_INSTR;
358 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersPhysical);
359 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
360 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndPhys; });
361 return rc;
362 }
363 }
364# if PGM_WITH_PAGING(PGM_GST_TYPE)
365 else
366 {
367# ifdef PGM_SYNC_N_PAGES
368 /*
369 * If the region is write protected and we got a page not present fault, then sync
370 * the pages. If the fault was caused by a read, then restart the instruction.
371 * In case of write access continue to the GC write handler.
372 */
373 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
374 && !(uErr & X86_TRAP_PF_P))
375 {
376 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
377 if ( VBOX_FAILURE(rc)
378 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
379 || !(uErr & X86_TRAP_PF_RW))
380 {
381 AssertRC(rc);
382 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
383 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
384 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndVirt; });
385 return rc;
386 }
387 }
388# endif
389 /*
390 * Ok, it's an virtual page access handler.
391 *
392 * Since it's faster to search by address, we'll do that first
393 * and then retry by GCPhys if that fails.
394 */
395 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
396 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
397 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
398 */
399 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
400 if (pCur)
401 {
402 AssertMsg(!((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
403 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
404 || !(uErr & X86_TRAP_PF_P)
405 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
406 ("Unexpected trap for virtual handler: %VGv (phys=%VGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
407
408 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
409 && ( uErr & X86_TRAP_PF_RW
410 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
411 {
412# ifdef IN_GC
413 STAM_PROFILE_START(&pCur->Stat, h);
414 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
415 STAM_PROFILE_STOP(&pCur->Stat, h);
416# else
417 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
418# endif
419 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtual);
420 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
421 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
422 return rc;
423 }
424 /* Unhandled part of a monitored page */
425 }
426 else
427 {
428 /* Check by physical address. */
429 PPGMVIRTHANDLER pCur;
430 unsigned iPage;
431 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK),
432 &pCur, &iPage);
433 Assert(VBOX_SUCCESS(rc) || !pCur);
434 if ( pCur
435 && ( uErr & X86_TRAP_PF_RW
436 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
437 {
438 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
439# ifdef IN_GC
440 RTGCUINTPTR off = (iPage << PAGE_SHIFT) + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK) - ((RTGCUINTPTR)pCur->GCPtr & PAGE_OFFSET_MASK);
441 Assert(off < pCur->cb);
442 STAM_PROFILE_START(&pCur->Stat, h);
443 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, off);
444 STAM_PROFILE_STOP(&pCur->Stat, h);
445# else
446 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
447# endif
448 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualByPhys);
449 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
450 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
451 return rc;
452 }
453 }
454 }
455# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
456
457 /*
458 * There is a handled area of the page, but this fault doesn't belong to it.
459 * We must emulate the instruction.
460 *
461 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
462 * we first check if this was a page-not-present fault for a page with only
463 * write access handlers. Restart the instruction if it wasn't a write access.
464 */
465 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersUnhandled);
466
467 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
468 && !(uErr & X86_TRAP_PF_P))
469 {
470 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
471 if ( VBOX_FAILURE(rc)
472 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
473 || !(uErr & X86_TRAP_PF_RW))
474 {
475 AssertRC(rc);
476 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
477 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
478 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
479 return rc;
480 }
481 }
482
483 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
484 * It's writing to an unhandled part of the LDT page several million times.
485 */
486 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
487 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
488 rc, pPage->HCPhys,
489 PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
490 PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
491 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
492 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndUnhandled; });
493 return rc;
494 } /* if any kind of handler */
495
496# if PGM_WITH_PAGING(PGM_GST_TYPE)
497 if (uErr & X86_TRAP_PF_P)
498 {
499 /*
500 * The page isn't marked, but it might still be monitored by a virtual page access handler.
501 * (ASSUMES no temporary disabling of virtual handlers.)
502 */
503 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
504 * we should correct both the shadow page table and physical memory flags, and not only check for
505 * accesses within the handler region but for access to pages with virtual handlers. */
506 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
507 if (pCur)
508 {
509 AssertMsg( !((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
510 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
511 || !(uErr & X86_TRAP_PF_P)
512 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
513 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
514
515 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
516 && ( uErr & X86_TRAP_PF_RW
517 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
518 {
519# ifdef IN_GC
520 STAM_PROFILE_START(&pCur->Stat, h);
521 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
522 STAM_PROFILE_STOP(&pCur->Stat, h);
523# else
524 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
525# endif
526 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualUnmarked);
527 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
528 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
529 return rc;
530 }
531 }
532 }
533# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
534 }
535 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
536
537# ifdef PGM_OUT_OF_SYNC_IN_GC
538 /*
539 * We are here only if page is present in Guest page tables and trap is not handled
540 * by our handlers.
541 * Check it for page out-of-sync situation.
542 */
543 STAM_PROFILE_START(&pVM->pgm.s.StatOutOfSync, c);
544
545 if (!(uErr & X86_TRAP_PF_P))
546 {
547 /*
548 * Page is not present in our page tables.
549 * Try to sync it!
550 * BTW, fPageShw is invalid in this branch!
551 */
552 if (uErr & X86_TRAP_PF_US)
553 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
554 else /* supervisor */
555 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
556
557# if defined(LOG_ENABLED) && !defined(IN_RING0)
558 RTGCPHYS GCPhys;
559 uint64_t fPageGst;
560 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
561 Log(("Page out of sync: %p eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%VGp scan=%d\n",
562 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTGCPTR)pRegFrame->eip)));
563# endif /* LOG_ENABLED */
564
565# if PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0)
566 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
567 {
568 uint64_t fPageGst;
569 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
570 if ( VBOX_SUCCESS(rc)
571 && !(fPageGst & X86_PTE_US))
572 {
573 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
574 if ( pvFault == (RTGCPTR)pRegFrame->eip
575 || (RTGCUINTPTR)pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
576# ifdef CSAM_DETECT_NEW_CODE_PAGES
577 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
578 && CSAMDoesPageNeedScanning(pVM, (RTGCPTR)pRegFrame->eip)) /* any new code we encounter here */
579# endif /* CSAM_DETECT_NEW_CODE_PAGES */
580 )
581 {
582 LogFlow(("CSAMExecFault %VGv\n", pRegFrame->eip));
583 rc = CSAMExecFault(pVM, (RTGCPTR)pRegFrame->eip);
584 if (rc != VINF_SUCCESS)
585 {
586 /*
587 * CSAM needs to perform a job in ring 3.
588 *
589 * Sync the page before going to the host context; otherwise we'll end up in a loop if
590 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
591 */
592 LogFlow(("CSAM ring 3 job\n"));
593 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
594 AssertRC(rc2);
595
596 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
597 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eCSAM; });
598 return rc;
599 }
600 }
601# ifdef CSAM_DETECT_NEW_CODE_PAGES
602 else
603 if ( uErr == X86_TRAP_PF_RW
604 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
605 && pRegFrame->ecx < 0x10000
606 )
607 {
608 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
609 * to detect loading of new code pages.
610 */
611
612 /*
613 * Decode the instruction.
614 */
615 RTGCPTR PC;
616 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
617 if (rc == VINF_SUCCESS)
618 {
619 DISCPUSTATE Cpu;
620 uint32_t cbOp;
621 rc = EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)PC, pRegFrame, &Cpu, &cbOp);
622
623 /* For now we'll restrict this to rep movsw/d instructions */
624 if ( rc == VINF_SUCCESS
625 && Cpu.pCurInstr->opcode == OP_MOVSWD
626 && (Cpu.prefix & PREFIX_REP))
627 {
628 CSAMMarkPossibleCodePage(pVM, pvFault);
629 }
630 }
631 }
632# endif /* CSAM_DETECT_NEW_CODE_PAGES */
633
634 /*
635 * Mark this page as safe.
636 */
637 /** @todo not correct for pages that contain both code and data!! */
638 Log2(("CSAMMarkPage %p; scanned=%d\n", pvFault, true));
639 CSAMMarkPage(pVM, pvFault, true);
640 }
641 }
642# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0) */
643 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
644 if (VBOX_SUCCESS(rc))
645 {
646 /* The page was successfully synced, return to the guest. */
647 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
648 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSync; });
649 return VINF_SUCCESS;
650 }
651 }
652 else
653 {
654 /*
655 * A side effect of not flushing global PDEs are out of sync pages due
656 * to physical monitored regions, that are no longer valid.
657 * Assume for now it only applies to the read/write flag
658 */
659 if (VBOX_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
660 {
661 if (uErr & X86_TRAP_PF_US)
662 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
663 else /* supervisor */
664 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
665
666
667 /*
668 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
669 */
670 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
671 if (VBOX_SUCCESS(rc))
672 {
673 /*
674 * Page was successfully synced, return to guest.
675 */
676# ifdef VBOX_STRICT
677 RTGCPHYS GCPhys;
678 uint64_t fPageGst;
679 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
680 Assert(VBOX_SUCCESS(rc) && fPageGst & X86_PTE_RW);
681 LogFlow(("Obsolete physical monitor page out of sync %VGv - phys %VGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
682
683 uint64_t fPageShw;
684 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
685 Assert(VBOX_SUCCESS(rc) && fPageShw & X86_PTE_RW);
686# endif /* VBOX_STRICT */
687 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
688 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncObsHnd; });
689 return VINF_SUCCESS;
690 }
691
692 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
693 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
694 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP|X86_CR0_PG)) == X86_CR0_PG)
695 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
696 {
697 uint64_t fPageGst;
698 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
699 if ( VBOX_SUCCESS(rc)
700 && !(fPageGst & X86_PTE_RW))
701 {
702 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
703 if (VBOX_SUCCESS(rc))
704 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulGC);
705 else
706 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulR3);
707 return rc;
708 }
709 else
710 AssertMsgFailed(("Unexpected r/w page %x flag=%x\n", pvFault, (uint32_t)fPageGst));
711 }
712
713 }
714
715# if PGM_WITH_PAGING(PGM_GST_TYPE)
716# ifdef VBOX_STRICT
717 /*
718 * Check for VMM page flags vs. Guest page flags consistency.
719 * Currently only for debug purposes.
720 */
721 if (VBOX_SUCCESS(rc))
722 {
723 /* Get guest page flags. */
724 uint64_t fPageGst;
725 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
726 if (VBOX_SUCCESS(rc))
727 {
728 uint64_t fPageShw;
729 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
730
731 /*
732 * Compare page flags.
733 * Note: we have AVL, A, D bits desynched.
734 */
735 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
736 ("Page flags mismatch! pvFault=%p GCPhys=%VGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
737 }
738 else
739 AssertMsgFailed(("PGMGstGetPage rc=%Vrc\n", rc));
740 }
741 else
742 AssertMsgFailed(("PGMGCGetPage rc=%Vrc\n", rc));
743# endif /* VBOX_STRICT */
744# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
745 }
746 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
747# endif /* PGM_OUT_OF_SYNC_IN_GC */
748 }
749 else
750 {
751 /*
752 * Page not present in Guest OS or invalid page table address.
753 * This is potential virtual page access handler food.
754 *
755 * For the present we'll say that our access handlers don't
756 * work for this case - we've already discarded the page table
757 * not present case which is identical to this.
758 *
759 * When we perchance find we need this, we will probably have AVL
760 * trees (offset based) to operate on and we can measure their speed
761 * agains mapping a page table and probably rearrange this handling
762 * a bit. (Like, searching virtual ranges before checking the
763 * physical address.)
764 */
765 }
766 }
767
768
769# if PGM_WITH_PAGING(PGM_GST_TYPE)
770 /*
771 * Conclusion, this is a guest trap.
772 */
773 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
774 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUnhandled);
775 return VINF_EM_RAW_GUEST_TRAP;
776# else
777 /* present, but not a monitored page; perhaps the guest is probing physical memory */
778 return VINF_EM_RAW_EMULATE_INSTR;
779# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
780
781
782#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
783
784 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
785 return VERR_INTERNAL_ERROR;
786#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
787}
788
789
790/**
791 * Emulation of the invlpg instruction.
792 *
793 *
794 * @returns VBox status code.
795 *
796 * @param pVM VM handle.
797 * @param GCPtrPage Page to invalidate.
798 *
799 * @remark ASSUMES that the guest is updating before invalidating. This order
800 * isn't required by the CPU, so this is speculative and could cause
801 * trouble.
802 *
803 * @todo Flush page or page directory only if necessary!
804 * @todo Add a #define for simply invalidating the page.
805 */
806PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage)
807{
808#if PGM_GST_TYPE == PGM_TYPE_32BIT \
809 || PGM_GST_TYPE == PGM_TYPE_PAE
810
811 LogFlow(("InvalidatePage %x\n", GCPtrPage));
812 /*
813 * Get the shadow PD entry and skip out if this PD isn't present.
814 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
815 */
816 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
817# if PGM_SHW_TYPE == PGM_TYPE_32BIT
818 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
819# else
820 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs[0])->a[iPDDst];
821# endif
822 const SHWPDE PdeDst = *pPdeDst;
823 if (!PdeDst.n.u1Present)
824 {
825 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
826 return VINF_SUCCESS;
827 }
828
829 /*
830 * Get the guest PD entry and calc big page.
831 */
832# if PGM_GST_TYPE == PGM_TYPE_32BIT
833 PX86PD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
834 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
835 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
836# else /* PAE */
837 unsigned iPDSrc;
838 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
839 GSTPDE PdeSrc;
840
841 if (pPDSrc)
842 PdeSrc = pPDSrc->a[iPDSrc];
843 else
844 PdeSrc.u = 0;
845# endif
846
847 const uint32_t cr4 = CPUMGetGuestCR4(pVM);
848 const bool fIsBigPage = PdeSrc.b.u1Size && (cr4 & X86_CR4_PSE);
849
850# ifdef IN_RING3
851 /*
852 * If a CR3 Sync is pending we may ignore the invalidate page operation
853 * depending on the kind of sync and if it's a global page or not.
854 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
855 */
856# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
857 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
858 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
859 && fIsBigPage
860 && PdeSrc.b.u1Global
861 && (cr4 & X86_CR4_PGE)
862 )
863 )
864# else
865 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
866# endif
867 {
868 STAM_COUNTER_INC(&pVM->pgm.s.StatHCInvalidatePageSkipped);
869 return VINF_SUCCESS;
870 }
871# endif /* IN_RING3 */
872
873
874 /*
875 * Deal with the Guest PDE.
876 */
877 int rc = VINF_SUCCESS;
878 if (PdeSrc.n.u1Present)
879 {
880 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
881 {
882 /*
883 * Conflict - Let SyncPT deal with it to avoid duplicate code.
884 */
885 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
886 Assert(PGMGetGuestMode(pVM) <= PGMMODE_32_BIT);
887 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
888 }
889 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
890 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
891 {
892 /*
893 * Mark not present so we can resync the PDE when it's used.
894 */
895 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
896 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
897 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
898 pPdeDst->u = 0;
899 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
900 PGM_INVL_GUEST_TLBS();
901 }
902# ifdef PGM_SYNC_ACCESSED_BIT
903 else if (!PdeSrc.n.u1Accessed)
904 {
905 /*
906 * Mark not present so we can set the accessed bit.
907 */
908 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
909 pPdeDst->u = 0;
910 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
911 PGM_INVL_GUEST_TLBS();
912 }
913# endif
914 else if (!fIsBigPage)
915 {
916 /*
917 * 4KB - page.
918 */
919 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
920 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
921# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
922 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
923 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
924# endif
925 if (pShwPage->GCPhys == GCPhys)
926 {
927# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
928 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
929 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
930 if (pPT->a[iPTEDst].n.u1Present)
931 {
932# ifdef PGMPOOL_WITH_USER_TRACKING
933 /* This is very unlikely with caching/monitoring enabled. */
934 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
935# endif
936 pPT->a[iPTEDst].u = 0;
937 }
938# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
939 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
940 if (VBOX_SUCCESS(rc))
941 rc = VINF_SUCCESS;
942# endif
943 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4KBPages));
944 PGM_INVL_PG(GCPtrPage);
945 }
946 else
947 {
948 /*
949 * The page table address changed.
950 */
951 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%VGp iPDDst=%#x\n",
952 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
953 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
954 pPdeDst->u = 0;
955 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
956 PGM_INVL_GUEST_TLBS();
957 }
958 }
959 else
960 {
961 /*
962 * 4MB - page.
963 */
964 /* Before freeing the page, check if anything really changed. */
965 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
966 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
967# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
968 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
969 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
970# endif
971 if ( pShwPage->GCPhys == GCPhys
972 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
973 {
974 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
975 /** @todo PAT */
976# ifdef PGM_SYNC_DIRTY_BIT
977 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
978 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
979 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
980 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
981# else
982 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
983 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD)))
984# endif
985 {
986 LogFlow(("Skipping flush for big page containing %VGv (PD=%X)-> nothing has changed!\n", GCPtrPage, iPDSrc));
987 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPagesSkip));
988 return VINF_SUCCESS;
989 }
990 }
991
992 /*
993 * Ok, the page table is present and it's been changed in the guest.
994 * If we're in host context, we'll just mark it as not present taking the lazy approach.
995 * We could do this for some flushes in GC too, but we need an algorithm for
996 * deciding which 4MB pages containing code likely to be executed very soon.
997 */
998 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
999 pPdeDst->u = 0;
1000 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPages));
1001 PGM_INVL_BIG_PG(GCPtrPage);
1002 }
1003 }
1004 else
1005 {
1006 /*
1007 * Page directory is not present, mark shadow PDE not present.
1008 */
1009 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1010 {
1011 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1012 pPdeDst->u = 0;
1013 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1014 PGM_INVL_PG(GCPtrPage);
1015 }
1016 else
1017 {
1018 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1019 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDMappings));
1020 }
1021 }
1022
1023 return rc;
1024
1025#elif PGM_GST_TYPE == PGM_TYPE_AMD64
1026//# error not implemented
1027 return VERR_INTERNAL_ERROR;
1028
1029#else /* guest real and protected mode */
1030 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1031 return VINF_SUCCESS;
1032#endif
1033}
1034
1035
1036#ifdef PGMPOOL_WITH_USER_TRACKING
1037/**
1038 * Update the tracking of shadowed pages.
1039 *
1040 * @param pVM The VM handle.
1041 * @param pShwPage The shadow page.
1042 * @param HCPhys The physical page we is being dereferenced.
1043 */
1044DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1045{
1046# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1047 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1048 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%VHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1049
1050 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1051 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1052 * 2. write protect all shadowed pages. I.e. implement caching.
1053 */
1054 /*
1055 * Find the guest address.
1056 */
1057 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1058 pRam;
1059 pRam = CTXALLSUFF(pRam->pNext))
1060 {
1061 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1062 while (iPage-- > 0)
1063 {
1064 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1065 {
1066 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
1067 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1068 pShwPage->cPresent--;
1069 pPool->cPresent--;
1070 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1071 return;
1072 }
1073 }
1074 }
1075
1076 for (;;)
1077 AssertReleaseMsgFailed(("HCPhys=%VHp wasn't found!\n", HCPhys));
1078# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1079 pShwPage->cPresent--;
1080 pVM->pgm.s.CTXSUFF(pPool)->cPresent--;
1081# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1082}
1083
1084
1085/**
1086 * Update the tracking of shadowed pages.
1087 *
1088 * @param pVM The VM handle.
1089 * @param pShwPage The shadow page.
1090 * @param u16 The top 16-bit of the pPage->HCPhys.
1091 * @param pPage Pointer to the guest page. this will be modified.
1092 * @param iPTDst The index into the shadow table.
1093 */
1094DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1095{
1096# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1097 /*
1098 * We're making certain assumptions about the placement of cRef and idx.
1099 */
1100 Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
1101 Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
1102
1103 /*
1104 * Just deal with the simple first time here.
1105 */
1106 if (!u16)
1107 {
1108 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1109 u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
1110 }
1111 else
1112 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1113
1114 /* write back, trying to be clever... */
1115 Log2(("SyncPageWorkerTrackAddRef: u16=%#x pPage->HCPhys=%VHp->%VHp iPTDst=%#x\n",
1116 u16, pPage->HCPhys, (pPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
1117 *((uint16_t *)&pPage->HCPhys + 3) = u16; /** @todo PAGE FLAGS */
1118# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1119
1120 /* update statistics. */
1121 pVM->pgm.s.CTXSUFF(pPool)->cPresent++;
1122 pShwPage->cPresent++;
1123 if (pShwPage->iFirstPresent > iPTDst)
1124 pShwPage->iFirstPresent = iPTDst;
1125}
1126#endif /* PGMPOOL_WITH_USER_TRACKING */
1127
1128
1129/**
1130 * Creates a 4K shadow page for a guest page.
1131 *
1132 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1133 * physical address. The PdeSrc argument only the flags are used. No page structured
1134 * will be mapped in this function.
1135 *
1136 * @param pVM VM handle.
1137 * @param pPteDst Destination page table entry.
1138 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1139 * Can safely assume that only the flags are being used.
1140 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1141 * @param pShwPage Pointer to the shadow page.
1142 * @param iPTDst The index into the shadow table.
1143 *
1144 * @remark Not used for 2/4MB pages!
1145 */
1146DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1147{
1148 if (PteSrc.n.u1Present)
1149 {
1150 /*
1151 * Find the ram range.
1152 */
1153 PPGMPAGE pPage;
1154 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1155 if (VBOX_SUCCESS(rc))
1156 {
1157 /** @todo investiage PWT, PCD and PAT. */
1158 /*
1159 * Make page table entry.
1160 */
1161 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
1162 SHWPTE PteDst;
1163 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1164 {
1165 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1166 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1167 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1168 | (HCPhys & X86_PTE_PAE_PG_MASK);
1169 else
1170 {
1171 LogFlow(("SyncPageWorker: monitored page (%VGp) -> mark not present\n", HCPhys));
1172 PteDst.u = 0;
1173 }
1174 /** @todo count these two kinds. */
1175 }
1176 else
1177 {
1178#ifdef PGM_SYNC_DIRTY_BIT
1179# ifdef PGM_SYNC_ACCESSED_BIT
1180 /*
1181 * If the page or page directory entry is not marked accessed,
1182 * we mark the page not present.
1183 */
1184 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1185 {
1186 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1187 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,AccessedPage));
1188 PteDst.u = 0;
1189 }
1190 else
1191# endif
1192 /*
1193 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1194 * when the page is modified.
1195 */
1196 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1197 {
1198 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPage));
1199 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1200 | (HCPhys & X86_PTE_PAE_PG_MASK)
1201 | PGM_PTFLAGS_TRACK_DIRTY;
1202 }
1203 else
1204 {
1205 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageSkipped));
1206 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1207 | (HCPhys & X86_PTE_PAE_PG_MASK);
1208 }
1209#endif
1210 }
1211
1212#ifdef PGMPOOL_WITH_USER_TRACKING
1213 /*
1214 * Keep user track up to date.
1215 */
1216 if (PteDst.n.u1Present)
1217 {
1218 if (!pPteDst->n.u1Present)
1219 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1220 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1221 {
1222 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1223 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1224 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1225 }
1226 }
1227 else if (pPteDst->n.u1Present)
1228 {
1229 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1230 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1231 }
1232#endif /* PGMPOOL_WITH_USER_TRACKING */
1233
1234 /*
1235 * Update statistics and commit the entry.
1236 */
1237 if (!PteSrc.n.u1Global)
1238 pShwPage->fSeenNonGlobal = true;
1239 *pPteDst = PteDst;
1240 }
1241 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1242 /** @todo count these. */
1243 }
1244 else
1245 {
1246 /*
1247 * Page not-present.
1248 */
1249 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1250#ifdef PGMPOOL_WITH_USER_TRACKING
1251 /* Keep user track up to date. */
1252 if (pPteDst->n.u1Present)
1253 {
1254 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1255 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1256 }
1257#endif /* PGMPOOL_WITH_USER_TRACKING */
1258 pPteDst->u = 0;
1259 /** @todo count these. */
1260 }
1261}
1262
1263
1264/**
1265 * Syncs a guest OS page.
1266 *
1267 * There are no conflicts at this point, neither is there any need for
1268 * page table allocations.
1269 *
1270 * @returns VBox status code.
1271 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1272 * @param pVM VM handle.
1273 * @param PdeSrc Page directory entry of the guest.
1274 * @param GCPtrPage Guest context page address.
1275 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1276 * @param uErr Fault error (X86_TRAP_PF_*).
1277 */
1278PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr)
1279{
1280# if PGM_WITH_NX(PGM_GST_TYPE)
1281 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1282# endif
1283 LogFlow(("SyncPage: GCPtrPage=%VGv cPages=%d uErr=%#x\n", GCPtrPage, cPages, uErr));
1284
1285#if PGM_GST_TYPE == PGM_TYPE_32BIT \
1286 || PGM_GST_TYPE == PGM_TYPE_PAE
1287
1288 /*
1289 * Assert preconditions.
1290 */
1291 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1292 Assert(PdeSrc.n.u1Present);
1293 Assert(cPages);
1294
1295 /*
1296 * Get the shadow PDE, find the shadow page table in the pool.
1297 */
1298 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1299# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1300 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1301# else /* PAE */
1302 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1303# endif
1304 Assert(PdeDst.n.u1Present);
1305 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1306
1307 /*
1308 * Check that the page is present and that the shadow PDE isn't out of sync.
1309 */
1310 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1311 RTGCPHYS GCPhys;
1312 if (!fBigPage)
1313 {
1314 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1315# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1316 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1317 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1318# endif
1319 }
1320 else
1321 {
1322 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1323# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1324 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1325 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1326# endif
1327 }
1328 if ( pShwPage->GCPhys == GCPhys
1329 && PdeSrc.n.u1Present
1330 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1331 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1332# if PGM_WITH_NX(PGM_GST_TYPE)
1333 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1334# endif
1335 )
1336 {
1337# ifdef PGM_SYNC_ACCESSED_BIT
1338 /*
1339 * Check that the PDE is marked accessed already.
1340 * Since we set the accessed bit *before* getting here on a #PF, this
1341 * check is only meant for dealing with non-#PF'ing paths.
1342 */
1343 if (PdeSrc.n.u1Accessed)
1344# endif
1345 {
1346 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1347 if (!fBigPage)
1348 {
1349 /*
1350 * 4KB Page - Map the guest page table.
1351 */
1352 PGSTPT pPTSrc;
1353 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1354 if (VBOX_SUCCESS(rc))
1355 {
1356# ifdef PGM_SYNC_N_PAGES
1357 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1358 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1359 {
1360 /*
1361 * This code path is currently only taken when the caller is PGMTrap0eHandler
1362 * for non-present pages!
1363 *
1364 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1365 * deal with locality.
1366 */
1367 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1368# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1369 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1370 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1371# else
1372 const unsigned offPTSrc = 0;
1373# endif
1374 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1375 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1376 iPTDst = 0;
1377 else
1378 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1379 for (; iPTDst < iPTDstEnd; iPTDst++)
1380 {
1381 if (!pPTDst->a[iPTDst].n.u1Present)
1382 {
1383 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1384 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1385 NOREF(GCPtrCurPage);
1386#ifndef IN_RING0
1387 /*
1388 * Assuming kernel code will be marked as supervisor - and not as user level
1389 * and executed using a conforming code selector - And marked as readonly.
1390 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1391 */
1392 PPGMPAGE pPage;
1393 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1394 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1395 || !CSAMDoesPageNeedScanning(pVM, (RTGCPTR)GCPtrCurPage)
1396 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1397 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1398 )
1399#endif /* else: CSAM not active */
1400 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1401 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1402 GCPtrCurPage, PteSrc.n.u1Present,
1403 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1404 PteSrc.n.u1User & PdeSrc.n.u1User,
1405 (uint64_t)PteSrc.u,
1406 (uint64_t)pPTDst->a[iPTDst].u,
1407 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1408 }
1409 }
1410 }
1411 else
1412# endif /* PGM_SYNC_N_PAGES */
1413 {
1414 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1415 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1416 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1417 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1418 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1419 GCPtrPage, PteSrc.n.u1Present,
1420 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1421 PteSrc.n.u1User & PdeSrc.n.u1User,
1422 (uint64_t)PteSrc.u,
1423 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1424 }
1425 }
1426 else /* MMIO or invalid page: emulated in #PF handler. */
1427 {
1428 LogFlow(("PGM_GCPHYS_2_PTR %VGp failed with %Vrc\n", GCPhys, rc));
1429 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1430 }
1431 }
1432 else
1433 {
1434 /*
1435 * 4/2MB page - lazy syncing shadow 4K pages.
1436 * (There are many causes of getting here, it's no longer only CSAM.)
1437 */
1438 /* Calculate the GC physical address of this 4KB shadow page. */
1439 RTGCPHYS GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK) | ((RTGCUINTPTR)GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1440 /* Find ram range. */
1441 PPGMPAGE pPage;
1442 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1443 if (VBOX_SUCCESS(rc))
1444 {
1445 /*
1446 * Make shadow PTE entry.
1447 */
1448 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
1449 SHWPTE PteDst;
1450 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1451 | (HCPhys & X86_PTE_PAE_PG_MASK);
1452 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1453 {
1454 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1455 PteDst.n.u1Write = 0;
1456 else
1457 PteDst.u = 0;
1458 }
1459 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1460# ifdef PGMPOOL_WITH_USER_TRACKING
1461 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1462 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1463# endif
1464 pPTDst->a[iPTDst] = PteDst;
1465
1466
1467# ifdef PGM_SYNC_DIRTY_BIT
1468 /*
1469 * If the page is not flagged as dirty and is writable, then make it read-only
1470 * at PD level, so we can set the dirty bit when the page is modified.
1471 *
1472 * ASSUMES that page access handlers are implemented on page table entry level.
1473 * Thus we will first catch the dirty access and set PDE.D and restart. If
1474 * there is an access handler, we'll trap again and let it work on the problem.
1475 */
1476 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1477 * As for invlpg, it simply frees the whole shadow PT.
1478 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1479 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1480 {
1481 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
1482 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1483 PdeDst.n.u1Write = 0;
1484 }
1485 else
1486 {
1487 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1488 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1489 }
1490# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1491 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
1492# else /* PAE */
1493 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst] = PdeDst;
1494# endif
1495# endif /* PGM_SYNC_DIRTY_BIT */
1496 Log2(("SyncPage: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%VGp%s\n",
1497 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1498 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1499 }
1500 else
1501 LogFlow(("PGM_GCPHYS_2_PTR %VGp (big) failed with %Vrc\n", GCPhys, rc));
1502 }
1503 return VINF_SUCCESS;
1504 }
1505# ifdef PGM_SYNC_ACCESSED_BIT
1506 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDNAs));
1507#endif
1508 }
1509 else
1510 {
1511 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDOutOfSync));
1512 Log2(("SyncPage: Out-Of-Sync PDE at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1513 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1514 }
1515
1516 /*
1517 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1518 * Yea, I'm lazy.
1519 */
1520 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1521# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1522 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
1523# else /* PAE */
1524 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst].u = 0;
1525# endif
1526 PGM_INVL_GUEST_TLBS();
1527 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1528
1529#elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
1530
1531# ifdef PGM_SYNC_N_PAGES
1532 /*
1533 * Get the shadow PDE, find the shadow page table in the pool.
1534 */
1535 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1536# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1537 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1538# else /* PAE */
1539 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1540# endif
1541 Assert(PdeDst.n.u1Present);
1542 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1543 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1544
1545# if PGM_SHW_TYPE == PGM_TYPE_PAE
1546 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1547 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1548# else
1549 const unsigned offPTSrc = 0;
1550# endif
1551
1552 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1553 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1554 {
1555 /*
1556 * This code path is currently only taken when the caller is PGMTrap0eHandler
1557 * for non-present pages!
1558 *
1559 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1560 * deal with locality.
1561 */
1562 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1563 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1564 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1565 iPTDst = 0;
1566 else
1567 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1568 for (; iPTDst < iPTDstEnd; iPTDst++)
1569 {
1570 if (!pPTDst->a[iPTDst].n.u1Present)
1571 {
1572 GSTPTE PteSrc;
1573
1574 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1575
1576 /* Fake the page table entry */
1577 PteSrc.u = GCPtrCurPage;
1578 PteSrc.n.u1Present = 1;
1579 PteSrc.n.u1Dirty = 1;
1580 PteSrc.n.u1Accessed = 1;
1581 PteSrc.n.u1Write = 1;
1582 PteSrc.n.u1User = 1;
1583
1584 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1585
1586 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1587 GCPtrCurPage, PteSrc.n.u1Present,
1588 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1589 PteSrc.n.u1User & PdeSrc.n.u1User,
1590 (uint64_t)PteSrc.u,
1591 (uint64_t)pPTDst->a[iPTDst].u,
1592 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1593 }
1594 }
1595 }
1596 else
1597# endif /* PGM_SYNC_N_PAGES */
1598 {
1599 GSTPTE PteSrc;
1600 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1601 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1602
1603 /* Fake the page table entry */
1604 PteSrc.u = GCPtrCurPage;
1605 PteSrc.n.u1Present = 1;
1606 PteSrc.n.u1Dirty = 1;
1607 PteSrc.n.u1Accessed = 1;
1608 PteSrc.n.u1Write = 1;
1609 PteSrc.n.u1User = 1;
1610 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1611
1612 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1613 GCPtrPage, PteSrc.n.u1Present,
1614 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1615 PteSrc.n.u1User & PdeSrc.n.u1User,
1616 (uint64_t)PteSrc.u,
1617 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1618 }
1619 return VINF_SUCCESS;
1620
1621#else /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1622 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1623 return VERR_INTERNAL_ERROR;
1624#endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1625}
1626
1627
1628
1629#if PGM_WITH_PAGING(PGM_GST_TYPE)
1630
1631# ifdef PGM_SYNC_DIRTY_BIT
1632
1633/**
1634 * Investigate page fault and handle write protection page faults caused by
1635 * dirty bit tracking.
1636 *
1637 * @returns VBox status code.
1638 * @param pVM VM handle.
1639 * @param uErr Page fault error code.
1640 * @param pPdeDst Shadow page directory entry.
1641 * @param pPdeSrc Guest page directory entry.
1642 * @param GCPtrPage Guest context page address.
1643 */
1644PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage)
1645{
1646 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
1647 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
1648 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
1649# if PGM_WITH_NX(PGM_GST_TYPE)
1650 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1651# endif
1652
1653 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1654 LogFlow(("CheckPageFault: GCPtrPage=%VGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
1655
1656# if PGM_GST_TYPE == PGM_TYPE_AMD64
1657 AssertFailed();
1658# elif PGM_GST_TYPE == PGM_TYPE_PAE
1659 PX86PDPE pPdpeSrc = &pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtrPage >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
1660
1661 /*
1662 * Real page fault?
1663 */
1664 if ( (uErr & X86_TRAP_PF_RSVD)
1665 || !pPdpeSrc->n.u1Present
1666# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
1667 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->n.u1NoExecute)
1668 || (fWriteFault && !pPdpeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1669 || (fUserLevelFault && !pPdpeSrc->n.u1User)
1670# endif
1671 )
1672 {
1673# ifdef IN_GC
1674 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1675# endif
1676 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1677 LogFlow(("CheckPageFault: real page fault at %VGv (0)\n", GCPtrPage));
1678
1679 if ( pPdpeSrc->n.u1Present
1680 && pPdeSrc->n.u1Present)
1681 {
1682 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1683 * See the 2nd case below as well.
1684 */
1685 if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
1686 {
1687 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1688 }
1689 else
1690 {
1691 /*
1692 * Map the guest page table.
1693 */
1694 PGSTPT pPTSrc;
1695 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
1696 if (VBOX_SUCCESS(rc))
1697 {
1698 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
1699 const GSTPTE PteSrc = *pPteSrc;
1700 if (pPteSrc->n.u1Present)
1701 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1702 }
1703 AssertRC(rc);
1704 }
1705 }
1706 return VINF_EM_RAW_GUEST_TRAP;
1707 }
1708# endif
1709
1710 /*
1711 * Real page fault?
1712 */
1713 if ( (uErr & X86_TRAP_PF_RSVD)
1714 || !pPdeSrc->n.u1Present
1715# if PGM_WITH_NX(PGM_GST_TYPE)
1716 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
1717# endif
1718 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1719 || (fUserLevelFault && !pPdeSrc->n.u1User) )
1720 {
1721# ifdef IN_GC
1722 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1723# endif
1724 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1725 LogFlow(("CheckPageFault: real page fault at %VGv (1)\n", GCPtrPage));
1726
1727 if (pPdeSrc->n.u1Present)
1728 {
1729 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1730 * See the 2nd case below as well.
1731 */
1732 if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
1733 {
1734 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1735 }
1736 else
1737 {
1738 /*
1739 * Map the guest page table.
1740 */
1741 PGSTPT pPTSrc;
1742 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
1743 if (VBOX_SUCCESS(rc))
1744 {
1745 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
1746 const GSTPTE PteSrc = *pPteSrc;
1747 if (pPteSrc->n.u1Present)
1748 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1749 }
1750 AssertRC(rc);
1751 }
1752 }
1753 return VINF_EM_RAW_GUEST_TRAP;
1754 }
1755
1756 /*
1757 * First check the easy case where the page directory has been marked read-only to track
1758 * the dirty bit of an emulated BIG page
1759 */
1760 if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
1761 {
1762 /* Mark guest page directory as accessed */
1763 pPdeSrc->b.u1Accessed = 1;
1764
1765 /*
1766 * Only write protection page faults are relevant here.
1767 */
1768 if (fWriteFault)
1769 {
1770 /* Mark guest page directory as dirty (BIG page only). */
1771 pPdeSrc->b.u1Dirty = 1;
1772
1773 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
1774 {
1775 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1776
1777 Assert(pPdeSrc->b.u1Write);
1778
1779 pPdeDst->n.u1Write = 1;
1780 pPdeDst->n.u1Accessed = 1;
1781 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1782 PGM_INVL_BIG_PG(GCPtrPage);
1783 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1784 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
1785 }
1786 }
1787 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1788 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
1789 }
1790 /* else: 4KB page table */
1791
1792 /*
1793 * Map the guest page table.
1794 */
1795 PGSTPT pPTSrc;
1796 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
1797 if (VBOX_SUCCESS(rc))
1798 {
1799 /*
1800 * Real page fault?
1801 */
1802 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
1803 const GSTPTE PteSrc = *pPteSrc;
1804 if ( !PteSrc.n.u1Present
1805# if PGM_WITH_NX(PGM_GST_TYPE)
1806 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
1807# endif
1808 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
1809 || (fUserLevelFault && !PteSrc.n.u1User)
1810 )
1811 {
1812# ifdef IN_GC
1813 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1814# endif
1815 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1816 LogFlow(("CheckPageFault: real page fault at %VGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
1817
1818 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1819 * See the 2nd case above as well.
1820 */
1821 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
1822 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1823
1824 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1825 return VINF_EM_RAW_GUEST_TRAP;
1826 }
1827 LogFlow(("CheckPageFault: page fault at %VGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
1828
1829 /*
1830 * Set the accessed bits in the page directory and the page table.
1831 */
1832 pPdeSrc->n.u1Accessed = 1;
1833 pPteSrc->n.u1Accessed = 1;
1834
1835 /*
1836 * Only write protection page faults are relevant here.
1837 */
1838 if (fWriteFault)
1839 {
1840 /* Write access, so mark guest entry as dirty. */
1841# if defined(IN_GC) && defined(VBOX_WITH_STATISTICS)
1842 if (!pPteSrc->n.u1Dirty)
1843 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtiedPage);
1844 else
1845 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageAlreadyDirty);
1846# endif
1847 pPteSrc->n.u1Dirty = 1;
1848
1849 if (pPdeDst->n.u1Present)
1850 {
1851 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
1852 * Our individual shadow handlers will provide more information and force a fatal exit.
1853 */
1854 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
1855 {
1856 LogRel(("CheckPageFault: write to hypervisor region %VGv\n", GCPtrPage));
1857 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1858 return VINF_SUCCESS;
1859 }
1860
1861 /*
1862 * Map shadow page table.
1863 */
1864 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
1865 if (pShwPage)
1866 {
1867 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1868 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
1869 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
1870 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
1871 {
1872 LogFlow(("DIRTY page trap addr=%VGv\n", GCPtrPage));
1873# ifdef VBOX_STRICT
1874 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
1875 if (pPage)
1876 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
1877 ("Unexpected dirty bit tracking on monitored page %VGv (phys %VGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
1878# endif
1879 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1880
1881 Assert(pPteSrc->n.u1Write);
1882
1883 pPteDst->n.u1Write = 1;
1884 pPteDst->n.u1Dirty = 1;
1885 pPteDst->n.u1Accessed = 1;
1886 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
1887 PGM_INVL_PG(GCPtrPage);
1888
1889 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1890 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
1891 }
1892 }
1893 else
1894 AssertMsgFailed(("pgmPoolGetPageByHCPhys %VGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
1895 }
1896 }
1897/** @todo Optimize accessed bit emulation? */
1898# ifdef VBOX_STRICT
1899 /*
1900 * Sanity check.
1901 */
1902 else if ( !pPteSrc->n.u1Dirty
1903 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
1904 && pPdeDst->n.u1Present)
1905 {
1906 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
1907 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1908 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
1909 if ( pPteDst->n.u1Present
1910 && pPteDst->n.u1Write)
1911 LogFlow(("Writable present page %VGv not marked for dirty bit tracking!!!\n", GCPtrPage));
1912 }
1913# endif /* VBOX_STRICT */
1914 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1915 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
1916 }
1917 AssertRC(rc);
1918 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1919 return rc;
1920}
1921
1922# endif
1923
1924#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
1925
1926
1927/**
1928 * Sync a shadow page table.
1929 *
1930 * The shadow page table is not present. This includes the case where
1931 * there is a conflict with a mapping.
1932 *
1933 * @returns VBox status code.
1934 * @param pVM VM handle.
1935 * @param iPD Page directory index.
1936 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
1937 * Assume this is a temporary mapping.
1938 * @param GCPtrPage GC Pointer of the page that caused the fault
1939 */
1940PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage)
1941{
1942 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1943 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPtPD[iPDSrc]);
1944 LogFlow(("SyncPT: GCPtrPage=%VGv\n", GCPtrPage));
1945
1946#if PGM_GST_TYPE == PGM_TYPE_32BIT \
1947 || PGM_GST_TYPE == PGM_TYPE_PAE
1948
1949 /*
1950 * Validate input a little bit.
1951 */
1952 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%VGv\n", iPDSrc, GCPtrPage));
1953# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1954 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
1955# else
1956 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
1957# endif
1958 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1959 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
1960 SHWPDE PdeDst = *pPdeDst;
1961
1962# if PGM_GST_TYPE == PGM_TYPE_32BIT
1963 /*
1964 * Check for conflicts.
1965 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
1966 * HC: Simply resolve the conflict.
1967 */
1968 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1969 {
1970 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1971# ifndef IN_RING3
1972 Log(("SyncPT: Conflict at %VGv\n", GCPtrPage));
1973 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1974 return VERR_ADDRESS_CONFLICT;
1975# else
1976 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
1977 Assert(pMapping);
1978 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPDSrc);
1979 if (VBOX_FAILURE(rc))
1980 {
1981 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1982 return rc;
1983 }
1984 PdeDst = *pPdeDst;
1985# endif
1986 }
1987# elif PGM_GST_TYPE == PGM_TYPE_AMD64
1988 /* PAE and AMD64 modes are hardware accelerated only, so there are no mappings. */
1989 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
1990# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
1991 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
1992
1993 /*
1994 * Sync page directory entry.
1995 */
1996 int rc = VINF_SUCCESS;
1997 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1998 if (PdeSrc.n.u1Present)
1999 {
2000 /*
2001 * Allocate & map the page table.
2002 */
2003 PSHWPT pPTDst;
2004 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2005 PPGMPOOLPAGE pShwPage;
2006 RTGCPHYS GCPhys;
2007 if (fPageTable)
2008 {
2009 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2010# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2011 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2012 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2013# endif
2014 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2015 }
2016 else
2017 {
2018 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
2019# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2020 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2021 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2022# endif
2023 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2024 }
2025 if (rc == VINF_SUCCESS)
2026 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2027 else if (rc == VINF_PGM_CACHED_PAGE)
2028 {
2029 /*
2030 * The PT was cached, just hook it up.
2031 */
2032 if (fPageTable)
2033 PdeDst.u = pShwPage->Core.Key
2034 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2035 else
2036 {
2037 PdeDst.u = pShwPage->Core.Key
2038 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2039# ifdef PGM_SYNC_DIRTY_BIT /* (see explanation and assumptions further down.) */
2040 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2041 {
2042 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2043 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2044 PdeDst.b.u1Write = 0;
2045 }
2046# endif
2047 }
2048 *pPdeDst = PdeDst;
2049 return VINF_SUCCESS;
2050 }
2051 else if (rc == VERR_PGM_POOL_FLUSHED)
2052 return VINF_PGM_SYNC_CR3;
2053 else
2054 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2055 PdeDst.u &= X86_PDE_AVL_MASK;
2056 PdeDst.u |= pShwPage->Core.Key;
2057
2058# ifdef PGM_SYNC_DIRTY_BIT
2059 /*
2060 * Page directory has been accessed (this is a fault situation, remember).
2061 */
2062 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2063# endif
2064 if (fPageTable)
2065 {
2066 /*
2067 * Page table - 4KB.
2068 *
2069 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2070 */
2071 Log2(("SyncPT: 4K %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2072 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2073 PGSTPT pPTSrc;
2074 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2075 if (VBOX_SUCCESS(rc))
2076 {
2077 /*
2078 * Start by syncing the page directory entry so CSAM's TLB trick works.
2079 */
2080 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2081 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2082 *pPdeDst = PdeDst;
2083
2084 /*
2085 * Directory/page user or supervisor privilege: (same goes for read/write)
2086 *
2087 * Directory Page Combined
2088 * U/S U/S U/S
2089 * 0 0 0
2090 * 0 1 0
2091 * 1 0 0
2092 * 1 1 1
2093 *
2094 * Simple AND operation. Table listed for completeness.
2095 *
2096 */
2097 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4k));
2098# ifdef PGM_SYNC_N_PAGES
2099 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2100 unsigned iPTDst = iPTBase;
2101 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
2102 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2103 iPTDst = 0;
2104 else
2105 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2106# else /* !PGM_SYNC_N_PAGES */
2107 unsigned iPTDst = 0;
2108 const unsigned iPTDstEnd = ELEMENTS(pPTDst->a);
2109# endif /* !PGM_SYNC_N_PAGES */
2110# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2111 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2112 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2113# else
2114 const unsigned offPTSrc = 0;
2115# endif
2116 for (; iPTDst < iPTDstEnd; iPTDst++)
2117 {
2118 const unsigned iPTSrc = iPTDst + offPTSrc;
2119 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2120
2121 if (PteSrc.n.u1Present) /* we've already cleared it above */
2122 {
2123# ifndef IN_RING0
2124 /*
2125 * Assuming kernel code will be marked as supervisor - and not as user level
2126 * and executed using a conforming code selector - And marked as readonly.
2127 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2128 */
2129 PPGMPAGE pPage;
2130 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2131 || !CSAMDoesPageNeedScanning(pVM, (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2132 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2133 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2134 )
2135# endif
2136 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2137 Log2(("SyncPT: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%VGp\n",
2138 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2139 PteSrc.n.u1Present,
2140 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2141 PteSrc.n.u1User & PdeSrc.n.u1User,
2142 (uint64_t)PteSrc.u,
2143 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2144 (PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)));
2145 }
2146 } /* for PTEs */
2147 }
2148 }
2149 else
2150 {
2151 /*
2152 * Big page - 2/4MB.
2153 *
2154 * We'll walk the ram range list in parallel and optimize lookups.
2155 * We will only sync on shadow page table at a time.
2156 */
2157 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4M));
2158
2159 /**
2160 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2161 */
2162
2163 /*
2164 * Start by syncing the page directory entry.
2165 */
2166 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2167 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2168
2169# ifdef PGM_SYNC_DIRTY_BIT
2170 /*
2171 * If the page is not flagged as dirty and is writable, then make it read-only
2172 * at PD level, so we can set the dirty bit when the page is modified.
2173 *
2174 * ASSUMES that page access handlers are implemented on page table entry level.
2175 * Thus we will first catch the dirty access and set PDE.D and restart. If
2176 * there is an access handler, we'll trap again and let it work on the problem.
2177 */
2178 /** @todo move the above stuff to a section in the PGM documentation. */
2179 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2180 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2181 {
2182 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2183 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2184 PdeDst.b.u1Write = 0;
2185 }
2186# endif /* PGM_SYNC_DIRTY_BIT */
2187 *pPdeDst = PdeDst;
2188
2189 /*
2190 * Fill the shadow page table.
2191 */
2192 /* Get address and flags from the source PDE. */
2193 SHWPTE PteDstBase;
2194 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2195
2196 /* Loop thru the entries in the shadow PT. */
2197 const RTGCUINTPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2198 Log2(("SyncPT: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%VGv GCPhys=%VGp %s\n",
2199 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2200 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2201 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
2202 unsigned iPTDst = 0;
2203 while (iPTDst < ELEMENTS(pPTDst->a))
2204 {
2205 /* Advance ram range list. */
2206 while (pRam && GCPhys > pRam->GCPhysLast)
2207 pRam = CTXALLSUFF(pRam->pNext);
2208 if (pRam && GCPhys >= pRam->GCPhys)
2209 {
2210 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2211 do
2212 {
2213 /* Make shadow PTE. */
2214 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2215 SHWPTE PteDst;
2216
2217 /* Make sure the RAM has already been allocated. */
2218 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2219 {
2220 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2221 {
2222# ifdef IN_RING3
2223 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2224# else
2225 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2226# endif
2227 if (rc != VINF_SUCCESS)
2228 return rc;
2229 }
2230 }
2231
2232 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2233 {
2234 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2235 {
2236 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2237 PteDst.n.u1Write = 0;
2238 }
2239 else
2240 PteDst.u = 0;
2241 }
2242# ifndef IN_RING0
2243 /*
2244 * Assuming kernel code will be marked as supervisor and not as user level and executed
2245 * using a conforming code selector. Don't check for readonly, as that implies the whole
2246 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2247 */
2248 else if ( !PdeSrc.n.u1User
2249 && CSAMDoesPageNeedScanning(pVM, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2250 PteDst.u = 0;
2251# endif
2252 else
2253 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2254# ifdef PGMPOOL_WITH_USER_TRACKING
2255 if (PteDst.n.u1Present)
2256 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
2257# endif
2258 /* commit it */
2259 pPTDst->a[iPTDst] = PteDst;
2260 Log4(("SyncPT: BIG %VGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2261 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2262 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2263
2264 /* advance */
2265 GCPhys += PAGE_SIZE;
2266 iHCPage++;
2267 iPTDst++;
2268 } while ( iPTDst < ELEMENTS(pPTDst->a)
2269 && GCPhys <= pRam->GCPhysLast);
2270 }
2271 else if (pRam)
2272 {
2273 Log(("Invalid pages at %VGp\n", GCPhys));
2274 do
2275 {
2276 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2277 GCPhys += PAGE_SIZE;
2278 iPTDst++;
2279 } while ( iPTDst < ELEMENTS(pPTDst->a)
2280 && GCPhys < pRam->GCPhys);
2281 }
2282 else
2283 {
2284 Log(("Invalid pages at %VGp (2)\n", GCPhys));
2285 for ( ; iPTDst < ELEMENTS(pPTDst->a); iPTDst++)
2286 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2287 }
2288 } /* while more PTEs */
2289 } /* 4KB / 4MB */
2290 }
2291 else
2292 AssertRelease(!PdeDst.n.u1Present);
2293
2294 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2295# ifdef IN_GC
2296 if (VBOX_FAILURE(rc))
2297 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPTFailed));
2298# endif
2299 return rc;
2300
2301#elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
2302
2303 int rc = VINF_SUCCESS;
2304
2305 /*
2306 * Validate input a little bit.
2307 */
2308# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2309 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2310# else
2311 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2312# endif
2313 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2314 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2315 SHWPDE PdeDst = *pPdeDst;
2316
2317 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2318 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2319
2320 GSTPDE PdeSrc;
2321 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2322 PdeSrc.n.u1Present = 1;
2323 PdeSrc.n.u1Write = 1;
2324 PdeSrc.n.u1Accessed = 1;
2325 PdeSrc.n.u1User = 1;
2326
2327 /*
2328 * Allocate & map the page table.
2329 */
2330 PSHWPT pPTDst;
2331 PPGMPOOLPAGE pShwPage;
2332 RTGCPHYS GCPhys;
2333
2334 /* Virtual address = physical address */
2335 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK_32;
2336 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2337
2338 if ( rc == VINF_SUCCESS
2339 || rc == VINF_PGM_CACHED_PAGE)
2340 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2341 else
2342 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2343
2344 PdeDst.u &= X86_PDE_AVL_MASK;
2345 PdeDst.u |= pShwPage->Core.Key;
2346 PdeDst.n.u1Present = 1;
2347 *pPdeDst = PdeDst;
2348
2349 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2350 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2351 return rc;
2352
2353#else /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
2354 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2355 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2356 return VERR_INTERNAL_ERROR;
2357#endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
2358}
2359
2360
2361
2362/**
2363 * Prefetch a page/set of pages.
2364 *
2365 * Typically used to sync commonly used pages before entering raw mode
2366 * after a CR3 reload.
2367 *
2368 * @returns VBox status code.
2369 * @param pVM VM handle.
2370 * @param GCPtrPage Page to invalidate.
2371 */
2372PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage)
2373{
2374#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE) && PGM_SHW_TYPE != PGM_TYPE_AMD64
2375 /*
2376 * Check that all Guest levels thru the PDE are present, getting the
2377 * PD and PDE in the processes.
2378 */
2379 int rc = VINF_SUCCESS;
2380# if PGM_WITH_PAGING(PGM_GST_TYPE)
2381# if PGM_GST_TYPE == PGM_TYPE_32BIT
2382 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2383 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2384# else /* PAE */
2385 unsigned iPDSrc;
2386 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2387 if (!pPDSrc)
2388 return VINF_SUCCESS; /* not present */
2389# endif
2390 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2391# else
2392 PGSTPD pPDSrc = NULL;
2393 const unsigned iPDSrc = 0;
2394 GSTPDE PdeSrc;
2395
2396 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2397 PdeSrc.n.u1Present = 1;
2398 PdeSrc.n.u1Write = 1;
2399 PdeSrc.n.u1Accessed = 1;
2400 PdeSrc.n.u1User = 1;
2401# endif
2402
2403# ifdef PGM_SYNC_ACCESSED_BIT
2404 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2405# else
2406 if (PdeSrc.n.u1Present)
2407# endif
2408 {
2409# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2410 const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2411# else
2412 const X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2413# endif
2414 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2415 {
2416 if (!PdeDst.n.u1Present)
2417 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2418 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2419 else
2420 {
2421 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2422 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2423 * makes no sense to prefetch more than one page.
2424 */
2425 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2426 if (VBOX_SUCCESS(rc))
2427 rc = VINF_SUCCESS;
2428 }
2429 }
2430 }
2431 return rc;
2432
2433#else /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
2434
2435 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
2436 return VERR_INTERNAL_ERROR;
2437#endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
2438}
2439
2440
2441
2442
2443/**
2444 * Syncs a page during a PGMVerifyAccess() call.
2445 *
2446 * @returns VBox status code (informational included).
2447 * @param GCPtrPage The address of the page to sync.
2448 * @param fPage The effective guest page flags.
2449 * @param uErr The trap error code.
2450 */
2451PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fPage, unsigned uErr)
2452{
2453 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%VGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
2454
2455#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE) && PGM_SHW_TYPE != PGM_TYPE_AMD64
2456
2457# ifndef IN_RING0
2458 if (!(fPage & X86_PTE_US))
2459 {
2460 /*
2461 * Mark this page as safe.
2462 */
2463 /** @todo not correct for pages that contain both code and data!! */
2464 Log(("CSAMMarkPage %VGv; scanned=%d\n", GCPtrPage, true));
2465 CSAMMarkPage(pVM, (RTGCPTR)GCPtrPage, true);
2466 }
2467# endif
2468 /*
2469 * Get guest PD and index.
2470 */
2471
2472# if PGM_WITH_PAGING(PGM_GST_TYPE)
2473# if PGM_GST_TYPE == PGM_TYPE_32BIT
2474 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2475 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2476# else /* PAE */
2477 unsigned iPDSrc;
2478 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2479
2480 if (pPDSrc)
2481 {
2482 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2483 return VINF_EM_RAW_GUEST_TRAP;
2484 }
2485# endif
2486# else
2487 PGSTPD pPDSrc = NULL;
2488 const unsigned iPDSrc = 0;
2489# endif
2490 int rc = VINF_SUCCESS;
2491
2492 /*
2493 * First check if the shadow pd is present.
2494 */
2495# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2496 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2497# else
2498 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2499# endif
2500 if (!pPdeDst->n.u1Present)
2501 {
2502 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2503 AssertRC(rc);
2504 if (rc != VINF_SUCCESS)
2505 return rc;
2506 }
2507
2508# if PGM_WITH_PAGING(PGM_GST_TYPE)
2509 /* Check for dirty bit fault */
2510 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
2511 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
2512 Log(("PGMVerifyAccess: success (dirty)\n"));
2513 else
2514 {
2515 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2516#else
2517 {
2518 GSTPDE PdeSrc;
2519 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2520 PdeSrc.n.u1Present = 1;
2521 PdeSrc.n.u1Write = 1;
2522 PdeSrc.n.u1Accessed = 1;
2523 PdeSrc.n.u1User = 1;
2524
2525#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
2526 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
2527 if (uErr & X86_TRAP_PF_US)
2528 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
2529 else /* supervisor */
2530 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
2531
2532 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2533 if (VBOX_SUCCESS(rc))
2534 {
2535 /* Page was successfully synced */
2536 Log2(("PGMVerifyAccess: success (sync)\n"));
2537 rc = VINF_SUCCESS;
2538 }
2539 else
2540 {
2541 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", GCPtrPage, rc));
2542 return VINF_EM_RAW_GUEST_TRAP;
2543 }
2544 }
2545 return rc;
2546
2547#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2548
2549 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2550 return VERR_INTERNAL_ERROR;
2551#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2552}
2553
2554
2555#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE
2556# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
2557/**
2558 * Figures out which kind of shadow page this guest PDE warrants.
2559 *
2560 * @returns Shadow page kind.
2561 * @param pPdeSrc The guest PDE in question.
2562 * @param cr4 The current guest cr4 value.
2563 */
2564DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
2565{
2566 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
2567 return BTH_PGMPOOLKIND_PT_FOR_PT;
2568 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
2569 //{
2570 // case 0:
2571 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
2572 // case X86_PDE4M_RW:
2573 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
2574 // case X86_PDE4M_US:
2575 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
2576 // case X86_PDE4M_RW | X86_PDE4M_US:
2577 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
2578# if 0
2579 // case X86_PDE4M_PAE_NX:
2580 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
2581 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
2582 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
2583 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
2584 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
2585 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
2586 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
2587# endif
2588 return BTH_PGMPOOLKIND_PT_FOR_BIG;
2589 //}
2590}
2591# endif
2592#endif
2593
2594#undef MY_STAM_COUNTER_INC
2595#define MY_STAM_COUNTER_INC(a) do { } while (0)
2596
2597
2598/**
2599 * Syncs the paging hierarchy starting at CR3.
2600 *
2601 * @returns VBox status code, no specials.
2602 * @param pVM The virtual machine.
2603 * @param cr0 Guest context CR0 register
2604 * @param cr3 Guest context CR3 register
2605 * @param cr4 Guest context CR4 register
2606 * @param fGlobal Including global page directories or not
2607 */
2608PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
2609{
2610 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
2611 fGlobal = true; /* Change this CR3 reload to be a global one. */
2612
2613 /*
2614 * Update page access handlers.
2615 * The virtual are always flushed, while the physical are only on demand.
2616 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
2617 * have to look into that later because it will have a bad influence on the performance.
2618 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
2619 * bird: Yes, but that won't work for aliases.
2620 */
2621 /** @todo this MUST go away. See #1557. */
2622 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2623 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
2624 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2625
2626#ifdef PGMPOOL_WITH_MONITORING
2627 /*
2628 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2629 * Occationally we will have to clear all the shadow page tables because we wanted
2630 * to monitor a page which was mapped by too many shadowed page tables. This operation
2631 * sometimes refered to as a 'lightweight flush'.
2632 */
2633 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL))
2634 pgmPoolMonitorModifiedClearAll(pVM);
2635 else
2636 {
2637# ifdef IN_RING3
2638 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
2639 pgmPoolClearAll(pVM);
2640# else
2641 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2642 return VINF_PGM_SYNC_CR3;
2643# endif
2644 }
2645#endif
2646
2647 Assert(fGlobal || (cr4 & X86_CR4_PGE));
2648 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTXMID(Stat,SyncCR3Global) : &pVM->pgm.s.CTXMID(Stat,SyncCR3NotGlobal));
2649
2650#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE
2651 /*
2652 * Get page directory addresses.
2653 */
2654# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2655 PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
2656# else
2657 PX86PDEPAE pPDEDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[0];
2658# endif
2659
2660# if PGM_GST_TYPE == PGM_TYPE_32BIT
2661 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2662 Assert(pPDSrc);
2663# ifndef IN_GC
2664 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2665# endif
2666# endif
2667
2668 /*
2669 * Iterate the page directory.
2670 */
2671 PPGMMAPPING pMapping;
2672 unsigned iPdNoMapping;
2673 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
2674 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
2675
2676 /* Only check mappings if they are supposed to be put into the shadow page table. */
2677 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
2678 {
2679 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
2680 iPdNoMapping = (pMapping) ? pMapping->GCPtr >> SHW_PD_SHIFT : ~0U;
2681 }
2682 else
2683 {
2684 pMapping = 0;
2685 iPdNoMapping = ~0U;
2686 }
2687# if PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
2688 for (unsigned iPDPTE = 0; iPDPTE < GST_PDPE_ENTRIES; iPDPTE++)
2689 {
2690 unsigned iPDSrc;
2691# if PGM_SHW_TYPE == PGM_TYPE_PAE
2692 PX86PDPAE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2693# else
2694 AssertFailed(); /* @todo */
2695 PX86PDPE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[iPDPTE * X86_PG_AMD64_ENTRIES];
2696# endif
2697 PX86PDEPAE pPDEDst = &pPDPAE->a[iPDPTE * X86_PG_PAE_ENTRIES];
2698 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPDPTE << X86_PDPT_SHIFT, &iPDSrc);
2699
2700 if (pPDSrc == NULL)
2701 {
2702 /* PDPT not present */
2703 if (pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPDPTE].n.u1Present)
2704 {
2705 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2706 {
2707 if (pPDEDst[iPD].n.u1Present)
2708 {
2709 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst[iPD].u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPDPTE * X86_PG_PAE_ENTRIES + iPD);
2710 pPDEDst[iPD].u = 0;
2711 }
2712 }
2713 }
2714 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPDPTE].n.u1Present = 0;
2715 continue;
2716 }
2717# else /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
2718 {
2719# endif /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
2720 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2721 {
2722# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2723 Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
2724# elif PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2725 Assert(&pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512] == pPDEDst);
2726# endif
2727 register GSTPDE PdeSrc = pPDSrc->a[iPD];
2728 if ( PdeSrc.n.u1Present
2729 && (PdeSrc.n.u1User || fRawR0Enabled))
2730 {
2731# if PGM_GST_TYPE == PGM_TYPE_32BIT
2732 /*
2733 * Check for conflicts with GC mappings.
2734 */
2735 if (iPD == iPdNoMapping)
2736 {
2737 if (pVM->pgm.s.fMappingsFixed)
2738 {
2739 /* It's fixed, just skip the mapping. */
2740 const unsigned cPTs = pMapping->cPTs;
2741 iPD += cPTs - 1;
2742 pPDEDst += cPTs + (PGM_SHW_TYPE != PGM_TYPE_32BIT) * cPTs;
2743 pMapping = pMapping->CTXALLSUFF(pNext);
2744 iPdNoMapping = pMapping ? pMapping->GCPtr >> SHW_PD_SHIFT : ~0U;
2745 continue;
2746 }
2747# ifdef IN_RING3
2748 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD);
2749 if (VBOX_FAILURE(rc))
2750 return rc;
2751
2752 /*
2753 * Update iPdNoMapping and pMapping.
2754 */
2755 pMapping = pVM->pgm.s.pMappingsR3;
2756 while (pMapping && pMapping->GCPtr < (iPD << SHW_PD_SHIFT))
2757 pMapping = pMapping->pNextR3;
2758 iPdNoMapping = pMapping ? pMapping->GCPtr >> SHW_PD_SHIFT : ~0U;
2759# else
2760 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
2761 return VINF_PGM_SYNC_CR3;
2762# endif
2763 }
2764# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2765 /* PAE and AMD64 modes are hardware accelerated only, so there are no mappings. */
2766 Assert(iPD != iPdNoMapping);
2767# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2768 /*
2769 * Sync page directory entry.
2770 *
2771 * The current approach is to allocated the page table but to set
2772 * the entry to not-present and postpone the page table synching till
2773 * it's actually used.
2774 */
2775# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2776 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
2777# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
2778 const unsigned iPdShw = iPD + iPDPTE * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
2779# else
2780 const unsigned iPdShw = iPD; NOREF(iPdShw);
2781# endif
2782 {
2783 SHWPDE PdeDst = *pPDEDst;
2784 if (PdeDst.n.u1Present)
2785 {
2786 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2787 RTGCPHYS GCPhys;
2788 if ( !PdeSrc.b.u1Size
2789 || !(cr4 & X86_CR4_PSE))
2790 {
2791 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2792# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2793 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2794 GCPhys |= i * (PAGE_SIZE / 2);
2795# endif
2796 }
2797 else
2798 {
2799 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
2800# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2801 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2802 GCPhys |= i * X86_PAGE_2M_SIZE;
2803# endif
2804 }
2805
2806 if ( pShwPage->GCPhys == GCPhys
2807 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
2808 && ( pShwPage->fCached
2809 || ( !fGlobal
2810 && ( false
2811# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
2812 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
2813 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
2814 || ( !pShwPage->fSeenNonGlobal
2815 && (cr4 & X86_CR4_PGE))
2816# endif
2817 )
2818 )
2819 )
2820 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
2821 || ( (cr4 & X86_CR4_PSE)
2822 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
2823 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
2824 )
2825 )
2826 {
2827# ifdef VBOX_WITH_STATISTICS
2828 if ( !fGlobal
2829 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
2830 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
2831 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPD));
2832 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
2833 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPT));
2834 else
2835 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstCacheHit));
2836# endif /* VBOX_WITH_STATISTICS */
2837 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
2838 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
2839 //# ifdef PGMPOOL_WITH_CACHE
2840 // pgmPoolCacheUsed(pPool, pShwPage);
2841 //# endif
2842 }
2843 else
2844 {
2845 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
2846 pPDEDst->u = 0;
2847 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreed));
2848 }
2849 }
2850 else
2851 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstNotPresent));
2852 pPDEDst++;
2853 }
2854 }
2855 else if (iPD != iPdNoMapping)
2856 {
2857 /*
2858 * Check if there is any page directory to mark not present here.
2859 */
2860# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2861 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
2862# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
2863 const unsigned iPdShw = iPD + iPDPTE * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
2864# else
2865 const unsigned iPdShw = iPD; NOREF(iPdShw);
2866# endif
2867 {
2868 if (pPDEDst->n.u1Present)
2869 {
2870 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdShw);
2871 pPDEDst->u = 0;
2872 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreedSrcNP));
2873 }
2874 pPDEDst++;
2875 }
2876 }
2877 else
2878 {
2879# if PGM_GST_TYPE == PGM_TYPE_32BIT
2880 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2881 const unsigned cPTs = pMapping->cPTs;
2882 if (pVM->pgm.s.fMappingsFixed)
2883 {
2884 /* It's fixed, just skip the mapping. */
2885 pMapping = pMapping->CTXALLSUFF(pNext);
2886 iPdNoMapping = pMapping ? pMapping->GCPtr >> SHW_PD_SHIFT : ~0U;
2887 }
2888 else
2889 {
2890 /*
2891 * Check for conflicts for subsequent pagetables
2892 * and advance to the next mapping.
2893 */
2894 iPdNoMapping = ~0U;
2895 unsigned iPT = cPTs;
2896 while (iPT-- > 1)
2897 {
2898 if ( pPDSrc->a[iPD + iPT].n.u1Present
2899 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
2900 {
2901# ifdef IN_RING3
2902 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD);
2903 if (VBOX_FAILURE(rc))
2904 return rc;
2905
2906 /*
2907 * Update iPdNoMapping and pMapping.
2908 */
2909 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
2910 while (pMapping && pMapping->GCPtr < (iPD << SHW_PD_SHIFT))
2911 pMapping = pMapping->CTXALLSUFF(pNext);
2912 iPdNoMapping = pMapping ? pMapping->GCPtr >> SHW_PD_SHIFT : ~0U;
2913 break;
2914# else
2915 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
2916 return VINF_PGM_SYNC_CR3;
2917# endif
2918 }
2919 }
2920 if (iPdNoMapping == ~0U && pMapping)
2921 {
2922 pMapping = pMapping->CTXALLSUFF(pNext);
2923 if (pMapping)
2924 iPdNoMapping = pMapping->GCPtr >> SHW_PD_SHIFT;
2925 }
2926 }
2927
2928 /* advance. */
2929 iPD += cPTs - 1;
2930 pPDEDst += cPTs + (PGM_SHW_TYPE != PGM_TYPE_32BIT) * cPTs;
2931# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2932 /* PAE and AMD64 modes are hardware accelerated only, so there are no mappings. */
2933 AssertFailed();
2934# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2935 }
2936
2937 } /* for iPD */
2938 } /* for each PDPTE (PAE) */
2939
2940 return VINF_SUCCESS;
2941
2942#elif PGM_GST_TYPE == PGM_TYPE_AMD64
2943//# error not implemented
2944 return VERR_INTERNAL_ERROR;
2945#else /* guest real and protected mode */
2946 return VINF_SUCCESS;
2947#endif
2948}
2949
2950
2951
2952
2953#ifdef VBOX_STRICT
2954#ifdef IN_GC
2955# undef AssertMsgFailed
2956# define AssertMsgFailed Log
2957#endif
2958#ifdef IN_RING3
2959# include <VBox/dbgf.h>
2960
2961/**
2962 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
2963 *
2964 * @returns VBox status code (VINF_SUCCESS).
2965 * @param pVM The VM handle.
2966 * @param cr3 The root of the hierarchy.
2967 * @param crr The cr4, only PAE and PSE is currently used.
2968 * @param fLongMode Set if long mode, false if not long mode.
2969 * @param cMaxDepth Number of levels to dump.
2970 * @param pHlp Pointer to the output functions.
2971 */
2972__BEGIN_DECLS
2973PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
2974__END_DECLS
2975
2976#endif
2977
2978/**
2979 * Checks that the shadow page table is in sync with the guest one.
2980 *
2981 * @returns The number of errors.
2982 * @param pVM The virtual machine.
2983 * @param cr3 Guest context CR3 register
2984 * @param cr4 Guest context CR4 register
2985 * @param GCPtr Where to start. Defaults to 0.
2986 * @param cb How much to check. Defaults to everything.
2987 */
2988PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)
2989{
2990 unsigned cErrors = 0;
2991
2992#if PGM_GST_TYPE == PGM_TYPE_32BIT \
2993 || PGM_GST_TYPE == PGM_TYPE_PAE
2994
2995 PPGM pPGM = &pVM->pgm.s;
2996 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
2997 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
2998# ifndef IN_RING0
2999 RTHCPHYS HCPhys; /* general usage. */
3000# endif
3001 int rc;
3002
3003 /*
3004 * Check that the Guest CR3 and all its mappings are correct.
3005 */
3006 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3007 ("Invalid GCPhysCR3=%VGp cr3=%VGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3008 false);
3009# ifndef IN_RING0
3010# if PGM_GST_TYPE == PGM_TYPE_32BIT
3011 rc = PGMShwGetPage(pVM, pPGM->pGuestPDGC, NULL, &HCPhysShw);
3012# else
3013 rc = PGMShwGetPage(pVM, pPGM->pGstPaePDPTGC, NULL, &HCPhysShw);
3014# endif
3015 AssertRCReturn(rc, 1);
3016 HCPhys = NIL_RTHCPHYS;
3017 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3018 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%VHp HCPhyswShw=%VHp (cr3)\n", HCPhys, HCPhysShw), false);
3019# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3020 RTGCPHYS GCPhys;
3021 rc = PGMR3DbgHCPtr2GCPhys(pVM, pPGM->pGuestPDHC, &GCPhys);
3022 AssertRCReturn(rc, 1);
3023 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%VGp cr3=%VGp\n", GCPhys, (RTGCPHYS)cr3), false);
3024# endif
3025#endif /* !IN_RING0 */
3026
3027# if PGM_GST_TYPE == PGM_TYPE_32BIT
3028 const GSTPD *pPDSrc = CTXSUFF(pPGM->pGuestPD);
3029# endif
3030
3031 /*
3032 * Get and check the Shadow CR3.
3033 */
3034# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3035 const X86PD *pPDDst = pPGM->CTXMID(p,32BitPD);
3036 unsigned cPDEs = ELEMENTS(pPDDst->a);
3037# else
3038 const X86PDPAE *pPDDst = pPGM->CTXMID(ap,PaePDs[0]); /* use it as a 2048 entry PD */
3039 unsigned cPDEs = ELEMENTS(pPDDst->a) * ELEMENTS(pPGM->apHCPaePDs);
3040# endif
3041 if (cb != ~(RTGCUINTPTR)0)
3042 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3043
3044/** @todo call the other two PGMAssert*() functions. */
3045
3046# if PGM_GST_TYPE == PGM_TYPE_PAE
3047 /*
3048 * Check the 4 PDPTs too.
3049 */
3050 for (unsigned i = 0; i < 4; i++)
3051 {
3052 RTHCPTR HCPtr;
3053 RTHCPHYS HCPhys;
3054 RTGCPHYS GCPhys = pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[i].u & X86_PDPE_PG_MASK;
3055 int rc2 = pgmRamGCPhys2HCPtrAndHCPhysWithFlags(&pVM->pgm.s, GCPhys, &HCPtr, &HCPhys);
3056 if (VBOX_SUCCESS(rc2))
3057 {
3058 AssertMsg( pVM->pgm.s.apGstPaePDsHC[i] == (R3R0PTRTYPE(PX86PDPAE))HCPtr
3059 && pVM->pgm.s.aGCPhysGstPaePDs[i] == GCPhys,
3060 ("idx %d apGstPaePDsHC %VHv vs %VHv aGCPhysGstPaePDs %VGp vs %VGp\n",
3061 i, pVM->pgm.s.apGstPaePDsHC[i], HCPtr, pVM->pgm.s.aGCPhysGstPaePDs[i], GCPhys));
3062 }
3063 }
3064# endif
3065
3066 /*
3067 * Iterate the shadow page directory.
3068 */
3069 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3070 unsigned iPDDst = GCPtr >> SHW_PD_SHIFT;
3071 cPDEs += iPDDst;
3072 for (;
3073 iPDDst < cPDEs;
3074 iPDDst++, GCPtr += _4G / cPDEs)
3075 {
3076# if PGM_GST_TYPE == PGM_TYPE_PAE
3077 uint32_t iPDSrc;
3078 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pPGM, (RTGCUINTPTR)GCPtr, &iPDSrc);
3079 if (!pPDSrc)
3080 {
3081 AssertMsg(!pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK].n.u1Present, ("Guest PDTPR not present, shadow PDPTR %VX64\n", pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK].u));
3082 continue;
3083 }
3084#endif
3085
3086 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3087 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3088 {
3089 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3090 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3091 {
3092 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3093 cErrors++;
3094 continue;
3095 }
3096 }
3097 else if ( (PdeDst.u & X86_PDE_P)
3098 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3099 )
3100 {
3101 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3102 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3103 if (!pPoolPage)
3104 {
3105 AssertMsgFailed(("Invalid page table address %VGp at %VGv! PdeDst=%#RX64\n",
3106 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3107 cErrors++;
3108 continue;
3109 }
3110 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3111
3112 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3113 {
3114 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %VGv! These flags are not virtualized! PdeDst=%#RX64\n",
3115 GCPtr, (uint64_t)PdeDst.u));
3116 cErrors++;
3117 }
3118
3119 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3120 {
3121 AssertMsgFailed(("4K PDE reserved flags at %VGv! PdeDst=%#RX64\n",
3122 GCPtr, (uint64_t)PdeDst.u));
3123 cErrors++;
3124 }
3125
3126 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3127 if (!PdeSrc.n.u1Present)
3128 {
3129 AssertMsgFailed(("Guest PDE at %VGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3130 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3131 cErrors++;
3132 continue;
3133 }
3134
3135 if ( !PdeSrc.b.u1Size
3136 || !(cr4 & X86_CR4_PSE))
3137 {
3138 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3139# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3140 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3141# endif
3142 }
3143 else
3144 {
3145# if PGM_GST_TYPE == PGM_TYPE_32BIT
3146 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3147 {
3148 AssertMsgFailed(("Guest PDE at %VGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3149 GCPtr, (uint64_t)PdeSrc.u));
3150 cErrors++;
3151 continue;
3152 }
3153# endif
3154 GCPhysGst = PdeSrc.u & GST_PDE_BIG_PG_MASK;
3155# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3156 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3157# endif
3158 }
3159
3160 if ( pPoolPage->enmKind
3161 != (!PdeSrc.b.u1Size || !(cr4 & X86_CR4_PSE) ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3162 {
3163 AssertMsgFailed(("Invalid shadow page table kind %d at %VGv! PdeSrc=%#RX64\n",
3164 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3165 cErrors++;
3166 }
3167
3168 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3169 if (!pPhysPage)
3170 {
3171 AssertMsgFailed(("Cannot find guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3172 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3173 cErrors++;
3174 continue;
3175 }
3176
3177 if (GCPhysGst != pPoolPage->GCPhys)
3178 {
3179 AssertMsgFailed(("GCPhysGst=%VGp != pPage->GCPhys=%VGp at %VGv\n",
3180 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3181 cErrors++;
3182 continue;
3183 }
3184
3185 if ( !PdeSrc.b.u1Size
3186 || !(cr4 & X86_CR4_PSE))
3187 {
3188 /*
3189 * Page Table.
3190 */
3191 const GSTPT *pPTSrc;
3192 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3193 if (VBOX_FAILURE(rc))
3194 {
3195 AssertMsgFailed(("Cannot map/convert guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3196 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3197 cErrors++;
3198 continue;
3199 }
3200 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3201 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3202 {
3203 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3204 // (This problem will go away when/if we shadow multiple CR3s.)
3205 AssertMsgFailed(("4K PDE flags mismatch at %VGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3206 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3207 cErrors++;
3208 continue;
3209 }
3210 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3211 {
3212 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%VGv PdeDst=%#RX64\n",
3213 GCPtr, (uint64_t)PdeDst.u));
3214 cErrors++;
3215 continue;
3216 }
3217
3218 /* iterate the page table. */
3219# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3220 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3221 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3222# else
3223 const unsigned offPTSrc = 0;
3224# endif
3225 for (unsigned iPT = 0, off = 0;
3226 iPT < ELEMENTS(pPTDst->a);
3227 iPT++, off += PAGE_SIZE)
3228 {
3229 const SHWPTE PteDst = pPTDst->a[iPT];
3230
3231 /* skip not-present entries. */
3232 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3233 continue;
3234 Assert(PteDst.n.u1Present);
3235
3236 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3237 if (!PteSrc.n.u1Present)
3238 {
3239#ifdef IN_RING3
3240 PGMAssertHandlerAndFlagsInSync(pVM);
3241 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3242#endif
3243 AssertMsgFailed(("Out of sync (!P) PTE at %VGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%VGv iPTSrc=%x PdeSrc=%x physpte=%VGp\n",
3244 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3245 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3246 cErrors++;
3247 continue;
3248 }
3249
3250 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3251# if 1 /** @todo sync accessed bit properly... */
3252 fIgnoreFlags |= X86_PTE_A;
3253# endif
3254
3255 /* match the physical addresses */
3256 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3257 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3258
3259# ifdef IN_RING3
3260 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3261 if (VBOX_FAILURE(rc))
3262 {
3263 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3264 {
3265 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3266 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3267 cErrors++;
3268 continue;
3269 }
3270 }
3271 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3272 {
3273 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3274 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3275 cErrors++;
3276 continue;
3277 }
3278# endif
3279
3280 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3281 if (!pPhysPage)
3282 {
3283# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3284 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3285 {
3286 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3287 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3288 cErrors++;
3289 continue;
3290 }
3291# endif
3292 if (PteDst.n.u1Write)
3293 {
3294 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3295 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3296 cErrors++;
3297 }
3298 fIgnoreFlags |= X86_PTE_RW;
3299 }
3300 else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
3301 {
3302 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3303 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3304 cErrors++;
3305 continue;
3306 }
3307
3308 /* flags */
3309 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3310 {
3311 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3312 {
3313 if (PteDst.n.u1Write)
3314 {
3315 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PteSrc=%#RX64 PteDst=%#RX64\n",
3316 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3317 cErrors++;
3318 continue;
3319 }
3320 fIgnoreFlags |= X86_PTE_RW;
3321 }
3322 else
3323 {
3324 if (PteDst.n.u1Present)
3325 {
3326 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VHp PteSrc=%#RX64 PteDst=%#RX64\n",
3327 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3328 cErrors++;
3329 continue;
3330 }
3331 fIgnoreFlags |= X86_PTE_P;
3332 }
3333 }
3334 else
3335 {
3336 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3337 {
3338 if (PteDst.n.u1Write)
3339 {
3340 AssertMsgFailed(("!DIRTY page at %VGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3341 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3342 cErrors++;
3343 continue;
3344 }
3345 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
3346 {
3347 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3348 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3349 cErrors++;
3350 continue;
3351 }
3352 if (PteDst.n.u1Dirty)
3353 {
3354 AssertMsgFailed(("!DIRTY page at %VGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3355 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3356 cErrors++;
3357 }
3358# if 0 /** @todo sync access bit properly... */
3359 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3360 {
3361 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3362 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3363 cErrors++;
3364 }
3365 fIgnoreFlags |= X86_PTE_RW;
3366# else
3367 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3368# endif
3369 }
3370 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3371 {
3372 /* access bit emulation (not implemented). */
3373 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
3374 {
3375 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
3376 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3377 cErrors++;
3378 continue;
3379 }
3380 if (!PteDst.n.u1Accessed)
3381 {
3382 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
3383 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3384 cErrors++;
3385 }
3386 fIgnoreFlags |= X86_PTE_P;
3387 }
3388# ifdef DEBUG_sandervl
3389 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
3390# endif
3391 }
3392
3393 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3394 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
3395 )
3396 {
3397 AssertMsgFailed(("Flags mismatch at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
3398 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3399 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3400 cErrors++;
3401 continue;
3402 }
3403 } /* foreach PTE */
3404 }
3405 else
3406 {
3407 /*
3408 * Big Page.
3409 */
3410 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
3411 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
3412 {
3413 if (PdeDst.n.u1Write)
3414 {
3415 AssertMsgFailed(("!DIRTY page at %VGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3416 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3417 cErrors++;
3418 continue;
3419 }
3420 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
3421 {
3422 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3423 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3424 cErrors++;
3425 continue;
3426 }
3427# if 0 /** @todo sync access bit properly... */
3428 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
3429 {
3430 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3431 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3432 cErrors++;
3433 }
3434 fIgnoreFlags |= X86_PTE_RW;
3435# else
3436 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3437# endif
3438 }
3439 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3440 {
3441 /* access bit emulation (not implemented). */
3442 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
3443 {
3444 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3445 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3446 cErrors++;
3447 continue;
3448 }
3449 if (!PdeDst.n.u1Accessed)
3450 {
3451 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3452 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3453 cErrors++;
3454 }
3455 fIgnoreFlags |= X86_PTE_P;
3456 }
3457
3458 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
3459 {
3460 AssertMsgFailed(("Flags mismatch (B) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
3461 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
3462 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3463 cErrors++;
3464 }
3465
3466 /* iterate the page table. */
3467 for (unsigned iPT = 0, off = 0;
3468 iPT < ELEMENTS(pPTDst->a);
3469 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
3470 {
3471 const SHWPTE PteDst = pPTDst->a[iPT];
3472
3473 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3474 {
3475 AssertMsgFailed(("The PTE at %VGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
3476 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3477 cErrors++;
3478 }
3479
3480 /* skip not-present entries. */
3481 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
3482 continue;
3483
3484 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3485
3486 /* match the physical addresses */
3487 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
3488
3489# ifdef IN_RING3
3490 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3491 if (VBOX_FAILURE(rc))
3492 {
3493 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3494 {
3495 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3496 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3497 cErrors++;
3498 }
3499 }
3500 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
3501 {
3502 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3503 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3504 cErrors++;
3505 continue;
3506 }
3507# endif
3508
3509 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3510 if (!pPhysPage)
3511 {
3512# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3513 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3514 {
3515 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3516 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3517 cErrors++;
3518 continue;
3519 }
3520# endif
3521 if (PteDst.n.u1Write)
3522 {
3523 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3524 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3525 cErrors++;
3526 }
3527 fIgnoreFlags |= X86_PTE_RW;
3528 }
3529 else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
3530 {
3531 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3532 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3533 cErrors++;
3534 continue;
3535 }
3536
3537 /* flags */
3538 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3539 {
3540 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3541 {
3542 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
3543 {
3544 if (PteDst.n.u1Write)
3545 {
3546 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
3547 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3548 cErrors++;
3549 continue;
3550 }
3551 fIgnoreFlags |= X86_PTE_RW;
3552 }
3553 }
3554 else
3555 {
3556 if (PteDst.n.u1Present)
3557 {
3558 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
3559 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3560 cErrors++;
3561 continue;
3562 }
3563 fIgnoreFlags |= X86_PTE_P;
3564 }
3565 }
3566
3567 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3568 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
3569 )
3570 {
3571 AssertMsgFailed(("Flags mismatch (BT) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
3572 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3573 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3574 cErrors++;
3575 continue;
3576 }
3577 } /* foreach PTE */
3578 }
3579 }
3580 /* not present */
3581
3582 } /* forearch PDE */
3583
3584# ifdef DEBUG
3585 if (cErrors)
3586 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
3587# endif
3588
3589#elif PGM_GST_TYPE == PGM_TYPE_PAE
3590//# error not implemented
3591
3592
3593#elif PGM_GST_TYPE == PGM_TYPE_AMD64
3594//# error not implemented
3595
3596/*#else: guest real and protected mode */
3597#endif
3598 return cErrors;
3599}
3600#endif /* VBOX_STRICT */
3601
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette