VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 9966

Last change on this file since 9966 was 9966, checked in by vboxsync, 16 years ago

AssertCR3: ignore X86_PTE_PAE_NX as well in big pages (PDE bit is sufficient to override all pte entries)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 186.3 KB
Line 
1/* $Id: PGMAllBth.h 9966 2008-06-26 15:50:58Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr = 0, RTGCUINTPTR cb = ~(RTGCUINTPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42__END_DECLS
43
44
45/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
46#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED
47# error "Invalid combination; PAE guest implies PAE shadow"
48#endif
49
50#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
51 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED)
52# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
53#endif
54
55#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
56 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED)
57# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
58#endif
59
60#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED) \
61 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
62# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
63#endif
64
65#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
66# define PGM_WITHOUT_MAPPINGS
67#endif
68
69/**
70 * #PF Handler for raw-mode guest execution.
71 *
72 * @returns VBox status code (appropriate for trap handling and GC return).
73 * @param pVM VM Handle.
74 * @param uErr The trap error code.
75 * @param pRegFrame Trap register frame.
76 * @param pvFault The fault address.
77 */
78PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
79{
80#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
81 && PGM_SHW_TYPE != PGM_TYPE_NESTED
82
83# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
84 /*
85 * Hide the instruction fetch trap indicator for now.
86 */
87 /** @todo NXE will change this and we must fix NXE in the switcher too! */
88 if (uErr & X86_TRAP_PF_ID)
89 {
90 uErr &= ~X86_TRAP_PF_ID;
91 TRPMSetErrorCode(pVM, uErr);
92 }
93# endif
94
95 /*
96 * Get PDs.
97 */
98 int rc;
99# if PGM_WITH_PAGING(PGM_GST_TYPE)
100# if PGM_GST_TYPE == PGM_TYPE_32BIT
101 const unsigned iPDSrc = (RTGCUINTPTR)pvFault >> GST_PD_SHIFT;
102 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
103
104# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
105
106# if PGM_GST_TYPE == PGM_TYPE_PAE
107 unsigned iPDSrc;
108 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, (RTGCUINTPTR)pvFault, &iPDSrc);
109
110# elif PGM_GST_TYPE == PGM_TYPE_AMD64
111 unsigned iPDSrc;
112 PX86PML4E pPml4eSrc;
113 X86PDPE PdpeSrc;
114 PGSTPD pPDSrc;
115
116 pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
117 Assert(pPml4eSrc);
118# endif
119 /* Quick check for a valid guest trap. */
120 if (!pPDSrc)
121 {
122 LogFlow(("Trap0eHandler: guest PDPTR not present CR3=%VGp\n", (CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK)));
123 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eGuestTrap; });
124 TRPMSetErrorCode(pVM, uErr);
125 return VINF_EM_RAW_GUEST_TRAP;
126 }
127# endif
128# else
129 PGSTPD pPDSrc = NULL;
130 const unsigned iPDSrc = 0;
131# endif
132
133# if PGM_SHW_TYPE == PGM_TYPE_32BIT
134 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
135 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
136# elif PGM_SHW_TYPE == PGM_TYPE_PAE
137 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
138 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries, so no need to and with SHW_PD_MASK to get iPDDst */
139
140# if PGM_GST_TYPE == PGM_TYPE_PAE
141 /* Did we mark the PDPT as not present in SyncCR3? */
142 unsigned iPdpte = ((RTGCUINTPTR)pvFault >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
143 if (!pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present)
144 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present = 1;
145
146# endif
147
148# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
149 const unsigned iPDDst = (((RTGCUINTPTR)pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
150 PX86PDPAE pPDDst;
151# if PGM_GST_TYPE == PGM_TYPE_PROT
152 /* AMD-V nested paging */
153 X86PML4E Pml4eSrc;
154 X86PDPE PdpeSrc;
155 PX86PML4E pPml4eSrc = &Pml4eSrc;
156
157 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
158 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
159 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
160# endif
161
162 rc = PGMShwSyncLongModePDPtr(pVM, (RTGCUINTPTR)pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
163 if (rc != VINF_SUCCESS)
164 {
165 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("Unexpected rc=%Vrc\n", rc));
166 return rc;
167 }
168 Assert(pPDDst);
169# endif
170
171# if PGM_WITH_PAGING(PGM_GST_TYPE)
172 /*
173 * If we successfully correct the write protection fault due to dirty bit
174 * tracking, or this page fault is a genuine one, then return immediately.
175 */
176 STAM_PROFILE_START(&pVM->pgm.s.StatCheckPageFault, e);
177 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], (RTGCUINTPTR)pvFault);
178 STAM_PROFILE_STOP(&pVM->pgm.s.StatCheckPageFault, e);
179 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
180 || rc == VINF_EM_RAW_GUEST_TRAP)
181 {
182 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution)
183 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatTrap0eDirtyAndAccessedBits : &pVM->pgm.s.StatTrap0eGuestTrap; });
184 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
185 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
186 }
187
188 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0ePD[iPDSrc]);
189# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
190
191 /*
192 * A common case is the not-present error caused by lazy page table syncing.
193 *
194 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
195 * so we can safely assume that the shadow PT is present when calling SyncPage later.
196 *
197 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
198 * of mapping conflict and defer to SyncCR3 in R3.
199 * (Again, we do NOT support access handlers for non-present guest pages.)
200 *
201 */
202# if PGM_WITH_PAGING(PGM_GST_TYPE)
203 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
204# else
205 GSTPDE PdeSrc;
206 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
207 PdeSrc.n.u1Present = 1;
208 PdeSrc.n.u1Write = 1;
209 PdeSrc.n.u1Accessed = 1;
210 PdeSrc.n.u1User = 1;
211# endif
212 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
213 && !pPDDst->a[iPDDst].n.u1Present
214 && PdeSrc.n.u1Present
215 )
216
217 {
218 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eSyncPT; });
219 STAM_PROFILE_START(&pVM->pgm.s.StatLazySyncPT, f);
220 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
221 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, (RTGCUINTPTR)pvFault);
222 if (VBOX_SUCCESS(rc))
223 {
224 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
225 return rc;
226 }
227 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
228 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
229 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
230 return VINF_PGM_SYNC_CR3;
231 }
232
233# if PGM_WITH_PAGING(PGM_GST_TYPE)
234 /*
235 * Check if this address is within any of our mappings.
236 *
237 * This is *very* fast and it's gonna save us a bit of effort below and prevent
238 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
239 * (BTW, it's impossible to have physical access handlers in a mapping.)
240 */
241 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
242 {
243 STAM_PROFILE_START(&pVM->pgm.s.StatMapping, a);
244 PPGMMAPPING pMapping = CTXALLSUFF(pVM->pgm.s.pMappings);
245 for ( ; pMapping; pMapping = CTXALLSUFF(pMapping->pNext))
246 {
247 if ((RTGCUINTPTR)pvFault < (RTGCUINTPTR)pMapping->GCPtr)
248 break;
249 if ((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pMapping->GCPtr < pMapping->cb)
250 {
251 /*
252 * The first thing we check is if we've got an undetected conflict.
253 */
254 if (!pVM->pgm.s.fMappingsFixed)
255 {
256 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
257 while (iPT-- > 0)
258 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
259 {
260 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eConflicts);
261 Log(("Trap0e: Detected Conflict %VGv-%VGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
262 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
263 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
264 return VINF_PGM_SYNC_CR3;
265 }
266 }
267
268 /*
269 * Check if the fault address is in a virtual page access handler range.
270 */
271 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->HyperVirtHandlers, pvFault);
272 if ( pCur
273 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
274 && uErr & X86_TRAP_PF_RW)
275 {
276# ifdef IN_GC
277 STAM_PROFILE_START(&pCur->Stat, h);
278 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
279 STAM_PROFILE_STOP(&pCur->Stat, h);
280# else
281 AssertFailed();
282 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
283# endif
284 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eMapHandler);
285 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
286 return rc;
287 }
288
289 /*
290 * Pretend we're not here and let the guest handle the trap.
291 */
292 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
293 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eMap);
294 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
295 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
296 return VINF_EM_RAW_GUEST_TRAP;
297 }
298 }
299 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
300 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
301# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
302
303 /*
304 * Check if this fault address is flagged for special treatment,
305 * which means we'll have to figure out the physical address and
306 * check flags associated with it.
307 *
308 * ASSUME that we can limit any special access handling to pages
309 * in page tables which the guest believes to be present.
310 */
311 if (PdeSrc.n.u1Present)
312 {
313 RTGCPHYS GCPhys = NIL_RTGCPHYS;
314
315# if PGM_WITH_PAGING(PGM_GST_TYPE)
316# if PGM_GST_TYPE == PGM_TYPE_AMD64
317 bool fBigPagesSupported = true;
318# else
319 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
320# endif
321 if ( PdeSrc.b.u1Size
322 && fBigPagesSupported)
323 GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK)
324 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
325 else
326 {
327 PGSTPT pPTSrc;
328 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
329 if (VBOX_SUCCESS(rc))
330 {
331 unsigned iPTESrc = ((RTGCUINTPTR)pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
332 if (pPTSrc->a[iPTESrc].n.u1Present)
333 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
334 }
335 }
336# else
337 /* No paging so the fault address is the physical address */
338 GCPhys = (RTGCPHYS)((RTGCUINTPTR)pvFault & ~PAGE_OFFSET_MASK);
339# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
340
341 /*
342 * If we have a GC address we'll check if it has any flags set.
343 */
344 if (GCPhys != NIL_RTGCPHYS)
345 {
346 STAM_PROFILE_START(&pVM->pgm.s.StatHandlers, b);
347
348 PPGMPAGE pPage;
349 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
350 if (VBOX_SUCCESS(rc))
351 {
352 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
353 {
354 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
355 {
356 /*
357 * Physical page access handler.
358 */
359 const RTGCPHYS GCPhysFault = GCPhys | ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK);
360 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->PhysHandlers, GCPhysFault);
361 if (pCur)
362 {
363# ifdef PGM_SYNC_N_PAGES
364 /*
365 * If the region is write protected and we got a page not present fault, then sync
366 * the pages. If the fault was caused by a read, then restart the instruction.
367 * In case of write access continue to the GC write handler.
368 *
369 * ASSUMES that there is only one handler per page or that they have similar write properties.
370 */
371 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
372 && !(uErr & X86_TRAP_PF_P))
373 {
374 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
375 if ( VBOX_FAILURE(rc)
376 || !(uErr & X86_TRAP_PF_RW)
377 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
378 {
379 AssertRC(rc);
380 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
381 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
382 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
383 return rc;
384 }
385 }
386# endif
387
388 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
389 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
390 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
391
392#if defined(IN_GC) || defined(IN_RING0)
393 if (CTXALLSUFF(pCur->pfnHandler))
394 {
395 STAM_PROFILE_START(&pCur->Stat, h);
396 rc = pCur->CTXALLSUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, CTXALLSUFF(pCur->pvUser));
397 STAM_PROFILE_STOP(&pCur->Stat, h);
398 }
399 else
400#endif
401 rc = VINF_EM_RAW_EMULATE_INSTR;
402 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersPhysical);
403 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
404 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndPhys; });
405 return rc;
406 }
407 }
408# if PGM_WITH_PAGING(PGM_GST_TYPE)
409 else
410 {
411# ifdef PGM_SYNC_N_PAGES
412 /*
413 * If the region is write protected and we got a page not present fault, then sync
414 * the pages. If the fault was caused by a read, then restart the instruction.
415 * In case of write access continue to the GC write handler.
416 */
417 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
418 && !(uErr & X86_TRAP_PF_P))
419 {
420 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
421 if ( VBOX_FAILURE(rc)
422 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
423 || !(uErr & X86_TRAP_PF_RW))
424 {
425 AssertRC(rc);
426 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
427 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
428 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndVirt; });
429 return rc;
430 }
431 }
432# endif
433 /*
434 * Ok, it's an virtual page access handler.
435 *
436 * Since it's faster to search by address, we'll do that first
437 * and then retry by GCPhys if that fails.
438 */
439 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
440 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
441 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
442 */
443 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
444 if (pCur)
445 {
446 AssertMsg(!((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
447 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
448 || !(uErr & X86_TRAP_PF_P)
449 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
450 ("Unexpected trap for virtual handler: %VGv (phys=%VGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
451
452 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
453 && ( uErr & X86_TRAP_PF_RW
454 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
455 {
456# ifdef IN_GC
457 STAM_PROFILE_START(&pCur->Stat, h);
458 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
459 STAM_PROFILE_STOP(&pCur->Stat, h);
460# else
461 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
462# endif
463 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtual);
464 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
465 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
466 return rc;
467 }
468 /* Unhandled part of a monitored page */
469 }
470 else
471 {
472 /* Check by physical address. */
473 PPGMVIRTHANDLER pCur;
474 unsigned iPage;
475 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK),
476 &pCur, &iPage);
477 Assert(VBOX_SUCCESS(rc) || !pCur);
478 if ( pCur
479 && ( uErr & X86_TRAP_PF_RW
480 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
481 {
482 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
483# ifdef IN_GC
484 RTGCUINTPTR off = (iPage << PAGE_SHIFT) + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK) - ((RTGCUINTPTR)pCur->GCPtr & PAGE_OFFSET_MASK);
485 Assert(off < pCur->cb);
486 STAM_PROFILE_START(&pCur->Stat, h);
487 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, off);
488 STAM_PROFILE_STOP(&pCur->Stat, h);
489# else
490 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
491# endif
492 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualByPhys);
493 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
494 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
495 return rc;
496 }
497 }
498 }
499# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
500
501 /*
502 * There is a handled area of the page, but this fault doesn't belong to it.
503 * We must emulate the instruction.
504 *
505 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
506 * we first check if this was a page-not-present fault for a page with only
507 * write access handlers. Restart the instruction if it wasn't a write access.
508 */
509 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersUnhandled);
510
511 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
512 && !(uErr & X86_TRAP_PF_P))
513 {
514 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
515 if ( VBOX_FAILURE(rc)
516 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
517 || !(uErr & X86_TRAP_PF_RW))
518 {
519 AssertRC(rc);
520 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
521 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
522 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
523 return rc;
524 }
525 }
526
527 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
528 * It's writing to an unhandled part of the LDT page several million times.
529 */
530 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
531 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
532 rc, pPage->HCPhys,
533 PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
534 PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
535 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
536 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndUnhandled; });
537 return rc;
538 } /* if any kind of handler */
539
540# if PGM_WITH_PAGING(PGM_GST_TYPE)
541 if (uErr & X86_TRAP_PF_P)
542 {
543 /*
544 * The page isn't marked, but it might still be monitored by a virtual page access handler.
545 * (ASSUMES no temporary disabling of virtual handlers.)
546 */
547 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
548 * we should correct both the shadow page table and physical memory flags, and not only check for
549 * accesses within the handler region but for access to pages with virtual handlers. */
550 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
551 if (pCur)
552 {
553 AssertMsg( !((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
554 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
555 || !(uErr & X86_TRAP_PF_P)
556 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
557 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
558
559 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
560 && ( uErr & X86_TRAP_PF_RW
561 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
562 {
563# ifdef IN_GC
564 STAM_PROFILE_START(&pCur->Stat, h);
565 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
566 STAM_PROFILE_STOP(&pCur->Stat, h);
567# else
568 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
569# endif
570 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualUnmarked);
571 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
572 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
573 return rc;
574 }
575 }
576 }
577# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
578 }
579 else
580 {
581 /* When the guest accesses invalid physical memory (e.g. probing of RAM or accessing a remapped MMIO range), then we'll fall
582 * back to the recompiler to emulate the instruction.
583 */
584 LogFlow(("pgmPhysGetPageEx %VGp failed with %Vrc\n", GCPhys, rc));
585 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersInvalid);
586 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
587 return VINF_EM_RAW_EMULATE_INSTR;
588 }
589
590 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
591
592# ifdef PGM_OUT_OF_SYNC_IN_GC
593 /*
594 * We are here only if page is present in Guest page tables and trap is not handled
595 * by our handlers.
596 * Check it for page out-of-sync situation.
597 */
598 STAM_PROFILE_START(&pVM->pgm.s.StatOutOfSync, c);
599
600 if (!(uErr & X86_TRAP_PF_P))
601 {
602 /*
603 * Page is not present in our page tables.
604 * Try to sync it!
605 * BTW, fPageShw is invalid in this branch!
606 */
607 if (uErr & X86_TRAP_PF_US)
608 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
609 else /* supervisor */
610 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
611
612# if defined(LOG_ENABLED) && !defined(IN_RING0)
613 RTGCPHYS GCPhys;
614 uint64_t fPageGst;
615 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
616 Log(("Page out of sync: %VGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%VGp scan=%d\n",
617 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
618# endif /* LOG_ENABLED */
619
620# if PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0)
621 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
622 {
623 uint64_t fPageGst;
624 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
625 if ( VBOX_SUCCESS(rc)
626 && !(fPageGst & X86_PTE_US))
627 {
628 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
629 if ( pvFault == (RTGCPTR)pRegFrame->eip
630 || (RTGCUINTPTR)pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
631# ifdef CSAM_DETECT_NEW_CODE_PAGES
632 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
633 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
634# endif /* CSAM_DETECT_NEW_CODE_PAGES */
635 )
636 {
637 LogFlow(("CSAMExecFault %VGv\n", pRegFrame->eip));
638 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
639 if (rc != VINF_SUCCESS)
640 {
641 /*
642 * CSAM needs to perform a job in ring 3.
643 *
644 * Sync the page before going to the host context; otherwise we'll end up in a loop if
645 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
646 */
647 LogFlow(("CSAM ring 3 job\n"));
648 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
649 AssertRC(rc2);
650
651 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
652 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eCSAM; });
653 return rc;
654 }
655 }
656# ifdef CSAM_DETECT_NEW_CODE_PAGES
657 else
658 if ( uErr == X86_TRAP_PF_RW
659 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
660 && pRegFrame->ecx < 0x10000
661 )
662 {
663 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
664 * to detect loading of new code pages.
665 */
666
667 /*
668 * Decode the instruction.
669 */
670 RTGCPTR PC;
671 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
672 if (rc == VINF_SUCCESS)
673 {
674 DISCPUSTATE Cpu;
675 uint32_t cbOp;
676 rc = EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)PC, pRegFrame, &Cpu, &cbOp);
677
678 /* For now we'll restrict this to rep movsw/d instructions */
679 if ( rc == VINF_SUCCESS
680 && Cpu.pCurInstr->opcode == OP_MOVSWD
681 && (Cpu.prefix & PREFIX_REP))
682 {
683 CSAMMarkPossibleCodePage(pVM, pvFault);
684 }
685 }
686 }
687# endif /* CSAM_DETECT_NEW_CODE_PAGES */
688
689 /*
690 * Mark this page as safe.
691 */
692 /** @todo not correct for pages that contain both code and data!! */
693 Log2(("CSAMMarkPage %VGv; scanned=%d\n", pvFault, true));
694 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
695 }
696 }
697# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0) */
698 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
699 if (VBOX_SUCCESS(rc))
700 {
701 /* The page was successfully synced, return to the guest. */
702 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
703 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSync; });
704 return VINF_SUCCESS;
705 }
706 }
707 else
708 {
709 /*
710 * A side effect of not flushing global PDEs are out of sync pages due
711 * to physical monitored regions, that are no longer valid.
712 * Assume for now it only applies to the read/write flag
713 */
714 if (VBOX_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
715 {
716 if (uErr & X86_TRAP_PF_US)
717 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
718 else /* supervisor */
719 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
720
721
722 /*
723 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
724 */
725 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
726 if (VBOX_SUCCESS(rc))
727 {
728 /*
729 * Page was successfully synced, return to guest.
730 */
731# ifdef VBOX_STRICT
732 RTGCPHYS GCPhys;
733 uint64_t fPageGst;
734 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
735 Assert(VBOX_SUCCESS(rc) && fPageGst & X86_PTE_RW);
736 LogFlow(("Obsolete physical monitor page out of sync %VGv - phys %VGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
737
738 uint64_t fPageShw;
739 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
740 AssertMsg(VBOX_SUCCESS(rc) && fPageShw & X86_PTE_RW, ("rc=%Vrc fPageShw=%VX64\n", rc, fPageShw));
741# endif /* VBOX_STRICT */
742 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
743 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncObsHnd; });
744 return VINF_SUCCESS;
745 }
746
747 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
748 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
749 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP|X86_CR0_PG)) == X86_CR0_PG)
750 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
751 {
752 uint64_t fPageGst;
753 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
754 if ( VBOX_SUCCESS(rc)
755 && !(fPageGst & X86_PTE_RW))
756 {
757 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
758 if (VBOX_SUCCESS(rc))
759 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulGC);
760 else
761 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulR3);
762 return rc;
763 }
764 else
765 AssertMsgFailed(("Unexpected r/w page %x flag=%x\n", pvFault, (uint32_t)fPageGst));
766 }
767
768 }
769
770# if PGM_WITH_PAGING(PGM_GST_TYPE)
771# ifdef VBOX_STRICT
772 /*
773 * Check for VMM page flags vs. Guest page flags consistency.
774 * Currently only for debug purposes.
775 */
776 if (VBOX_SUCCESS(rc))
777 {
778 /* Get guest page flags. */
779 uint64_t fPageGst;
780 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
781 if (VBOX_SUCCESS(rc))
782 {
783 uint64_t fPageShw;
784 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
785
786 /*
787 * Compare page flags.
788 * Note: we have AVL, A, D bits desynched.
789 */
790 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
791 ("Page flags mismatch! pvFault=%VGv GCPhys=%VGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
792 }
793 else
794 AssertMsgFailed(("PGMGstGetPage rc=%Vrc\n", rc));
795 }
796 else
797 AssertMsgFailed(("PGMGCGetPage rc=%Vrc\n", rc));
798# endif /* VBOX_STRICT */
799# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
800 }
801 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
802# endif /* PGM_OUT_OF_SYNC_IN_GC */
803 }
804 else
805 {
806 /*
807 * Page not present in Guest OS or invalid page table address.
808 * This is potential virtual page access handler food.
809 *
810 * For the present we'll say that our access handlers don't
811 * work for this case - we've already discarded the page table
812 * not present case which is identical to this.
813 *
814 * When we perchance find we need this, we will probably have AVL
815 * trees (offset based) to operate on and we can measure their speed
816 * agains mapping a page table and probably rearrange this handling
817 * a bit. (Like, searching virtual ranges before checking the
818 * physical address.)
819 */
820 }
821 }
822
823
824# if PGM_WITH_PAGING(PGM_GST_TYPE)
825 /*
826 * Conclusion, this is a guest trap.
827 */
828 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
829 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUnhandled);
830 return VINF_EM_RAW_GUEST_TRAP;
831# else
832 /* present, but not a monitored page; perhaps the guest is probing physical memory */
833 return VINF_EM_RAW_EMULATE_INSTR;
834# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
835
836
837#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
838
839 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
840 return VERR_INTERNAL_ERROR;
841#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
842}
843
844
845/**
846 * Emulation of the invlpg instruction.
847 *
848 *
849 * @returns VBox status code.
850 *
851 * @param pVM VM handle.
852 * @param GCPtrPage Page to invalidate.
853 *
854 * @remark ASSUMES that the guest is updating before invalidating. This order
855 * isn't required by the CPU, so this is speculative and could cause
856 * trouble.
857 *
858 * @todo Flush page or page directory only if necessary!
859 * @todo Add a #define for simply invalidating the page.
860 */
861PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage)
862{
863#if PGM_WITH_PAGING(PGM_GST_TYPE) \
864 && PGM_SHW_TYPE != PGM_TYPE_NESTED
865 int rc;
866
867 LogFlow(("InvalidatePage %VGv\n", GCPtrPage));
868 /*
869 * Get the shadow PD entry and skip out if this PD isn't present.
870 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
871 */
872# if PGM_SHW_TYPE == PGM_TYPE_32BIT
873 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
874 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
875# elif PGM_SHW_TYPE == PGM_TYPE_PAE
876 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
877 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT);
878 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs[0])->a[iPDDst];
879 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
880# else /* AMD64 */
881 /* PML4 */
882 AssertReturn(pVM->pgm.s.pHCPaePML4, VERR_INTERNAL_ERROR);
883
884 const unsigned iPml4e = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
885 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
886 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
887 PX86PDPAE pPDDst;
888 PX86PDPT pPdptDst;
889 PX86PML4E pPml4eDst = &pVM->pgm.s.pHCPaePML4->a[iPml4e];
890 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
891 if (rc != VINF_SUCCESS)
892 {
893 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
894 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
895 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
896 PGM_INVL_GUEST_TLBS();
897 return VINF_SUCCESS;
898 }
899 Assert(pPDDst);
900
901 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
902 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpte];
903
904 if (!pPdpeDst->n.u1Present)
905 {
906 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
907 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
908 PGM_INVL_GUEST_TLBS();
909 return VINF_SUCCESS;
910 }
911
912# endif
913
914 const SHWPDE PdeDst = *pPdeDst;
915 if (!PdeDst.n.u1Present)
916 {
917 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
918 return VINF_SUCCESS;
919 }
920
921 /*
922 * Get the guest PD entry and calc big page.
923 */
924# if PGM_GST_TYPE == PGM_TYPE_32BIT
925 PX86PD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
926 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
927 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
928# else
929 unsigned iPDSrc;
930# if PGM_GST_TYPE == PGM_TYPE_PAE
931 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
932# else /* AMD64 */
933 PX86PML4E pPml4eSrc;
934 X86PDPE PdpeSrc;
935 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
936# endif
937 GSTPDE PdeSrc;
938
939 if (pPDSrc)
940 PdeSrc = pPDSrc->a[iPDSrc];
941 else
942 PdeSrc.u = 0;
943# endif
944
945# if PGM_GST_TYPE == PGM_TYPE_AMD64
946 const bool fIsBigPage = PdeSrc.b.u1Size;
947# else
948 const bool fIsBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
949# endif
950
951# ifdef IN_RING3
952 /*
953 * If a CR3 Sync is pending we may ignore the invalidate page operation
954 * depending on the kind of sync and if it's a global page or not.
955 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
956 */
957# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
958 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
959 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
960 && fIsBigPage
961 && PdeSrc.b.u1Global
962 )
963 )
964# else
965 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
966# endif
967 {
968 STAM_COUNTER_INC(&pVM->pgm.s.StatHCInvalidatePageSkipped);
969 return VINF_SUCCESS;
970 }
971# endif /* IN_RING3 */
972
973# if PGM_GST_TYPE == PGM_TYPE_AMD64
974 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
975
976 /* Fetch the pgm pool shadow descriptor. */
977 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPageByHCPhys(pVM, pPml4eDst->u & X86_PML4E_PG_MASK);
978 Assert(pShwPdpt);
979
980 /* Fetch the pgm pool shadow descriptor. */
981 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & SHW_PDPE_PG_MASK);
982 Assert(pShwPde);
983
984 Assert(pPml4eDst->n.u1Present && (pPml4eDst->u & SHW_PDPT_MASK));
985 RTGCPHYS GCPhysPdpt = pPml4eSrc->u & X86_PML4E_PG_MASK;
986
987 if ( !pPml4eSrc->n.u1Present
988 || pShwPdpt->GCPhys != GCPhysPdpt)
989 {
990 LogFlow(("InvalidatePage: Out-of-sync PML4E (P/GCPhys) at %VGv GCPhys=%VGp vs %VGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
991 GCPtrPage, pShwPdpt->GCPhys, GCPhysPdpt, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
992 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pShwAmd64CR3->idx, iPml4e);
993 pPml4eDst->u = 0;
994 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
995 PGM_INVL_GUEST_TLBS();
996 return VINF_SUCCESS;
997 }
998 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
999 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
1000 {
1001 /*
1002 * Mark not present so we can resync the PML4E when it's used.
1003 */
1004 LogFlow(("InvalidatePage: Out-of-sync PML4E at %VGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1005 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1006 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pShwAmd64CR3->idx, iPml4e);
1007 pPml4eDst->u = 0;
1008 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1009 PGM_INVL_GUEST_TLBS();
1010 }
1011 else if (!pPml4eSrc->n.u1Accessed)
1012 {
1013 /*
1014 * Mark not present so we can set the accessed bit.
1015 */
1016 LogFlow(("InvalidatePage: Out-of-sync PML4E (A) at %VGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1017 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1018 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pShwAmd64CR3->idx, iPml4e);
1019 pPml4eDst->u = 0;
1020 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
1021 PGM_INVL_GUEST_TLBS();
1022 }
1023
1024 /* Check if the PDPT entry has changed. */
1025 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1026 RTGCPHYS GCPhysPd = PdpeSrc.u & GST_PDPE_PG_MASK;
1027 if ( !PdpeSrc.n.u1Present
1028 || pShwPde->GCPhys != GCPhysPd)
1029 {
1030 LogFlow(("InvalidatePage: Out-of-sync PDPE (P/GCPhys) at %VGv GCPhys=%VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1031 GCPtrPage, pShwPde->GCPhys, GCPhysPd, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1032 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1033 pPdpeDst->u = 0;
1034 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1035 PGM_INVL_GUEST_TLBS();
1036 return VINF_SUCCESS;
1037 }
1038 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1039 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1040 {
1041 /*
1042 * Mark not present so we can resync the PDPTE when it's used.
1043 */
1044 LogFlow(("InvalidatePage: Out-of-sync PDPE at %VGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1045 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1046 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1047 pPdpeDst->u = 0;
1048 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1049 PGM_INVL_GUEST_TLBS();
1050 }
1051 else if (!PdpeSrc.lm.u1Accessed)
1052 {
1053 /*
1054 * Mark not present so we can set the accessed bit.
1055 */
1056 LogFlow(("InvalidatePage: Out-of-sync PDPE (A) at %VGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1057 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1058 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1059 pPdpeDst->u = 0;
1060 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
1061 PGM_INVL_GUEST_TLBS();
1062 }
1063# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
1064
1065# if PGM_GST_TYPE == PGM_TYPE_PAE
1066
1067# endif
1068
1069
1070 /*
1071 * Deal with the Guest PDE.
1072 */
1073 rc = VINF_SUCCESS;
1074 if (PdeSrc.n.u1Present)
1075 {
1076 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1077 {
1078 /*
1079 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1080 */
1081 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1082 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
1083 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
1084 }
1085 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
1086 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1087 {
1088 /*
1089 * Mark not present so we can resync the PDE when it's used.
1090 */
1091 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1092 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1093# if PGM_GST_TYPE == PGM_TYPE_AMD64
1094 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1095# else
1096 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1097# endif
1098 pPdeDst->u = 0;
1099 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1100 PGM_INVL_GUEST_TLBS();
1101 }
1102 else if (!PdeSrc.n.u1Accessed)
1103 {
1104 /*
1105 * Mark not present so we can set the accessed bit.
1106 */
1107 LogFlow(("InvalidatePage: Out-of-sync (A) at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1108 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1109# if PGM_GST_TYPE == PGM_TYPE_AMD64
1110 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1111# else
1112 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1113# endif
1114 pPdeDst->u = 0;
1115 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
1116 PGM_INVL_GUEST_TLBS();
1117 }
1118 else if (!fIsBigPage)
1119 {
1120 /*
1121 * 4KB - page.
1122 */
1123 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1124 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1125# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1126 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1127 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1128# endif
1129 if (pShwPage->GCPhys == GCPhys)
1130 {
1131# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1132 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1133 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1134 if (pPT->a[iPTEDst].n.u1Present)
1135 {
1136# ifdef PGMPOOL_WITH_USER_TRACKING
1137 /* This is very unlikely with caching/monitoring enabled. */
1138 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1139# endif
1140 pPT->a[iPTEDst].u = 0;
1141 }
1142# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1143 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
1144 if (VBOX_SUCCESS(rc))
1145 rc = VINF_SUCCESS;
1146# endif
1147 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4KBPages));
1148 PGM_INVL_PG(GCPtrPage);
1149 }
1150 else
1151 {
1152 /*
1153 * The page table address changed.
1154 */
1155 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%VGp iPDDst=%#x\n",
1156 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1157# if PGM_GST_TYPE == PGM_TYPE_AMD64
1158 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1159# else
1160 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1161# endif
1162 pPdeDst->u = 0;
1163 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1164 PGM_INVL_GUEST_TLBS();
1165 }
1166 }
1167 else
1168 {
1169 /*
1170 * 2/4MB - page.
1171 */
1172 /* Before freeing the page, check if anything really changed. */
1173 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1174 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1175# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1176 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1177 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1178# endif
1179 if ( pShwPage->GCPhys == GCPhys
1180 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1181 {
1182 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1183 /** @todo PAT */
1184 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1185 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1186 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1187 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1188 {
1189 LogFlow(("Skipping flush for big page containing %VGv (PD=%X .u=%VX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1190 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPagesSkip));
1191 return VINF_SUCCESS;
1192 }
1193 }
1194
1195 /*
1196 * Ok, the page table is present and it's been changed in the guest.
1197 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1198 * We could do this for some flushes in GC too, but we need an algorithm for
1199 * deciding which 4MB pages containing code likely to be executed very soon.
1200 */
1201 LogFlow(("InvalidatePage: Out-of-sync PD at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1202 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1203# if PGM_GST_TYPE == PGM_TYPE_AMD64
1204 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1205# else
1206 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1207# endif
1208 pPdeDst->u = 0;
1209 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPages));
1210 PGM_INVL_BIG_PG(GCPtrPage);
1211 }
1212 }
1213 else
1214 {
1215 /*
1216 * Page directory is not present, mark shadow PDE not present.
1217 */
1218 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1219 {
1220# if PGM_GST_TYPE == PGM_TYPE_AMD64
1221 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1222# else
1223 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1224# endif
1225 pPdeDst->u = 0;
1226 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1227 PGM_INVL_PG(GCPtrPage);
1228 }
1229 else
1230 {
1231 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1232 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDMappings));
1233 }
1234 }
1235
1236 return rc;
1237
1238#else /* guest real and protected mode */
1239 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1240 return VINF_SUCCESS;
1241#endif
1242}
1243
1244
1245#ifdef PGMPOOL_WITH_USER_TRACKING
1246/**
1247 * Update the tracking of shadowed pages.
1248 *
1249 * @param pVM The VM handle.
1250 * @param pShwPage The shadow page.
1251 * @param HCPhys The physical page we is being dereferenced.
1252 */
1253DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1254{
1255# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1256 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1257 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%VHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1258
1259 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1260 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1261 * 2. write protect all shadowed pages. I.e. implement caching.
1262 */
1263 /*
1264 * Find the guest address.
1265 */
1266 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1267 pRam;
1268 pRam = CTXALLSUFF(pRam->pNext))
1269 {
1270 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1271 while (iPage-- > 0)
1272 {
1273 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1274 {
1275 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
1276 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1277 pShwPage->cPresent--;
1278 pPool->cPresent--;
1279 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1280 return;
1281 }
1282 }
1283 }
1284
1285 for (;;)
1286 AssertReleaseMsgFailed(("HCPhys=%VHp wasn't found!\n", HCPhys));
1287# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1288 pShwPage->cPresent--;
1289 pVM->pgm.s.CTXSUFF(pPool)->cPresent--;
1290# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1291}
1292
1293
1294/**
1295 * Update the tracking of shadowed pages.
1296 *
1297 * @param pVM The VM handle.
1298 * @param pShwPage The shadow page.
1299 * @param u16 The top 16-bit of the pPage->HCPhys.
1300 * @param pPage Pointer to the guest page. this will be modified.
1301 * @param iPTDst The index into the shadow table.
1302 */
1303DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1304{
1305# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1306 /*
1307 * We're making certain assumptions about the placement of cRef and idx.
1308 */
1309 Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
1310 Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
1311
1312 /*
1313 * Just deal with the simple first time here.
1314 */
1315 if (!u16)
1316 {
1317 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1318 u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
1319 }
1320 else
1321 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1322
1323 /* write back, trying to be clever... */
1324 Log2(("SyncPageWorkerTrackAddRef: u16=%#x pPage->HCPhys=%VHp->%VHp iPTDst=%#x\n",
1325 u16, pPage->HCPhys, (pPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
1326 *((uint16_t *)&pPage->HCPhys + 3) = u16; /** @todo PAGE FLAGS */
1327# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1328
1329 /* update statistics. */
1330 pVM->pgm.s.CTXSUFF(pPool)->cPresent++;
1331 pShwPage->cPresent++;
1332 if (pShwPage->iFirstPresent > iPTDst)
1333 pShwPage->iFirstPresent = iPTDst;
1334}
1335#endif /* PGMPOOL_WITH_USER_TRACKING */
1336
1337
1338/**
1339 * Creates a 4K shadow page for a guest page.
1340 *
1341 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1342 * physical address. The PdeSrc argument only the flags are used. No page structured
1343 * will be mapped in this function.
1344 *
1345 * @param pVM VM handle.
1346 * @param pPteDst Destination page table entry.
1347 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1348 * Can safely assume that only the flags are being used.
1349 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1350 * @param pShwPage Pointer to the shadow page.
1351 * @param iPTDst The index into the shadow table.
1352 *
1353 * @remark Not used for 2/4MB pages!
1354 */
1355DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1356{
1357 if (PteSrc.n.u1Present)
1358 {
1359 /*
1360 * Find the ram range.
1361 */
1362 PPGMPAGE pPage;
1363 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1364 if (VBOX_SUCCESS(rc))
1365 {
1366 /** @todo investiage PWT, PCD and PAT. */
1367 /*
1368 * Make page table entry.
1369 */
1370 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
1371 SHWPTE PteDst;
1372 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1373 {
1374 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1375 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1376 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1377 | (HCPhys & X86_PTE_PAE_PG_MASK);
1378 else
1379 {
1380 LogFlow(("SyncPageWorker: monitored page (%VGp) -> mark not present\n", HCPhys));
1381 PteDst.u = 0;
1382 }
1383 /** @todo count these two kinds. */
1384 }
1385 else
1386 {
1387 /*
1388 * If the page or page directory entry is not marked accessed,
1389 * we mark the page not present.
1390 */
1391 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1392 {
1393 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1394 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,AccessedPage));
1395 PteDst.u = 0;
1396 }
1397 else
1398 /*
1399 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1400 * when the page is modified.
1401 */
1402 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1403 {
1404 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPage));
1405 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1406 | (HCPhys & X86_PTE_PAE_PG_MASK)
1407 | PGM_PTFLAGS_TRACK_DIRTY;
1408 }
1409 else
1410 {
1411 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageSkipped));
1412 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1413 | (HCPhys & X86_PTE_PAE_PG_MASK);
1414 }
1415 }
1416
1417#ifdef PGMPOOL_WITH_USER_TRACKING
1418 /*
1419 * Keep user track up to date.
1420 */
1421 if (PteDst.n.u1Present)
1422 {
1423 if (!pPteDst->n.u1Present)
1424 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1425 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1426 {
1427 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1428 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1429 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1430 }
1431 }
1432 else if (pPteDst->n.u1Present)
1433 {
1434 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1435 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1436 }
1437#endif /* PGMPOOL_WITH_USER_TRACKING */
1438
1439 /*
1440 * Update statistics and commit the entry.
1441 */
1442 if (!PteSrc.n.u1Global)
1443 pShwPage->fSeenNonGlobal = true;
1444 *pPteDst = PteDst;
1445 }
1446 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1447 /** @todo count these. */
1448 }
1449 else
1450 {
1451 /*
1452 * Page not-present.
1453 */
1454 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1455#ifdef PGMPOOL_WITH_USER_TRACKING
1456 /* Keep user track up to date. */
1457 if (pPteDst->n.u1Present)
1458 {
1459 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1460 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1461 }
1462#endif /* PGMPOOL_WITH_USER_TRACKING */
1463 pPteDst->u = 0;
1464 /** @todo count these. */
1465 }
1466}
1467
1468
1469/**
1470 * Syncs a guest OS page.
1471 *
1472 * There are no conflicts at this point, neither is there any need for
1473 * page table allocations.
1474 *
1475 * @returns VBox status code.
1476 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1477 * @param pVM VM handle.
1478 * @param PdeSrc Page directory entry of the guest.
1479 * @param GCPtrPage Guest context page address.
1480 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1481 * @param uErr Fault error (X86_TRAP_PF_*).
1482 */
1483PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr)
1484{
1485 LogFlow(("SyncPage: GCPtrPage=%VGv cPages=%d uErr=%#x\n", GCPtrPage, cPages, uErr));
1486
1487#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1488 || PGM_GST_TYPE == PGM_TYPE_PAE \
1489 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1490 && PGM_SHW_TYPE != PGM_TYPE_NESTED
1491
1492# if PGM_WITH_NX(PGM_GST_TYPE)
1493 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1494# endif
1495
1496 /*
1497 * Assert preconditions.
1498 */
1499 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1500 Assert(PdeSrc.n.u1Present);
1501 Assert(cPages);
1502
1503 /*
1504 * Get the shadow PDE, find the shadow page table in the pool.
1505 */
1506# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1507 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1508 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1509# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1510 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1511 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT); /* no mask; flat index into the 2048 entry array. */
1512 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
1513 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1514# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1515 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1516 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1517 PX86PDPAE pPDDst;
1518 X86PDEPAE PdeDst;
1519 PX86PDPT pPdptDst;
1520
1521 int rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
1522 AssertRCReturn(rc, rc);
1523 Assert(pPDDst && pPdptDst);
1524 PdeDst = pPDDst->a[iPDDst];
1525# endif
1526 Assert(PdeDst.n.u1Present);
1527 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1528
1529# if PGM_GST_TYPE == PGM_TYPE_AMD64
1530 /* Fetch the pgm pool shadow descriptor. */
1531 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & X86_PDPE_PG_MASK);
1532 Assert(pShwPde);
1533# endif
1534
1535 /*
1536 * Check that the page is present and that the shadow PDE isn't out of sync.
1537 */
1538# if PGM_GST_TYPE == PGM_TYPE_AMD64
1539 const bool fBigPage = PdeSrc.b.u1Size;
1540# else
1541 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1542# endif
1543 RTGCPHYS GCPhys;
1544 if (!fBigPage)
1545 {
1546 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1547# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1548 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1549 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1550# endif
1551 }
1552 else
1553 {
1554 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1555# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1556 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1557 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1558# endif
1559 }
1560 if ( pShwPage->GCPhys == GCPhys
1561 && PdeSrc.n.u1Present
1562 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1563 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1564# if PGM_WITH_NX(PGM_GST_TYPE)
1565 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1566# endif
1567 )
1568 {
1569 /*
1570 * Check that the PDE is marked accessed already.
1571 * Since we set the accessed bit *before* getting here on a #PF, this
1572 * check is only meant for dealing with non-#PF'ing paths.
1573 */
1574 if (PdeSrc.n.u1Accessed)
1575 {
1576 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1577 if (!fBigPage)
1578 {
1579 /*
1580 * 4KB Page - Map the guest page table.
1581 */
1582 PGSTPT pPTSrc;
1583 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1584 if (VBOX_SUCCESS(rc))
1585 {
1586# ifdef PGM_SYNC_N_PAGES
1587 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1588 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1589 {
1590 /*
1591 * This code path is currently only taken when the caller is PGMTrap0eHandler
1592 * for non-present pages!
1593 *
1594 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1595 * deal with locality.
1596 */
1597 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1598# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1599 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1600 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1601# else
1602 const unsigned offPTSrc = 0;
1603# endif
1604 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1605 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1606 iPTDst = 0;
1607 else
1608 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1609 for (; iPTDst < iPTDstEnd; iPTDst++)
1610 {
1611 if (!pPTDst->a[iPTDst].n.u1Present)
1612 {
1613 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1614 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1615 NOREF(GCPtrCurPage);
1616#ifndef IN_RING0
1617 /*
1618 * Assuming kernel code will be marked as supervisor - and not as user level
1619 * and executed using a conforming code selector - And marked as readonly.
1620 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1621 */
1622 PPGMPAGE pPage;
1623 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1624 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1625 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1626 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1627 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1628 )
1629#endif /* else: CSAM not active */
1630 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1631 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1632 GCPtrCurPage, PteSrc.n.u1Present,
1633 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1634 PteSrc.n.u1User & PdeSrc.n.u1User,
1635 (uint64_t)PteSrc.u,
1636 (uint64_t)pPTDst->a[iPTDst].u,
1637 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1638 }
1639 }
1640 }
1641 else
1642# endif /* PGM_SYNC_N_PAGES */
1643 {
1644 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1645 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1646 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1647 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1648 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1649 GCPtrPage, PteSrc.n.u1Present,
1650 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1651 PteSrc.n.u1User & PdeSrc.n.u1User,
1652 (uint64_t)PteSrc.u,
1653 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1654 }
1655 }
1656 else /* MMIO or invalid page: emulated in #PF handler. */
1657 {
1658 LogFlow(("PGM_GCPHYS_2_PTR %VGp failed with %Vrc\n", GCPhys, rc));
1659 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1660 }
1661 }
1662 else
1663 {
1664 /*
1665 * 4/2MB page - lazy syncing shadow 4K pages.
1666 * (There are many causes of getting here, it's no longer only CSAM.)
1667 */
1668 /* Calculate the GC physical address of this 4KB shadow page. */
1669 RTGCPHYS GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK) | ((RTGCUINTPTR)GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1670 /* Find ram range. */
1671 PPGMPAGE pPage;
1672 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1673 if (VBOX_SUCCESS(rc))
1674 {
1675 /*
1676 * Make shadow PTE entry.
1677 */
1678 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
1679 SHWPTE PteDst;
1680 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1681 | (HCPhys & X86_PTE_PAE_PG_MASK);
1682 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1683 {
1684 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1685 PteDst.n.u1Write = 0;
1686 else
1687 PteDst.u = 0;
1688 }
1689 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1690# ifdef PGMPOOL_WITH_USER_TRACKING
1691 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1692 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1693# endif
1694 pPTDst->a[iPTDst] = PteDst;
1695
1696
1697 /*
1698 * If the page is not flagged as dirty and is writable, then make it read-only
1699 * at PD level, so we can set the dirty bit when the page is modified.
1700 *
1701 * ASSUMES that page access handlers are implemented on page table entry level.
1702 * Thus we will first catch the dirty access and set PDE.D and restart. If
1703 * there is an access handler, we'll trap again and let it work on the problem.
1704 */
1705 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1706 * As for invlpg, it simply frees the whole shadow PT.
1707 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1708 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1709 {
1710 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
1711 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1712 PdeDst.n.u1Write = 0;
1713 }
1714 else
1715 {
1716 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1717 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1718 }
1719# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1720 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
1721# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1722 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst] = PdeDst;
1723# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1724 pPDDst->a[iPDDst] = PdeDst;
1725# endif
1726 Log2(("SyncPage: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%VGp%s\n",
1727 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1728 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1729 }
1730 else
1731 LogFlow(("PGM_GCPHYS_2_PTR %VGp (big) failed with %Vrc\n", GCPhys, rc));
1732 }
1733 return VINF_SUCCESS;
1734 }
1735 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDNAs));
1736 }
1737 else
1738 {
1739 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDOutOfSync));
1740 Log2(("SyncPage: Out-Of-Sync PDE at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1741 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1742 }
1743
1744 /*
1745 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1746 * Yea, I'm lazy.
1747 */
1748 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
1749# if PGM_GST_TYPE == PGM_TYPE_AMD64
1750 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1751# else
1752 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPDDst);
1753# endif
1754
1755# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1756 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
1757# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1758 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst].u = 0;
1759# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1760 pPDDst->a[iPDDst].u = 0;
1761# endif
1762 PGM_INVL_GUEST_TLBS();
1763 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1764
1765#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1766 && PGM_SHW_TYPE != PGM_TYPE_NESTED
1767
1768# ifdef PGM_SYNC_N_PAGES
1769 /*
1770 * Get the shadow PDE, find the shadow page table in the pool.
1771 */
1772 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1773# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1774 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1775# else /* PAE */
1776 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1777# endif
1778 Assert(PdeDst.n.u1Present);
1779 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1780 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1781
1782# if PGM_SHW_TYPE == PGM_TYPE_PAE
1783 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1784 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1785# else
1786 const unsigned offPTSrc = 0;
1787# endif
1788
1789 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1790 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1791 {
1792 /*
1793 * This code path is currently only taken when the caller is PGMTrap0eHandler
1794 * for non-present pages!
1795 *
1796 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1797 * deal with locality.
1798 */
1799 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1800 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1801 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1802 iPTDst = 0;
1803 else
1804 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1805 for (; iPTDst < iPTDstEnd; iPTDst++)
1806 {
1807 if (!pPTDst->a[iPTDst].n.u1Present)
1808 {
1809 GSTPTE PteSrc;
1810
1811 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1812
1813 /* Fake the page table entry */
1814 PteSrc.u = GCPtrCurPage;
1815 PteSrc.n.u1Present = 1;
1816 PteSrc.n.u1Dirty = 1;
1817 PteSrc.n.u1Accessed = 1;
1818 PteSrc.n.u1Write = 1;
1819 PteSrc.n.u1User = 1;
1820
1821 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1822
1823 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1824 GCPtrCurPage, PteSrc.n.u1Present,
1825 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1826 PteSrc.n.u1User & PdeSrc.n.u1User,
1827 (uint64_t)PteSrc.u,
1828 (uint64_t)pPTDst->a[iPTDst].u,
1829 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1830 }
1831 }
1832 }
1833 else
1834# endif /* PGM_SYNC_N_PAGES */
1835 {
1836 GSTPTE PteSrc;
1837 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1838 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1839
1840 /* Fake the page table entry */
1841 PteSrc.u = GCPtrCurPage;
1842 PteSrc.n.u1Present = 1;
1843 PteSrc.n.u1Dirty = 1;
1844 PteSrc.n.u1Accessed = 1;
1845 PteSrc.n.u1Write = 1;
1846 PteSrc.n.u1User = 1;
1847 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1848
1849 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
1850 GCPtrPage, PteSrc.n.u1Present,
1851 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1852 PteSrc.n.u1User & PdeSrc.n.u1User,
1853 (uint64_t)PteSrc.u,
1854 (uint64_t)pPTDst->a[iPTDst].u,
1855 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1856 }
1857 return VINF_SUCCESS;
1858
1859#else
1860 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1861 return VERR_INTERNAL_ERROR;
1862#endif
1863}
1864
1865
1866
1867#if PGM_WITH_PAGING(PGM_GST_TYPE)
1868
1869/**
1870 * Investigate page fault and handle write protection page faults caused by
1871 * dirty bit tracking.
1872 *
1873 * @returns VBox status code.
1874 * @param pVM VM handle.
1875 * @param uErr Page fault error code.
1876 * @param pPdeDst Shadow page directory entry.
1877 * @param pPdeSrc Guest page directory entry.
1878 * @param GCPtrPage Guest context page address.
1879 */
1880PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage)
1881{
1882 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
1883 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
1884 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
1885# if PGM_GST_TYPE == PGM_TYPE_AMD64
1886 bool fBigPagesSupported = true;
1887# else
1888 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1889# endif
1890# if PGM_WITH_NX(PGM_GST_TYPE)
1891 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1892# endif
1893 unsigned uPageFaultLevel;
1894 int rc;
1895
1896 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1897 LogFlow(("CheckPageFault: GCPtrPage=%VGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
1898
1899# if PGM_GST_TYPE == PGM_TYPE_PAE \
1900 || PGM_GST_TYPE == PGM_TYPE_AMD64
1901
1902# if PGM_GST_TYPE == PGM_TYPE_AMD64
1903 PX86PML4E pPml4eSrc;
1904 PX86PDPE pPdpeSrc;
1905
1906 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc);
1907 Assert(pPml4eSrc);
1908
1909 /*
1910 * Real page fault? (PML4E level)
1911 */
1912 if ( (uErr & X86_TRAP_PF_RSVD)
1913 || !pPml4eSrc->n.u1Present
1914 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
1915 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1916 || (fUserLevelFault && !pPml4eSrc->n.u1User)
1917 )
1918 {
1919 uPageFaultLevel = 0;
1920 goto UpperLevelPageFault;
1921 }
1922 Assert(pPdpeSrc);
1923
1924# else /* PAE */
1925 PX86PDPE pPdpeSrc = &pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtrPage >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
1926# endif
1927
1928 /*
1929 * Real page fault? (PDPE level)
1930 */
1931 if ( (uErr & X86_TRAP_PF_RSVD)
1932 || !pPdpeSrc->n.u1Present
1933# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
1934 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
1935 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
1936 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
1937# endif
1938 )
1939 {
1940 uPageFaultLevel = 1;
1941 goto UpperLevelPageFault;
1942 }
1943# endif
1944
1945 /*
1946 * Real page fault? (PDE level)
1947 */
1948 if ( (uErr & X86_TRAP_PF_RSVD)
1949 || !pPdeSrc->n.u1Present
1950# if PGM_WITH_NX(PGM_GST_TYPE)
1951 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
1952# endif
1953 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1954 || (fUserLevelFault && !pPdeSrc->n.u1User) )
1955 {
1956 uPageFaultLevel = 2;
1957 goto UpperLevelPageFault;
1958 }
1959
1960 /*
1961 * First check the easy case where the page directory has been marked read-only to track
1962 * the dirty bit of an emulated BIG page
1963 */
1964 if (pPdeSrc->b.u1Size && fBigPagesSupported)
1965 {
1966 /* Mark guest page directory as accessed */
1967# if PGM_GST_TYPE == PGM_TYPE_AMD64
1968 pPml4eSrc->n.u1Accessed = 1;
1969 pPdpeSrc->lm.u1Accessed = 1;
1970# endif
1971 pPdeSrc->b.u1Accessed = 1;
1972
1973 /*
1974 * Only write protection page faults are relevant here.
1975 */
1976 if (fWriteFault)
1977 {
1978 /* Mark guest page directory as dirty (BIG page only). */
1979 pPdeSrc->b.u1Dirty = 1;
1980
1981 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
1982 {
1983 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1984
1985 Assert(pPdeSrc->b.u1Write);
1986
1987 pPdeDst->n.u1Write = 1;
1988 pPdeDst->n.u1Accessed = 1;
1989 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1990 PGM_INVL_BIG_PG(GCPtrPage);
1991 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1992 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
1993 }
1994 }
1995 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1996 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
1997 }
1998 /* else: 4KB page table */
1999
2000 /*
2001 * Map the guest page table.
2002 */
2003 PGSTPT pPTSrc;
2004 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2005 if (VBOX_SUCCESS(rc))
2006 {
2007 /*
2008 * Real page fault?
2009 */
2010 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2011 const GSTPTE PteSrc = *pPteSrc;
2012 if ( !PteSrc.n.u1Present
2013# if PGM_WITH_NX(PGM_GST_TYPE)
2014 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
2015# endif
2016 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
2017 || (fUserLevelFault && !PteSrc.n.u1User)
2018 )
2019 {
2020# ifdef IN_GC
2021 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
2022# endif
2023 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2024 LogFlow(("CheckPageFault: real page fault at %VGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2025
2026 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2027 * See the 2nd case above as well.
2028 */
2029 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2030 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2031
2032 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2033 return VINF_EM_RAW_GUEST_TRAP;
2034 }
2035 LogFlow(("CheckPageFault: page fault at %VGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2036
2037 /*
2038 * Set the accessed bits in the page directory and the page table.
2039 */
2040# if PGM_GST_TYPE == PGM_TYPE_AMD64
2041 pPml4eSrc->n.u1Accessed = 1;
2042 pPdpeSrc->lm.u1Accessed = 1;
2043# endif
2044 pPdeSrc->n.u1Accessed = 1;
2045 pPteSrc->n.u1Accessed = 1;
2046
2047 /*
2048 * Only write protection page faults are relevant here.
2049 */
2050 if (fWriteFault)
2051 {
2052 /* Write access, so mark guest entry as dirty. */
2053# if defined(IN_GC) && defined(VBOX_WITH_STATISTICS)
2054 if (!pPteSrc->n.u1Dirty)
2055 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtiedPage);
2056 else
2057 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageAlreadyDirty);
2058# endif
2059
2060 pPteSrc->n.u1Dirty = 1;
2061
2062 if (pPdeDst->n.u1Present)
2063 {
2064 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2065 * Our individual shadow handlers will provide more information and force a fatal exit.
2066 */
2067 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2068 {
2069 LogRel(("CheckPageFault: write to hypervisor region %VGv\n", GCPtrPage));
2070 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2071 return VINF_SUCCESS;
2072 }
2073
2074 /*
2075 * Map shadow page table.
2076 */
2077 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2078 if (pShwPage)
2079 {
2080 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2081 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2082 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
2083 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
2084 {
2085 LogFlow(("DIRTY page trap addr=%VGv\n", GCPtrPage));
2086# ifdef VBOX_STRICT
2087 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2088 if (pPage)
2089 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
2090 ("Unexpected dirty bit tracking on monitored page %VGv (phys %VGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
2091# endif
2092 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
2093
2094 Assert(pPteSrc->n.u1Write);
2095
2096 pPteDst->n.u1Write = 1;
2097 pPteDst->n.u1Dirty = 1;
2098 pPteDst->n.u1Accessed = 1;
2099 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2100 PGM_INVL_PG(GCPtrPage);
2101
2102 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2103 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2104 }
2105 }
2106 else
2107 AssertMsgFailed(("pgmPoolGetPageByHCPhys %VGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2108 }
2109 }
2110/** @todo Optimize accessed bit emulation? */
2111# ifdef VBOX_STRICT
2112 /*
2113 * Sanity check.
2114 */
2115 else if ( !pPteSrc->n.u1Dirty
2116 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2117 && pPdeDst->n.u1Present)
2118 {
2119 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2120 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2121 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2122 if ( pPteDst->n.u1Present
2123 && pPteDst->n.u1Write)
2124 LogFlow(("Writable present page %VGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2125 }
2126# endif /* VBOX_STRICT */
2127 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2128 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2129 }
2130 AssertRC(rc);
2131 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2132 return rc;
2133
2134
2135UpperLevelPageFault:
2136 /* Pagefault detected while checking the PML4E, PDPE or PDE.
2137 * Single exit handler to get rid of duplicate code paths.
2138 */
2139# ifdef IN_GC
2140 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
2141# endif
2142 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
2143 LogFlow(("CheckPageFault: real page fault at %VGv (%d)\n", GCPtrPage, uPageFaultLevel));
2144
2145 if (
2146# if PGM_GST_TYPE == PGM_TYPE_AMD64
2147 pPml4eSrc->n.u1Present &&
2148# endif
2149# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2150 pPdpeSrc->n.u1Present &&
2151# endif
2152 pPdeSrc->n.u1Present)
2153 {
2154 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2155 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2156 {
2157 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2158 }
2159 else
2160 {
2161 /*
2162 * Map the guest page table.
2163 */
2164 PGSTPT pPTSrc;
2165 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2166 if (VBOX_SUCCESS(rc))
2167 {
2168 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2169 const GSTPTE PteSrc = *pPteSrc;
2170 if (pPteSrc->n.u1Present)
2171 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2172 }
2173 AssertRC(rc);
2174 }
2175 }
2176 return VINF_EM_RAW_GUEST_TRAP;
2177}
2178
2179#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
2180
2181
2182/**
2183 * Sync a shadow page table.
2184 *
2185 * The shadow page table is not present. This includes the case where
2186 * there is a conflict with a mapping.
2187 *
2188 * @returns VBox status code.
2189 * @param pVM VM handle.
2190 * @param iPD Page directory index.
2191 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2192 * Assume this is a temporary mapping.
2193 * @param GCPtrPage GC Pointer of the page that caused the fault
2194 */
2195PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage)
2196{
2197 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2198 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPtPD[iPDSrc]);
2199 LogFlow(("SyncPT: GCPtrPage=%VGv\n", GCPtrPage));
2200
2201#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2202 || PGM_GST_TYPE == PGM_TYPE_PAE \
2203 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2204 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2205
2206 int rc = VINF_SUCCESS;
2207
2208 /*
2209 * Validate input a little bit.
2210 */
2211 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%VGv\n", iPDSrc, GCPtrPage));
2212# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2213 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2214 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2215# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2216 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* 0 - 2047 */
2217 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT);
2218 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
2219 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2220# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2221 const unsigned iPml4e = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
2222 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2223 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2224 PX86PDPAE pPDDst;
2225 PX86PDPT pPdptDst;
2226 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2227 if (rc != VINF_SUCCESS)
2228 {
2229 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("Unexpected rc=%Vrc\n", rc));
2230 return rc;
2231 }
2232 Assert(pPDDst);
2233# endif
2234
2235 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2236 SHWPDE PdeDst = *pPdeDst;
2237
2238# if PGM_GST_TYPE == PGM_TYPE_AMD64
2239 /* Fetch the pgm pool shadow descriptor. */
2240 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & X86_PDPE_PG_MASK);
2241 Assert(pShwPde);
2242# endif
2243
2244# ifndef PGM_WITHOUT_MAPPINGS
2245 /*
2246 * Check for conflicts.
2247 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2248 * HC: Simply resolve the conflict.
2249 */
2250 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2251 {
2252 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2253# ifndef IN_RING3
2254 Log(("SyncPT: Conflict at %VGv\n", GCPtrPage));
2255 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2256 return VERR_ADDRESS_CONFLICT;
2257# else
2258 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2259 Assert(pMapping);
2260# if PGM_GST_TYPE == PGM_TYPE_32BIT
2261 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2262# elif PGM_GST_TYPE == PGM_TYPE_PAE
2263 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2264# else
2265 AssertFailed(); /* can't happen for amd64 */
2266# endif
2267 if (VBOX_FAILURE(rc))
2268 {
2269 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2270 return rc;
2271 }
2272 PdeDst = *pPdeDst;
2273# endif
2274 }
2275# else /* PGM_WITHOUT_MAPPINGS */
2276 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2277# endif /* PGM_WITHOUT_MAPPINGS */
2278 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2279
2280 /*
2281 * Sync page directory entry.
2282 */
2283 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2284 if (PdeSrc.n.u1Present)
2285 {
2286 /*
2287 * Allocate & map the page table.
2288 */
2289 PSHWPT pPTDst;
2290# if PGM_GST_TYPE == PGM_TYPE_AMD64
2291 const bool fPageTable = !PdeSrc.b.u1Size;
2292# else
2293 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2294# endif
2295 PPGMPOOLPAGE pShwPage;
2296 RTGCPHYS GCPhys;
2297 if (fPageTable)
2298 {
2299 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2300# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2301 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2302 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2303# endif
2304# if PGM_GST_TYPE == PGM_TYPE_AMD64
2305 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2306# else
2307 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2308# endif
2309 }
2310 else
2311 {
2312 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
2313# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2314 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2315 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2316# endif
2317# if PGM_GST_TYPE == PGM_TYPE_AMD64
2318 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, pShwPde->idx, iPDDst, &pShwPage);
2319# else
2320 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2321# endif
2322 }
2323 if (rc == VINF_SUCCESS)
2324 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2325 else if (rc == VINF_PGM_CACHED_PAGE)
2326 {
2327 /*
2328 * The PT was cached, just hook it up.
2329 */
2330 if (fPageTable)
2331 PdeDst.u = pShwPage->Core.Key
2332 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2333 else
2334 {
2335 PdeDst.u = pShwPage->Core.Key
2336 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2337 /* (see explanation and assumptions further down.) */
2338 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2339 {
2340 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2341 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2342 PdeDst.b.u1Write = 0;
2343 }
2344 }
2345 *pPdeDst = PdeDst;
2346 return VINF_SUCCESS;
2347 }
2348 else if (rc == VERR_PGM_POOL_FLUSHED)
2349 return VINF_PGM_SYNC_CR3;
2350 else
2351 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2352 PdeDst.u &= X86_PDE_AVL_MASK;
2353 PdeDst.u |= pShwPage->Core.Key;
2354
2355 /*
2356 * Page directory has been accessed (this is a fault situation, remember).
2357 */
2358 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2359 if (fPageTable)
2360 {
2361 /*
2362 * Page table - 4KB.
2363 *
2364 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2365 */
2366 Log2(("SyncPT: 4K %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2367 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2368 PGSTPT pPTSrc;
2369 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2370 if (VBOX_SUCCESS(rc))
2371 {
2372 /*
2373 * Start by syncing the page directory entry so CSAM's TLB trick works.
2374 */
2375 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2376 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2377 *pPdeDst = PdeDst;
2378
2379 /*
2380 * Directory/page user or supervisor privilege: (same goes for read/write)
2381 *
2382 * Directory Page Combined
2383 * U/S U/S U/S
2384 * 0 0 0
2385 * 0 1 0
2386 * 1 0 0
2387 * 1 1 1
2388 *
2389 * Simple AND operation. Table listed for completeness.
2390 *
2391 */
2392 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4k));
2393# ifdef PGM_SYNC_N_PAGES
2394 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2395 unsigned iPTDst = iPTBase;
2396 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
2397 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2398 iPTDst = 0;
2399 else
2400 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2401# else /* !PGM_SYNC_N_PAGES */
2402 unsigned iPTDst = 0;
2403 const unsigned iPTDstEnd = ELEMENTS(pPTDst->a);
2404# endif /* !PGM_SYNC_N_PAGES */
2405# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2406 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2407 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2408# else
2409 const unsigned offPTSrc = 0;
2410# endif
2411 for (; iPTDst < iPTDstEnd; iPTDst++)
2412 {
2413 const unsigned iPTSrc = iPTDst + offPTSrc;
2414 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2415
2416 if (PteSrc.n.u1Present) /* we've already cleared it above */
2417 {
2418# ifndef IN_RING0
2419 /*
2420 * Assuming kernel code will be marked as supervisor - and not as user level
2421 * and executed using a conforming code selector - And marked as readonly.
2422 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2423 */
2424 PPGMPAGE pPage;
2425 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2426 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2427 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2428 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2429 )
2430# endif
2431 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2432 Log2(("SyncPT: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%VGp\n",
2433 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2434 PteSrc.n.u1Present,
2435 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2436 PteSrc.n.u1User & PdeSrc.n.u1User,
2437 (uint64_t)PteSrc.u,
2438 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2439 (PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)));
2440 }
2441 } /* for PTEs */
2442 }
2443 }
2444 else
2445 {
2446 /*
2447 * Big page - 2/4MB.
2448 *
2449 * We'll walk the ram range list in parallel and optimize lookups.
2450 * We will only sync on shadow page table at a time.
2451 */
2452 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4M));
2453
2454 /**
2455 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2456 */
2457
2458 /*
2459 * Start by syncing the page directory entry.
2460 */
2461 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2462 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2463
2464 /*
2465 * If the page is not flagged as dirty and is writable, then make it read-only
2466 * at PD level, so we can set the dirty bit when the page is modified.
2467 *
2468 * ASSUMES that page access handlers are implemented on page table entry level.
2469 * Thus we will first catch the dirty access and set PDE.D and restart. If
2470 * there is an access handler, we'll trap again and let it work on the problem.
2471 */
2472 /** @todo move the above stuff to a section in the PGM documentation. */
2473 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2474 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2475 {
2476 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2477 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2478 PdeDst.b.u1Write = 0;
2479 }
2480 *pPdeDst = PdeDst;
2481
2482 /*
2483 * Fill the shadow page table.
2484 */
2485 /* Get address and flags from the source PDE. */
2486 SHWPTE PteDstBase;
2487 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2488
2489 /* Loop thru the entries in the shadow PT. */
2490 const RTGCUINTPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2491 Log2(("SyncPT: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%VGv GCPhys=%VGp %s\n",
2492 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2493 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2494 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
2495 unsigned iPTDst = 0;
2496 while (iPTDst < ELEMENTS(pPTDst->a))
2497 {
2498 /* Advance ram range list. */
2499 while (pRam && GCPhys > pRam->GCPhysLast)
2500 pRam = CTXALLSUFF(pRam->pNext);
2501 if (pRam && GCPhys >= pRam->GCPhys)
2502 {
2503 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2504 do
2505 {
2506 /* Make shadow PTE. */
2507 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2508 SHWPTE PteDst;
2509
2510 /* Make sure the RAM has already been allocated. */
2511 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2512 {
2513 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2514 {
2515# ifdef IN_RING3
2516 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2517# else
2518 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2519# endif
2520 if (rc != VINF_SUCCESS)
2521 return rc;
2522 }
2523 }
2524
2525 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2526 {
2527 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2528 {
2529 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2530 PteDst.n.u1Write = 0;
2531 }
2532 else
2533 PteDst.u = 0;
2534 }
2535# ifndef IN_RING0
2536 /*
2537 * Assuming kernel code will be marked as supervisor and not as user level and executed
2538 * using a conforming code selector. Don't check for readonly, as that implies the whole
2539 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2540 */
2541 else if ( !PdeSrc.n.u1User
2542 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2543 PteDst.u = 0;
2544# endif
2545 else
2546 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2547# ifdef PGMPOOL_WITH_USER_TRACKING
2548 if (PteDst.n.u1Present)
2549 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
2550# endif
2551 /* commit it */
2552 pPTDst->a[iPTDst] = PteDst;
2553 Log4(("SyncPT: BIG %VGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2554 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2555 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2556
2557 /* advance */
2558 GCPhys += PAGE_SIZE;
2559 iHCPage++;
2560 iPTDst++;
2561 } while ( iPTDst < ELEMENTS(pPTDst->a)
2562 && GCPhys <= pRam->GCPhysLast);
2563 }
2564 else if (pRam)
2565 {
2566 Log(("Invalid pages at %VGp\n", GCPhys));
2567 do
2568 {
2569 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2570 GCPhys += PAGE_SIZE;
2571 iPTDst++;
2572 } while ( iPTDst < ELEMENTS(pPTDst->a)
2573 && GCPhys < pRam->GCPhys);
2574 }
2575 else
2576 {
2577 Log(("Invalid pages at %VGp (2)\n", GCPhys));
2578 for ( ; iPTDst < ELEMENTS(pPTDst->a); iPTDst++)
2579 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2580 }
2581 } /* while more PTEs */
2582 } /* 4KB / 4MB */
2583 }
2584 else
2585 AssertRelease(!PdeDst.n.u1Present);
2586
2587 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2588# ifdef IN_GC
2589 if (VBOX_FAILURE(rc))
2590 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPTFailed));
2591# endif
2592 return rc;
2593
2594#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2595 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2596
2597 int rc = VINF_SUCCESS;
2598
2599 /*
2600 * Validate input a little bit.
2601 */
2602# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2603 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2604# else
2605 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2606# endif
2607 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2608 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2609 SHWPDE PdeDst = *pPdeDst;
2610
2611 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2612 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2613
2614 GSTPDE PdeSrc;
2615 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2616 PdeSrc.n.u1Present = 1;
2617 PdeSrc.n.u1Write = 1;
2618 PdeSrc.n.u1Accessed = 1;
2619 PdeSrc.n.u1User = 1;
2620
2621 /*
2622 * Allocate & map the page table.
2623 */
2624 PSHWPT pPTDst;
2625 PPGMPOOLPAGE pShwPage;
2626 RTGCPHYS GCPhys;
2627
2628 /* Virtual address = physical address */
2629 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK_32;
2630 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2631
2632 if ( rc == VINF_SUCCESS
2633 || rc == VINF_PGM_CACHED_PAGE)
2634 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2635 else
2636 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2637
2638 PdeDst.u &= X86_PDE_AVL_MASK;
2639 PdeDst.u |= pShwPage->Core.Key;
2640 PdeDst.n.u1Present = 1;
2641 PdeDst.n.u1Write = 1;
2642 PdeDst.n.u1User = 1;
2643 *pPdeDst = PdeDst;
2644
2645 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2646 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2647 return rc;
2648
2649#else
2650 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2651 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2652 return VERR_INTERNAL_ERROR;
2653#endif
2654}
2655
2656
2657
2658/**
2659 * Prefetch a page/set of pages.
2660 *
2661 * Typically used to sync commonly used pages before entering raw mode
2662 * after a CR3 reload.
2663 *
2664 * @returns VBox status code.
2665 * @param pVM VM handle.
2666 * @param GCPtrPage Page to invalidate.
2667 */
2668PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage)
2669{
2670#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2671 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2672 /*
2673 * Check that all Guest levels thru the PDE are present, getting the
2674 * PD and PDE in the processes.
2675 */
2676 int rc = VINF_SUCCESS;
2677# if PGM_WITH_PAGING(PGM_GST_TYPE)
2678# if PGM_GST_TYPE == PGM_TYPE_32BIT
2679 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2680 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2681# elif PGM_GST_TYPE == PGM_TYPE_PAE
2682 unsigned iPDSrc;
2683 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2684 if (!pPDSrc)
2685 return VINF_SUCCESS; /* not present */
2686# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2687 unsigned iPDSrc;
2688 PX86PML4E pPml4eSrc;
2689 X86PDPE PdpeSrc;
2690 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2691 if (!pPDSrc)
2692 return VINF_SUCCESS; /* not present */
2693# endif
2694 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2695# else
2696 PGSTPD pPDSrc = NULL;
2697 const unsigned iPDSrc = 0;
2698 GSTPDE PdeSrc;
2699
2700 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2701 PdeSrc.n.u1Present = 1;
2702 PdeSrc.n.u1Write = 1;
2703 PdeSrc.n.u1Accessed = 1;
2704 PdeSrc.n.u1User = 1;
2705# endif
2706
2707 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2708 {
2709# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2710 const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2711# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2712 const X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2713# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2714 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2715 PX86PDPAE pPDDst;
2716 X86PDEPAE PdeDst;
2717
2718# if PGM_GST_TYPE == PGM_TYPE_PROT
2719 /* AMD-V nested paging */
2720 X86PML4E Pml4eSrc;
2721 X86PDPE PdpeSrc;
2722 PX86PML4E pPml4eSrc = &Pml4eSrc;
2723
2724 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2725 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2726 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2727# endif
2728
2729 int rc = PGMShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2730 if (rc != VINF_SUCCESS)
2731 {
2732 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("Unexpected rc=%Vrc\n", rc));
2733 return rc;
2734 }
2735 Assert(pPDDst);
2736 PdeDst = pPDDst->a[iPDDst];
2737# endif
2738 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2739 {
2740 if (!PdeDst.n.u1Present)
2741 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2742 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2743 else
2744 {
2745 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2746 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2747 * makes no sense to prefetch more than one page.
2748 */
2749 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2750 if (VBOX_SUCCESS(rc))
2751 rc = VINF_SUCCESS;
2752 }
2753 }
2754 }
2755 return rc;
2756#elif PGM_SHW_TYPE == PGM_TYPE_NESTED
2757 return VINF_SUCCESS; /* ignore */
2758#endif
2759}
2760
2761
2762
2763
2764/**
2765 * Syncs a page during a PGMVerifyAccess() call.
2766 *
2767 * @returns VBox status code (informational included).
2768 * @param GCPtrPage The address of the page to sync.
2769 * @param fPage The effective guest page flags.
2770 * @param uErr The trap error code.
2771 */
2772PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fPage, unsigned uErr)
2773{
2774 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%VGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
2775
2776 Assert(!HWACCMIsNestedPagingActive(pVM));
2777#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
2778 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2779
2780# ifndef IN_RING0
2781 if (!(fPage & X86_PTE_US))
2782 {
2783 /*
2784 * Mark this page as safe.
2785 */
2786 /** @todo not correct for pages that contain both code and data!! */
2787 Log(("CSAMMarkPage %VGv; scanned=%d\n", GCPtrPage, true));
2788 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
2789 }
2790# endif
2791 /*
2792 * Get guest PD and index.
2793 */
2794
2795# if PGM_WITH_PAGING(PGM_GST_TYPE)
2796# if PGM_GST_TYPE == PGM_TYPE_32BIT
2797 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2798 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2799# elif PGM_GST_TYPE == PGM_TYPE_PAE
2800 unsigned iPDSrc;
2801 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2802
2803 if (pPDSrc)
2804 {
2805 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2806 return VINF_EM_RAW_GUEST_TRAP;
2807 }
2808# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2809 unsigned iPDSrc;
2810 PX86PML4E pPml4eSrc;
2811 X86PDPE PdpeSrc;
2812 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2813 if (!pPDSrc)
2814 {
2815 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2816 return VINF_EM_RAW_GUEST_TRAP;
2817 }
2818# endif
2819# else
2820 PGSTPD pPDSrc = NULL;
2821 const unsigned iPDSrc = 0;
2822# endif
2823 int rc = VINF_SUCCESS;
2824
2825 /*
2826 * First check if the shadow pd is present.
2827 */
2828# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2829 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2830# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2831 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2832# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2833 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2834 PX86PDPAE pPDDst;
2835 PX86PDEPAE pPdeDst;
2836
2837# if PGM_GST_TYPE == PGM_TYPE_PROT
2838 /* AMD-V nested paging */
2839 X86PML4E Pml4eSrc;
2840 X86PDPE PdpeSrc;
2841 PX86PML4E pPml4eSrc = &Pml4eSrc;
2842
2843 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2844 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2845 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2846# endif
2847
2848 rc = PGMShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2849 if (rc != VINF_SUCCESS)
2850 {
2851 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("Unexpected rc=%Vrc\n", rc));
2852 return rc;
2853 }
2854 Assert(pPDDst);
2855 pPdeDst = &pPDDst->a[iPDDst];
2856# endif
2857 if (!pPdeDst->n.u1Present)
2858 {
2859 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2860 AssertRC(rc);
2861 if (rc != VINF_SUCCESS)
2862 return rc;
2863 }
2864
2865# if PGM_WITH_PAGING(PGM_GST_TYPE)
2866 /* Check for dirty bit fault */
2867 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
2868 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
2869 Log(("PGMVerifyAccess: success (dirty)\n"));
2870 else
2871 {
2872 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2873#else
2874 {
2875 GSTPDE PdeSrc;
2876 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2877 PdeSrc.n.u1Present = 1;
2878 PdeSrc.n.u1Write = 1;
2879 PdeSrc.n.u1Accessed = 1;
2880 PdeSrc.n.u1User = 1;
2881
2882#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
2883 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
2884 if (uErr & X86_TRAP_PF_US)
2885 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
2886 else /* supervisor */
2887 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
2888
2889 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2890 if (VBOX_SUCCESS(rc))
2891 {
2892 /* Page was successfully synced */
2893 Log2(("PGMVerifyAccess: success (sync)\n"));
2894 rc = VINF_SUCCESS;
2895 }
2896 else
2897 {
2898 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", GCPtrPage, rc));
2899 return VINF_EM_RAW_GUEST_TRAP;
2900 }
2901 }
2902 return rc;
2903
2904#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2905
2906 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2907 return VERR_INTERNAL_ERROR;
2908#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2909}
2910
2911
2912#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
2913# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
2914/**
2915 * Figures out which kind of shadow page this guest PDE warrants.
2916 *
2917 * @returns Shadow page kind.
2918 * @param pPdeSrc The guest PDE in question.
2919 * @param cr4 The current guest cr4 value.
2920 */
2921DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
2922{
2923# if PMG_GST_TYPE == PGM_TYPE_AMD64
2924 if (!pPdeSrc->n.u1Size)
2925# else
2926 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
2927# endif
2928 return BTH_PGMPOOLKIND_PT_FOR_PT;
2929 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
2930 //{
2931 // case 0:
2932 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
2933 // case X86_PDE4M_RW:
2934 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
2935 // case X86_PDE4M_US:
2936 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
2937 // case X86_PDE4M_RW | X86_PDE4M_US:
2938 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
2939# if 0
2940 // case X86_PDE4M_PAE_NX:
2941 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
2942 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
2943 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
2944 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
2945 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
2946 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
2947 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
2948# endif
2949 return BTH_PGMPOOLKIND_PT_FOR_BIG;
2950 //}
2951}
2952# endif
2953#endif
2954
2955#undef MY_STAM_COUNTER_INC
2956#define MY_STAM_COUNTER_INC(a) do { } while (0)
2957
2958
2959/**
2960 * Syncs the paging hierarchy starting at CR3.
2961 *
2962 * @returns VBox status code, no specials.
2963 * @param pVM The virtual machine.
2964 * @param cr0 Guest context CR0 register
2965 * @param cr3 Guest context CR3 register
2966 * @param cr4 Guest context CR4 register
2967 * @param fGlobal Including global page directories or not
2968 */
2969PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
2970{
2971#if PGM_SHW_TYPE == PGM_TYPE_NESTED
2972 /** @todo check if this is really necessary */
2973 HWACCMFlushTLB(pVM);
2974 return VINF_SUCCESS;
2975
2976#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
2977 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
2978 fGlobal = true; /* Change this CR3 reload to be a global one. */
2979
2980 /*
2981 * Update page access handlers.
2982 * The virtual are always flushed, while the physical are only on demand.
2983 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
2984 * have to look into that later because it will have a bad influence on the performance.
2985 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
2986 * bird: Yes, but that won't work for aliases.
2987 */
2988 /** @todo this MUST go away. See #1557. */
2989 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2990 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
2991 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2992
2993# ifdef PGMPOOL_WITH_MONITORING
2994 /*
2995 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2996 * Occationally we will have to clear all the shadow page tables because we wanted
2997 * to monitor a page which was mapped by too many shadowed page tables. This operation
2998 * sometimes refered to as a 'lightweight flush'.
2999 */
3000 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL))
3001 pgmPoolMonitorModifiedClearAll(pVM);
3002 else
3003 {
3004# ifdef IN_RING3
3005 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
3006 pgmPoolClearAll(pVM);
3007# else
3008 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
3009 return VINF_PGM_SYNC_CR3;
3010# endif
3011 }
3012# endif
3013
3014 Assert(fGlobal || (cr4 & X86_CR4_PGE));
3015 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTXMID(Stat,SyncCR3Global) : &pVM->pgm.s.CTXMID(Stat,SyncCR3NotGlobal));
3016
3017# if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3018# if PGM_GST_TYPE == PGM_TYPE_AMD64
3019 bool fBigPagesSupported = true;
3020# else
3021 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3022# endif
3023
3024 /*
3025 * Get page directory addresses.
3026 */
3027# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3028 PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
3029# else /* PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64*/
3030# if PGM_GST_TYPE == PGM_TYPE_32BIT
3031 PX86PDEPAE pPDEDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[0];
3032# endif
3033# endif
3034
3035# if PGM_GST_TYPE == PGM_TYPE_32BIT
3036 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
3037 Assert(pPDSrc);
3038# ifndef IN_GC
3039 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3040# endif
3041# endif
3042
3043 /*
3044 * Iterate the page directory.
3045 */
3046 PPGMMAPPING pMapping;
3047 unsigned iPdNoMapping;
3048 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
3049 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
3050
3051 /* Only check mappings if they are supposed to be put into the shadow page table. */
3052 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
3053 {
3054 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
3055 iPdNoMapping = (pMapping) ? (pMapping->GCPtr >> GST_PD_SHIFT) : ~0U;
3056 }
3057 else
3058 {
3059 pMapping = 0;
3060 iPdNoMapping = ~0U;
3061 }
3062# if PGM_GST_TYPE == PGM_TYPE_AMD64
3063 for (uint64_t iPml4e = 0; iPml4e < X86_PG_PAE_ENTRIES; iPml4e++)
3064 {
3065 PPGMPOOLPAGE pShwPdpt = NULL;
3066 PX86PML4E pPml4eSrc, pPml4eDst;
3067 RTGCPHYS GCPhysPdptSrc;
3068
3069 pPml4eSrc = &pVM->pgm.s.CTXSUFF(pGstPaePML4)->a[iPml4e];
3070 pPml4eDst = &pVM->pgm.s.CTXMID(p,PaePML4)->a[iPml4e];
3071
3072 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3073 if (!pPml4eDst->n.u1Present)
3074 continue;
3075 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3076
3077 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3078
3079 /* Anything significant changed? */
3080 if ( pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present
3081 || GCPhysPdptSrc != pShwPdpt->GCPhys)
3082 {
3083 /* Free it. */
3084 LogFlow(("SyncCR3: Out-of-sync PML4E (GCPhys) GCPtr=%VGv %VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
3085 (uint64_t)iPml4e << X86_PML4_SHIFT, pShwPdpt->GCPhys, GCPhysPdptSrc, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
3086 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pShwAmd64CR3->idx, iPml4e);
3087 pPml4eDst->u = 0;
3088 continue;
3089 }
3090 /* Force an attribute sync. */
3091 pPml4eDst->n.u1User = pPml4eSrc->n.u1User;
3092 pPml4eDst->n.u1Write = pPml4eSrc->n.u1Write;
3093 pPml4eDst->n.u1NoExecute = pPml4eSrc->n.u1NoExecute;
3094
3095# else
3096 {
3097# endif
3098# if PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3099 for (uint64_t iPdpte = 0; iPdpte < GST_PDPE_ENTRIES; iPdpte++)
3100 {
3101 unsigned iPDSrc;
3102# if PGM_GST_TYPE == PGM_TYPE_PAE
3103 PX86PDPAE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
3104 PX86PDEPAE pPDEDst = &pPDPAE->a[iPdpte * X86_PG_PAE_ENTRIES];
3105 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPdpte << X86_PDPT_SHIFT, &iPDSrc);
3106 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
3107 X86PDPE PdpeSrc = CTXSUFF(pVM->pgm.s.pGstPaePDPT)->a[iPdpte];
3108
3109 if (pPDSrc == NULL)
3110 {
3111 /* PDPE not present */
3112 if (pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present)
3113 {
3114 LogFlow(("SyncCR3: guest PDPE %d not present; clear shw pdpe\n", iPdpte));
3115 /* for each page directory entry */
3116 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
3117 {
3118 if ( pPDEDst[iPD].n.u1Present
3119 && !(pPDEDst[iPD].u & PGM_PDFLAGS_MAPPING))
3120 {
3121 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst[iPD].u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdpte * X86_PG_PAE_ENTRIES + iPD);
3122 pPDEDst[iPD].u = 0;
3123 }
3124 }
3125 }
3126 if (!(pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].u & PGM_PLXFLAGS_MAPPING))
3127 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present = 0;
3128 continue;
3129 }
3130# else /* PGM_GST_TYPE != PGM_TYPE_PAE */
3131 PPGMPOOLPAGE pShwPde = NULL;
3132 RTGCPHYS GCPhysPdeSrc;
3133 PX86PDPE pPdpeDst;
3134 PX86PML4E pPml4eSrc;
3135 X86PDPE PdpeSrc;
3136 PX86PDPT pPdptDst;
3137 PX86PDPAE pPDDst;
3138 PX86PDEPAE pPDEDst;
3139 RTGCUINTPTR GCPtr = (iPml4e << X86_PML4_SHIFT) || (iPdpte << X86_PDPT_SHIFT);
3140 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3141
3142 int rc = PGMShwGetLongModePDPtr(pVM, GCPtr, &pPdptDst, &pPDDst);
3143 if (rc != VINF_SUCCESS)
3144 {
3145 if (rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT)
3146 break; /* next PML4E */
3147
3148 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
3149 continue; /* next PDPTE */
3150 }
3151 Assert(pPDDst);
3152 pPDEDst = &pPDDst->a[0];
3153 Assert(iPDSrc == 0);
3154
3155 pPdpeDst = &pPdptDst->a[iPdpte];
3156
3157 /* Fetch the pgm pool shadow descriptor if the shadow pdpte is present. */
3158 if (!pPdpeDst->n.u1Present)
3159 continue; /* next PDPTE */
3160
3161 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3162 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3163
3164 /* Anything significant changed? */
3165 if ( PdpeSrc.n.u1Present != pPdpeDst->n.u1Present
3166 || GCPhysPdeSrc != pShwPde->GCPhys)
3167 {
3168 /* Free it. */
3169 LogFlow(("SyncCR3: Out-of-sync PDPE (GCPhys) GCPtr=%VGv %VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
3170 ((uint64_t)iPml4e << X86_PML4_SHIFT) + ((uint64_t)iPdpte << X86_PDPT_SHIFT), pShwPde->GCPhys, GCPhysPdeSrc, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
3171
3172 /* Mark it as not present if there's no hypervisor mapping present. (bit flipped at the top of Trap0eHandler) */
3173 Assert(!(pPdpeDst->u & PGM_PLXFLAGS_MAPPING));
3174 pgmPoolFreeByPage(pPool, pShwPde, pShwPde->idx, iPdpte);
3175 pPdpeDst->u = 0;
3176 continue; /* next guest PDPTE */
3177 }
3178 /* Force an attribute sync. */
3179 pPdpeDst->lm.u1User = PdpeSrc.lm.u1User;
3180 pPdpeDst->lm.u1Write = PdpeSrc.lm.u1Write;
3181 pPdpeDst->lm.u1NoExecute = PdpeSrc.lm.u1NoExecute;
3182# endif /* PGM_GST_TYPE != PGM_TYPE_PAE */
3183
3184# else /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
3185 {
3186# endif /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
3187 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
3188 {
3189# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3190 Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
3191# elif PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3192 AssertMsg(&pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512] == pPDEDst, ("%p vs %p\n", &pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512], pPDEDst));
3193# endif
3194 register GSTPDE PdeSrc = pPDSrc->a[iPD];
3195 if ( PdeSrc.n.u1Present
3196 && (PdeSrc.n.u1User || fRawR0Enabled))
3197 {
3198# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3199 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3200 && !defined(PGM_WITHOUT_MAPPINGS)
3201
3202 /*
3203 * Check for conflicts with GC mappings.
3204 */
3205# if PGM_GST_TYPE == PGM_TYPE_PAE
3206 if (iPD + iPdpte * X86_PG_PAE_ENTRIES == iPdNoMapping)
3207# else
3208 if (iPD == iPdNoMapping)
3209# endif
3210 {
3211 if (pVM->pgm.s.fMappingsFixed)
3212 {
3213 /* It's fixed, just skip the mapping. */
3214 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3215 iPD += cPTs - 1;
3216 pPDEDst += cPTs + (PGM_GST_TYPE != PGM_SHW_TYPE) * cPTs; /* Only applies to the pae shadow and 32 bits guest case */
3217 pMapping = pMapping->CTXALLSUFF(pNext);
3218 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3219 continue;
3220 }
3221# ifdef IN_RING3
3222# if PGM_GST_TYPE == PGM_TYPE_32BIT
3223 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3224# elif PGM_GST_TYPE == PGM_TYPE_PAE
3225 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpte << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3226# endif
3227 if (VBOX_FAILURE(rc))
3228 return rc;
3229
3230 /*
3231 * Update iPdNoMapping and pMapping.
3232 */
3233 pMapping = pVM->pgm.s.pMappingsR3;
3234 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3235 pMapping = pMapping->pNextR3;
3236 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3237# else
3238 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3239 return VINF_PGM_SYNC_CR3;
3240# endif
3241 }
3242# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3243 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3244# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3245 /*
3246 * Sync page directory entry.
3247 *
3248 * The current approach is to allocated the page table but to set
3249 * the entry to not-present and postpone the page table synching till
3250 * it's actually used.
3251 */
3252# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3253 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3254# elif PGM_GST_TYPE == PGM_TYPE_PAE
3255 const unsigned iPdShw = iPD + iPdpte * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3256# else
3257 const unsigned iPdShw = iPD; NOREF(iPdShw);
3258# endif
3259 {
3260 SHWPDE PdeDst = *pPDEDst;
3261 if (PdeDst.n.u1Present)
3262 {
3263 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
3264 RTGCPHYS GCPhys;
3265 if ( !PdeSrc.b.u1Size
3266 || !fBigPagesSupported)
3267 {
3268 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
3269# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3270 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3271 GCPhys |= i * (PAGE_SIZE / 2);
3272# endif
3273 }
3274 else
3275 {
3276 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
3277# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3278 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3279 GCPhys |= i * X86_PAGE_2M_SIZE;
3280# endif
3281 }
3282
3283 if ( pShwPage->GCPhys == GCPhys
3284 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
3285 && ( pShwPage->fCached
3286 || ( !fGlobal
3287 && ( false
3288# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
3289 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3290# if PGM_GST_TYPE == PGM_TYPE_AMD64
3291 && (cr4 & X86_CR4_PGE)) /* global 2/4MB page. */
3292# else
3293 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
3294# endif
3295 || ( !pShwPage->fSeenNonGlobal
3296 && (cr4 & X86_CR4_PGE))
3297# endif
3298 )
3299 )
3300 )
3301 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
3302 || ( fBigPagesSupported
3303 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
3304 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
3305 )
3306 )
3307 {
3308# ifdef VBOX_WITH_STATISTICS
3309 if ( !fGlobal
3310 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3311# if PGM_GST_TYPE == PGM_TYPE_AMD64
3312 && (cr4 & X86_CR4_PGE)) /* global 2/4MB page. */
3313# else
3314 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
3315# endif
3316 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPD));
3317 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
3318 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPT));
3319 else
3320 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstCacheHit));
3321# endif /* VBOX_WITH_STATISTICS */
3322 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
3323 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
3324 //# ifdef PGMPOOL_WITH_CACHE
3325 // pgmPoolCacheUsed(pPool, pShwPage);
3326 //# endif
3327 }
3328 else
3329 {
3330# if PGM_GST_TYPE == PGM_TYPE_AMD64
3331 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPdShw);
3332# else
3333 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
3334# endif
3335 pPDEDst->u = 0;
3336 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreed));
3337 }
3338 }
3339 else
3340 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstNotPresent));
3341 pPDEDst++;
3342 }
3343 }
3344# if PGM_GST_TYPE == PGM_TYPE_PAE
3345 else if (iPD + iPdpte * X86_PG_PAE_ENTRIES != iPdNoMapping)
3346# else
3347 else if (iPD != iPdNoMapping)
3348# endif
3349 {
3350 /*
3351 * Check if there is any page directory to mark not present here.
3352 */
3353# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3354 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3355# elif PGM_GST_TYPE == PGM_TYPE_PAE
3356 const unsigned iPdShw = iPD + iPdpte * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3357# else
3358 const unsigned iPdShw = iPD; NOREF(iPdShw);
3359# endif
3360 {
3361 if (pPDEDst->n.u1Present)
3362 {
3363# if PGM_GST_TYPE == PGM_TYPE_AMD64
3364 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), pShwPde->idx, iPdShw);
3365# else
3366 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdShw);
3367# endif
3368 pPDEDst->u = 0;
3369 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreedSrcNP));
3370 }
3371 pPDEDst++;
3372 }
3373 }
3374 else
3375 {
3376# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3377 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3378 && !defined(PGM_WITHOUT_MAPPINGS)
3379
3380 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3381
3382 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3383 if (pVM->pgm.s.fMappingsFixed)
3384 {
3385 /* It's fixed, just skip the mapping. */
3386 pMapping = pMapping->CTXALLSUFF(pNext);
3387 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3388 }
3389 else
3390 {
3391 /*
3392 * Check for conflicts for subsequent pagetables
3393 * and advance to the next mapping.
3394 */
3395 iPdNoMapping = ~0U;
3396 unsigned iPT = cPTs;
3397 while (iPT-- > 1)
3398 {
3399 if ( pPDSrc->a[iPD + iPT].n.u1Present
3400 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
3401 {
3402# ifdef IN_RING3
3403# if PGM_GST_TYPE == PGM_TYPE_32BIT
3404 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3405# elif PGM_GST_TYPE == PGM_TYPE_PAE
3406 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpte << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3407# endif
3408 if (VBOX_FAILURE(rc))
3409 return rc;
3410
3411 /*
3412 * Update iPdNoMapping and pMapping.
3413 */
3414 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
3415 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3416 pMapping = pMapping->CTXALLSUFF(pNext);
3417 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3418 break;
3419# else
3420 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3421 return VINF_PGM_SYNC_CR3;
3422# endif
3423 }
3424 }
3425 if (iPdNoMapping == ~0U && pMapping)
3426 {
3427 pMapping = pMapping->CTXALLSUFF(pNext);
3428 if (pMapping)
3429 iPdNoMapping = pMapping->GCPtr >> GST_PD_SHIFT;
3430 }
3431 }
3432
3433 /* advance. */
3434 iPD += cPTs - 1;
3435 pPDEDst += cPTs + (PGM_GST_TYPE != PGM_SHW_TYPE) * cPTs; /* Only applies to the pae shadow and 32 bits guest case */
3436# if PGM_GST_TYPE != PGM_SHW_TYPE
3437 AssertCompile(PGM_GST_TYPE == PGM_TYPE_32BIT && PGM_SHW_TYPE == PGM_TYPE_PAE);
3438# endif
3439# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3440 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3441# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3442 }
3443
3444 } /* for iPD */
3445 } /* for each PDPTE (PAE) */
3446 } /* for each page map level 4 entry (amd64) */
3447 return VINF_SUCCESS;
3448
3449# else /* guest real and protected mode */
3450 return VINF_SUCCESS;
3451# endif
3452#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
3453}
3454
3455
3456
3457
3458#ifdef VBOX_STRICT
3459#ifdef IN_GC
3460# undef AssertMsgFailed
3461# define AssertMsgFailed Log
3462#endif
3463#ifdef IN_RING3
3464# include <VBox/dbgf.h>
3465
3466/**
3467 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3468 *
3469 * @returns VBox status code (VINF_SUCCESS).
3470 * @param pVM The VM handle.
3471 * @param cr3 The root of the hierarchy.
3472 * @param crr The cr4, only PAE and PSE is currently used.
3473 * @param fLongMode Set if long mode, false if not long mode.
3474 * @param cMaxDepth Number of levels to dump.
3475 * @param pHlp Pointer to the output functions.
3476 */
3477__BEGIN_DECLS
3478PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3479__END_DECLS
3480
3481#endif
3482
3483/**
3484 * Checks that the shadow page table is in sync with the guest one.
3485 *
3486 * @returns The number of errors.
3487 * @param pVM The virtual machine.
3488 * @param cr3 Guest context CR3 register
3489 * @param cr4 Guest context CR4 register
3490 * @param GCPtr Where to start. Defaults to 0.
3491 * @param cb How much to check. Defaults to everything.
3492 */
3493PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)
3494{
3495#if PGM_SHW_TYPE == PGM_TYPE_NESTED
3496 return 0;
3497#else
3498 unsigned cErrors = 0;
3499
3500#if PGM_GST_TYPE == PGM_TYPE_PAE
3501 /* @todo currently broken; crashes below somewhere */
3502 AssertFailed();
3503#endif
3504
3505#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3506 || PGM_GST_TYPE == PGM_TYPE_PAE \
3507 || PGM_GST_TYPE == PGM_TYPE_AMD64
3508
3509# if PGM_GST_TYPE == PGM_TYPE_AMD64
3510 bool fBigPagesSupported = true;
3511# else
3512 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3513# endif
3514 PPGM pPGM = &pVM->pgm.s;
3515 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3516 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3517# ifndef IN_RING0
3518 RTHCPHYS HCPhys; /* general usage. */
3519# endif
3520 int rc;
3521
3522 /*
3523 * Check that the Guest CR3 and all its mappings are correct.
3524 */
3525 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3526 ("Invalid GCPhysCR3=%VGp cr3=%VGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3527 false);
3528# ifndef IN_RING0
3529# if PGM_GST_TYPE == PGM_TYPE_32BIT
3530 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGuestPDGC, NULL, &HCPhysShw);
3531# else
3532 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGstPaePDPTGC, NULL, &HCPhysShw);
3533# endif
3534 AssertRCReturn(rc, 1);
3535 HCPhys = NIL_RTHCPHYS;
3536 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3537 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%VHp HCPhyswShw=%VHp (cr3)\n", HCPhys, HCPhysShw), false);
3538# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3539 RTGCPHYS GCPhys;
3540 rc = PGMR3DbgHCPtr2GCPhys(pVM, pPGM->pGuestPDHC, &GCPhys);
3541 AssertRCReturn(rc, 1);
3542 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%VGp cr3=%VGp\n", GCPhys, (RTGCPHYS)cr3), false);
3543# endif
3544#endif /* !IN_RING0 */
3545
3546 /*
3547 * Get and check the Shadow CR3.
3548 */
3549# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3550 unsigned cPDEs = X86_PG_ENTRIES;
3551 unsigned ulIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3552# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3553# if PGM_GST_TYPE == PGM_TYPE_32BIT
3554 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3555# else
3556 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3557# endif
3558 unsigned ulIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3559# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3560 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3561 unsigned ulIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3562# endif
3563 if (cb != ~(RTGCUINTPTR)0)
3564 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3565
3566/** @todo call the other two PGMAssert*() functions. */
3567
3568# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3569 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
3570# endif
3571
3572# if PGM_GST_TYPE == PGM_TYPE_AMD64
3573 unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3574
3575 for (; iPml4e < X86_PG_PAE_ENTRIES; iPml4e++)
3576 {
3577 PPGMPOOLPAGE pShwPdpt = NULL;
3578 PX86PML4E pPml4eSrc, pPml4eDst;
3579 RTGCPHYS GCPhysPdptSrc;
3580
3581 pPml4eSrc = &pVM->pgm.s.CTXSUFF(pGstPaePML4)->a[iPml4e];
3582 pPml4eDst = &pVM->pgm.s.CTXMID(p,PaePML4)->a[iPml4e];
3583
3584 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3585 if (!pVM->pgm.s.CTXMID(p,PaePML4)->a[iPml4e].n.u1Present)
3586 {
3587 GCPtr += UINT64_C(_2M * 512 * 512);
3588 continue;
3589 }
3590
3591# if PGM_GST_TYPE == PGM_TYPE_PAE
3592 /* not correct to call pgmPoolGetPage */
3593# endif
3594 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3595 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3596
3597 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3598 {
3599 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3600 GCPtr += UINT64_C(_2M * 512 * 512);
3601 cErrors++;
3602 continue;
3603 }
3604
3605 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3606 {
3607 AssertMsgFailed(("Physical address doesn't match! iPml4e %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4e, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3608 GCPtr += UINT64_C(_2M * 512 * 512);
3609 cErrors++;
3610 continue;
3611 }
3612
3613 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3614 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3615 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3616 {
3617 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3618 GCPtr += UINT64_C(_2M * 512 * 512);
3619 cErrors++;
3620 continue;
3621 }
3622# else
3623 {
3624# endif
3625
3626# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3627 /*
3628 * Check the PDPTEs too.
3629 */
3630 unsigned iPdpte = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3631
3632 for (;iPdpte <= SHW_PDPT_MASK; iPdpte++)
3633 {
3634 unsigned iPDSrc;
3635 PPGMPOOLPAGE pShwPde = NULL;
3636 PX86PDPE pPdpeDst;
3637 RTGCPHYS GCPhysPdeSrc;
3638# if PGM_GST_TYPE == PGM_TYPE_PAE
3639 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
3640 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtr, &iPDSrc);
3641 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
3642 X86PDPE PdpeSrc = CTXSUFF(pVM->pgm.s.pGstPaePDPT)->a[iPdpte];
3643# else
3644 PX86PML4E pPml4eSrc;
3645 X86PDPE PdpeSrc;
3646 PX86PDPT pPdptDst;
3647 PX86PDPAE pPDDst;
3648 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3649
3650 rc = PGMShwGetLongModePDPtr(pVM, GCPtr, &pPdptDst, &pPDDst);
3651 if (rc != VINF_SUCCESS)
3652 {
3653 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
3654 GCPtr += 512 * _2M;
3655 continue; /* next PDPTE */
3656 }
3657 Assert(pPDDst);
3658# endif
3659 Assert(iPDSrc == 0);
3660
3661 pPdpeDst = &pPdptDst->a[iPdpte];
3662
3663 if (!pPdpeDst->n.u1Present)
3664 {
3665 GCPtr += 512 * _2M;
3666 continue; /* next PDPTE */
3667 }
3668
3669 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3670 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3671
3672 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3673 {
3674 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3675 GCPtr += 512 * _2M;
3676 cErrors++;
3677 continue;
3678 }
3679
3680 if (GCPhysPdeSrc != pShwPde->GCPhys)
3681 {
3682# if PGM_GST_TYPE == PGM_TYPE_AMD64
3683 AssertMsgFailed(("Physical address doesn't match! iPml4e %d iPdpte %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4e, iPdpte, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3684# else
3685 AssertMsgFailed(("Physical address doesn't match! iPdpte %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpte, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3686# endif
3687 GCPtr += 512 * _2M;
3688 cErrors++;
3689 continue;
3690 }
3691
3692# if PGM_GST_TYPE == PGM_TYPE_AMD64
3693 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3694 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3695 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3696 {
3697 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3698 GCPtr += 512 * _2M;
3699 cErrors++;
3700 continue;
3701 }
3702# endif
3703
3704# else
3705 {
3706# endif
3707# if PGM_GST_TYPE == PGM_TYPE_32BIT
3708 const GSTPD *pPDSrc = CTXSUFF(pPGM->pGuestPD);
3709# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3710 const X86PD *pPDDst = pPGM->CTXMID(p,32BitPD);
3711# else
3712 const PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries, so no need to and with SHW_PD_MASK to get iPDDst */
3713# endif
3714# endif
3715 /*
3716 * Iterate the shadow page directory.
3717 */
3718 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3719 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3720
3721 for (;
3722 iPDDst < cPDEs;
3723 iPDDst++, GCPtr += ulIncrement)
3724 {
3725 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3726 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3727 {
3728 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3729 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3730 {
3731 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3732 cErrors++;
3733 continue;
3734 }
3735 }
3736 else if ( (PdeDst.u & X86_PDE_P)
3737 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3738 )
3739 {
3740 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3741 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3742 if (!pPoolPage)
3743 {
3744 AssertMsgFailed(("Invalid page table address %VGp at %VGv! PdeDst=%#RX64\n",
3745 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3746 cErrors++;
3747 continue;
3748 }
3749 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3750
3751 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3752 {
3753 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %VGv! These flags are not virtualized! PdeDst=%#RX64\n",
3754 GCPtr, (uint64_t)PdeDst.u));
3755 cErrors++;
3756 }
3757
3758 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3759 {
3760 AssertMsgFailed(("4K PDE reserved flags at %VGv! PdeDst=%#RX64\n",
3761 GCPtr, (uint64_t)PdeDst.u));
3762 cErrors++;
3763 }
3764
3765 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3766 if (!PdeSrc.n.u1Present)
3767 {
3768 AssertMsgFailed(("Guest PDE at %VGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3769 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3770 cErrors++;
3771 continue;
3772 }
3773
3774 if ( !PdeSrc.b.u1Size
3775 || !fBigPagesSupported)
3776 {
3777 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3778# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3779 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3780# endif
3781 }
3782 else
3783 {
3784# if PGM_GST_TYPE == PGM_TYPE_32BIT
3785 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3786 {
3787 AssertMsgFailed(("Guest PDE at %VGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3788 GCPtr, (uint64_t)PdeSrc.u));
3789 cErrors++;
3790 continue;
3791 }
3792# endif
3793 GCPhysGst = PdeSrc.u & GST_PDE_BIG_PG_MASK;
3794# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3795 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3796# endif
3797 }
3798
3799 if ( pPoolPage->enmKind
3800 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3801 {
3802 AssertMsgFailed(("Invalid shadow page table kind %d at %VGv! PdeSrc=%#RX64\n",
3803 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3804 cErrors++;
3805 }
3806
3807 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3808 if (!pPhysPage)
3809 {
3810 AssertMsgFailed(("Cannot find guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3811 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3812 cErrors++;
3813 continue;
3814 }
3815
3816 if (GCPhysGst != pPoolPage->GCPhys)
3817 {
3818 AssertMsgFailed(("GCPhysGst=%VGp != pPage->GCPhys=%VGp at %VGv\n",
3819 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3820 cErrors++;
3821 continue;
3822 }
3823
3824 if ( !PdeSrc.b.u1Size
3825 || !fBigPagesSupported)
3826 {
3827 /*
3828 * Page Table.
3829 */
3830 const GSTPT *pPTSrc;
3831 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3832 if (VBOX_FAILURE(rc))
3833 {
3834 AssertMsgFailed(("Cannot map/convert guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3835 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3836 cErrors++;
3837 continue;
3838 }
3839 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3840 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3841 {
3842 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3843 // (This problem will go away when/if we shadow multiple CR3s.)
3844 AssertMsgFailed(("4K PDE flags mismatch at %VGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3845 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3846 cErrors++;
3847 continue;
3848 }
3849 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3850 {
3851 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%VGv PdeDst=%#RX64\n",
3852 GCPtr, (uint64_t)PdeDst.u));
3853 cErrors++;
3854 continue;
3855 }
3856
3857 /* iterate the page table. */
3858# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3859 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3860 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3861# else
3862 const unsigned offPTSrc = 0;
3863# endif
3864 for (unsigned iPT = 0, off = 0;
3865 iPT < ELEMENTS(pPTDst->a);
3866 iPT++, off += PAGE_SIZE)
3867 {
3868 const SHWPTE PteDst = pPTDst->a[iPT];
3869
3870 /* skip not-present entries. */
3871 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3872 continue;
3873 Assert(PteDst.n.u1Present);
3874
3875 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3876 if (!PteSrc.n.u1Present)
3877 {
3878# ifdef IN_RING3
3879 PGMAssertHandlerAndFlagsInSync(pVM);
3880 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3881# endif
3882 AssertMsgFailed(("Out of sync (!P) PTE at %VGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%VGv iPTSrc=%x PdeSrc=%x physpte=%VGp\n",
3883 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3884 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3885 cErrors++;
3886 continue;
3887 }
3888
3889 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3890# if 1 /** @todo sync accessed bit properly... */
3891 fIgnoreFlags |= X86_PTE_A;
3892# endif
3893
3894 /* match the physical addresses */
3895 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3896 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3897
3898# ifdef IN_RING3
3899 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3900 if (VBOX_FAILURE(rc))
3901 {
3902 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3903 {
3904 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3905 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3906 cErrors++;
3907 continue;
3908 }
3909 }
3910 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3911 {
3912 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3913 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3914 cErrors++;
3915 continue;
3916 }
3917# endif
3918
3919 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3920 if (!pPhysPage)
3921 {
3922# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3923 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3924 {
3925 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3926 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3927 cErrors++;
3928 continue;
3929 }
3930# endif
3931 if (PteDst.n.u1Write)
3932 {
3933 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3934 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3935 cErrors++;
3936 }
3937 fIgnoreFlags |= X86_PTE_RW;
3938 }
3939 else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
3940 {
3941 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3942 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3943 cErrors++;
3944 continue;
3945 }
3946
3947 /* flags */
3948 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3949 {
3950 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3951 {
3952 if (PteDst.n.u1Write)
3953 {
3954 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PteSrc=%#RX64 PteDst=%#RX64\n",
3955 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3956 cErrors++;
3957 continue;
3958 }
3959 fIgnoreFlags |= X86_PTE_RW;
3960 }
3961 else
3962 {
3963 if (PteDst.n.u1Present)
3964 {
3965 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VHp PteSrc=%#RX64 PteDst=%#RX64\n",
3966 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3967 cErrors++;
3968 continue;
3969 }
3970 fIgnoreFlags |= X86_PTE_P;
3971 }
3972 }
3973 else
3974 {
3975 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3976 {
3977 if (PteDst.n.u1Write)
3978 {
3979 AssertMsgFailed(("!DIRTY page at %VGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3980 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3981 cErrors++;
3982 continue;
3983 }
3984 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
3985 {
3986 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3987 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3988 cErrors++;
3989 continue;
3990 }
3991 if (PteDst.n.u1Dirty)
3992 {
3993 AssertMsgFailed(("!DIRTY page at %VGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3994 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3995 cErrors++;
3996 }
3997# if 0 /** @todo sync access bit properly... */
3998 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3999 {
4000 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4001 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4002 cErrors++;
4003 }
4004 fIgnoreFlags |= X86_PTE_RW;
4005# else
4006 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4007# endif
4008 }
4009 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4010 {
4011 /* access bit emulation (not implemented). */
4012 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4013 {
4014 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4015 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4016 cErrors++;
4017 continue;
4018 }
4019 if (!PteDst.n.u1Accessed)
4020 {
4021 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4022 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4023 cErrors++;
4024 }
4025 fIgnoreFlags |= X86_PTE_P;
4026 }
4027# ifdef DEBUG_sandervl
4028 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4029# endif
4030 }
4031
4032 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4033 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4034 )
4035 {
4036 AssertMsgFailed(("Flags mismatch at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4037 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4038 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4039 cErrors++;
4040 continue;
4041 }
4042 } /* foreach PTE */
4043 }
4044 else
4045 {
4046 /*
4047 * Big Page.
4048 */
4049 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4050 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4051 {
4052 if (PdeDst.n.u1Write)
4053 {
4054 AssertMsgFailed(("!DIRTY page at %VGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4055 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4056 cErrors++;
4057 continue;
4058 }
4059 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4060 {
4061 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4062 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4063 cErrors++;
4064 continue;
4065 }
4066# if 0 /** @todo sync access bit properly... */
4067 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4068 {
4069 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4070 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4071 cErrors++;
4072 }
4073 fIgnoreFlags |= X86_PTE_RW;
4074# else
4075 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4076# endif
4077 }
4078 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4079 {
4080 /* access bit emulation (not implemented). */
4081 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4082 {
4083 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4084 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4085 cErrors++;
4086 continue;
4087 }
4088 if (!PdeDst.n.u1Accessed)
4089 {
4090 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4091 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4092 cErrors++;
4093 }
4094 fIgnoreFlags |= X86_PTE_P;
4095 }
4096
4097 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4098 {
4099 AssertMsgFailed(("Flags mismatch (B) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4100 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4101 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4102 cErrors++;
4103 }
4104
4105 /* iterate the page table. */
4106 for (unsigned iPT = 0, off = 0;
4107 iPT < ELEMENTS(pPTDst->a);
4108 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4109 {
4110 const SHWPTE PteDst = pPTDst->a[iPT];
4111
4112 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4113 {
4114 AssertMsgFailed(("The PTE at %VGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4115 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4116 cErrors++;
4117 }
4118
4119 /* skip not-present entries. */
4120 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4121 continue;
4122
4123 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4124
4125 /* match the physical addresses */
4126 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4127
4128# ifdef IN_RING3
4129 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4130 if (VBOX_FAILURE(rc))
4131 {
4132 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4133 {
4134 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4135 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4136 cErrors++;
4137 }
4138 }
4139 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4140 {
4141 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4142 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4143 cErrors++;
4144 continue;
4145 }
4146# endif
4147 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4148 if (!pPhysPage)
4149 {
4150# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4151 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4152 {
4153 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4154 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4155 cErrors++;
4156 continue;
4157 }
4158# endif
4159 if (PteDst.n.u1Write)
4160 {
4161 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4162 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4163 cErrors++;
4164 }
4165 fIgnoreFlags |= X86_PTE_RW;
4166 }
4167 else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
4168 {
4169 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4170 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4171 cErrors++;
4172 continue;
4173 }
4174
4175 /* flags */
4176 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4177 {
4178 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4179 {
4180 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4181 {
4182 if (PteDst.n.u1Write)
4183 {
4184 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
4185 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4186 cErrors++;
4187 continue;
4188 }
4189 fIgnoreFlags |= X86_PTE_RW;
4190 }
4191 }
4192 else
4193 {
4194 if (PteDst.n.u1Present)
4195 {
4196 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
4197 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4198 cErrors++;
4199 continue;
4200 }
4201 fIgnoreFlags |= X86_PTE_P;
4202 }
4203 }
4204
4205 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4206 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4207 )
4208 {
4209 AssertMsgFailed(("Flags mismatch (BT) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4210 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4211 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4212 cErrors++;
4213 continue;
4214 }
4215 } /* for each PTE */
4216 }
4217 }
4218 /* not present */
4219
4220 } /* for each PDE */
4221
4222 } /* for each PDPTE */
4223
4224 } /* for each PML4E */
4225
4226# ifdef DEBUG
4227 if (cErrors)
4228 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4229# endif
4230
4231#endif
4232 return cErrors;
4233
4234#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
4235}
4236#endif /* VBOX_STRICT */
4237
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette