VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 9684

Last change on this file since 9684 was 9684, checked in by vboxsync, 17 years ago

Correction

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 173.7 KB
Line 
1/* $Id: PGMAllBth.h 9684 2008-06-13 13:32:37Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr = 0, RTGCUINTPTR cb = ~(RTGCUINTPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42__END_DECLS
43
44
45/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
46#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED
47# error "Invalid combination; PAE guest implies PAE shadow"
48#endif
49
50#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
51 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED)
52# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
53#endif
54
55#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
56 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED)
57# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
58#endif
59
60#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED) \
61 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
62# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
63#endif
64
65#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
66# define PGM_WITHOUT_MAPPINGS
67#endif
68
69/**
70 * #PF Handler for raw-mode guest execution.
71 *
72 * @returns VBox status code (appropriate for trap handling and GC return).
73 * @param pVM VM Handle.
74 * @param uErr The trap error code.
75 * @param pRegFrame Trap register frame.
76 * @param pvFault The fault address.
77 */
78PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
79{
80#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
81 && PGM_SHW_TYPE != PGM_TYPE_NESTED
82
83# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
84 /*
85 * Hide the instruction fetch trap indicator for now.
86 */
87 /** @todo NXE will change this and we must fix NXE in the switcher too! */
88 if (uErr & X86_TRAP_PF_ID)
89 {
90 uErr &= ~X86_TRAP_PF_ID;
91 TRPMSetErrorCode(pVM, uErr);
92 }
93# endif
94
95 /*
96 * Get PDs.
97 */
98 int rc;
99# if PGM_WITH_PAGING(PGM_GST_TYPE)
100# if PGM_GST_TYPE == PGM_TYPE_32BIT
101 const unsigned iPDSrc = (RTGCUINTPTR)pvFault >> GST_PD_SHIFT;
102 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
103
104# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
105
106# if PGM_GST_TYPE == PGM_TYPE_PAE
107 unsigned iPDSrc;
108 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, (RTGCUINTPTR)pvFault, &iPDSrc);
109
110# elif PGM_GST_TYPE == PGM_TYPE_AMD64
111 unsigned iPDSrc;
112 PX86PML4E pPml4eSrc;
113 X86PDPE PdpeSrc;
114 PGSTPD pPDSrc;
115
116 pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
117 Assert(pPml4eSrc);
118# endif
119 /* Quick check for a valid guest trap. */
120 if (!pPDSrc)
121 {
122 LogFlow(("Trap0eHandler: guest PDPTR not present CR3=%VGp\n", (CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK)));
123 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eGuestTrap; });
124 TRPMSetErrorCode(pVM, uErr);
125 return VINF_EM_RAW_GUEST_TRAP;
126 }
127# endif
128# else
129 PGSTPD pPDSrc = NULL;
130 const unsigned iPDSrc = 0;
131# endif
132
133# if PGM_SHW_TYPE == PGM_TYPE_32BIT
134 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
135 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
136# elif PGM_SHW_TYPE == PGM_TYPE_PAE
137 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
138 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries, so no need to and with SHW_PD_MASK to get iPDDst */
139
140# if PGM_GST_TYPE == PGM_TYPE_PAE
141 /* Did we mark the PDPT as not present in SyncCR3? */
142 unsigned iPDPTE = ((RTGCUINTPTR)pvFault >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
143 if (!pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPDPTE].n.u1Present)
144 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPDPTE].n.u1Present = 1;
145
146# endif
147
148# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
149 const unsigned iPDDst = (((RTGCUINTPTR)pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
150 PX86PDPAE pPDDst;
151# if PGM_GST_TYPE == PGM_TYPE_PROT
152 /* AMD-V nested paging */
153 X86PML4E Pml4eSrc;
154 X86PDPE PdpeSrc;
155 PX86PML4E pPml4eSrc = &Pml4eSrc;
156
157 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
158 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
159 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
160# endif
161
162 rc = PGMShwSyncLongModePDPtr(pVM, (RTGCUINTPTR)pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
163 if (rc != VINF_SUCCESS)
164 {
165 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("Unexpected rc=%Vrc\n", rc));
166 return rc;
167 }
168 Assert(pPDDst);
169# endif
170
171# if PGM_WITH_PAGING(PGM_GST_TYPE)
172 /*
173 * If we successfully correct the write protection fault due to dirty bit
174 * tracking, or this page fault is a genuine one, then return immediately.
175 */
176 STAM_PROFILE_START(&pVM->pgm.s.StatCheckPageFault, e);
177 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], (RTGCUINTPTR)pvFault);
178 STAM_PROFILE_STOP(&pVM->pgm.s.StatCheckPageFault, e);
179 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
180 || rc == VINF_EM_RAW_GUEST_TRAP)
181 {
182 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution)
183 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatTrap0eDirtyAndAccessedBits : &pVM->pgm.s.StatTrap0eGuestTrap; });
184 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
185 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
186 }
187
188 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0ePD[iPDSrc]);
189# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
190
191 /*
192 * A common case is the not-present error caused by lazy page table syncing.
193 *
194 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
195 * so we can safely assume that the shadow PT is present when calling SyncPage later.
196 *
197 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
198 * of mapping conflict and defer to SyncCR3 in R3.
199 * (Again, we do NOT support access handlers for non-present guest pages.)
200 *
201 */
202# if PGM_WITH_PAGING(PGM_GST_TYPE)
203 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
204# else
205 GSTPDE PdeSrc;
206 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
207 PdeSrc.n.u1Present = 1;
208 PdeSrc.n.u1Write = 1;
209 PdeSrc.n.u1Accessed = 1;
210 PdeSrc.n.u1User = 1;
211# endif
212 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
213 && !pPDDst->a[iPDDst].n.u1Present
214 && PdeSrc.n.u1Present
215 )
216
217 {
218 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eSyncPT; });
219 STAM_PROFILE_START(&pVM->pgm.s.StatLazySyncPT, f);
220 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
221 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, (RTGCUINTPTR)pvFault);
222 if (VBOX_SUCCESS(rc))
223 {
224 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
225 return rc;
226 }
227 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
228 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
229 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
230 return VINF_PGM_SYNC_CR3;
231 }
232
233# if PGM_WITH_PAGING(PGM_GST_TYPE)
234 /*
235 * Check if this address is within any of our mappings.
236 *
237 * This is *very* fast and it's gonna save us a bit of effort below and prevent
238 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
239 * (BTW, it's impossible to have physical access handlers in a mapping.)
240 */
241 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
242 {
243 STAM_PROFILE_START(&pVM->pgm.s.StatMapping, a);
244 PPGMMAPPING pMapping = CTXALLSUFF(pVM->pgm.s.pMappings);
245 for ( ; pMapping; pMapping = CTXALLSUFF(pMapping->pNext))
246 {
247 if ((RTGCUINTPTR)pvFault < (RTGCUINTPTR)pMapping->GCPtr)
248 break;
249 if ((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pMapping->GCPtr < pMapping->cb)
250 {
251 /*
252 * The first thing we check is if we've got an undetected conflict.
253 */
254 if (!pVM->pgm.s.fMappingsFixed)
255 {
256 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
257 while (iPT-- > 0)
258 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
259 {
260 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eConflicts);
261 Log(("Trap0e: Detected Conflict %VGv-%VGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
262 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
263 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
264 return VINF_PGM_SYNC_CR3;
265 }
266 }
267
268 /*
269 * Check if the fault address is in a virtual page access handler range.
270 */
271 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->HyperVirtHandlers, pvFault);
272 if ( pCur
273 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
274 && uErr & X86_TRAP_PF_RW)
275 {
276# ifdef IN_GC
277 STAM_PROFILE_START(&pCur->Stat, h);
278 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
279 STAM_PROFILE_STOP(&pCur->Stat, h);
280# else
281 AssertFailed();
282 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
283# endif
284 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eMapHandler);
285 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
286 return rc;
287 }
288
289 /*
290 * Pretend we're not here and let the guest handle the trap.
291 */
292 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
293 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eMap);
294 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
295 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
296 return VINF_EM_RAW_GUEST_TRAP;
297 }
298 }
299 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
300 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
301# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
302
303 /*
304 * Check if this fault address is flagged for special treatment,
305 * which means we'll have to figure out the physical address and
306 * check flags associated with it.
307 *
308 * ASSUME that we can limit any special access handling to pages
309 * in page tables which the guest believes to be present.
310 */
311 if (PdeSrc.n.u1Present)
312 {
313 RTGCPHYS GCPhys = NIL_RTGCPHYS;
314
315# if PGM_WITH_PAGING(PGM_GST_TYPE)
316# if PGM_GST_TYPE == PGM_TYPE_AMD64
317 bool fBigPagesSupported = true;
318# else
319 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
320# endif
321 if ( PdeSrc.b.u1Size
322 && fBigPagesSupported)
323 GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK)
324 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
325 else
326 {
327 PGSTPT pPTSrc;
328 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
329 if (VBOX_SUCCESS(rc))
330 {
331 unsigned iPTESrc = ((RTGCUINTPTR)pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
332 if (pPTSrc->a[iPTESrc].n.u1Present)
333 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
334 }
335 }
336# else
337 /* No paging so the fault address is the physical address */
338 GCPhys = (RTGCPHYS)((RTGCUINTPTR)pvFault & ~PAGE_OFFSET_MASK);
339# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
340
341 /*
342 * If we have a GC address we'll check if it has any flags set.
343 */
344 if (GCPhys != NIL_RTGCPHYS)
345 {
346 STAM_PROFILE_START(&pVM->pgm.s.StatHandlers, b);
347
348 PPGMPAGE pPage;
349 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
350 if (VBOX_SUCCESS(rc))
351 {
352 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
353 {
354 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
355 {
356 /*
357 * Physical page access handler.
358 */
359 const RTGCPHYS GCPhysFault = GCPhys | ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK);
360 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->PhysHandlers, GCPhysFault);
361 if (pCur)
362 {
363# ifdef PGM_SYNC_N_PAGES
364 /*
365 * If the region is write protected and we got a page not present fault, then sync
366 * the pages. If the fault was caused by a read, then restart the instruction.
367 * In case of write access continue to the GC write handler.
368 *
369 * ASSUMES that there is only one handler per page or that they have similar write properties.
370 */
371 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
372 && !(uErr & X86_TRAP_PF_P))
373 {
374 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
375 if ( VBOX_FAILURE(rc)
376 || !(uErr & X86_TRAP_PF_RW)
377 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
378 {
379 AssertRC(rc);
380 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
381 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
382 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
383 return rc;
384 }
385 }
386# endif
387
388 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
389 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
390 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
391
392#if defined(IN_GC) || defined(IN_RING0)
393 if (CTXALLSUFF(pCur->pfnHandler))
394 {
395 STAM_PROFILE_START(&pCur->Stat, h);
396 rc = pCur->CTXALLSUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, CTXALLSUFF(pCur->pvUser));
397 STAM_PROFILE_STOP(&pCur->Stat, h);
398 }
399 else
400#endif
401 rc = VINF_EM_RAW_EMULATE_INSTR;
402 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersPhysical);
403 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
404 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndPhys; });
405 return rc;
406 }
407 }
408# if PGM_WITH_PAGING(PGM_GST_TYPE)
409 else
410 {
411# ifdef PGM_SYNC_N_PAGES
412 /*
413 * If the region is write protected and we got a page not present fault, then sync
414 * the pages. If the fault was caused by a read, then restart the instruction.
415 * In case of write access continue to the GC write handler.
416 */
417 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
418 && !(uErr & X86_TRAP_PF_P))
419 {
420 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
421 if ( VBOX_FAILURE(rc)
422 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
423 || !(uErr & X86_TRAP_PF_RW))
424 {
425 AssertRC(rc);
426 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
427 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
428 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndVirt; });
429 return rc;
430 }
431 }
432# endif
433 /*
434 * Ok, it's an virtual page access handler.
435 *
436 * Since it's faster to search by address, we'll do that first
437 * and then retry by GCPhys if that fails.
438 */
439 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
440 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
441 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
442 */
443 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
444 if (pCur)
445 {
446 AssertMsg(!((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
447 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
448 || !(uErr & X86_TRAP_PF_P)
449 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
450 ("Unexpected trap for virtual handler: %VGv (phys=%VGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
451
452 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
453 && ( uErr & X86_TRAP_PF_RW
454 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
455 {
456# ifdef IN_GC
457 STAM_PROFILE_START(&pCur->Stat, h);
458 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
459 STAM_PROFILE_STOP(&pCur->Stat, h);
460# else
461 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
462# endif
463 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtual);
464 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
465 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
466 return rc;
467 }
468 /* Unhandled part of a monitored page */
469 }
470 else
471 {
472 /* Check by physical address. */
473 PPGMVIRTHANDLER pCur;
474 unsigned iPage;
475 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK),
476 &pCur, &iPage);
477 Assert(VBOX_SUCCESS(rc) || !pCur);
478 if ( pCur
479 && ( uErr & X86_TRAP_PF_RW
480 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
481 {
482 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
483# ifdef IN_GC
484 RTGCUINTPTR off = (iPage << PAGE_SHIFT) + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK) - ((RTGCUINTPTR)pCur->GCPtr & PAGE_OFFSET_MASK);
485 Assert(off < pCur->cb);
486 STAM_PROFILE_START(&pCur->Stat, h);
487 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, off);
488 STAM_PROFILE_STOP(&pCur->Stat, h);
489# else
490 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
491# endif
492 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualByPhys);
493 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
494 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
495 return rc;
496 }
497 }
498 }
499# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
500
501 /*
502 * There is a handled area of the page, but this fault doesn't belong to it.
503 * We must emulate the instruction.
504 *
505 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
506 * we first check if this was a page-not-present fault for a page with only
507 * write access handlers. Restart the instruction if it wasn't a write access.
508 */
509 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersUnhandled);
510
511 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
512 && !(uErr & X86_TRAP_PF_P))
513 {
514 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
515 if ( VBOX_FAILURE(rc)
516 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
517 || !(uErr & X86_TRAP_PF_RW))
518 {
519 AssertRC(rc);
520 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
521 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
522 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
523 return rc;
524 }
525 }
526
527 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
528 * It's writing to an unhandled part of the LDT page several million times.
529 */
530 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
531 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
532 rc, pPage->HCPhys,
533 PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
534 PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
535 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
536 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndUnhandled; });
537 return rc;
538 } /* if any kind of handler */
539
540# if PGM_WITH_PAGING(PGM_GST_TYPE)
541 if (uErr & X86_TRAP_PF_P)
542 {
543 /*
544 * The page isn't marked, but it might still be monitored by a virtual page access handler.
545 * (ASSUMES no temporary disabling of virtual handlers.)
546 */
547 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
548 * we should correct both the shadow page table and physical memory flags, and not only check for
549 * accesses within the handler region but for access to pages with virtual handlers. */
550 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
551 if (pCur)
552 {
553 AssertMsg( !((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
554 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
555 || !(uErr & X86_TRAP_PF_P)
556 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
557 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
558
559 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
560 && ( uErr & X86_TRAP_PF_RW
561 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
562 {
563# ifdef IN_GC
564 STAM_PROFILE_START(&pCur->Stat, h);
565 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
566 STAM_PROFILE_STOP(&pCur->Stat, h);
567# else
568 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
569# endif
570 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualUnmarked);
571 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
572 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
573 return rc;
574 }
575 }
576 }
577# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
578 }
579 else
580 {
581 /* When the guest accesses invalid physical memory (e.g. probing of RAM or accessing a remapped MMIO range), then we'll fall
582 * back to the recompiler to emulate the instruction.
583 */
584 LogFlow(("pgmPhysGetPageEx %VGp failed with %Vrc\n", GCPhys, rc));
585 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersInvalid);
586 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
587 return VINF_EM_RAW_EMULATE_INSTR;
588 }
589
590 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
591
592# ifdef PGM_OUT_OF_SYNC_IN_GC
593 /*
594 * We are here only if page is present in Guest page tables and trap is not handled
595 * by our handlers.
596 * Check it for page out-of-sync situation.
597 */
598 STAM_PROFILE_START(&pVM->pgm.s.StatOutOfSync, c);
599
600 if (!(uErr & X86_TRAP_PF_P))
601 {
602 /*
603 * Page is not present in our page tables.
604 * Try to sync it!
605 * BTW, fPageShw is invalid in this branch!
606 */
607 if (uErr & X86_TRAP_PF_US)
608 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
609 else /* supervisor */
610 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
611
612# if defined(LOG_ENABLED) && !defined(IN_RING0)
613 RTGCPHYS GCPhys;
614 uint64_t fPageGst;
615 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
616 Log(("Page out of sync: %VGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%VGp scan=%d\n",
617 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
618# endif /* LOG_ENABLED */
619
620# if PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0)
621 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
622 {
623 uint64_t fPageGst;
624 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
625 if ( VBOX_SUCCESS(rc)
626 && !(fPageGst & X86_PTE_US))
627 {
628 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
629 if ( pvFault == (RTGCPTR)pRegFrame->eip
630 || (RTGCUINTPTR)pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
631# ifdef CSAM_DETECT_NEW_CODE_PAGES
632 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
633 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
634# endif /* CSAM_DETECT_NEW_CODE_PAGES */
635 )
636 {
637 LogFlow(("CSAMExecFault %VGv\n", pRegFrame->eip));
638 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
639 if (rc != VINF_SUCCESS)
640 {
641 /*
642 * CSAM needs to perform a job in ring 3.
643 *
644 * Sync the page before going to the host context; otherwise we'll end up in a loop if
645 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
646 */
647 LogFlow(("CSAM ring 3 job\n"));
648 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
649 AssertRC(rc2);
650
651 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
652 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eCSAM; });
653 return rc;
654 }
655 }
656# ifdef CSAM_DETECT_NEW_CODE_PAGES
657 else
658 if ( uErr == X86_TRAP_PF_RW
659 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
660 && pRegFrame->ecx < 0x10000
661 )
662 {
663 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
664 * to detect loading of new code pages.
665 */
666
667 /*
668 * Decode the instruction.
669 */
670 RTGCPTR PC;
671 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
672 if (rc == VINF_SUCCESS)
673 {
674 DISCPUSTATE Cpu;
675 uint32_t cbOp;
676 rc = EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)PC, pRegFrame, &Cpu, &cbOp);
677
678 /* For now we'll restrict this to rep movsw/d instructions */
679 if ( rc == VINF_SUCCESS
680 && Cpu.pCurInstr->opcode == OP_MOVSWD
681 && (Cpu.prefix & PREFIX_REP))
682 {
683 CSAMMarkPossibleCodePage(pVM, pvFault);
684 }
685 }
686 }
687# endif /* CSAM_DETECT_NEW_CODE_PAGES */
688
689 /*
690 * Mark this page as safe.
691 */
692 /** @todo not correct for pages that contain both code and data!! */
693 Log2(("CSAMMarkPage %VGv; scanned=%d\n", pvFault, true));
694 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
695 }
696 }
697# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0) */
698 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
699 if (VBOX_SUCCESS(rc))
700 {
701 /* The page was successfully synced, return to the guest. */
702 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
703 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSync; });
704 return VINF_SUCCESS;
705 }
706 }
707 else
708 {
709 /*
710 * A side effect of not flushing global PDEs are out of sync pages due
711 * to physical monitored regions, that are no longer valid.
712 * Assume for now it only applies to the read/write flag
713 */
714 if (VBOX_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
715 {
716 if (uErr & X86_TRAP_PF_US)
717 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
718 else /* supervisor */
719 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
720
721
722 /*
723 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
724 */
725 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
726 if (VBOX_SUCCESS(rc))
727 {
728 /*
729 * Page was successfully synced, return to guest.
730 */
731# ifdef VBOX_STRICT
732 RTGCPHYS GCPhys;
733 uint64_t fPageGst;
734 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
735 Assert(VBOX_SUCCESS(rc) && fPageGst & X86_PTE_RW);
736 LogFlow(("Obsolete physical monitor page out of sync %VGv - phys %VGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
737
738 uint64_t fPageShw;
739 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
740 AssertMsg(VBOX_SUCCESS(rc) && fPageShw & X86_PTE_RW, ("rc=%Vrc fPageShw=%VX64\n", rc, fPageShw));
741# endif /* VBOX_STRICT */
742 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
743 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncObsHnd; });
744 return VINF_SUCCESS;
745 }
746
747 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
748 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
749 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP|X86_CR0_PG)) == X86_CR0_PG)
750 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
751 {
752 uint64_t fPageGst;
753 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
754 if ( VBOX_SUCCESS(rc)
755 && !(fPageGst & X86_PTE_RW))
756 {
757 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
758 if (VBOX_SUCCESS(rc))
759 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulGC);
760 else
761 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulR3);
762 return rc;
763 }
764 else
765 AssertMsgFailed(("Unexpected r/w page %x flag=%x\n", pvFault, (uint32_t)fPageGst));
766 }
767
768 }
769
770# if PGM_WITH_PAGING(PGM_GST_TYPE)
771# ifdef VBOX_STRICT
772 /*
773 * Check for VMM page flags vs. Guest page flags consistency.
774 * Currently only for debug purposes.
775 */
776 if (VBOX_SUCCESS(rc))
777 {
778 /* Get guest page flags. */
779 uint64_t fPageGst;
780 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
781 if (VBOX_SUCCESS(rc))
782 {
783 uint64_t fPageShw;
784 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
785
786 /*
787 * Compare page flags.
788 * Note: we have AVL, A, D bits desynched.
789 */
790 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
791 ("Page flags mismatch! pvFault=%VGv GCPhys=%VGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
792 }
793 else
794 AssertMsgFailed(("PGMGstGetPage rc=%Vrc\n", rc));
795 }
796 else
797 AssertMsgFailed(("PGMGCGetPage rc=%Vrc\n", rc));
798# endif /* VBOX_STRICT */
799# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
800 }
801 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
802# endif /* PGM_OUT_OF_SYNC_IN_GC */
803 }
804 else
805 {
806 /*
807 * Page not present in Guest OS or invalid page table address.
808 * This is potential virtual page access handler food.
809 *
810 * For the present we'll say that our access handlers don't
811 * work for this case - we've already discarded the page table
812 * not present case which is identical to this.
813 *
814 * When we perchance find we need this, we will probably have AVL
815 * trees (offset based) to operate on and we can measure their speed
816 * agains mapping a page table and probably rearrange this handling
817 * a bit. (Like, searching virtual ranges before checking the
818 * physical address.)
819 */
820 }
821 }
822
823
824# if PGM_WITH_PAGING(PGM_GST_TYPE)
825 /*
826 * Conclusion, this is a guest trap.
827 */
828 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
829 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUnhandled);
830 return VINF_EM_RAW_GUEST_TRAP;
831# else
832 /* present, but not a monitored page; perhaps the guest is probing physical memory */
833 return VINF_EM_RAW_EMULATE_INSTR;
834# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
835
836
837#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
838
839 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
840 return VERR_INTERNAL_ERROR;
841#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
842}
843
844
845/**
846 * Emulation of the invlpg instruction.
847 *
848 *
849 * @returns VBox status code.
850 *
851 * @param pVM VM handle.
852 * @param GCPtrPage Page to invalidate.
853 *
854 * @remark ASSUMES that the guest is updating before invalidating. This order
855 * isn't required by the CPU, so this is speculative and could cause
856 * trouble.
857 *
858 * @todo Flush page or page directory only if necessary!
859 * @todo Add a #define for simply invalidating the page.
860 */
861PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage)
862{
863#if PGM_WITH_PAGING(PGM_GST_TYPE) \
864 && PGM_SHW_TYPE != PGM_TYPE_NESTED
865 int rc;
866
867 LogFlow(("InvalidatePage %x\n", GCPtrPage));
868 /*
869 * Get the shadow PD entry and skip out if this PD isn't present.
870 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
871 */
872 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
873# if PGM_SHW_TYPE == PGM_TYPE_32BIT
874 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
875# elif PGM_SHW_TYPE == PGM_TYPE_PAE
876 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs[0])->a[iPDDst];
877# else /* AMD64 */
878 /* PML4 */
879 const unsigned iPml4 = ((RTGCUINTPTR64)GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
880 PX86PML4E pPml4eDst = &CTXMID(pVM->pgm.s.p,PaePML4)->a[iPml4];
881 if (!pPml4eDst->n.u1Present)
882 {
883 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
884 return VINF_SUCCESS;
885 }
886
887 /* PDPT */
888 PX86PDPT pPDPT;
889 rc = PGM_HCPHYS_2_PTR(pVM, pPml4eDst->u & X86_PML4E_PG_MASK, &pPDPT);
890 if (VBOX_FAILURE(rc))
891 return rc;
892 const unsigned iPDPT = ((RTGCUINTPTR64)GCPtrPage >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
893 PX86PDPE pPdpeDst = &pPDPT->a[iPDPT];
894 if (!pPdpeDst->n.u1Present)
895 {
896 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
897 return VINF_SUCCESS;
898 }
899
900 /* PD */
901 PX86PDPAE pPd;
902 rc = PGM_HCPHYS_2_PTR(pVM, pPdpeDst->u & X86_PDPE_PG_MASK, &pPd);
903 if (VBOX_FAILURE(rc))
904 return rc;
905 const unsigned iPd = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
906 PX86PDEPAE pPdeDst = &pPd->a[iPd];
907# endif
908
909 const SHWPDE PdeDst = *pPdeDst;
910 if (!PdeDst.n.u1Present)
911 {
912 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
913 return VINF_SUCCESS;
914 }
915
916 /*
917 * Get the guest PD entry and calc big page.
918 */
919# if PGM_GST_TYPE == PGM_TYPE_32BIT
920 PX86PD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
921 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
922 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
923# else
924 unsigned iPDSrc;
925# if PGM_GST_TYPE == PGM_TYPE_PAE
926 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
927# else /* AMD64 */
928 PX86PML4E pPml4eSrc;
929 X86PDPE PdpeSrc;
930 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
931# endif
932 GSTPDE PdeSrc;
933
934 if (pPDSrc)
935 PdeSrc = pPDSrc->a[iPDSrc];
936 else
937 PdeSrc.u = 0;
938# endif
939
940 const uint32_t cr4 = CPUMGetGuestCR4(pVM);
941# if PGM_GST_TYPE == PGM_TYPE_AMD64
942 const bool fIsBigPage = PdeSrc.b.u1Size;
943# else
944 const bool fIsBigPage = PdeSrc.b.u1Size && (cr4 & X86_CR4_PSE);
945# endif
946
947# ifdef IN_RING3
948 /*
949 * If a CR3 Sync is pending we may ignore the invalidate page operation
950 * depending on the kind of sync and if it's a global page or not.
951 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
952 */
953# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
954 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
955 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
956 && fIsBigPage
957 && PdeSrc.b.u1Global
958 && (cr4 & X86_CR4_PGE)
959 )
960 )
961# else
962 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
963# endif
964 {
965 STAM_COUNTER_INC(&pVM->pgm.s.StatHCInvalidatePageSkipped);
966 return VINF_SUCCESS;
967 }
968# endif /* IN_RING3 */
969
970
971# if PGM_GST_TYPE == PGM_TYPE_AMD64
972 Assert(pPml4eDst->n.u1Present && pPml4eDst->u & SHW_PDPT_MASK);
973 if (pPml4eSrc->n.u1Present)
974 {
975 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
976 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
977 {
978 /*
979 * Mark not present so we can resync the PML4E when it's used.
980 */
981 LogFlow(("InvalidatePage: Out-of-sync PML4E at %VGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
982 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
983 pgmPoolFree(pVM, pPml4eDst->u & X86_PML4E_PG_MASK, PGMPOOL_IDX_PML4, iPml4);
984 pPml4eDst->u = 0;
985 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
986 PGM_INVL_GUEST_TLBS();
987 }
988 else if (!pPml4eSrc->n.u1Accessed)
989 {
990 /*
991 * Mark not present so we can set the accessed bit.
992 */
993 pgmPoolFree(pVM, pPml4eDst->u & X86_PML4E_PG_MASK, PGMPOOL_IDX_PML4, iPml4);
994 pPml4eDst->u = 0;
995 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
996 PGM_INVL_GUEST_TLBS();
997 }
998 }
999 else
1000 {
1001 pgmPoolFree(pVM, pPml4eDst->u & X86_PML4E_PG_MASK, PGMPOOL_IDX_PML4, iPml4);
1002 pPml4eDst->u = 0;
1003 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1004 PGM_INVL_PG(GCPtrPage);
1005 return VINF_SUCCESS;
1006 }
1007
1008 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1009 if (PdpeSrc.n.u1Present)
1010 {
1011 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1012 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1013 {
1014 /*
1015 * Mark not present so we can resync the PML4E when it's used.
1016 */
1017 LogFlow(("InvalidatePage: Out-of-sync PDPE at %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1018 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1019 pgmPoolFree(pVM, pPdpeDst->u & SHW_PDPT_MASK, PGMPOOL_IDX_PML4, iPml4);
1020 pPdpeDst->u = 0;
1021 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1022 PGM_INVL_GUEST_TLBS();
1023 }
1024 else if (!PdpeSrc.lm.u1Accessed)
1025 {
1026 /*
1027 * Mark not present so we can set the accessed bit.
1028 */
1029 pgmPoolFree(pVM, pPdpeDst->u & SHW_PDPT_MASK, PGMPOOL_IDX_PML4, iPml4);
1030 pPdpeDst->u = 0;
1031 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
1032 PGM_INVL_GUEST_TLBS();
1033 }
1034 }
1035 else
1036 {
1037 pgmPoolFree(pVM, pPdpeDst->u & SHW_PDPT_MASK, PGMPOOL_IDX_PDPT, iPDDst);
1038 pPdpeDst->u = 0;
1039 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1040 PGM_INVL_PG(GCPtrPage);
1041 return VINF_SUCCESS;
1042 }
1043# endif
1044
1045 /*
1046 * Deal with the Guest PDE.
1047 */
1048 rc = VINF_SUCCESS;
1049 if (PdeSrc.n.u1Present)
1050 {
1051 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1052 {
1053 /*
1054 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1055 */
1056 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1057 Assert(PGMGetGuestMode(pVM) <= PGMMODE_32_BIT);
1058 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
1059 }
1060 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
1061 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1062 {
1063 /*
1064 * Mark not present so we can resync the PDE when it's used.
1065 */
1066 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1067 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1068 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1069 pPdeDst->u = 0;
1070 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1071 PGM_INVL_GUEST_TLBS();
1072 }
1073 else if (!PdeSrc.n.u1Accessed)
1074 {
1075 /*
1076 * Mark not present so we can set the accessed bit.
1077 */
1078 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1079 pPdeDst->u = 0;
1080 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
1081 PGM_INVL_GUEST_TLBS();
1082 }
1083 else if (!fIsBigPage)
1084 {
1085 /*
1086 * 4KB - page.
1087 */
1088 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1089 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1090# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1091 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1092 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1093# endif
1094 if (pShwPage->GCPhys == GCPhys)
1095 {
1096# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1097 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1098 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1099 if (pPT->a[iPTEDst].n.u1Present)
1100 {
1101# ifdef PGMPOOL_WITH_USER_TRACKING
1102 /* This is very unlikely with caching/monitoring enabled. */
1103 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1104# endif
1105 pPT->a[iPTEDst].u = 0;
1106 }
1107# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1108 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
1109 if (VBOX_SUCCESS(rc))
1110 rc = VINF_SUCCESS;
1111# endif
1112 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4KBPages));
1113 PGM_INVL_PG(GCPtrPage);
1114 }
1115 else
1116 {
1117 /*
1118 * The page table address changed.
1119 */
1120 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%VGp iPDDst=%#x\n",
1121 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1122 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1123 pPdeDst->u = 0;
1124 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1125 PGM_INVL_GUEST_TLBS();
1126 }
1127 }
1128 else
1129 {
1130 /*
1131 * 2/4MB - page.
1132 */
1133 /* Before freeing the page, check if anything really changed. */
1134 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1135 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1136# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1137 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1138 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1139# endif
1140 if ( pShwPage->GCPhys == GCPhys
1141 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1142 {
1143 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1144 /** @todo PAT */
1145 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1146 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1147 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1148 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1149 {
1150 LogFlow(("Skipping flush for big page containing %VGv (PD=%X .u=%VX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1151 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPagesSkip));
1152 return VINF_SUCCESS;
1153 }
1154 }
1155
1156 /*
1157 * Ok, the page table is present and it's been changed in the guest.
1158 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1159 * We could do this for some flushes in GC too, but we need an algorithm for
1160 * deciding which 4MB pages containing code likely to be executed very soon.
1161 */
1162 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1163 pPdeDst->u = 0;
1164 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPages));
1165 PGM_INVL_BIG_PG(GCPtrPage);
1166 }
1167 }
1168 else
1169 {
1170 /*
1171 * Page directory is not present, mark shadow PDE not present.
1172 */
1173 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1174 {
1175 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1176 pPdeDst->u = 0;
1177 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1178 PGM_INVL_PG(GCPtrPage);
1179 }
1180 else
1181 {
1182 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1183 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDMappings));
1184 }
1185 }
1186
1187 return rc;
1188
1189#else /* guest real and protected mode */
1190 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1191 return VINF_SUCCESS;
1192#endif
1193}
1194
1195
1196#ifdef PGMPOOL_WITH_USER_TRACKING
1197/**
1198 * Update the tracking of shadowed pages.
1199 *
1200 * @param pVM The VM handle.
1201 * @param pShwPage The shadow page.
1202 * @param HCPhys The physical page we is being dereferenced.
1203 */
1204DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1205{
1206# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1207 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1208 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%VHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1209
1210 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1211 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1212 * 2. write protect all shadowed pages. I.e. implement caching.
1213 */
1214 /*
1215 * Find the guest address.
1216 */
1217 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1218 pRam;
1219 pRam = CTXALLSUFF(pRam->pNext))
1220 {
1221 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1222 while (iPage-- > 0)
1223 {
1224 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1225 {
1226 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
1227 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1228 pShwPage->cPresent--;
1229 pPool->cPresent--;
1230 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1231 return;
1232 }
1233 }
1234 }
1235
1236 for (;;)
1237 AssertReleaseMsgFailed(("HCPhys=%VHp wasn't found!\n", HCPhys));
1238# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1239 pShwPage->cPresent--;
1240 pVM->pgm.s.CTXSUFF(pPool)->cPresent--;
1241# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1242}
1243
1244
1245/**
1246 * Update the tracking of shadowed pages.
1247 *
1248 * @param pVM The VM handle.
1249 * @param pShwPage The shadow page.
1250 * @param u16 The top 16-bit of the pPage->HCPhys.
1251 * @param pPage Pointer to the guest page. this will be modified.
1252 * @param iPTDst The index into the shadow table.
1253 */
1254DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1255{
1256# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1257 /*
1258 * We're making certain assumptions about the placement of cRef and idx.
1259 */
1260 Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
1261 Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
1262
1263 /*
1264 * Just deal with the simple first time here.
1265 */
1266 if (!u16)
1267 {
1268 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1269 u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
1270 }
1271 else
1272 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1273
1274 /* write back, trying to be clever... */
1275 Log2(("SyncPageWorkerTrackAddRef: u16=%#x pPage->HCPhys=%VHp->%VHp iPTDst=%#x\n",
1276 u16, pPage->HCPhys, (pPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
1277 *((uint16_t *)&pPage->HCPhys + 3) = u16; /** @todo PAGE FLAGS */
1278# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1279
1280 /* update statistics. */
1281 pVM->pgm.s.CTXSUFF(pPool)->cPresent++;
1282 pShwPage->cPresent++;
1283 if (pShwPage->iFirstPresent > iPTDst)
1284 pShwPage->iFirstPresent = iPTDst;
1285}
1286#endif /* PGMPOOL_WITH_USER_TRACKING */
1287
1288
1289/**
1290 * Creates a 4K shadow page for a guest page.
1291 *
1292 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1293 * physical address. The PdeSrc argument only the flags are used. No page structured
1294 * will be mapped in this function.
1295 *
1296 * @param pVM VM handle.
1297 * @param pPteDst Destination page table entry.
1298 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1299 * Can safely assume that only the flags are being used.
1300 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1301 * @param pShwPage Pointer to the shadow page.
1302 * @param iPTDst The index into the shadow table.
1303 *
1304 * @remark Not used for 2/4MB pages!
1305 */
1306DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1307{
1308 if (PteSrc.n.u1Present)
1309 {
1310 /*
1311 * Find the ram range.
1312 */
1313 PPGMPAGE pPage;
1314 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1315 if (VBOX_SUCCESS(rc))
1316 {
1317 /** @todo investiage PWT, PCD and PAT. */
1318 /*
1319 * Make page table entry.
1320 */
1321 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
1322 SHWPTE PteDst;
1323 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1324 {
1325 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1326 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1327 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1328 | (HCPhys & X86_PTE_PAE_PG_MASK);
1329 else
1330 {
1331 LogFlow(("SyncPageWorker: monitored page (%VGp) -> mark not present\n", HCPhys));
1332 PteDst.u = 0;
1333 }
1334 /** @todo count these two kinds. */
1335 }
1336 else
1337 {
1338 /*
1339 * If the page or page directory entry is not marked accessed,
1340 * we mark the page not present.
1341 */
1342 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1343 {
1344 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1345 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,AccessedPage));
1346 PteDst.u = 0;
1347 }
1348 else
1349 /*
1350 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1351 * when the page is modified.
1352 */
1353 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1354 {
1355 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPage));
1356 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1357 | (HCPhys & X86_PTE_PAE_PG_MASK)
1358 | PGM_PTFLAGS_TRACK_DIRTY;
1359 }
1360 else
1361 {
1362 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageSkipped));
1363 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1364 | (HCPhys & X86_PTE_PAE_PG_MASK);
1365 }
1366 }
1367
1368#ifdef PGMPOOL_WITH_USER_TRACKING
1369 /*
1370 * Keep user track up to date.
1371 */
1372 if (PteDst.n.u1Present)
1373 {
1374 if (!pPteDst->n.u1Present)
1375 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1376 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1377 {
1378 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1379 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1380 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1381 }
1382 }
1383 else if (pPteDst->n.u1Present)
1384 {
1385 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1386 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1387 }
1388#endif /* PGMPOOL_WITH_USER_TRACKING */
1389
1390 /*
1391 * Update statistics and commit the entry.
1392 */
1393 if (!PteSrc.n.u1Global)
1394 pShwPage->fSeenNonGlobal = true;
1395 *pPteDst = PteDst;
1396 }
1397 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1398 /** @todo count these. */
1399 }
1400 else
1401 {
1402 /*
1403 * Page not-present.
1404 */
1405 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1406#ifdef PGMPOOL_WITH_USER_TRACKING
1407 /* Keep user track up to date. */
1408 if (pPteDst->n.u1Present)
1409 {
1410 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1411 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1412 }
1413#endif /* PGMPOOL_WITH_USER_TRACKING */
1414 pPteDst->u = 0;
1415 /** @todo count these. */
1416 }
1417}
1418
1419
1420/**
1421 * Syncs a guest OS page.
1422 *
1423 * There are no conflicts at this point, neither is there any need for
1424 * page table allocations.
1425 *
1426 * @returns VBox status code.
1427 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1428 * @param pVM VM handle.
1429 * @param PdeSrc Page directory entry of the guest.
1430 * @param GCPtrPage Guest context page address.
1431 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1432 * @param uErr Fault error (X86_TRAP_PF_*).
1433 */
1434PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr)
1435{
1436 LogFlow(("SyncPage: GCPtrPage=%VGv cPages=%d uErr=%#x\n", GCPtrPage, cPages, uErr));
1437
1438#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1439 || PGM_GST_TYPE == PGM_TYPE_PAE \
1440 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1441 && PGM_SHW_TYPE != PGM_TYPE_NESTED
1442
1443# if PGM_WITH_NX(PGM_GST_TYPE)
1444 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1445# endif
1446
1447 /*
1448 * Assert preconditions.
1449 */
1450 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1451 Assert(PdeSrc.n.u1Present);
1452 Assert(cPages);
1453
1454 /*
1455 * Get the shadow PDE, find the shadow page table in the pool.
1456 */
1457# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1458 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1459 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1460# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1461 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1462 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1463# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1464 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1465 PX86PDPAE pPDDst;
1466 X86PDEPAE PdeDst;
1467 PX86PDPT pPdpt;
1468
1469 int rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdpt, &pPDDst);
1470 AssertRCReturn(rc, rc);
1471 Assert(pPDDst && pPdpt);
1472 PdeDst = pPDDst->a[iPDDst];
1473# endif
1474 Assert(PdeDst.n.u1Present);
1475 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1476
1477 /*
1478 * Check that the page is present and that the shadow PDE isn't out of sync.
1479 */
1480# if PGM_GST_TYPE == PGM_TYPE_AMD64
1481 const bool fBigPage = PdeSrc.b.u1Size;
1482# else
1483 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1484# endif
1485 RTGCPHYS GCPhys;
1486 if (!fBigPage)
1487 {
1488 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1489# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1490 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1491 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1492# endif
1493 }
1494 else
1495 {
1496 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1497# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1498 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1499 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1500# endif
1501 }
1502 if ( pShwPage->GCPhys == GCPhys
1503 && PdeSrc.n.u1Present
1504 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1505 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1506# if PGM_WITH_NX(PGM_GST_TYPE)
1507 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1508# endif
1509 )
1510 {
1511 /*
1512 * Check that the PDE is marked accessed already.
1513 * Since we set the accessed bit *before* getting here on a #PF, this
1514 * check is only meant for dealing with non-#PF'ing paths.
1515 */
1516 if (PdeSrc.n.u1Accessed)
1517 {
1518 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1519 if (!fBigPage)
1520 {
1521 /*
1522 * 4KB Page - Map the guest page table.
1523 */
1524 PGSTPT pPTSrc;
1525 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1526 if (VBOX_SUCCESS(rc))
1527 {
1528# ifdef PGM_SYNC_N_PAGES
1529 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1530 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1531 {
1532 /*
1533 * This code path is currently only taken when the caller is PGMTrap0eHandler
1534 * for non-present pages!
1535 *
1536 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1537 * deal with locality.
1538 */
1539 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1540# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1541 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1542 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1543# else
1544 const unsigned offPTSrc = 0;
1545# endif
1546 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1547 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1548 iPTDst = 0;
1549 else
1550 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1551 for (; iPTDst < iPTDstEnd; iPTDst++)
1552 {
1553 if (!pPTDst->a[iPTDst].n.u1Present)
1554 {
1555 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1556 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1557 NOREF(GCPtrCurPage);
1558#ifndef IN_RING0
1559 /*
1560 * Assuming kernel code will be marked as supervisor - and not as user level
1561 * and executed using a conforming code selector - And marked as readonly.
1562 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1563 */
1564 PPGMPAGE pPage;
1565 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1566 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1567 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1568 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1569 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1570 )
1571#endif /* else: CSAM not active */
1572 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1573 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1574 GCPtrCurPage, PteSrc.n.u1Present,
1575 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1576 PteSrc.n.u1User & PdeSrc.n.u1User,
1577 (uint64_t)PteSrc.u,
1578 (uint64_t)pPTDst->a[iPTDst].u,
1579 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1580 }
1581 }
1582 }
1583 else
1584# endif /* PGM_SYNC_N_PAGES */
1585 {
1586 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1587 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1588 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1589 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1590 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1591 GCPtrPage, PteSrc.n.u1Present,
1592 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1593 PteSrc.n.u1User & PdeSrc.n.u1User,
1594 (uint64_t)PteSrc.u,
1595 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1596 }
1597 }
1598 else /* MMIO or invalid page: emulated in #PF handler. */
1599 {
1600 LogFlow(("PGM_GCPHYS_2_PTR %VGp failed with %Vrc\n", GCPhys, rc));
1601 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1602 }
1603 }
1604 else
1605 {
1606 /*
1607 * 4/2MB page - lazy syncing shadow 4K pages.
1608 * (There are many causes of getting here, it's no longer only CSAM.)
1609 */
1610 /* Calculate the GC physical address of this 4KB shadow page. */
1611 RTGCPHYS GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK) | ((RTGCUINTPTR)GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1612 /* Find ram range. */
1613 PPGMPAGE pPage;
1614 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1615 if (VBOX_SUCCESS(rc))
1616 {
1617 /*
1618 * Make shadow PTE entry.
1619 */
1620 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
1621 SHWPTE PteDst;
1622 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1623 | (HCPhys & X86_PTE_PAE_PG_MASK);
1624 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1625 {
1626 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1627 PteDst.n.u1Write = 0;
1628 else
1629 PteDst.u = 0;
1630 }
1631 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1632# ifdef PGMPOOL_WITH_USER_TRACKING
1633 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1634 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1635# endif
1636 pPTDst->a[iPTDst] = PteDst;
1637
1638
1639 /*
1640 * If the page is not flagged as dirty and is writable, then make it read-only
1641 * at PD level, so we can set the dirty bit when the page is modified.
1642 *
1643 * ASSUMES that page access handlers are implemented on page table entry level.
1644 * Thus we will first catch the dirty access and set PDE.D and restart. If
1645 * there is an access handler, we'll trap again and let it work on the problem.
1646 */
1647 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1648 * As for invlpg, it simply frees the whole shadow PT.
1649 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1650 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1651 {
1652 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
1653 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1654 PdeDst.n.u1Write = 0;
1655 }
1656 else
1657 {
1658 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1659 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1660 }
1661# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1662 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
1663# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1664 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst] = PdeDst;
1665# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1666 pPDDst->a[iPDDst] = PdeDst;
1667# endif
1668 Log2(("SyncPage: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%VGp%s\n",
1669 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1670 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1671 }
1672 else
1673 LogFlow(("PGM_GCPHYS_2_PTR %VGp (big) failed with %Vrc\n", GCPhys, rc));
1674 }
1675 return VINF_SUCCESS;
1676 }
1677 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDNAs));
1678 }
1679 else
1680 {
1681 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDOutOfSync));
1682 Log2(("SyncPage: Out-Of-Sync PDE at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1683 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1684 }
1685
1686 /*
1687 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1688 * Yea, I'm lazy.
1689 */
1690 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1691# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1692 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
1693# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1694 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst].u = 0;
1695# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1696 pPDDst->a[iPDDst].u = 0;
1697# endif
1698 PGM_INVL_GUEST_TLBS();
1699 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1700
1701#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1702 && PGM_SHW_TYPE != PGM_TYPE_NESTED
1703
1704# ifdef PGM_SYNC_N_PAGES
1705 /*
1706 * Get the shadow PDE, find the shadow page table in the pool.
1707 */
1708 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1709# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1710 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1711# else /* PAE */
1712 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1713# endif
1714 Assert(PdeDst.n.u1Present);
1715 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1716 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1717
1718# if PGM_SHW_TYPE == PGM_TYPE_PAE
1719 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1720 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1721# else
1722 const unsigned offPTSrc = 0;
1723# endif
1724
1725 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1726 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1727 {
1728 /*
1729 * This code path is currently only taken when the caller is PGMTrap0eHandler
1730 * for non-present pages!
1731 *
1732 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1733 * deal with locality.
1734 */
1735 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1736 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1737 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1738 iPTDst = 0;
1739 else
1740 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1741 for (; iPTDst < iPTDstEnd; iPTDst++)
1742 {
1743 if (!pPTDst->a[iPTDst].n.u1Present)
1744 {
1745 GSTPTE PteSrc;
1746
1747 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1748
1749 /* Fake the page table entry */
1750 PteSrc.u = GCPtrCurPage;
1751 PteSrc.n.u1Present = 1;
1752 PteSrc.n.u1Dirty = 1;
1753 PteSrc.n.u1Accessed = 1;
1754 PteSrc.n.u1Write = 1;
1755 PteSrc.n.u1User = 1;
1756
1757 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1758
1759 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1760 GCPtrCurPage, PteSrc.n.u1Present,
1761 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1762 PteSrc.n.u1User & PdeSrc.n.u1User,
1763 (uint64_t)PteSrc.u,
1764 (uint64_t)pPTDst->a[iPTDst].u,
1765 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1766 }
1767 }
1768 }
1769 else
1770# endif /* PGM_SYNC_N_PAGES */
1771 {
1772 GSTPTE PteSrc;
1773 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1774 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1775
1776 /* Fake the page table entry */
1777 PteSrc.u = GCPtrCurPage;
1778 PteSrc.n.u1Present = 1;
1779 PteSrc.n.u1Dirty = 1;
1780 PteSrc.n.u1Accessed = 1;
1781 PteSrc.n.u1Write = 1;
1782 PteSrc.n.u1User = 1;
1783 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1784
1785 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
1786 GCPtrPage, PteSrc.n.u1Present,
1787 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1788 PteSrc.n.u1User & PdeSrc.n.u1User,
1789 (uint64_t)PteSrc.u,
1790 (uint64_t)pPTDst->a[iPTDst].u,
1791 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1792 }
1793 return VINF_SUCCESS;
1794
1795#else
1796 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1797 return VERR_INTERNAL_ERROR;
1798#endif
1799}
1800
1801
1802
1803#if PGM_WITH_PAGING(PGM_GST_TYPE)
1804
1805/**
1806 * Investigate page fault and handle write protection page faults caused by
1807 * dirty bit tracking.
1808 *
1809 * @returns VBox status code.
1810 * @param pVM VM handle.
1811 * @param uErr Page fault error code.
1812 * @param pPdeDst Shadow page directory entry.
1813 * @param pPdeSrc Guest page directory entry.
1814 * @param GCPtrPage Guest context page address.
1815 */
1816PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage)
1817{
1818 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
1819 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
1820 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
1821# if PGM_GST_TYPE == PGM_TYPE_AMD64
1822 bool fBigPagesSupported = true;
1823# else
1824 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1825# endif
1826# if PGM_WITH_NX(PGM_GST_TYPE)
1827 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1828# endif
1829 unsigned uPageFaultLevel;
1830 int rc;
1831
1832 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1833 LogFlow(("CheckPageFault: GCPtrPage=%VGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
1834
1835# if PGM_GST_TYPE == PGM_TYPE_PAE \
1836 || PGM_GST_TYPE == PGM_TYPE_AMD64
1837
1838# if PGM_GST_TYPE == PGM_TYPE_AMD64
1839 PX86PML4E pPml4eSrc;
1840 PX86PDPE pPdpeSrc;
1841
1842 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc);
1843 Assert(pPml4eSrc);
1844
1845 /*
1846 * Real page fault? (PML4E level)
1847 */
1848 if ( (uErr & X86_TRAP_PF_RSVD)
1849 || !pPml4eSrc->n.u1Present
1850 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
1851 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1852 || (fUserLevelFault && !pPml4eSrc->n.u1User)
1853 )
1854 {
1855 uPageFaultLevel = 0;
1856 goto UpperLevelPageFault;
1857 }
1858 Assert(pPdpeSrc);
1859
1860# else /* PAE */
1861 PX86PDPE pPdpeSrc = &pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtrPage >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
1862# endif
1863
1864 /*
1865 * Real page fault? (PDPE level)
1866 */
1867 if ( (uErr & X86_TRAP_PF_RSVD)
1868 || !pPdpeSrc->n.u1Present
1869# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
1870 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
1871 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
1872 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
1873# endif
1874 )
1875 {
1876 uPageFaultLevel = 1;
1877 goto UpperLevelPageFault;
1878 }
1879# endif
1880
1881 /*
1882 * Real page fault? (PDE level)
1883 */
1884 if ( (uErr & X86_TRAP_PF_RSVD)
1885 || !pPdeSrc->n.u1Present
1886# if PGM_WITH_NX(PGM_GST_TYPE)
1887 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
1888# endif
1889 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1890 || (fUserLevelFault && !pPdeSrc->n.u1User) )
1891 {
1892 uPageFaultLevel = 2;
1893 goto UpperLevelPageFault;
1894 }
1895
1896 /*
1897 * First check the easy case where the page directory has been marked read-only to track
1898 * the dirty bit of an emulated BIG page
1899 */
1900 if (pPdeSrc->b.u1Size && fBigPagesSupported)
1901 {
1902 /* Mark guest page directory as accessed */
1903# if PGM_GST_TYPE == PGM_TYPE_AMD64
1904 pPml4eSrc->n.u1Accessed = 1;
1905 pPdpeSrc->lm.u1Accessed = 1;
1906# endif
1907 pPdeSrc->b.u1Accessed = 1;
1908
1909 /*
1910 * Only write protection page faults are relevant here.
1911 */
1912 if (fWriteFault)
1913 {
1914 /* Mark guest page directory as dirty (BIG page only). */
1915 pPdeSrc->b.u1Dirty = 1;
1916
1917 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
1918 {
1919 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1920
1921 Assert(pPdeSrc->b.u1Write);
1922
1923 pPdeDst->n.u1Write = 1;
1924 pPdeDst->n.u1Accessed = 1;
1925 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1926 PGM_INVL_BIG_PG(GCPtrPage);
1927 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1928 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
1929 }
1930 }
1931 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1932 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
1933 }
1934 /* else: 4KB page table */
1935
1936 /*
1937 * Map the guest page table.
1938 */
1939 PGSTPT pPTSrc;
1940 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
1941 if (VBOX_SUCCESS(rc))
1942 {
1943 /*
1944 * Real page fault?
1945 */
1946 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
1947 const GSTPTE PteSrc = *pPteSrc;
1948 if ( !PteSrc.n.u1Present
1949# if PGM_WITH_NX(PGM_GST_TYPE)
1950 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
1951# endif
1952 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
1953 || (fUserLevelFault && !PteSrc.n.u1User)
1954 )
1955 {
1956# ifdef IN_GC
1957 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1958# endif
1959 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1960 LogFlow(("CheckPageFault: real page fault at %VGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
1961
1962 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1963 * See the 2nd case above as well.
1964 */
1965 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
1966 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1967
1968 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1969 return VINF_EM_RAW_GUEST_TRAP;
1970 }
1971 LogFlow(("CheckPageFault: page fault at %VGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
1972
1973 /*
1974 * Set the accessed bits in the page directory and the page table.
1975 */
1976# if PGM_GST_TYPE == PGM_TYPE_AMD64
1977 pPml4eSrc->n.u1Accessed = 1;
1978 pPdpeSrc->lm.u1Accessed = 1;
1979# endif
1980 pPdeSrc->n.u1Accessed = 1;
1981 pPteSrc->n.u1Accessed = 1;
1982
1983 /*
1984 * Only write protection page faults are relevant here.
1985 */
1986 if (fWriteFault)
1987 {
1988 /* Write access, so mark guest entry as dirty. */
1989# if defined(IN_GC) && defined(VBOX_WITH_STATISTICS)
1990 if (!pPteSrc->n.u1Dirty)
1991 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtiedPage);
1992 else
1993 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageAlreadyDirty);
1994# endif
1995
1996 pPteSrc->n.u1Dirty = 1;
1997
1998 if (pPdeDst->n.u1Present)
1999 {
2000 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2001 * Our individual shadow handlers will provide more information and force a fatal exit.
2002 */
2003 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2004 {
2005 LogRel(("CheckPageFault: write to hypervisor region %VGv\n", GCPtrPage));
2006 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2007 return VINF_SUCCESS;
2008 }
2009
2010 /*
2011 * Map shadow page table.
2012 */
2013 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2014 if (pShwPage)
2015 {
2016 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2017 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2018 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
2019 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
2020 {
2021 LogFlow(("DIRTY page trap addr=%VGv\n", GCPtrPage));
2022# ifdef VBOX_STRICT
2023 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2024 if (pPage)
2025 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
2026 ("Unexpected dirty bit tracking on monitored page %VGv (phys %VGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
2027# endif
2028 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
2029
2030 Assert(pPteSrc->n.u1Write);
2031
2032 pPteDst->n.u1Write = 1;
2033 pPteDst->n.u1Dirty = 1;
2034 pPteDst->n.u1Accessed = 1;
2035 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2036 PGM_INVL_PG(GCPtrPage);
2037
2038 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2039 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2040 }
2041 }
2042 else
2043 AssertMsgFailed(("pgmPoolGetPageByHCPhys %VGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2044 }
2045 }
2046/** @todo Optimize accessed bit emulation? */
2047# ifdef VBOX_STRICT
2048 /*
2049 * Sanity check.
2050 */
2051 else if ( !pPteSrc->n.u1Dirty
2052 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2053 && pPdeDst->n.u1Present)
2054 {
2055 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2056 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2057 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2058 if ( pPteDst->n.u1Present
2059 && pPteDst->n.u1Write)
2060 LogFlow(("Writable present page %VGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2061 }
2062# endif /* VBOX_STRICT */
2063 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2064 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2065 }
2066 AssertRC(rc);
2067 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2068 return rc;
2069
2070
2071UpperLevelPageFault:
2072 /* Pagefault detected while checking the PML4E, PDPE or PDE.
2073 * Single exit handler to get rid of duplicate code paths.
2074 */
2075# ifdef IN_GC
2076 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
2077# endif
2078 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
2079 LogFlow(("CheckPageFault: real page fault at %VGv (%d)\n", GCPtrPage, uPageFaultLevel));
2080
2081 if (
2082# if PGM_GST_TYPE == PGM_TYPE_AMD64
2083 pPml4eSrc->n.u1Present &&
2084# endif
2085# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2086 pPdpeSrc->n.u1Present &&
2087# endif
2088 pPdeSrc->n.u1Present)
2089 {
2090 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2091 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2092 {
2093 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2094 }
2095 else
2096 {
2097 /*
2098 * Map the guest page table.
2099 */
2100 PGSTPT pPTSrc;
2101 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2102 if (VBOX_SUCCESS(rc))
2103 {
2104 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2105 const GSTPTE PteSrc = *pPteSrc;
2106 if (pPteSrc->n.u1Present)
2107 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2108 }
2109 AssertRC(rc);
2110 }
2111 }
2112 return VINF_EM_RAW_GUEST_TRAP;
2113}
2114
2115#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
2116
2117
2118/**
2119 * Sync a shadow page table.
2120 *
2121 * The shadow page table is not present. This includes the case where
2122 * there is a conflict with a mapping.
2123 *
2124 * @returns VBox status code.
2125 * @param pVM VM handle.
2126 * @param iPD Page directory index.
2127 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2128 * Assume this is a temporary mapping.
2129 * @param GCPtrPage GC Pointer of the page that caused the fault
2130 */
2131PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage)
2132{
2133 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2134 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPtPD[iPDSrc]);
2135 LogFlow(("SyncPT: GCPtrPage=%VGv\n", GCPtrPage));
2136
2137#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2138 || PGM_GST_TYPE == PGM_TYPE_PAE \
2139 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2140 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2141
2142 int rc = VINF_SUCCESS;
2143
2144 /*
2145 * Validate input a little bit.
2146 */
2147 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%VGv\n", iPDSrc, GCPtrPage));
2148# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2149 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2150 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2151# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2152 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2153 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2154# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2155 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2156 PX86PDPAE pPDDst;
2157 PX86PDPT pPdpt;
2158 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdpt, &pPDDst);
2159 if (rc != VINF_SUCCESS)
2160 {
2161 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("Unexpected rc=%Vrc\n", rc));
2162 return rc;
2163 }
2164 Assert(pPDDst);
2165# endif
2166 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2167 SHWPDE PdeDst = *pPdeDst;
2168
2169# ifndef PGM_WITHOUT_MAPPINGS
2170 /*
2171 * Check for conflicts.
2172 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2173 * HC: Simply resolve the conflict.
2174 */
2175 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2176 {
2177 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2178# ifndef IN_RING3
2179 Log(("SyncPT: Conflict at %VGv\n", GCPtrPage));
2180 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2181 return VERR_ADDRESS_CONFLICT;
2182# else
2183 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2184 Assert(pMapping);
2185# if PGM_GST_TYPE == PGM_TYPE_32BIT
2186 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2187# elif PGM_GST_TYPE == PGM_TYPE_PAE
2188 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2189# else
2190 AssertFailed(); /* can't happen for amd64 */
2191# endif
2192 if (VBOX_FAILURE(rc))
2193 {
2194 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2195 return rc;
2196 }
2197 PdeDst = *pPdeDst;
2198# endif
2199 }
2200# else /* PGM_WITHOUT_MAPPINGS */
2201 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2202# endif /* PGM_WITHOUT_MAPPINGS */
2203 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2204
2205 /*
2206 * Sync page directory entry.
2207 */
2208 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2209 if (PdeSrc.n.u1Present)
2210 {
2211 /*
2212 * Allocate & map the page table.
2213 */
2214 PSHWPT pPTDst;
2215# if PGM_GST_TYPE == PGM_TYPE_AMD64
2216 const bool fPageTable = !PdeSrc.b.u1Size;
2217# else
2218 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2219# endif
2220 PPGMPOOLPAGE pShwPage;
2221 RTGCPHYS GCPhys;
2222 if (fPageTable)
2223 {
2224 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2225# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2226 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2227 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2228# endif
2229 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2230 }
2231 else
2232 {
2233 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
2234# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2235 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2236 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2237# endif
2238 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2239 }
2240 if (rc == VINF_SUCCESS)
2241 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2242 else if (rc == VINF_PGM_CACHED_PAGE)
2243 {
2244 /*
2245 * The PT was cached, just hook it up.
2246 */
2247 if (fPageTable)
2248 PdeDst.u = pShwPage->Core.Key
2249 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2250 else
2251 {
2252 PdeDst.u = pShwPage->Core.Key
2253 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2254 /* (see explanation and assumptions further down.) */
2255 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2256 {
2257 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2258 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2259 PdeDst.b.u1Write = 0;
2260 }
2261 }
2262 *pPdeDst = PdeDst;
2263 return VINF_SUCCESS;
2264 }
2265 else if (rc == VERR_PGM_POOL_FLUSHED)
2266 return VINF_PGM_SYNC_CR3;
2267 else
2268 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2269 PdeDst.u &= X86_PDE_AVL_MASK;
2270 PdeDst.u |= pShwPage->Core.Key;
2271
2272 /*
2273 * Page directory has been accessed (this is a fault situation, remember).
2274 */
2275 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2276 if (fPageTable)
2277 {
2278 /*
2279 * Page table - 4KB.
2280 *
2281 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2282 */
2283 Log2(("SyncPT: 4K %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2284 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2285 PGSTPT pPTSrc;
2286 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2287 if (VBOX_SUCCESS(rc))
2288 {
2289 /*
2290 * Start by syncing the page directory entry so CSAM's TLB trick works.
2291 */
2292 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2293 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2294 *pPdeDst = PdeDst;
2295
2296 /*
2297 * Directory/page user or supervisor privilege: (same goes for read/write)
2298 *
2299 * Directory Page Combined
2300 * U/S U/S U/S
2301 * 0 0 0
2302 * 0 1 0
2303 * 1 0 0
2304 * 1 1 1
2305 *
2306 * Simple AND operation. Table listed for completeness.
2307 *
2308 */
2309 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4k));
2310# ifdef PGM_SYNC_N_PAGES
2311 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2312 unsigned iPTDst = iPTBase;
2313 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
2314 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2315 iPTDst = 0;
2316 else
2317 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2318# else /* !PGM_SYNC_N_PAGES */
2319 unsigned iPTDst = 0;
2320 const unsigned iPTDstEnd = ELEMENTS(pPTDst->a);
2321# endif /* !PGM_SYNC_N_PAGES */
2322# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2323 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2324 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2325# else
2326 const unsigned offPTSrc = 0;
2327# endif
2328 for (; iPTDst < iPTDstEnd; iPTDst++)
2329 {
2330 const unsigned iPTSrc = iPTDst + offPTSrc;
2331 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2332
2333 if (PteSrc.n.u1Present) /* we've already cleared it above */
2334 {
2335# ifndef IN_RING0
2336 /*
2337 * Assuming kernel code will be marked as supervisor - and not as user level
2338 * and executed using a conforming code selector - And marked as readonly.
2339 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2340 */
2341 PPGMPAGE pPage;
2342 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2343 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2344 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2345 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2346 )
2347# endif
2348 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2349 Log2(("SyncPT: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%VGp\n",
2350 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2351 PteSrc.n.u1Present,
2352 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2353 PteSrc.n.u1User & PdeSrc.n.u1User,
2354 (uint64_t)PteSrc.u,
2355 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2356 (PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)));
2357 }
2358 } /* for PTEs */
2359 }
2360 }
2361 else
2362 {
2363 /*
2364 * Big page - 2/4MB.
2365 *
2366 * We'll walk the ram range list in parallel and optimize lookups.
2367 * We will only sync on shadow page table at a time.
2368 */
2369 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4M));
2370
2371 /**
2372 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2373 */
2374
2375 /*
2376 * Start by syncing the page directory entry.
2377 */
2378 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2379 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2380
2381 /*
2382 * If the page is not flagged as dirty and is writable, then make it read-only
2383 * at PD level, so we can set the dirty bit when the page is modified.
2384 *
2385 * ASSUMES that page access handlers are implemented on page table entry level.
2386 * Thus we will first catch the dirty access and set PDE.D and restart. If
2387 * there is an access handler, we'll trap again and let it work on the problem.
2388 */
2389 /** @todo move the above stuff to a section in the PGM documentation. */
2390 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2391 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2392 {
2393 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2394 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2395 PdeDst.b.u1Write = 0;
2396 }
2397 *pPdeDst = PdeDst;
2398
2399 /*
2400 * Fill the shadow page table.
2401 */
2402 /* Get address and flags from the source PDE. */
2403 SHWPTE PteDstBase;
2404 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2405
2406 /* Loop thru the entries in the shadow PT. */
2407 const RTGCUINTPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2408 Log2(("SyncPT: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%VGv GCPhys=%VGp %s\n",
2409 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2410 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2411 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
2412 unsigned iPTDst = 0;
2413 while (iPTDst < ELEMENTS(pPTDst->a))
2414 {
2415 /* Advance ram range list. */
2416 while (pRam && GCPhys > pRam->GCPhysLast)
2417 pRam = CTXALLSUFF(pRam->pNext);
2418 if (pRam && GCPhys >= pRam->GCPhys)
2419 {
2420 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2421 do
2422 {
2423 /* Make shadow PTE. */
2424 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2425 SHWPTE PteDst;
2426
2427 /* Make sure the RAM has already been allocated. */
2428 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2429 {
2430 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2431 {
2432# ifdef IN_RING3
2433 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2434# else
2435 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2436# endif
2437 if (rc != VINF_SUCCESS)
2438 return rc;
2439 }
2440 }
2441
2442 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2443 {
2444 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2445 {
2446 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2447 PteDst.n.u1Write = 0;
2448 }
2449 else
2450 PteDst.u = 0;
2451 }
2452# ifndef IN_RING0
2453 /*
2454 * Assuming kernel code will be marked as supervisor and not as user level and executed
2455 * using a conforming code selector. Don't check for readonly, as that implies the whole
2456 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2457 */
2458 else if ( !PdeSrc.n.u1User
2459 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2460 PteDst.u = 0;
2461# endif
2462 else
2463 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2464# ifdef PGMPOOL_WITH_USER_TRACKING
2465 if (PteDst.n.u1Present)
2466 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
2467# endif
2468 /* commit it */
2469 pPTDst->a[iPTDst] = PteDst;
2470 Log4(("SyncPT: BIG %VGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2471 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2472 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2473
2474 /* advance */
2475 GCPhys += PAGE_SIZE;
2476 iHCPage++;
2477 iPTDst++;
2478 } while ( iPTDst < ELEMENTS(pPTDst->a)
2479 && GCPhys <= pRam->GCPhysLast);
2480 }
2481 else if (pRam)
2482 {
2483 Log(("Invalid pages at %VGp\n", GCPhys));
2484 do
2485 {
2486 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2487 GCPhys += PAGE_SIZE;
2488 iPTDst++;
2489 } while ( iPTDst < ELEMENTS(pPTDst->a)
2490 && GCPhys < pRam->GCPhys);
2491 }
2492 else
2493 {
2494 Log(("Invalid pages at %VGp (2)\n", GCPhys));
2495 for ( ; iPTDst < ELEMENTS(pPTDst->a); iPTDst++)
2496 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2497 }
2498 } /* while more PTEs */
2499 } /* 4KB / 4MB */
2500 }
2501 else
2502 AssertRelease(!PdeDst.n.u1Present);
2503
2504 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2505# ifdef IN_GC
2506 if (VBOX_FAILURE(rc))
2507 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPTFailed));
2508# endif
2509 return rc;
2510
2511#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2512 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2513
2514 int rc = VINF_SUCCESS;
2515
2516 /*
2517 * Validate input a little bit.
2518 */
2519# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2520 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2521# else
2522 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2523# endif
2524 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2525 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2526 SHWPDE PdeDst = *pPdeDst;
2527
2528 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2529 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2530
2531 GSTPDE PdeSrc;
2532 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2533 PdeSrc.n.u1Present = 1;
2534 PdeSrc.n.u1Write = 1;
2535 PdeSrc.n.u1Accessed = 1;
2536 PdeSrc.n.u1User = 1;
2537
2538 /*
2539 * Allocate & map the page table.
2540 */
2541 PSHWPT pPTDst;
2542 PPGMPOOLPAGE pShwPage;
2543 RTGCPHYS GCPhys;
2544
2545 /* Virtual address = physical address */
2546 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK_32;
2547 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2548
2549 if ( rc == VINF_SUCCESS
2550 || rc == VINF_PGM_CACHED_PAGE)
2551 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2552 else
2553 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2554
2555 PdeDst.u &= X86_PDE_AVL_MASK;
2556 PdeDst.u |= pShwPage->Core.Key;
2557 PdeDst.n.u1Present = 1;
2558 PdeDst.n.u1Write = 1;
2559 PdeDst.n.u1User = 1;
2560 *pPdeDst = PdeDst;
2561
2562 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2563 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2564 return rc;
2565
2566#else
2567 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2568 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2569 return VERR_INTERNAL_ERROR;
2570#endif
2571}
2572
2573
2574
2575/**
2576 * Prefetch a page/set of pages.
2577 *
2578 * Typically used to sync commonly used pages before entering raw mode
2579 * after a CR3 reload.
2580 *
2581 * @returns VBox status code.
2582 * @param pVM VM handle.
2583 * @param GCPtrPage Page to invalidate.
2584 */
2585PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage)
2586{
2587#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2588 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2589 /*
2590 * Check that all Guest levels thru the PDE are present, getting the
2591 * PD and PDE in the processes.
2592 */
2593 int rc = VINF_SUCCESS;
2594# if PGM_WITH_PAGING(PGM_GST_TYPE)
2595# if PGM_GST_TYPE == PGM_TYPE_32BIT
2596 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2597 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2598# elif PGM_GST_TYPE == PGM_TYPE_PAE
2599 unsigned iPDSrc;
2600 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2601 if (!pPDSrc)
2602 return VINF_SUCCESS; /* not present */
2603# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2604 unsigned iPDSrc;
2605 PX86PML4E pPml4eSrc;
2606 X86PDPE PdpeSrc;
2607 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2608 if (!pPDSrc)
2609 return VINF_SUCCESS; /* not present */
2610# endif
2611 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2612# else
2613 PGSTPD pPDSrc = NULL;
2614 const unsigned iPDSrc = 0;
2615 GSTPDE PdeSrc;
2616
2617 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2618 PdeSrc.n.u1Present = 1;
2619 PdeSrc.n.u1Write = 1;
2620 PdeSrc.n.u1Accessed = 1;
2621 PdeSrc.n.u1User = 1;
2622# endif
2623
2624 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2625 {
2626# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2627 const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2628# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2629 const X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2630# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2631 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2632 PX86PDPAE pPDDst;
2633 X86PDEPAE PdeDst;
2634
2635# if PGM_GST_TYPE == PGM_TYPE_PROT
2636 /* AMD-V nested paging */
2637 X86PML4E Pml4eSrc;
2638 X86PDPE PdpeSrc;
2639 PX86PML4E pPml4eSrc = &Pml4eSrc;
2640
2641 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2642 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2643 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2644# endif
2645
2646 int rc = PGMShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2647 if (rc != VINF_SUCCESS)
2648 {
2649 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("Unexpected rc=%Vrc\n", rc));
2650 return rc;
2651 }
2652 Assert(pPDDst);
2653 PdeDst = pPDDst->a[iPDDst];
2654# endif
2655 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2656 {
2657 if (!PdeDst.n.u1Present)
2658 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2659 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2660 else
2661 {
2662 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2663 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2664 * makes no sense to prefetch more than one page.
2665 */
2666 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2667 if (VBOX_SUCCESS(rc))
2668 rc = VINF_SUCCESS;
2669 }
2670 }
2671 }
2672 return rc;
2673#elif PGM_SHW_TYPE == PGM_TYPE_NESTED
2674 return VINF_SUCCESS; /* ignore */
2675#endif
2676}
2677
2678
2679
2680
2681/**
2682 * Syncs a page during a PGMVerifyAccess() call.
2683 *
2684 * @returns VBox status code (informational included).
2685 * @param GCPtrPage The address of the page to sync.
2686 * @param fPage The effective guest page flags.
2687 * @param uErr The trap error code.
2688 */
2689PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fPage, unsigned uErr)
2690{
2691 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%VGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
2692
2693 Assert(!HWACCMIsNestedPagingActive(pVM));
2694#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
2695 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2696
2697# ifndef IN_RING0
2698 if (!(fPage & X86_PTE_US))
2699 {
2700 /*
2701 * Mark this page as safe.
2702 */
2703 /** @todo not correct for pages that contain both code and data!! */
2704 Log(("CSAMMarkPage %VGv; scanned=%d\n", GCPtrPage, true));
2705 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
2706 }
2707# endif
2708 /*
2709 * Get guest PD and index.
2710 */
2711
2712# if PGM_WITH_PAGING(PGM_GST_TYPE)
2713# if PGM_GST_TYPE == PGM_TYPE_32BIT
2714 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2715 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2716# elif PGM_GST_TYPE == PGM_TYPE_PAE
2717 unsigned iPDSrc;
2718 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2719
2720 if (pPDSrc)
2721 {
2722 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2723 return VINF_EM_RAW_GUEST_TRAP;
2724 }
2725# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2726 unsigned iPDSrc;
2727 PX86PML4E pPml4eSrc;
2728 X86PDPE PdpeSrc;
2729 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2730 if (!pPDSrc)
2731 {
2732 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2733 return VINF_EM_RAW_GUEST_TRAP;
2734 }
2735# endif
2736# else
2737 PGSTPD pPDSrc = NULL;
2738 const unsigned iPDSrc = 0;
2739# endif
2740 int rc = VINF_SUCCESS;
2741
2742 /*
2743 * First check if the shadow pd is present.
2744 */
2745# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2746 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2747# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2748 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2749# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2750 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2751 PX86PDPAE pPDDst;
2752 PX86PDEPAE pPdeDst;
2753
2754# if PGM_GST_TYPE == PGM_TYPE_PROT
2755 /* AMD-V nested paging */
2756 X86PML4E Pml4eSrc;
2757 X86PDPE PdpeSrc;
2758 PX86PML4E pPml4eSrc = &Pml4eSrc;
2759
2760 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2761 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2762 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2763# endif
2764
2765 rc = PGMShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2766 if (rc != VINF_SUCCESS)
2767 {
2768 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("Unexpected rc=%Vrc\n", rc));
2769 return rc;
2770 }
2771 Assert(pPDDst);
2772 pPdeDst = &pPDDst->a[iPDDst];
2773# endif
2774 if (!pPdeDst->n.u1Present)
2775 {
2776 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2777 AssertRC(rc);
2778 if (rc != VINF_SUCCESS)
2779 return rc;
2780 }
2781
2782# if PGM_WITH_PAGING(PGM_GST_TYPE)
2783 /* Check for dirty bit fault */
2784 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
2785 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
2786 Log(("PGMVerifyAccess: success (dirty)\n"));
2787 else
2788 {
2789 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2790#else
2791 {
2792 GSTPDE PdeSrc;
2793 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2794 PdeSrc.n.u1Present = 1;
2795 PdeSrc.n.u1Write = 1;
2796 PdeSrc.n.u1Accessed = 1;
2797 PdeSrc.n.u1User = 1;
2798
2799#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
2800 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
2801 if (uErr & X86_TRAP_PF_US)
2802 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
2803 else /* supervisor */
2804 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
2805
2806 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2807 if (VBOX_SUCCESS(rc))
2808 {
2809 /* Page was successfully synced */
2810 Log2(("PGMVerifyAccess: success (sync)\n"));
2811 rc = VINF_SUCCESS;
2812 }
2813 else
2814 {
2815 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", GCPtrPage, rc));
2816 return VINF_EM_RAW_GUEST_TRAP;
2817 }
2818 }
2819 return rc;
2820
2821#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2822
2823 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2824 return VERR_INTERNAL_ERROR;
2825#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2826}
2827
2828
2829#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
2830# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
2831/**
2832 * Figures out which kind of shadow page this guest PDE warrants.
2833 *
2834 * @returns Shadow page kind.
2835 * @param pPdeSrc The guest PDE in question.
2836 * @param cr4 The current guest cr4 value.
2837 */
2838DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
2839{
2840# if PMG_GST_TYPE == PGM_TYPE_AMD64
2841 if (!pPdeSrc->n.u1Size)
2842# else
2843 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
2844# endif
2845 return BTH_PGMPOOLKIND_PT_FOR_PT;
2846 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
2847 //{
2848 // case 0:
2849 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
2850 // case X86_PDE4M_RW:
2851 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
2852 // case X86_PDE4M_US:
2853 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
2854 // case X86_PDE4M_RW | X86_PDE4M_US:
2855 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
2856# if 0
2857 // case X86_PDE4M_PAE_NX:
2858 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
2859 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
2860 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
2861 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
2862 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
2863 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
2864 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
2865# endif
2866 return BTH_PGMPOOLKIND_PT_FOR_BIG;
2867 //}
2868}
2869# endif
2870#endif
2871
2872#undef MY_STAM_COUNTER_INC
2873#define MY_STAM_COUNTER_INC(a) do { } while (0)
2874
2875
2876/**
2877 * Syncs the paging hierarchy starting at CR3.
2878 *
2879 * @returns VBox status code, no specials.
2880 * @param pVM The virtual machine.
2881 * @param cr0 Guest context CR0 register
2882 * @param cr3 Guest context CR3 register
2883 * @param cr4 Guest context CR4 register
2884 * @param fGlobal Including global page directories or not
2885 */
2886PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
2887{
2888#if PGM_SHW_TYPE == PGM_TYPE_NESTED
2889 /** @todo check if this is really necessary */
2890 HWACCMFlushTLB(pVM);
2891 return VINF_SUCCESS;
2892
2893#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
2894 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
2895 fGlobal = true; /* Change this CR3 reload to be a global one. */
2896
2897 /*
2898 * Update page access handlers.
2899 * The virtual are always flushed, while the physical are only on demand.
2900 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
2901 * have to look into that later because it will have a bad influence on the performance.
2902 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
2903 * bird: Yes, but that won't work for aliases.
2904 */
2905 /** @todo this MUST go away. See #1557. */
2906 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2907 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
2908 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2909
2910# ifdef PGMPOOL_WITH_MONITORING
2911 /*
2912 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2913 * Occationally we will have to clear all the shadow page tables because we wanted
2914 * to monitor a page which was mapped by too many shadowed page tables. This operation
2915 * sometimes refered to as a 'lightweight flush'.
2916 */
2917 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL))
2918 pgmPoolMonitorModifiedClearAll(pVM);
2919 else
2920 {
2921# ifdef IN_RING3
2922 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
2923 pgmPoolClearAll(pVM);
2924# else
2925 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2926 return VINF_PGM_SYNC_CR3;
2927# endif
2928 }
2929# endif
2930
2931 Assert(fGlobal || (cr4 & X86_CR4_PGE));
2932 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTXMID(Stat,SyncCR3Global) : &pVM->pgm.s.CTXMID(Stat,SyncCR3NotGlobal));
2933
2934# if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
2935# if PGM_GST_TYPE == PGM_TYPE_AMD64
2936 bool fBigPagesSupported = true;
2937# else
2938 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2939# endif
2940
2941 /*
2942 * Get page directory addresses.
2943 */
2944# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2945 PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
2946# else /* PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64*/
2947# if PGM_GST_TYPE == PGM_TYPE_32BIT
2948 PX86PDEPAE pPDEDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[0];
2949# endif
2950# endif
2951
2952# if PGM_GST_TYPE == PGM_TYPE_32BIT
2953 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2954 Assert(pPDSrc);
2955# ifndef IN_GC
2956 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2957# endif
2958# endif
2959
2960 /*
2961 * Iterate the page directory.
2962 */
2963 PPGMMAPPING pMapping;
2964 unsigned iPdNoMapping;
2965 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
2966 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
2967
2968 /* Only check mappings if they are supposed to be put into the shadow page table. */
2969 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
2970 {
2971 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
2972 iPdNoMapping = (pMapping) ? (pMapping->GCPtr >> GST_PD_SHIFT) : ~0U;
2973 }
2974 else
2975 {
2976 pMapping = 0;
2977 iPdNoMapping = ~0U;
2978 }
2979# if PGM_GST_TYPE == PGM_TYPE_AMD64
2980 for (uint64_t iPML4E = 0; iPML4E < X86_PG_PAE_ENTRIES; iPML4E++)
2981 {
2982 /* Guest PML4E not present (anymore). */
2983 if (!pVM->pgm.s.CTXSUFF(pGstPaePML4)->a[iPML4E].n.u1Present)
2984 {
2985 /** @todo this is not efficient; figure out if we can reuse the existing cached version */
2986 /* Shadow PML4E present? */
2987 if (pVM->pgm.s.CTXMID(p,PaePML4)->a[iPML4E].n.u1Present)
2988 {
2989 /* Shadow PML4 present, so free all pdpt & pd entries. */
2990 for (uint64_t iPDPTE = 0; iPDPTE < X86_PG_AMD64_PDPE_ENTRIES; iPDPTE++)
2991 {
2992 PX86PDPT pPdptDst;
2993 PX86PDPAE pPDDst;
2994 RTGCUINTPTR GCPtr = (iPML4E << X86_PML4_SHIFT) || (iPDPTE << X86_PDPT_SHIFT);
2995
2996 int rc = PGMShwGetLongModePDPtr(pVM, GCPtr, &pPdptDst, &pPDDst);
2997 if (rc != VINF_SUCCESS)
2998 {
2999 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
3000 continue; /* next PDPTE */
3001 }
3002
3003 if (pPdptDst->a[iPDPTE].n.u1Present)
3004 {
3005 for (unsigned iPD = 0; iPD < ELEMENTS(pPDDst->a); iPD++)
3006 {
3007 if ( pPDDst->a[iPD].n.u1Present
3008 && !(pPDDst->a[iPD].u & PGM_PDFLAGS_MAPPING))
3009 {
3010 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDDst->a[iPD].u & SHW_PDE_PG_MASK), PGMPOOL_IDX_PAE_PD, (iPML4E * X86_PG_PAE_ENTRIES + iPDPTE) * X86_PG_PAE_ENTRIES + iPD);
3011 pPDDst->a[iPD].u = 0;
3012 }
3013 }
3014
3015 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPdptDst->a[iPDPTE].u & SHW_PDE_PG_MASK), PGMPOOL_IDX_PDPT, iPDPTE);
3016 pPdptDst->a[iPDPTE].u = 0;
3017 }
3018 }
3019 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pVM->pgm.s.CTXMID(p,PaePML4)->a[iPML4E].u & SHW_PDE_PG_MASK), PGMPOOL_IDX_PML4, iPML4E);
3020 pVM->pgm.s.CTXMID(p,PaePML4)->a[iPML4E].u = 0;
3021 }
3022 continue;
3023 }
3024
3025# else
3026 {
3027# endif
3028# if PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3029 for (uint64_t iPDPTE = 0; iPDPTE < GST_PDPE_ENTRIES; iPDPTE++)
3030 {
3031 unsigned iPDSrc;
3032# if PGM_GST_TYPE == PGM_TYPE_PAE
3033 PX86PDPAE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
3034 PX86PDEPAE pPDEDst = &pPDPAE->a[iPDPTE * X86_PG_PAE_ENTRIES];
3035 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPDPTE << X86_PDPT_SHIFT, &iPDSrc);
3036 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
3037# else
3038 PX86PML4E pPml4eSrc;
3039 X86PDPE PdpeSrc;
3040 PX86PDPT pPdptDst;
3041 PX86PDPAE pPDDst;
3042 PX86PDEPAE pPDEDst;
3043 RTGCUINTPTR GCPtr = (iPML4E << X86_PML4_SHIFT) || (iPDPTE << X86_PDPT_SHIFT);
3044 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3045
3046 int rc = PGMShwGetLongModePDPtr(pVM, GCPtr, &pPdptDst, &pPDDst);
3047 if (rc != VINF_SUCCESS)
3048 {
3049 if (rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT)
3050 break; /* next PML4E */
3051
3052 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
3053 continue; /* next PDPTE */
3054 }
3055 Assert(pPDDst);
3056 pPDEDst = &pPDDst->a[0];
3057# endif
3058 Assert(iPDSrc == 0);
3059
3060 if (pPDSrc == NULL)
3061 {
3062 /** @todo this is not efficient; figure out if we can reuse the existing cached version */
3063 /* PDPE not present */
3064 if (pPdptDst->a[iPDPTE].n.u1Present)
3065 {
3066 /* for each page directory entry */
3067 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
3068 {
3069 if ( pPDEDst[iPD].n.u1Present
3070 && !(pPDEDst[iPD].u & PGM_PDFLAGS_MAPPING))
3071 {
3072# if PGM_GST_TYPE == PGM_TYPE_AMD64
3073 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst[iPD].u & SHW_PDE_PG_MASK), PGMPOOL_IDX_PAE_PD, (iPML4E * X86_PG_PAE_ENTRIES + iPDPTE) * X86_PG_PAE_ENTRIES + iPD);
3074# else
3075 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst[iPD].u & SHW_PDE_PG_MASK), PGMPOOL_IDX_PAE_PD, iPDPTE * X86_PG_PAE_ENTRIES + iPD);
3076# endif
3077 pPDEDst[iPD].u = 0;
3078 }
3079 }
3080 }
3081 /* Mark it as not present if there's no hypervisor mapping present. (bit flipped at the top of Trap0eHandler) */
3082 if (!(pPdptDst->a[iPDPTE].u & PGM_PLXFLAGS_MAPPING))
3083 {
3084 if (!(pPdptDst->a[iPDPTE].u & PGM_PLXFLAGS_PERMANENT))
3085 {
3086 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPdptDst->a[iPDPTE].u & SHW_PDE_PG_MASK), PGMPOOL_IDX_PDPT, iPDPTE);
3087 pPdptDst->a[iPDPTE].u = 0;
3088 }
3089 else
3090 pPdptDst->a[iPDPTE].n.u1Present = 0;
3091 }
3092 continue; /* next PDPTE */
3093 }
3094# else /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
3095 {
3096# endif /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
3097 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
3098 {
3099# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3100 Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
3101# elif PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3102 AssertMsg(&pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512] == pPDEDst, ("%p vs %p\n", &pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512], pPDEDst));
3103# endif
3104 register GSTPDE PdeSrc = pPDSrc->a[iPD];
3105 if ( PdeSrc.n.u1Present
3106 && (PdeSrc.n.u1User || fRawR0Enabled))
3107 {
3108# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3109 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3110 && !defined(PGM_WITHOUT_MAPPINGS)
3111
3112 /*
3113 * Check for conflicts with GC mappings.
3114 */
3115# if PGM_GST_TYPE == PGM_TYPE_PAE
3116 if (iPD + iPDPTE * X86_PG_PAE_ENTRIES == iPdNoMapping)
3117# else
3118 if (iPD == iPdNoMapping)
3119# endif
3120 {
3121 if (pVM->pgm.s.fMappingsFixed)
3122 {
3123 /* It's fixed, just skip the mapping. */
3124 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3125 iPD += cPTs - 1;
3126 pPDEDst += cPTs + (PGM_GST_TYPE != PGM_SHW_TYPE) * cPTs; /* Only applies to the pae shadow and 32 bits guest case */
3127 pMapping = pMapping->CTXALLSUFF(pNext);
3128 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3129 continue;
3130 }
3131# ifdef IN_RING3
3132# if PGM_GST_TYPE == PGM_TYPE_32BIT
3133 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3134# elif PGM_GST_TYPE == PGM_TYPE_PAE
3135 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPDPTE << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3136# endif
3137 if (VBOX_FAILURE(rc))
3138 return rc;
3139
3140 /*
3141 * Update iPdNoMapping and pMapping.
3142 */
3143 pMapping = pVM->pgm.s.pMappingsR3;
3144 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3145 pMapping = pMapping->pNextR3;
3146 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3147# else
3148 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3149 return VINF_PGM_SYNC_CR3;
3150# endif
3151 }
3152# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3153 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3154# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3155 /*
3156 * Sync page directory entry.
3157 *
3158 * The current approach is to allocated the page table but to set
3159 * the entry to not-present and postpone the page table synching till
3160 * it's actually used.
3161 */
3162# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3163 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3164# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3165 const unsigned iPdShw = iPD + iPDPTE * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3166# else
3167 const unsigned iPdShw = iPD; NOREF(iPdShw);
3168# endif
3169 {
3170 SHWPDE PdeDst = *pPDEDst;
3171 if (PdeDst.n.u1Present)
3172 {
3173 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
3174 RTGCPHYS GCPhys;
3175 if ( !PdeSrc.b.u1Size
3176 || !fBigPagesSupported)
3177 {
3178 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
3179# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3180 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3181 GCPhys |= i * (PAGE_SIZE / 2);
3182# endif
3183 }
3184 else
3185 {
3186 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
3187# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3188 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3189 GCPhys |= i * X86_PAGE_2M_SIZE;
3190# endif
3191 }
3192
3193 if ( pShwPage->GCPhys == GCPhys
3194 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
3195 && ( pShwPage->fCached
3196 || ( !fGlobal
3197 && ( false
3198# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
3199 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3200# if PGM_GST_TYPE == PGM_TYPE_AMD64
3201 && (cr4 & X86_CR4_PGE)) /* global 2/4MB page. */
3202# else
3203 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
3204# endif
3205 || ( !pShwPage->fSeenNonGlobal
3206 && (cr4 & X86_CR4_PGE))
3207# endif
3208 )
3209 )
3210 )
3211 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
3212 || ( fBigPagesSupported
3213 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
3214 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
3215 )
3216 )
3217 {
3218# ifdef VBOX_WITH_STATISTICS
3219 if ( !fGlobal
3220 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3221# if PGM_GST_TYPE == PGM_TYPE_AMD64
3222 && (cr4 & X86_CR4_PGE)) /* global 2/4MB page. */
3223# else
3224 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
3225# endif
3226 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPD));
3227 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
3228 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPT));
3229 else
3230 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstCacheHit));
3231# endif /* VBOX_WITH_STATISTICS */
3232 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
3233 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
3234 //# ifdef PGMPOOL_WITH_CACHE
3235 // pgmPoolCacheUsed(pPool, pShwPage);
3236 //# endif
3237 }
3238 else
3239 {
3240 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
3241 pPDEDst->u = 0;
3242 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreed));
3243 }
3244 }
3245 else
3246 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstNotPresent));
3247 pPDEDst++;
3248 }
3249 }
3250# if PGM_GST_TYPE == PGM_TYPE_PAE
3251 else if (iPD + iPDPTE * X86_PG_PAE_ENTRIES != iPdNoMapping)
3252# else
3253 else if (iPD != iPdNoMapping)
3254# endif
3255 {
3256 /*
3257 * Check if there is any page directory to mark not present here.
3258 */
3259# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3260 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3261# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3262 const unsigned iPdShw = iPD + iPDPTE * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3263# else
3264 const unsigned iPdShw = iPD; NOREF(iPdShw);
3265# endif
3266 {
3267 if (pPDEDst->n.u1Present)
3268 {
3269 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdShw);
3270 pPDEDst->u = 0;
3271 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreedSrcNP));
3272 }
3273 pPDEDst++;
3274 }
3275 }
3276 else
3277 {
3278# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3279 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3280 && !defined(PGM_WITHOUT_MAPPINGS)
3281
3282 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3283
3284 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3285 if (pVM->pgm.s.fMappingsFixed)
3286 {
3287 /* It's fixed, just skip the mapping. */
3288 pMapping = pMapping->CTXALLSUFF(pNext);
3289 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3290 }
3291 else
3292 {
3293 /*
3294 * Check for conflicts for subsequent pagetables
3295 * and advance to the next mapping.
3296 */
3297 iPdNoMapping = ~0U;
3298 unsigned iPT = cPTs;
3299 while (iPT-- > 1)
3300 {
3301 if ( pPDSrc->a[iPD + iPT].n.u1Present
3302 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
3303 {
3304# ifdef IN_RING3
3305# if PGM_GST_TYPE == PGM_TYPE_32BIT
3306 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3307# elif PGM_GST_TYPE == PGM_TYPE_PAE
3308 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPDPTE << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3309# endif
3310 if (VBOX_FAILURE(rc))
3311 return rc;
3312
3313 /*
3314 * Update iPdNoMapping and pMapping.
3315 */
3316 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
3317 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3318 pMapping = pMapping->CTXALLSUFF(pNext);
3319 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3320 break;
3321# else
3322 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3323 return VINF_PGM_SYNC_CR3;
3324# endif
3325 }
3326 }
3327 if (iPdNoMapping == ~0U && pMapping)
3328 {
3329 pMapping = pMapping->CTXALLSUFF(pNext);
3330 if (pMapping)
3331 iPdNoMapping = pMapping->GCPtr >> GST_PD_SHIFT;
3332 }
3333 }
3334
3335 /* advance. */
3336 iPD += cPTs - 1;
3337 pPDEDst += cPTs + (PGM_GST_TYPE != PGM_SHW_TYPE) * cPTs; /* Only applies to the pae shadow and 32 bits guest case */
3338# if PGM_GST_TYPE != PGM_SHW_TYPE
3339 AssertCompile(PGM_GST_TYPE == PGM_TYPE_32BIT && PGM_SHW_TYPE == PGM_TYPE_PAE);
3340# endif
3341# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3342 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3343# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3344 }
3345
3346 } /* for iPD */
3347 } /* for each PDPTE (PAE) */
3348 } /* for each page map level 4 entry (amd64) */
3349 return VINF_SUCCESS;
3350
3351# else /* guest real and protected mode */
3352 return VINF_SUCCESS;
3353# endif
3354#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
3355}
3356
3357
3358
3359
3360#ifdef VBOX_STRICT
3361#ifdef IN_GC
3362# undef AssertMsgFailed
3363# define AssertMsgFailed Log
3364#endif
3365#ifdef IN_RING3
3366# include <VBox/dbgf.h>
3367
3368/**
3369 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3370 *
3371 * @returns VBox status code (VINF_SUCCESS).
3372 * @param pVM The VM handle.
3373 * @param cr3 The root of the hierarchy.
3374 * @param crr The cr4, only PAE and PSE is currently used.
3375 * @param fLongMode Set if long mode, false if not long mode.
3376 * @param cMaxDepth Number of levels to dump.
3377 * @param pHlp Pointer to the output functions.
3378 */
3379__BEGIN_DECLS
3380PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3381__END_DECLS
3382
3383#endif
3384
3385/**
3386 * Checks that the shadow page table is in sync with the guest one.
3387 *
3388 * @returns The number of errors.
3389 * @param pVM The virtual machine.
3390 * @param cr3 Guest context CR3 register
3391 * @param cr4 Guest context CR4 register
3392 * @param GCPtr Where to start. Defaults to 0.
3393 * @param cb How much to check. Defaults to everything.
3394 */
3395PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)
3396{
3397#if PGM_SHW_TYPE == PGM_TYPE_NESTED
3398 return 0;
3399#else
3400 unsigned cErrors = 0;
3401
3402#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3403 || PGM_GST_TYPE == PGM_TYPE_PAE
3404
3405# if PGM_GST_TYPE == PGM_TYPE_AMD64
3406 bool fBigPagesSupported = true;
3407# else
3408 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3409# endif
3410 PPGM pPGM = &pVM->pgm.s;
3411 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3412 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3413# ifndef IN_RING0
3414 RTHCPHYS HCPhys; /* general usage. */
3415# endif
3416 int rc;
3417
3418 /*
3419 * Check that the Guest CR3 and all its mappings are correct.
3420 */
3421 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3422 ("Invalid GCPhysCR3=%VGp cr3=%VGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3423 false);
3424# ifndef IN_RING0
3425# if PGM_GST_TYPE == PGM_TYPE_32BIT
3426 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGuestPDGC, NULL, &HCPhysShw);
3427# else
3428 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGstPaePDPTGC, NULL, &HCPhysShw);
3429# endif
3430 AssertRCReturn(rc, 1);
3431 HCPhys = NIL_RTHCPHYS;
3432 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3433 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%VHp HCPhyswShw=%VHp (cr3)\n", HCPhys, HCPhysShw), false);
3434# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3435 RTGCPHYS GCPhys;
3436 rc = PGMR3DbgHCPtr2GCPhys(pVM, pPGM->pGuestPDHC, &GCPhys);
3437 AssertRCReturn(rc, 1);
3438 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%VGp cr3=%VGp\n", GCPhys, (RTGCPHYS)cr3), false);
3439# endif
3440#endif /* !IN_RING0 */
3441
3442# if PGM_GST_TYPE == PGM_TYPE_32BIT
3443 const GSTPD *pPDSrc = CTXSUFF(pPGM->pGuestPD);
3444# endif
3445
3446 /*
3447 * Get and check the Shadow CR3.
3448 */
3449# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3450 const X86PD *pPDDst = pPGM->CTXMID(p,32BitPD);
3451 unsigned cPDEs = ELEMENTS(pPDDst->a);
3452# else
3453 const X86PDPAE *pPDDst = pPGM->CTXMID(ap,PaePDs[0]); /* use it as a 2048 entry PD */
3454 unsigned cPDEs = ELEMENTS(pPDDst->a) * ELEMENTS(pPGM->apHCPaePDs);
3455# endif
3456 if (cb != ~(RTGCUINTPTR)0)
3457 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3458
3459/** @todo call the other two PGMAssert*() functions. */
3460
3461# if PGM_GST_TYPE == PGM_TYPE_PAE
3462 /*
3463 * Check the 4 PDPTs too.
3464 */
3465 for (unsigned i = 0; i < 4; i++)
3466 {
3467 RTHCPTR HCPtr;
3468 RTHCPHYS HCPhys;
3469 RTGCPHYS GCPhys = pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[i].u & X86_PDPE_PG_MASK;
3470 int rc2 = pgmRamGCPhys2HCPtrAndHCPhysWithFlags(&pVM->pgm.s, GCPhys, &HCPtr, &HCPhys);
3471 if (VBOX_SUCCESS(rc2))
3472 {
3473 AssertMsg( pVM->pgm.s.apGstPaePDsHC[i] == (R3R0PTRTYPE(PX86PDPAE))HCPtr
3474 && pVM->pgm.s.aGCPhysGstPaePDs[i] == GCPhys,
3475 ("idx %d apGstPaePDsHC %VHv vs %VHv aGCPhysGstPaePDs %VGp vs %VGp\n",
3476 i, pVM->pgm.s.apGstPaePDsHC[i], HCPtr, pVM->pgm.s.aGCPhysGstPaePDs[i], GCPhys));
3477 }
3478 }
3479# endif
3480
3481 /*
3482 * Iterate the shadow page directory.
3483 */
3484 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3485 unsigned iPDDst = GCPtr >> SHW_PD_SHIFT;
3486 cPDEs += iPDDst;
3487 for (;
3488 iPDDst < cPDEs;
3489 iPDDst++, GCPtr += _4G / cPDEs)
3490 {
3491# if PGM_GST_TYPE == PGM_TYPE_PAE
3492 uint32_t iPDSrc;
3493 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pPGM, (RTGCUINTPTR)GCPtr, &iPDSrc);
3494 if (!pPDSrc)
3495 {
3496 AssertMsg(!pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK].n.u1Present, ("Guest PDTPR not present, shadow PDPTR %VX64\n", pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK].u));
3497 continue;
3498 }
3499#endif
3500
3501 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3502 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3503 {
3504 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3505 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3506 {
3507 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3508 cErrors++;
3509 continue;
3510 }
3511 }
3512 else if ( (PdeDst.u & X86_PDE_P)
3513 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3514 )
3515 {
3516 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3517 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3518 if (!pPoolPage)
3519 {
3520 AssertMsgFailed(("Invalid page table address %VGp at %VGv! PdeDst=%#RX64\n",
3521 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3522 cErrors++;
3523 continue;
3524 }
3525 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3526
3527 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3528 {
3529 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %VGv! These flags are not virtualized! PdeDst=%#RX64\n",
3530 GCPtr, (uint64_t)PdeDst.u));
3531 cErrors++;
3532 }
3533
3534 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3535 {
3536 AssertMsgFailed(("4K PDE reserved flags at %VGv! PdeDst=%#RX64\n",
3537 GCPtr, (uint64_t)PdeDst.u));
3538 cErrors++;
3539 }
3540
3541 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3542 if (!PdeSrc.n.u1Present)
3543 {
3544 AssertMsgFailed(("Guest PDE at %VGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3545 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3546 cErrors++;
3547 continue;
3548 }
3549
3550 if ( !PdeSrc.b.u1Size
3551 || !fBigPagesSupported)
3552 {
3553 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3554# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3555 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3556# endif
3557 }
3558 else
3559 {
3560# if PGM_GST_TYPE == PGM_TYPE_32BIT
3561 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3562 {
3563 AssertMsgFailed(("Guest PDE at %VGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3564 GCPtr, (uint64_t)PdeSrc.u));
3565 cErrors++;
3566 continue;
3567 }
3568# endif
3569 GCPhysGst = PdeSrc.u & GST_PDE_BIG_PG_MASK;
3570# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3571 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3572# endif
3573 }
3574
3575 if ( pPoolPage->enmKind
3576 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3577 {
3578 AssertMsgFailed(("Invalid shadow page table kind %d at %VGv! PdeSrc=%#RX64\n",
3579 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3580 cErrors++;
3581 }
3582
3583 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3584 if (!pPhysPage)
3585 {
3586 AssertMsgFailed(("Cannot find guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3587 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3588 cErrors++;
3589 continue;
3590 }
3591
3592 if (GCPhysGst != pPoolPage->GCPhys)
3593 {
3594 AssertMsgFailed(("GCPhysGst=%VGp != pPage->GCPhys=%VGp at %VGv\n",
3595 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3596 cErrors++;
3597 continue;
3598 }
3599
3600 if ( !PdeSrc.b.u1Size
3601 || !fBigPagesSupported)
3602 {
3603 /*
3604 * Page Table.
3605 */
3606 const GSTPT *pPTSrc;
3607 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3608 if (VBOX_FAILURE(rc))
3609 {
3610 AssertMsgFailed(("Cannot map/convert guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3611 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3612 cErrors++;
3613 continue;
3614 }
3615 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3616 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3617 {
3618 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3619 // (This problem will go away when/if we shadow multiple CR3s.)
3620 AssertMsgFailed(("4K PDE flags mismatch at %VGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3621 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3622 cErrors++;
3623 continue;
3624 }
3625 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3626 {
3627 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%VGv PdeDst=%#RX64\n",
3628 GCPtr, (uint64_t)PdeDst.u));
3629 cErrors++;
3630 continue;
3631 }
3632
3633 /* iterate the page table. */
3634# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3635 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3636 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3637# else
3638 const unsigned offPTSrc = 0;
3639# endif
3640 for (unsigned iPT = 0, off = 0;
3641 iPT < ELEMENTS(pPTDst->a);
3642 iPT++, off += PAGE_SIZE)
3643 {
3644 const SHWPTE PteDst = pPTDst->a[iPT];
3645
3646 /* skip not-present entries. */
3647 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3648 continue;
3649 Assert(PteDst.n.u1Present);
3650
3651 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3652 if (!PteSrc.n.u1Present)
3653 {
3654#ifdef IN_RING3
3655 PGMAssertHandlerAndFlagsInSync(pVM);
3656 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3657#endif
3658 AssertMsgFailed(("Out of sync (!P) PTE at %VGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%VGv iPTSrc=%x PdeSrc=%x physpte=%VGp\n",
3659 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3660 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3661 cErrors++;
3662 continue;
3663 }
3664
3665 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3666# if 1 /** @todo sync accessed bit properly... */
3667 fIgnoreFlags |= X86_PTE_A;
3668# endif
3669
3670 /* match the physical addresses */
3671 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3672 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3673
3674# ifdef IN_RING3
3675 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3676 if (VBOX_FAILURE(rc))
3677 {
3678 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3679 {
3680 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3681 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3682 cErrors++;
3683 continue;
3684 }
3685 }
3686 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3687 {
3688 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3689 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3690 cErrors++;
3691 continue;
3692 }
3693# endif
3694
3695 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3696 if (!pPhysPage)
3697 {
3698# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3699 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3700 {
3701 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3702 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3703 cErrors++;
3704 continue;
3705 }
3706# endif
3707 if (PteDst.n.u1Write)
3708 {
3709 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3710 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3711 cErrors++;
3712 }
3713 fIgnoreFlags |= X86_PTE_RW;
3714 }
3715 else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
3716 {
3717 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3718 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3719 cErrors++;
3720 continue;
3721 }
3722
3723 /* flags */
3724 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3725 {
3726 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3727 {
3728 if (PteDst.n.u1Write)
3729 {
3730 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PteSrc=%#RX64 PteDst=%#RX64\n",
3731 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3732 cErrors++;
3733 continue;
3734 }
3735 fIgnoreFlags |= X86_PTE_RW;
3736 }
3737 else
3738 {
3739 if (PteDst.n.u1Present)
3740 {
3741 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VHp PteSrc=%#RX64 PteDst=%#RX64\n",
3742 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3743 cErrors++;
3744 continue;
3745 }
3746 fIgnoreFlags |= X86_PTE_P;
3747 }
3748 }
3749 else
3750 {
3751 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3752 {
3753 if (PteDst.n.u1Write)
3754 {
3755 AssertMsgFailed(("!DIRTY page at %VGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3756 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3757 cErrors++;
3758 continue;
3759 }
3760 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
3761 {
3762 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3763 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3764 cErrors++;
3765 continue;
3766 }
3767 if (PteDst.n.u1Dirty)
3768 {
3769 AssertMsgFailed(("!DIRTY page at %VGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3770 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3771 cErrors++;
3772 }
3773# if 0 /** @todo sync access bit properly... */
3774 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3775 {
3776 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3777 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3778 cErrors++;
3779 }
3780 fIgnoreFlags |= X86_PTE_RW;
3781# else
3782 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3783# endif
3784 }
3785 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3786 {
3787 /* access bit emulation (not implemented). */
3788 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
3789 {
3790 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
3791 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3792 cErrors++;
3793 continue;
3794 }
3795 if (!PteDst.n.u1Accessed)
3796 {
3797 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
3798 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3799 cErrors++;
3800 }
3801 fIgnoreFlags |= X86_PTE_P;
3802 }
3803# ifdef DEBUG_sandervl
3804 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
3805# endif
3806 }
3807
3808 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3809 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
3810 )
3811 {
3812 AssertMsgFailed(("Flags mismatch at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
3813 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3814 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3815 cErrors++;
3816 continue;
3817 }
3818 } /* foreach PTE */
3819 }
3820 else
3821 {
3822 /*
3823 * Big Page.
3824 */
3825 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
3826 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
3827 {
3828 if (PdeDst.n.u1Write)
3829 {
3830 AssertMsgFailed(("!DIRTY page at %VGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3831 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3832 cErrors++;
3833 continue;
3834 }
3835 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
3836 {
3837 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3838 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3839 cErrors++;
3840 continue;
3841 }
3842# if 0 /** @todo sync access bit properly... */
3843 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
3844 {
3845 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3846 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3847 cErrors++;
3848 }
3849 fIgnoreFlags |= X86_PTE_RW;
3850# else
3851 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3852# endif
3853 }
3854 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3855 {
3856 /* access bit emulation (not implemented). */
3857 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
3858 {
3859 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3860 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3861 cErrors++;
3862 continue;
3863 }
3864 if (!PdeDst.n.u1Accessed)
3865 {
3866 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3867 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3868 cErrors++;
3869 }
3870 fIgnoreFlags |= X86_PTE_P;
3871 }
3872
3873 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
3874 {
3875 AssertMsgFailed(("Flags mismatch (B) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
3876 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
3877 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3878 cErrors++;
3879 }
3880
3881 /* iterate the page table. */
3882 for (unsigned iPT = 0, off = 0;
3883 iPT < ELEMENTS(pPTDst->a);
3884 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
3885 {
3886 const SHWPTE PteDst = pPTDst->a[iPT];
3887
3888 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3889 {
3890 AssertMsgFailed(("The PTE at %VGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
3891 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3892 cErrors++;
3893 }
3894
3895 /* skip not-present entries. */
3896 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
3897 continue;
3898
3899 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3900
3901 /* match the physical addresses */
3902 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
3903
3904# ifdef IN_RING3
3905 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3906 if (VBOX_FAILURE(rc))
3907 {
3908 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3909 {
3910 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3911 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3912 cErrors++;
3913 }
3914 }
3915 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
3916 {
3917 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3918 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3919 cErrors++;
3920 continue;
3921 }
3922# endif
3923
3924 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3925 if (!pPhysPage)
3926 {
3927# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3928 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3929 {
3930 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3931 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3932 cErrors++;
3933 continue;
3934 }
3935# endif
3936 if (PteDst.n.u1Write)
3937 {
3938 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3939 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3940 cErrors++;
3941 }
3942 fIgnoreFlags |= X86_PTE_RW;
3943 }
3944 else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
3945 {
3946 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3947 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3948 cErrors++;
3949 continue;
3950 }
3951
3952 /* flags */
3953 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3954 {
3955 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3956 {
3957 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
3958 {
3959 if (PteDst.n.u1Write)
3960 {
3961 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
3962 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3963 cErrors++;
3964 continue;
3965 }
3966 fIgnoreFlags |= X86_PTE_RW;
3967 }
3968 }
3969 else
3970 {
3971 if (PteDst.n.u1Present)
3972 {
3973 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
3974 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3975 cErrors++;
3976 continue;
3977 }
3978 fIgnoreFlags |= X86_PTE_P;
3979 }
3980 }
3981
3982 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3983 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
3984 )
3985 {
3986 AssertMsgFailed(("Flags mismatch (BT) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
3987 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3988 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3989 cErrors++;
3990 continue;
3991 }
3992 } /* foreach PTE */
3993 }
3994 }
3995 /* not present */
3996
3997 } /* forearch PDE */
3998
3999# ifdef DEBUG
4000 if (cErrors)
4001 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4002# endif
4003
4004#elif PGM_GST_TYPE == PGM_TYPE_PAE
4005//# error not implemented
4006
4007
4008#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4009//# error not implemented
4010
4011/*#else: guest real and protected mode */
4012#endif
4013 return cErrors;
4014
4015#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
4016}
4017#endif /* VBOX_STRICT */
4018
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette