VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 93748

Last change on this file since 93748 was 93716, checked in by vboxsync, 3 years ago

VMM/PGM: Moved the physical handler allocation off the hyper heap and into its own slab, changing the it to the 'hardened' avl tree code. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 189.2 KB
Line 
1/* $Id: PGMAllBth.h 93716 2022-02-14 10:36:21Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
6 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
7 * bird: WTF does this mean these days? Looking at PGMAll.cpp it's
8 *
9 * @remarks This file is one big \#ifdef-orgy!
10 *
11 */
12
13/*
14 * Copyright (C) 2006-2022 Oracle Corporation
15 *
16 * This file is part of VirtualBox Open Source Edition (OSE), as
17 * available from http://www.virtualbox.org. This file is free software;
18 * you can redistribute it and/or modify it under the terms of the GNU
19 * General Public License (GPL) as published by the Free Software
20 * Foundation, in version 2 as it comes in the "COPYING" file of the
21 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
22 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
23 */
24
25#ifdef _MSC_VER
26/** @todo we're generating unnecessary code in nested/ept shadow mode and for
27 * real/prot-guest+RC mode. */
28# pragma warning(disable: 4505)
29#endif
30
31
32/*********************************************************************************************************************************
33* Internal Functions *
34*********************************************************************************************************************************/
35RT_C_DECLS_BEGIN
36PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
37#ifndef IN_RING3
38PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
39#endif
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46#else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu);
57
58#ifdef IN_RING3
59PGM_BTH_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta);
60#endif
61RT_C_DECLS_END
62
63
64
65
66/*
67 * Filter out some illegal combinations of guest and shadow paging, so we can
68 * remove redundant checks inside functions.
69 */
70#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \
71 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
72# error "Invalid combination; PAE guest implies PAE shadow"
73#endif
74
75#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
76 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \
77 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
78# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
79#endif
80
81#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
82 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \
83 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
84# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
85#endif
86
87#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \
88 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
89# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
90#endif
91
92
93/**
94 * Enters the shadow+guest mode.
95 *
96 * @returns VBox status code.
97 * @param pVCpu The cross context virtual CPU structure.
98 * @param GCPhysCR3 The physical address from the CR3 register.
99 */
100PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
101{
102 /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches;
103 * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables.
104 */
105#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
106 || PGM_SHW_TYPE == PGM_TYPE_PAE \
107 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
108 && ( PGM_GST_TYPE == PGM_TYPE_REAL \
109 || PGM_GST_TYPE == PGM_TYPE_PROT))
110
111 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
112
113 Assert((HMIsNestedPagingActive(pVM) || VM_IS_NEM_ENABLED(pVM)) == pVM->pgm.s.fNestedPaging);
114 Assert(!pVM->pgm.s.fNestedPaging);
115
116 PGM_LOCK_VOID(pVM);
117 /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes),
118 * but any calls to GC need a proper shadow page setup as well.
119 */
120 /* Free the previous root mapping if still active. */
121 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
122 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
123 if (pOldShwPageCR3)
124 {
125 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
126
127 /* Mark the page as unlocked; allow flushing again. */
128 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
129
130 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
131 pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR;
132 pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR;
133 }
134
135 /* construct a fake address. */
136 GCPhysCR3 = RT_BIT_64(63);
137 PPGMPOOLPAGE pNewShwPageCR3;
138 int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
139 NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/,
140 &pNewShwPageCR3);
141 AssertRCReturn(rc, rc);
142
143 pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3);
144 pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3);
145
146 /* Mark the page as locked; disallow flushing. */
147 pgmPoolLockPage(pPool, pNewShwPageCR3);
148
149 /* Set the current hypervisor CR3. */
150 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
151
152 PGM_UNLOCK(pVM);
153 return rc;
154#else
155 NOREF(pVCpu); NOREF(GCPhysCR3);
156 return VINF_SUCCESS;
157#endif
158}
159
160
161#ifndef IN_RING3
162
163# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
164/**
165 * Deal with a guest page fault.
166 *
167 * @returns Strict VBox status code.
168 * @retval VINF_EM_RAW_GUEST_TRAP
169 * @retval VINF_EM_RAW_EMULATE_INSTR
170 *
171 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
172 * @param pWalk The guest page table walk result.
173 * @param uErr The error code.
174 */
175PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, RTGCUINT uErr)
176{
177 /*
178 * Calc the error code for the guest trap.
179 */
180 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
181 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
182 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
183 if ( pWalk->fRsvdError
184 || pWalk->fBadPhysAddr)
185 {
186 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
187 Assert(!pWalk->fNotPresent);
188 }
189 else if (!pWalk->fNotPresent)
190 uNewErr |= X86_TRAP_PF_P;
191 TRPMSetErrorCode(pVCpu, uNewErr);
192
193 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pWalk->GCPtr, uErr, pWalk->uLevel));
194 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; });
195 return VINF_EM_RAW_GUEST_TRAP;
196}
197# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
198
199
200#if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
201/**
202 * Deal with a guest page fault.
203 *
204 * The caller has taken the PGM lock.
205 *
206 * @returns Strict VBox status code.
207 *
208 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
209 * @param uErr The error code.
210 * @param pRegFrame The register frame.
211 * @param pvFault The fault address.
212 * @param pPage The guest page at @a pvFault.
213 * @param pWalk The guest page table walk result.
214 * @param pGstWalk The guest paging-mode specific walk information.
215 * @param pfLockTaken PGM lock taken here or not (out). This is true
216 * when we're called.
217 */
218static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
219 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
220# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
221 , PPGMPTWALK pWalk
222 , PGSTPTWALK pGstWalk
223# endif
224 )
225{
226# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
227 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
228# endif
229 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
230 VBOXSTRICTRC rcStrict;
231
232 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
233 {
234 /*
235 * Physical page access handler.
236 */
237# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
238 const RTGCPHYS GCPhysFault = pWalk->GCPhys;
239# else
240 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
241# endif
242 PPGMPHYSHANDLER pCur;
243 rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysFault, &pCur);
244 if (RT_SUCCESS(rcStrict))
245 {
246 PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
247
248# ifdef PGM_SYNC_N_PAGES
249 /*
250 * If the region is write protected and we got a page not present fault, then sync
251 * the pages. If the fault was caused by a read, then restart the instruction.
252 * In case of write access continue to the GC write handler.
253 *
254 * ASSUMES that there is only one handler per page or that they have similar write properties.
255 */
256 if ( !(uErr & X86_TRAP_PF_P)
257 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
258 {
259# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
260 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
261# else
262 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
263# endif
264 if ( RT_FAILURE(rcStrict)
265 || !(uErr & X86_TRAP_PF_RW)
266 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
267 {
268 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
269 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
270 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
271 return rcStrict;
272 }
273 }
274# endif
275# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
276 /*
277 * If the access was not thru a #PF(RSVD|...) resync the page.
278 */
279 if ( !(uErr & X86_TRAP_PF_RSVD)
280 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
281# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
282 && (pWalk->fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK))
283 == PGM_PTATTRS_W_MASK /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
284# endif
285 )
286 {
287# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
288 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
289# else
290 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
291# endif
292 if ( RT_FAILURE(rcStrict)
293 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
294 {
295 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
296 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
297 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
298 return rcStrict;
299 }
300 }
301# endif
302
303 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
304 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
305 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
306 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
307 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
308 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite);
309 else
310 {
311 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll);
312 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt);
313 }
314
315 if (pCurType->pfnPfHandler)
316 {
317 STAM_PROFILE_START(&pCur->Stat, h);
318
319 if (pCurType->fKeepPgmLock)
320 {
321 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault,
322 !pCurType->fRing0DevInsIdx ? pCur->uUser
323 : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser));
324
325 STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
326 }
327 else
328 {
329 uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser
330 : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser);
331 PGM_UNLOCK(pVM);
332 *pfLockTaken = false;
333
334 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, uUser);
335
336 STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
337 }
338 }
339 else
340 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
341
342 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; });
343 return rcStrict;
344 }
345 AssertMsgReturn(rcStrict == VERR_NOT_FOUND, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
346 }
347
348 /*
349 * There is a handled area of the page, but this fault doesn't belong to it.
350 * We must emulate the instruction.
351 *
352 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
353 * we first check if this was a page-not-present fault for a page with only
354 * write access handlers. Restart the instruction if it wasn't a write access.
355 */
356 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersUnhandled);
357
358 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
359 && !(uErr & X86_TRAP_PF_P))
360 {
361# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
362 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
363# else
364 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
365# endif
366 if ( RT_FAILURE(rcStrict)
367 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
368 || !(uErr & X86_TRAP_PF_RW))
369 {
370 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
371 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
372 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
373 return rcStrict;
374 }
375 }
376
377 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
378 * It's writing to an unhandled part of the LDT page several million times.
379 */
380 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
381 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
382 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndUnhandled; });
383 return rcStrict;
384} /* if any kind of handler */
385# endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/
386
387
388/**
389 * \#PF Handler for raw-mode guest execution.
390 *
391 * @returns VBox status code (appropriate for trap handling and GC return).
392 *
393 * @param pVCpu The cross context virtual CPU structure.
394 * @param uErr The trap error code.
395 * @param pRegFrame Trap register frame.
396 * @param pvFault The fault address.
397 * @param pfLockTaken PGM lock taken here or not (out)
398 */
399PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
400{
401 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
402
403 *pfLockTaken = false;
404
405# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
406 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
407 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
408 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
409 && PGM_SHW_TYPE != PGM_TYPE_NONE
410 int rc;
411
412# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
413 /*
414 * Walk the guest page translation tables and check if it's a guest fault.
415 */
416 PGMPTWALK Walk;
417 GSTPTWALK GstWalk;
418 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &Walk, &GstWalk);
419 if (RT_FAILURE_NP(rc))
420 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr));
421
422 /* assert some GstWalk sanity. */
423# if PGM_GST_TYPE == PGM_TYPE_AMD64
424 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
425# endif
426# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
427 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
428# endif
429 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
430 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
431 Assert(Walk.fSucceeded);
432 Assert(Walk.fEffective & PGM_PTATTRS_R_MASK);
433
434 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
435 {
436 if ( ( (uErr & X86_TRAP_PF_RW)
437 && !(Walk.fEffective & PGM_PTATTRS_W_MASK)
438 && ( (uErr & X86_TRAP_PF_US)
439 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
440 || ((uErr & X86_TRAP_PF_US) && !(Walk.fEffective & PGM_PTATTRS_US_MASK))
441 || ((uErr & X86_TRAP_PF_ID) && (Walk.fEffective & PGM_PTATTRS_NX_MASK))
442 )
443 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr));
444 }
445
446 /* Take the big lock now before we update flags. */
447 *pfLockTaken = true;
448 PGM_LOCK_VOID(pVM);
449
450 /*
451 * Set the accessed and dirty flags.
452 */
453 /** @todo Should probably use cmpxchg logic here as we're potentially racing
454 * other CPUs in SMP configs. (the lock isn't enough, since we take it
455 * after walking and the page tables could be stale already) */
456# if PGM_GST_TYPE == PGM_TYPE_AMD64
457 if (!(GstWalk.Pml4e.u & X86_PML4E_A))
458 {
459 GstWalk.Pml4e.u |= X86_PML4E_A;
460 GST_ATOMIC_OR(&GstWalk.pPml4e->u, X86_PML4E_A);
461 }
462 if (!(GstWalk.Pdpe.u & X86_PDPE_A))
463 {
464 GstWalk.Pdpe.u |= X86_PDPE_A;
465 GST_ATOMIC_OR(&GstWalk.pPdpe->u, X86_PDPE_A);
466 }
467# endif
468 if (Walk.fBigPage)
469 {
470 Assert(GstWalk.Pde.u & X86_PDE_PS);
471 if (uErr & X86_TRAP_PF_RW)
472 {
473 if ((GstWalk.Pde.u & (X86_PDE4M_A | X86_PDE4M_D)) != (X86_PDE4M_A | X86_PDE4M_D))
474 {
475 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
476 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A | X86_PDE4M_D);
477 }
478 }
479 else
480 {
481 if (!(GstWalk.Pde.u & X86_PDE4M_A))
482 {
483 GstWalk.Pde.u |= X86_PDE4M_A;
484 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A);
485 }
486 }
487 }
488 else
489 {
490 Assert(!(GstWalk.Pde.u & X86_PDE_PS));
491 if (!(GstWalk.Pde.u & X86_PDE_A))
492 {
493 GstWalk.Pde.u |= X86_PDE_A;
494 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE_A);
495 }
496
497 if (uErr & X86_TRAP_PF_RW)
498 {
499# ifdef VBOX_WITH_STATISTICS
500 if (GstWalk.Pte.u & X86_PTE_D)
501 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageAlreadyDirty));
502 else
503 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtiedPage));
504# endif
505 if ((GstWalk.Pte.u & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
506 {
507 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
508 GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A | X86_PTE_D);
509 }
510 }
511 else
512 {
513 if (!(GstWalk.Pte.u & X86_PTE_A))
514 {
515 GstWalk.Pte.u |= X86_PTE_A;
516 GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A);
517 }
518 }
519 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
520 }
521#if 0
522 /* Disabling this since it's not reliable for SMP, see @bugref{10092#c22}. */
523 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
524 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
525#endif
526
527# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
528 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
529
530 /* Take the big lock now. */
531 *pfLockTaken = true;
532 PGM_LOCK_VOID(pVM);
533# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
534
535# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
536 /*
537 * If it is a reserved bit fault we know that it is an MMIO (access
538 * handler) related fault and can skip some 200 lines of code.
539 */
540 if (uErr & X86_TRAP_PF_RSVD)
541 {
542 Assert(uErr & X86_TRAP_PF_P);
543 PPGMPAGE pPage;
544# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
545 rc = pgmPhysGetPageEx(pVM, Walk.GCPhys, &pPage);
546 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
547 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
548 pfLockTaken, &Walk, &GstWalk));
549 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
550# else
551 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
552 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
553 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
554 pfLockTaken));
555 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
556# endif
557 AssertRC(rc);
558 PGM_INVL_PG(pVCpu, pvFault);
559 return rc; /* Restart with the corrected entry. */
560 }
561# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
562
563 /*
564 * Fetch the guest PDE, PDPE and PML4E.
565 */
566# if PGM_SHW_TYPE == PGM_TYPE_32BIT
567 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
568 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
569
570# elif PGM_SHW_TYPE == PGM_TYPE_PAE
571 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
572 PX86PDPAE pPDDst;
573# if PGM_GST_TYPE == PGM_TYPE_PAE
574 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
575# else
576 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
577# endif
578 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
579
580# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
581 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
582 PX86PDPAE pPDDst;
583# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
584 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
585 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
586# else
587 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
588# endif
589 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
590
591# elif PGM_SHW_TYPE == PGM_TYPE_EPT
592 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
593 PEPTPD pPDDst;
594 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
595 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
596# endif
597 Assert(pPDDst);
598
599# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
600 /*
601 * Dirty page handling.
602 *
603 * If we successfully correct the write protection fault due to dirty bit
604 * tracking, then return immediately.
605 */
606 if (uErr & X86_TRAP_PF_RW) /* write fault? */
607 {
608 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a);
609 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
610 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a);
611 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
612 {
613 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0
614 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
615 ? &pVCpu->pgm.s.Stats.StatRZTrap0eTime2DirtyAndAccessed
616 : &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; });
617 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
618 return VINF_SUCCESS;
619 }
620#ifdef DEBUG_bird
621 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests.
622 AssertMsg(Walk.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto.
623#endif
624 }
625
626# if 0 /* rarely useful; leave for debugging. */
627 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
628# endif
629# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
630
631 /*
632 * A common case is the not-present error caused by lazy page table syncing.
633 *
634 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
635 * here so we can safely assume that the shadow PT is present when calling
636 * SyncPage later.
637 *
638 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
639 * of mapping conflict and defer to SyncCR3 in R3.
640 * (Again, we do NOT support access handlers for non-present guest pages.)
641 *
642 */
643# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
644 Assert(GstWalk.Pde.u & X86_PDE_P);
645# endif
646 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
647 && !SHW_PDE_IS_P(pPDDst->a[iPDDst]))
648 {
649 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; });
650# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
651 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
652 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
653# else
654 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
655 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
656# endif
657 if (RT_SUCCESS(rc))
658 return rc;
659 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
660 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
661 return VINF_PGM_SYNC_CR3;
662 }
663
664 /*
665 * Check if this fault address is flagged for special treatment,
666 * which means we'll have to figure out the physical address and
667 * check flags associated with it.
668 *
669 * ASSUME that we can limit any special access handling to pages
670 * in page tables which the guest believes to be present.
671 */
672# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
673 RTGCPHYS GCPhys = Walk.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
674# else
675 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
676# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
677 PPGMPAGE pPage;
678 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
679 if (RT_FAILURE(rc))
680 {
681 /*
682 * When the guest accesses invalid physical memory (e.g. probing
683 * of RAM or accessing a remapped MMIO range), then we'll fall
684 * back to the recompiler to emulate the instruction.
685 */
686 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
687 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersInvalid);
688 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2InvalidPhys; });
689 return VINF_EM_RAW_EMULATE_INSTR;
690 }
691
692 /*
693 * Any handlers for this page?
694 */
695 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
696# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
697 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
698 &Walk, &GstWalk));
699# else
700 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
701# endif
702
703 /*
704 * We are here only if page is present in Guest page tables and
705 * trap is not handled by our handlers.
706 *
707 * Check it for page out-of-sync situation.
708 */
709 if (!(uErr & X86_TRAP_PF_P))
710 {
711 /*
712 * Page is not present in our page tables. Try to sync it!
713 */
714 if (uErr & X86_TRAP_PF_US)
715 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser));
716 else /* supervisor */
717 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
718
719 if (PGM_PAGE_IS_BALLOONED(pPage))
720 {
721 /* Emulate reads from ballooned pages as they are not present in
722 our shadow page tables. (Required for e.g. Solaris guests; soft
723 ecc, random nr generator.) */
724 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
725 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
726 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncBallloon));
727 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Ballooned; });
728 return rc;
729 }
730
731# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
732 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
733# else
734 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
735# endif
736 if (RT_SUCCESS(rc))
737 {
738 /* The page was successfully synced, return to the guest. */
739 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; });
740 return VINF_SUCCESS;
741 }
742 }
743 else /* uErr & X86_TRAP_PF_P: */
744 {
745 /*
746 * Write protected pages are made writable when the guest makes the
747 * first write to it. This happens for pages that are shared, write
748 * monitored or not yet allocated.
749 *
750 * We may also end up here when CR0.WP=0 in the guest.
751 *
752 * Also, a side effect of not flushing global PDEs are out of sync
753 * pages due to physical monitored regions, that are no longer valid.
754 * Assume for now it only applies to the read/write flag.
755 */
756 if (uErr & X86_TRAP_PF_RW)
757 {
758 /*
759 * Check if it is a read-only page.
760 */
761 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
762 {
763 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
764 Assert(!PGM_PAGE_IS_ZERO(pPage));
765 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
766 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; });
767
768 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
769 if (rc != VINF_SUCCESS)
770 {
771 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
772 return rc;
773 }
774 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
775 return VINF_EM_NO_MEMORY;
776 }
777
778# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
779 /*
780 * Check to see if we need to emulate the instruction if CR0.WP=0.
781 */
782 if ( !(Walk.fEffective & PGM_PTATTRS_W_MASK)
783 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
784 && CPUMGetGuestCPL(pVCpu) < 3)
785 {
786 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
787
788 /*
789 * The Netware WP0+RO+US hack.
790 *
791 * Netware sometimes(/always?) runs with WP0. It has been observed doing
792 * excessive write accesses to pages which are mapped with US=1 and RW=0
793 * while WP=0. This causes a lot of exits and extremely slow execution.
794 * To avoid trapping and emulating every write here, we change the shadow
795 * page table entry to map it as US=0 and RW=1 until user mode tries to
796 * access it again (see further below). We count these shadow page table
797 * changes so we can avoid having to clear the page pool every time the WP
798 * bit changes to 1 (see PGMCr0WpEnabled()).
799 */
800# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
801 if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK
802 && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW))
803 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
804 {
805 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, Walk.fBigPage));
806 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, Walk.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
807 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
808 {
809 PGM_INVL_PG(pVCpu, pvFault);
810 pVCpu->pgm.s.cNetwareWp0Hacks++;
811 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsHack; });
812 return rc;
813 }
814 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
815 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
816 }
817# endif
818
819 /* Interpret the access. */
820 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
821 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), Walk.fBigPage, !!(Walk.fEffective & PGM_PTATTRS_US_MASK)));
822 if (RT_SUCCESS(rc))
823 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulInRZ);
824 else
825 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulToR3);
826 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2WPEmulation; });
827 return rc;
828 }
829# endif
830 /// @todo count the above case; else
831 if (uErr & X86_TRAP_PF_US)
832 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
833 else /* supervisor */
834 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
835
836 /*
837 * Sync the page.
838 *
839 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
840 * page is not present, which is not true in this case.
841 */
842# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
843 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
844# else
845 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
846# endif
847 if (RT_SUCCESS(rc))
848 {
849 /*
850 * Page was successfully synced, return to guest but invalidate
851 * the TLB first as the page is very likely to be in it.
852 */
853# if PGM_SHW_TYPE == PGM_TYPE_EPT
854 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
855# else
856 PGM_INVL_PG(pVCpu, pvFault);
857# endif
858# ifdef VBOX_STRICT
859 PGMPTWALK GstPageWalk;
860 GstPageWalk.GCPhys = RTGCPHYS_MAX;
861 if (!pVM->pgm.s.fNestedPaging)
862 {
863 rc = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk);
864 AssertMsg(RT_SUCCESS(rc) && ((GstPageWalk.fEffective & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, GstPageWalk.fEffective));
865 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GstPageWalk.GCPhys, GstPageWalk.fEffective));
866 }
867# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */
868 uint64_t fPageShw = 0;
869 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
870 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
871 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GstPageWalk.GCPhys, fPageGst, pvFault));
872# endif
873# endif /* VBOX_STRICT */
874 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; });
875 return VINF_SUCCESS;
876 }
877 }
878# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
879 /*
880 * Check for Netware WP0+RO+US hack from above and undo it when user
881 * mode accesses the page again.
882 */
883 else if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK
884 && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW))
885 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
886 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
887 && CPUMGetGuestCPL(pVCpu) == 3
888 && pVM->cCpus == 1
889 )
890 {
891 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
892 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
893 if (RT_SUCCESS(rc))
894 {
895 PGM_INVL_PG(pVCpu, pvFault);
896 pVCpu->pgm.s.cNetwareWp0Hacks--;
897 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsUnhack; });
898 return VINF_SUCCESS;
899 }
900 }
901# endif /* PGM_WITH_PAGING */
902
903 /** @todo else: why are we here? */
904
905# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
906 /*
907 * Check for VMM page flags vs. Guest page flags consistency.
908 * Currently only for debug purposes.
909 */
910 if (RT_SUCCESS(rc))
911 {
912 /* Get guest page flags. */
913 PGMPTWALK GstPageWalk;
914 int rc2 = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk);
915 if (RT_SUCCESS(rc2))
916 {
917 uint64_t fPageShw = 0;
918 rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
919
920#if 0
921 /*
922 * Compare page flags.
923 * Note: we have AVL, A, D bits desynced.
924 */
925 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
926 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
927 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
928 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
929 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
930 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
931 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
932 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n",
933 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc));
93401:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
93501:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0
936
93701:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
93801:01:15.625516 00:08:43.268051 Location :
939e:\vbox\svn\trunk\srcPage flags mismatch!
940pvFault=fffff801b0d7b000
941 uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P
942GCPhys=0000000019b52000
943fPageShw=0
944fPageGst=77b0000000000121
945rc=0
946#endif
947
948 }
949 else
950 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
951 }
952 else
953 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
954# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
955 }
956
957
958 /*
959 * If we get here it is because something failed above, i.e. most like guru
960 * meditiation time.
961 */
962 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
963 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
964 return rc;
965
966# else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */
967 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
968 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
969 return VERR_PGM_NOT_USED_IN_MODE;
970# endif
971}
972
973#endif /* !IN_RING3 */
974
975
976/**
977 * Emulation of the invlpg instruction.
978 *
979 *
980 * @returns VBox status code.
981 *
982 * @param pVCpu The cross context virtual CPU structure.
983 * @param GCPtrPage Page to invalidate.
984 *
985 * @remark ASSUMES that the guest is updating before invalidating. This order
986 * isn't required by the CPU, so this is speculative and could cause
987 * trouble.
988 * @remark No TLB shootdown is done on any other VCPU as we assume that
989 * invlpg emulation is the *only* reason for calling this function.
990 * (The guest has to shoot down TLB entries on other CPUs itself)
991 * Currently true, but keep in mind!
992 *
993 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
994 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
995 */
996PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
997{
998#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
999 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
1000 && PGM_SHW_TYPE != PGM_TYPE_NONE
1001 int rc;
1002 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1003 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1004
1005 PGM_LOCK_ASSERT_OWNER(pVM);
1006
1007 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1008
1009 /*
1010 * Get the shadow PD entry and skip out if this PD isn't present.
1011 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1012 */
1013# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1014 const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT;
1015 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1016
1017 /* Fetch the pgm pool shadow descriptor. */
1018 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1019# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1020 if (!pShwPde)
1021 {
1022 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1023 return VINF_SUCCESS;
1024 }
1025# else
1026 Assert(pShwPde);
1027# endif
1028
1029# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1030 const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT;
1031 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1032
1033 /* If the shadow PDPE isn't present, then skip the invalidate. */
1034# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1035 if (!pPdptDst || !(pPdptDst->a[iPdpt].u & X86_PDPE_P))
1036# else
1037 if (!(pPdptDst->a[iPdpt].u & X86_PDPE_P))
1038# endif
1039 {
1040 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1041 PGM_INVL_PG(pVCpu, GCPtrPage);
1042 return VINF_SUCCESS;
1043 }
1044
1045 /* Fetch the pgm pool shadow descriptor. */
1046 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1047 AssertReturn(pShwPde, VERR_PGM_POOL_GET_PAGE_FAILED);
1048
1049 PX86PDPAE pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1050 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1051 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1052
1053# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1054 /* PML4 */
1055 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1056 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1057 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1058 PX86PDPAE pPDDst;
1059 PX86PDPT pPdptDst;
1060 PX86PML4E pPml4eDst;
1061 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1062 if (rc != VINF_SUCCESS)
1063 {
1064 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1065 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1066 PGM_INVL_PG(pVCpu, GCPtrPage);
1067 return VINF_SUCCESS;
1068 }
1069 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1070 Assert(pPDDst);
1071 Assert(pPdptDst->a[iPdpt].u & X86_PDPE_P);
1072
1073 /* Fetch the pgm pool shadow descriptor. */
1074 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1075 Assert(pShwPde);
1076
1077# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1078
1079 const SHWPDE PdeDst = *pPdeDst;
1080 if (!(PdeDst.u & X86_PDE_P))
1081 {
1082 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1083 PGM_INVL_PG(pVCpu, GCPtrPage);
1084 return VINF_SUCCESS;
1085 }
1086
1087 /*
1088 * Get the guest PD entry and calc big page.
1089 */
1090# if PGM_GST_TYPE == PGM_TYPE_32BIT
1091 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1092 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
1093 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1094# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1095 unsigned iPDSrc = 0;
1096# if PGM_GST_TYPE == PGM_TYPE_PAE
1097 X86PDPE PdpeSrcIgn;
1098 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1099# else /* AMD64 */
1100 PX86PML4E pPml4eSrcIgn;
1101 X86PDPE PdpeSrcIgn;
1102 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1103# endif
1104 GSTPDE PdeSrc;
1105
1106 if (pPDSrc)
1107 PdeSrc = pPDSrc->a[iPDSrc];
1108 else
1109 PdeSrc.u = 0;
1110# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1111 const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE);
1112 const bool fIsBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu);
1113 if (fWasBigPage != fIsBigPage)
1114 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1115
1116# ifdef IN_RING3
1117 /*
1118 * If a CR3 Sync is pending we may ignore the invalidate page operation
1119 * depending on the kind of sync and if it's a global page or not.
1120 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1121 */
1122# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1123 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1124 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1125 && fIsBigPage
1126 && (PdeSrc.u & X86_PDE4M_G)
1127 )
1128 )
1129# else
1130 if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1131# endif
1132 {
1133 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1134 return VINF_SUCCESS;
1135 }
1136# endif /* IN_RING3 */
1137
1138 /*
1139 * Deal with the Guest PDE.
1140 */
1141 rc = VINF_SUCCESS;
1142 if (PdeSrc.u & X86_PDE_P)
1143 {
1144 Assert( (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US)
1145 && ((PdeSrc.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW) || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1146 if (!fIsBigPage)
1147 {
1148 /*
1149 * 4KB - page.
1150 */
1151 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1152 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1153
1154# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1155 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1156 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
1157# endif
1158 if (pShwPage->GCPhys == GCPhys)
1159 {
1160 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1161 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1162
1163 PGSTPT pPTSrc;
1164 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1165 if (RT_SUCCESS(rc))
1166 {
1167 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1168 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1169 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1170 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1171 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1172 GCPtrPage, PteSrc.u & X86_PTE_P,
1173 (PteSrc.u & PdeSrc.u & X86_PTE_RW),
1174 (PteSrc.u & PdeSrc.u & X86_PTE_US),
1175 (uint64_t)PteSrc.u,
1176 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1177 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1178 }
1179 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1180 PGM_INVL_PG(pVCpu, GCPtrPage);
1181 }
1182 else
1183 {
1184 /*
1185 * The page table address changed.
1186 */
1187 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1188 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1189 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1190 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1191 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1192 PGM_INVL_VCPU_TLBS(pVCpu);
1193 }
1194 }
1195 else
1196 {
1197 /*
1198 * 2/4MB - page.
1199 */
1200 /* Before freeing the page, check if anything really changed. */
1201 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1202 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1203# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1204 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1205 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1206# endif
1207 if ( pShwPage->GCPhys == GCPhys
1208 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1209 {
1210 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1211 /** @todo This test is wrong as it cannot check the G bit!
1212 * FIXME */
1213 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1214 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1215 && ( (PdeSrc.u & X86_PDE4M_D) /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1216 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1217 {
1218 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1219 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1220 return VINF_SUCCESS;
1221 }
1222 }
1223
1224 /*
1225 * Ok, the page table is present and it's been changed in the guest.
1226 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1227 * We could do this for some flushes in GC too, but we need an algorithm for
1228 * deciding which 4MB pages containing code likely to be executed very soon.
1229 */
1230 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1231 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1232 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1233 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1234 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1235 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1236 }
1237 }
1238 else
1239 {
1240 /*
1241 * Page directory is not present, mark shadow PDE not present.
1242 */
1243 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1244 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1245 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1246 PGM_INVL_PG(pVCpu, GCPtrPage);
1247 }
1248 return rc;
1249
1250#else /* guest real and protected mode, nested + ept, none. */
1251 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1252 NOREF(pVCpu); NOREF(GCPtrPage);
1253 return VINF_SUCCESS;
1254#endif
1255}
1256
1257#if PGM_SHW_TYPE != PGM_TYPE_NONE
1258
1259/**
1260 * Update the tracking of shadowed pages.
1261 *
1262 * @param pVCpu The cross context virtual CPU structure.
1263 * @param pShwPage The shadow page.
1264 * @param HCPhys The physical page we is being dereferenced.
1265 * @param iPte Shadow PTE index
1266 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1267 */
1268DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1269 RTGCPHYS GCPhysPage)
1270{
1271 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1272
1273# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1274 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1275 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1276
1277 /* Use the hint we retrieved from the cached guest PT. */
1278 if (pShwPage->fDirty)
1279 {
1280 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1281
1282 Assert(pShwPage->cPresent);
1283 Assert(pPool->cPresent);
1284 pShwPage->cPresent--;
1285 pPool->cPresent--;
1286
1287 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1288 AssertRelease(pPhysPage);
1289 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1290 return;
1291 }
1292# else
1293 NOREF(GCPhysPage);
1294# endif
1295
1296 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatTrackDeref, a);
1297 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1298
1299 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1300 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1301 * 2. write protect all shadowed pages. I.e. implement caching.
1302 */
1303 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1304
1305 /*
1306 * Find the guest address.
1307 */
1308 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1309 pRam;
1310 pRam = pRam->CTX_SUFF(pNext))
1311 {
1312 unsigned iPage = pRam->cb >> GUEST_PAGE_SHIFT;
1313 while (iPage-- > 0)
1314 {
1315 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1316 {
1317 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1318
1319 Assert(pShwPage->cPresent);
1320 Assert(pPool->cPresent);
1321 pShwPage->cPresent--;
1322 pPool->cPresent--;
1323
1324 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1325 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatTrackDeref, a);
1326 return;
1327 }
1328 }
1329 }
1330
1331 for (;;)
1332 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1333}
1334
1335
1336/**
1337 * Update the tracking of shadowed pages.
1338 *
1339 * @param pVCpu The cross context virtual CPU structure.
1340 * @param pShwPage The shadow page.
1341 * @param u16 The top 16-bit of the pPage->HCPhys.
1342 * @param pPage Pointer to the guest page. this will be modified.
1343 * @param iPTDst The index into the shadow table.
1344 */
1345DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16,
1346 PPGMPAGE pPage, const unsigned iPTDst)
1347{
1348 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1349
1350 /*
1351 * Just deal with the simple first time here.
1352 */
1353 if (!u16)
1354 {
1355 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackVirgin);
1356 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1357 /* Save the page table index. */
1358 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1359 }
1360 else
1361 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1362
1363 /* write back */
1364 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1365 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1366
1367 /* update statistics. */
1368 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1369 pShwPage->cPresent++;
1370 if (pShwPage->iFirstPresent > iPTDst)
1371 pShwPage->iFirstPresent = iPTDst;
1372}
1373
1374
1375/**
1376 * Modifies a shadow PTE to account for access handlers.
1377 *
1378 * @param pVM The cross context VM structure.
1379 * @param pPage The page in question.
1380 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1381 * A (accessed) bit so it can be emulated correctly.
1382 * @param pPteDst The shadow PTE (output). This is temporary storage and
1383 * does not need to be set atomically.
1384 */
1385DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVMCC pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1386{
1387 NOREF(pVM); RT_NOREF_PV(fPteSrc);
1388
1389 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1390 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1391 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1392 {
1393 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1394# if PGM_SHW_TYPE == PGM_TYPE_EPT
1395 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage) | EPT_E_READ | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
1396# else
1397 if (fPteSrc & X86_PTE_A)
1398 {
1399 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1400 SHW_PTE_SET_RO(*pPteDst);
1401 }
1402 else
1403 SHW_PTE_SET(*pPteDst, 0);
1404# endif
1405 }
1406# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1407# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1408 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1409 && ( BTH_IS_NP_ACTIVE(pVM)
1410 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1411# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1412 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1413# endif
1414 )
1415 {
1416 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1417# if PGM_SHW_TYPE == PGM_TYPE_EPT
1418 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1419 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg
1420 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1421 | EPT_E_WRITE
1422 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1423 | EPT_E_MEMTYPE_INVALID_3;
1424# else
1425 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1426 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1427# endif
1428 }
1429# endif
1430# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1431 else
1432 {
1433 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1434 SHW_PTE_SET(*pPteDst, 0);
1435 }
1436 /** @todo count these kinds of entries. */
1437}
1438
1439
1440/**
1441 * Creates a 4K shadow page for a guest page.
1442 *
1443 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1444 * physical address. The PdeSrc argument only the flags are used. No page
1445 * structured will be mapped in this function.
1446 *
1447 * @param pVCpu The cross context virtual CPU structure.
1448 * @param pPteDst Destination page table entry.
1449 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1450 * Can safely assume that only the flags are being used.
1451 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1452 * @param pShwPage Pointer to the shadow page.
1453 * @param iPTDst The index into the shadow table.
1454 *
1455 * @remark Not used for 2/4MB pages!
1456 */
1457# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1458static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1459 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1460# else
1461static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1462 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1463# endif
1464{
1465 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1466 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1467
1468# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1469 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1470 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1471
1472 if (pShwPage->fDirty)
1473 {
1474 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1475 PGSTPT pGstPT;
1476
1477 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1478 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1479 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1480 pGstPT->a[iPTDst].u = PteSrc.u;
1481 }
1482# else
1483 Assert(!pShwPage->fDirty);
1484# endif
1485
1486# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1487 if ( (PteSrc.u & X86_PTE_P)
1488 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1489# endif
1490 {
1491# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1492 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1493# endif
1494 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1495
1496 /*
1497 * Find the ram range.
1498 */
1499 PPGMPAGE pPage;
1500 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1501 if (RT_SUCCESS(rc))
1502 {
1503 /* Ignore ballooned pages.
1504 Don't return errors or use a fatal assert here as part of a
1505 shadow sync range might included ballooned pages. */
1506 if (PGM_PAGE_IS_BALLOONED(pPage))
1507 {
1508 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1509 return;
1510 }
1511
1512# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1513 /* Make the page writable if necessary. */
1514 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1515 && ( PGM_PAGE_IS_ZERO(pPage)
1516# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1517 || ( (PteSrc.u & X86_PTE_RW)
1518# else
1519 || ( 1
1520# endif
1521 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1522# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1523 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1524# endif
1525# ifdef VBOX_WITH_PAGE_SHARING
1526 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1527# endif
1528 )
1529 )
1530 )
1531 {
1532 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1533 AssertRC(rc);
1534 }
1535# endif
1536
1537 /*
1538 * Make page table entry.
1539 */
1540 SHWPTE PteDst;
1541# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1542 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1543# else
1544 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1545# endif
1546 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1547 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1548 else
1549 {
1550# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1551 /*
1552 * If the page or page directory entry is not marked accessed,
1553 * we mark the page not present.
1554 */
1555 if (!(PteSrc.u & X86_PTE_A) || !(PdeSrc.u & X86_PDE_A))
1556 {
1557 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1558 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,AccessedPage));
1559 SHW_PTE_SET(PteDst, 0);
1560 }
1561 /*
1562 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1563 * when the page is modified.
1564 */
1565 else if (!(PteSrc.u & X86_PTE_D) && (PdeSrc.u & PteSrc.u & X86_PTE_RW))
1566 {
1567 AssertCompile(X86_PTE_RW == X86_PDE_RW);
1568 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPage));
1569 SHW_PTE_SET(PteDst,
1570 fGstShwPteFlags
1571 | PGM_PAGE_GET_HCPHYS(pPage)
1572 | PGM_PTFLAGS_TRACK_DIRTY);
1573 SHW_PTE_SET_RO(PteDst);
1574 }
1575 else
1576# endif
1577 {
1578 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageSkipped));
1579# if PGM_SHW_TYPE == PGM_TYPE_EPT
1580 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage)
1581 | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
1582# else
1583 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1584# endif
1585 }
1586
1587 /*
1588 * Make sure only allocated pages are mapped writable.
1589 */
1590 if ( SHW_PTE_IS_P_RW(PteDst)
1591 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1592 {
1593 /* Still applies to shared pages. */
1594 Assert(!PGM_PAGE_IS_ZERO(pPage));
1595 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1596 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1597 }
1598 }
1599
1600 /*
1601 * Keep user track up to date.
1602 */
1603 if (SHW_PTE_IS_P(PteDst))
1604 {
1605 if (!SHW_PTE_IS_P(*pPteDst))
1606 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1607 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1608 {
1609 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1610 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1611 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1612 }
1613 }
1614 else if (SHW_PTE_IS_P(*pPteDst))
1615 {
1616 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1617 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1618 }
1619
1620 /*
1621 * Update statistics and commit the entry.
1622 */
1623# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1624 if (!(PteSrc.u & X86_PTE_G))
1625 pShwPage->fSeenNonGlobal = true;
1626# endif
1627 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1628 return;
1629 }
1630
1631/** @todo count these three different kinds. */
1632 Log2(("SyncPageWorker: invalid address in Pte\n"));
1633 }
1634# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1635 else if (!(PteSrc.u & X86_PTE_P))
1636 Log2(("SyncPageWorker: page not present in Pte\n"));
1637 else
1638 Log2(("SyncPageWorker: invalid Pte\n"));
1639# endif
1640
1641 /*
1642 * The page is not present or the PTE is bad. Replace the shadow PTE by
1643 * an empty entry, making sure to keep the user tracking up to date.
1644 */
1645 if (SHW_PTE_IS_P(*pPteDst))
1646 {
1647 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1648 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1649 }
1650 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1651}
1652
1653
1654/**
1655 * Syncs a guest OS page.
1656 *
1657 * There are no conflicts at this point, neither is there any need for
1658 * page table allocations.
1659 *
1660 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1661 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1662 *
1663 * @returns VBox status code.
1664 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1665 * @param pVCpu The cross context virtual CPU structure.
1666 * @param PdeSrc Page directory entry of the guest.
1667 * @param GCPtrPage Guest context page address.
1668 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1669 * @param uErr Fault error (X86_TRAP_PF_*).
1670 */
1671static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1672{
1673 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1674 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1675 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1676 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage);
1677
1678 PGM_LOCK_ASSERT_OWNER(pVM);
1679
1680# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1681 || PGM_GST_TYPE == PGM_TYPE_PAE \
1682 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1683 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
1684
1685 /*
1686 * Assert preconditions.
1687 */
1688 Assert(PdeSrc.u & X86_PDE_P);
1689 Assert(cPages);
1690# if 0 /* rarely useful; leave for debugging. */
1691 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1692# endif
1693
1694 /*
1695 * Get the shadow PDE, find the shadow page table in the pool.
1696 */
1697# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1698 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1699 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1700
1701 /* Fetch the pgm pool shadow descriptor. */
1702 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1703 Assert(pShwPde);
1704
1705# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1706 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1707 PPGMPOOLPAGE pShwPde = NULL;
1708 PX86PDPAE pPDDst;
1709
1710 /* Fetch the pgm pool shadow descriptor. */
1711 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1712 AssertRCSuccessReturn(rc2, rc2);
1713 Assert(pShwPde);
1714
1715 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1716 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1717
1718# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1719 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1720 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1721 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1722 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1723
1724 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1725 AssertRCSuccessReturn(rc2, rc2);
1726 Assert(pPDDst && pPdptDst);
1727 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1728# endif
1729 SHWPDE PdeDst = *pPdeDst;
1730
1731 /*
1732 * - In the guest SMP case we could have blocked while another VCPU reused
1733 * this page table.
1734 * - With W7-64 we may also take this path when the A bit is cleared on
1735 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1736 * relevant TLB entries. If we're write monitoring any page mapped by
1737 * the modified entry, we may end up here with a "stale" TLB entry.
1738 */
1739 if (!(PdeDst.u & X86_PDE_P))
1740 {
1741 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1742 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1743 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1744 if (uErr & X86_TRAP_PF_P)
1745 PGM_INVL_PG(pVCpu, GCPtrPage);
1746 return VINF_SUCCESS; /* force the instruction to be executed again. */
1747 }
1748
1749 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1750 Assert(pShwPage);
1751
1752# if PGM_GST_TYPE == PGM_TYPE_AMD64
1753 /* Fetch the pgm pool shadow descriptor. */
1754 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1755 Assert(pShwPde);
1756# endif
1757
1758 /*
1759 * Check that the page is present and that the shadow PDE isn't out of sync.
1760 */
1761 const bool fBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu);
1762 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1763 RTGCPHYS GCPhys;
1764 if (!fBigPage)
1765 {
1766 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1767# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1768 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1769 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
1770# endif
1771 }
1772 else
1773 {
1774 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1775# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1776 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1777 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1778# endif
1779 }
1780 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1781 if ( fPdeValid
1782 && pShwPage->GCPhys == GCPhys
1783 && (PdeSrc.u & X86_PDE_P)
1784 && (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US)
1785 && ((PdeSrc.u & X86_PDE_RW) == (PdeDst.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW))
1786# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1787 && ((PdeSrc.u & X86_PDE_PAE_NX) == (PdeDst.u & X86_PDE_PAE_NX) || !GST_IS_NX_ACTIVE(pVCpu))
1788# endif
1789 )
1790 {
1791 /*
1792 * Check that the PDE is marked accessed already.
1793 * Since we set the accessed bit *before* getting here on a #PF, this
1794 * check is only meant for dealing with non-#PF'ing paths.
1795 */
1796 if (PdeSrc.u & X86_PDE_A)
1797 {
1798 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1799 if (!fBigPage)
1800 {
1801 /*
1802 * 4KB Page - Map the guest page table.
1803 */
1804 PGSTPT pPTSrc;
1805 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1806 if (RT_SUCCESS(rc))
1807 {
1808# ifdef PGM_SYNC_N_PAGES
1809 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1810 if ( cPages > 1
1811 && !(uErr & X86_TRAP_PF_P)
1812 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
1813 {
1814 /*
1815 * This code path is currently only taken when the caller is PGMTrap0eHandler
1816 * for non-present pages!
1817 *
1818 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1819 * deal with locality.
1820 */
1821 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1822# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1823 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1824 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1825# else
1826 const unsigned offPTSrc = 0;
1827# endif
1828 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1829 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1830 iPTDst = 0;
1831 else
1832 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1833
1834 for (; iPTDst < iPTDstEnd; iPTDst++)
1835 {
1836 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
1837
1838 if ( (pPteSrc->u & X86_PTE_P)
1839 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1840 {
1841 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT))
1842 | ((offPTSrc + iPTDst) << GUEST_PAGE_SHIFT);
1843 NOREF(GCPtrCurPage);
1844 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
1845 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1846 GCPtrCurPage, pPteSrc->u & X86_PTE_P,
1847 !!(pPteSrc->u & PdeSrc.u & X86_PTE_RW),
1848 !!(pPteSrc->u & PdeSrc.u & X86_PTE_US),
1849 (uint64_t)pPteSrc->u,
1850 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1851 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1852 }
1853 }
1854 }
1855 else
1856# endif /* PGM_SYNC_N_PAGES */
1857 {
1858 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1859 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1860 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1861 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1862 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1863 GCPtrPage, PteSrc.u & X86_PTE_P,
1864 !!(PteSrc.u & PdeSrc.u & X86_PTE_RW),
1865 !!(PteSrc.u & PdeSrc.u & X86_PTE_US),
1866 (uint64_t)PteSrc.u,
1867 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1868 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1869 }
1870 }
1871 else /* MMIO or invalid page: emulated in #PF handler. */
1872 {
1873 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1874 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
1875 }
1876 }
1877 else
1878 {
1879 /*
1880 * 4/2MB page - lazy syncing shadow 4K pages.
1881 * (There are many causes of getting here, it's no longer only CSAM.)
1882 */
1883 /* Calculate the GC physical address of this 4KB shadow page. */
1884 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
1885 /* Find ram range. */
1886 PPGMPAGE pPage;
1887 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1888 if (RT_SUCCESS(rc))
1889 {
1890 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1891
1892# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1893 /* Try to make the page writable if necessary. */
1894 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1895 && ( PGM_PAGE_IS_ZERO(pPage)
1896 || ( (PdeSrc.u & X86_PDE_RW)
1897 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1898# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1899 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1900# endif
1901# ifdef VBOX_WITH_PAGE_SHARING
1902 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1903# endif
1904 )
1905 )
1906 )
1907 {
1908 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1909 AssertRC(rc);
1910 }
1911# endif
1912
1913 /*
1914 * Make shadow PTE entry.
1915 */
1916 SHWPTE PteDst;
1917 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1918 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
1919 else
1920 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
1921
1922 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1923 if ( SHW_PTE_IS_P(PteDst)
1924 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1925 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1926
1927 /* Make sure only allocated pages are mapped writable. */
1928 if ( SHW_PTE_IS_P_RW(PteDst)
1929 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1930 {
1931 /* Still applies to shared pages. */
1932 Assert(!PGM_PAGE_IS_ZERO(pPage));
1933 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
1934 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1935 }
1936
1937 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
1938
1939 /*
1940 * If the page is not flagged as dirty and is writable, then make it read-only
1941 * at PD level, so we can set the dirty bit when the page is modified.
1942 *
1943 * ASSUMES that page access handlers are implemented on page table entry level.
1944 * Thus we will first catch the dirty access and set PDE.D and restart. If
1945 * there is an access handler, we'll trap again and let it work on the problem.
1946 */
1947 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1948 * As for invlpg, it simply frees the whole shadow PT.
1949 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1950 if ((PdeSrc.u & (X86_PDE4M_D | X86_PDE_RW)) == X86_PDE_RW)
1951 {
1952 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
1953 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1954 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
1955 }
1956 else
1957 {
1958 PdeDst.u &= ~(SHWUINT)(PGM_PDFLAGS_TRACK_DIRTY | X86_PDE_RW);
1959 PdeDst.u |= PdeSrc.u & X86_PDE_RW;
1960 }
1961 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
1962 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1963 GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US),
1964 (uint64_t)PdeSrc.u, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1965 }
1966 else
1967 {
1968 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1969 /** @todo must wipe the shadow page table entry in this
1970 * case. */
1971 }
1972 }
1973 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
1974 return VINF_SUCCESS;
1975 }
1976
1977 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDNAs));
1978 }
1979 else if (fPdeValid)
1980 {
1981 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1982 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1983 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1984 }
1985 else
1986 {
1987/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
1988 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1989 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1990 }
1991
1992 /*
1993 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1994 * Yea, I'm lazy.
1995 */
1996 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1997 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1998
1999 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2000 PGM_INVL_VCPU_TLBS(pVCpu);
2001 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2002
2003
2004# elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2005 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2006 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2007 NOREF(PdeSrc);
2008
2009# ifdef PGM_SYNC_N_PAGES
2010 /*
2011 * Get the shadow PDE, find the shadow page table in the pool.
2012 */
2013# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2014 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2015
2016# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2017 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2018
2019# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2020 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2021 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2022 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2023 X86PDEPAE PdeDst;
2024 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2025
2026 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2027 AssertRCSuccessReturn(rc, rc);
2028 Assert(pPDDst && pPdptDst);
2029 PdeDst = pPDDst->a[iPDDst];
2030
2031# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2032 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2033 PEPTPD pPDDst;
2034 EPTPDE PdeDst;
2035
2036 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2037 if (rc != VINF_SUCCESS)
2038 {
2039 AssertRC(rc);
2040 return rc;
2041 }
2042 Assert(pPDDst);
2043 PdeDst = pPDDst->a[iPDDst];
2044# endif
2045 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2046 if (!SHW_PDE_IS_P(PdeDst))
2047 {
2048 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2049 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2050 return VINF_SUCCESS; /* force the instruction to be executed again. */
2051 }
2052
2053 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2054 if (SHW_PDE_IS_BIG(PdeDst))
2055 {
2056 Assert(pVM->pgm.s.fNestedPaging);
2057 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2058 return VINF_SUCCESS;
2059 }
2060
2061 /* Mask away the page offset. */
2062 GCPtrPage &= ~((RTGCPTR)0xfff);
2063
2064 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2065 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2066
2067 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2068 if ( cPages > 1
2069 && !(uErr & X86_TRAP_PF_P)
2070 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2071 {
2072 /*
2073 * This code path is currently only taken when the caller is PGMTrap0eHandler
2074 * for non-present pages!
2075 *
2076 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2077 * deal with locality.
2078 */
2079 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2080 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2081 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2082 iPTDst = 0;
2083 else
2084 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2085 for (; iPTDst < iPTDstEnd; iPTDst++)
2086 {
2087 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2088 {
2089 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2090 | (iPTDst << GUEST_PAGE_SHIFT));
2091
2092 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2093 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2094 GCPtrCurPage,
2095 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2096 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2097
2098 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2099 break;
2100 }
2101 else
2102 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n",
2103 (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2104 }
2105 }
2106 else
2107# endif /* PGM_SYNC_N_PAGES */
2108 {
2109 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2110 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2111 | (iPTDst << GUEST_PAGE_SHIFT));
2112
2113 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2114
2115 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2116 GCPtrPage,
2117 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2118 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2119 }
2120 return VINF_SUCCESS;
2121
2122# else
2123 NOREF(PdeSrc);
2124 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2125 return VERR_PGM_NOT_USED_IN_MODE;
2126# endif
2127}
2128
2129#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */
2130#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
2131
2132/**
2133 * CheckPageFault helper for returning a page fault indicating a non-present
2134 * (NP) entry in the page translation structures.
2135 *
2136 * @returns VINF_EM_RAW_GUEST_TRAP.
2137 * @param pVCpu The cross context virtual CPU structure.
2138 * @param uErr The error code of the shadow fault. Corrections to
2139 * TRPM's copy will be made if necessary.
2140 * @param GCPtrPage For logging.
2141 * @param uPageFaultLevel For logging.
2142 */
2143DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2144{
2145 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyTrackRealPF));
2146 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2147 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2148 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2149 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2150
2151 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2152 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2153 return VINF_EM_RAW_GUEST_TRAP;
2154}
2155
2156
2157/**
2158 * CheckPageFault helper for returning a page fault indicating a reserved bit
2159 * (RSVD) error in the page translation structures.
2160 *
2161 * @returns VINF_EM_RAW_GUEST_TRAP.
2162 * @param pVCpu The cross context virtual CPU structure.
2163 * @param uErr The error code of the shadow fault. Corrections to
2164 * TRPM's copy will be made if necessary.
2165 * @param GCPtrPage For logging.
2166 * @param uPageFaultLevel For logging.
2167 */
2168DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2169{
2170 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyTrackRealPF));
2171 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2172 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2173
2174 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2175 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2176 return VINF_EM_RAW_GUEST_TRAP;
2177}
2178
2179
2180/**
2181 * CheckPageFault helper for returning a page protection fault (P).
2182 *
2183 * @returns VINF_EM_RAW_GUEST_TRAP.
2184 * @param pVCpu The cross context virtual CPU structure.
2185 * @param uErr The error code of the shadow fault. Corrections to
2186 * TRPM's copy will be made if necessary.
2187 * @param GCPtrPage For logging.
2188 * @param uPageFaultLevel For logging.
2189 */
2190DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2191{
2192 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyTrackRealPF));
2193 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2194 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2195 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2196
2197 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2198 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2199 return VINF_EM_RAW_GUEST_TRAP;
2200}
2201
2202
2203/**
2204 * Handle dirty bit tracking faults.
2205 *
2206 * @returns VBox status code.
2207 * @param pVCpu The cross context virtual CPU structure.
2208 * @param uErr Page fault error code.
2209 * @param pPdeSrc Guest page directory entry.
2210 * @param pPdeDst Shadow page directory entry.
2211 * @param GCPtrPage Guest context page address.
2212 */
2213static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2214 RTGCPTR GCPtrPage)
2215{
2216 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2217 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2218 NOREF(uErr);
2219
2220 PGM_LOCK_ASSERT_OWNER(pVM);
2221
2222 /*
2223 * Handle big page.
2224 */
2225 if ((pPdeSrc->u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu))
2226 {
2227 if ((pPdeDst->u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
2228 {
2229 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap));
2230 Assert(pPdeSrc->u & X86_PDE_RW);
2231
2232 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2233 * fault again and take this path to only invalidate the entry (see below). */
2234 SHWPDE PdeDst = *pPdeDst;
2235 PdeDst.u &= ~(SHWUINT)PGM_PDFLAGS_TRACK_DIRTY;
2236 PdeDst.u |= X86_PDE_RW | X86_PDE_A;
2237 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2238 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2239 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2240 }
2241
2242# ifdef IN_RING0
2243 /* Check for stale TLB entry; only applies to the SMP guest case. */
2244 if ( pVM->cCpus > 1
2245 && (pPdeDst->u & (X86_PDE_P | X86_PDE_RW | X86_PDE_A)) == (X86_PDE_P | X86_PDE_RW | X86_PDE_A))
2246 {
2247 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2248 if (pShwPage)
2249 {
2250 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2251 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2252 if (SHW_PTE_IS_P_RW(*pPteDst))
2253 {
2254 /* Stale TLB entry. */
2255 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale));
2256 PGM_INVL_PG(pVCpu, GCPtrPage);
2257 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2258 }
2259 }
2260 }
2261# endif /* IN_RING0 */
2262 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2263 }
2264
2265 /*
2266 * Map the guest page table.
2267 */
2268 PGSTPT pPTSrc;
2269 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2270 AssertRCReturn(rc, rc);
2271
2272 if (SHW_PDE_IS_P(*pPdeDst))
2273 {
2274 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2275 const GSTPTE PteSrc = *pPteSrc;
2276
2277 /*
2278 * Map shadow page table.
2279 */
2280 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2281 if (pShwPage)
2282 {
2283 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2284 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2285 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2286 {
2287 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2288 {
2289 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2290 SHWPTE PteDst = *pPteDst;
2291
2292 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2293 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap));
2294
2295 Assert(PteSrc.u & X86_PTE_RW);
2296
2297 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2298 * entry will not harm; write access will simply fault again and
2299 * take this path to only invalidate the entry.
2300 */
2301 if (RT_LIKELY(pPage))
2302 {
2303 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2304 {
2305 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2306 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2307 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2308 SHW_PTE_SET_RO(PteDst);
2309 }
2310 else
2311 {
2312 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2313 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2314 {
2315 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2316 AssertRC(rc);
2317 }
2318 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2319 SHW_PTE_SET_RW(PteDst);
2320 else
2321 {
2322 /* Still applies to shared pages. */
2323 Assert(!PGM_PAGE_IS_ZERO(pPage));
2324 SHW_PTE_SET_RO(PteDst);
2325 }
2326 }
2327 }
2328 else
2329 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2330
2331 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2332 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2333 PGM_INVL_PG(pVCpu, GCPtrPage);
2334 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2335 }
2336
2337# ifdef IN_RING0
2338 /* Check for stale TLB entry; only applies to the SMP guest case. */
2339 if ( pVM->cCpus > 1
2340 && SHW_PTE_IS_RW(*pPteDst)
2341 && SHW_PTE_IS_A(*pPteDst))
2342 {
2343 /* Stale TLB entry. */
2344 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale));
2345 PGM_INVL_PG(pVCpu, GCPtrPage);
2346 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2347 }
2348# endif
2349 }
2350 }
2351 else
2352 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2353 }
2354
2355 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2356}
2357
2358#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
2359
2360/**
2361 * Sync a shadow page table.
2362 *
2363 * The shadow page table is not present in the shadow PDE.
2364 *
2365 * Handles mapping conflicts.
2366 *
2367 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2368 * conflict), and Trap0eHandler.
2369 *
2370 * A precondition for this method is that the shadow PDE is not present. The
2371 * caller must take the PGM lock before checking this and continue to hold it
2372 * when calling this method.
2373 *
2374 * @returns VBox status code.
2375 * @param pVCpu The cross context virtual CPU structure.
2376 * @param iPDSrc Page directory index.
2377 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2378 * Assume this is a temporary mapping.
2379 * @param GCPtrPage GC Pointer of the page that caused the fault
2380 */
2381static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2382{
2383 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2384 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2385
2386#if 0 /* rarely useful; leave for debugging. */
2387 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2388#endif
2389 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
2390
2391 PGM_LOCK_ASSERT_OWNER(pVM);
2392
2393#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2394 || PGM_GST_TYPE == PGM_TYPE_PAE \
2395 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2396 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
2397 && PGM_SHW_TYPE != PGM_TYPE_NONE
2398 int rc = VINF_SUCCESS;
2399
2400 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2401
2402 /*
2403 * Some input validation first.
2404 */
2405 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2406
2407 /*
2408 * Get the relevant shadow PDE entry.
2409 */
2410# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2411 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2412 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2413
2414 /* Fetch the pgm pool shadow descriptor. */
2415 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2416 Assert(pShwPde);
2417
2418# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2419 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2420 PPGMPOOLPAGE pShwPde = NULL;
2421 PX86PDPAE pPDDst;
2422 PSHWPDE pPdeDst;
2423
2424 /* Fetch the pgm pool shadow descriptor. */
2425 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2426 AssertRCSuccessReturn(rc, rc);
2427 Assert(pShwPde);
2428
2429 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2430 pPdeDst = &pPDDst->a[iPDDst];
2431
2432# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2433 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2434 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2435 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2436 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2437 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2438 AssertRCSuccessReturn(rc, rc);
2439 Assert(pPDDst);
2440 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2441
2442# endif
2443 SHWPDE PdeDst = *pPdeDst;
2444
2445# if PGM_GST_TYPE == PGM_TYPE_AMD64
2446 /* Fetch the pgm pool shadow descriptor. */
2447 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2448 Assert(pShwPde);
2449# endif
2450
2451 Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P.*/
2452
2453 /*
2454 * Sync the page directory entry.
2455 */
2456 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2457 const bool fPageTable = !(PdeSrc.u & X86_PDE_PS) || !GST_IS_PSE_ACTIVE(pVCpu);
2458 if ( (PdeSrc.u & X86_PDE_P)
2459 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2460 {
2461 /*
2462 * Allocate & map the page table.
2463 */
2464 PSHWPT pPTDst;
2465 PPGMPOOLPAGE pShwPage;
2466 RTGCPHYS GCPhys;
2467 if (fPageTable)
2468 {
2469 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2470# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2471 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2472 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
2473# endif
2474 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2475 pShwPde->idx, iPDDst, false /*fLockPage*/,
2476 &pShwPage);
2477 }
2478 else
2479 {
2480 PGMPOOLACCESS enmAccess;
2481# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2482 const bool fNoExecute = (PdeSrc.u & X86_PDE_PAE_NX) && GST_IS_NX_ACTIVE(pVCpu);
2483# else
2484 const bool fNoExecute = false;
2485# endif
2486
2487 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2488# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2489 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2490 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2491# endif
2492 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2493 if (PdeSrc.u & X86_PDE_US)
2494 {
2495 if (PdeSrc.u & X86_PDE_RW)
2496 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2497 else
2498 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2499 }
2500 else
2501 {
2502 if (PdeSrc.u & X86_PDE_RW)
2503 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2504 else
2505 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2506 }
2507 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2508 pShwPde->idx, iPDDst, false /*fLockPage*/,
2509 &pShwPage);
2510 }
2511 if (rc == VINF_SUCCESS)
2512 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2513 else if (rc == VINF_PGM_CACHED_PAGE)
2514 {
2515 /*
2516 * The PT was cached, just hook it up.
2517 */
2518 if (fPageTable)
2519 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2520 else
2521 {
2522 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2523 /* (see explanation and assumptions further down.) */
2524 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
2525 {
2526 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
2527 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2528 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
2529 }
2530 }
2531 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2532 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2533 return VINF_SUCCESS;
2534 }
2535 else
2536 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2537 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2538 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2539 * irrelevant at this point. */
2540 PdeDst.u &= X86_PDE_AVL_MASK;
2541 PdeDst.u |= pShwPage->Core.Key;
2542
2543 /*
2544 * Page directory has been accessed (this is a fault situation, remember).
2545 */
2546 /** @todo
2547 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2548 * fault situation. What's more, the Trap0eHandler has already set the
2549 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2550 * might need setting the accessed flag.
2551 *
2552 * The best idea is to leave this change to the caller and add an
2553 * assertion that it's set already. */
2554 pPDSrc->a[iPDSrc].u |= X86_PDE_A;
2555 if (fPageTable)
2556 {
2557 /*
2558 * Page table - 4KB.
2559 *
2560 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2561 */
2562 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2563 GCPtrPage, PdeSrc.u & X86_PTE_P, !!(PdeSrc.u & X86_PTE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u));
2564 PGSTPT pPTSrc;
2565 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2566 if (RT_SUCCESS(rc))
2567 {
2568 /*
2569 * Start by syncing the page directory entry so CSAM's TLB trick works.
2570 */
2571 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2572 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2573 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2574 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2575
2576 /*
2577 * Directory/page user or supervisor privilege: (same goes for read/write)
2578 *
2579 * Directory Page Combined
2580 * U/S U/S U/S
2581 * 0 0 0
2582 * 0 1 0
2583 * 1 0 0
2584 * 1 1 1
2585 *
2586 * Simple AND operation. Table listed for completeness.
2587 *
2588 */
2589 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4K));
2590# ifdef PGM_SYNC_N_PAGES
2591 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2592 unsigned iPTDst = iPTBase;
2593 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2594 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2595 iPTDst = 0;
2596 else
2597 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2598# else /* !PGM_SYNC_N_PAGES */
2599 unsigned iPTDst = 0;
2600 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2601# endif /* !PGM_SYNC_N_PAGES */
2602 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2603 | ((RTGCPTR)iPTDst << GUEST_PAGE_SHIFT);
2604# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2605 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2606 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2607# else
2608 const unsigned offPTSrc = 0;
2609# endif
2610 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += GUEST_PAGE_SIZE)
2611 {
2612 const unsigned iPTSrc = iPTDst + offPTSrc;
2613 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2614 if (PteSrc.u & X86_PTE_P)
2615 {
2616 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2617 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2618 GCPtrCur,
2619 PteSrc.u & X86_PTE_P,
2620 !!(PteSrc.u & PdeSrc.u & X86_PTE_RW),
2621 !!(PteSrc.u & PdeSrc.u & X86_PTE_US),
2622 (uint64_t)PteSrc.u,
2623 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2624 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2625 }
2626 /* else: the page table was cleared by the pool */
2627 } /* for PTEs */
2628 }
2629 }
2630 else
2631 {
2632 /*
2633 * Big page - 2/4MB.
2634 *
2635 * We'll walk the ram range list in parallel and optimize lookups.
2636 * We will only sync one shadow page table at a time.
2637 */
2638 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4M));
2639
2640 /**
2641 * @todo It might be more efficient to sync only a part of the 4MB
2642 * page (similar to what we do for 4KB PDs).
2643 */
2644
2645 /*
2646 * Start by syncing the page directory entry.
2647 */
2648 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2649 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2650
2651 /*
2652 * If the page is not flagged as dirty and is writable, then make it read-only
2653 * at PD level, so we can set the dirty bit when the page is modified.
2654 *
2655 * ASSUMES that page access handlers are implemented on page table entry level.
2656 * Thus we will first catch the dirty access and set PDE.D and restart. If
2657 * there is an access handler, we'll trap again and let it work on the problem.
2658 */
2659 /** @todo move the above stuff to a section in the PGM documentation. */
2660 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2661 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
2662 {
2663 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
2664 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2665 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
2666 }
2667 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2668 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2669
2670 /*
2671 * Fill the shadow page table.
2672 */
2673 /* Get address and flags from the source PDE. */
2674 SHWPTE PteDstBase;
2675 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2676
2677 /* Loop thru the entries in the shadow PT. */
2678 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2679 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2680 GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u, GCPtr,
2681 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2682 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2683 unsigned iPTDst = 0;
2684 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2685 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2686 {
2687 if (pRam && GCPhys >= pRam->GCPhys)
2688 {
2689# ifndef PGM_WITH_A20
2690 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT;
2691# endif
2692 do
2693 {
2694 /* Make shadow PTE. */
2695# ifdef PGM_WITH_A20
2696 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT];
2697# else
2698 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2699# endif
2700 SHWPTE PteDst;
2701
2702# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2703 /* Try to make the page writable if necessary. */
2704 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2705 && ( PGM_PAGE_IS_ZERO(pPage)
2706 || ( SHW_PTE_IS_RW(PteDstBase)
2707 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2708# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2709 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2710# endif
2711# ifdef VBOX_WITH_PAGE_SHARING
2712 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2713# endif
2714 && !PGM_PAGE_IS_BALLOONED(pPage))
2715 )
2716 )
2717 {
2718 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2719 AssertRCReturn(rc, rc);
2720 if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2721 break;
2722 }
2723# endif
2724
2725 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2726 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2727 else if (PGM_PAGE_IS_BALLOONED(pPage))
2728 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2729 else
2730 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2731
2732 /* Only map writable pages writable. */
2733 if ( SHW_PTE_IS_P_RW(PteDst)
2734 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2735 {
2736 /* Still applies to shared pages. */
2737 Assert(!PGM_PAGE_IS_ZERO(pPage));
2738 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2739 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2740 }
2741
2742 if (SHW_PTE_IS_P(PteDst))
2743 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2744
2745 /* commit it (not atomic, new table) */
2746 pPTDst->a[iPTDst] = PteDst;
2747 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2748 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2749 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2750
2751 /* advance */
2752 GCPhys += GUEST_PAGE_SIZE;
2753 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
2754# ifndef PGM_WITH_A20
2755 iHCPage++;
2756# endif
2757 iPTDst++;
2758 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2759 && GCPhys <= pRam->GCPhysLast);
2760
2761 /* Advance ram range list. */
2762 while (pRam && GCPhys > pRam->GCPhysLast)
2763 pRam = pRam->CTX_SUFF(pNext);
2764 }
2765 else if (pRam)
2766 {
2767 Log(("Invalid pages at %RGp\n", GCPhys));
2768 do
2769 {
2770 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2771 GCPhys += GUEST_PAGE_SIZE;
2772 iPTDst++;
2773 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2774 && GCPhys < pRam->GCPhys);
2775 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
2776 }
2777 else
2778 {
2779 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2780 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2781 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2782 }
2783 } /* while more PTEs */
2784 } /* 4KB / 4MB */
2785 }
2786 else
2787 AssertRelease(!SHW_PDE_IS_P(PdeDst));
2788
2789 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2790 if (RT_FAILURE(rc))
2791 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed));
2792 return rc;
2793
2794#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2795 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2796 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2797 && PGM_SHW_TYPE != PGM_TYPE_NONE
2798 NOREF(iPDSrc); NOREF(pPDSrc);
2799
2800 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2801
2802 /*
2803 * Validate input a little bit.
2804 */
2805 int rc = VINF_SUCCESS;
2806# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2807 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2808 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2809
2810 /* Fetch the pgm pool shadow descriptor. */
2811 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2812 Assert(pShwPde);
2813
2814# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2815 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2816 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2817 PX86PDPAE pPDDst;
2818 PSHWPDE pPdeDst;
2819
2820 /* Fetch the pgm pool shadow descriptor. */
2821 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2822 AssertRCSuccessReturn(rc, rc);
2823 Assert(pShwPde);
2824
2825 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2826 pPdeDst = &pPDDst->a[iPDDst];
2827
2828# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2829 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2830 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2831 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2832 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2833 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2834 AssertRCSuccessReturn(rc, rc);
2835 Assert(pPDDst);
2836 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2837
2838 /* Fetch the pgm pool shadow descriptor. */
2839 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2840 Assert(pShwPde);
2841
2842# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2843 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2844 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2845 PEPTPD pPDDst;
2846 PEPTPDPT pPdptDst;
2847
2848 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
2849 if (rc != VINF_SUCCESS)
2850 {
2851 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2852 AssertRC(rc);
2853 return rc;
2854 }
2855 Assert(pPDDst);
2856 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2857
2858 /* Fetch the pgm pool shadow descriptor. */
2859 /** @todo r=bird: didn't pgmShwGetEPTPDPtr just do this lookup already? */
2860 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2861 Assert(pShwPde);
2862# endif
2863 SHWPDE PdeDst = *pPdeDst;
2864
2865 Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2866
2867# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
2868 if ( BTH_IS_NP_ACTIVE(pVM)
2869 && !VM_IS_NEM_ENABLED(pVM)) /** @todo NEM: Large page support. */
2870 {
2871 /* Check if we allocated a big page before for this 2 MB range. */
2872 PPGMPAGE pPage;
2873 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
2874 if (RT_SUCCESS(rc))
2875 {
2876 RTHCPHYS HCPhys = NIL_RTHCPHYS;
2877 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
2878 {
2879 if (PGM_A20_IS_ENABLED(pVCpu))
2880 {
2881 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
2882 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2883 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2884 }
2885 else
2886 {
2887 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
2888 pVM->pgm.s.cLargePagesDisabled++;
2889 }
2890 }
2891 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
2892 && PGM_A20_IS_ENABLED(pVCpu))
2893 {
2894 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
2895 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
2896 if (RT_SUCCESS(rc))
2897 {
2898 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2899 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
2900 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2901 }
2902 }
2903 else if ( PGMIsUsingLargePages(pVM)
2904 && PGM_A20_IS_ENABLED(pVCpu))
2905 {
2906 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
2907 if (RT_SUCCESS(rc))
2908 {
2909 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2910 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
2911 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2912 }
2913 else
2914 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
2915 }
2916
2917 if (HCPhys != NIL_RTHCPHYS)
2918 {
2919# if PGM_SHW_TYPE == PGM_TYPE_EPT
2920 PdeDst.u = HCPhys | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_LEAF | EPT_E_IGNORE_PAT | EPT_E_MEMTYPE_WB
2921 | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo do we need this? */;
2922# else
2923 PdeDst.u = HCPhys | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PS
2924 | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo PGM_PD_FLAGS? */;
2925# endif
2926 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2927
2928 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
2929 /* Add a reference to the first page only. */
2930 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
2931
2932 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2933 return VINF_SUCCESS;
2934 }
2935 }
2936 }
2937# endif /* defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE */
2938
2939 /*
2940 * Allocate & map the page table.
2941 */
2942 PSHWPT pPTDst;
2943 PPGMPOOLPAGE pShwPage;
2944 RTGCPHYS GCPhys;
2945
2946 /* Virtual address = physical address */
2947 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
2948 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
2949 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
2950 &pShwPage);
2951 if ( rc == VINF_SUCCESS
2952 || rc == VINF_PGM_CACHED_PAGE)
2953 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2954 else
2955 {
2956 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2957 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2958 }
2959
2960 if (rc == VINF_SUCCESS)
2961 {
2962 /* New page table; fully set it up. */
2963 Assert(pPTDst);
2964
2965 /* Mask away the page offset. */
2966 GCPtrPage &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
2967
2968 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2969 {
2970 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2971 | (iPTDst << GUEST_PAGE_SHIFT));
2972
2973 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2974 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2975 GCPtrCurPage,
2976 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2977 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2978
2979 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2980 break;
2981 }
2982 }
2983 else
2984 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
2985
2986 /* Save the new PDE. */
2987# if PGM_SHW_TYPE == PGM_TYPE_EPT
2988 PdeDst.u = pShwPage->Core.Key | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE
2989 | (PdeDst.u & X86_PDE_AVL_MASK /** @todo do we really need this? */);
2990# else
2991 PdeDst.u = pShwPage->Core.Key | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A
2992 | (PdeDst.u & X86_PDE_AVL_MASK /** @todo use a PGM_PD_FLAGS define */);
2993# endif
2994 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2995
2996 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2997 if (RT_FAILURE(rc))
2998 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed));
2999 return rc;
3000
3001#else
3002 NOREF(iPDSrc); NOREF(pPDSrc);
3003 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3004 return VERR_PGM_NOT_USED_IN_MODE;
3005#endif
3006}
3007
3008
3009
3010/**
3011 * Prefetch a page/set of pages.
3012 *
3013 * Typically used to sync commonly used pages before entering raw mode
3014 * after a CR3 reload.
3015 *
3016 * @returns VBox status code.
3017 * @param pVCpu The cross context virtual CPU structure.
3018 * @param GCPtrPage Page to invalidate.
3019 */
3020PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
3021{
3022#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3023 || PGM_GST_TYPE == PGM_TYPE_REAL \
3024 || PGM_GST_TYPE == PGM_TYPE_PROT \
3025 || PGM_GST_TYPE == PGM_TYPE_PAE \
3026 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3027 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3028 && PGM_SHW_TYPE != PGM_TYPE_NONE
3029 /*
3030 * Check that all Guest levels thru the PDE are present, getting the
3031 * PD and PDE in the processes.
3032 */
3033 int rc = VINF_SUCCESS;
3034# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3035# if PGM_GST_TYPE == PGM_TYPE_32BIT
3036 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3037 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3038# elif PGM_GST_TYPE == PGM_TYPE_PAE
3039 unsigned iPDSrc;
3040 X86PDPE PdpeSrc;
3041 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3042 if (!pPDSrc)
3043 return VINF_SUCCESS; /* not present */
3044# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3045 unsigned iPDSrc;
3046 PX86PML4E pPml4eSrc;
3047 X86PDPE PdpeSrc;
3048 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3049 if (!pPDSrc)
3050 return VINF_SUCCESS; /* not present */
3051# endif
3052 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3053# else
3054 PGSTPD pPDSrc = NULL;
3055 const unsigned iPDSrc = 0;
3056 GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */
3057# endif
3058
3059 if ((PdeSrc.u & (X86_PDE_P | X86_PDE_A)) == (X86_PDE_P | X86_PDE_A))
3060 {
3061 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3062 PGM_LOCK_VOID(pVM);
3063
3064# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3065 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3066# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3067 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3068 PX86PDPAE pPDDst;
3069 X86PDEPAE PdeDst;
3070# if PGM_GST_TYPE != PGM_TYPE_PAE
3071 X86PDPE PdpeSrc;
3072
3073 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3074 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3075# endif
3076 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3077 if (rc != VINF_SUCCESS)
3078 {
3079 PGM_UNLOCK(pVM);
3080 AssertRC(rc);
3081 return rc;
3082 }
3083 Assert(pPDDst);
3084 PdeDst = pPDDst->a[iPDDst];
3085
3086# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3087 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3088 PX86PDPAE pPDDst;
3089 X86PDEPAE PdeDst;
3090
3091# if PGM_GST_TYPE == PGM_TYPE_PROT
3092 /* AMD-V nested paging */
3093 X86PML4E Pml4eSrc;
3094 X86PDPE PdpeSrc;
3095 PX86PML4E pPml4eSrc = &Pml4eSrc;
3096
3097 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3098 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3099 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3100# endif
3101
3102 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3103 if (rc != VINF_SUCCESS)
3104 {
3105 PGM_UNLOCK(pVM);
3106 AssertRC(rc);
3107 return rc;
3108 }
3109 Assert(pPDDst);
3110 PdeDst = pPDDst->a[iPDDst];
3111# endif
3112 if (!(PdeDst.u & X86_PDE_P))
3113 {
3114 /** @todo r=bird: This guy will set the A bit on the PDE,
3115 * probably harmless. */
3116 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3117 }
3118 else
3119 {
3120 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3121 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3122 * makes no sense to prefetch more than one page.
3123 */
3124 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3125 if (RT_SUCCESS(rc))
3126 rc = VINF_SUCCESS;
3127 }
3128 PGM_UNLOCK(pVM);
3129 }
3130 return rc;
3131
3132#elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3133 NOREF(pVCpu); NOREF(GCPtrPage);
3134 return VINF_SUCCESS; /* ignore */
3135#else
3136 AssertCompile(0);
3137#endif
3138}
3139
3140
3141
3142
3143/**
3144 * Syncs a page during a PGMVerifyAccess() call.
3145 *
3146 * @returns VBox status code (informational included).
3147 * @param pVCpu The cross context virtual CPU structure.
3148 * @param GCPtrPage The address of the page to sync.
3149 * @param fPage The effective guest page flags.
3150 * @param uErr The trap error code.
3151 * @remarks This will normally never be called on invalid guest page
3152 * translation entries.
3153 */
3154PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3155{
3156 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3157
3158 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3159 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr);
3160
3161 Assert(!pVM->pgm.s.fNestedPaging);
3162#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3163 || PGM_GST_TYPE == PGM_TYPE_REAL \
3164 || PGM_GST_TYPE == PGM_TYPE_PROT \
3165 || PGM_GST_TYPE == PGM_TYPE_PAE \
3166 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3167 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3168 && PGM_SHW_TYPE != PGM_TYPE_NONE
3169
3170 /*
3171 * Get guest PD and index.
3172 */
3173 /** @todo Performance: We've done all this a jiffy ago in the
3174 * PGMGstGetPage call. */
3175# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3176# if PGM_GST_TYPE == PGM_TYPE_32BIT
3177 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3178 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3179
3180# elif PGM_GST_TYPE == PGM_TYPE_PAE
3181 unsigned iPDSrc = 0;
3182 X86PDPE PdpeSrc;
3183 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3184 if (RT_UNLIKELY(!pPDSrc))
3185 {
3186 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3187 return VINF_EM_RAW_GUEST_TRAP;
3188 }
3189
3190# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3191 unsigned iPDSrc = 0; /* shut up gcc */
3192 PX86PML4E pPml4eSrc = NULL; /* ditto */
3193 X86PDPE PdpeSrc;
3194 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3195 if (RT_UNLIKELY(!pPDSrc))
3196 {
3197 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3198 return VINF_EM_RAW_GUEST_TRAP;
3199 }
3200# endif
3201
3202# else /* !PGM_WITH_PAGING */
3203 PGSTPD pPDSrc = NULL;
3204 const unsigned iPDSrc = 0;
3205# endif /* !PGM_WITH_PAGING */
3206 int rc = VINF_SUCCESS;
3207
3208 PGM_LOCK_VOID(pVM);
3209
3210 /*
3211 * First check if the shadow pd is present.
3212 */
3213# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3214 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3215
3216# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3217 PX86PDEPAE pPdeDst;
3218 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3219 PX86PDPAE pPDDst;
3220# if PGM_GST_TYPE != PGM_TYPE_PAE
3221 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3222 X86PDPE PdpeSrc;
3223 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3224# endif
3225 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3226 if (rc != VINF_SUCCESS)
3227 {
3228 PGM_UNLOCK(pVM);
3229 AssertRC(rc);
3230 return rc;
3231 }
3232 Assert(pPDDst);
3233 pPdeDst = &pPDDst->a[iPDDst];
3234
3235# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3236 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3237 PX86PDPAE pPDDst;
3238 PX86PDEPAE pPdeDst;
3239
3240# if PGM_GST_TYPE == PGM_TYPE_PROT
3241 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3242 X86PML4E Pml4eSrc;
3243 X86PDPE PdpeSrc;
3244 PX86PML4E pPml4eSrc = &Pml4eSrc;
3245 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3246 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3247# endif
3248
3249 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3250 if (rc != VINF_SUCCESS)
3251 {
3252 PGM_UNLOCK(pVM);
3253 AssertRC(rc);
3254 return rc;
3255 }
3256 Assert(pPDDst);
3257 pPdeDst = &pPDDst->a[iPDDst];
3258# endif
3259
3260 if (!(pPdeDst->u & X86_PDE_P))
3261 {
3262 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3263 if (rc != VINF_SUCCESS)
3264 {
3265 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3266 PGM_UNLOCK(pVM);
3267 AssertRC(rc);
3268 return rc;
3269 }
3270 }
3271
3272# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3273 /* Check for dirty bit fault */
3274 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3275 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3276 Log(("PGMVerifyAccess: success (dirty)\n"));
3277 else
3278# endif
3279 {
3280# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3281 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3282# else
3283 GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */
3284# endif
3285
3286 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3287 if (uErr & X86_TRAP_PF_US)
3288 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser));
3289 else /* supervisor */
3290 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3291
3292 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3293 if (RT_SUCCESS(rc))
3294 {
3295 /* Page was successfully synced */
3296 Log2(("PGMVerifyAccess: success (sync)\n"));
3297 rc = VINF_SUCCESS;
3298 }
3299 else
3300 {
3301 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3302 rc = VINF_EM_RAW_GUEST_TRAP;
3303 }
3304 }
3305 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3306 PGM_UNLOCK(pVM);
3307 return rc;
3308
3309#else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
3310
3311 AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3312 return VERR_PGM_NOT_USED_IN_MODE;
3313#endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
3314}
3315
3316
3317/**
3318 * Syncs the paging hierarchy starting at CR3.
3319 *
3320 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
3321 * informational status codes.
3322 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
3323 * the VMM into guest context.
3324 * @param pVCpu The cross context virtual CPU structure.
3325 * @param cr0 Guest context CR0 register.
3326 * @param cr3 Guest context CR3 register. Not subjected to the A20
3327 * mask.
3328 * @param cr4 Guest context CR4 register.
3329 * @param fGlobal Including global page directories or not
3330 */
3331PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3332{
3333 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3334 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3335
3336 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3337
3338#if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
3339# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3340 PGM_LOCK_VOID(pVM);
3341 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3342 if (pPool->cDirtyPages)
3343 pgmPoolResetDirtyPages(pVM);
3344 PGM_UNLOCK(pVM);
3345# endif
3346#endif /* !NESTED && !EPT */
3347
3348#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3349 /*
3350 * Nested / EPT / None - No work.
3351 */
3352 return VINF_SUCCESS;
3353
3354#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3355 /*
3356 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3357 * out the shadow parts when the guest modifies its tables.
3358 */
3359 return VINF_SUCCESS;
3360
3361#else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3362
3363 return VINF_SUCCESS;
3364#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3365}
3366
3367
3368
3369
3370#ifdef VBOX_STRICT
3371
3372/**
3373 * Checks that the shadow page table is in sync with the guest one.
3374 *
3375 * @returns The number of errors.
3376 * @param pVCpu The cross context virtual CPU structure.
3377 * @param cr3 Guest context CR3 register.
3378 * @param cr4 Guest context CR4 register.
3379 * @param GCPtr Where to start. Defaults to 0.
3380 * @param cb How much to check. Defaults to everything.
3381 */
3382PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3383{
3384 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3385#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3386 return 0;
3387#else
3388 unsigned cErrors = 0;
3389 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3390 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3391
3392# if PGM_GST_TYPE == PGM_TYPE_PAE
3393 /** @todo currently broken; crashes below somewhere */
3394 AssertFailed();
3395# endif
3396
3397# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3398 || PGM_GST_TYPE == PGM_TYPE_PAE \
3399 || PGM_GST_TYPE == PGM_TYPE_AMD64
3400
3401 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3402 PPGMCPU pPGM = &pVCpu->pgm.s;
3403 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3404 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3405# ifndef IN_RING0
3406 RTHCPHYS HCPhys; /* general usage. */
3407# endif
3408 int rc;
3409
3410 /*
3411 * Check that the Guest CR3 and all its mappings are correct.
3412 */
3413 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3414 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3415 false);
3416# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3417# if 0
3418# if PGM_GST_TYPE == PGM_TYPE_32BIT
3419 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3420# else
3421 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3422# endif
3423 AssertRCReturn(rc, 1);
3424 HCPhys = NIL_RTHCPHYS;
3425 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3426 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3427# endif
3428# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3429 pgmGstGet32bitPDPtr(pVCpu);
3430 RTGCPHYS GCPhys;
3431 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3432 AssertRCReturn(rc, 1);
3433 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3434# endif
3435# endif /* !IN_RING0 */
3436
3437 /*
3438 * Get and check the Shadow CR3.
3439 */
3440# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3441 unsigned cPDEs = X86_PG_ENTRIES;
3442 unsigned cIncrement = X86_PG_ENTRIES * GUEST_PAGE_SIZE;
3443# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3444# if PGM_GST_TYPE == PGM_TYPE_32BIT
3445 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3446# else
3447 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3448# endif
3449 unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE;
3450# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3451 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3452 unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE;
3453# endif
3454 if (cb != ~(RTGCPTR)0)
3455 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3456
3457/** @todo call the other two PGMAssert*() functions. */
3458
3459# if PGM_GST_TYPE == PGM_TYPE_AMD64
3460 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3461
3462 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3463 {
3464 PPGMPOOLPAGE pShwPdpt = NULL;
3465 PX86PML4E pPml4eSrc;
3466 PX86PML4E pPml4eDst;
3467 RTGCPHYS GCPhysPdptSrc;
3468
3469 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3470 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3471
3472 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3473 if (!(pPml4eDst->u & X86_PML4E_P))
3474 {
3475 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3476 continue;
3477 }
3478
3479 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3480 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3481
3482 if ((pPml4eSrc->u & X86_PML4E_P) != (pPml4eDst->u & X86_PML4E_P))
3483 {
3484 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3485 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3486 cErrors++;
3487 continue;
3488 }
3489
3490 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3491 {
3492 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3493 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3494 cErrors++;
3495 continue;
3496 }
3497
3498 if ( (pPml4eDst->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX))
3499 != (pPml4eSrc->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX)))
3500 {
3501 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3502 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3503 cErrors++;
3504 continue;
3505 }
3506# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3507 {
3508# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3509
3510# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3511 /*
3512 * Check the PDPTEs too.
3513 */
3514 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3515
3516 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3517 {
3518 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3519 PPGMPOOLPAGE pShwPde = NULL;
3520 PX86PDPE pPdpeDst;
3521 RTGCPHYS GCPhysPdeSrc;
3522 X86PDPE PdpeSrc;
3523 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3524# if PGM_GST_TYPE == PGM_TYPE_PAE
3525 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3526 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3527# else
3528 PX86PML4E pPml4eSrcIgn;
3529 PX86PDPT pPdptDst;
3530 PX86PDPAE pPDDst;
3531 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3532
3533 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3534 if (rc != VINF_SUCCESS)
3535 {
3536 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3537 GCPtr += 512 * _2M;
3538 continue; /* next PDPTE */
3539 }
3540 Assert(pPDDst);
3541# endif
3542 Assert(iPDSrc == 0);
3543
3544 pPdpeDst = &pPdptDst->a[iPdpt];
3545
3546 if (!(pPdpeDst->u & X86_PDPE_P))
3547 {
3548 GCPtr += 512 * _2M;
3549 continue; /* next PDPTE */
3550 }
3551
3552 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3553 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3554
3555 if ((pPdpeDst->u & X86_PDPE_P) != (PdpeSrc.u & X86_PDPE_P))
3556 {
3557 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3558 GCPtr += 512 * _2M;
3559 cErrors++;
3560 continue;
3561 }
3562
3563 if (GCPhysPdeSrc != pShwPde->GCPhys)
3564 {
3565# if PGM_GST_TYPE == PGM_TYPE_AMD64
3566 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3567# else
3568 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3569# endif
3570 GCPtr += 512 * _2M;
3571 cErrors++;
3572 continue;
3573 }
3574
3575# if PGM_GST_TYPE == PGM_TYPE_AMD64
3576 if ( (pPdpeDst->u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX))
3577 != (PdpeSrc.u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX)))
3578 {
3579 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3580 GCPtr += 512 * _2M;
3581 cErrors++;
3582 continue;
3583 }
3584# endif
3585
3586# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3587 {
3588# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3589# if PGM_GST_TYPE == PGM_TYPE_32BIT
3590 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3591# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3592 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3593# endif
3594# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3595 /*
3596 * Iterate the shadow page directory.
3597 */
3598 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3599 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3600
3601 for (;
3602 iPDDst < cPDEs;
3603 iPDDst++, GCPtr += cIncrement)
3604 {
3605# if PGM_SHW_TYPE == PGM_TYPE_PAE
3606 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3607# else
3608 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3609# endif
3610 if ( (PdeDst.u & X86_PDE_P)
3611 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) )
3612 {
3613 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3614 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3615 if (!pPoolPage)
3616 {
3617 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3618 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3619 cErrors++;
3620 continue;
3621 }
3622 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3623
3624 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3625 {
3626 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3627 GCPtr, (uint64_t)PdeDst.u));
3628 cErrors++;
3629 }
3630
3631 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3632 {
3633 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3634 GCPtr, (uint64_t)PdeDst.u));
3635 cErrors++;
3636 }
3637
3638 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3639 if (!(PdeSrc.u & X86_PDE_P))
3640 {
3641 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3642 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3643 cErrors++;
3644 continue;
3645 }
3646
3647 if ( !(PdeSrc.u & X86_PDE_PS)
3648 || !fBigPagesSupported)
3649 {
3650 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3651# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3652 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
3653# endif
3654 }
3655 else
3656 {
3657# if PGM_GST_TYPE == PGM_TYPE_32BIT
3658 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3659 {
3660 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3661 GCPtr, (uint64_t)PdeSrc.u));
3662 cErrors++;
3663 continue;
3664 }
3665# endif
3666 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3667# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3668 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
3669# endif
3670 }
3671
3672 if ( pPoolPage->enmKind
3673 != (!(PdeSrc.u & X86_PDE_PS) || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3674 {
3675 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3676 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3677 cErrors++;
3678 }
3679
3680 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
3681 if (!pPhysPage)
3682 {
3683 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3684 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3685 cErrors++;
3686 continue;
3687 }
3688
3689 if (GCPhysGst != pPoolPage->GCPhys)
3690 {
3691 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3692 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3693 cErrors++;
3694 continue;
3695 }
3696
3697 if ( !(PdeSrc.u & X86_PDE_PS)
3698 || !fBigPagesSupported)
3699 {
3700 /*
3701 * Page Table.
3702 */
3703 const GSTPT *pPTSrc;
3704 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(GUEST_PAGE_SIZE - 1)),
3705 &pPTSrc);
3706 if (RT_FAILURE(rc))
3707 {
3708 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3709 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3710 cErrors++;
3711 continue;
3712 }
3713 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3714 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3715 {
3716 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3717 // (This problem will go away when/if we shadow multiple CR3s.)
3718 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3719 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3720 cErrors++;
3721 continue;
3722 }
3723 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3724 {
3725 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3726 GCPtr, (uint64_t)PdeDst.u));
3727 cErrors++;
3728 continue;
3729 }
3730
3731 /* iterate the page table. */
3732# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3733 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3734 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3735# else
3736 const unsigned offPTSrc = 0;
3737# endif
3738 for (unsigned iPT = 0, off = 0;
3739 iPT < RT_ELEMENTS(pPTDst->a);
3740 iPT++, off += GUEST_PAGE_SIZE)
3741 {
3742 const SHWPTE PteDst = pPTDst->a[iPT];
3743
3744 /* skip not-present and dirty tracked entries. */
3745 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3746 continue;
3747 Assert(SHW_PTE_IS_P(PteDst));
3748
3749 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3750 if (!(PteSrc.u & X86_PTE_P))
3751 {
3752# ifdef IN_RING3
3753 PGMAssertHandlerAndFlagsInSync(pVM);
3754 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
3755 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
3756 0, 0, UINT64_MAX, 99, NULL);
3757# endif
3758 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3759 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3760 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
3761 cErrors++;
3762 continue;
3763 }
3764
3765 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3766# if 1 /** @todo sync accessed bit properly... */
3767 fIgnoreFlags |= X86_PTE_A;
3768# endif
3769
3770 /* match the physical addresses */
3771 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
3772 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
3773
3774# ifdef IN_RING3
3775 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3776 if (RT_FAILURE(rc))
3777 {
3778# if 0
3779 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3780 {
3781 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3782 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3783 cErrors++;
3784 continue;
3785 }
3786# endif
3787 }
3788 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3789 {
3790 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3791 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3792 cErrors++;
3793 continue;
3794 }
3795# endif
3796
3797 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
3798 if (!pPhysPage)
3799 {
3800# if 0
3801 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3802 {
3803 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3804 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3805 cErrors++;
3806 continue;
3807 }
3808# endif
3809 if (SHW_PTE_IS_RW(PteDst))
3810 {
3811 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3812 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3813 cErrors++;
3814 }
3815 fIgnoreFlags |= X86_PTE_RW;
3816 }
3817 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
3818 {
3819 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3820 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3821 cErrors++;
3822 continue;
3823 }
3824
3825 /* flags */
3826 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3827 {
3828 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3829 {
3830 if (SHW_PTE_IS_RW(PteDst))
3831 {
3832 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3833 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3834 cErrors++;
3835 continue;
3836 }
3837 fIgnoreFlags |= X86_PTE_RW;
3838 }
3839 else
3840 {
3841 if ( SHW_PTE_IS_P(PteDst)
3842# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
3843 && !PGM_PAGE_IS_MMIO(pPhysPage)
3844# endif
3845 )
3846 {
3847 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3848 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3849 cErrors++;
3850 continue;
3851 }
3852 fIgnoreFlags |= X86_PTE_P;
3853 }
3854 }
3855 else
3856 {
3857 if ((PteSrc.u & (X86_PTE_RW | X86_PTE_D)) == X86_PTE_RW)
3858 {
3859 if (SHW_PTE_IS_RW(PteDst))
3860 {
3861 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3862 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3863 cErrors++;
3864 continue;
3865 }
3866 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
3867 {
3868 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3869 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3870 cErrors++;
3871 continue;
3872 }
3873 if (SHW_PTE_IS_D(PteDst))
3874 {
3875 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3876 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3877 cErrors++;
3878 }
3879# if 0 /** @todo sync access bit properly... */
3880 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3881 {
3882 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3883 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3884 cErrors++;
3885 }
3886 fIgnoreFlags |= X86_PTE_RW;
3887# else
3888 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3889# endif
3890 }
3891 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
3892 {
3893 /* access bit emulation (not implemented). */
3894 if ((PteSrc.u & X86_PTE_A) || SHW_PTE_IS_P(PteDst))
3895 {
3896 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
3897 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3898 cErrors++;
3899 continue;
3900 }
3901 if (!SHW_PTE_IS_A(PteDst))
3902 {
3903 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
3904 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3905 cErrors++;
3906 }
3907 fIgnoreFlags |= X86_PTE_P;
3908 }
3909# ifdef DEBUG_sandervl
3910 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
3911# endif
3912 }
3913
3914 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
3915 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
3916 )
3917 {
3918 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
3919 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
3920 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3921 cErrors++;
3922 continue;
3923 }
3924 } /* foreach PTE */
3925 }
3926 else
3927 {
3928 /*
3929 * Big Page.
3930 */
3931 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
3932 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
3933 {
3934 if (PdeDst.u & X86_PDE_RW)
3935 {
3936 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3937 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3938 cErrors++;
3939 continue;
3940 }
3941 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
3942 {
3943 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3944 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3945 cErrors++;
3946 continue;
3947 }
3948# if 0 /** @todo sync access bit properly... */
3949 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
3950 {
3951 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3952 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3953 cErrors++;
3954 }
3955 fIgnoreFlags |= X86_PTE_RW;
3956# else
3957 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3958# endif
3959 }
3960 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3961 {
3962 /* access bit emulation (not implemented). */
3963 if ((PdeSrc.u & X86_PDE_A) || SHW_PDE_IS_P(PdeDst))
3964 {
3965 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3966 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3967 cErrors++;
3968 continue;
3969 }
3970 if (!SHW_PDE_IS_A(PdeDst))
3971 {
3972 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3973 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3974 cErrors++;
3975 }
3976 fIgnoreFlags |= X86_PTE_P;
3977 }
3978
3979 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
3980 {
3981 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
3982 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
3983 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3984 cErrors++;
3985 }
3986
3987 /* iterate the page table. */
3988 for (unsigned iPT = 0, off = 0;
3989 iPT < RT_ELEMENTS(pPTDst->a);
3990 iPT++, off += GUEST_PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + GUEST_PAGE_SIZE))
3991 {
3992 const SHWPTE PteDst = pPTDst->a[iPT];
3993
3994 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
3995 {
3996 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
3997 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
3998 cErrors++;
3999 }
4000
4001 /* skip not-present entries. */
4002 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4003 continue;
4004
4005 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4006
4007 /* match the physical addresses */
4008 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4009
4010# ifdef IN_RING3
4011 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4012 if (RT_FAILURE(rc))
4013 {
4014# if 0
4015 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4016 {
4017 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4018 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4019 cErrors++;
4020 }
4021# endif
4022 }
4023 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4024 {
4025 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4026 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4027 cErrors++;
4028 continue;
4029 }
4030# endif
4031 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4032 if (!pPhysPage)
4033 {
4034# if 0 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4035 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4036 {
4037 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4038 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4039 cErrors++;
4040 continue;
4041 }
4042# endif
4043 if (SHW_PTE_IS_RW(PteDst))
4044 {
4045 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4046 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4047 cErrors++;
4048 }
4049 fIgnoreFlags |= X86_PTE_RW;
4050 }
4051 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4052 {
4053 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4054 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4055 cErrors++;
4056 continue;
4057 }
4058
4059 /* flags */
4060 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4061 {
4062 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4063 {
4064 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4065 {
4066 if (SHW_PTE_IS_RW(PteDst))
4067 {
4068 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4069 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4070 cErrors++;
4071 continue;
4072 }
4073 fIgnoreFlags |= X86_PTE_RW;
4074 }
4075 }
4076 else
4077 {
4078 if ( SHW_PTE_IS_P(PteDst)
4079# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4080 && !PGM_PAGE_IS_MMIO(pPhysPage)
4081# endif
4082 )
4083 {
4084 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4085 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4086 cErrors++;
4087 continue;
4088 }
4089 fIgnoreFlags |= X86_PTE_P;
4090 }
4091 }
4092
4093 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4094 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4095 )
4096 {
4097 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4098 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4099 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4100 cErrors++;
4101 continue;
4102 }
4103 } /* for each PTE */
4104 }
4105 }
4106 /* not present */
4107
4108 } /* for each PDE */
4109
4110 } /* for each PDPTE */
4111
4112 } /* for each PML4E */
4113
4114# ifdef DEBUG
4115 if (cErrors)
4116 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4117# endif
4118# endif /* GST is in {32BIT, PAE, AMD64} */
4119 return cErrors;
4120#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
4121}
4122#endif /* VBOX_STRICT */
4123
4124
4125/**
4126 * Sets up the CR3 for shadow paging
4127 *
4128 * @returns Strict VBox status code.
4129 * @retval VINF_SUCCESS.
4130 *
4131 * @param pVCpu The cross context virtual CPU structure.
4132 * @param GCPhysCR3 The physical address in the CR3 register. (A20 mask
4133 * already applied.)
4134 */
4135PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
4136{
4137 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4138 int rc = VINF_SUCCESS;
4139
4140 /* Update guest paging info. */
4141#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4142 || PGM_GST_TYPE == PGM_TYPE_PAE \
4143 || PGM_GST_TYPE == PGM_TYPE_AMD64
4144
4145 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4146 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4147
4148# if PGM_GST_TYPE == PGM_TYPE_PAE
4149 if (!pVCpu->pgm.s.CTX_SUFF(fPaePdpesAndCr3Mapped))
4150# endif
4151 {
4152 /*
4153 * Map the page CR3 points at.
4154 */
4155 RTHCPTR HCPtrGuestCR3;
4156 rc = pgmGstMapCr3(pVCpu, GCPhysCR3, &HCPtrGuestCR3);
4157 if (RT_SUCCESS(rc))
4158 {
4159# if PGM_GST_TYPE == PGM_TYPE_32BIT
4160# ifdef IN_RING3
4161 pVCpu->pgm.s.pGst32BitPdR3 = (PX86PD)HCPtrGuestCR3;
4162 pVCpu->pgm.s.pGst32BitPdR0 = NIL_RTR0PTR;
4163# else
4164 pVCpu->pgm.s.pGst32BitPdR3 = NIL_RTR3PTR;
4165 pVCpu->pgm.s.pGst32BitPdR0 = (PX86PD)HCPtrGuestCR3;
4166# endif
4167
4168# elif PGM_GST_TYPE == PGM_TYPE_PAE
4169# ifdef IN_RING3
4170 pVCpu->pgm.s.pGstPaePdptR3 = (PX86PDPT)HCPtrGuestCR3;
4171 pVCpu->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
4172# else
4173 pVCpu->pgm.s.pGstPaePdptR3 = NIL_RTR3PTR;
4174 pVCpu->pgm.s.pGstPaePdptR0 = (PX86PDPT)HCPtrGuestCR3;
4175# endif
4176
4177 /*
4178 * Update CPUM and map the 4 PDs too.
4179 */
4180 X86PDPE aGstPaePdpes[X86_PG_PAE_PDPE_ENTRIES];
4181 memcpy(&aGstPaePdpes, HCPtrGuestCR3, sizeof(aGstPaePdpes));
4182 CPUMSetGuestPaePdpes(pVCpu, &aGstPaePdpes[0]);
4183 PGMGstMapPaePdpes(pVCpu, &aGstPaePdpes[0]);
4184
4185# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4186# ifdef IN_RING3
4187 pVCpu->pgm.s.pGstAmd64Pml4R3 = (PX86PML4)HCPtrGuestCR3;
4188 pVCpu->pgm.s.pGstAmd64Pml4R0 = NIL_RTR0PTR;
4189# else
4190 pVCpu->pgm.s.pGstAmd64Pml4R3 = NIL_RTR3PTR;
4191 pVCpu->pgm.s.pGstAmd64Pml4R0 = (PX86PML4)HCPtrGuestCR3;
4192# endif
4193# endif
4194 }
4195 else
4196 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4197 }
4198
4199 /*
4200 * Reset fPaePdpesAndCr3Mapped for all modes as there's no guarantee that
4201 * we were called in the correct sequence of PAE followed by other modes
4202 * without CR3 changing in between.
4203 */
4204 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false;
4205 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false;
4206#endif
4207
4208 /*
4209 * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64).
4210 */
4211# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4212 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4213 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4214 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4215 && PGM_GST_TYPE != PGM_TYPE_PROT))
4216
4217 Assert(!pVM->pgm.s.fNestedPaging);
4218 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4219
4220 /*
4221 * Update the shadow root page as well since that's not fixed.
4222 */
4223 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4224 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4225 PPGMPOOLPAGE pNewShwPageCR3;
4226
4227 PGM_LOCK_VOID(pVM);
4228
4229# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4230 if (pPool->cDirtyPages)
4231 pgmPoolResetDirtyPages(pVM);
4232# endif
4233
4234 Assert(!(GCPhysCR3 >> (GUEST_PAGE_SHIFT + 32))); /** @todo what is this for? */
4235 int const rc2 = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE,
4236 PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, &pNewShwPageCR3);
4237 AssertFatalRC(rc2);
4238
4239 pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3);
4240 pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3);
4241
4242 /* Set the current hypervisor CR3. */
4243 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4244
4245 /* Clean up the old CR3 root. */
4246 if ( pOldShwPageCR3
4247 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4248 {
4249 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4250
4251 /* Mark the page as unlocked; allow flushing again. */
4252 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4253
4254 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4255 }
4256 PGM_UNLOCK(pVM);
4257# else
4258 NOREF(GCPhysCR3);
4259# endif
4260
4261 return rc;
4262}
4263
4264/**
4265 * Unmaps the shadow CR3.
4266 *
4267 * @returns VBox status, no specials.
4268 * @param pVCpu The cross context virtual CPU structure.
4269 */
4270PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu)
4271{
4272 LogFlow(("UnmapCR3\n"));
4273
4274 int rc = VINF_SUCCESS;
4275 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4276
4277 /*
4278 * Update guest paging info.
4279 */
4280#if PGM_GST_TYPE == PGM_TYPE_32BIT
4281 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4282 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4283
4284#elif PGM_GST_TYPE == PGM_TYPE_PAE
4285 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4286 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4287 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4288 {
4289 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4290 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4291 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4292 }
4293
4294#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4295 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4296 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4297
4298#else /* prot/real mode stub */
4299 /* nothing to do */
4300#endif
4301
4302 /*
4303 * Update second-level address translation info.
4304 */
4305#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
4306 pVCpu->pgm.s.pGstEptPml4R3 = 0;
4307 pVCpu->pgm.s.pGstEptPml4R0 = 0;
4308#endif
4309
4310 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false;
4311 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false;
4312
4313 /*
4314 * Update shadow paging info.
4315 */
4316#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4317 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4318 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4319# if PGM_GST_TYPE != PGM_TYPE_REAL
4320 Assert(!pVM->pgm.s.fNestedPaging);
4321# endif
4322 PGM_LOCK_VOID(pVM);
4323
4324 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4325 {
4326 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4327
4328# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4329 if (pPool->cDirtyPages)
4330 pgmPoolResetDirtyPages(pVM);
4331# endif
4332
4333 /* Mark the page as unlocked; allow flushing again. */
4334 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4335
4336 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4337 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4338 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4339 }
4340
4341 PGM_UNLOCK(pVM);
4342#endif
4343
4344 return rc;
4345}
4346
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette