VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 97009

Last change on this file since 97009 was 96979, checked in by vboxsync, 2 years ago

VMM/PGM,IEM,HM: Added a PGMPHYSHANDLER_F_NOT_IN_HM flag to better deal with a nested APIC access page. bugref:10092

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 222.5 KB
Line 
1/* $Id: PGMAllBth.h 96979 2022-10-04 12:46:05Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
6 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
7 * bird: WTF does this mean these days? Looking at PGMAll.cpp it's
8 *
9 * @remarks This file is one big \#ifdef-orgy!
10 *
11 */
12
13/*
14 * Copyright (C) 2006-2022 Oracle and/or its affiliates.
15 *
16 * This file is part of VirtualBox base platform packages, as
17 * available from https://www.virtualbox.org.
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation, in version 3 of the
22 * License.
23 *
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, see <https://www.gnu.org/licenses>.
31 *
32 * SPDX-License-Identifier: GPL-3.0-only
33 */
34
35#ifdef _MSC_VER
36/** @todo we're generating unnecessary code in nested/ept shadow mode and for
37 * real/prot-guest+RC mode. */
38# pragma warning(disable: 4505)
39#endif
40
41
42/*********************************************************************************************************************************
43* Internal Functions *
44*********************************************************************************************************************************/
45RT_C_DECLS_BEGIN
46PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
47#ifndef IN_RING3
48PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
49PGM_BTH_DECL(int, NestedTrap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysNestedFault,
50 bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk, bool *pfLockTaken);
51# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT
52static void PGM_BTH_NAME(NestedSyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPte, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage,
53 unsigned iPte, PPGMPTWALKGST pGstWalkAll);
54static int PGM_BTH_NAME(NestedSyncPage)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, unsigned cPages,
55 uint32_t uErr, PPGMPTWALKGST pGstWalkAll);
56static int PGM_BTH_NAME(NestedSyncPT)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, PPGMPTWALKGST pGstWalkAll);
57# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
58#endif
59PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
60static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
61static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
62static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
63#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
64static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
65#else
66static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
67#endif
68PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
69PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
70PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
71#ifdef VBOX_STRICT
72PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
73#endif
74PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
75PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu);
76
77#ifdef IN_RING3
78PGM_BTH_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta);
79#endif
80RT_C_DECLS_END
81
82
83
84
85/*
86 * Filter out some illegal combinations of guest and shadow paging, so we can
87 * remove redundant checks inside functions.
88 */
89#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \
90 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
91# error "Invalid combination; PAE guest implies PAE shadow"
92#endif
93
94#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
95 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \
96 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
97# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
98#endif
99
100#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
101 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \
102 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
103# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
104#endif
105
106#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \
107 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
108# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
109#endif
110
111
112/**
113 * Enters the shadow+guest mode.
114 *
115 * @returns VBox status code.
116 * @param pVCpu The cross context virtual CPU structure.
117 * @param GCPhysCR3 The physical address from the CR3 register.
118 */
119PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
120{
121 /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches;
122 * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables.
123 */
124#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
125 || PGM_SHW_TYPE == PGM_TYPE_PAE \
126 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
127 && ( PGM_GST_TYPE == PGM_TYPE_REAL \
128 || PGM_GST_TYPE == PGM_TYPE_PROT))
129
130 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
131
132 Assert(!pVM->pgm.s.fNestedPaging);
133
134 PGM_LOCK_VOID(pVM);
135 /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes),
136 * but any calls to GC need a proper shadow page setup as well.
137 */
138 /* Free the previous root mapping if still active. */
139 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
140 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
141 if (pOldShwPageCR3)
142 {
143 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
144
145 /* Mark the page as unlocked; allow flushing again. */
146 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
147
148 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
149 pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR;
150 pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR;
151 }
152
153 /* construct a fake address. */
154 GCPhysCR3 = RT_BIT_64(63);
155 PPGMPOOLPAGE pNewShwPageCR3;
156 int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
157 NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/,
158 &pNewShwPageCR3);
159 AssertRCReturn(rc, rc);
160
161 pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3);
162 pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3);
163
164 /* Mark the page as locked; disallow flushing. */
165 pgmPoolLockPage(pPool, pNewShwPageCR3);
166
167 /* Set the current hypervisor CR3. */
168 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
169
170 PGM_UNLOCK(pVM);
171 return rc;
172#else
173 NOREF(pVCpu); NOREF(GCPhysCR3);
174 return VINF_SUCCESS;
175#endif
176}
177
178
179#ifndef IN_RING3
180
181# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
182/**
183 * Deal with a guest page fault.
184 *
185 * @returns Strict VBox status code.
186 * @retval VINF_EM_RAW_GUEST_TRAP
187 * @retval VINF_EM_RAW_EMULATE_INSTR
188 *
189 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
190 * @param pWalk The guest page table walk result.
191 * @param uErr The error code.
192 */
193PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, RTGCUINT uErr)
194{
195 /*
196 * Calc the error code for the guest trap.
197 */
198 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
199 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
200 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
201 if ( pWalk->fRsvdError
202 || pWalk->fBadPhysAddr)
203 {
204 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
205 Assert(!pWalk->fNotPresent);
206 }
207 else if (!pWalk->fNotPresent)
208 uNewErr |= X86_TRAP_PF_P;
209 TRPMSetErrorCode(pVCpu, uNewErr);
210
211 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pWalk->GCPtr, uErr, pWalk->uLevel));
212 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; });
213 return VINF_EM_RAW_GUEST_TRAP;
214}
215# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
216
217
218#if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
219/**
220 * Deal with a guest page fault.
221 *
222 * The caller has taken the PGM lock.
223 *
224 * @returns Strict VBox status code.
225 *
226 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
227 * @param uErr The error code.
228 * @param pRegFrame The register frame.
229 * @param pvFault The fault address.
230 * @param pPage The guest page at @a pvFault.
231 * @param pWalk The guest page table walk result.
232 * @param pGstWalk The guest paging-mode specific walk information.
233 * @param pfLockTaken PGM lock taken here or not (out). This is true
234 * when we're called.
235 */
236static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
237 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
238# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
239 , PPGMPTWALK pWalk
240 , PGSTPTWALK pGstWalk
241# endif
242 )
243{
244# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
245 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
246# endif
247 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
248 VBOXSTRICTRC rcStrict;
249
250 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
251 {
252 /*
253 * Physical page access handler.
254 */
255# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
256 const RTGCPHYS GCPhysFault = pWalk->GCPhys;
257# else
258 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
259# endif
260 PPGMPHYSHANDLER pCur;
261 rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysFault, &pCur);
262 if (RT_SUCCESS(rcStrict))
263 {
264 PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
265
266# ifdef PGM_SYNC_N_PAGES
267 /*
268 * If the region is write protected and we got a page not present fault, then sync
269 * the pages. If the fault was caused by a read, then restart the instruction.
270 * In case of write access continue to the GC write handler.
271 *
272 * ASSUMES that there is only one handler per page or that they have similar write properties.
273 */
274 if ( !(uErr & X86_TRAP_PF_P)
275 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
276 {
277# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
278 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
279# else
280 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
281# endif
282 if ( RT_FAILURE(rcStrict)
283 || !(uErr & X86_TRAP_PF_RW)
284 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
285 {
286 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
287 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
288 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
289 return rcStrict;
290 }
291 }
292# endif
293# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
294 /*
295 * If the access was not thru a #PF(RSVD|...) resync the page.
296 */
297 if ( !(uErr & X86_TRAP_PF_RSVD)
298 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
299# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
300 && (pWalk->fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK))
301 == PGM_PTATTRS_W_MASK /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
302# endif
303 )
304 {
305# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
306 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
307# else
308 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
309# endif
310 if ( RT_FAILURE(rcStrict)
311 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
312 {
313 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
314 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
315 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
316 return rcStrict;
317 }
318 }
319# endif
320
321 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
322 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
323 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
324 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
325 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
326 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite);
327 else
328 {
329 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll);
330 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt);
331 }
332
333 if (pCurType->pfnPfHandler)
334 {
335 STAM_PROFILE_START(&pCur->Stat, h);
336
337 if (pCurType->fKeepPgmLock)
338 {
339 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault,
340 !pCurType->fRing0DevInsIdx ? pCur->uUser
341 : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser));
342
343 STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
344 }
345 else
346 {
347 uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser
348 : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser);
349 PGM_UNLOCK(pVM);
350 *pfLockTaken = false;
351
352 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, uUser);
353
354 STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
355 }
356 }
357 else
358 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
359
360 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; });
361 return rcStrict;
362 }
363 AssertMsgReturn(rcStrict == VERR_NOT_FOUND, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
364 }
365
366 /*
367 * There is a handled area of the page, but this fault doesn't belong to it.
368 * We must emulate the instruction.
369 *
370 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
371 * we first check if this was a page-not-present fault for a page with only
372 * write access handlers. Restart the instruction if it wasn't a write access.
373 */
374 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersUnhandled);
375
376 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
377 && !(uErr & X86_TRAP_PF_P))
378 {
379# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
380 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
381# else
382 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
383# endif
384 if ( RT_FAILURE(rcStrict)
385 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
386 || !(uErr & X86_TRAP_PF_RW))
387 {
388 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
389 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
390 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
391 return rcStrict;
392 }
393 }
394
395 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
396 * It's writing to an unhandled part of the LDT page several million times.
397 */
398 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
399 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
400 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndUnhandled; });
401 return rcStrict;
402} /* if any kind of handler */
403# endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/
404
405
406/**
407 * \#PF Handler for raw-mode guest execution.
408 *
409 * @returns VBox status code (appropriate for trap handling and GC return).
410 *
411 * @param pVCpu The cross context virtual CPU structure.
412 * @param uErr The trap error code.
413 * @param pRegFrame Trap register frame.
414 * @param pvFault The fault address.
415 * @param pfLockTaken PGM lock taken here or not (out)
416 */
417PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
418{
419 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
420
421 *pfLockTaken = false;
422
423# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
424 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
425 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
426 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
427 && PGM_SHW_TYPE != PGM_TYPE_NONE
428 int rc;
429
430# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
431 /*
432 * Walk the guest page translation tables and check if it's a guest fault.
433 */
434 PGMPTWALK Walk;
435 GSTPTWALK GstWalk;
436 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &Walk, &GstWalk);
437 if (RT_FAILURE_NP(rc))
438 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr));
439
440 /* assert some GstWalk sanity. */
441# if PGM_GST_TYPE == PGM_TYPE_AMD64
442 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
443# endif
444# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
445 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
446# endif
447 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
448 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
449 Assert(Walk.fSucceeded);
450 Assert(Walk.fEffective & PGM_PTATTRS_R_MASK);
451
452 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
453 {
454 if ( ( (uErr & X86_TRAP_PF_RW)
455 && !(Walk.fEffective & PGM_PTATTRS_W_MASK)
456 && ( (uErr & X86_TRAP_PF_US)
457 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
458 || ((uErr & X86_TRAP_PF_US) && !(Walk.fEffective & PGM_PTATTRS_US_MASK))
459 || ((uErr & X86_TRAP_PF_ID) && (Walk.fEffective & PGM_PTATTRS_NX_MASK))
460 )
461 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr));
462 }
463
464 /* Take the big lock now before we update flags. */
465 *pfLockTaken = true;
466 PGM_LOCK_VOID(pVM);
467
468 /*
469 * Set the accessed and dirty flags.
470 */
471 /** @todo Should probably use cmpxchg logic here as we're potentially racing
472 * other CPUs in SMP configs. (the lock isn't enough, since we take it
473 * after walking and the page tables could be stale already) */
474# if PGM_GST_TYPE == PGM_TYPE_AMD64
475 if (!(GstWalk.Pml4e.u & X86_PML4E_A))
476 {
477 GstWalk.Pml4e.u |= X86_PML4E_A;
478 GST_ATOMIC_OR(&GstWalk.pPml4e->u, X86_PML4E_A);
479 }
480 if (!(GstWalk.Pdpe.u & X86_PDPE_A))
481 {
482 GstWalk.Pdpe.u |= X86_PDPE_A;
483 GST_ATOMIC_OR(&GstWalk.pPdpe->u, X86_PDPE_A);
484 }
485# endif
486 if (Walk.fBigPage)
487 {
488 Assert(GstWalk.Pde.u & X86_PDE_PS);
489 if (uErr & X86_TRAP_PF_RW)
490 {
491 if ((GstWalk.Pde.u & (X86_PDE4M_A | X86_PDE4M_D)) != (X86_PDE4M_A | X86_PDE4M_D))
492 {
493 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
494 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A | X86_PDE4M_D);
495 }
496 }
497 else
498 {
499 if (!(GstWalk.Pde.u & X86_PDE4M_A))
500 {
501 GstWalk.Pde.u |= X86_PDE4M_A;
502 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A);
503 }
504 }
505 }
506 else
507 {
508 Assert(!(GstWalk.Pde.u & X86_PDE_PS));
509 if (!(GstWalk.Pde.u & X86_PDE_A))
510 {
511 GstWalk.Pde.u |= X86_PDE_A;
512 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE_A);
513 }
514
515 if (uErr & X86_TRAP_PF_RW)
516 {
517# ifdef VBOX_WITH_STATISTICS
518 if (GstWalk.Pte.u & X86_PTE_D)
519 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageAlreadyDirty));
520 else
521 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtiedPage));
522# endif
523 if ((GstWalk.Pte.u & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
524 {
525 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
526 GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A | X86_PTE_D);
527 }
528 }
529 else
530 {
531 if (!(GstWalk.Pte.u & X86_PTE_A))
532 {
533 GstWalk.Pte.u |= X86_PTE_A;
534 GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A);
535 }
536 }
537 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
538 }
539#if 0
540 /* Disabling this since it's not reliable for SMP, see @bugref{10092#c22}. */
541 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
542 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
543#endif
544
545# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
546 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
547
548 /* Take the big lock now. */
549 *pfLockTaken = true;
550 PGM_LOCK_VOID(pVM);
551# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
552
553# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
554 /*
555 * If it is a reserved bit fault we know that it is an MMIO (access
556 * handler) related fault and can skip some 200 lines of code.
557 */
558 if (uErr & X86_TRAP_PF_RSVD)
559 {
560 Assert(uErr & X86_TRAP_PF_P);
561 PPGMPAGE pPage;
562# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
563 rc = pgmPhysGetPageEx(pVM, Walk.GCPhys, &pPage);
564 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
565 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
566 pfLockTaken, &Walk, &GstWalk));
567 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
568# else
569 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
570 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
571 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
572 pfLockTaken));
573 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
574# endif
575 AssertRC(rc);
576 PGM_INVL_PG(pVCpu, pvFault);
577 return rc; /* Restart with the corrected entry. */
578 }
579# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
580
581 /*
582 * Fetch the guest PDE, PDPE and PML4E.
583 */
584# if PGM_SHW_TYPE == PGM_TYPE_32BIT
585 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
586 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
587
588# elif PGM_SHW_TYPE == PGM_TYPE_PAE
589 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
590 PX86PDPAE pPDDst;
591# if PGM_GST_TYPE == PGM_TYPE_PAE
592 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
593# else
594 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
595# endif
596 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
597
598# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
599 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
600 PX86PDPAE pPDDst;
601# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
602 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
603 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
604# else
605 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
606# endif
607 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
608
609# elif PGM_SHW_TYPE == PGM_TYPE_EPT
610 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
611 PEPTPD pPDDst;
612 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
613 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
614# endif
615 Assert(pPDDst);
616
617# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
618 /*
619 * Dirty page handling.
620 *
621 * If we successfully correct the write protection fault due to dirty bit
622 * tracking, then return immediately.
623 */
624 if (uErr & X86_TRAP_PF_RW) /* write fault? */
625 {
626 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a);
627 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
628 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a);
629 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
630 {
631 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0
632 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
633 ? &pVCpu->pgm.s.Stats.StatRZTrap0eTime2DirtyAndAccessed
634 : &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; });
635 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
636 return VINF_SUCCESS;
637 }
638#ifdef DEBUG_bird
639 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests.
640 AssertMsg(Walk.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto.
641#endif
642 }
643
644# if 0 /* rarely useful; leave for debugging. */
645 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
646# endif
647# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
648
649 /*
650 * A common case is the not-present error caused by lazy page table syncing.
651 *
652 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
653 * here so we can safely assume that the shadow PT is present when calling
654 * SyncPage later.
655 *
656 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
657 * of mapping conflict and defer to SyncCR3 in R3.
658 * (Again, we do NOT support access handlers for non-present guest pages.)
659 *
660 */
661# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
662 Assert(GstWalk.Pde.u & X86_PDE_P);
663# endif
664 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
665 && !SHW_PDE_IS_P(pPDDst->a[iPDDst]))
666 {
667 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; });
668# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
669 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
670 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
671# else
672 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
673 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
674# endif
675 if (RT_SUCCESS(rc))
676 return rc;
677 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
678 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
679 return VINF_PGM_SYNC_CR3;
680 }
681
682 /*
683 * Check if this fault address is flagged for special treatment,
684 * which means we'll have to figure out the physical address and
685 * check flags associated with it.
686 *
687 * ASSUME that we can limit any special access handling to pages
688 * in page tables which the guest believes to be present.
689 */
690# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
691 RTGCPHYS GCPhys = Walk.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
692# else
693 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
694# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
695 PPGMPAGE pPage;
696 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
697 if (RT_FAILURE(rc))
698 {
699 /*
700 * When the guest accesses invalid physical memory (e.g. probing
701 * of RAM or accessing a remapped MMIO range), then we'll fall
702 * back to the recompiler to emulate the instruction.
703 */
704 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
705 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersInvalid);
706 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2InvalidPhys; });
707 return VINF_EM_RAW_EMULATE_INSTR;
708 }
709
710 /*
711 * Any handlers for this page?
712 */
713 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
714# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
715 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
716 &Walk, &GstWalk));
717# else
718 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
719# endif
720
721 /*
722 * We are here only if page is present in Guest page tables and
723 * trap is not handled by our handlers.
724 *
725 * Check it for page out-of-sync situation.
726 */
727 if (!(uErr & X86_TRAP_PF_P))
728 {
729 /*
730 * Page is not present in our page tables. Try to sync it!
731 */
732 if (uErr & X86_TRAP_PF_US)
733 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser));
734 else /* supervisor */
735 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
736
737 if (PGM_PAGE_IS_BALLOONED(pPage))
738 {
739 /* Emulate reads from ballooned pages as they are not present in
740 our shadow page tables. (Required for e.g. Solaris guests; soft
741 ecc, random nr generator.) */
742 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
743 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
744 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncBallloon));
745 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Ballooned; });
746 return rc;
747 }
748
749# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
750 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
751# else
752 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
753# endif
754 if (RT_SUCCESS(rc))
755 {
756 /* The page was successfully synced, return to the guest. */
757 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; });
758 return VINF_SUCCESS;
759 }
760 }
761 else /* uErr & X86_TRAP_PF_P: */
762 {
763 /*
764 * Write protected pages are made writable when the guest makes the
765 * first write to it. This happens for pages that are shared, write
766 * monitored or not yet allocated.
767 *
768 * We may also end up here when CR0.WP=0 in the guest.
769 *
770 * Also, a side effect of not flushing global PDEs are out of sync
771 * pages due to physical monitored regions, that are no longer valid.
772 * Assume for now it only applies to the read/write flag.
773 */
774 if (uErr & X86_TRAP_PF_RW)
775 {
776 /*
777 * Check if it is a read-only page.
778 */
779 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
780 {
781 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
782 Assert(!PGM_PAGE_IS_ZERO(pPage));
783 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
784 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; });
785
786 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
787 if (rc != VINF_SUCCESS)
788 {
789 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
790 return rc;
791 }
792 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
793 return VINF_EM_NO_MEMORY;
794 }
795
796# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
797 /*
798 * Check to see if we need to emulate the instruction if CR0.WP=0.
799 */
800 if ( !(Walk.fEffective & PGM_PTATTRS_W_MASK)
801 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
802 && CPUMGetGuestCPL(pVCpu) < 3)
803 {
804 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
805
806 /*
807 * The Netware WP0+RO+US hack.
808 *
809 * Netware sometimes(/always?) runs with WP0. It has been observed doing
810 * excessive write accesses to pages which are mapped with US=1 and RW=0
811 * while WP=0. This causes a lot of exits and extremely slow execution.
812 * To avoid trapping and emulating every write here, we change the shadow
813 * page table entry to map it as US=0 and RW=1 until user mode tries to
814 * access it again (see further below). We count these shadow page table
815 * changes so we can avoid having to clear the page pool every time the WP
816 * bit changes to 1 (see PGMCr0WpEnabled()).
817 */
818# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
819 if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK
820 && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW))
821 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
822 {
823 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, Walk.fBigPage));
824 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, Walk.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
825 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
826 {
827 PGM_INVL_PG(pVCpu, pvFault);
828 pVCpu->pgm.s.cNetwareWp0Hacks++;
829 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsHack; });
830 return rc;
831 }
832 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
833 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
834 }
835# endif
836
837 /* Interpret the access. */
838 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
839 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), Walk.fBigPage, !!(Walk.fEffective & PGM_PTATTRS_US_MASK)));
840 if (RT_SUCCESS(rc))
841 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulInRZ);
842 else
843 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulToR3);
844 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2WPEmulation; });
845 return rc;
846 }
847# endif
848 /// @todo count the above case; else
849 if (uErr & X86_TRAP_PF_US)
850 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
851 else /* supervisor */
852 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
853
854 /*
855 * Sync the page.
856 *
857 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
858 * page is not present, which is not true in this case.
859 */
860# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
861 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
862# else
863 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
864# endif
865 if (RT_SUCCESS(rc))
866 {
867 /*
868 * Page was successfully synced, return to guest but invalidate
869 * the TLB first as the page is very likely to be in it.
870 */
871# if PGM_SHW_TYPE == PGM_TYPE_EPT
872 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
873# else
874 PGM_INVL_PG(pVCpu, pvFault);
875# endif
876# ifdef VBOX_STRICT
877 PGMPTWALK GstPageWalk;
878 GstPageWalk.GCPhys = RTGCPHYS_MAX;
879 if (!pVM->pgm.s.fNestedPaging)
880 {
881 rc = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk);
882 AssertMsg(RT_SUCCESS(rc) && ((GstPageWalk.fEffective & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, GstPageWalk.fEffective));
883 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GstPageWalk.GCPhys, GstPageWalk.fEffective));
884 }
885# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */
886 uint64_t fPageShw = 0;
887 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
888 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
889 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GstPageWalk.GCPhys, fPageGst, pvFault));
890# endif
891# endif /* VBOX_STRICT */
892 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; });
893 return VINF_SUCCESS;
894 }
895 }
896# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
897 /*
898 * Check for Netware WP0+RO+US hack from above and undo it when user
899 * mode accesses the page again.
900 */
901 else if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK
902 && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW))
903 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
904 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
905 && CPUMGetGuestCPL(pVCpu) == 3
906 && pVM->cCpus == 1
907 )
908 {
909 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
910 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
911 if (RT_SUCCESS(rc))
912 {
913 PGM_INVL_PG(pVCpu, pvFault);
914 pVCpu->pgm.s.cNetwareWp0Hacks--;
915 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsUnhack; });
916 return VINF_SUCCESS;
917 }
918 }
919# endif /* PGM_WITH_PAGING */
920
921 /** @todo else: why are we here? */
922
923# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
924 /*
925 * Check for VMM page flags vs. Guest page flags consistency.
926 * Currently only for debug purposes.
927 */
928 if (RT_SUCCESS(rc))
929 {
930 /* Get guest page flags. */
931 PGMPTWALK GstPageWalk;
932 int rc2 = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk);
933 if (RT_SUCCESS(rc2))
934 {
935 uint64_t fPageShw = 0;
936 rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
937
938#if 0
939 /*
940 * Compare page flags.
941 * Note: we have AVL, A, D bits desynced.
942 */
943 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
944 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
945 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
946 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
947 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
948 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
949 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
950 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n",
951 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc));
95201:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
95301:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0
954
95501:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
95601:01:15.625516 00:08:43.268051 Location :
957e:\vbox\svn\trunk\srcPage flags mismatch!
958pvFault=fffff801b0d7b000
959 uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P
960GCPhys=0000000019b52000
961fPageShw=0
962fPageGst=77b0000000000121
963rc=0
964#endif
965
966 }
967 else
968 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
969 }
970 else
971 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
972# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
973 }
974
975
976 /*
977 * If we get here it is because something failed above, i.e. most like guru
978 * meditiation time.
979 */
980 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
981 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
982 return rc;
983
984# else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */
985 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
986 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
987 return VERR_PGM_NOT_USED_IN_MODE;
988# endif
989}
990
991
992# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT)
993/**
994 * Deals with a nested-guest \#PF fault for a guest-physical page with a handler.
995 *
996 * @returns Strict VBox status code.
997 * @param pVCpu The cross context virtual CPU structure.
998 * @param uErr The error code.
999 * @param pRegFrame The register frame.
1000 * @param GCPhysNestedFault The nested-guest physical address of the fault.
1001 * @param pPage The guest page at @a GCPhysNestedFault.
1002 * @param GCPhysFault The guest-physical address of the fault.
1003 * @param pGstWalkAll The guest page walk result.
1004 * @param pfLockTaken Where to store whether the PGM is still held when
1005 * this function completes.
1006 *
1007 * @note The caller has taken the PGM lock.
1008 */
1009static VBOXSTRICTRC PGM_BTH_NAME(NestedTrap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
1010 RTGCPHYS GCPhysNestedFault, PPGMPAGE pPage,
1011 RTGCPHYS GCPhysFault, PPGMPTWALKGST pGstWalkAll,
1012 bool *pfLockTaken)
1013{
1014# if PGM_GST_TYPE == PGM_TYPE_PROT \
1015 && PGM_SHW_TYPE == PGM_TYPE_EPT
1016
1017 /** @todo Assert uErr isn't X86_TRAP_PF_RSVD and remove release checks. */
1018 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysFault);
1019 AssertMsgReturn(PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage), ("%RGp %RGp uErr=%u\n", GCPhysNestedFault, GCPhysFault, uErr),
1020 VERR_PGM_HANDLER_IPE_1);
1021
1022 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1023 RTGCPHYS const GCPhysNestedPage = GCPhysNestedFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1024 RTGCPHYS const GCPhysPage = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1025
1026 /*
1027 * Physical page access handler.
1028 */
1029 PPGMPHYSHANDLER pCur;
1030 VBOXSTRICTRC rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysPage, &pCur);
1031 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
1032
1033 PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
1034 Assert(pCurType);
1035
1036 /*
1037 * If the region is write protected and we got a page not present fault, then sync
1038 * the pages. If the fault was caused by a read, then restart the instruction.
1039 * In case of write access continue to the GC write handler.
1040 */
1041 if ( !(uErr & X86_TRAP_PF_P)
1042 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
1043 {
1044 Log7Func(("Syncing Monitored: GCPhysNestedPage=%RGp GCPhysPage=%RGp uErr=%#x\n", GCPhysNestedPage, GCPhysPage, uErr));
1045 rcStrict = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /*cPages*/, uErr, pGstWalkAll);
1046 Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE);
1047 if ( RT_FAILURE(rcStrict)
1048 || !(uErr & X86_TRAP_PF_RW))
1049 {
1050 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1051 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
1052 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
1053 return rcStrict;
1054 }
1055 }
1056 else if ( !(uErr & X86_TRAP_PF_RSVD)
1057 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE)
1058 {
1059 /*
1060 * If the access was NOT through an EPT misconfig (i.e. RSVD), sync the page.
1061 * This can happen for the VMX APIC-access page.
1062 */
1063 Log7Func(("Syncing MMIO: GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage));
1064 rcStrict = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /*cPages*/, uErr, pGstWalkAll);
1065 Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE);
1066 if (RT_FAILURE(rcStrict))
1067 {
1068 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1069 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
1070 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
1071 return rcStrict;
1072 }
1073 }
1074
1075 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
1076 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
1077 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
1078 GCPhysNestedFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
1079 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
1080 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite);
1081 else
1082 {
1083 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll);
1084 if (uErr & X86_TRAP_PF_RSVD)
1085 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt);
1086 }
1087
1088 if (pCurType->pfnPfHandler)
1089 {
1090 STAM_PROFILE_START(&pCur->Stat, h);
1091 uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser
1092 : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser);
1093
1094 if (pCurType->fKeepPgmLock)
1095 {
1096 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pRegFrame, GCPhysNestedFault, GCPhysFault, uUser);
1097 STAM_PROFILE_STOP(&pCur->Stat, h);
1098 }
1099 else
1100 {
1101 PGM_UNLOCK(pVM);
1102 *pfLockTaken = false;
1103 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pRegFrame, GCPhysNestedFault, GCPhysFault, uUser);
1104 STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
1105 }
1106 }
1107 else
1108 {
1109 AssertMsgFailed(("What's going on here!? Fault falls outside handler range!?\n"));
1110 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
1111 }
1112
1113 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; });
1114 return rcStrict;
1115
1116# else
1117 RT_NOREF8(pVCpu, uErr, pRegFrame, GCPhysNestedFault, pPage, GCPhysFault, pGstWalkAll, pfLockTaken);
1118 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
1119 return VERR_PGM_NOT_USED_IN_MODE;
1120# endif
1121}
1122# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
1123
1124
1125/**
1126 * Nested \#PF handler for nested-guest hardware-assisted execution using nested
1127 * paging.
1128 *
1129 * @returns VBox status code (appropriate for trap handling and GC return).
1130 * @param pVCpu The cross context virtual CPU structure.
1131 * @param uErr The fault error (X86_TRAP_PF_*).
1132 * @param pRegFrame The register frame.
1133 * @param GCPhysNestedFault The nested-guest physical address of the fault.
1134 * @param fIsLinearAddrValid Whether translation of a nested-guest linear address
1135 * caused this fault. If @c false, GCPtrNestedFault
1136 * must be 0.
1137 * @param GCPtrNestedFault The nested-guest linear address of this fault.
1138 * @param pWalk The guest page table walk result.
1139 * @param pfLockTaken Where to store whether the PGM lock is still held
1140 * when this function completes.
1141 */
1142PGM_BTH_DECL(int, NestedTrap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysNestedFault,
1143 bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk, bool *pfLockTaken)
1144{
1145 *pfLockTaken = false;
1146# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) \
1147 && PGM_GST_TYPE == PGM_TYPE_PROT \
1148 && PGM_SHW_TYPE == PGM_TYPE_EPT
1149
1150 Assert(CPUMIsGuestVmxEptPagingEnabled(pVCpu));
1151 Assert(PGM_A20_IS_ENABLED(pVCpu));
1152
1153 /* We don't support mode-based execute control for EPT yet. */
1154 Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt);
1155 Assert(!(uErr & X86_TRAP_PF_US));
1156
1157 /* Take the big lock now. */
1158 *pfLockTaken = true;
1159 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1160 PGM_LOCK_VOID(pVM);
1161
1162 /*
1163 * Walk the guest EPT tables and check if it's an EPT violation or misconfiguration.
1164 */
1165 if (fIsLinearAddrValid)
1166 Log7Func(("cs:rip=%04x:%#08RX64 GCPhysNestedFault=%RGp uErr=%#x GCPtrNestedFault=%RGv\n",
1167 pRegFrame->cs.Sel, pRegFrame->rip, GCPhysNestedFault, uErr, GCPtrNestedFault));
1168 else
1169 Log7Func(("cs:rip=%04x:%#08RX64 GCPhysNestedFault=%RGp uErr=%#x\n",
1170 pRegFrame->cs.Sel, pRegFrame->rip, GCPhysNestedFault, uErr));
1171 PGMPTWALKGST GstWalkAll;
1172 int rc = pgmGstSlatWalk(pVCpu, GCPhysNestedFault, fIsLinearAddrValid, GCPtrNestedFault, pWalk, &GstWalkAll);
1173 if (RT_FAILURE(rc))
1174 return rc;
1175
1176 Assert(GstWalkAll.enmType == PGMPTWALKGSTTYPE_EPT);
1177 Assert(pWalk->fSucceeded);
1178 Assert(pWalk->fEffective & (PGM_PTATTRS_EPT_R_MASK | PGM_PTATTRS_EPT_W_MASK | PGM_PTATTRS_EPT_X_SUPER_MASK));
1179 Assert(pWalk->fIsSlat);
1180
1181 /* Paranoia: Remove later. */
1182 Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_R_MASK) == RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_R_MASK));
1183 Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_W_MASK) == RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_W_MASK));
1184 Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_NX_MASK) == !RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_X_SUPER_MASK));
1185
1186 /*
1187 * Check page-access permissions.
1188 */
1189 if ( ((uErr & X86_TRAP_PF_RW) && !(pWalk->fEffective & PGM_PTATTRS_W_MASK))
1190 || ((uErr & X86_TRAP_PF_ID) && (pWalk->fEffective & PGM_PTATTRS_NX_MASK)))
1191 {
1192 Log7Func(("Permission failed! GCPtrNested=%RGv GCPhysNested=%RGp uErr=%#x fEffective=%#RX64\n", GCPtrNestedFault,
1193 GCPhysNestedFault, uErr, pWalk->fEffective));
1194 pWalk->fFailed = PGM_WALKFAIL_EPT_VIOLATION;
1195 return VERR_ACCESS_DENIED;
1196 }
1197
1198 PGM_A20_ASSERT_MASKED(pVCpu, pWalk->GCPhys);
1199 RTGCPHYS const GCPhysPage = pWalk->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1200 RTGCPHYS const GCPhysNestedPage = GCPhysNestedFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1201
1202 /*
1203 * If we were called via an EPT misconfig, it should've already resulted in a nested-guest VM-exit.
1204 */
1205 AssertMsgReturn(!(uErr & X86_TRAP_PF_RSVD),
1206 ("Unexpected EPT misconfig VM-exit. GCPhysPage=%RGp GCPhysNestedPage=%RGp\n", GCPhysPage, GCPhysNestedPage),
1207 VERR_PGM_MAPPING_IPE);
1208
1209 /*
1210 * Fetch and sync the nested-guest EPT page directory pointer.
1211 */
1212 PEPTPD pEptPd;
1213 rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL /*ppPdpt*/, &pEptPd, &GstWalkAll);
1214 AssertRCReturn(rc, rc);
1215 Assert(pEptPd);
1216
1217 /*
1218 * A common case is the not-present error caused by lazy page table syncing.
1219 *
1220 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
1221 * here so we can safely assume that the shadow PT is present when calling
1222 * NestedSyncPage later.
1223 *
1224 * NOTE: It's possible we will be syncing the VMX APIC-access page here.
1225 * In that case, we would sync the page but will NOT go ahead with emulating
1226 * the APIC-access VM-exit through IEM. However, once the page is mapped in
1227 * the shadow tables, subsequent APIC-access VM-exits for the nested-guest
1228 * will be triggered by hardware. Maybe calling the IEM #PF handler can be
1229 * considered as an optimization later.
1230 */
1231 unsigned const iPde = (GCPhysNestedPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1232 if ( !(uErr & X86_TRAP_PF_P)
1233 && !(pEptPd->a[iPde].u & EPT_PRESENT_MASK))
1234 {
1235 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; });
1236 Log7Func(("NestedSyncPT: Lazy. GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage));
1237 rc = PGM_BTH_NAME(NestedSyncPT)(pVCpu, GCPhysNestedPage, GCPhysPage, &GstWalkAll);
1238 if (RT_SUCCESS(rc))
1239 return rc;
1240 AssertMsgFailedReturn(("NestedSyncPT: %RGv failed! rc=%Rrc\n", GCPhysNestedPage, rc), VERR_PGM_MAPPING_IPE);
1241 }
1242
1243 /*
1244 * Check if this fault address is flagged for special treatment.
1245 * This handles faults on an MMIO or write-monitored page.
1246 *
1247 * If this happens to be the VMX APIC-access page, we sync it in the shadow tables
1248 * and emulate the APIC-access VM-exit by calling IEM's VMX APIC-access #PF handler
1249 * registered for the page. Once the page is mapped in the shadow tables, subsequent
1250 * APIC-access VM-exits for the nested-guest will be triggered by hardware.
1251 */
1252 PPGMPAGE pPage;
1253 rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1254 AssertRCReturn(rc, rc);
1255 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
1256 {
1257 Log7Func(("MMIO: Calling NestedTrap0eHandlerDoAccessHandlers for GCPhys %RGp\n", GCPhysPage));
1258 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(NestedTrap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, GCPhysNestedFault,
1259 pPage, pWalk->GCPhys, &GstWalkAll,
1260 pfLockTaken));
1261 }
1262
1263 /*
1264 * We are here only if page is present in nested-guest page tables but the
1265 * trap is not handled by our handlers. Check for page out-of-sync situation.
1266 */
1267 if (!(uErr & X86_TRAP_PF_P))
1268 {
1269 Assert(!PGM_PAGE_IS_BALLOONED(pPage));
1270 Assert(!(uErr & X86_TRAP_PF_US)); /* Mode-based execute not supported yet. */
1271 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
1272
1273 Log7Func(("SyncPage: Not-Present: GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedFault, GCPhysPage));
1274 rc = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, PGM_SYNC_NR_PAGES, uErr, &GstWalkAll);
1275 if (RT_SUCCESS(rc))
1276 {
1277 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; });
1278 return VINF_SUCCESS;
1279 }
1280 }
1281 else if (uErr & X86_TRAP_PF_RW)
1282 {
1283 /*
1284 * Write protected pages are made writable when the guest makes the
1285 * first write to it. This happens for pages that are shared, write
1286 * monitored or not yet allocated.
1287 *
1288 * We may also end up here when CR0.WP=0 in the guest.
1289 *
1290 * Also, a side effect of not flushing global PDEs are out of sync
1291 * pages due to physical monitored regions, that are no longer valid.
1292 * Assume for now it only applies to the read/write flag.
1293 */
1294 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1295 {
1296 /* This is a read-only page. */
1297 AssertMsgFailed(("Failed\n"));
1298
1299 Assert(!PGM_PAGE_IS_ZERO(pPage));
1300 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhysPage));
1301 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; });
1302
1303 Log7Func(("Calling pgmPhysPageMakeWritable for GCPhysPage=%RGp\n", GCPhysPage));
1304 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1305 if (rc != VINF_SUCCESS)
1306 {
1307 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
1308 return rc;
1309 }
1310 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
1311 return VINF_EM_NO_MEMORY;
1312 }
1313
1314 Assert(!(uErr & X86_TRAP_PF_US)); /* Mode-based execute not supported yet. */
1315 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1316
1317 /*
1318 * Sync the write-protected page.
1319 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1320 * page is not present, which is not true in this case.
1321 */
1322 Log7Func(("SyncPage: RW: cs:rip=%04x:%#RX64 GCPhysNestedPage=%RGp uErr=%#RX32 GCPhysPage=%RGp WalkGCPhys=%RGp\n",
1323 pRegFrame->cs.Sel, pRegFrame->rip, GCPhysNestedPage, (uint32_t)uErr, GCPhysPage, pWalk->GCPhys));
1324 rc = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /* cPages */, uErr, &GstWalkAll);
1325 if (RT_SUCCESS(rc))
1326 {
1327 HMInvalidatePhysPage(pVM, GCPhysPage);
1328 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; });
1329 return VINF_SUCCESS;
1330 }
1331 }
1332
1333 /*
1334 * If we get here it is because something failed above => guru meditation time.
1335 */
1336 LogRelFunc(("GCPhysNestedFault=%#RGp (%#RGp) uErr=%#RX32 cs:rip=%04x:%08RX64\n", rc, GCPhysNestedFault, GCPhysPage,
1337 (uint32_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1338 return VERR_PGM_MAPPING_IPE;
1339
1340# else
1341 RT_NOREF7(pVCpu, uErr, pRegFrame, GCPhysNestedFault, fIsLinearAddrValid, GCPtrNestedFault, pWalk);
1342 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
1343 return VERR_PGM_NOT_USED_IN_MODE;
1344# endif
1345}
1346
1347#endif /* !IN_RING3 */
1348
1349
1350/**
1351 * Emulation of the invlpg instruction.
1352 *
1353 *
1354 * @returns VBox status code.
1355 *
1356 * @param pVCpu The cross context virtual CPU structure.
1357 * @param GCPtrPage Page to invalidate.
1358 *
1359 * @remark ASSUMES that the guest is updating before invalidating. This order
1360 * isn't required by the CPU, so this is speculative and could cause
1361 * trouble.
1362 * @remark No TLB shootdown is done on any other VCPU as we assume that
1363 * invlpg emulation is the *only* reason for calling this function.
1364 * (The guest has to shoot down TLB entries on other CPUs itself)
1365 * Currently true, but keep in mind!
1366 *
1367 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1368 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1369 */
1370PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
1371{
1372#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1373 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
1374 && PGM_SHW_TYPE != PGM_TYPE_NONE
1375 int rc;
1376 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1377 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1378
1379 PGM_LOCK_ASSERT_OWNER(pVM);
1380
1381 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1382
1383 /*
1384 * Get the shadow PD entry and skip out if this PD isn't present.
1385 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1386 */
1387# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1388 const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT;
1389 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1390
1391 /* Fetch the pgm pool shadow descriptor. */
1392 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1393# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1394 if (!pShwPde)
1395 {
1396 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1397 return VINF_SUCCESS;
1398 }
1399# else
1400 Assert(pShwPde);
1401# endif
1402
1403# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1404 const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT;
1405 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1406
1407 /* If the shadow PDPE isn't present, then skip the invalidate. */
1408# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1409 if (!pPdptDst || !(pPdptDst->a[iPdpt].u & X86_PDPE_P))
1410# else
1411 if (!(pPdptDst->a[iPdpt].u & X86_PDPE_P))
1412# endif
1413 {
1414 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1415 PGM_INVL_PG(pVCpu, GCPtrPage);
1416 return VINF_SUCCESS;
1417 }
1418
1419 /* Fetch the pgm pool shadow descriptor. */
1420 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1421 AssertReturn(pShwPde, VERR_PGM_POOL_GET_PAGE_FAILED);
1422
1423 PX86PDPAE pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1424 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1425 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1426
1427# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1428 /* PML4 */
1429 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1430 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1431 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1432 PX86PDPAE pPDDst;
1433 PX86PDPT pPdptDst;
1434 PX86PML4E pPml4eDst;
1435 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1436 if (rc != VINF_SUCCESS)
1437 {
1438 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1439 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1440 PGM_INVL_PG(pVCpu, GCPtrPage);
1441 return VINF_SUCCESS;
1442 }
1443 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1444 Assert(pPDDst);
1445 Assert(pPdptDst->a[iPdpt].u & X86_PDPE_P);
1446
1447 /* Fetch the pgm pool shadow descriptor. */
1448 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1449 Assert(pShwPde);
1450
1451# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1452
1453 const SHWPDE PdeDst = *pPdeDst;
1454 if (!(PdeDst.u & X86_PDE_P))
1455 {
1456 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1457 PGM_INVL_PG(pVCpu, GCPtrPage);
1458 return VINF_SUCCESS;
1459 }
1460
1461 /*
1462 * Get the guest PD entry and calc big page.
1463 */
1464# if PGM_GST_TYPE == PGM_TYPE_32BIT
1465 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1466 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
1467 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1468# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1469 unsigned iPDSrc = 0;
1470# if PGM_GST_TYPE == PGM_TYPE_PAE
1471 X86PDPE PdpeSrcIgn;
1472 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1473# else /* AMD64 */
1474 PX86PML4E pPml4eSrcIgn;
1475 X86PDPE PdpeSrcIgn;
1476 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1477# endif
1478 GSTPDE PdeSrc;
1479
1480 if (pPDSrc)
1481 PdeSrc = pPDSrc->a[iPDSrc];
1482 else
1483 PdeSrc.u = 0;
1484# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1485 const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE);
1486 const bool fIsBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu);
1487 if (fWasBigPage != fIsBigPage)
1488 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1489
1490# ifdef IN_RING3
1491 /*
1492 * If a CR3 Sync is pending we may ignore the invalidate page operation
1493 * depending on the kind of sync and if it's a global page or not.
1494 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1495 */
1496# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1497 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1498 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1499 && fIsBigPage
1500 && (PdeSrc.u & X86_PDE4M_G)
1501 )
1502 )
1503# else
1504 if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1505# endif
1506 {
1507 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1508 return VINF_SUCCESS;
1509 }
1510# endif /* IN_RING3 */
1511
1512 /*
1513 * Deal with the Guest PDE.
1514 */
1515 rc = VINF_SUCCESS;
1516 if (PdeSrc.u & X86_PDE_P)
1517 {
1518 Assert( (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US)
1519 && ((PdeSrc.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW) || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1520 if (!fIsBigPage)
1521 {
1522 /*
1523 * 4KB - page.
1524 */
1525 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1526 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1527
1528# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1529 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1530 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
1531# endif
1532 if (pShwPage->GCPhys == GCPhys)
1533 {
1534 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1535 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1536
1537 PGSTPT pPTSrc;
1538 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1539 if (RT_SUCCESS(rc))
1540 {
1541 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1542 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1543 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1544 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1545 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1546 GCPtrPage, PteSrc.u & X86_PTE_P,
1547 (PteSrc.u & PdeSrc.u & X86_PTE_RW),
1548 (PteSrc.u & PdeSrc.u & X86_PTE_US),
1549 (uint64_t)PteSrc.u,
1550 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1551 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1552 }
1553 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1554 PGM_INVL_PG(pVCpu, GCPtrPage);
1555 }
1556 else
1557 {
1558 /*
1559 * The page table address changed.
1560 */
1561 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1562 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1563 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1564 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1565 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1566 PGM_INVL_VCPU_TLBS(pVCpu);
1567 }
1568 }
1569 else
1570 {
1571 /*
1572 * 2/4MB - page.
1573 */
1574 /* Before freeing the page, check if anything really changed. */
1575 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1576 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1577# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1578 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1579 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1580# endif
1581 if ( pShwPage->GCPhys == GCPhys
1582 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1583 {
1584 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1585 /** @todo This test is wrong as it cannot check the G bit!
1586 * FIXME */
1587 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1588 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1589 && ( (PdeSrc.u & X86_PDE4M_D) /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1590 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1591 {
1592 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1593 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1594 return VINF_SUCCESS;
1595 }
1596 }
1597
1598 /*
1599 * Ok, the page table is present and it's been changed in the guest.
1600 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1601 * We could do this for some flushes in GC too, but we need an algorithm for
1602 * deciding which 4MB pages containing code likely to be executed very soon.
1603 */
1604 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1605 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1606 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1607 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1608 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1609 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1610 }
1611 }
1612 else
1613 {
1614 /*
1615 * Page directory is not present, mark shadow PDE not present.
1616 */
1617 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1618 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1619 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1620 PGM_INVL_PG(pVCpu, GCPtrPage);
1621 }
1622 return rc;
1623
1624#else /* guest real and protected mode, nested + ept, none. */
1625 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1626 NOREF(pVCpu); NOREF(GCPtrPage);
1627 return VINF_SUCCESS;
1628#endif
1629}
1630
1631#if PGM_SHW_TYPE != PGM_TYPE_NONE
1632
1633/**
1634 * Update the tracking of shadowed pages.
1635 *
1636 * @param pVCpu The cross context virtual CPU structure.
1637 * @param pShwPage The shadow page.
1638 * @param HCPhys The physical page we is being dereferenced.
1639 * @param iPte Shadow PTE index
1640 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1641 */
1642DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1643 RTGCPHYS GCPhysPage)
1644{
1645 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1646
1647# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1648 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1649 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1650
1651 /* Use the hint we retrieved from the cached guest PT. */
1652 if (pShwPage->fDirty)
1653 {
1654 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1655
1656 Assert(pShwPage->cPresent);
1657 Assert(pPool->cPresent);
1658 pShwPage->cPresent--;
1659 pPool->cPresent--;
1660
1661 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1662 AssertRelease(pPhysPage);
1663 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1664 return;
1665 }
1666# else
1667 NOREF(GCPhysPage);
1668# endif
1669
1670 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatTrackDeref, a);
1671 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1672
1673 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1674 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1675 * 2. write protect all shadowed pages. I.e. implement caching.
1676 */
1677 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1678
1679 /*
1680 * Find the guest address.
1681 */
1682 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1683 pRam;
1684 pRam = pRam->CTX_SUFF(pNext))
1685 {
1686 unsigned iPage = pRam->cb >> GUEST_PAGE_SHIFT;
1687 while (iPage-- > 0)
1688 {
1689 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1690 {
1691 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1692
1693 Assert(pShwPage->cPresent);
1694 Assert(pPool->cPresent);
1695 pShwPage->cPresent--;
1696 pPool->cPresent--;
1697
1698 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1699 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatTrackDeref, a);
1700 return;
1701 }
1702 }
1703 }
1704
1705 for (;;)
1706 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1707}
1708
1709
1710/**
1711 * Update the tracking of shadowed pages.
1712 *
1713 * @param pVCpu The cross context virtual CPU structure.
1714 * @param pShwPage The shadow page.
1715 * @param u16 The top 16-bit of the pPage->HCPhys.
1716 * @param pPage Pointer to the guest page. this will be modified.
1717 * @param iPTDst The index into the shadow table.
1718 */
1719DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16,
1720 PPGMPAGE pPage, const unsigned iPTDst)
1721{
1722 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1723
1724 /*
1725 * Just deal with the simple first time here.
1726 */
1727 if (!u16)
1728 {
1729 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackVirgin);
1730 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1731 /* Save the page table index. */
1732 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1733 }
1734 else
1735 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1736
1737 /* write back */
1738 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1739 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1740
1741 /* update statistics. */
1742 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1743 pShwPage->cPresent++;
1744 if (pShwPage->iFirstPresent > iPTDst)
1745 pShwPage->iFirstPresent = iPTDst;
1746}
1747
1748
1749/**
1750 * Modifies a shadow PTE to account for access handlers.
1751 *
1752 * @param pVM The cross context VM structure.
1753 * @param pVCpu The cross context virtual CPU structure.
1754 * @param pPage The page in question.
1755 * @param GCPhysPage The guest-physical address of the page.
1756 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1757 * A (accessed) bit so it can be emulated correctly.
1758 * @param pPteDst The shadow PTE (output). This is temporary storage and
1759 * does not need to be set atomically.
1760 */
1761DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVMCC pVM, PVMCPUCC pVCpu, PCPGMPAGE pPage, RTGCPHYS GCPhysPage, uint64_t fPteSrc,
1762 PSHWPTE pPteDst)
1763{
1764 RT_NOREF_PV(pVM); RT_NOREF_PV(fPteSrc); RT_NOREF_PV(pVCpu); RT_NOREF_PV(GCPhysPage);
1765
1766 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1767 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1768 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1769 {
1770 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1771# if PGM_SHW_TYPE == PGM_TYPE_EPT
1772 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage) | EPT_E_READ | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
1773# else
1774 if (fPteSrc & X86_PTE_A)
1775 {
1776 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1777 SHW_PTE_SET_RO(*pPteDst);
1778 }
1779 else
1780 SHW_PTE_SET(*pPteDst, 0);
1781# endif
1782 }
1783# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1784# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1785 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1786 && ( BTH_IS_NP_ACTIVE(pVM)
1787 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1788# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1789 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1790# endif
1791 )
1792 {
1793 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1794# if PGM_SHW_TYPE == PGM_TYPE_EPT
1795 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1796 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg
1797 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1798 | EPT_E_WRITE
1799 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1800 | EPT_E_MEMTYPE_INVALID_3;
1801# else
1802 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1803 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1804# endif
1805 }
1806# endif
1807# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1808 else
1809 {
1810 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1811 SHW_PTE_SET(*pPteDst, 0);
1812 }
1813 /** @todo count these kinds of entries. */
1814}
1815
1816
1817/**
1818 * Creates a 4K shadow page for a guest page.
1819 *
1820 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1821 * physical address. The PdeSrc argument only the flags are used. No page
1822 * structured will be mapped in this function.
1823 *
1824 * @param pVCpu The cross context virtual CPU structure.
1825 * @param pPteDst Destination page table entry.
1826 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1827 * Can safely assume that only the flags are being used.
1828 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1829 * @param pShwPage Pointer to the shadow page.
1830 * @param iPTDst The index into the shadow table.
1831 *
1832 * @remark Not used for 2/4MB pages!
1833 */
1834# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1835static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1836 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1837# else
1838static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1839 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1840# endif
1841{
1842 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1843 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1844
1845# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1846 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1847 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1848
1849 if (pShwPage->fDirty)
1850 {
1851 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1852 PGSTPT pGstPT;
1853
1854 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1855 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1856 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1857 pGstPT->a[iPTDst].u = PteSrc.u;
1858 }
1859# else
1860 Assert(!pShwPage->fDirty);
1861# endif
1862
1863# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1864 if ( (PteSrc.u & X86_PTE_P)
1865 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1866# endif
1867 {
1868# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1869 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1870# endif
1871 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1872
1873 /*
1874 * Find the ram range.
1875 */
1876 PPGMPAGE pPage;
1877 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1878 if (RT_SUCCESS(rc))
1879 {
1880 /* Ignore ballooned pages.
1881 Don't return errors or use a fatal assert here as part of a
1882 shadow sync range might included ballooned pages. */
1883 if (PGM_PAGE_IS_BALLOONED(pPage))
1884 {
1885 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1886 return;
1887 }
1888
1889# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1890 /* Make the page writable if necessary. */
1891 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1892 && ( PGM_PAGE_IS_ZERO(pPage)
1893# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1894 || ( (PteSrc.u & X86_PTE_RW)
1895# else
1896 || ( 1
1897# endif
1898 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1899# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1900 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1901# endif
1902# ifdef VBOX_WITH_PAGE_SHARING
1903 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1904# endif
1905 )
1906 )
1907 )
1908 {
1909 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1910 AssertRC(rc);
1911 }
1912# endif
1913
1914 /*
1915 * Make page table entry.
1916 */
1917 SHWPTE PteDst;
1918# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1919 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1920# else
1921 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1922# endif
1923 if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
1924 {
1925# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1926 /*
1927 * If the page or page directory entry is not marked accessed,
1928 * we mark the page not present.
1929 */
1930 if (!(PteSrc.u & X86_PTE_A) || !(PdeSrc.u & X86_PDE_A))
1931 {
1932 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1933 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,AccessedPage));
1934 SHW_PTE_SET(PteDst, 0);
1935 }
1936 /*
1937 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1938 * when the page is modified.
1939 */
1940 else if (!(PteSrc.u & X86_PTE_D) && (PdeSrc.u & PteSrc.u & X86_PTE_RW))
1941 {
1942 AssertCompile(X86_PTE_RW == X86_PDE_RW);
1943 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPage));
1944 SHW_PTE_SET(PteDst,
1945 fGstShwPteFlags
1946 | PGM_PAGE_GET_HCPHYS(pPage)
1947 | PGM_PTFLAGS_TRACK_DIRTY);
1948 SHW_PTE_SET_RO(PteDst);
1949 }
1950 else
1951# endif
1952 {
1953 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageSkipped));
1954# if PGM_SHW_TYPE == PGM_TYPE_EPT
1955 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage)
1956 | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
1957# else
1958 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1959# endif
1960 }
1961
1962 /*
1963 * Make sure only allocated pages are mapped writable.
1964 */
1965 if ( SHW_PTE_IS_P_RW(PteDst)
1966 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1967 {
1968 /* Still applies to shared pages. */
1969 Assert(!PGM_PAGE_IS_ZERO(pPage));
1970 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1971 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1972 }
1973 }
1974 else
1975 PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhysPage, fGstShwPteFlags, &PteDst);
1976
1977 /*
1978 * Keep user track up to date.
1979 */
1980 if (SHW_PTE_IS_P(PteDst))
1981 {
1982 if (!SHW_PTE_IS_P(*pPteDst))
1983 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1984 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1985 {
1986 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1987 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1988 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1989 }
1990 }
1991 else if (SHW_PTE_IS_P(*pPteDst))
1992 {
1993 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1994 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1995 }
1996
1997 /*
1998 * Update statistics and commit the entry.
1999 */
2000# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2001 if (!(PteSrc.u & X86_PTE_G))
2002 pShwPage->fSeenNonGlobal = true;
2003# endif
2004 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2005 return;
2006 }
2007
2008/** @todo count these three different kinds. */
2009 Log2(("SyncPageWorker: invalid address in Pte\n"));
2010 }
2011# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2012 else if (!(PteSrc.u & X86_PTE_P))
2013 Log2(("SyncPageWorker: page not present in Pte\n"));
2014 else
2015 Log2(("SyncPageWorker: invalid Pte\n"));
2016# endif
2017
2018 /*
2019 * The page is not present or the PTE is bad. Replace the shadow PTE by
2020 * an empty entry, making sure to keep the user tracking up to date.
2021 */
2022 if (SHW_PTE_IS_P(*pPteDst))
2023 {
2024 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
2025 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
2026 }
2027 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
2028}
2029
2030
2031/**
2032 * Syncs a guest OS page.
2033 *
2034 * There are no conflicts at this point, neither is there any need for
2035 * page table allocations.
2036 *
2037 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
2038 * When called in AMD64 guest mode, the guest PML4E shall be valid.
2039 *
2040 * @returns VBox status code.
2041 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
2042 * @param pVCpu The cross context virtual CPU structure.
2043 * @param PdeSrc Page directory entry of the guest.
2044 * @param GCPtrPage Guest context page address.
2045 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
2046 * @param uErr Fault error (X86_TRAP_PF_*).
2047 */
2048static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
2049{
2050 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2051 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2052 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
2053 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage);
2054
2055 PGM_LOCK_ASSERT_OWNER(pVM);
2056
2057# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2058 || PGM_GST_TYPE == PGM_TYPE_PAE \
2059 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2060 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
2061
2062 /*
2063 * Assert preconditions.
2064 */
2065 Assert(PdeSrc.u & X86_PDE_P);
2066 Assert(cPages);
2067# if 0 /* rarely useful; leave for debugging. */
2068 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
2069# endif
2070
2071 /*
2072 * Get the shadow PDE, find the shadow page table in the pool.
2073 */
2074# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2075 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2076 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2077
2078 /* Fetch the pgm pool shadow descriptor. */
2079 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2080 Assert(pShwPde);
2081
2082# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2083 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2084 PPGMPOOLPAGE pShwPde = NULL;
2085 PX86PDPAE pPDDst;
2086
2087 /* Fetch the pgm pool shadow descriptor. */
2088 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2089 AssertRCSuccessReturn(rc2, rc2);
2090 Assert(pShwPde);
2091
2092 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2093 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
2094
2095# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2096 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2097 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2098 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2099 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2100
2101 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2102 AssertRCSuccessReturn(rc2, rc2);
2103 Assert(pPDDst && pPdptDst);
2104 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
2105# endif
2106 SHWPDE PdeDst = *pPdeDst;
2107
2108 /*
2109 * - In the guest SMP case we could have blocked while another VCPU reused
2110 * this page table.
2111 * - With W7-64 we may also take this path when the A bit is cleared on
2112 * higher level tables (PDPE/PML4E). The guest does not invalidate the
2113 * relevant TLB entries. If we're write monitoring any page mapped by
2114 * the modified entry, we may end up here with a "stale" TLB entry.
2115 */
2116 if (!(PdeDst.u & X86_PDE_P))
2117 {
2118 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
2119 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
2120 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
2121 if (uErr & X86_TRAP_PF_P)
2122 PGM_INVL_PG(pVCpu, GCPtrPage);
2123 return VINF_SUCCESS; /* force the instruction to be executed again. */
2124 }
2125
2126 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2127 Assert(pShwPage);
2128
2129# if PGM_GST_TYPE == PGM_TYPE_AMD64
2130 /* Fetch the pgm pool shadow descriptor. */
2131 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2132 Assert(pShwPde);
2133# endif
2134
2135 /*
2136 * Check that the page is present and that the shadow PDE isn't out of sync.
2137 */
2138 const bool fBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu);
2139 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
2140 RTGCPHYS GCPhys;
2141 if (!fBigPage)
2142 {
2143 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2144# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2145 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2146 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
2147# endif
2148 }
2149 else
2150 {
2151 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2152# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2153 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2154 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2155# endif
2156 }
2157 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
2158 if ( fPdeValid
2159 && pShwPage->GCPhys == GCPhys
2160 && (PdeSrc.u & X86_PDE_P)
2161 && (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US)
2162 && ((PdeSrc.u & X86_PDE_RW) == (PdeDst.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW))
2163# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2164 && ((PdeSrc.u & X86_PDE_PAE_NX) == (PdeDst.u & X86_PDE_PAE_NX) || !GST_IS_NX_ACTIVE(pVCpu))
2165# endif
2166 )
2167 {
2168 /*
2169 * Check that the PDE is marked accessed already.
2170 * Since we set the accessed bit *before* getting here on a #PF, this
2171 * check is only meant for dealing with non-#PF'ing paths.
2172 */
2173 if (PdeSrc.u & X86_PDE_A)
2174 {
2175 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2176 if (!fBigPage)
2177 {
2178 /*
2179 * 4KB Page - Map the guest page table.
2180 */
2181 PGSTPT pPTSrc;
2182 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2183 if (RT_SUCCESS(rc))
2184 {
2185# ifdef PGM_SYNC_N_PAGES
2186 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2187 if ( cPages > 1
2188 && !(uErr & X86_TRAP_PF_P)
2189 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2190 {
2191 /*
2192 * This code path is currently only taken when the caller is PGMTrap0eHandler
2193 * for non-present pages!
2194 *
2195 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2196 * deal with locality.
2197 */
2198 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2199# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2200 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2201 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2202# else
2203 const unsigned offPTSrc = 0;
2204# endif
2205 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2206 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2207 iPTDst = 0;
2208 else
2209 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2210
2211 for (; iPTDst < iPTDstEnd; iPTDst++)
2212 {
2213 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
2214
2215 if ( (pPteSrc->u & X86_PTE_P)
2216 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2217 {
2218 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT))
2219 | ((offPTSrc + iPTDst) << GUEST_PAGE_SHIFT);
2220 NOREF(GCPtrCurPage);
2221 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
2222 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2223 GCPtrCurPage, pPteSrc->u & X86_PTE_P,
2224 !!(pPteSrc->u & PdeSrc.u & X86_PTE_RW),
2225 !!(pPteSrc->u & PdeSrc.u & X86_PTE_US),
2226 (uint64_t)pPteSrc->u,
2227 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2228 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2229 }
2230 }
2231 }
2232 else
2233# endif /* PGM_SYNC_N_PAGES */
2234 {
2235 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2236 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2237 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2238 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2239 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2240 GCPtrPage, PteSrc.u & X86_PTE_P,
2241 !!(PteSrc.u & PdeSrc.u & X86_PTE_RW),
2242 !!(PteSrc.u & PdeSrc.u & X86_PTE_US),
2243 (uint64_t)PteSrc.u,
2244 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2245 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2246 }
2247 }
2248 else /* MMIO or invalid page: emulated in #PF handler. */
2249 {
2250 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2251 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2252 }
2253 }
2254 else
2255 {
2256 /*
2257 * 4/2MB page - lazy syncing shadow 4K pages.
2258 * (There are many causes of getting here, it's no longer only CSAM.)
2259 */
2260 /* Calculate the GC physical address of this 4KB shadow page. */
2261 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2262 /* Find ram range. */
2263 PPGMPAGE pPage;
2264 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2265 if (RT_SUCCESS(rc))
2266 {
2267 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2268
2269# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2270 /* Try to make the page writable if necessary. */
2271 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2272 && ( PGM_PAGE_IS_ZERO(pPage)
2273 || ( (PdeSrc.u & X86_PDE_RW)
2274 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2275# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2276 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2277# endif
2278# ifdef VBOX_WITH_PAGE_SHARING
2279 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2280# endif
2281 )
2282 )
2283 )
2284 {
2285 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2286 AssertRC(rc);
2287 }
2288# endif
2289
2290 /*
2291 * Make shadow PTE entry.
2292 */
2293 SHWPTE PteDst;
2294 if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
2295 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2296 else
2297 PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhys, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2298
2299 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2300 if ( SHW_PTE_IS_P(PteDst)
2301 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2302 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2303
2304 /* Make sure only allocated pages are mapped writable. */
2305 if ( SHW_PTE_IS_P_RW(PteDst)
2306 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2307 {
2308 /* Still applies to shared pages. */
2309 Assert(!PGM_PAGE_IS_ZERO(pPage));
2310 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2311 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2312 }
2313
2314 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2315
2316 /*
2317 * If the page is not flagged as dirty and is writable, then make it read-only
2318 * at PD level, so we can set the dirty bit when the page is modified.
2319 *
2320 * ASSUMES that page access handlers are implemented on page table entry level.
2321 * Thus we will first catch the dirty access and set PDE.D and restart. If
2322 * there is an access handler, we'll trap again and let it work on the problem.
2323 */
2324 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2325 * As for invlpg, it simply frees the whole shadow PT.
2326 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2327 if ((PdeSrc.u & (X86_PDE4M_D | X86_PDE_RW)) == X86_PDE_RW)
2328 {
2329 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
2330 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2331 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
2332 }
2333 else
2334 {
2335 PdeDst.u &= ~(SHWUINT)(PGM_PDFLAGS_TRACK_DIRTY | X86_PDE_RW);
2336 PdeDst.u |= PdeSrc.u & X86_PDE_RW;
2337 }
2338 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2339 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2340 GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US),
2341 (uint64_t)PdeSrc.u, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2342 }
2343 else
2344 {
2345 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2346 /** @todo must wipe the shadow page table entry in this
2347 * case. */
2348 }
2349 }
2350 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2351 return VINF_SUCCESS;
2352 }
2353
2354 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDNAs));
2355 }
2356 else if (fPdeValid)
2357 {
2358 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2359 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2360 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2361 }
2362 else
2363 {
2364/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2365 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2366 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2367 }
2368
2369 /*
2370 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2371 * Yea, I'm lazy.
2372 */
2373 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2374 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
2375
2376 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2377 PGM_INVL_VCPU_TLBS(pVCpu);
2378 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2379
2380
2381# elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2382 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2383 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2384 NOREF(PdeSrc);
2385
2386# ifdef PGM_SYNC_N_PAGES
2387 /*
2388 * Get the shadow PDE, find the shadow page table in the pool.
2389 */
2390# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2391 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2392
2393# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2394 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2395
2396# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2397 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2398 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2399 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2400 X86PDEPAE PdeDst;
2401 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2402
2403 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2404 AssertRCSuccessReturn(rc, rc);
2405 Assert(pPDDst && pPdptDst);
2406 PdeDst = pPDDst->a[iPDDst];
2407
2408# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2409 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2410 PEPTPD pPDDst;
2411 EPTPDE PdeDst;
2412
2413 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2414 if (rc != VINF_SUCCESS)
2415 {
2416 AssertRC(rc);
2417 return rc;
2418 }
2419 Assert(pPDDst);
2420 PdeDst = pPDDst->a[iPDDst];
2421# endif
2422 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2423 if (!SHW_PDE_IS_P(PdeDst))
2424 {
2425 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2426 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2427 return VINF_SUCCESS; /* force the instruction to be executed again. */
2428 }
2429
2430 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2431 if (SHW_PDE_IS_BIG(PdeDst))
2432 {
2433 Assert(pVM->pgm.s.fNestedPaging);
2434 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2435 return VINF_SUCCESS;
2436 }
2437
2438 /* Mask away the page offset. */
2439 GCPtrPage &= ~((RTGCPTR)0xfff);
2440
2441 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2442 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2443
2444 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2445 if ( cPages > 1
2446 && !(uErr & X86_TRAP_PF_P)
2447 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2448 {
2449 /*
2450 * This code path is currently only taken when the caller is PGMTrap0eHandler
2451 * for non-present pages!
2452 *
2453 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2454 * deal with locality.
2455 */
2456 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2457 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2458 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2459 iPTDst = 0;
2460 else
2461 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2462 for (; iPTDst < iPTDstEnd; iPTDst++)
2463 {
2464 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2465 {
2466 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2467 | (iPTDst << GUEST_PAGE_SHIFT));
2468
2469 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2470 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2471 GCPtrCurPage,
2472 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2473 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2474
2475 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2476 break;
2477 }
2478 else
2479 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n",
2480 (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2481 }
2482 }
2483 else
2484# endif /* PGM_SYNC_N_PAGES */
2485 {
2486 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2487 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2488 | (iPTDst << GUEST_PAGE_SHIFT));
2489
2490 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2491
2492 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2493 GCPtrPage,
2494 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2495 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2496 }
2497 return VINF_SUCCESS;
2498
2499# else
2500 NOREF(PdeSrc);
2501 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2502 return VERR_PGM_NOT_USED_IN_MODE;
2503# endif
2504}
2505
2506#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */
2507
2508#if !defined(IN_RING3) && defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT
2509
2510/**
2511 * Sync a shadow page for a nested-guest page.
2512 *
2513 * @param pVCpu The cross context virtual CPU structure.
2514 * @param pPte The shadow page table entry.
2515 * @param GCPhysPage The guest-physical address of the page.
2516 * @param pShwPage The shadow page of the page table.
2517 * @param iPte The index of the page table entry.
2518 * @param pGstWalkAll The guest page table walk result.
2519 *
2520 * @note Not to be used for 2/4MB pages!
2521 */
2522static void PGM_BTH_NAME(NestedSyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPte, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage,
2523 unsigned iPte, PPGMPTWALKGST pGstWalkAll)
2524{
2525 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
2526 Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage));
2527 Assert(!pShwPage->fDirty);
2528 Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT);
2529
2530 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2531 AssertMsg(GCPhysPage == (pGstWalkAll->u.Ept.Pte.u & EPT_PTE_PG_MASK),
2532 ("GCPhys=%RGp Ept=%RX64\n", GCPhysPage, pGstWalkAll->u.Ept.Pte.u & EPT_PTE_PG_MASK));
2533
2534 /*
2535 * Find the ram range.
2536 */
2537 PPGMPAGE pPage;
2538 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
2539 AssertRCReturnVoid(rc);
2540
2541 Assert(!PGM_PAGE_IS_BALLOONED(pPage));
2542
2543# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2544 /* Make the page writable if necessary. */
2545 /** @todo This needs to be applied to the regular case below, not here. And,
2546 * no we should *NOT* make the page writble, instead we need to write
2547 * protect them if necessary. */
2548 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2549 && PGM_PAGE_IS_ZERO(pPage)
2550 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2551# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2552 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2553# endif
2554# ifdef VBOX_WITH_PAGE_SHARING
2555 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2556# endif
2557 )
2558 {
2559 AssertMsgFailed(("GCPhysPage=%RGp\n", GCPhysPage)); /** @todo Shouldn't happen but if it does deal with it later. */
2560 }
2561# endif
2562
2563 /*
2564 * Make page table entry.
2565 */
2566 SHWPTE Pte;
2567 uint64_t const fGstShwPteFlags = pGstWalkAll->u.Ept.Pte.u & pVCpu->pgm.s.fGstEptShadowedPteMask;
2568 if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
2569 {
2570 /** @todo access bit. */
2571 Pte.u = PGM_PAGE_GET_HCPHYS(pPage) | fGstShwPteFlags;
2572 Log7Func(("regular page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u));
2573 }
2574 else if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2575 {
2576 /** @todo access bit. */
2577 Pte.u = PGM_PAGE_GET_HCPHYS(pPage) | (fGstShwPteFlags & ~EPT_E_WRITE);
2578 Log7Func(("monitored page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u));
2579 }
2580 else
2581 {
2582 /** @todo Do MMIO optimizations here too? */
2583 Log7Func(("mmio/all page (%R[pgmpage]) at %RGp -> 0\n", pPage, GCPhysPage));
2584 Pte.u = 0;
2585 }
2586
2587 /* Make sure only allocated pages are mapped writable. */
2588 Assert(!SHW_PTE_IS_P_RW(Pte) || PGM_PAGE_IS_ALLOCATED(pPage));
2589
2590 /*
2591 * Keep user track up to date.
2592 */
2593 if (SHW_PTE_IS_P(Pte))
2594 {
2595 if (!SHW_PTE_IS_P(*pPte))
2596 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPte);
2597 else if (SHW_PTE_GET_HCPHYS(*pPte) != SHW_PTE_GET_HCPHYS(Pte))
2598 {
2599 Log2(("SyncPageWorker: deref! *pPte=%RX64 Pte=%RX64\n", SHW_PTE_LOG64(*pPte), SHW_PTE_LOG64(Pte)));
2600 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS);
2601 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPte);
2602 }
2603 }
2604 else if (SHW_PTE_IS_P(*pPte))
2605 {
2606 Log2(("SyncPageWorker: deref! *pPte=%RX64\n", SHW_PTE_LOG64(*pPte)));
2607 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS);
2608 }
2609
2610 /*
2611 * Commit the entry.
2612 */
2613 SHW_PTE_ATOMIC_SET2(*pPte, Pte);
2614 return;
2615}
2616
2617
2618/**
2619 * Syncs a nested-guest page.
2620 *
2621 * There are no conflicts at this point, neither is there any need for
2622 * page table allocations.
2623 *
2624 * @returns VBox status code.
2625 * @param pVCpu The cross context virtual CPU structure.
2626 * @param GCPhysNestedPage The nested-guest physical address of the page being
2627 * synced.
2628 * @param GCPhysPage The guest-physical address of the page being synced.
2629 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
2630 * @param uErr The page fault error (X86_TRAP_PF_XXX).
2631 * @param pGstWalkAll The guest page table walk result.
2632 */
2633static int PGM_BTH_NAME(NestedSyncPage)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, unsigned cPages,
2634 uint32_t uErr, PPGMPTWALKGST pGstWalkAll)
2635{
2636 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
2637 Assert(!(GCPhysNestedPage & GUEST_PAGE_OFFSET_MASK));
2638 Assert(!(GCPhysPage & GUEST_PAGE_OFFSET_MASK));
2639
2640 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2641 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2642 Log7Func(("GCPhysNestedPage=%RGv GCPhysPage=%RGp cPages=%u uErr=%#x\n", GCPhysNestedPage, GCPhysPage, cPages, uErr));
2643 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages);
2644
2645 PGM_LOCK_ASSERT_OWNER(pVM);
2646
2647 /*
2648 * Get the shadow PDE, find the shadow page table in the pool.
2649 */
2650 unsigned const iPde = ((GCPhysNestedPage >> EPT_PD_SHIFT) & EPT_PD_MASK);
2651 PEPTPD pPd;
2652 int rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL, &pPd, pGstWalkAll);
2653 if (RT_SUCCESS(rc))
2654 { /* likely */ }
2655 else
2656 {
2657 Log(("Failed to fetch EPT PD for %RGp (%RGp) rc=%Rrc\n", GCPhysNestedPage, GCPhysPage, rc));
2658 return rc;
2659 }
2660 Assert(pPd);
2661 EPTPDE Pde = pPd->a[iPde];
2662
2663# if 0 /* Enable this later? */
2664 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2665 if (!SHW_PDE_IS_P(Pde))
2666 {
2667 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)Pde.u));
2668 Log7Func(("CPU%d: SyncPage: Pde at %RGp changed behind our back!\n", pVCpu->idCpu, GCPhysNestedPage));
2669 return VINF_SUCCESS; /* force the instruction to be executed again. */
2670 }
2671
2672 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2673 if (SHW_PDE_IS_BIG(Pde))
2674 {
2675 Assert(pVM->pgm.s.fNestedPaging);
2676 Log7Func(("CPU%d: SyncPage: %RGp changed behind our back!\n", pVCpu->idCpu, GCPhysNestedPage));
2677 return VINF_SUCCESS;
2678 }
2679# else
2680 AssertMsg(SHW_PDE_IS_P(Pde), ("Pde=%RX64 iPde=%u\n", Pde.u, iPde));
2681 Assert(!SHW_PDE_IS_BIG(Pde));
2682# endif
2683
2684 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, Pde.u & EPT_PDE_PG_MASK);
2685 PEPTPT pPt = (PEPTPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2686
2687 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2688# ifdef PGM_SYNC_N_PAGES
2689 if ( cPages > 1
2690 && !(uErr & X86_TRAP_PF_P)
2691 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2692 {
2693 /*
2694 * This code path is currently only taken for non-present pages!
2695 *
2696 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2697 * deal with locality.
2698 */
2699 unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2700 unsigned const iPteEnd = RT_MIN(iPte + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPt->a));
2701 if (iPte < PGM_SYNC_NR_PAGES / 2)
2702 iPte = 0;
2703 else
2704 iPte -= PGM_SYNC_NR_PAGES / 2;
2705 for (; iPte < iPteEnd; iPte++)
2706 {
2707 if (!SHW_PTE_IS_P(pPt->a[iPte]))
2708 {
2709 PGMPTWALKGST GstWalkPt;
2710 PGMPTWALK WalkPt;
2711 GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT);
2712 GCPhysNestedPage |= (iPte << GUEST_PAGE_SHIFT);
2713 rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt,
2714 &GstWalkPt);
2715 if (RT_SUCCESS(rc))
2716 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], WalkPt.GCPhys, pShwPage, iPte, &GstWalkPt);
2717 else
2718 {
2719 /*
2720 * This could be MMIO pages reserved by the nested-hypevisor or genuinely not-present pages.
2721 * Ensure the shadow tables entry is not-present.
2722 */
2723 /** @todo Potential room for optimization (explained in NestedSyncPT). */
2724 AssertMsg(!pPt->a[iPte].u, ("%RX64\n", pPt->a[iPte].u));
2725 }
2726 Log7Func(("Many: %RGp iPte=%u ShwPte=%RX64\n", GCPhysNestedPage, iPte, SHW_PTE_LOG64(pPt->a[iPte])));
2727 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2728 break;
2729 }
2730 else
2731 {
2732# ifdef VBOX_STRICT
2733 /* Paranoia - Verify address of the page is what it should be. */
2734 PGMPTWALKGST GstWalkPt;
2735 PGMPTWALK WalkPt;
2736 GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT);
2737 GCPhysNestedPage |= (iPte << GUEST_PAGE_SHIFT);
2738 rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt, &GstWalkPt);
2739 AssertRC(rc);
2740 PPGMPAGE pPage;
2741 rc = pgmPhysGetPageEx(pVM, WalkPt.GCPhys, &pPage);
2742 AssertRC(rc);
2743 AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]),
2744 ("PGM page and shadow PTE address conflict. GCPhysNestedPage=%RGp GCPhysPage=%RGp HCPhys=%RHp Shw=%RHp\n",
2745 GCPhysNestedPage, WalkPt.GCPhys, PGM_PAGE_GET_HCPHYS(pPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte])));
2746# endif
2747 Log7Func(("Many3: %RGp iPte=%u ShwPte=%RX64\n", GCPhysNestedPage, iPte, SHW_PTE_LOG64(pPt->a[iPte])));
2748 }
2749 }
2750 }
2751 else
2752# endif /* PGM_SYNC_N_PAGES */
2753 {
2754 unsigned const iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2755 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll);
2756 Log7Func(("4K: GCPhysPage=%RGp iPte=%u ShwPte=%08llx\n", GCPhysPage, iPte, SHW_PTE_LOG64(pPt->a[iPte])));
2757 }
2758
2759 return VINF_SUCCESS;
2760}
2761
2762
2763/**
2764 * Sync a shadow page table for a nested-guest page table.
2765 *
2766 * The shadow page table is not present in the shadow PDE.
2767 *
2768 * Handles mapping conflicts.
2769 *
2770 * A precondition for this method is that the shadow PDE is not present. The
2771 * caller must take the PGM lock before checking this and continue to hold it
2772 * when calling this method.
2773 *
2774 * @returns VBox status code.
2775 * @param pVCpu The cross context virtual CPU structure.
2776 * @param GCPhysNestedPage The nested-guest physical page address of the page
2777 * being synced.
2778 * @param GCPhysPage The guest-physical address of the page being synced.
2779 * @param pGstWalkAll The guest page table walk result.
2780 */
2781static int PGM_BTH_NAME(NestedSyncPT)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, PPGMPTWALKGST pGstWalkAll)
2782{
2783 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
2784 Assert(!(GCPhysNestedPage & GUEST_PAGE_OFFSET_MASK));
2785 Assert(!(GCPhysPage & GUEST_PAGE_OFFSET_MASK));
2786
2787 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2788 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2789
2790 Log7Func(("GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage));
2791
2792 PGM_LOCK_ASSERT_OWNER(pVM);
2793 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2794
2795 PEPTPD pPd;
2796 PEPTPDPT pPdpt;
2797 unsigned const iPde = (GCPhysNestedPage >> EPT_PD_SHIFT) & EPT_PD_MASK;
2798 int rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, &pPdpt, &pPd, pGstWalkAll);
2799 if (rc != VINF_SUCCESS)
2800 {
2801 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2802 AssertRC(rc);
2803 return rc;
2804 }
2805 Assert(pPd);
2806 PSHWPDE pPde = &pPd->a[iPde];
2807
2808 unsigned const iPdpt = (GCPhysNestedPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2809 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdpt->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2810 Assert(pShwPde->enmKind == PGMPOOLKIND_EPT_PD_FOR_EPT_PD);
2811
2812 SHWPDE Pde = *pPde;
2813 Assert(!SHW_PDE_IS_P(Pde)); /* We're only supposed to call SyncPT on PDE!P and conflicts. */
2814
2815# ifdef PGM_WITH_LARGE_PAGES
2816 if (BTH_IS_NP_ACTIVE(pVM))
2817 {
2818 /* Check if we allocated a big page before for this 2 MB range and disable it. */
2819 PPGMPAGE pPage;
2820 rc = pgmPhysGetPageEx(pVM, GCPhysPage & X86_PDE2M_PAE_PG_MASK, &pPage);
2821 if ( RT_SUCCESS(rc)
2822 && PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
2823 {
2824 Log7Func(("Disabling large page %RGp\n", GCPhysPage));
2825 Assert(PGM_A20_IS_ENABLED(pVCpu)); /* Should never be in A20M mode in VMX operation. */
2826 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
2827 pVM->pgm.s.cLargePagesDisabled++;
2828 }
2829 }
2830# endif /* PGM_WITH_LARGE_PAGES */
2831
2832 /*
2833 * Allocate & map the page table.
2834 */
2835 PSHWPT pPt;
2836 PPGMPOOLPAGE pShwPage;
2837
2838 RTGCPHYS const GCPhysPt = pGstWalkAll->u.Ept.Pde.u & EPT_PDE_PG_MASK;
2839 rc = pgmPoolAlloc(pVM, GCPhysPt, PGMPOOLKIND_EPT_PT_FOR_EPT_PT, PGMPOOLACCESS_DONTCARE,
2840 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPde, false /*fLockPage*/, &pShwPage);
2841 if ( rc == VINF_SUCCESS
2842 || rc == VINF_PGM_CACHED_PAGE)
2843 { /* likely */ }
2844 else
2845 {
2846 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2847 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2848 }
2849
2850 pPt = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2851 Assert(pPt);
2852 Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage));
2853
2854 if (rc == VINF_SUCCESS)
2855 {
2856 /* Sync the page we've already translated through SLAT. */
2857 const unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2858 Assert((pGstWalkAll->u.Ept.Pte.u & EPT_PTE_PG_MASK) == GCPhysPage);
2859 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll);
2860 Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u\n", pGstWalkAll->u.Ept.Pte.u, pPt->a[iPte].u, iPte));
2861
2862 /* Sync the rest of page table (expensive but might be cheaper than nested-guest VM-exits in hardware). */
2863 for (unsigned iPteCur = 0; iPteCur < RT_ELEMENTS(pPt->a); iPteCur++)
2864 {
2865 if (iPteCur != iPte)
2866 {
2867 PGMPTWALKGST GstWalkPt;
2868 PGMPTWALK WalkPt;
2869 GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT);
2870 GCPhysNestedPage |= (iPteCur << GUEST_PAGE_SHIFT);
2871 int const rc2 = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/,
2872 &WalkPt, &GstWalkPt);
2873 if (RT_SUCCESS(rc2))
2874 {
2875 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPteCur], WalkPt.GCPhys, pShwPage, iPteCur, &GstWalkPt);
2876 Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u\n", GstWalkPt.u.Ept.Pte.u, pPt->a[iPteCur].u, iPteCur));
2877 }
2878 else
2879 {
2880 /*
2881 * This could be MMIO pages reserved by the nested-hypevisor or genuinely not-present pages.
2882 * Ensure the shadow tables entry is not-present.
2883 */
2884 /** @todo We currently don't sync. them to cause EPT misconfigs and trap all of them
2885 * using EPT violation and walk the guest EPT tables to determine EPT
2886 * misconfigs VM-exits for the nested-guest. In the future we could optimize
2887 * this by using a specific combination of reserved bits which we can
2888 * immediately identify as EPT misconfigs for the nested-guest without having
2889 * to walk its EPT tables. Tracking non-present entries might be tricky...
2890 */
2891 AssertMsg(!pPt->a[iPteCur].u, ("%RX64\n", pPt->a[iPteCur].u));
2892 }
2893 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2894 break;
2895 }
2896 }
2897 }
2898 else
2899 {
2900 Assert(rc == VINF_PGM_CACHED_PAGE);
2901# ifdef VBOX_STRICT
2902 /* Paranoia - Verify address of the page is what it should be. */
2903 PPGMPAGE pPage;
2904 rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
2905 AssertRC(rc);
2906 const unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2907 AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]) || !SHW_PTE_IS_P(pPt->a[iPte]),
2908 ("PGM page and shadow PTE address conflict. GCPhysNestedPage=%RGp GCPhysPage=%RGp Page=%RHp Shw=%RHp\n",
2909 GCPhysNestedPage, GCPhysPage, PGM_PAGE_GET_HCPHYS(pPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte])));
2910 Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u [cache]\n", pGstWalkAll->u.Ept.Pte.u, pPt->a[iPte].u, iPte));
2911# endif
2912 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
2913 }
2914
2915 /* Save the new PDE. */
2916 uint64_t const fShwPdeFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedPdeMask;
2917 AssertReturn(!(pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF), VERR_NOT_SUPPORTED); /* Implement this later. */
2918 Pde.u = pShwPage->Core.Key | fShwPdeFlags;
2919 SHW_PDE_ATOMIC_SET2(*pPde, Pde);
2920 Log7Func(("GstPde=%RGp ShwPde=%RX64 iPde=%u\n", pGstWalkAll->u.Ept.Pde.u, pPde->u, iPde));
2921
2922 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2923 return rc;
2924}
2925
2926#endif /* !IN_RING3 && VBOX_WITH_NESTED_HWVIRT_VMX_EPT && PGM_SHW_TYPE == PGM_TYPE_EPT*/
2927#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
2928
2929/**
2930 * Handle dirty bit tracking faults.
2931 *
2932 * @returns VBox status code.
2933 * @param pVCpu The cross context virtual CPU structure.
2934 * @param uErr Page fault error code.
2935 * @param pPdeSrc Guest page directory entry.
2936 * @param pPdeDst Shadow page directory entry.
2937 * @param GCPtrPage Guest context page address.
2938 */
2939static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2940 RTGCPTR GCPtrPage)
2941{
2942 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2943 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2944 NOREF(uErr);
2945
2946 PGM_LOCK_ASSERT_OWNER(pVM);
2947
2948 /*
2949 * Handle big page.
2950 */
2951 if ((pPdeSrc->u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu))
2952 {
2953 if ((pPdeDst->u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
2954 {
2955 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap));
2956 Assert(pPdeSrc->u & X86_PDE_RW);
2957
2958 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2959 * fault again and take this path to only invalidate the entry (see below). */
2960 SHWPDE PdeDst = *pPdeDst;
2961 PdeDst.u &= ~(SHWUINT)PGM_PDFLAGS_TRACK_DIRTY;
2962 PdeDst.u |= X86_PDE_RW | X86_PDE_A;
2963 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2964 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2965 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2966 }
2967
2968# ifdef IN_RING0
2969 /* Check for stale TLB entry; only applies to the SMP guest case. */
2970 if ( pVM->cCpus > 1
2971 && (pPdeDst->u & (X86_PDE_P | X86_PDE_RW | X86_PDE_A)) == (X86_PDE_P | X86_PDE_RW | X86_PDE_A))
2972 {
2973 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2974 if (pShwPage)
2975 {
2976 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2977 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2978 if (SHW_PTE_IS_P_RW(*pPteDst))
2979 {
2980 /* Stale TLB entry. */
2981 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale));
2982 PGM_INVL_PG(pVCpu, GCPtrPage);
2983 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2984 }
2985 }
2986 }
2987# endif /* IN_RING0 */
2988 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2989 }
2990
2991 /*
2992 * Map the guest page table.
2993 */
2994 PGSTPT pPTSrc;
2995 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2996 AssertRCReturn(rc, rc);
2997
2998 if (SHW_PDE_IS_P(*pPdeDst))
2999 {
3000 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
3001 const GSTPTE PteSrc = *pPteSrc;
3002
3003 /*
3004 * Map shadow page table.
3005 */
3006 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
3007 if (pShwPage)
3008 {
3009 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3010 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
3011 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
3012 {
3013 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
3014 {
3015 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
3016 SHWPTE PteDst = *pPteDst;
3017
3018 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
3019 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap));
3020
3021 Assert(PteSrc.u & X86_PTE_RW);
3022
3023 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
3024 * entry will not harm; write access will simply fault again and
3025 * take this path to only invalidate the entry.
3026 */
3027 if (RT_LIKELY(pPage))
3028 {
3029 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
3030 {
3031 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
3032 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
3033 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
3034 SHW_PTE_SET_RO(PteDst);
3035 }
3036 else
3037 {
3038 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
3039 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
3040 {
3041 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
3042 AssertRC(rc);
3043 }
3044 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
3045 SHW_PTE_SET_RW(PteDst);
3046 else
3047 {
3048 /* Still applies to shared pages. */
3049 Assert(!PGM_PAGE_IS_ZERO(pPage));
3050 SHW_PTE_SET_RO(PteDst);
3051 }
3052 }
3053 }
3054 else
3055 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
3056
3057 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
3058 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
3059 PGM_INVL_PG(pVCpu, GCPtrPage);
3060 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
3061 }
3062
3063# ifdef IN_RING0
3064 /* Check for stale TLB entry; only applies to the SMP guest case. */
3065 if ( pVM->cCpus > 1
3066 && SHW_PTE_IS_RW(*pPteDst)
3067 && SHW_PTE_IS_A(*pPteDst))
3068 {
3069 /* Stale TLB entry. */
3070 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale));
3071 PGM_INVL_PG(pVCpu, GCPtrPage);
3072 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
3073 }
3074# endif
3075 }
3076 }
3077 else
3078 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
3079 }
3080
3081 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
3082}
3083
3084#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
3085
3086/**
3087 * Sync a shadow page table.
3088 *
3089 * The shadow page table is not present in the shadow PDE.
3090 *
3091 * Handles mapping conflicts.
3092 *
3093 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
3094 * conflict), and Trap0eHandler.
3095 *
3096 * A precondition for this method is that the shadow PDE is not present. The
3097 * caller must take the PGM lock before checking this and continue to hold it
3098 * when calling this method.
3099 *
3100 * @returns VBox status code.
3101 * @param pVCpu The cross context virtual CPU structure.
3102 * @param iPDSrc Page directory index.
3103 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
3104 * Assume this is a temporary mapping.
3105 * @param GCPtrPage GC Pointer of the page that caused the fault
3106 */
3107static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
3108{
3109 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3110 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3111
3112#if 0 /* rarely useful; leave for debugging. */
3113 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
3114#endif
3115 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
3116
3117 PGM_LOCK_ASSERT_OWNER(pVM);
3118
3119#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3120 || PGM_GST_TYPE == PGM_TYPE_PAE \
3121 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
3122 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3123 && PGM_SHW_TYPE != PGM_TYPE_NONE
3124 int rc = VINF_SUCCESS;
3125
3126 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3127
3128 /*
3129 * Some input validation first.
3130 */
3131 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
3132
3133 /*
3134 * Get the relevant shadow PDE entry.
3135 */
3136# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3137 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
3138 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3139
3140 /* Fetch the pgm pool shadow descriptor. */
3141 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3142 Assert(pShwPde);
3143
3144# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3145 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3146 PPGMPOOLPAGE pShwPde = NULL;
3147 PX86PDPAE pPDDst;
3148 PSHWPDE pPdeDst;
3149
3150 /* Fetch the pgm pool shadow descriptor. */
3151 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3152 AssertRCSuccessReturn(rc, rc);
3153 Assert(pShwPde);
3154
3155 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3156 pPdeDst = &pPDDst->a[iPDDst];
3157
3158# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3159 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3160 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3161 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3162 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
3163 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3164 AssertRCSuccessReturn(rc, rc);
3165 Assert(pPDDst);
3166 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3167
3168# endif
3169 SHWPDE PdeDst = *pPdeDst;
3170
3171# if PGM_GST_TYPE == PGM_TYPE_AMD64
3172 /* Fetch the pgm pool shadow descriptor. */
3173 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3174 Assert(pShwPde);
3175# endif
3176
3177 Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P.*/
3178
3179 /*
3180 * Sync the page directory entry.
3181 */
3182 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3183 const bool fPageTable = !(PdeSrc.u & X86_PDE_PS) || !GST_IS_PSE_ACTIVE(pVCpu);
3184 if ( (PdeSrc.u & X86_PDE_P)
3185 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
3186 {
3187 /*
3188 * Allocate & map the page table.
3189 */
3190 PSHWPT pPTDst;
3191 PPGMPOOLPAGE pShwPage;
3192 RTGCPHYS GCPhys;
3193 if (fPageTable)
3194 {
3195 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
3196# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3197 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3198 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
3199# endif
3200 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
3201 pShwPde->idx, iPDDst, false /*fLockPage*/,
3202 &pShwPage);
3203 }
3204 else
3205 {
3206 PGMPOOLACCESS enmAccess;
3207# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
3208 const bool fNoExecute = (PdeSrc.u & X86_PDE_PAE_NX) && GST_IS_NX_ACTIVE(pVCpu);
3209# else
3210 const bool fNoExecute = false;
3211# endif
3212
3213 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3214# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3215 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3216 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
3217# endif
3218 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
3219 if (PdeSrc.u & X86_PDE_US)
3220 {
3221 if (PdeSrc.u & X86_PDE_RW)
3222 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
3223 else
3224 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
3225 }
3226 else
3227 {
3228 if (PdeSrc.u & X86_PDE_RW)
3229 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
3230 else
3231 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
3232 }
3233 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
3234 pShwPde->idx, iPDDst, false /*fLockPage*/,
3235 &pShwPage);
3236 }
3237 if (rc == VINF_SUCCESS)
3238 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3239 else if (rc == VINF_PGM_CACHED_PAGE)
3240 {
3241 /*
3242 * The PT was cached, just hook it up.
3243 */
3244 if (fPageTable)
3245 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3246 else
3247 {
3248 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3249 /* (see explanation and assumptions further down.) */
3250 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
3251 {
3252 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
3253 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
3254 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
3255 }
3256 }
3257 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3258 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3259 return VINF_SUCCESS;
3260 }
3261 else
3262 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3263 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
3264 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
3265 * irrelevant at this point. */
3266 PdeDst.u &= X86_PDE_AVL_MASK;
3267 PdeDst.u |= pShwPage->Core.Key;
3268
3269 /*
3270 * Page directory has been accessed (this is a fault situation, remember).
3271 */
3272 /** @todo
3273 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
3274 * fault situation. What's more, the Trap0eHandler has already set the
3275 * accessed bit. So, it's actually just VerifyAccessSyncPage which
3276 * might need setting the accessed flag.
3277 *
3278 * The best idea is to leave this change to the caller and add an
3279 * assertion that it's set already. */
3280 pPDSrc->a[iPDSrc].u |= X86_PDE_A;
3281 if (fPageTable)
3282 {
3283 /*
3284 * Page table - 4KB.
3285 *
3286 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
3287 */
3288 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
3289 GCPtrPage, PdeSrc.u & X86_PTE_P, !!(PdeSrc.u & X86_PTE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u));
3290 PGSTPT pPTSrc;
3291 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
3292 if (RT_SUCCESS(rc))
3293 {
3294 /*
3295 * Start by syncing the page directory entry so CSAM's TLB trick works.
3296 */
3297 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
3298 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3299 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3300 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3301
3302 /*
3303 * Directory/page user or supervisor privilege: (same goes for read/write)
3304 *
3305 * Directory Page Combined
3306 * U/S U/S U/S
3307 * 0 0 0
3308 * 0 1 0
3309 * 1 0 0
3310 * 1 1 1
3311 *
3312 * Simple AND operation. Table listed for completeness.
3313 *
3314 */
3315 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4K));
3316# ifdef PGM_SYNC_N_PAGES
3317 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
3318 unsigned iPTDst = iPTBase;
3319 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
3320 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
3321 iPTDst = 0;
3322 else
3323 iPTDst -= PGM_SYNC_NR_PAGES / 2;
3324# else /* !PGM_SYNC_N_PAGES */
3325 unsigned iPTDst = 0;
3326 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
3327# endif /* !PGM_SYNC_N_PAGES */
3328 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
3329 | ((RTGCPTR)iPTDst << GUEST_PAGE_SHIFT);
3330# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3331 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3332 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
3333# else
3334 const unsigned offPTSrc = 0;
3335# endif
3336 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += GUEST_PAGE_SIZE)
3337 {
3338 const unsigned iPTSrc = iPTDst + offPTSrc;
3339 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
3340 if (PteSrc.u & X86_PTE_P)
3341 {
3342 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
3343 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
3344 GCPtrCur,
3345 PteSrc.u & X86_PTE_P,
3346 !!(PteSrc.u & PdeSrc.u & X86_PTE_RW),
3347 !!(PteSrc.u & PdeSrc.u & X86_PTE_US),
3348 (uint64_t)PteSrc.u,
3349 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
3350 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
3351 }
3352 /* else: the page table was cleared by the pool */
3353 } /* for PTEs */
3354 }
3355 }
3356 else
3357 {
3358 /*
3359 * Big page - 2/4MB.
3360 *
3361 * We'll walk the ram range list in parallel and optimize lookups.
3362 * We will only sync one shadow page table at a time.
3363 */
3364 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4M));
3365
3366 /**
3367 * @todo It might be more efficient to sync only a part of the 4MB
3368 * page (similar to what we do for 4KB PDs).
3369 */
3370
3371 /*
3372 * Start by syncing the page directory entry.
3373 */
3374 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
3375 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3376
3377 /*
3378 * If the page is not flagged as dirty and is writable, then make it read-only
3379 * at PD level, so we can set the dirty bit when the page is modified.
3380 *
3381 * ASSUMES that page access handlers are implemented on page table entry level.
3382 * Thus we will first catch the dirty access and set PDE.D and restart. If
3383 * there is an access handler, we'll trap again and let it work on the problem.
3384 */
3385 /** @todo move the above stuff to a section in the PGM documentation. */
3386 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
3387 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
3388 {
3389 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
3390 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
3391 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
3392 }
3393 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3394 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3395
3396 /*
3397 * Fill the shadow page table.
3398 */
3399 /* Get address and flags from the source PDE. */
3400 SHWPTE PteDstBase;
3401 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
3402
3403 /* Loop thru the entries in the shadow PT. */
3404 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
3405 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
3406 GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u, GCPtr,
3407 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
3408 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
3409 unsigned iPTDst = 0;
3410 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3411 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
3412 {
3413 if (pRam && GCPhys >= pRam->GCPhys)
3414 {
3415# ifndef PGM_WITH_A20
3416 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT;
3417# endif
3418 do
3419 {
3420 /* Make shadow PTE. */
3421# ifdef PGM_WITH_A20
3422 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT];
3423# else
3424 PPGMPAGE pPage = &pRam->aPages[iHCPage];
3425# endif
3426 SHWPTE PteDst;
3427
3428# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3429 /* Try to make the page writable if necessary. */
3430 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
3431 && ( PGM_PAGE_IS_ZERO(pPage)
3432 || ( SHW_PTE_IS_RW(PteDstBase)
3433 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
3434# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
3435 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
3436# endif
3437# ifdef VBOX_WITH_PAGE_SHARING
3438 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
3439# endif
3440 && !PGM_PAGE_IS_BALLOONED(pPage))
3441 )
3442 )
3443 {
3444 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
3445 AssertRCReturn(rc, rc);
3446 if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
3447 break;
3448 }
3449# endif
3450
3451 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
3452 PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhys, SHW_PTE_GET_U(PteDstBase), &PteDst);
3453 else if (PGM_PAGE_IS_BALLOONED(pPage))
3454 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
3455 else
3456 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
3457
3458 /* Only map writable pages writable. */
3459 if ( SHW_PTE_IS_P_RW(PteDst)
3460 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
3461 {
3462 /* Still applies to shared pages. */
3463 Assert(!PGM_PAGE_IS_ZERO(pPage));
3464 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
3465 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
3466 }
3467
3468 if (SHW_PTE_IS_P(PteDst))
3469 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
3470
3471 /* commit it (not atomic, new table) */
3472 pPTDst->a[iPTDst] = PteDst;
3473 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
3474 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
3475 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
3476
3477 /* advance */
3478 GCPhys += GUEST_PAGE_SIZE;
3479 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
3480# ifndef PGM_WITH_A20
3481 iHCPage++;
3482# endif
3483 iPTDst++;
3484 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3485 && GCPhys <= pRam->GCPhysLast);
3486
3487 /* Advance ram range list. */
3488 while (pRam && GCPhys > pRam->GCPhysLast)
3489 pRam = pRam->CTX_SUFF(pNext);
3490 }
3491 else if (pRam)
3492 {
3493 Log(("Invalid pages at %RGp\n", GCPhys));
3494 do
3495 {
3496 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3497 GCPhys += GUEST_PAGE_SIZE;
3498 iPTDst++;
3499 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3500 && GCPhys < pRam->GCPhys);
3501 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3502 }
3503 else
3504 {
3505 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3506 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3507 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3508 }
3509 } /* while more PTEs */
3510 } /* 4KB / 4MB */
3511 }
3512 else
3513 AssertRelease(!SHW_PDE_IS_P(PdeDst));
3514
3515 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3516 if (RT_FAILURE(rc))
3517 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed));
3518 return rc;
3519
3520#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3521 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
3522 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3523 && PGM_SHW_TYPE != PGM_TYPE_NONE
3524 NOREF(iPDSrc); NOREF(pPDSrc);
3525
3526 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3527
3528 /*
3529 * Validate input a little bit.
3530 */
3531 int rc = VINF_SUCCESS;
3532# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3533 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3534 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3535
3536 /* Fetch the pgm pool shadow descriptor. */
3537 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3538 Assert(pShwPde);
3539
3540# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3541 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3542 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3543 PX86PDPAE pPDDst;
3544 PSHWPDE pPdeDst;
3545
3546 /* Fetch the pgm pool shadow descriptor. */
3547 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3548 AssertRCSuccessReturn(rc, rc);
3549 Assert(pShwPde);
3550
3551 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3552 pPdeDst = &pPDDst->a[iPDDst];
3553
3554# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3555 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3556 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3557 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3558 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3559 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3560 AssertRCSuccessReturn(rc, rc);
3561 Assert(pPDDst);
3562 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3563
3564 /* Fetch the pgm pool shadow descriptor. */
3565 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3566 Assert(pShwPde);
3567
3568# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3569 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3570 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3571 PEPTPD pPDDst;
3572 PEPTPDPT pPdptDst;
3573
3574 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3575 if (rc != VINF_SUCCESS)
3576 {
3577 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3578 AssertRC(rc);
3579 return rc;
3580 }
3581 Assert(pPDDst);
3582 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3583
3584 /* Fetch the pgm pool shadow descriptor. */
3585 /** @todo r=bird: didn't pgmShwGetEPTPDPtr just do this lookup already? */
3586 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3587 Assert(pShwPde);
3588# endif
3589 SHWPDE PdeDst = *pPdeDst;
3590
3591 Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3592
3593# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3594 if (BTH_IS_NP_ACTIVE(pVM))
3595 {
3596 Assert(!VM_IS_NEM_ENABLED(pVM));
3597
3598 /* Check if we allocated a big page before for this 2 MB range. */
3599 PPGMPAGE pPage;
3600 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3601 if (RT_SUCCESS(rc))
3602 {
3603 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3604 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3605 {
3606 if (PGM_A20_IS_ENABLED(pVCpu))
3607 {
3608 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3609 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3610 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3611 }
3612 else
3613 {
3614 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3615 pVM->pgm.s.cLargePagesDisabled++;
3616 }
3617 }
3618 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3619 && PGM_A20_IS_ENABLED(pVCpu))
3620 {
3621 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3622 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3623 if (RT_SUCCESS(rc))
3624 {
3625 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3626 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3627 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3628 }
3629 }
3630 else if ( PGMIsUsingLargePages(pVM)
3631 && PGM_A20_IS_ENABLED(pVCpu))
3632 {
3633 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3634 if (RT_SUCCESS(rc))
3635 {
3636 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3637 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3638 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3639 }
3640 else
3641 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3642 }
3643
3644 if (HCPhys != NIL_RTHCPHYS)
3645 {
3646# if PGM_SHW_TYPE == PGM_TYPE_EPT
3647 PdeDst.u = HCPhys | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_LEAF | EPT_E_IGNORE_PAT | EPT_E_MEMTYPE_WB
3648 | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo do we need this? */;
3649# else
3650 PdeDst.u = HCPhys | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PS
3651 | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo PGM_PD_FLAGS? */;
3652# endif
3653 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3654
3655 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3656 /* Add a reference to the first page only. */
3657 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3658
3659 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3660 return VINF_SUCCESS;
3661 }
3662 }
3663 }
3664# endif /* defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE */
3665
3666 /*
3667 * Allocate & map the page table.
3668 */
3669 PSHWPT pPTDst;
3670 PPGMPOOLPAGE pShwPage;
3671 RTGCPHYS GCPhys;
3672
3673 /* Virtual address = physical address */
3674 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3675 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3676 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3677 &pShwPage);
3678 if ( rc == VINF_SUCCESS
3679 || rc == VINF_PGM_CACHED_PAGE)
3680 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3681 else
3682 {
3683 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3684 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3685 }
3686
3687 if (rc == VINF_SUCCESS)
3688 {
3689 /* New page table; fully set it up. */
3690 Assert(pPTDst);
3691
3692 /* Mask away the page offset. */
3693 GCPtrPage &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
3694
3695 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3696 {
3697 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3698 | (iPTDst << GUEST_PAGE_SHIFT));
3699
3700 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3701 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3702 GCPtrCurPage,
3703 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3704 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3705
3706 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
3707 break;
3708 }
3709 }
3710 else
3711 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3712
3713 /* Save the new PDE. */
3714# if PGM_SHW_TYPE == PGM_TYPE_EPT
3715 PdeDst.u = pShwPage->Core.Key | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE
3716 | (PdeDst.u & X86_PDE_AVL_MASK /** @todo do we really need this? */);
3717# else
3718 PdeDst.u = pShwPage->Core.Key | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A
3719 | (PdeDst.u & X86_PDE_AVL_MASK /** @todo use a PGM_PD_FLAGS define */);
3720# endif
3721 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3722
3723 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3724 if (RT_FAILURE(rc))
3725 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed));
3726 return rc;
3727
3728#else
3729 NOREF(iPDSrc); NOREF(pPDSrc);
3730 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3731 return VERR_PGM_NOT_USED_IN_MODE;
3732#endif
3733}
3734
3735
3736
3737/**
3738 * Prefetch a page/set of pages.
3739 *
3740 * Typically used to sync commonly used pages before entering raw mode
3741 * after a CR3 reload.
3742 *
3743 * @returns VBox status code.
3744 * @param pVCpu The cross context virtual CPU structure.
3745 * @param GCPtrPage Page to invalidate.
3746 */
3747PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
3748{
3749#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3750 || PGM_GST_TYPE == PGM_TYPE_REAL \
3751 || PGM_GST_TYPE == PGM_TYPE_PROT \
3752 || PGM_GST_TYPE == PGM_TYPE_PAE \
3753 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3754 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3755 && PGM_SHW_TYPE != PGM_TYPE_NONE
3756 /*
3757 * Check that all Guest levels thru the PDE are present, getting the
3758 * PD and PDE in the processes.
3759 */
3760 int rc = VINF_SUCCESS;
3761# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3762# if PGM_GST_TYPE == PGM_TYPE_32BIT
3763 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3764 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3765# elif PGM_GST_TYPE == PGM_TYPE_PAE
3766 unsigned iPDSrc;
3767 X86PDPE PdpeSrc;
3768 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3769 if (!pPDSrc)
3770 return VINF_SUCCESS; /* not present */
3771# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3772 unsigned iPDSrc;
3773 PX86PML4E pPml4eSrc;
3774 X86PDPE PdpeSrc;
3775 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3776 if (!pPDSrc)
3777 return VINF_SUCCESS; /* not present */
3778# endif
3779 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3780# else
3781 PGSTPD pPDSrc = NULL;
3782 const unsigned iPDSrc = 0;
3783 GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */
3784# endif
3785
3786 if ((PdeSrc.u & (X86_PDE_P | X86_PDE_A)) == (X86_PDE_P | X86_PDE_A))
3787 {
3788 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3789 PGM_LOCK_VOID(pVM);
3790
3791# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3792 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3793# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3794 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3795 PX86PDPAE pPDDst;
3796 X86PDEPAE PdeDst;
3797# if PGM_GST_TYPE != PGM_TYPE_PAE
3798 X86PDPE PdpeSrc;
3799
3800 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3801 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3802# endif
3803 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3804 if (rc != VINF_SUCCESS)
3805 {
3806 PGM_UNLOCK(pVM);
3807 AssertRC(rc);
3808 return rc;
3809 }
3810 Assert(pPDDst);
3811 PdeDst = pPDDst->a[iPDDst];
3812
3813# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3814 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3815 PX86PDPAE pPDDst;
3816 X86PDEPAE PdeDst;
3817
3818# if PGM_GST_TYPE == PGM_TYPE_PROT
3819 /* AMD-V nested paging */
3820 X86PML4E Pml4eSrc;
3821 X86PDPE PdpeSrc;
3822 PX86PML4E pPml4eSrc = &Pml4eSrc;
3823
3824 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3825 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3826 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3827# endif
3828
3829 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3830 if (rc != VINF_SUCCESS)
3831 {
3832 PGM_UNLOCK(pVM);
3833 AssertRC(rc);
3834 return rc;
3835 }
3836 Assert(pPDDst);
3837 PdeDst = pPDDst->a[iPDDst];
3838# endif
3839 if (!(PdeDst.u & X86_PDE_P))
3840 {
3841 /** @todo r=bird: This guy will set the A bit on the PDE,
3842 * probably harmless. */
3843 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3844 }
3845 else
3846 {
3847 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3848 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3849 * makes no sense to prefetch more than one page.
3850 */
3851 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3852 if (RT_SUCCESS(rc))
3853 rc = VINF_SUCCESS;
3854 }
3855 PGM_UNLOCK(pVM);
3856 }
3857 return rc;
3858
3859#elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3860 NOREF(pVCpu); NOREF(GCPtrPage);
3861 return VINF_SUCCESS; /* ignore */
3862#else
3863 AssertCompile(0);
3864#endif
3865}
3866
3867
3868
3869
3870/**
3871 * Syncs a page during a PGMVerifyAccess() call.
3872 *
3873 * @returns VBox status code (informational included).
3874 * @param pVCpu The cross context virtual CPU structure.
3875 * @param GCPtrPage The address of the page to sync.
3876 * @param fPage The effective guest page flags.
3877 * @param uErr The trap error code.
3878 * @remarks This will normally never be called on invalid guest page
3879 * translation entries.
3880 */
3881PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3882{
3883 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3884
3885 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3886 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr);
3887
3888 Assert(!pVM->pgm.s.fNestedPaging);
3889#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3890 || PGM_GST_TYPE == PGM_TYPE_REAL \
3891 || PGM_GST_TYPE == PGM_TYPE_PROT \
3892 || PGM_GST_TYPE == PGM_TYPE_PAE \
3893 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3894 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3895 && PGM_SHW_TYPE != PGM_TYPE_NONE
3896
3897 /*
3898 * Get guest PD and index.
3899 */
3900 /** @todo Performance: We've done all this a jiffy ago in the
3901 * PGMGstGetPage call. */
3902# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3903# if PGM_GST_TYPE == PGM_TYPE_32BIT
3904 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3905 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3906
3907# elif PGM_GST_TYPE == PGM_TYPE_PAE
3908 unsigned iPDSrc = 0;
3909 X86PDPE PdpeSrc;
3910 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3911 if (RT_UNLIKELY(!pPDSrc))
3912 {
3913 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3914 return VINF_EM_RAW_GUEST_TRAP;
3915 }
3916
3917# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3918 unsigned iPDSrc = 0; /* shut up gcc */
3919 PX86PML4E pPml4eSrc = NULL; /* ditto */
3920 X86PDPE PdpeSrc;
3921 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3922 if (RT_UNLIKELY(!pPDSrc))
3923 {
3924 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3925 return VINF_EM_RAW_GUEST_TRAP;
3926 }
3927# endif
3928
3929# else /* !PGM_WITH_PAGING */
3930 PGSTPD pPDSrc = NULL;
3931 const unsigned iPDSrc = 0;
3932# endif /* !PGM_WITH_PAGING */
3933 int rc = VINF_SUCCESS;
3934
3935 PGM_LOCK_VOID(pVM);
3936
3937 /*
3938 * First check if the shadow pd is present.
3939 */
3940# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3941 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3942
3943# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3944 PX86PDEPAE pPdeDst;
3945 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3946 PX86PDPAE pPDDst;
3947# if PGM_GST_TYPE != PGM_TYPE_PAE
3948 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3949 X86PDPE PdpeSrc;
3950 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3951# endif
3952 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3953 if (rc != VINF_SUCCESS)
3954 {
3955 PGM_UNLOCK(pVM);
3956 AssertRC(rc);
3957 return rc;
3958 }
3959 Assert(pPDDst);
3960 pPdeDst = &pPDDst->a[iPDDst];
3961
3962# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3963 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3964 PX86PDPAE pPDDst;
3965 PX86PDEPAE pPdeDst;
3966
3967# if PGM_GST_TYPE == PGM_TYPE_PROT
3968 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3969 X86PML4E Pml4eSrc;
3970 X86PDPE PdpeSrc;
3971 PX86PML4E pPml4eSrc = &Pml4eSrc;
3972 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3973 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3974# endif
3975
3976 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3977 if (rc != VINF_SUCCESS)
3978 {
3979 PGM_UNLOCK(pVM);
3980 AssertRC(rc);
3981 return rc;
3982 }
3983 Assert(pPDDst);
3984 pPdeDst = &pPDDst->a[iPDDst];
3985# endif
3986
3987 if (!(pPdeDst->u & X86_PDE_P))
3988 {
3989 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3990 if (rc != VINF_SUCCESS)
3991 {
3992 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3993 PGM_UNLOCK(pVM);
3994 AssertRC(rc);
3995 return rc;
3996 }
3997 }
3998
3999# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4000 /* Check for dirty bit fault */
4001 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
4002 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
4003 Log(("PGMVerifyAccess: success (dirty)\n"));
4004 else
4005# endif
4006 {
4007# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4008 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
4009# else
4010 GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */
4011# endif
4012
4013 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
4014 if (uErr & X86_TRAP_PF_US)
4015 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser));
4016 else /* supervisor */
4017 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
4018
4019 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
4020 if (RT_SUCCESS(rc))
4021 {
4022 /* Page was successfully synced */
4023 Log2(("PGMVerifyAccess: success (sync)\n"));
4024 rc = VINF_SUCCESS;
4025 }
4026 else
4027 {
4028 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
4029 rc = VINF_EM_RAW_GUEST_TRAP;
4030 }
4031 }
4032 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
4033 PGM_UNLOCK(pVM);
4034 return rc;
4035
4036#else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
4037
4038 AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
4039 return VERR_PGM_NOT_USED_IN_MODE;
4040#endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
4041}
4042
4043
4044/**
4045 * Syncs the paging hierarchy starting at CR3.
4046 *
4047 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
4048 * informational status codes.
4049 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
4050 * the VMM into guest context.
4051 * @param pVCpu The cross context virtual CPU structure.
4052 * @param cr0 Guest context CR0 register.
4053 * @param cr3 Guest context CR3 register. Not subjected to the A20
4054 * mask.
4055 * @param cr4 Guest context CR4 register.
4056 * @param fGlobal Including global page directories or not
4057 */
4058PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
4059{
4060 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4061 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
4062
4063 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
4064
4065#if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
4066# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4067 PGM_LOCK_VOID(pVM);
4068 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4069 if (pPool->cDirtyPages)
4070 pgmPoolResetDirtyPages(pVM);
4071 PGM_UNLOCK(pVM);
4072# endif
4073#endif /* !NESTED && !EPT */
4074
4075#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
4076 /*
4077 * Nested / EPT / None - No work.
4078 */
4079 return VINF_SUCCESS;
4080
4081#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
4082 /*
4083 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
4084 * out the shadow parts when the guest modifies its tables.
4085 */
4086 return VINF_SUCCESS;
4087
4088#else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
4089
4090 return VINF_SUCCESS;
4091#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
4092}
4093
4094
4095
4096
4097#ifdef VBOX_STRICT
4098
4099/**
4100 * Checks that the shadow page table is in sync with the guest one.
4101 *
4102 * @returns The number of errors.
4103 * @param pVCpu The cross context virtual CPU structure.
4104 * @param cr3 Guest context CR3 register.
4105 * @param cr4 Guest context CR4 register.
4106 * @param GCPtr Where to start. Defaults to 0.
4107 * @param cb How much to check. Defaults to everything.
4108 */
4109PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
4110{
4111 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
4112#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
4113 return 0;
4114#else
4115 unsigned cErrors = 0;
4116 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4117 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
4118
4119# if PGM_GST_TYPE == PGM_TYPE_PAE
4120 /** @todo currently broken; crashes below somewhere */
4121 AssertFailed();
4122# endif
4123
4124# if PGM_GST_TYPE == PGM_TYPE_32BIT \
4125 || PGM_GST_TYPE == PGM_TYPE_PAE \
4126 || PGM_GST_TYPE == PGM_TYPE_AMD64
4127
4128 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
4129 PPGMCPU pPGM = &pVCpu->pgm.s;
4130 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
4131 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
4132# ifndef IN_RING0
4133 RTHCPHYS HCPhys; /* general usage. */
4134# endif
4135 int rc;
4136
4137 /*
4138 * Check that the Guest CR3 and all its mappings are correct.
4139 */
4140 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
4141 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
4142 false);
4143# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
4144# if 0
4145# if PGM_GST_TYPE == PGM_TYPE_32BIT
4146 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
4147# else
4148 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
4149# endif
4150 AssertRCReturn(rc, 1);
4151 HCPhys = NIL_RTHCPHYS;
4152 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
4153 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
4154# endif
4155# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
4156 pgmGstGet32bitPDPtr(pVCpu);
4157 RTGCPHYS GCPhys;
4158 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
4159 AssertRCReturn(rc, 1);
4160 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
4161# endif
4162# endif /* !IN_RING0 */
4163
4164 /*
4165 * Get and check the Shadow CR3.
4166 */
4167# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4168 unsigned cPDEs = X86_PG_ENTRIES;
4169 unsigned cIncrement = X86_PG_ENTRIES * GUEST_PAGE_SIZE;
4170# elif PGM_SHW_TYPE == PGM_TYPE_PAE
4171# if PGM_GST_TYPE == PGM_TYPE_32BIT
4172 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
4173# else
4174 unsigned cPDEs = X86_PG_PAE_ENTRIES;
4175# endif
4176 unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE;
4177# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
4178 unsigned cPDEs = X86_PG_PAE_ENTRIES;
4179 unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE;
4180# endif
4181 if (cb != ~(RTGCPTR)0)
4182 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
4183
4184/** @todo call the other two PGMAssert*() functions. */
4185
4186# if PGM_GST_TYPE == PGM_TYPE_AMD64
4187 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4188
4189 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
4190 {
4191 PPGMPOOLPAGE pShwPdpt = NULL;
4192 PX86PML4E pPml4eSrc;
4193 PX86PML4E pPml4eDst;
4194 RTGCPHYS GCPhysPdptSrc;
4195
4196 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
4197 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
4198
4199 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
4200 if (!(pPml4eDst->u & X86_PML4E_P))
4201 {
4202 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4203 continue;
4204 }
4205
4206 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
4207 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
4208
4209 if ((pPml4eSrc->u & X86_PML4E_P) != (pPml4eDst->u & X86_PML4E_P))
4210 {
4211 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
4212 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4213 cErrors++;
4214 continue;
4215 }
4216
4217 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
4218 {
4219 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
4220 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4221 cErrors++;
4222 continue;
4223 }
4224
4225 if ( (pPml4eDst->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX))
4226 != (pPml4eSrc->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX)))
4227 {
4228 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
4229 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4230 cErrors++;
4231 continue;
4232 }
4233# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
4234 {
4235# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
4236
4237# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
4238 /*
4239 * Check the PDPTEs too.
4240 */
4241 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
4242
4243 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
4244 {
4245 unsigned iPDSrc = 0; /* initialized to shut up gcc */
4246 PPGMPOOLPAGE pShwPde = NULL;
4247 PX86PDPE pPdpeDst;
4248 RTGCPHYS GCPhysPdeSrc;
4249 X86PDPE PdpeSrc;
4250 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
4251# if PGM_GST_TYPE == PGM_TYPE_PAE
4252 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
4253 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
4254# else
4255 PX86PML4E pPml4eSrcIgn;
4256 PX86PDPT pPdptDst;
4257 PX86PDPAE pPDDst;
4258 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
4259
4260 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
4261 if (rc != VINF_SUCCESS)
4262 {
4263 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
4264 GCPtr += 512 * _2M;
4265 continue; /* next PDPTE */
4266 }
4267 Assert(pPDDst);
4268# endif
4269 Assert(iPDSrc == 0);
4270
4271 pPdpeDst = &pPdptDst->a[iPdpt];
4272
4273 if (!(pPdpeDst->u & X86_PDPE_P))
4274 {
4275 GCPtr += 512 * _2M;
4276 continue; /* next PDPTE */
4277 }
4278
4279 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
4280 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
4281
4282 if ((pPdpeDst->u & X86_PDPE_P) != (PdpeSrc.u & X86_PDPE_P))
4283 {
4284 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4285 GCPtr += 512 * _2M;
4286 cErrors++;
4287 continue;
4288 }
4289
4290 if (GCPhysPdeSrc != pShwPde->GCPhys)
4291 {
4292# if PGM_GST_TYPE == PGM_TYPE_AMD64
4293 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
4294# else
4295 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
4296# endif
4297 GCPtr += 512 * _2M;
4298 cErrors++;
4299 continue;
4300 }
4301
4302# if PGM_GST_TYPE == PGM_TYPE_AMD64
4303 if ( (pPdpeDst->u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX))
4304 != (PdpeSrc.u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX)))
4305 {
4306 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4307 GCPtr += 512 * _2M;
4308 cErrors++;
4309 continue;
4310 }
4311# endif
4312
4313# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4314 {
4315# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4316# if PGM_GST_TYPE == PGM_TYPE_32BIT
4317 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
4318# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4319 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
4320# endif
4321# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
4322 /*
4323 * Iterate the shadow page directory.
4324 */
4325 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
4326 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
4327
4328 for (;
4329 iPDDst < cPDEs;
4330 iPDDst++, GCPtr += cIncrement)
4331 {
4332# if PGM_SHW_TYPE == PGM_TYPE_PAE
4333 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
4334# else
4335 const SHWPDE PdeDst = pPDDst->a[iPDDst];
4336# endif
4337 if ( (PdeDst.u & X86_PDE_P)
4338 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) )
4339 {
4340 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
4341 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
4342 if (!pPoolPage)
4343 {
4344 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4345 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4346 cErrors++;
4347 continue;
4348 }
4349 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
4350
4351 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4352 {
4353 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4354 GCPtr, (uint64_t)PdeDst.u));
4355 cErrors++;
4356 }
4357
4358 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4359 {
4360 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4361 GCPtr, (uint64_t)PdeDst.u));
4362 cErrors++;
4363 }
4364
4365 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4366 if (!(PdeSrc.u & X86_PDE_P))
4367 {
4368 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4369 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4370 cErrors++;
4371 continue;
4372 }
4373
4374 if ( !(PdeSrc.u & X86_PDE_PS)
4375 || !fBigPagesSupported)
4376 {
4377 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
4378# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4379 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
4380# endif
4381 }
4382 else
4383 {
4384# if PGM_GST_TYPE == PGM_TYPE_32BIT
4385 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4386 {
4387 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4388 GCPtr, (uint64_t)PdeSrc.u));
4389 cErrors++;
4390 continue;
4391 }
4392# endif
4393 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
4394# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4395 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
4396# endif
4397 }
4398
4399 if ( pPoolPage->enmKind
4400 != (!(PdeSrc.u & X86_PDE_PS) || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4401 {
4402 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4403 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4404 cErrors++;
4405 }
4406
4407 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4408 if (!pPhysPage)
4409 {
4410 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4411 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4412 cErrors++;
4413 continue;
4414 }
4415
4416 if (GCPhysGst != pPoolPage->GCPhys)
4417 {
4418 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4419 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4420 cErrors++;
4421 continue;
4422 }
4423
4424 if ( !(PdeSrc.u & X86_PDE_PS)
4425 || !fBigPagesSupported)
4426 {
4427 /*
4428 * Page Table.
4429 */
4430 const GSTPT *pPTSrc;
4431 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(GUEST_PAGE_SIZE - 1)),
4432 &pPTSrc);
4433 if (RT_FAILURE(rc))
4434 {
4435 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4436 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4437 cErrors++;
4438 continue;
4439 }
4440 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4441 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4442 {
4443 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4444 // (This problem will go away when/if we shadow multiple CR3s.)
4445 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4446 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4447 cErrors++;
4448 continue;
4449 }
4450 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4451 {
4452 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4453 GCPtr, (uint64_t)PdeDst.u));
4454 cErrors++;
4455 continue;
4456 }
4457
4458 /* iterate the page table. */
4459# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4460 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4461 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4462# else
4463 const unsigned offPTSrc = 0;
4464# endif
4465 for (unsigned iPT = 0, off = 0;
4466 iPT < RT_ELEMENTS(pPTDst->a);
4467 iPT++, off += GUEST_PAGE_SIZE)
4468 {
4469 const SHWPTE PteDst = pPTDst->a[iPT];
4470
4471 /* skip not-present and dirty tracked entries. */
4472 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4473 continue;
4474 Assert(SHW_PTE_IS_P(PteDst));
4475
4476 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4477 if (!(PteSrc.u & X86_PTE_P))
4478 {
4479# ifdef IN_RING3
4480 PGMAssertHandlerAndFlagsInSync(pVM);
4481 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4482 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4483 0, 0, UINT64_MAX, 99, NULL);
4484# endif
4485 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4486 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4487 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4488 cErrors++;
4489 continue;
4490 }
4491
4492 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4493# if 1 /** @todo sync accessed bit properly... */
4494 fIgnoreFlags |= X86_PTE_A;
4495# endif
4496
4497 /* match the physical addresses */
4498 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4499 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4500
4501# ifdef IN_RING3
4502 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4503 if (RT_FAILURE(rc))
4504 {
4505# if 0
4506 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4507 {
4508 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4509 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4510 cErrors++;
4511 continue;
4512 }
4513# endif
4514 }
4515 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4516 {
4517 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4518 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4519 cErrors++;
4520 continue;
4521 }
4522# endif
4523
4524 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4525 if (!pPhysPage)
4526 {
4527# if 0
4528 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4529 {
4530 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4531 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4532 cErrors++;
4533 continue;
4534 }
4535# endif
4536 if (SHW_PTE_IS_RW(PteDst))
4537 {
4538 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4539 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4540 cErrors++;
4541 }
4542 fIgnoreFlags |= X86_PTE_RW;
4543 }
4544 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4545 {
4546 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4547 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4548 cErrors++;
4549 continue;
4550 }
4551
4552 /* flags */
4553 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage))
4554 {
4555 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4556 {
4557 if (SHW_PTE_IS_RW(PteDst))
4558 {
4559 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4560 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4561 cErrors++;
4562 continue;
4563 }
4564 fIgnoreFlags |= X86_PTE_RW;
4565 }
4566 else
4567 {
4568 if ( SHW_PTE_IS_P(PteDst)
4569# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4570 && !PGM_PAGE_IS_MMIO(pPhysPage)
4571# endif
4572 )
4573 {
4574 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4575 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4576 cErrors++;
4577 continue;
4578 }
4579 fIgnoreFlags |= X86_PTE_P;
4580 }
4581 }
4582 else
4583 {
4584 if ((PteSrc.u & (X86_PTE_RW | X86_PTE_D)) == X86_PTE_RW)
4585 {
4586 if (SHW_PTE_IS_RW(PteDst))
4587 {
4588 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4589 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4590 cErrors++;
4591 continue;
4592 }
4593 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4594 {
4595 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4596 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4597 cErrors++;
4598 continue;
4599 }
4600 if (SHW_PTE_IS_D(PteDst))
4601 {
4602 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4603 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4604 cErrors++;
4605 }
4606# if 0 /** @todo sync access bit properly... */
4607 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4608 {
4609 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4610 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4611 cErrors++;
4612 }
4613 fIgnoreFlags |= X86_PTE_RW;
4614# else
4615 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4616# endif
4617 }
4618 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4619 {
4620 /* access bit emulation (not implemented). */
4621 if ((PteSrc.u & X86_PTE_A) || SHW_PTE_IS_P(PteDst))
4622 {
4623 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4624 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4625 cErrors++;
4626 continue;
4627 }
4628 if (!SHW_PTE_IS_A(PteDst))
4629 {
4630 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4631 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4632 cErrors++;
4633 }
4634 fIgnoreFlags |= X86_PTE_P;
4635 }
4636# ifdef DEBUG_sandervl
4637 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4638# endif
4639 }
4640
4641 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4642 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4643 )
4644 {
4645 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4646 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4647 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4648 cErrors++;
4649 continue;
4650 }
4651 } /* foreach PTE */
4652 }
4653 else
4654 {
4655 /*
4656 * Big Page.
4657 */
4658 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4659 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
4660 {
4661 if (PdeDst.u & X86_PDE_RW)
4662 {
4663 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4664 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4665 cErrors++;
4666 continue;
4667 }
4668 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4669 {
4670 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4671 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4672 cErrors++;
4673 continue;
4674 }
4675# if 0 /** @todo sync access bit properly... */
4676 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4677 {
4678 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4679 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4680 cErrors++;
4681 }
4682 fIgnoreFlags |= X86_PTE_RW;
4683# else
4684 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4685# endif
4686 }
4687 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4688 {
4689 /* access bit emulation (not implemented). */
4690 if ((PdeSrc.u & X86_PDE_A) || SHW_PDE_IS_P(PdeDst))
4691 {
4692 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4693 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4694 cErrors++;
4695 continue;
4696 }
4697 if (!SHW_PDE_IS_A(PdeDst))
4698 {
4699 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4700 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4701 cErrors++;
4702 }
4703 fIgnoreFlags |= X86_PTE_P;
4704 }
4705
4706 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4707 {
4708 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4709 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4710 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4711 cErrors++;
4712 }
4713
4714 /* iterate the page table. */
4715 for (unsigned iPT = 0, off = 0;
4716 iPT < RT_ELEMENTS(pPTDst->a);
4717 iPT++, off += GUEST_PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + GUEST_PAGE_SIZE))
4718 {
4719 const SHWPTE PteDst = pPTDst->a[iPT];
4720
4721 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4722 {
4723 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4724 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4725 cErrors++;
4726 }
4727
4728 /* skip not-present entries. */
4729 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4730 continue;
4731
4732 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4733
4734 /* match the physical addresses */
4735 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4736
4737# ifdef IN_RING3
4738 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4739 if (RT_FAILURE(rc))
4740 {
4741# if 0
4742 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4743 {
4744 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4745 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4746 cErrors++;
4747 }
4748# endif
4749 }
4750 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4751 {
4752 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4753 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4754 cErrors++;
4755 continue;
4756 }
4757# endif
4758 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4759 if (!pPhysPage)
4760 {
4761# if 0 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4762 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4763 {
4764 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4765 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4766 cErrors++;
4767 continue;
4768 }
4769# endif
4770 if (SHW_PTE_IS_RW(PteDst))
4771 {
4772 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4773 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4774 cErrors++;
4775 }
4776 fIgnoreFlags |= X86_PTE_RW;
4777 }
4778 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4779 {
4780 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4781 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4782 cErrors++;
4783 continue;
4784 }
4785
4786 /* flags */
4787 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4788 {
4789 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4790 {
4791 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4792 {
4793 if ( SHW_PTE_IS_RW(PteDst)
4794 && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage))
4795 {
4796 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4797 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4798 cErrors++;
4799 continue;
4800 }
4801 fIgnoreFlags |= X86_PTE_RW;
4802 }
4803 }
4804 else
4805 {
4806 if ( SHW_PTE_IS_P(PteDst)
4807 && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage)
4808# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4809 && !PGM_PAGE_IS_MMIO(pPhysPage)
4810# endif
4811 )
4812 {
4813 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4814 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4815 cErrors++;
4816 continue;
4817 }
4818 fIgnoreFlags |= X86_PTE_P;
4819 }
4820 }
4821
4822 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4823 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4824 )
4825 {
4826 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4827 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4828 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4829 cErrors++;
4830 continue;
4831 }
4832 } /* for each PTE */
4833 }
4834 }
4835 /* not present */
4836
4837 } /* for each PDE */
4838
4839 } /* for each PDPTE */
4840
4841 } /* for each PML4E */
4842
4843# ifdef DEBUG
4844 if (cErrors)
4845 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4846# endif
4847# endif /* GST is in {32BIT, PAE, AMD64} */
4848 return cErrors;
4849#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
4850}
4851#endif /* VBOX_STRICT */
4852
4853
4854/**
4855 * Sets up the CR3 for shadow paging
4856 *
4857 * @returns Strict VBox status code.
4858 * @retval VINF_SUCCESS.
4859 *
4860 * @param pVCpu The cross context virtual CPU structure.
4861 * @param GCPhysCR3 The physical address in the CR3 register. (A20 mask
4862 * already applied.)
4863 */
4864PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
4865{
4866 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4867 int rc = VINF_SUCCESS;
4868
4869 /* Update guest paging info. */
4870#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4871 || PGM_GST_TYPE == PGM_TYPE_PAE \
4872 || PGM_GST_TYPE == PGM_TYPE_AMD64
4873
4874 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4875 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4876
4877# if PGM_GST_TYPE == PGM_TYPE_PAE
4878 if ( !pVCpu->pgm.s.CTX_SUFF(fPaePdpesAndCr3Mapped)
4879 || pVCpu->pgm.s.GCPhysPaeCR3 != GCPhysCR3)
4880# endif
4881 {
4882 /*
4883 * Map the page CR3 points at.
4884 */
4885 RTHCPTR HCPtrGuestCR3;
4886 rc = pgmGstMapCr3(pVCpu, GCPhysCR3, &HCPtrGuestCR3);
4887 if (RT_SUCCESS(rc))
4888 {
4889# if PGM_GST_TYPE == PGM_TYPE_32BIT
4890# ifdef IN_RING3
4891 pVCpu->pgm.s.pGst32BitPdR3 = (PX86PD)HCPtrGuestCR3;
4892 pVCpu->pgm.s.pGst32BitPdR0 = NIL_RTR0PTR;
4893# else
4894 pVCpu->pgm.s.pGst32BitPdR3 = NIL_RTR3PTR;
4895 pVCpu->pgm.s.pGst32BitPdR0 = (PX86PD)HCPtrGuestCR3;
4896# endif
4897
4898# elif PGM_GST_TYPE == PGM_TYPE_PAE
4899# ifdef IN_RING3
4900 pVCpu->pgm.s.pGstPaePdptR3 = (PX86PDPT)HCPtrGuestCR3;
4901 pVCpu->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
4902# else
4903 pVCpu->pgm.s.pGstPaePdptR3 = NIL_RTR3PTR;
4904 pVCpu->pgm.s.pGstPaePdptR0 = (PX86PDPT)HCPtrGuestCR3;
4905# endif
4906
4907 /*
4908 * Update CPUM and map the 4 PDs too.
4909 */
4910 X86PDPE aGstPaePdpes[X86_PG_PAE_PDPE_ENTRIES];
4911 memcpy(&aGstPaePdpes, HCPtrGuestCR3, sizeof(aGstPaePdpes));
4912 PGMGstMapPaePdpes(pVCpu, &aGstPaePdpes[0]);
4913
4914 pVCpu->pgm.s.GCPhysPaeCR3 = GCPhysCR3;
4915# ifdef IN_RING3
4916 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = true;
4917 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false;
4918# else
4919 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false;
4920 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = true;
4921# endif
4922
4923# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4924# ifdef IN_RING3
4925 pVCpu->pgm.s.pGstAmd64Pml4R3 = (PX86PML4)HCPtrGuestCR3;
4926 pVCpu->pgm.s.pGstAmd64Pml4R0 = NIL_RTR0PTR;
4927# else
4928 pVCpu->pgm.s.pGstAmd64Pml4R3 = NIL_RTR3PTR;
4929 pVCpu->pgm.s.pGstAmd64Pml4R0 = (PX86PML4)HCPtrGuestCR3;
4930# endif
4931# endif
4932 }
4933 else
4934 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4935 }
4936#endif
4937
4938 /*
4939 * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64).
4940 */
4941# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4942 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4943 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4944 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4945 && PGM_GST_TYPE != PGM_TYPE_PROT))
4946
4947 Assert(!pVM->pgm.s.fNestedPaging);
4948 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4949
4950 /*
4951 * Update the shadow root page as well since that's not fixed.
4952 */
4953 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4954 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4955 PPGMPOOLPAGE pNewShwPageCR3;
4956
4957 PGM_LOCK_VOID(pVM);
4958
4959# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4960 if (pPool->cDirtyPages)
4961 pgmPoolResetDirtyPages(pVM);
4962# endif
4963
4964 Assert(!(GCPhysCR3 >> (GUEST_PAGE_SHIFT + 32))); /** @todo what is this for? */
4965 int const rc2 = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE,
4966 PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, &pNewShwPageCR3);
4967 AssertFatalRC(rc2);
4968
4969 pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3);
4970 pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3);
4971
4972 /* Set the current hypervisor CR3. */
4973 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4974
4975 /* Clean up the old CR3 root. */
4976 if ( pOldShwPageCR3
4977 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4978 {
4979 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4980
4981 /* Mark the page as unlocked; allow flushing again. */
4982 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4983
4984 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4985 }
4986 PGM_UNLOCK(pVM);
4987# else
4988 NOREF(GCPhysCR3);
4989# endif
4990
4991 return rc;
4992}
4993
4994/**
4995 * Unmaps the shadow CR3.
4996 *
4997 * @returns VBox status, no specials.
4998 * @param pVCpu The cross context virtual CPU structure.
4999 */
5000PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu)
5001{
5002 LogFlow(("UnmapCR3\n"));
5003
5004 int rc = VINF_SUCCESS;
5005 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
5006
5007 /*
5008 * Update guest paging info.
5009 */
5010#if PGM_GST_TYPE == PGM_TYPE_32BIT
5011 pVCpu->pgm.s.pGst32BitPdR3 = 0;
5012 pVCpu->pgm.s.pGst32BitPdR0 = 0;
5013
5014#elif PGM_GST_TYPE == PGM_TYPE_PAE
5015 pVCpu->pgm.s.pGstPaePdptR3 = 0;
5016 pVCpu->pgm.s.pGstPaePdptR0 = 0;
5017 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
5018 {
5019 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
5020 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
5021 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
5022 }
5023
5024#elif PGM_GST_TYPE == PGM_TYPE_AMD64
5025 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
5026 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
5027
5028#else /* prot/real mode stub */
5029 /* nothing to do */
5030#endif
5031
5032 /** @todo This should probably be moved inside \#if PGM_GST_TYPE == PGM_TYPE_PAE? */
5033 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false;
5034 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false;
5035 pVCpu->pgm.s.GCPhysPaeCR3 = NIL_RTGCPHYS;
5036
5037 /*
5038 * Update shadow paging info.
5039 */
5040#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
5041 || PGM_SHW_TYPE == PGM_TYPE_PAE \
5042 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
5043# if PGM_GST_TYPE != PGM_TYPE_REAL
5044 Assert(!pVM->pgm.s.fNestedPaging);
5045# endif
5046 PGM_LOCK_VOID(pVM);
5047
5048 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
5049 {
5050 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5051
5052# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5053 if (pPool->cDirtyPages)
5054 pgmPoolResetDirtyPages(pVM);
5055# endif
5056
5057 /* Mark the page as unlocked; allow flushing again. */
5058 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
5059
5060 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
5061 pVCpu->pgm.s.pShwPageCR3R3 = 0;
5062 pVCpu->pgm.s.pShwPageCR3R0 = 0;
5063 }
5064
5065 PGM_UNLOCK(pVM);
5066#endif
5067
5068 return rc;
5069}
5070
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette