VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 93628

Last change on this file since 93628 was 93617, checked in by vboxsync, 3 years ago

VMM/PGMPool: Replaced MMR3HyperAllocOnceNoRel call with direct SUPR3PageAllocEx call, replacing a few associated MMHyperCCToR3/R0 calls with speedier pgmPoolConvertPageToR3/R0 ones. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 189.1 KB
Line 
1/* $Id: PGMAllBth.h 93617 2022-02-06 08:35:16Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
6 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
7 * bird: WTF does this mean these days? Looking at PGMAll.cpp it's
8 *
9 * @remarks This file is one big \#ifdef-orgy!
10 *
11 */
12
13/*
14 * Copyright (C) 2006-2022 Oracle Corporation
15 *
16 * This file is part of VirtualBox Open Source Edition (OSE), as
17 * available from http://www.virtualbox.org. This file is free software;
18 * you can redistribute it and/or modify it under the terms of the GNU
19 * General Public License (GPL) as published by the Free Software
20 * Foundation, in version 2 as it comes in the "COPYING" file of the
21 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
22 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
23 */
24
25#ifdef _MSC_VER
26/** @todo we're generating unnecessary code in nested/ept shadow mode and for
27 * real/prot-guest+RC mode. */
28# pragma warning(disable: 4505)
29#endif
30
31
32/*********************************************************************************************************************************
33* Internal Functions *
34*********************************************************************************************************************************/
35RT_C_DECLS_BEGIN
36PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
37#ifndef IN_RING3
38PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
39#endif
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46#else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu);
57
58#ifdef IN_RING3
59PGM_BTH_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta);
60#endif
61RT_C_DECLS_END
62
63
64
65
66/*
67 * Filter out some illegal combinations of guest and shadow paging, so we can
68 * remove redundant checks inside functions.
69 */
70#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \
71 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
72# error "Invalid combination; PAE guest implies PAE shadow"
73#endif
74
75#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
76 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \
77 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
78# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
79#endif
80
81#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
82 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \
83 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
84# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
85#endif
86
87#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \
88 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
89# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
90#endif
91
92
93/**
94 * Enters the shadow+guest mode.
95 *
96 * @returns VBox status code.
97 * @param pVCpu The cross context virtual CPU structure.
98 * @param GCPhysCR3 The physical address from the CR3 register.
99 */
100PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
101{
102 /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches;
103 * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables.
104 */
105#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
106 || PGM_SHW_TYPE == PGM_TYPE_PAE \
107 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
108 && ( PGM_GST_TYPE == PGM_TYPE_REAL \
109 || PGM_GST_TYPE == PGM_TYPE_PROT))
110
111 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
112
113 Assert((HMIsNestedPagingActive(pVM) || VM_IS_NEM_ENABLED(pVM)) == pVM->pgm.s.fNestedPaging);
114 Assert(!pVM->pgm.s.fNestedPaging);
115
116 PGM_LOCK_VOID(pVM);
117 /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes),
118 * but any calls to GC need a proper shadow page setup as well.
119 */
120 /* Free the previous root mapping if still active. */
121 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
122 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
123 if (pOldShwPageCR3)
124 {
125 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
126
127 /* Mark the page as unlocked; allow flushing again. */
128 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
129
130 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
131 pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR;
132 pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR;
133 }
134
135 /* construct a fake address. */
136 GCPhysCR3 = RT_BIT_64(63);
137 PPGMPOOLPAGE pNewShwPageCR3;
138 int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
139 NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/,
140 &pNewShwPageCR3);
141 AssertRCReturn(rc, rc);
142
143 pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3);
144 pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3);
145
146 /* Mark the page as locked; disallow flushing. */
147 pgmPoolLockPage(pPool, pNewShwPageCR3);
148
149 /* Set the current hypervisor CR3. */
150 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
151
152 PGM_UNLOCK(pVM);
153 return rc;
154#else
155 NOREF(pVCpu); NOREF(GCPhysCR3);
156 return VINF_SUCCESS;
157#endif
158}
159
160
161#ifndef IN_RING3
162
163# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
164/**
165 * Deal with a guest page fault.
166 *
167 * @returns Strict VBox status code.
168 * @retval VINF_EM_RAW_GUEST_TRAP
169 * @retval VINF_EM_RAW_EMULATE_INSTR
170 *
171 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
172 * @param pWalk The guest page table walk result.
173 * @param uErr The error code.
174 */
175PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, RTGCUINT uErr)
176{
177 /*
178 * Calc the error code for the guest trap.
179 */
180 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
181 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
182 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
183 if ( pWalk->fRsvdError
184 || pWalk->fBadPhysAddr)
185 {
186 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
187 Assert(!pWalk->fNotPresent);
188 }
189 else if (!pWalk->fNotPresent)
190 uNewErr |= X86_TRAP_PF_P;
191 TRPMSetErrorCode(pVCpu, uNewErr);
192
193 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pWalk->GCPtr, uErr, pWalk->uLevel));
194 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; });
195 return VINF_EM_RAW_GUEST_TRAP;
196}
197# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
198
199
200#if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
201/**
202 * Deal with a guest page fault.
203 *
204 * The caller has taken the PGM lock.
205 *
206 * @returns Strict VBox status code.
207 *
208 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
209 * @param uErr The error code.
210 * @param pRegFrame The register frame.
211 * @param pvFault The fault address.
212 * @param pPage The guest page at @a pvFault.
213 * @param pWalk The guest page table walk result.
214 * @param pGstWalk The guest paging-mode specific walk information.
215 * @param pfLockTaken PGM lock taken here or not (out). This is true
216 * when we're called.
217 */
218static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
219 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
220# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
221 , PPGMPTWALK pWalk
222 , PGSTPTWALK pGstWalk
223# endif
224 )
225{
226# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
227 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
228# endif
229 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
230 VBOXSTRICTRC rcStrict;
231
232 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
233 {
234 /*
235 * Physical page access handler.
236 */
237# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
238 const RTGCPHYS GCPhysFault = pWalk->GCPhys;
239# else
240 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
241# endif
242 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
243 if (pCur)
244 {
245 PPGMPHYSHANDLERTYPEINT pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
246
247# ifdef PGM_SYNC_N_PAGES
248 /*
249 * If the region is write protected and we got a page not present fault, then sync
250 * the pages. If the fault was caused by a read, then restart the instruction.
251 * In case of write access continue to the GC write handler.
252 *
253 * ASSUMES that there is only one handler per page or that they have similar write properties.
254 */
255 if ( !(uErr & X86_TRAP_PF_P)
256 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
257 {
258# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
259 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
260# else
261 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
262# endif
263 if ( RT_FAILURE(rcStrict)
264 || !(uErr & X86_TRAP_PF_RW)
265 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
266 {
267 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
268 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
269 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
270 return rcStrict;
271 }
272 }
273# endif
274# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
275 /*
276 * If the access was not thru a #PF(RSVD|...) resync the page.
277 */
278 if ( !(uErr & X86_TRAP_PF_RSVD)
279 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
280# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
281 && (pWalk->fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK))
282 == PGM_PTATTRS_W_MASK /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
283# endif
284 )
285 {
286# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
287 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
288# else
289 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
290# endif
291 if ( RT_FAILURE(rcStrict)
292 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
293 {
294 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
295 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
296 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
297 return rcStrict;
298 }
299 }
300# endif
301
302 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
303 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
304 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
305 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
306 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
307 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite);
308 else
309 {
310 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll);
311 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt);
312 }
313
314 if (pCurType->CTX_SUFF(pfnPfHandler))
315 {
316 STAM_PROFILE_START(&pCur->Stat, h);
317
318 if (pCurType->fKeepPgmLock)
319 {
320 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault,
321 pCur->CTX_SUFF(pvUser));
322
323# ifdef VBOX_WITH_STATISTICS
324 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault); /* paranoia in case the handler deregistered itself */
325 if (pCur)
326 STAM_PROFILE_STOP(&pCur->Stat, h);
327# endif
328 }
329 else
330 {
331 void * const pvUser = pCur->CTX_SUFF(pvUser);
332 PGM_UNLOCK(pVM);
333 *pfLockTaken = false;
334
335 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
336
337# ifdef VBOX_WITH_STATISTICS
338 PGM_LOCK_VOID(pVM);
339 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
340 if (pCur)
341 STAM_PROFILE_STOP(&pCur->Stat, h);
342 PGM_UNLOCK(pVM);
343# endif
344 }
345 }
346 else
347 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
348
349 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; });
350 return rcStrict;
351 }
352 }
353
354 /*
355 * There is a handled area of the page, but this fault doesn't belong to it.
356 * We must emulate the instruction.
357 *
358 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
359 * we first check if this was a page-not-present fault for a page with only
360 * write access handlers. Restart the instruction if it wasn't a write access.
361 */
362 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersUnhandled);
363
364 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
365 && !(uErr & X86_TRAP_PF_P))
366 {
367# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
368 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
369# else
370 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
371# endif
372 if ( RT_FAILURE(rcStrict)
373 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
374 || !(uErr & X86_TRAP_PF_RW))
375 {
376 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
377 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
378 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
379 return rcStrict;
380 }
381 }
382
383 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
384 * It's writing to an unhandled part of the LDT page several million times.
385 */
386 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
387 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
388 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndUnhandled; });
389 return rcStrict;
390} /* if any kind of handler */
391# endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/
392
393
394/**
395 * \#PF Handler for raw-mode guest execution.
396 *
397 * @returns VBox status code (appropriate for trap handling and GC return).
398 *
399 * @param pVCpu The cross context virtual CPU structure.
400 * @param uErr The trap error code.
401 * @param pRegFrame Trap register frame.
402 * @param pvFault The fault address.
403 * @param pfLockTaken PGM lock taken here or not (out)
404 */
405PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
406{
407 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
408
409 *pfLockTaken = false;
410
411# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
412 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
413 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
414 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
415 && PGM_SHW_TYPE != PGM_TYPE_NONE
416 int rc;
417
418# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
419 /*
420 * Walk the guest page translation tables and check if it's a guest fault.
421 */
422 PGMPTWALK Walk;
423 GSTPTWALK GstWalk;
424 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &Walk, &GstWalk);
425 if (RT_FAILURE_NP(rc))
426 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr));
427
428 /* assert some GstWalk sanity. */
429# if PGM_GST_TYPE == PGM_TYPE_AMD64
430 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
431# endif
432# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
433 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
434# endif
435 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
436 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
437 Assert(Walk.fSucceeded);
438 Assert(Walk.fEffective & PGM_PTATTRS_R_MASK);
439
440 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
441 {
442 if ( ( (uErr & X86_TRAP_PF_RW)
443 && !(Walk.fEffective & PGM_PTATTRS_W_MASK)
444 && ( (uErr & X86_TRAP_PF_US)
445 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
446 || ((uErr & X86_TRAP_PF_US) && !(Walk.fEffective & PGM_PTATTRS_US_MASK))
447 || ((uErr & X86_TRAP_PF_ID) && (Walk.fEffective & PGM_PTATTRS_NX_MASK))
448 )
449 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr));
450 }
451
452 /* Take the big lock now before we update flags. */
453 *pfLockTaken = true;
454 PGM_LOCK_VOID(pVM);
455
456 /*
457 * Set the accessed and dirty flags.
458 */
459 /** @todo Should probably use cmpxchg logic here as we're potentially racing
460 * other CPUs in SMP configs. (the lock isn't enough, since we take it
461 * after walking and the page tables could be stale already) */
462# if PGM_GST_TYPE == PGM_TYPE_AMD64
463 if (!(GstWalk.Pml4e.u & X86_PML4E_A))
464 {
465 GstWalk.Pml4e.u |= X86_PML4E_A;
466 GST_ATOMIC_OR(&GstWalk.pPml4e->u, X86_PML4E_A);
467 }
468 if (!(GstWalk.Pdpe.u & X86_PDPE_A))
469 {
470 GstWalk.Pdpe.u |= X86_PDPE_A;
471 GST_ATOMIC_OR(&GstWalk.pPdpe->u, X86_PDPE_A);
472 }
473# endif
474 if (Walk.fBigPage)
475 {
476 Assert(GstWalk.Pde.u & X86_PDE_PS);
477 if (uErr & X86_TRAP_PF_RW)
478 {
479 if ((GstWalk.Pde.u & (X86_PDE4M_A | X86_PDE4M_D)) != (X86_PDE4M_A | X86_PDE4M_D))
480 {
481 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
482 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A | X86_PDE4M_D);
483 }
484 }
485 else
486 {
487 if (!(GstWalk.Pde.u & X86_PDE4M_A))
488 {
489 GstWalk.Pde.u |= X86_PDE4M_A;
490 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A);
491 }
492 }
493 }
494 else
495 {
496 Assert(!(GstWalk.Pde.u & X86_PDE_PS));
497 if (!(GstWalk.Pde.u & X86_PDE_A))
498 {
499 GstWalk.Pde.u |= X86_PDE_A;
500 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE_A);
501 }
502
503 if (uErr & X86_TRAP_PF_RW)
504 {
505# ifdef VBOX_WITH_STATISTICS
506 if (GstWalk.Pte.u & X86_PTE_D)
507 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageAlreadyDirty));
508 else
509 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtiedPage));
510# endif
511 if ((GstWalk.Pte.u & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
512 {
513 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
514 GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A | X86_PTE_D);
515 }
516 }
517 else
518 {
519 if (!(GstWalk.Pte.u & X86_PTE_A))
520 {
521 GstWalk.Pte.u |= X86_PTE_A;
522 GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A);
523 }
524 }
525 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
526 }
527#if 0
528 /* Disabling this since it's not reliable for SMP, see @bugref{10092#c22}. */
529 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
530 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
531#endif
532
533# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
534 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
535
536 /* Take the big lock now. */
537 *pfLockTaken = true;
538 PGM_LOCK_VOID(pVM);
539# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
540
541# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
542 /*
543 * If it is a reserved bit fault we know that it is an MMIO (access
544 * handler) related fault and can skip some 200 lines of code.
545 */
546 if (uErr & X86_TRAP_PF_RSVD)
547 {
548 Assert(uErr & X86_TRAP_PF_P);
549 PPGMPAGE pPage;
550# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
551 rc = pgmPhysGetPageEx(pVM, Walk.GCPhys, &pPage);
552 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
553 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
554 pfLockTaken, &Walk, &GstWalk));
555 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
556# else
557 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
558 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
559 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
560 pfLockTaken));
561 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
562# endif
563 AssertRC(rc);
564 PGM_INVL_PG(pVCpu, pvFault);
565 return rc; /* Restart with the corrected entry. */
566 }
567# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
568
569 /*
570 * Fetch the guest PDE, PDPE and PML4E.
571 */
572# if PGM_SHW_TYPE == PGM_TYPE_32BIT
573 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
574 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
575
576# elif PGM_SHW_TYPE == PGM_TYPE_PAE
577 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
578 PX86PDPAE pPDDst;
579# if PGM_GST_TYPE == PGM_TYPE_PAE
580 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
581# else
582 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
583# endif
584 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
585
586# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
587 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
588 PX86PDPAE pPDDst;
589# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
590 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
591 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
592# else
593 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
594# endif
595 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
596
597# elif PGM_SHW_TYPE == PGM_TYPE_EPT
598 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
599 PEPTPD pPDDst;
600 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
601 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
602# endif
603 Assert(pPDDst);
604
605# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
606 /*
607 * Dirty page handling.
608 *
609 * If we successfully correct the write protection fault due to dirty bit
610 * tracking, then return immediately.
611 */
612 if (uErr & X86_TRAP_PF_RW) /* write fault? */
613 {
614 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a);
615 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
616 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a);
617 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
618 {
619 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0
620 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
621 ? &pVCpu->pgm.s.Stats.StatRZTrap0eTime2DirtyAndAccessed
622 : &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; });
623 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
624 return VINF_SUCCESS;
625 }
626#ifdef DEBUG_bird
627 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests.
628 AssertMsg(Walk.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto.
629#endif
630 }
631
632# if 0 /* rarely useful; leave for debugging. */
633 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
634# endif
635# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
636
637 /*
638 * A common case is the not-present error caused by lazy page table syncing.
639 *
640 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
641 * here so we can safely assume that the shadow PT is present when calling
642 * SyncPage later.
643 *
644 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
645 * of mapping conflict and defer to SyncCR3 in R3.
646 * (Again, we do NOT support access handlers for non-present guest pages.)
647 *
648 */
649# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
650 Assert(GstWalk.Pde.u & X86_PDE_P);
651# endif
652 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
653 && !SHW_PDE_IS_P(pPDDst->a[iPDDst]))
654 {
655 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; });
656# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
657 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
658 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
659# else
660 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
661 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
662# endif
663 if (RT_SUCCESS(rc))
664 return rc;
665 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
666 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
667 return VINF_PGM_SYNC_CR3;
668 }
669
670 /*
671 * Check if this fault address is flagged for special treatment,
672 * which means we'll have to figure out the physical address and
673 * check flags associated with it.
674 *
675 * ASSUME that we can limit any special access handling to pages
676 * in page tables which the guest believes to be present.
677 */
678# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
679 RTGCPHYS GCPhys = Walk.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
680# else
681 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
682# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
683 PPGMPAGE pPage;
684 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
685 if (RT_FAILURE(rc))
686 {
687 /*
688 * When the guest accesses invalid physical memory (e.g. probing
689 * of RAM or accessing a remapped MMIO range), then we'll fall
690 * back to the recompiler to emulate the instruction.
691 */
692 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
693 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersInvalid);
694 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2InvalidPhys; });
695 return VINF_EM_RAW_EMULATE_INSTR;
696 }
697
698 /*
699 * Any handlers for this page?
700 */
701 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
702# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
703 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
704 &Walk, &GstWalk));
705# else
706 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
707# endif
708
709 /*
710 * We are here only if page is present in Guest page tables and
711 * trap is not handled by our handlers.
712 *
713 * Check it for page out-of-sync situation.
714 */
715 if (!(uErr & X86_TRAP_PF_P))
716 {
717 /*
718 * Page is not present in our page tables. Try to sync it!
719 */
720 if (uErr & X86_TRAP_PF_US)
721 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser));
722 else /* supervisor */
723 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
724
725 if (PGM_PAGE_IS_BALLOONED(pPage))
726 {
727 /* Emulate reads from ballooned pages as they are not present in
728 our shadow page tables. (Required for e.g. Solaris guests; soft
729 ecc, random nr generator.) */
730 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
731 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
732 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncBallloon));
733 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Ballooned; });
734 return rc;
735 }
736
737# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
738 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
739# else
740 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
741# endif
742 if (RT_SUCCESS(rc))
743 {
744 /* The page was successfully synced, return to the guest. */
745 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; });
746 return VINF_SUCCESS;
747 }
748 }
749 else /* uErr & X86_TRAP_PF_P: */
750 {
751 /*
752 * Write protected pages are made writable when the guest makes the
753 * first write to it. This happens for pages that are shared, write
754 * monitored or not yet allocated.
755 *
756 * We may also end up here when CR0.WP=0 in the guest.
757 *
758 * Also, a side effect of not flushing global PDEs are out of sync
759 * pages due to physical monitored regions, that are no longer valid.
760 * Assume for now it only applies to the read/write flag.
761 */
762 if (uErr & X86_TRAP_PF_RW)
763 {
764 /*
765 * Check if it is a read-only page.
766 */
767 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
768 {
769 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
770 Assert(!PGM_PAGE_IS_ZERO(pPage));
771 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
772 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; });
773
774 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
775 if (rc != VINF_SUCCESS)
776 {
777 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
778 return rc;
779 }
780 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
781 return VINF_EM_NO_MEMORY;
782 }
783
784# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
785 /*
786 * Check to see if we need to emulate the instruction if CR0.WP=0.
787 */
788 if ( !(Walk.fEffective & PGM_PTATTRS_W_MASK)
789 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
790 && CPUMGetGuestCPL(pVCpu) < 3)
791 {
792 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
793
794 /*
795 * The Netware WP0+RO+US hack.
796 *
797 * Netware sometimes(/always?) runs with WP0. It has been observed doing
798 * excessive write accesses to pages which are mapped with US=1 and RW=0
799 * while WP=0. This causes a lot of exits and extremely slow execution.
800 * To avoid trapping and emulating every write here, we change the shadow
801 * page table entry to map it as US=0 and RW=1 until user mode tries to
802 * access it again (see further below). We count these shadow page table
803 * changes so we can avoid having to clear the page pool every time the WP
804 * bit changes to 1 (see PGMCr0WpEnabled()).
805 */
806# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
807 if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK
808 && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW))
809 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
810 {
811 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, Walk.fBigPage));
812 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, Walk.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
813 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
814 {
815 PGM_INVL_PG(pVCpu, pvFault);
816 pVCpu->pgm.s.cNetwareWp0Hacks++;
817 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsHack; });
818 return rc;
819 }
820 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
821 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
822 }
823# endif
824
825 /* Interpret the access. */
826 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
827 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), Walk.fBigPage, !!(Walk.fEffective & PGM_PTATTRS_US_MASK)));
828 if (RT_SUCCESS(rc))
829 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulInRZ);
830 else
831 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulToR3);
832 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2WPEmulation; });
833 return rc;
834 }
835# endif
836 /// @todo count the above case; else
837 if (uErr & X86_TRAP_PF_US)
838 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
839 else /* supervisor */
840 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
841
842 /*
843 * Sync the page.
844 *
845 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
846 * page is not present, which is not true in this case.
847 */
848# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
849 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
850# else
851 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
852# endif
853 if (RT_SUCCESS(rc))
854 {
855 /*
856 * Page was successfully synced, return to guest but invalidate
857 * the TLB first as the page is very likely to be in it.
858 */
859# if PGM_SHW_TYPE == PGM_TYPE_EPT
860 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
861# else
862 PGM_INVL_PG(pVCpu, pvFault);
863# endif
864# ifdef VBOX_STRICT
865 PGMPTWALK GstPageWalk;
866 GstPageWalk.GCPhys = RTGCPHYS_MAX;
867 if (!pVM->pgm.s.fNestedPaging)
868 {
869 rc = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk);
870 AssertMsg(RT_SUCCESS(rc) && ((GstPageWalk.fEffective & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, GstPageWalk.fEffective));
871 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GstPageWalk.GCPhys, GstPageWalk.fEffective));
872 }
873# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */
874 uint64_t fPageShw = 0;
875 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
876 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
877 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GstPageWalk.GCPhys, fPageGst, pvFault));
878# endif
879# endif /* VBOX_STRICT */
880 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; });
881 return VINF_SUCCESS;
882 }
883 }
884# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
885 /*
886 * Check for Netware WP0+RO+US hack from above and undo it when user
887 * mode accesses the page again.
888 */
889 else if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK
890 && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW))
891 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
892 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
893 && CPUMGetGuestCPL(pVCpu) == 3
894 && pVM->cCpus == 1
895 )
896 {
897 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
898 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
899 if (RT_SUCCESS(rc))
900 {
901 PGM_INVL_PG(pVCpu, pvFault);
902 pVCpu->pgm.s.cNetwareWp0Hacks--;
903 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsUnhack; });
904 return VINF_SUCCESS;
905 }
906 }
907# endif /* PGM_WITH_PAGING */
908
909 /** @todo else: why are we here? */
910
911# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
912 /*
913 * Check for VMM page flags vs. Guest page flags consistency.
914 * Currently only for debug purposes.
915 */
916 if (RT_SUCCESS(rc))
917 {
918 /* Get guest page flags. */
919 PGMPTWALK GstPageWalk;
920 int rc2 = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk);
921 if (RT_SUCCESS(rc2))
922 {
923 uint64_t fPageShw = 0;
924 rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
925
926#if 0
927 /*
928 * Compare page flags.
929 * Note: we have AVL, A, D bits desynced.
930 */
931 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
932 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
933 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
934 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
935 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
936 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
937 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
938 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n",
939 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc));
94001:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
94101:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0
942
94301:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
94401:01:15.625516 00:08:43.268051 Location :
945e:\vbox\svn\trunk\srcPage flags mismatch!
946pvFault=fffff801b0d7b000
947 uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P
948GCPhys=0000000019b52000
949fPageShw=0
950fPageGst=77b0000000000121
951rc=0
952#endif
953
954 }
955 else
956 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
957 }
958 else
959 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
960# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
961 }
962
963
964 /*
965 * If we get here it is because something failed above, i.e. most like guru
966 * meditiation time.
967 */
968 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
969 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
970 return rc;
971
972# else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */
973 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
974 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
975 return VERR_PGM_NOT_USED_IN_MODE;
976# endif
977}
978
979#endif /* !IN_RING3 */
980
981
982/**
983 * Emulation of the invlpg instruction.
984 *
985 *
986 * @returns VBox status code.
987 *
988 * @param pVCpu The cross context virtual CPU structure.
989 * @param GCPtrPage Page to invalidate.
990 *
991 * @remark ASSUMES that the guest is updating before invalidating. This order
992 * isn't required by the CPU, so this is speculative and could cause
993 * trouble.
994 * @remark No TLB shootdown is done on any other VCPU as we assume that
995 * invlpg emulation is the *only* reason for calling this function.
996 * (The guest has to shoot down TLB entries on other CPUs itself)
997 * Currently true, but keep in mind!
998 *
999 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1000 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1001 */
1002PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
1003{
1004#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1005 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
1006 && PGM_SHW_TYPE != PGM_TYPE_NONE
1007 int rc;
1008 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1009 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1010
1011 PGM_LOCK_ASSERT_OWNER(pVM);
1012
1013 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1014
1015 /*
1016 * Get the shadow PD entry and skip out if this PD isn't present.
1017 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1018 */
1019# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1020 const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT;
1021 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1022
1023 /* Fetch the pgm pool shadow descriptor. */
1024 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1025# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1026 if (!pShwPde)
1027 {
1028 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1029 return VINF_SUCCESS;
1030 }
1031# else
1032 Assert(pShwPde);
1033# endif
1034
1035# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1036 const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT;
1037 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1038
1039 /* If the shadow PDPE isn't present, then skip the invalidate. */
1040# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1041 if (!pPdptDst || !(pPdptDst->a[iPdpt].u & X86_PDPE_P))
1042# else
1043 if (!(pPdptDst->a[iPdpt].u & X86_PDPE_P))
1044# endif
1045 {
1046 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1047 PGM_INVL_PG(pVCpu, GCPtrPage);
1048 return VINF_SUCCESS;
1049 }
1050
1051 /* Fetch the pgm pool shadow descriptor. */
1052 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1053 AssertReturn(pShwPde, VERR_PGM_POOL_GET_PAGE_FAILED);
1054
1055 PX86PDPAE pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1056 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1057 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1058
1059# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1060 /* PML4 */
1061 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1062 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1063 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1064 PX86PDPAE pPDDst;
1065 PX86PDPT pPdptDst;
1066 PX86PML4E pPml4eDst;
1067 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1068 if (rc != VINF_SUCCESS)
1069 {
1070 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1071 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1072 PGM_INVL_PG(pVCpu, GCPtrPage);
1073 return VINF_SUCCESS;
1074 }
1075 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1076 Assert(pPDDst);
1077 Assert(pPdptDst->a[iPdpt].u & X86_PDPE_P);
1078
1079 /* Fetch the pgm pool shadow descriptor. */
1080 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1081 Assert(pShwPde);
1082
1083# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1084
1085 const SHWPDE PdeDst = *pPdeDst;
1086 if (!(PdeDst.u & X86_PDE_P))
1087 {
1088 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1089 PGM_INVL_PG(pVCpu, GCPtrPage);
1090 return VINF_SUCCESS;
1091 }
1092
1093 /*
1094 * Get the guest PD entry and calc big page.
1095 */
1096# if PGM_GST_TYPE == PGM_TYPE_32BIT
1097 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1098 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
1099 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1100# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1101 unsigned iPDSrc = 0;
1102# if PGM_GST_TYPE == PGM_TYPE_PAE
1103 X86PDPE PdpeSrcIgn;
1104 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1105# else /* AMD64 */
1106 PX86PML4E pPml4eSrcIgn;
1107 X86PDPE PdpeSrcIgn;
1108 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1109# endif
1110 GSTPDE PdeSrc;
1111
1112 if (pPDSrc)
1113 PdeSrc = pPDSrc->a[iPDSrc];
1114 else
1115 PdeSrc.u = 0;
1116# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1117 const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE);
1118 const bool fIsBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu);
1119 if (fWasBigPage != fIsBigPage)
1120 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1121
1122# ifdef IN_RING3
1123 /*
1124 * If a CR3 Sync is pending we may ignore the invalidate page operation
1125 * depending on the kind of sync and if it's a global page or not.
1126 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1127 */
1128# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1129 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1130 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1131 && fIsBigPage
1132 && (PdeSrc.u & X86_PDE4M_G)
1133 )
1134 )
1135# else
1136 if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1137# endif
1138 {
1139 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1140 return VINF_SUCCESS;
1141 }
1142# endif /* IN_RING3 */
1143
1144 /*
1145 * Deal with the Guest PDE.
1146 */
1147 rc = VINF_SUCCESS;
1148 if (PdeSrc.u & X86_PDE_P)
1149 {
1150 Assert( (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US)
1151 && ((PdeSrc.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW) || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1152 if (!fIsBigPage)
1153 {
1154 /*
1155 * 4KB - page.
1156 */
1157 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1158 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1159
1160# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1161 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1162 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
1163# endif
1164 if (pShwPage->GCPhys == GCPhys)
1165 {
1166 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1167 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1168
1169 PGSTPT pPTSrc;
1170 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1171 if (RT_SUCCESS(rc))
1172 {
1173 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1174 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1175 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1176 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1177 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1178 GCPtrPage, PteSrc.u & X86_PTE_P,
1179 (PteSrc.u & PdeSrc.u & X86_PTE_RW),
1180 (PteSrc.u & PdeSrc.u & X86_PTE_US),
1181 (uint64_t)PteSrc.u,
1182 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1183 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1184 }
1185 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1186 PGM_INVL_PG(pVCpu, GCPtrPage);
1187 }
1188 else
1189 {
1190 /*
1191 * The page table address changed.
1192 */
1193 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1194 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1195 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1196 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1197 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1198 PGM_INVL_VCPU_TLBS(pVCpu);
1199 }
1200 }
1201 else
1202 {
1203 /*
1204 * 2/4MB - page.
1205 */
1206 /* Before freeing the page, check if anything really changed. */
1207 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1208 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1209# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1210 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1211 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1212# endif
1213 if ( pShwPage->GCPhys == GCPhys
1214 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1215 {
1216 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1217 /** @todo This test is wrong as it cannot check the G bit!
1218 * FIXME */
1219 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1220 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1221 && ( (PdeSrc.u & X86_PDE4M_D) /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1222 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1223 {
1224 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1225 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1226 return VINF_SUCCESS;
1227 }
1228 }
1229
1230 /*
1231 * Ok, the page table is present and it's been changed in the guest.
1232 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1233 * We could do this for some flushes in GC too, but we need an algorithm for
1234 * deciding which 4MB pages containing code likely to be executed very soon.
1235 */
1236 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1237 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1238 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1239 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1240 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1241 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1242 }
1243 }
1244 else
1245 {
1246 /*
1247 * Page directory is not present, mark shadow PDE not present.
1248 */
1249 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1250 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1251 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1252 PGM_INVL_PG(pVCpu, GCPtrPage);
1253 }
1254 return rc;
1255
1256#else /* guest real and protected mode, nested + ept, none. */
1257 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1258 NOREF(pVCpu); NOREF(GCPtrPage);
1259 return VINF_SUCCESS;
1260#endif
1261}
1262
1263#if PGM_SHW_TYPE != PGM_TYPE_NONE
1264
1265/**
1266 * Update the tracking of shadowed pages.
1267 *
1268 * @param pVCpu The cross context virtual CPU structure.
1269 * @param pShwPage The shadow page.
1270 * @param HCPhys The physical page we is being dereferenced.
1271 * @param iPte Shadow PTE index
1272 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1273 */
1274DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1275 RTGCPHYS GCPhysPage)
1276{
1277 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1278
1279# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1280 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1281 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1282
1283 /* Use the hint we retrieved from the cached guest PT. */
1284 if (pShwPage->fDirty)
1285 {
1286 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1287
1288 Assert(pShwPage->cPresent);
1289 Assert(pPool->cPresent);
1290 pShwPage->cPresent--;
1291 pPool->cPresent--;
1292
1293 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1294 AssertRelease(pPhysPage);
1295 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1296 return;
1297 }
1298# else
1299 NOREF(GCPhysPage);
1300# endif
1301
1302 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatTrackDeref, a);
1303 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1304
1305 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1306 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1307 * 2. write protect all shadowed pages. I.e. implement caching.
1308 */
1309 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1310
1311 /*
1312 * Find the guest address.
1313 */
1314 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1315 pRam;
1316 pRam = pRam->CTX_SUFF(pNext))
1317 {
1318 unsigned iPage = pRam->cb >> GUEST_PAGE_SHIFT;
1319 while (iPage-- > 0)
1320 {
1321 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1322 {
1323 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1324
1325 Assert(pShwPage->cPresent);
1326 Assert(pPool->cPresent);
1327 pShwPage->cPresent--;
1328 pPool->cPresent--;
1329
1330 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1331 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatTrackDeref, a);
1332 return;
1333 }
1334 }
1335 }
1336
1337 for (;;)
1338 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1339}
1340
1341
1342/**
1343 * Update the tracking of shadowed pages.
1344 *
1345 * @param pVCpu The cross context virtual CPU structure.
1346 * @param pShwPage The shadow page.
1347 * @param u16 The top 16-bit of the pPage->HCPhys.
1348 * @param pPage Pointer to the guest page. this will be modified.
1349 * @param iPTDst The index into the shadow table.
1350 */
1351DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16,
1352 PPGMPAGE pPage, const unsigned iPTDst)
1353{
1354 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1355
1356 /*
1357 * Just deal with the simple first time here.
1358 */
1359 if (!u16)
1360 {
1361 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackVirgin);
1362 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1363 /* Save the page table index. */
1364 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1365 }
1366 else
1367 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1368
1369 /* write back */
1370 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1371 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1372
1373 /* update statistics. */
1374 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1375 pShwPage->cPresent++;
1376 if (pShwPage->iFirstPresent > iPTDst)
1377 pShwPage->iFirstPresent = iPTDst;
1378}
1379
1380
1381/**
1382 * Modifies a shadow PTE to account for access handlers.
1383 *
1384 * @param pVM The cross context VM structure.
1385 * @param pPage The page in question.
1386 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1387 * A (accessed) bit so it can be emulated correctly.
1388 * @param pPteDst The shadow PTE (output). This is temporary storage and
1389 * does not need to be set atomically.
1390 */
1391DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVMCC pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1392{
1393 NOREF(pVM); RT_NOREF_PV(fPteSrc);
1394
1395 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1396 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1397 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1398 {
1399 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1400# if PGM_SHW_TYPE == PGM_TYPE_EPT
1401 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage) | EPT_E_READ | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
1402# else
1403 if (fPteSrc & X86_PTE_A)
1404 {
1405 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1406 SHW_PTE_SET_RO(*pPteDst);
1407 }
1408 else
1409 SHW_PTE_SET(*pPteDst, 0);
1410# endif
1411 }
1412# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1413# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1414 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1415 && ( BTH_IS_NP_ACTIVE(pVM)
1416 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1417# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1418 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1419# endif
1420 )
1421 {
1422 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1423# if PGM_SHW_TYPE == PGM_TYPE_EPT
1424 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1425 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg
1426 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1427 | EPT_E_WRITE
1428 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1429 | EPT_E_MEMTYPE_INVALID_3;
1430# else
1431 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1432 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1433# endif
1434 }
1435# endif
1436# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1437 else
1438 {
1439 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1440 SHW_PTE_SET(*pPteDst, 0);
1441 }
1442 /** @todo count these kinds of entries. */
1443}
1444
1445
1446/**
1447 * Creates a 4K shadow page for a guest page.
1448 *
1449 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1450 * physical address. The PdeSrc argument only the flags are used. No page
1451 * structured will be mapped in this function.
1452 *
1453 * @param pVCpu The cross context virtual CPU structure.
1454 * @param pPteDst Destination page table entry.
1455 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1456 * Can safely assume that only the flags are being used.
1457 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1458 * @param pShwPage Pointer to the shadow page.
1459 * @param iPTDst The index into the shadow table.
1460 *
1461 * @remark Not used for 2/4MB pages!
1462 */
1463# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1464static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1465 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1466# else
1467static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1468 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1469# endif
1470{
1471 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1472 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1473
1474# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1475 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1476 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1477
1478 if (pShwPage->fDirty)
1479 {
1480 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1481 PGSTPT pGstPT;
1482
1483 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1484 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1485 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1486 pGstPT->a[iPTDst].u = PteSrc.u;
1487 }
1488# else
1489 Assert(!pShwPage->fDirty);
1490# endif
1491
1492# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1493 if ( (PteSrc.u & X86_PTE_P)
1494 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1495# endif
1496 {
1497# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1498 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1499# endif
1500 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1501
1502 /*
1503 * Find the ram range.
1504 */
1505 PPGMPAGE pPage;
1506 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1507 if (RT_SUCCESS(rc))
1508 {
1509 /* Ignore ballooned pages.
1510 Don't return errors or use a fatal assert here as part of a
1511 shadow sync range might included ballooned pages. */
1512 if (PGM_PAGE_IS_BALLOONED(pPage))
1513 {
1514 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1515 return;
1516 }
1517
1518# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1519 /* Make the page writable if necessary. */
1520 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1521 && ( PGM_PAGE_IS_ZERO(pPage)
1522# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1523 || ( (PteSrc.u & X86_PTE_RW)
1524# else
1525 || ( 1
1526# endif
1527 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1528# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1529 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1530# endif
1531# ifdef VBOX_WITH_PAGE_SHARING
1532 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1533# endif
1534 )
1535 )
1536 )
1537 {
1538 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1539 AssertRC(rc);
1540 }
1541# endif
1542
1543 /*
1544 * Make page table entry.
1545 */
1546 SHWPTE PteDst;
1547# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1548 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1549# else
1550 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1551# endif
1552 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1553 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1554 else
1555 {
1556# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1557 /*
1558 * If the page or page directory entry is not marked accessed,
1559 * we mark the page not present.
1560 */
1561 if (!(PteSrc.u & X86_PTE_A) || !(PdeSrc.u & X86_PDE_A))
1562 {
1563 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1564 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,AccessedPage));
1565 SHW_PTE_SET(PteDst, 0);
1566 }
1567 /*
1568 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1569 * when the page is modified.
1570 */
1571 else if (!(PteSrc.u & X86_PTE_D) && (PdeSrc.u & PteSrc.u & X86_PTE_RW))
1572 {
1573 AssertCompile(X86_PTE_RW == X86_PDE_RW);
1574 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPage));
1575 SHW_PTE_SET(PteDst,
1576 fGstShwPteFlags
1577 | PGM_PAGE_GET_HCPHYS(pPage)
1578 | PGM_PTFLAGS_TRACK_DIRTY);
1579 SHW_PTE_SET_RO(PteDst);
1580 }
1581 else
1582# endif
1583 {
1584 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageSkipped));
1585# if PGM_SHW_TYPE == PGM_TYPE_EPT
1586 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage)
1587 | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
1588# else
1589 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1590# endif
1591 }
1592
1593 /*
1594 * Make sure only allocated pages are mapped writable.
1595 */
1596 if ( SHW_PTE_IS_P_RW(PteDst)
1597 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1598 {
1599 /* Still applies to shared pages. */
1600 Assert(!PGM_PAGE_IS_ZERO(pPage));
1601 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1602 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1603 }
1604 }
1605
1606 /*
1607 * Keep user track up to date.
1608 */
1609 if (SHW_PTE_IS_P(PteDst))
1610 {
1611 if (!SHW_PTE_IS_P(*pPteDst))
1612 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1613 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1614 {
1615 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1616 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1617 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1618 }
1619 }
1620 else if (SHW_PTE_IS_P(*pPteDst))
1621 {
1622 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1623 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1624 }
1625
1626 /*
1627 * Update statistics and commit the entry.
1628 */
1629# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1630 if (!(PteSrc.u & X86_PTE_G))
1631 pShwPage->fSeenNonGlobal = true;
1632# endif
1633 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1634 return;
1635 }
1636
1637/** @todo count these three different kinds. */
1638 Log2(("SyncPageWorker: invalid address in Pte\n"));
1639 }
1640# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1641 else if (!(PteSrc.u & X86_PTE_P))
1642 Log2(("SyncPageWorker: page not present in Pte\n"));
1643 else
1644 Log2(("SyncPageWorker: invalid Pte\n"));
1645# endif
1646
1647 /*
1648 * The page is not present or the PTE is bad. Replace the shadow PTE by
1649 * an empty entry, making sure to keep the user tracking up to date.
1650 */
1651 if (SHW_PTE_IS_P(*pPteDst))
1652 {
1653 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1654 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1655 }
1656 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1657}
1658
1659
1660/**
1661 * Syncs a guest OS page.
1662 *
1663 * There are no conflicts at this point, neither is there any need for
1664 * page table allocations.
1665 *
1666 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1667 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1668 *
1669 * @returns VBox status code.
1670 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1671 * @param pVCpu The cross context virtual CPU structure.
1672 * @param PdeSrc Page directory entry of the guest.
1673 * @param GCPtrPage Guest context page address.
1674 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1675 * @param uErr Fault error (X86_TRAP_PF_*).
1676 */
1677static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1678{
1679 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1680 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1681 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1682 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage);
1683
1684 PGM_LOCK_ASSERT_OWNER(pVM);
1685
1686# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1687 || PGM_GST_TYPE == PGM_TYPE_PAE \
1688 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1689 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
1690
1691 /*
1692 * Assert preconditions.
1693 */
1694 Assert(PdeSrc.u & X86_PDE_P);
1695 Assert(cPages);
1696# if 0 /* rarely useful; leave for debugging. */
1697 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1698# endif
1699
1700 /*
1701 * Get the shadow PDE, find the shadow page table in the pool.
1702 */
1703# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1704 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1705 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1706
1707 /* Fetch the pgm pool shadow descriptor. */
1708 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1709 Assert(pShwPde);
1710
1711# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1712 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1713 PPGMPOOLPAGE pShwPde = NULL;
1714 PX86PDPAE pPDDst;
1715
1716 /* Fetch the pgm pool shadow descriptor. */
1717 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1718 AssertRCSuccessReturn(rc2, rc2);
1719 Assert(pShwPde);
1720
1721 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1722 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1723
1724# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1725 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1726 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1727 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1728 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1729
1730 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1731 AssertRCSuccessReturn(rc2, rc2);
1732 Assert(pPDDst && pPdptDst);
1733 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1734# endif
1735 SHWPDE PdeDst = *pPdeDst;
1736
1737 /*
1738 * - In the guest SMP case we could have blocked while another VCPU reused
1739 * this page table.
1740 * - With W7-64 we may also take this path when the A bit is cleared on
1741 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1742 * relevant TLB entries. If we're write monitoring any page mapped by
1743 * the modified entry, we may end up here with a "stale" TLB entry.
1744 */
1745 if (!(PdeDst.u & X86_PDE_P))
1746 {
1747 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1748 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1749 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1750 if (uErr & X86_TRAP_PF_P)
1751 PGM_INVL_PG(pVCpu, GCPtrPage);
1752 return VINF_SUCCESS; /* force the instruction to be executed again. */
1753 }
1754
1755 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1756 Assert(pShwPage);
1757
1758# if PGM_GST_TYPE == PGM_TYPE_AMD64
1759 /* Fetch the pgm pool shadow descriptor. */
1760 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1761 Assert(pShwPde);
1762# endif
1763
1764 /*
1765 * Check that the page is present and that the shadow PDE isn't out of sync.
1766 */
1767 const bool fBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu);
1768 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1769 RTGCPHYS GCPhys;
1770 if (!fBigPage)
1771 {
1772 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1773# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1774 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1775 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
1776# endif
1777 }
1778 else
1779 {
1780 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1781# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1782 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1783 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1784# endif
1785 }
1786 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1787 if ( fPdeValid
1788 && pShwPage->GCPhys == GCPhys
1789 && (PdeSrc.u & X86_PDE_P)
1790 && (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US)
1791 && ((PdeSrc.u & X86_PDE_RW) == (PdeDst.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW))
1792# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1793 && ((PdeSrc.u & X86_PDE_PAE_NX) == (PdeDst.u & X86_PDE_PAE_NX) || !GST_IS_NX_ACTIVE(pVCpu))
1794# endif
1795 )
1796 {
1797 /*
1798 * Check that the PDE is marked accessed already.
1799 * Since we set the accessed bit *before* getting here on a #PF, this
1800 * check is only meant for dealing with non-#PF'ing paths.
1801 */
1802 if (PdeSrc.u & X86_PDE_A)
1803 {
1804 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1805 if (!fBigPage)
1806 {
1807 /*
1808 * 4KB Page - Map the guest page table.
1809 */
1810 PGSTPT pPTSrc;
1811 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1812 if (RT_SUCCESS(rc))
1813 {
1814# ifdef PGM_SYNC_N_PAGES
1815 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1816 if ( cPages > 1
1817 && !(uErr & X86_TRAP_PF_P)
1818 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
1819 {
1820 /*
1821 * This code path is currently only taken when the caller is PGMTrap0eHandler
1822 * for non-present pages!
1823 *
1824 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1825 * deal with locality.
1826 */
1827 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1828# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1829 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1830 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1831# else
1832 const unsigned offPTSrc = 0;
1833# endif
1834 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1835 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1836 iPTDst = 0;
1837 else
1838 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1839
1840 for (; iPTDst < iPTDstEnd; iPTDst++)
1841 {
1842 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
1843
1844 if ( (pPteSrc->u & X86_PTE_P)
1845 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1846 {
1847 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT))
1848 | ((offPTSrc + iPTDst) << GUEST_PAGE_SHIFT);
1849 NOREF(GCPtrCurPage);
1850 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
1851 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1852 GCPtrCurPage, pPteSrc->u & X86_PTE_P,
1853 !!(pPteSrc->u & PdeSrc.u & X86_PTE_RW),
1854 !!(pPteSrc->u & PdeSrc.u & X86_PTE_US),
1855 (uint64_t)pPteSrc->u,
1856 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1857 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1858 }
1859 }
1860 }
1861 else
1862# endif /* PGM_SYNC_N_PAGES */
1863 {
1864 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1865 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1866 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1867 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1868 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1869 GCPtrPage, PteSrc.u & X86_PTE_P,
1870 !!(PteSrc.u & PdeSrc.u & X86_PTE_RW),
1871 !!(PteSrc.u & PdeSrc.u & X86_PTE_US),
1872 (uint64_t)PteSrc.u,
1873 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1874 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1875 }
1876 }
1877 else /* MMIO or invalid page: emulated in #PF handler. */
1878 {
1879 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1880 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
1881 }
1882 }
1883 else
1884 {
1885 /*
1886 * 4/2MB page - lazy syncing shadow 4K pages.
1887 * (There are many causes of getting here, it's no longer only CSAM.)
1888 */
1889 /* Calculate the GC physical address of this 4KB shadow page. */
1890 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
1891 /* Find ram range. */
1892 PPGMPAGE pPage;
1893 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1894 if (RT_SUCCESS(rc))
1895 {
1896 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1897
1898# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1899 /* Try to make the page writable if necessary. */
1900 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1901 && ( PGM_PAGE_IS_ZERO(pPage)
1902 || ( (PdeSrc.u & X86_PDE_RW)
1903 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1904# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1905 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1906# endif
1907# ifdef VBOX_WITH_PAGE_SHARING
1908 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1909# endif
1910 )
1911 )
1912 )
1913 {
1914 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1915 AssertRC(rc);
1916 }
1917# endif
1918
1919 /*
1920 * Make shadow PTE entry.
1921 */
1922 SHWPTE PteDst;
1923 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1924 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
1925 else
1926 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
1927
1928 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1929 if ( SHW_PTE_IS_P(PteDst)
1930 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1931 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1932
1933 /* Make sure only allocated pages are mapped writable. */
1934 if ( SHW_PTE_IS_P_RW(PteDst)
1935 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1936 {
1937 /* Still applies to shared pages. */
1938 Assert(!PGM_PAGE_IS_ZERO(pPage));
1939 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
1940 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1941 }
1942
1943 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
1944
1945 /*
1946 * If the page is not flagged as dirty and is writable, then make it read-only
1947 * at PD level, so we can set the dirty bit when the page is modified.
1948 *
1949 * ASSUMES that page access handlers are implemented on page table entry level.
1950 * Thus we will first catch the dirty access and set PDE.D and restart. If
1951 * there is an access handler, we'll trap again and let it work on the problem.
1952 */
1953 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1954 * As for invlpg, it simply frees the whole shadow PT.
1955 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1956 if ((PdeSrc.u & (X86_PDE4M_D | X86_PDE_RW)) == X86_PDE_RW)
1957 {
1958 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
1959 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1960 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
1961 }
1962 else
1963 {
1964 PdeDst.u &= ~(SHWUINT)(PGM_PDFLAGS_TRACK_DIRTY | X86_PDE_RW);
1965 PdeDst.u |= PdeSrc.u & X86_PDE_RW;
1966 }
1967 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
1968 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1969 GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US),
1970 (uint64_t)PdeSrc.u, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1971 }
1972 else
1973 {
1974 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1975 /** @todo must wipe the shadow page table entry in this
1976 * case. */
1977 }
1978 }
1979 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
1980 return VINF_SUCCESS;
1981 }
1982
1983 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDNAs));
1984 }
1985 else if (fPdeValid)
1986 {
1987 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1988 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1989 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1990 }
1991 else
1992 {
1993/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
1994 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1995 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1996 }
1997
1998 /*
1999 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2000 * Yea, I'm lazy.
2001 */
2002 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2003 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
2004
2005 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2006 PGM_INVL_VCPU_TLBS(pVCpu);
2007 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2008
2009
2010# elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2011 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2012 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2013 NOREF(PdeSrc);
2014
2015# ifdef PGM_SYNC_N_PAGES
2016 /*
2017 * Get the shadow PDE, find the shadow page table in the pool.
2018 */
2019# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2020 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2021
2022# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2023 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2024
2025# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2026 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2027 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2028 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2029 X86PDEPAE PdeDst;
2030 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2031
2032 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2033 AssertRCSuccessReturn(rc, rc);
2034 Assert(pPDDst && pPdptDst);
2035 PdeDst = pPDDst->a[iPDDst];
2036
2037# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2038 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2039 PEPTPD pPDDst;
2040 EPTPDE PdeDst;
2041
2042 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2043 if (rc != VINF_SUCCESS)
2044 {
2045 AssertRC(rc);
2046 return rc;
2047 }
2048 Assert(pPDDst);
2049 PdeDst = pPDDst->a[iPDDst];
2050# endif
2051 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2052 if (!SHW_PDE_IS_P(PdeDst))
2053 {
2054 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2055 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2056 return VINF_SUCCESS; /* force the instruction to be executed again. */
2057 }
2058
2059 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2060 if (SHW_PDE_IS_BIG(PdeDst))
2061 {
2062 Assert(pVM->pgm.s.fNestedPaging);
2063 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2064 return VINF_SUCCESS;
2065 }
2066
2067 /* Mask away the page offset. */
2068 GCPtrPage &= ~((RTGCPTR)0xfff);
2069
2070 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2071 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2072
2073 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2074 if ( cPages > 1
2075 && !(uErr & X86_TRAP_PF_P)
2076 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2077 {
2078 /*
2079 * This code path is currently only taken when the caller is PGMTrap0eHandler
2080 * for non-present pages!
2081 *
2082 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2083 * deal with locality.
2084 */
2085 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2086 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2087 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2088 iPTDst = 0;
2089 else
2090 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2091 for (; iPTDst < iPTDstEnd; iPTDst++)
2092 {
2093 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2094 {
2095 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2096 | (iPTDst << GUEST_PAGE_SHIFT));
2097
2098 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2099 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2100 GCPtrCurPage,
2101 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2102 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2103
2104 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2105 break;
2106 }
2107 else
2108 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n",
2109 (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2110 }
2111 }
2112 else
2113# endif /* PGM_SYNC_N_PAGES */
2114 {
2115 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2116 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2117 | (iPTDst << GUEST_PAGE_SHIFT));
2118
2119 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2120
2121 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2122 GCPtrPage,
2123 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2124 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2125 }
2126 return VINF_SUCCESS;
2127
2128# else
2129 NOREF(PdeSrc);
2130 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2131 return VERR_PGM_NOT_USED_IN_MODE;
2132# endif
2133}
2134
2135#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */
2136#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
2137
2138/**
2139 * CheckPageFault helper for returning a page fault indicating a non-present
2140 * (NP) entry in the page translation structures.
2141 *
2142 * @returns VINF_EM_RAW_GUEST_TRAP.
2143 * @param pVCpu The cross context virtual CPU structure.
2144 * @param uErr The error code of the shadow fault. Corrections to
2145 * TRPM's copy will be made if necessary.
2146 * @param GCPtrPage For logging.
2147 * @param uPageFaultLevel For logging.
2148 */
2149DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2150{
2151 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyTrackRealPF));
2152 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2153 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2154 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2155 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2156
2157 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2158 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2159 return VINF_EM_RAW_GUEST_TRAP;
2160}
2161
2162
2163/**
2164 * CheckPageFault helper for returning a page fault indicating a reserved bit
2165 * (RSVD) error in the page translation structures.
2166 *
2167 * @returns VINF_EM_RAW_GUEST_TRAP.
2168 * @param pVCpu The cross context virtual CPU structure.
2169 * @param uErr The error code of the shadow fault. Corrections to
2170 * TRPM's copy will be made if necessary.
2171 * @param GCPtrPage For logging.
2172 * @param uPageFaultLevel For logging.
2173 */
2174DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2175{
2176 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyTrackRealPF));
2177 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2178 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2179
2180 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2181 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2182 return VINF_EM_RAW_GUEST_TRAP;
2183}
2184
2185
2186/**
2187 * CheckPageFault helper for returning a page protection fault (P).
2188 *
2189 * @returns VINF_EM_RAW_GUEST_TRAP.
2190 * @param pVCpu The cross context virtual CPU structure.
2191 * @param uErr The error code of the shadow fault. Corrections to
2192 * TRPM's copy will be made if necessary.
2193 * @param GCPtrPage For logging.
2194 * @param uPageFaultLevel For logging.
2195 */
2196DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2197{
2198 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyTrackRealPF));
2199 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2200 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2201 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2202
2203 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2204 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2205 return VINF_EM_RAW_GUEST_TRAP;
2206}
2207
2208
2209/**
2210 * Handle dirty bit tracking faults.
2211 *
2212 * @returns VBox status code.
2213 * @param pVCpu The cross context virtual CPU structure.
2214 * @param uErr Page fault error code.
2215 * @param pPdeSrc Guest page directory entry.
2216 * @param pPdeDst Shadow page directory entry.
2217 * @param GCPtrPage Guest context page address.
2218 */
2219static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2220 RTGCPTR GCPtrPage)
2221{
2222 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2223 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2224 NOREF(uErr);
2225
2226 PGM_LOCK_ASSERT_OWNER(pVM);
2227
2228 /*
2229 * Handle big page.
2230 */
2231 if ((pPdeSrc->u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu))
2232 {
2233 if ((pPdeDst->u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
2234 {
2235 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap));
2236 Assert(pPdeSrc->u & X86_PDE_RW);
2237
2238 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2239 * fault again and take this path to only invalidate the entry (see below). */
2240 SHWPDE PdeDst = *pPdeDst;
2241 PdeDst.u &= ~(SHWUINT)PGM_PDFLAGS_TRACK_DIRTY;
2242 PdeDst.u |= X86_PDE_RW | X86_PDE_A;
2243 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2244 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2245 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2246 }
2247
2248# ifdef IN_RING0
2249 /* Check for stale TLB entry; only applies to the SMP guest case. */
2250 if ( pVM->cCpus > 1
2251 && (pPdeDst->u & (X86_PDE_P | X86_PDE_RW | X86_PDE_A)) == (X86_PDE_P | X86_PDE_RW | X86_PDE_A))
2252 {
2253 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2254 if (pShwPage)
2255 {
2256 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2257 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2258 if (SHW_PTE_IS_P_RW(*pPteDst))
2259 {
2260 /* Stale TLB entry. */
2261 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale));
2262 PGM_INVL_PG(pVCpu, GCPtrPage);
2263 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2264 }
2265 }
2266 }
2267# endif /* IN_RING0 */
2268 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2269 }
2270
2271 /*
2272 * Map the guest page table.
2273 */
2274 PGSTPT pPTSrc;
2275 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2276 AssertRCReturn(rc, rc);
2277
2278 if (SHW_PDE_IS_P(*pPdeDst))
2279 {
2280 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2281 const GSTPTE PteSrc = *pPteSrc;
2282
2283 /*
2284 * Map shadow page table.
2285 */
2286 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2287 if (pShwPage)
2288 {
2289 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2290 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2291 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2292 {
2293 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2294 {
2295 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2296 SHWPTE PteDst = *pPteDst;
2297
2298 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2299 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap));
2300
2301 Assert(PteSrc.u & X86_PTE_RW);
2302
2303 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2304 * entry will not harm; write access will simply fault again and
2305 * take this path to only invalidate the entry.
2306 */
2307 if (RT_LIKELY(pPage))
2308 {
2309 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2310 {
2311 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2312 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2313 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2314 SHW_PTE_SET_RO(PteDst);
2315 }
2316 else
2317 {
2318 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2319 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2320 {
2321 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2322 AssertRC(rc);
2323 }
2324 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2325 SHW_PTE_SET_RW(PteDst);
2326 else
2327 {
2328 /* Still applies to shared pages. */
2329 Assert(!PGM_PAGE_IS_ZERO(pPage));
2330 SHW_PTE_SET_RO(PteDst);
2331 }
2332 }
2333 }
2334 else
2335 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2336
2337 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2338 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2339 PGM_INVL_PG(pVCpu, GCPtrPage);
2340 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2341 }
2342
2343# ifdef IN_RING0
2344 /* Check for stale TLB entry; only applies to the SMP guest case. */
2345 if ( pVM->cCpus > 1
2346 && SHW_PTE_IS_RW(*pPteDst)
2347 && SHW_PTE_IS_A(*pPteDst))
2348 {
2349 /* Stale TLB entry. */
2350 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale));
2351 PGM_INVL_PG(pVCpu, GCPtrPage);
2352 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2353 }
2354# endif
2355 }
2356 }
2357 else
2358 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2359 }
2360
2361 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2362}
2363
2364#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
2365
2366/**
2367 * Sync a shadow page table.
2368 *
2369 * The shadow page table is not present in the shadow PDE.
2370 *
2371 * Handles mapping conflicts.
2372 *
2373 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2374 * conflict), and Trap0eHandler.
2375 *
2376 * A precondition for this method is that the shadow PDE is not present. The
2377 * caller must take the PGM lock before checking this and continue to hold it
2378 * when calling this method.
2379 *
2380 * @returns VBox status code.
2381 * @param pVCpu The cross context virtual CPU structure.
2382 * @param iPDSrc Page directory index.
2383 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2384 * Assume this is a temporary mapping.
2385 * @param GCPtrPage GC Pointer of the page that caused the fault
2386 */
2387static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2388{
2389 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2390 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2391
2392#if 0 /* rarely useful; leave for debugging. */
2393 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2394#endif
2395 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
2396
2397 PGM_LOCK_ASSERT_OWNER(pVM);
2398
2399#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2400 || PGM_GST_TYPE == PGM_TYPE_PAE \
2401 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2402 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
2403 && PGM_SHW_TYPE != PGM_TYPE_NONE
2404 int rc = VINF_SUCCESS;
2405
2406 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2407
2408 /*
2409 * Some input validation first.
2410 */
2411 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2412
2413 /*
2414 * Get the relevant shadow PDE entry.
2415 */
2416# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2417 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2418 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2419
2420 /* Fetch the pgm pool shadow descriptor. */
2421 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2422 Assert(pShwPde);
2423
2424# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2425 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2426 PPGMPOOLPAGE pShwPde = NULL;
2427 PX86PDPAE pPDDst;
2428 PSHWPDE pPdeDst;
2429
2430 /* Fetch the pgm pool shadow descriptor. */
2431 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2432 AssertRCSuccessReturn(rc, rc);
2433 Assert(pShwPde);
2434
2435 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2436 pPdeDst = &pPDDst->a[iPDDst];
2437
2438# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2439 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2440 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2441 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2442 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2443 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2444 AssertRCSuccessReturn(rc, rc);
2445 Assert(pPDDst);
2446 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2447
2448# endif
2449 SHWPDE PdeDst = *pPdeDst;
2450
2451# if PGM_GST_TYPE == PGM_TYPE_AMD64
2452 /* Fetch the pgm pool shadow descriptor. */
2453 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2454 Assert(pShwPde);
2455# endif
2456
2457 Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P.*/
2458
2459 /*
2460 * Sync the page directory entry.
2461 */
2462 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2463 const bool fPageTable = !(PdeSrc.u & X86_PDE_PS) || !GST_IS_PSE_ACTIVE(pVCpu);
2464 if ( (PdeSrc.u & X86_PDE_P)
2465 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2466 {
2467 /*
2468 * Allocate & map the page table.
2469 */
2470 PSHWPT pPTDst;
2471 PPGMPOOLPAGE pShwPage;
2472 RTGCPHYS GCPhys;
2473 if (fPageTable)
2474 {
2475 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2476# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2477 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2478 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
2479# endif
2480 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2481 pShwPde->idx, iPDDst, false /*fLockPage*/,
2482 &pShwPage);
2483 }
2484 else
2485 {
2486 PGMPOOLACCESS enmAccess;
2487# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2488 const bool fNoExecute = (PdeSrc.u & X86_PDE_PAE_NX) && GST_IS_NX_ACTIVE(pVCpu);
2489# else
2490 const bool fNoExecute = false;
2491# endif
2492
2493 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2494# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2495 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2496 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2497# endif
2498 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2499 if (PdeSrc.u & X86_PDE_US)
2500 {
2501 if (PdeSrc.u & X86_PDE_RW)
2502 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2503 else
2504 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2505 }
2506 else
2507 {
2508 if (PdeSrc.u & X86_PDE_RW)
2509 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2510 else
2511 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2512 }
2513 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2514 pShwPde->idx, iPDDst, false /*fLockPage*/,
2515 &pShwPage);
2516 }
2517 if (rc == VINF_SUCCESS)
2518 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2519 else if (rc == VINF_PGM_CACHED_PAGE)
2520 {
2521 /*
2522 * The PT was cached, just hook it up.
2523 */
2524 if (fPageTable)
2525 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2526 else
2527 {
2528 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2529 /* (see explanation and assumptions further down.) */
2530 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
2531 {
2532 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
2533 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2534 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
2535 }
2536 }
2537 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2538 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2539 return VINF_SUCCESS;
2540 }
2541 else
2542 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2543 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2544 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2545 * irrelevant at this point. */
2546 PdeDst.u &= X86_PDE_AVL_MASK;
2547 PdeDst.u |= pShwPage->Core.Key;
2548
2549 /*
2550 * Page directory has been accessed (this is a fault situation, remember).
2551 */
2552 /** @todo
2553 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2554 * fault situation. What's more, the Trap0eHandler has already set the
2555 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2556 * might need setting the accessed flag.
2557 *
2558 * The best idea is to leave this change to the caller and add an
2559 * assertion that it's set already. */
2560 pPDSrc->a[iPDSrc].u |= X86_PDE_A;
2561 if (fPageTable)
2562 {
2563 /*
2564 * Page table - 4KB.
2565 *
2566 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2567 */
2568 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2569 GCPtrPage, PdeSrc.u & X86_PTE_P, !!(PdeSrc.u & X86_PTE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u));
2570 PGSTPT pPTSrc;
2571 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2572 if (RT_SUCCESS(rc))
2573 {
2574 /*
2575 * Start by syncing the page directory entry so CSAM's TLB trick works.
2576 */
2577 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2578 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2579 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2580 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2581
2582 /*
2583 * Directory/page user or supervisor privilege: (same goes for read/write)
2584 *
2585 * Directory Page Combined
2586 * U/S U/S U/S
2587 * 0 0 0
2588 * 0 1 0
2589 * 1 0 0
2590 * 1 1 1
2591 *
2592 * Simple AND operation. Table listed for completeness.
2593 *
2594 */
2595 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4K));
2596# ifdef PGM_SYNC_N_PAGES
2597 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2598 unsigned iPTDst = iPTBase;
2599 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2600 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2601 iPTDst = 0;
2602 else
2603 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2604# else /* !PGM_SYNC_N_PAGES */
2605 unsigned iPTDst = 0;
2606 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2607# endif /* !PGM_SYNC_N_PAGES */
2608 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2609 | ((RTGCPTR)iPTDst << GUEST_PAGE_SHIFT);
2610# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2611 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2612 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2613# else
2614 const unsigned offPTSrc = 0;
2615# endif
2616 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += GUEST_PAGE_SIZE)
2617 {
2618 const unsigned iPTSrc = iPTDst + offPTSrc;
2619 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2620 if (PteSrc.u & X86_PTE_P)
2621 {
2622 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2623 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2624 GCPtrCur,
2625 PteSrc.u & X86_PTE_P,
2626 !!(PteSrc.u & PdeSrc.u & X86_PTE_RW),
2627 !!(PteSrc.u & PdeSrc.u & X86_PTE_US),
2628 (uint64_t)PteSrc.u,
2629 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2630 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2631 }
2632 /* else: the page table was cleared by the pool */
2633 } /* for PTEs */
2634 }
2635 }
2636 else
2637 {
2638 /*
2639 * Big page - 2/4MB.
2640 *
2641 * We'll walk the ram range list in parallel and optimize lookups.
2642 * We will only sync one shadow page table at a time.
2643 */
2644 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4M));
2645
2646 /**
2647 * @todo It might be more efficient to sync only a part of the 4MB
2648 * page (similar to what we do for 4KB PDs).
2649 */
2650
2651 /*
2652 * Start by syncing the page directory entry.
2653 */
2654 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2655 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2656
2657 /*
2658 * If the page is not flagged as dirty and is writable, then make it read-only
2659 * at PD level, so we can set the dirty bit when the page is modified.
2660 *
2661 * ASSUMES that page access handlers are implemented on page table entry level.
2662 * Thus we will first catch the dirty access and set PDE.D and restart. If
2663 * there is an access handler, we'll trap again and let it work on the problem.
2664 */
2665 /** @todo move the above stuff to a section in the PGM documentation. */
2666 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2667 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
2668 {
2669 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
2670 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2671 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
2672 }
2673 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2674 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2675
2676 /*
2677 * Fill the shadow page table.
2678 */
2679 /* Get address and flags from the source PDE. */
2680 SHWPTE PteDstBase;
2681 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2682
2683 /* Loop thru the entries in the shadow PT. */
2684 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2685 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2686 GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u, GCPtr,
2687 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2688 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2689 unsigned iPTDst = 0;
2690 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2691 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2692 {
2693 if (pRam && GCPhys >= pRam->GCPhys)
2694 {
2695# ifndef PGM_WITH_A20
2696 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT;
2697# endif
2698 do
2699 {
2700 /* Make shadow PTE. */
2701# ifdef PGM_WITH_A20
2702 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT];
2703# else
2704 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2705# endif
2706 SHWPTE PteDst;
2707
2708# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2709 /* Try to make the page writable if necessary. */
2710 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2711 && ( PGM_PAGE_IS_ZERO(pPage)
2712 || ( SHW_PTE_IS_RW(PteDstBase)
2713 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2714# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2715 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2716# endif
2717# ifdef VBOX_WITH_PAGE_SHARING
2718 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2719# endif
2720 && !PGM_PAGE_IS_BALLOONED(pPage))
2721 )
2722 )
2723 {
2724 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2725 AssertRCReturn(rc, rc);
2726 if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2727 break;
2728 }
2729# endif
2730
2731 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2732 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2733 else if (PGM_PAGE_IS_BALLOONED(pPage))
2734 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2735 else
2736 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2737
2738 /* Only map writable pages writable. */
2739 if ( SHW_PTE_IS_P_RW(PteDst)
2740 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2741 {
2742 /* Still applies to shared pages. */
2743 Assert(!PGM_PAGE_IS_ZERO(pPage));
2744 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2745 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2746 }
2747
2748 if (SHW_PTE_IS_P(PteDst))
2749 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2750
2751 /* commit it (not atomic, new table) */
2752 pPTDst->a[iPTDst] = PteDst;
2753 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2754 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2755 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2756
2757 /* advance */
2758 GCPhys += GUEST_PAGE_SIZE;
2759 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
2760# ifndef PGM_WITH_A20
2761 iHCPage++;
2762# endif
2763 iPTDst++;
2764 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2765 && GCPhys <= pRam->GCPhysLast);
2766
2767 /* Advance ram range list. */
2768 while (pRam && GCPhys > pRam->GCPhysLast)
2769 pRam = pRam->CTX_SUFF(pNext);
2770 }
2771 else if (pRam)
2772 {
2773 Log(("Invalid pages at %RGp\n", GCPhys));
2774 do
2775 {
2776 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2777 GCPhys += GUEST_PAGE_SIZE;
2778 iPTDst++;
2779 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2780 && GCPhys < pRam->GCPhys);
2781 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
2782 }
2783 else
2784 {
2785 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2786 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2787 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2788 }
2789 } /* while more PTEs */
2790 } /* 4KB / 4MB */
2791 }
2792 else
2793 AssertRelease(!SHW_PDE_IS_P(PdeDst));
2794
2795 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2796 if (RT_FAILURE(rc))
2797 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed));
2798 return rc;
2799
2800#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2801 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2802 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2803 && PGM_SHW_TYPE != PGM_TYPE_NONE
2804 NOREF(iPDSrc); NOREF(pPDSrc);
2805
2806 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2807
2808 /*
2809 * Validate input a little bit.
2810 */
2811 int rc = VINF_SUCCESS;
2812# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2813 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2814 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2815
2816 /* Fetch the pgm pool shadow descriptor. */
2817 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2818 Assert(pShwPde);
2819
2820# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2821 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2822 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2823 PX86PDPAE pPDDst;
2824 PSHWPDE pPdeDst;
2825
2826 /* Fetch the pgm pool shadow descriptor. */
2827 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2828 AssertRCSuccessReturn(rc, rc);
2829 Assert(pShwPde);
2830
2831 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2832 pPdeDst = &pPDDst->a[iPDDst];
2833
2834# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2835 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2836 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2837 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2838 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2839 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2840 AssertRCSuccessReturn(rc, rc);
2841 Assert(pPDDst);
2842 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2843
2844 /* Fetch the pgm pool shadow descriptor. */
2845 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2846 Assert(pShwPde);
2847
2848# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2849 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2850 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2851 PEPTPD pPDDst;
2852 PEPTPDPT pPdptDst;
2853
2854 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
2855 if (rc != VINF_SUCCESS)
2856 {
2857 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2858 AssertRC(rc);
2859 return rc;
2860 }
2861 Assert(pPDDst);
2862 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2863
2864 /* Fetch the pgm pool shadow descriptor. */
2865 /** @todo r=bird: didn't pgmShwGetEPTPDPtr just do this lookup already? */
2866 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2867 Assert(pShwPde);
2868# endif
2869 SHWPDE PdeDst = *pPdeDst;
2870
2871 Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2872
2873# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
2874 if ( BTH_IS_NP_ACTIVE(pVM)
2875 && !VM_IS_NEM_ENABLED(pVM)) /** @todo NEM: Large page support. */
2876 {
2877 /* Check if we allocated a big page before for this 2 MB range. */
2878 PPGMPAGE pPage;
2879 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
2880 if (RT_SUCCESS(rc))
2881 {
2882 RTHCPHYS HCPhys = NIL_RTHCPHYS;
2883 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
2884 {
2885 if (PGM_A20_IS_ENABLED(pVCpu))
2886 {
2887 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
2888 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2889 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2890 }
2891 else
2892 {
2893 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
2894 pVM->pgm.s.cLargePagesDisabled++;
2895 }
2896 }
2897 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
2898 && PGM_A20_IS_ENABLED(pVCpu))
2899 {
2900 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
2901 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
2902 if (RT_SUCCESS(rc))
2903 {
2904 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2905 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
2906 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2907 }
2908 }
2909 else if ( PGMIsUsingLargePages(pVM)
2910 && PGM_A20_IS_ENABLED(pVCpu))
2911 {
2912 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
2913 if (RT_SUCCESS(rc))
2914 {
2915 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2916 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
2917 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2918 }
2919 else
2920 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
2921 }
2922
2923 if (HCPhys != NIL_RTHCPHYS)
2924 {
2925# if PGM_SHW_TYPE == PGM_TYPE_EPT
2926 PdeDst.u = HCPhys | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_LEAF | EPT_E_IGNORE_PAT | EPT_E_MEMTYPE_WB
2927 | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo do we need this? */;
2928# else
2929 PdeDst.u = HCPhys | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PS
2930 | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo PGM_PD_FLAGS? */;
2931# endif
2932 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2933
2934 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
2935 /* Add a reference to the first page only. */
2936 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
2937
2938 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2939 return VINF_SUCCESS;
2940 }
2941 }
2942 }
2943# endif /* defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE */
2944
2945 /*
2946 * Allocate & map the page table.
2947 */
2948 PSHWPT pPTDst;
2949 PPGMPOOLPAGE pShwPage;
2950 RTGCPHYS GCPhys;
2951
2952 /* Virtual address = physical address */
2953 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
2954 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
2955 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
2956 &pShwPage);
2957 if ( rc == VINF_SUCCESS
2958 || rc == VINF_PGM_CACHED_PAGE)
2959 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2960 else
2961 {
2962 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2963 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2964 }
2965
2966 if (rc == VINF_SUCCESS)
2967 {
2968 /* New page table; fully set it up. */
2969 Assert(pPTDst);
2970
2971 /* Mask away the page offset. */
2972 GCPtrPage &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
2973
2974 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2975 {
2976 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2977 | (iPTDst << GUEST_PAGE_SHIFT));
2978
2979 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2980 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2981 GCPtrCurPage,
2982 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2983 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2984
2985 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2986 break;
2987 }
2988 }
2989 else
2990 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
2991
2992 /* Save the new PDE. */
2993# if PGM_SHW_TYPE == PGM_TYPE_EPT
2994 PdeDst.u = pShwPage->Core.Key | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE
2995 | (PdeDst.u & X86_PDE_AVL_MASK /** @todo do we really need this? */);
2996# else
2997 PdeDst.u = pShwPage->Core.Key | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A
2998 | (PdeDst.u & X86_PDE_AVL_MASK /** @todo use a PGM_PD_FLAGS define */);
2999# endif
3000 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3001
3002 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3003 if (RT_FAILURE(rc))
3004 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed));
3005 return rc;
3006
3007#else
3008 NOREF(iPDSrc); NOREF(pPDSrc);
3009 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3010 return VERR_PGM_NOT_USED_IN_MODE;
3011#endif
3012}
3013
3014
3015
3016/**
3017 * Prefetch a page/set of pages.
3018 *
3019 * Typically used to sync commonly used pages before entering raw mode
3020 * after a CR3 reload.
3021 *
3022 * @returns VBox status code.
3023 * @param pVCpu The cross context virtual CPU structure.
3024 * @param GCPtrPage Page to invalidate.
3025 */
3026PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
3027{
3028#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3029 || PGM_GST_TYPE == PGM_TYPE_REAL \
3030 || PGM_GST_TYPE == PGM_TYPE_PROT \
3031 || PGM_GST_TYPE == PGM_TYPE_PAE \
3032 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3033 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3034 && PGM_SHW_TYPE != PGM_TYPE_NONE
3035 /*
3036 * Check that all Guest levels thru the PDE are present, getting the
3037 * PD and PDE in the processes.
3038 */
3039 int rc = VINF_SUCCESS;
3040# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3041# if PGM_GST_TYPE == PGM_TYPE_32BIT
3042 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3043 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3044# elif PGM_GST_TYPE == PGM_TYPE_PAE
3045 unsigned iPDSrc;
3046 X86PDPE PdpeSrc;
3047 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3048 if (!pPDSrc)
3049 return VINF_SUCCESS; /* not present */
3050# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3051 unsigned iPDSrc;
3052 PX86PML4E pPml4eSrc;
3053 X86PDPE PdpeSrc;
3054 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3055 if (!pPDSrc)
3056 return VINF_SUCCESS; /* not present */
3057# endif
3058 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3059# else
3060 PGSTPD pPDSrc = NULL;
3061 const unsigned iPDSrc = 0;
3062 GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */
3063# endif
3064
3065 if ((PdeSrc.u & (X86_PDE_P | X86_PDE_A)) == (X86_PDE_P | X86_PDE_A))
3066 {
3067 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3068 PGM_LOCK_VOID(pVM);
3069
3070# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3071 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3072# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3073 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3074 PX86PDPAE pPDDst;
3075 X86PDEPAE PdeDst;
3076# if PGM_GST_TYPE != PGM_TYPE_PAE
3077 X86PDPE PdpeSrc;
3078
3079 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3080 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3081# endif
3082 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3083 if (rc != VINF_SUCCESS)
3084 {
3085 PGM_UNLOCK(pVM);
3086 AssertRC(rc);
3087 return rc;
3088 }
3089 Assert(pPDDst);
3090 PdeDst = pPDDst->a[iPDDst];
3091
3092# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3093 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3094 PX86PDPAE pPDDst;
3095 X86PDEPAE PdeDst;
3096
3097# if PGM_GST_TYPE == PGM_TYPE_PROT
3098 /* AMD-V nested paging */
3099 X86PML4E Pml4eSrc;
3100 X86PDPE PdpeSrc;
3101 PX86PML4E pPml4eSrc = &Pml4eSrc;
3102
3103 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3104 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3105 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3106# endif
3107
3108 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3109 if (rc != VINF_SUCCESS)
3110 {
3111 PGM_UNLOCK(pVM);
3112 AssertRC(rc);
3113 return rc;
3114 }
3115 Assert(pPDDst);
3116 PdeDst = pPDDst->a[iPDDst];
3117# endif
3118 if (!(PdeDst.u & X86_PDE_P))
3119 {
3120 /** @todo r=bird: This guy will set the A bit on the PDE,
3121 * probably harmless. */
3122 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3123 }
3124 else
3125 {
3126 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3127 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3128 * makes no sense to prefetch more than one page.
3129 */
3130 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3131 if (RT_SUCCESS(rc))
3132 rc = VINF_SUCCESS;
3133 }
3134 PGM_UNLOCK(pVM);
3135 }
3136 return rc;
3137
3138#elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3139 NOREF(pVCpu); NOREF(GCPtrPage);
3140 return VINF_SUCCESS; /* ignore */
3141#else
3142 AssertCompile(0);
3143#endif
3144}
3145
3146
3147
3148
3149/**
3150 * Syncs a page during a PGMVerifyAccess() call.
3151 *
3152 * @returns VBox status code (informational included).
3153 * @param pVCpu The cross context virtual CPU structure.
3154 * @param GCPtrPage The address of the page to sync.
3155 * @param fPage The effective guest page flags.
3156 * @param uErr The trap error code.
3157 * @remarks This will normally never be called on invalid guest page
3158 * translation entries.
3159 */
3160PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3161{
3162 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3163
3164 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3165 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr);
3166
3167 Assert(!pVM->pgm.s.fNestedPaging);
3168#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3169 || PGM_GST_TYPE == PGM_TYPE_REAL \
3170 || PGM_GST_TYPE == PGM_TYPE_PROT \
3171 || PGM_GST_TYPE == PGM_TYPE_PAE \
3172 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3173 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3174 && PGM_SHW_TYPE != PGM_TYPE_NONE
3175
3176 /*
3177 * Get guest PD and index.
3178 */
3179 /** @todo Performance: We've done all this a jiffy ago in the
3180 * PGMGstGetPage call. */
3181# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3182# if PGM_GST_TYPE == PGM_TYPE_32BIT
3183 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3184 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3185
3186# elif PGM_GST_TYPE == PGM_TYPE_PAE
3187 unsigned iPDSrc = 0;
3188 X86PDPE PdpeSrc;
3189 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3190 if (RT_UNLIKELY(!pPDSrc))
3191 {
3192 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3193 return VINF_EM_RAW_GUEST_TRAP;
3194 }
3195
3196# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3197 unsigned iPDSrc = 0; /* shut up gcc */
3198 PX86PML4E pPml4eSrc = NULL; /* ditto */
3199 X86PDPE PdpeSrc;
3200 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3201 if (RT_UNLIKELY(!pPDSrc))
3202 {
3203 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3204 return VINF_EM_RAW_GUEST_TRAP;
3205 }
3206# endif
3207
3208# else /* !PGM_WITH_PAGING */
3209 PGSTPD pPDSrc = NULL;
3210 const unsigned iPDSrc = 0;
3211# endif /* !PGM_WITH_PAGING */
3212 int rc = VINF_SUCCESS;
3213
3214 PGM_LOCK_VOID(pVM);
3215
3216 /*
3217 * First check if the shadow pd is present.
3218 */
3219# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3220 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3221
3222# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3223 PX86PDEPAE pPdeDst;
3224 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3225 PX86PDPAE pPDDst;
3226# if PGM_GST_TYPE != PGM_TYPE_PAE
3227 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3228 X86PDPE PdpeSrc;
3229 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3230# endif
3231 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3232 if (rc != VINF_SUCCESS)
3233 {
3234 PGM_UNLOCK(pVM);
3235 AssertRC(rc);
3236 return rc;
3237 }
3238 Assert(pPDDst);
3239 pPdeDst = &pPDDst->a[iPDDst];
3240
3241# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3242 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3243 PX86PDPAE pPDDst;
3244 PX86PDEPAE pPdeDst;
3245
3246# if PGM_GST_TYPE == PGM_TYPE_PROT
3247 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3248 X86PML4E Pml4eSrc;
3249 X86PDPE PdpeSrc;
3250 PX86PML4E pPml4eSrc = &Pml4eSrc;
3251 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3252 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3253# endif
3254
3255 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3256 if (rc != VINF_SUCCESS)
3257 {
3258 PGM_UNLOCK(pVM);
3259 AssertRC(rc);
3260 return rc;
3261 }
3262 Assert(pPDDst);
3263 pPdeDst = &pPDDst->a[iPDDst];
3264# endif
3265
3266 if (!(pPdeDst->u & X86_PDE_P))
3267 {
3268 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3269 if (rc != VINF_SUCCESS)
3270 {
3271 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3272 PGM_UNLOCK(pVM);
3273 AssertRC(rc);
3274 return rc;
3275 }
3276 }
3277
3278# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3279 /* Check for dirty bit fault */
3280 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3281 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3282 Log(("PGMVerifyAccess: success (dirty)\n"));
3283 else
3284# endif
3285 {
3286# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3287 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3288# else
3289 GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */
3290# endif
3291
3292 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3293 if (uErr & X86_TRAP_PF_US)
3294 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser));
3295 else /* supervisor */
3296 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3297
3298 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3299 if (RT_SUCCESS(rc))
3300 {
3301 /* Page was successfully synced */
3302 Log2(("PGMVerifyAccess: success (sync)\n"));
3303 rc = VINF_SUCCESS;
3304 }
3305 else
3306 {
3307 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3308 rc = VINF_EM_RAW_GUEST_TRAP;
3309 }
3310 }
3311 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3312 PGM_UNLOCK(pVM);
3313 return rc;
3314
3315#else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
3316
3317 AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3318 return VERR_PGM_NOT_USED_IN_MODE;
3319#endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
3320}
3321
3322
3323/**
3324 * Syncs the paging hierarchy starting at CR3.
3325 *
3326 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
3327 * informational status codes.
3328 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
3329 * the VMM into guest context.
3330 * @param pVCpu The cross context virtual CPU structure.
3331 * @param cr0 Guest context CR0 register.
3332 * @param cr3 Guest context CR3 register. Not subjected to the A20
3333 * mask.
3334 * @param cr4 Guest context CR4 register.
3335 * @param fGlobal Including global page directories or not
3336 */
3337PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3338{
3339 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3340 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3341
3342 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3343
3344#if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
3345# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3346 PGM_LOCK_VOID(pVM);
3347 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3348 if (pPool->cDirtyPages)
3349 pgmPoolResetDirtyPages(pVM);
3350 PGM_UNLOCK(pVM);
3351# endif
3352#endif /* !NESTED && !EPT */
3353
3354#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3355 /*
3356 * Nested / EPT / None - No work.
3357 */
3358 return VINF_SUCCESS;
3359
3360#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3361 /*
3362 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3363 * out the shadow parts when the guest modifies its tables.
3364 */
3365 return VINF_SUCCESS;
3366
3367#else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3368
3369 return VINF_SUCCESS;
3370#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3371}
3372
3373
3374
3375
3376#ifdef VBOX_STRICT
3377
3378/**
3379 * Checks that the shadow page table is in sync with the guest one.
3380 *
3381 * @returns The number of errors.
3382 * @param pVCpu The cross context virtual CPU structure.
3383 * @param cr3 Guest context CR3 register.
3384 * @param cr4 Guest context CR4 register.
3385 * @param GCPtr Where to start. Defaults to 0.
3386 * @param cb How much to check. Defaults to everything.
3387 */
3388PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3389{
3390 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3391#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3392 return 0;
3393#else
3394 unsigned cErrors = 0;
3395 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3396 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3397
3398# if PGM_GST_TYPE == PGM_TYPE_PAE
3399 /** @todo currently broken; crashes below somewhere */
3400 AssertFailed();
3401# endif
3402
3403# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3404 || PGM_GST_TYPE == PGM_TYPE_PAE \
3405 || PGM_GST_TYPE == PGM_TYPE_AMD64
3406
3407 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3408 PPGMCPU pPGM = &pVCpu->pgm.s;
3409 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3410 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3411# ifndef IN_RING0
3412 RTHCPHYS HCPhys; /* general usage. */
3413# endif
3414 int rc;
3415
3416 /*
3417 * Check that the Guest CR3 and all its mappings are correct.
3418 */
3419 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3420 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3421 false);
3422# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3423# if 0
3424# if PGM_GST_TYPE == PGM_TYPE_32BIT
3425 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3426# else
3427 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3428# endif
3429 AssertRCReturn(rc, 1);
3430 HCPhys = NIL_RTHCPHYS;
3431 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3432 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3433# endif
3434# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3435 pgmGstGet32bitPDPtr(pVCpu);
3436 RTGCPHYS GCPhys;
3437 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3438 AssertRCReturn(rc, 1);
3439 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3440# endif
3441# endif /* !IN_RING0 */
3442
3443 /*
3444 * Get and check the Shadow CR3.
3445 */
3446# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3447 unsigned cPDEs = X86_PG_ENTRIES;
3448 unsigned cIncrement = X86_PG_ENTRIES * GUEST_PAGE_SIZE;
3449# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3450# if PGM_GST_TYPE == PGM_TYPE_32BIT
3451 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3452# else
3453 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3454# endif
3455 unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE;
3456# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3457 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3458 unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE;
3459# endif
3460 if (cb != ~(RTGCPTR)0)
3461 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3462
3463/** @todo call the other two PGMAssert*() functions. */
3464
3465# if PGM_GST_TYPE == PGM_TYPE_AMD64
3466 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3467
3468 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3469 {
3470 PPGMPOOLPAGE pShwPdpt = NULL;
3471 PX86PML4E pPml4eSrc;
3472 PX86PML4E pPml4eDst;
3473 RTGCPHYS GCPhysPdptSrc;
3474
3475 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3476 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3477
3478 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3479 if (!(pPml4eDst->u & X86_PML4E_P))
3480 {
3481 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3482 continue;
3483 }
3484
3485 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3486 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3487
3488 if ((pPml4eSrc->u & X86_PML4E_P) != (pPml4eDst->u & X86_PML4E_P))
3489 {
3490 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3491 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3492 cErrors++;
3493 continue;
3494 }
3495
3496 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3497 {
3498 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3499 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3500 cErrors++;
3501 continue;
3502 }
3503
3504 if ( (pPml4eDst->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX))
3505 != (pPml4eSrc->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX)))
3506 {
3507 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3508 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3509 cErrors++;
3510 continue;
3511 }
3512# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3513 {
3514# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3515
3516# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3517 /*
3518 * Check the PDPTEs too.
3519 */
3520 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3521
3522 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3523 {
3524 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3525 PPGMPOOLPAGE pShwPde = NULL;
3526 PX86PDPE pPdpeDst;
3527 RTGCPHYS GCPhysPdeSrc;
3528 X86PDPE PdpeSrc;
3529 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3530# if PGM_GST_TYPE == PGM_TYPE_PAE
3531 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3532 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3533# else
3534 PX86PML4E pPml4eSrcIgn;
3535 PX86PDPT pPdptDst;
3536 PX86PDPAE pPDDst;
3537 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3538
3539 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3540 if (rc != VINF_SUCCESS)
3541 {
3542 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3543 GCPtr += 512 * _2M;
3544 continue; /* next PDPTE */
3545 }
3546 Assert(pPDDst);
3547# endif
3548 Assert(iPDSrc == 0);
3549
3550 pPdpeDst = &pPdptDst->a[iPdpt];
3551
3552 if (!(pPdpeDst->u & X86_PDPE_P))
3553 {
3554 GCPtr += 512 * _2M;
3555 continue; /* next PDPTE */
3556 }
3557
3558 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3559 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3560
3561 if ((pPdpeDst->u & X86_PDPE_P) != (PdpeSrc.u & X86_PDPE_P))
3562 {
3563 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3564 GCPtr += 512 * _2M;
3565 cErrors++;
3566 continue;
3567 }
3568
3569 if (GCPhysPdeSrc != pShwPde->GCPhys)
3570 {
3571# if PGM_GST_TYPE == PGM_TYPE_AMD64
3572 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3573# else
3574 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3575# endif
3576 GCPtr += 512 * _2M;
3577 cErrors++;
3578 continue;
3579 }
3580
3581# if PGM_GST_TYPE == PGM_TYPE_AMD64
3582 if ( (pPdpeDst->u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX))
3583 != (PdpeSrc.u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX)))
3584 {
3585 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3586 GCPtr += 512 * _2M;
3587 cErrors++;
3588 continue;
3589 }
3590# endif
3591
3592# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3593 {
3594# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3595# if PGM_GST_TYPE == PGM_TYPE_32BIT
3596 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3597# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3598 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3599# endif
3600# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3601 /*
3602 * Iterate the shadow page directory.
3603 */
3604 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3605 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3606
3607 for (;
3608 iPDDst < cPDEs;
3609 iPDDst++, GCPtr += cIncrement)
3610 {
3611# if PGM_SHW_TYPE == PGM_TYPE_PAE
3612 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3613# else
3614 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3615# endif
3616 if ( (PdeDst.u & X86_PDE_P)
3617 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) )
3618 {
3619 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3620 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3621 if (!pPoolPage)
3622 {
3623 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3624 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3625 cErrors++;
3626 continue;
3627 }
3628 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3629
3630 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3631 {
3632 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3633 GCPtr, (uint64_t)PdeDst.u));
3634 cErrors++;
3635 }
3636
3637 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3638 {
3639 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3640 GCPtr, (uint64_t)PdeDst.u));
3641 cErrors++;
3642 }
3643
3644 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3645 if (!(PdeSrc.u & X86_PDE_P))
3646 {
3647 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3648 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3649 cErrors++;
3650 continue;
3651 }
3652
3653 if ( !(PdeSrc.u & X86_PDE_PS)
3654 || !fBigPagesSupported)
3655 {
3656 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3657# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3658 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
3659# endif
3660 }
3661 else
3662 {
3663# if PGM_GST_TYPE == PGM_TYPE_32BIT
3664 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3665 {
3666 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3667 GCPtr, (uint64_t)PdeSrc.u));
3668 cErrors++;
3669 continue;
3670 }
3671# endif
3672 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3673# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3674 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
3675# endif
3676 }
3677
3678 if ( pPoolPage->enmKind
3679 != (!(PdeSrc.u & X86_PDE_PS) || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3680 {
3681 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3682 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3683 cErrors++;
3684 }
3685
3686 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
3687 if (!pPhysPage)
3688 {
3689 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3690 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3691 cErrors++;
3692 continue;
3693 }
3694
3695 if (GCPhysGst != pPoolPage->GCPhys)
3696 {
3697 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3698 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3699 cErrors++;
3700 continue;
3701 }
3702
3703 if ( !(PdeSrc.u & X86_PDE_PS)
3704 || !fBigPagesSupported)
3705 {
3706 /*
3707 * Page Table.
3708 */
3709 const GSTPT *pPTSrc;
3710 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(GUEST_PAGE_SIZE - 1)),
3711 &pPTSrc);
3712 if (RT_FAILURE(rc))
3713 {
3714 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3715 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3716 cErrors++;
3717 continue;
3718 }
3719 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3720 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3721 {
3722 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3723 // (This problem will go away when/if we shadow multiple CR3s.)
3724 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3725 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3726 cErrors++;
3727 continue;
3728 }
3729 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3730 {
3731 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3732 GCPtr, (uint64_t)PdeDst.u));
3733 cErrors++;
3734 continue;
3735 }
3736
3737 /* iterate the page table. */
3738# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3739 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3740 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3741# else
3742 const unsigned offPTSrc = 0;
3743# endif
3744 for (unsigned iPT = 0, off = 0;
3745 iPT < RT_ELEMENTS(pPTDst->a);
3746 iPT++, off += GUEST_PAGE_SIZE)
3747 {
3748 const SHWPTE PteDst = pPTDst->a[iPT];
3749
3750 /* skip not-present and dirty tracked entries. */
3751 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3752 continue;
3753 Assert(SHW_PTE_IS_P(PteDst));
3754
3755 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3756 if (!(PteSrc.u & X86_PTE_P))
3757 {
3758# ifdef IN_RING3
3759 PGMAssertHandlerAndFlagsInSync(pVM);
3760 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
3761 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
3762 0, 0, UINT64_MAX, 99, NULL);
3763# endif
3764 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3765 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3766 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
3767 cErrors++;
3768 continue;
3769 }
3770
3771 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3772# if 1 /** @todo sync accessed bit properly... */
3773 fIgnoreFlags |= X86_PTE_A;
3774# endif
3775
3776 /* match the physical addresses */
3777 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
3778 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
3779
3780# ifdef IN_RING3
3781 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3782 if (RT_FAILURE(rc))
3783 {
3784# if 0
3785 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3786 {
3787 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3788 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3789 cErrors++;
3790 continue;
3791 }
3792# endif
3793 }
3794 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3795 {
3796 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3797 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3798 cErrors++;
3799 continue;
3800 }
3801# endif
3802
3803 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
3804 if (!pPhysPage)
3805 {
3806# if 0
3807 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3808 {
3809 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3810 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3811 cErrors++;
3812 continue;
3813 }
3814# endif
3815 if (SHW_PTE_IS_RW(PteDst))
3816 {
3817 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3818 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3819 cErrors++;
3820 }
3821 fIgnoreFlags |= X86_PTE_RW;
3822 }
3823 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
3824 {
3825 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3826 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3827 cErrors++;
3828 continue;
3829 }
3830
3831 /* flags */
3832 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3833 {
3834 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3835 {
3836 if (SHW_PTE_IS_RW(PteDst))
3837 {
3838 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3839 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3840 cErrors++;
3841 continue;
3842 }
3843 fIgnoreFlags |= X86_PTE_RW;
3844 }
3845 else
3846 {
3847 if ( SHW_PTE_IS_P(PteDst)
3848# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
3849 && !PGM_PAGE_IS_MMIO(pPhysPage)
3850# endif
3851 )
3852 {
3853 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3854 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3855 cErrors++;
3856 continue;
3857 }
3858 fIgnoreFlags |= X86_PTE_P;
3859 }
3860 }
3861 else
3862 {
3863 if ((PteSrc.u & (X86_PTE_RW | X86_PTE_D)) == X86_PTE_RW)
3864 {
3865 if (SHW_PTE_IS_RW(PteDst))
3866 {
3867 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3868 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3869 cErrors++;
3870 continue;
3871 }
3872 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
3873 {
3874 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3875 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3876 cErrors++;
3877 continue;
3878 }
3879 if (SHW_PTE_IS_D(PteDst))
3880 {
3881 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3882 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3883 cErrors++;
3884 }
3885# if 0 /** @todo sync access bit properly... */
3886 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3887 {
3888 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3889 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3890 cErrors++;
3891 }
3892 fIgnoreFlags |= X86_PTE_RW;
3893# else
3894 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3895# endif
3896 }
3897 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
3898 {
3899 /* access bit emulation (not implemented). */
3900 if ((PteSrc.u & X86_PTE_A) || SHW_PTE_IS_P(PteDst))
3901 {
3902 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
3903 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3904 cErrors++;
3905 continue;
3906 }
3907 if (!SHW_PTE_IS_A(PteDst))
3908 {
3909 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
3910 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3911 cErrors++;
3912 }
3913 fIgnoreFlags |= X86_PTE_P;
3914 }
3915# ifdef DEBUG_sandervl
3916 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
3917# endif
3918 }
3919
3920 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
3921 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
3922 )
3923 {
3924 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
3925 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
3926 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3927 cErrors++;
3928 continue;
3929 }
3930 } /* foreach PTE */
3931 }
3932 else
3933 {
3934 /*
3935 * Big Page.
3936 */
3937 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
3938 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
3939 {
3940 if (PdeDst.u & X86_PDE_RW)
3941 {
3942 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3943 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3944 cErrors++;
3945 continue;
3946 }
3947 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
3948 {
3949 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3950 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3951 cErrors++;
3952 continue;
3953 }
3954# if 0 /** @todo sync access bit properly... */
3955 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
3956 {
3957 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3958 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3959 cErrors++;
3960 }
3961 fIgnoreFlags |= X86_PTE_RW;
3962# else
3963 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3964# endif
3965 }
3966 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3967 {
3968 /* access bit emulation (not implemented). */
3969 if ((PdeSrc.u & X86_PDE_A) || SHW_PDE_IS_P(PdeDst))
3970 {
3971 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3972 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3973 cErrors++;
3974 continue;
3975 }
3976 if (!SHW_PDE_IS_A(PdeDst))
3977 {
3978 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3979 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3980 cErrors++;
3981 }
3982 fIgnoreFlags |= X86_PTE_P;
3983 }
3984
3985 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
3986 {
3987 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
3988 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
3989 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3990 cErrors++;
3991 }
3992
3993 /* iterate the page table. */
3994 for (unsigned iPT = 0, off = 0;
3995 iPT < RT_ELEMENTS(pPTDst->a);
3996 iPT++, off += GUEST_PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + GUEST_PAGE_SIZE))
3997 {
3998 const SHWPTE PteDst = pPTDst->a[iPT];
3999
4000 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4001 {
4002 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4003 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4004 cErrors++;
4005 }
4006
4007 /* skip not-present entries. */
4008 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4009 continue;
4010
4011 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4012
4013 /* match the physical addresses */
4014 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4015
4016# ifdef IN_RING3
4017 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4018 if (RT_FAILURE(rc))
4019 {
4020# if 0
4021 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4022 {
4023 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4024 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4025 cErrors++;
4026 }
4027# endif
4028 }
4029 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4030 {
4031 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4032 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4033 cErrors++;
4034 continue;
4035 }
4036# endif
4037 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4038 if (!pPhysPage)
4039 {
4040# if 0 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4041 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4042 {
4043 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4044 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4045 cErrors++;
4046 continue;
4047 }
4048# endif
4049 if (SHW_PTE_IS_RW(PteDst))
4050 {
4051 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4052 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4053 cErrors++;
4054 }
4055 fIgnoreFlags |= X86_PTE_RW;
4056 }
4057 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4058 {
4059 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4060 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4061 cErrors++;
4062 continue;
4063 }
4064
4065 /* flags */
4066 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4067 {
4068 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4069 {
4070 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4071 {
4072 if (SHW_PTE_IS_RW(PteDst))
4073 {
4074 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4075 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4076 cErrors++;
4077 continue;
4078 }
4079 fIgnoreFlags |= X86_PTE_RW;
4080 }
4081 }
4082 else
4083 {
4084 if ( SHW_PTE_IS_P(PteDst)
4085# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4086 && !PGM_PAGE_IS_MMIO(pPhysPage)
4087# endif
4088 )
4089 {
4090 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4091 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4092 cErrors++;
4093 continue;
4094 }
4095 fIgnoreFlags |= X86_PTE_P;
4096 }
4097 }
4098
4099 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4100 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4101 )
4102 {
4103 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4104 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4105 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4106 cErrors++;
4107 continue;
4108 }
4109 } /* for each PTE */
4110 }
4111 }
4112 /* not present */
4113
4114 } /* for each PDE */
4115
4116 } /* for each PDPTE */
4117
4118 } /* for each PML4E */
4119
4120# ifdef DEBUG
4121 if (cErrors)
4122 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4123# endif
4124# endif /* GST is in {32BIT, PAE, AMD64} */
4125 return cErrors;
4126#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
4127}
4128#endif /* VBOX_STRICT */
4129
4130
4131/**
4132 * Sets up the CR3 for shadow paging
4133 *
4134 * @returns Strict VBox status code.
4135 * @retval VINF_SUCCESS.
4136 *
4137 * @param pVCpu The cross context virtual CPU structure.
4138 * @param GCPhysCR3 The physical address in the CR3 register. (A20 mask
4139 * already applied.)
4140 */
4141PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
4142{
4143 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4144 int rc = VINF_SUCCESS;
4145
4146 /* Update guest paging info. */
4147#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4148 || PGM_GST_TYPE == PGM_TYPE_PAE \
4149 || PGM_GST_TYPE == PGM_TYPE_AMD64
4150
4151 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4152 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4153
4154# if PGM_GST_TYPE == PGM_TYPE_PAE
4155 if (!pVCpu->pgm.s.CTX_SUFF(fPaePdpesAndCr3Mapped))
4156# endif
4157 {
4158 /*
4159 * Map the page CR3 points at.
4160 */
4161 RTHCPTR HCPtrGuestCR3;
4162 rc = pgmGstMapCr3(pVCpu, GCPhysCR3, &HCPtrGuestCR3);
4163 if (RT_SUCCESS(rc))
4164 {
4165# if PGM_GST_TYPE == PGM_TYPE_32BIT
4166# ifdef IN_RING3
4167 pVCpu->pgm.s.pGst32BitPdR3 = (PX86PD)HCPtrGuestCR3;
4168 pVCpu->pgm.s.pGst32BitPdR0 = NIL_RTR0PTR;
4169# else
4170 pVCpu->pgm.s.pGst32BitPdR3 = NIL_RTR3PTR;
4171 pVCpu->pgm.s.pGst32BitPdR0 = (PX86PD)HCPtrGuestCR3;
4172# endif
4173
4174# elif PGM_GST_TYPE == PGM_TYPE_PAE
4175# ifdef IN_RING3
4176 pVCpu->pgm.s.pGstPaePdptR3 = (PX86PDPT)HCPtrGuestCR3;
4177 pVCpu->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
4178# else
4179 pVCpu->pgm.s.pGstPaePdptR3 = NIL_RTR3PTR;
4180 pVCpu->pgm.s.pGstPaePdptR0 = (PX86PDPT)HCPtrGuestCR3;
4181# endif
4182
4183 /*
4184 * Update CPUM and map the 4 PDs too.
4185 */
4186 X86PDPE aGstPaePdpes[X86_PG_PAE_PDPE_ENTRIES];
4187 memcpy(&aGstPaePdpes, HCPtrGuestCR3, sizeof(aGstPaePdpes));
4188 CPUMSetGuestPaePdpes(pVCpu, &aGstPaePdpes[0]);
4189 PGMGstMapPaePdpes(pVCpu, &aGstPaePdpes[0]);
4190
4191# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4192# ifdef IN_RING3
4193 pVCpu->pgm.s.pGstAmd64Pml4R3 = (PX86PML4)HCPtrGuestCR3;
4194 pVCpu->pgm.s.pGstAmd64Pml4R0 = NIL_RTR0PTR;
4195# else
4196 pVCpu->pgm.s.pGstAmd64Pml4R3 = NIL_RTR3PTR;
4197 pVCpu->pgm.s.pGstAmd64Pml4R0 = (PX86PML4)HCPtrGuestCR3;
4198# endif
4199# endif
4200 }
4201 else
4202 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4203 }
4204
4205 /*
4206 * Reset fPaePdpesAndCr3Mapped for all modes as there's no guarantee that
4207 * we were called in the correct sequence of PAE followed by other modes
4208 * without CR3 changing in between.
4209 */
4210 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false;
4211 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false;
4212#endif
4213
4214 /*
4215 * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64).
4216 */
4217# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4218 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4219 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4220 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4221 && PGM_GST_TYPE != PGM_TYPE_PROT))
4222
4223 Assert(!pVM->pgm.s.fNestedPaging);
4224 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4225
4226 /*
4227 * Update the shadow root page as well since that's not fixed.
4228 */
4229 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4230 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4231 PPGMPOOLPAGE pNewShwPageCR3;
4232
4233 PGM_LOCK_VOID(pVM);
4234
4235# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4236 if (pPool->cDirtyPages)
4237 pgmPoolResetDirtyPages(pVM);
4238# endif
4239
4240 Assert(!(GCPhysCR3 >> (GUEST_PAGE_SHIFT + 32))); /** @todo what is this for? */
4241 int const rc2 = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE,
4242 PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, &pNewShwPageCR3);
4243 AssertFatalRC(rc2);
4244
4245 pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3);
4246 pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3);
4247
4248 /* Set the current hypervisor CR3. */
4249 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4250
4251 /* Clean up the old CR3 root. */
4252 if ( pOldShwPageCR3
4253 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4254 {
4255 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4256
4257 /* Mark the page as unlocked; allow flushing again. */
4258 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4259
4260 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4261 }
4262 PGM_UNLOCK(pVM);
4263# else
4264 NOREF(GCPhysCR3);
4265# endif
4266
4267 return rc;
4268}
4269
4270/**
4271 * Unmaps the shadow CR3.
4272 *
4273 * @returns VBox status, no specials.
4274 * @param pVCpu The cross context virtual CPU structure.
4275 */
4276PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu)
4277{
4278 LogFlow(("UnmapCR3\n"));
4279
4280 int rc = VINF_SUCCESS;
4281 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4282
4283 /*
4284 * Update guest paging info.
4285 */
4286#if PGM_GST_TYPE == PGM_TYPE_32BIT
4287 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4288 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4289
4290#elif PGM_GST_TYPE == PGM_TYPE_PAE
4291 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4292 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4293 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4294 {
4295 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4296 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4297 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4298 }
4299
4300#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4301 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4302 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4303
4304#else /* prot/real mode stub */
4305 /* nothing to do */
4306#endif
4307
4308 /*
4309 * Update second-level address translation info.
4310 */
4311#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
4312 pVCpu->pgm.s.pGstEptPml4R3 = 0;
4313 pVCpu->pgm.s.pGstEptPml4R0 = 0;
4314#endif
4315
4316 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false;
4317 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false;
4318
4319 /*
4320 * Update shadow paging info.
4321 */
4322#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4323 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4324 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4325# if PGM_GST_TYPE != PGM_TYPE_REAL
4326 Assert(!pVM->pgm.s.fNestedPaging);
4327# endif
4328 PGM_LOCK_VOID(pVM);
4329
4330 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4331 {
4332 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4333
4334# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4335 if (pPool->cDirtyPages)
4336 pgmPoolResetDirtyPages(pVM);
4337# endif
4338
4339 /* Mark the page as unlocked; allow flushing again. */
4340 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4341
4342 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4343 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4344 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4345 }
4346
4347 PGM_UNLOCK(pVM);
4348#endif
4349
4350 return rc;
4351}
4352
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette