VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllGst.h@ 56225

Last change on this file since 56225 was 55889, checked in by vboxsync, 10 years ago

VMM: Split up virtual handlers just like the physical ones, such that the kind+callbacks are stored seprately from the actual handler registration. This should hopefully save a byte or two when adding more callbacks. Implemented the pvUser for ring-3 callbacks.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 24.9 KB
Line 
1/* $Id: PGMAllGst.h 55889 2015-05-17 18:01:37Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Guest Paging Template - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Internal Functions *
21*******************************************************************************/
22RT_C_DECLS_BEGIN
23#if PGM_GST_TYPE == PGM_TYPE_32BIT \
24 || PGM_GST_TYPE == PGM_TYPE_PAE \
25 || PGM_GST_TYPE == PGM_TYPE_AMD64
26static int PGM_GST_NAME(Walk)(PVMCPU pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk);
27#endif
28PGM_GST_DECL(int, GetPage)(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys);
29PGM_GST_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask);
30PGM_GST_DECL(int, GetPDE)(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE);
31PGM_GST_DECL(bool, HandlerVirtualUpdate)(PVM pVM, uint32_t cr4);
32RT_C_DECLS_END
33
34
35#if PGM_GST_TYPE == PGM_TYPE_32BIT \
36 || PGM_GST_TYPE == PGM_TYPE_PAE \
37 || PGM_GST_TYPE == PGM_TYPE_AMD64
38
39
40DECLINLINE(int) PGM_GST_NAME(WalkReturnNotPresent)(PVMCPU pVCpu, PGSTPTWALK pWalk, int iLevel)
41{
42 NOREF(iLevel); NOREF(pVCpu);
43 pWalk->Core.fNotPresent = true;
44 pWalk->Core.uLevel = (uint8_t)iLevel;
45 return VERR_PAGE_TABLE_NOT_PRESENT;
46}
47
48DECLINLINE(int) PGM_GST_NAME(WalkReturnBadPhysAddr)(PVMCPU pVCpu, PGSTPTWALK pWalk, int rc, int iLevel)
49{
50 AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu);
51 pWalk->Core.fBadPhysAddr = true;
52 pWalk->Core.uLevel = (uint8_t)iLevel;
53 return VERR_PAGE_TABLE_NOT_PRESENT;
54}
55
56DECLINLINE(int) PGM_GST_NAME(WalkReturnRsvdError)(PVMCPU pVCpu, PGSTPTWALK pWalk, int iLevel)
57{
58 NOREF(pVCpu);
59 pWalk->Core.fRsvdError = true;
60 pWalk->Core.uLevel = (uint8_t)iLevel;
61 return VERR_PAGE_TABLE_NOT_PRESENT;
62}
63
64
65/**
66 * Performs a guest page table walk.
67 *
68 * @returns VBox status code.
69 * @retval VINF_SUCCESS on success.
70 * @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details.
71 *
72 * @param pVCpu The current CPU.
73 * @param GCPtr The guest virtual address to walk by.
74 * @param pWalk Where to return the walk result. This is always set.
75 */
76static int PGM_GST_NAME(Walk)(PVMCPU pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk)
77{
78 int rc;
79
80 /*
81 * Init the walking structure.
82 */
83 RT_ZERO(*pWalk);
84 pWalk->Core.GCPtr = GCPtr;
85
86# if PGM_GST_TYPE == PGM_TYPE_32BIT \
87 || PGM_GST_TYPE == PGM_TYPE_PAE
88 /*
89 * Boundary check for PAE and 32-bit (prevents trouble further down).
90 */
91 if (RT_UNLIKELY(GCPtr >= _4G))
92 return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 8);
93# endif
94
95 {
96# if PGM_GST_TYPE == PGM_TYPE_AMD64
97 /*
98 * The PMLE4.
99 */
100 rc = pgmGstGetLongModePML4PtrEx(pVCpu, &pWalk->pPml4);
101 if (RT_FAILURE(rc))
102 return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc);
103
104 PX86PML4 register pPml4 = pWalk->pPml4;
105 X86PML4E register Pml4e;
106 PX86PML4E register pPml4e;
107
108 pWalk->pPml4e = pPml4e = &pPml4->a[(GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK];
109 pWalk->Pml4e.u = Pml4e.u = pPml4e->u;
110 if (!Pml4e.n.u1Present)
111 return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 4);
112 if (RT_UNLIKELY(!GST_IS_PML4E_VALID(pVCpu, Pml4e)))
113 return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 4);
114
115 /*
116 * The PDPE.
117 */
118 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pWalk->pPdpt);
119 if (RT_FAILURE(rc))
120 return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc);
121
122# elif PGM_GST_TYPE == PGM_TYPE_PAE
123 rc = pgmGstGetPaePDPTPtrEx(pVCpu, &pWalk->pPdpt);
124 if (RT_FAILURE(rc))
125 return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc);
126# endif
127 }
128 {
129# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
130 PX86PDPT register pPdpt = pWalk->pPdpt;
131 PX86PDPE register pPdpe;
132 X86PDPE register Pdpe;
133
134 pWalk->pPdpe = pPdpe = &pPdpt->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
135 pWalk->Pdpe.u = Pdpe.u = pPdpe->u;
136 if (!Pdpe.n.u1Present)
137 return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 3);
138 if (RT_UNLIKELY(!GST_IS_PDPE_VALID(pVCpu, Pdpe)))
139 return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 3);
140
141 /*
142 * The PDE.
143 */
144 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pWalk->pPd);
145 if (RT_FAILURE(rc))
146 return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 2, rc);
147# elif PGM_GST_TYPE == PGM_TYPE_32BIT
148 rc = pgmGstGet32bitPDPtrEx(pVCpu, &pWalk->pPd);
149 if (RT_FAILURE(rc))
150 return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc);
151# endif
152 }
153 {
154 PGSTPD register pPd = pWalk->pPd;
155 PGSTPDE register pPde;
156 GSTPDE Pde;
157
158 pWalk->pPde = pPde = &pPd->a[(GCPtr >> GST_PD_SHIFT) & GST_PD_MASK];
159 pWalk->Pde.u = Pde.u = pPde->u;
160 if (!Pde.n.u1Present)
161 return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 2);
162 if (Pde.n.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
163 {
164 if (RT_UNLIKELY(!GST_IS_BIG_PDE_VALID(pVCpu, Pde)))
165 return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2);
166
167 pWalk->Core.GCPhys = GST_GET_BIG_PDE_GCPHYS(pVCpu->CTX_SUFF(pVM), Pde)
168 | (GCPtr & GST_BIG_PAGE_OFFSET_MASK);
169 PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->Core.GCPhys);
170 uint8_t fEffectiveXX = (uint8_t)pWalk->Pde.u
171# if PGM_GST_TYPE == PGM_TYPE_AMD64
172 & (uint8_t)pWalk->Pde.u
173 & (uint8_t)pWalk->Pml4e.u
174# endif
175 ;
176 pWalk->Core.fEffectiveRW = !!(fEffectiveXX & X86_PTE_RW);
177 pWalk->Core.fEffectiveUS = !!(fEffectiveXX & X86_PTE_US);
178# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
179 pWalk->Core.fEffectiveNX = ( pWalk->Pde.n.u1NoExecute
180# if PGM_GST_TYPE == PGM_TYPE_AMD64
181 || pWalk->Pde.n.u1NoExecute
182 || pWalk->Pml4e.n.u1NoExecute
183# endif
184 ) && GST_IS_NX_ACTIVE(pVCpu);
185# else
186 pWalk->Core.fEffectiveNX = false;
187# endif
188 pWalk->Core.fBigPage = true;
189 pWalk->Core.fSucceeded = true;
190 return VINF_SUCCESS;
191 }
192
193 if (RT_UNLIKELY(!GST_IS_PDE_VALID(pVCpu, Pde)))
194 return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2);
195
196 /*
197 * The PTE.
198 */
199 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GST_GET_PDE_GCPHYS(Pde), &pWalk->pPt);
200 if (RT_FAILURE(rc))
201 return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc);
202 }
203 {
204 PGSTPT register pPt = pWalk->pPt;
205 PGSTPTE register pPte;
206 GSTPTE register Pte;
207
208 pWalk->pPte = pPte = &pPt->a[(GCPtr >> GST_PT_SHIFT) & GST_PT_MASK];
209 pWalk->Pte.u = Pte.u = pPte->u;
210 if (!Pte.n.u1Present)
211 return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 1);
212 if (RT_UNLIKELY(!GST_IS_PTE_VALID(pVCpu, Pte)))
213 return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 1);
214
215 /*
216 * We're done.
217 */
218 pWalk->Core.GCPhys = GST_GET_PDE_GCPHYS(Pte)
219 | (GCPtr & PAGE_OFFSET_MASK);
220 uint8_t fEffectiveXX = (uint8_t)pWalk->Pte.u
221 & (uint8_t)pWalk->Pde.u
222# if PGM_GST_TYPE == PGM_TYPE_AMD64
223 & (uint8_t)pWalk->Pde.u
224 & (uint8_t)pWalk->Pml4e.u
225# endif
226 ;
227 pWalk->Core.fEffectiveRW = !!(fEffectiveXX & X86_PTE_RW);
228 pWalk->Core.fEffectiveUS = !!(fEffectiveXX & X86_PTE_US);
229# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
230 pWalk->Core.fEffectiveNX = ( pWalk->Pte.n.u1NoExecute
231 || pWalk->Pde.n.u1NoExecute
232# if PGM_GST_TYPE == PGM_TYPE_AMD64
233 || pWalk->Pde.n.u1NoExecute
234 || pWalk->Pml4e.n.u1NoExecute
235# endif
236 ) && GST_IS_NX_ACTIVE(pVCpu);
237# else
238 pWalk->Core.fEffectiveNX = false;
239# endif
240 pWalk->Core.fSucceeded = true;
241 return VINF_SUCCESS;
242 }
243}
244
245#endif /* 32BIT, PAE, AMD64 */
246
247/**
248 * Gets effective Guest OS page information.
249 *
250 * When GCPtr is in a big page, the function will return as if it was a normal
251 * 4KB page. If the need for distinguishing between big and normal page becomes
252 * necessary at a later point, a PGMGstGetPage Ex() will be created for that
253 * purpose.
254 *
255 * @returns VBox status.
256 * @param pVCpu Pointer to the VMCPU.
257 * @param GCPtr Guest Context virtual address of the page.
258 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
259 * @param pGCPhys Where to store the GC physical address of the page.
260 * This is page aligned!
261 */
262PGM_GST_DECL(int, GetPage)(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
263{
264#if PGM_GST_TYPE == PGM_TYPE_REAL \
265 || PGM_GST_TYPE == PGM_TYPE_PROT
266 /*
267 * Fake it.
268 */
269 if (pfFlags)
270 *pfFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US;
271 if (pGCPhys)
272 *pGCPhys = GCPtr & PAGE_BASE_GC_MASK;
273 NOREF(pVCpu);
274 return VINF_SUCCESS;
275
276#elif PGM_GST_TYPE == PGM_TYPE_32BIT \
277 || PGM_GST_TYPE == PGM_TYPE_PAE \
278 || PGM_GST_TYPE == PGM_TYPE_AMD64
279
280 GSTPTWALK Walk;
281 int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk);
282 if (RT_FAILURE(rc))
283 return rc;
284
285 if (pGCPhys)
286 *pGCPhys = Walk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
287
288 if (pfFlags)
289 {
290 if (!Walk.Core.fBigPage)
291 *pfFlags = (Walk.Pte.u & ~(GST_PTE_PG_MASK | X86_PTE_RW | X86_PTE_US)) /* NX not needed */
292 | (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0)
293 | (Walk.Core.fEffectiveUS ? X86_PTE_US : 0)
294# if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE)
295 | (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0)
296# endif
297 ;
298 else
299 {
300 *pfFlags = (Walk.Pde.u & ~(GST_PTE_PG_MASK | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PS)) /* NX not needed */
301 | ((Walk.Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT)
302 | (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0)
303 | (Walk.Core.fEffectiveUS ? X86_PTE_US : 0)
304# if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE)
305 | (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0)
306# endif
307 ;
308 }
309 }
310
311 return VINF_SUCCESS;
312
313#else
314# error "shouldn't be here!"
315 /* something else... */
316 return VERR_NOT_SUPPORTED;
317#endif
318}
319
320
321/**
322 * Modify page flags for a range of pages in the guest's tables
323 *
324 * The existing flags are ANDed with the fMask and ORed with the fFlags.
325 *
326 * @returns VBox status code.
327 * @param pVCpu Pointer to the VMCPU.
328 * @param GCPtr Virtual address of the first page in the range. Page aligned!
329 * @param cb Size (in bytes) of the page range to apply the modification to. Page aligned!
330 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
331 * @param fMask The AND mask - page flags X86_PTE_*.
332 */
333PGM_GST_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
334{
335 Assert((cb & PAGE_OFFSET_MASK) == 0);
336
337#if PGM_GST_TYPE == PGM_TYPE_32BIT \
338 || PGM_GST_TYPE == PGM_TYPE_PAE \
339 || PGM_GST_TYPE == PGM_TYPE_AMD64
340 for (;;)
341 {
342 GSTPTWALK Walk;
343 int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk);
344 if (RT_FAILURE(rc))
345 return rc;
346
347 if (!Walk.Core.fBigPage)
348 {
349 /*
350 * 4KB Page table, process
351 *
352 * Walk pages till we're done.
353 */
354 unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
355 while (iPTE < RT_ELEMENTS(Walk.pPt->a))
356 {
357 GSTPTE Pte = Walk.pPt->a[iPTE];
358 Pte.u = (Pte.u & (fMask | X86_PTE_PAE_PG_MASK))
359 | (fFlags & ~GST_PTE_PG_MASK);
360 Walk.pPt->a[iPTE] = Pte;
361
362 /* next page */
363 cb -= PAGE_SIZE;
364 if (!cb)
365 return VINF_SUCCESS;
366 GCPtr += PAGE_SIZE;
367 iPTE++;
368 }
369 }
370 else
371 {
372 /*
373 * 2/4MB Page table
374 */
375 GSTPDE PdeNew;
376# if PGM_GST_TYPE == PGM_TYPE_32BIT
377 PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PG_HIGH_MASK | X86_PDE4M_PS))
378# else
379 PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PS))
380# endif
381 | (fFlags & ~GST_PTE_PG_MASK)
382 | ((fFlags & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT);
383 *Walk.pPde = PdeNew;
384
385 /* advance */
386 const unsigned cbDone = GST_BIG_PAGE_SIZE - (GCPtr & GST_BIG_PAGE_OFFSET_MASK);
387 if (cbDone >= cb)
388 return VINF_SUCCESS;
389 cb -= cbDone;
390 GCPtr += cbDone;
391 }
392 }
393
394#else
395 /* real / protected mode: ignore. */
396 NOREF(pVCpu); NOREF(GCPtr); NOREF(fFlags); NOREF(fMask);
397 return VINF_SUCCESS;
398#endif
399}
400
401
402/**
403 * Retrieve guest PDE information.
404 *
405 * @returns VBox status code.
406 * @param pVCpu Pointer to the VMCPU.
407 * @param GCPtr Guest context pointer.
408 * @param pPDE Pointer to guest PDE structure.
409 */
410PGM_GST_DECL(int, GetPDE)(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE)
411{
412#if PGM_GST_TYPE == PGM_TYPE_32BIT \
413 || PGM_GST_TYPE == PGM_TYPE_PAE \
414 || PGM_GST_TYPE == PGM_TYPE_AMD64
415
416# if PGM_GST_TYPE != PGM_TYPE_AMD64
417 /* Boundary check. */
418 if (RT_UNLIKELY(GCPtr >= _4G))
419 return VERR_PAGE_TABLE_NOT_PRESENT;
420# endif
421
422# if PGM_GST_TYPE == PGM_TYPE_32BIT
423 unsigned iPd = (GCPtr >> GST_PD_SHIFT) & GST_PD_MASK;
424 PX86PD pPd = pgmGstGet32bitPDPtr(pVCpu);
425
426# elif PGM_GST_TYPE == PGM_TYPE_PAE
427 unsigned iPd = 0; /* shut up gcc */
428 PCX86PDPAE pPd = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPd, NULL);
429
430# elif PGM_GST_TYPE == PGM_TYPE_AMD64
431 PX86PML4E pPml4eIgn;
432 X86PDPE PdpeIgn;
433 unsigned iPd = 0; /* shut up gcc */
434 PCX86PDPAE pPd = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eIgn, &PdpeIgn, &iPd);
435 /* Note! We do not return an effective PDE here like we do for the PTE in GetPage method. */
436# endif
437
438 if (RT_LIKELY(pPd))
439 pPDE->u = (X86PGPAEUINT)pPd->a[iPd].u;
440 else
441 pPDE->u = 0;
442 return VINF_SUCCESS;
443
444#else
445 NOREF(pVCpu); NOREF(GCPtr); NOREF(pPDE);
446 AssertFailed();
447 return VERR_NOT_IMPLEMENTED;
448#endif
449}
450
451
452#if PGM_GST_TYPE == PGM_TYPE_32BIT \
453 || PGM_GST_TYPE == PGM_TYPE_PAE \
454 || PGM_GST_TYPE == PGM_TYPE_AMD64
455/**
456 * Updates one virtual handler range.
457 *
458 * @returns 0
459 * @param pNode Pointer to a PGMVIRTHANDLER.
460 * @param pvUser Pointer to a PGMVHUARGS structure (see PGM.cpp).
461 */
462static DECLCALLBACK(int) PGM_GST_NAME(VirtHandlerUpdateOne)(PAVLROGCPTRNODECORE pNode, void *pvUser)
463{
464 PPGMHVUSTATE pState = (PPGMHVUSTATE)pvUser;
465 PVM pVM = pState->pVM;
466 PVMCPU pVCpu = pState->pVCpu;
467 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
468 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
469
470 Assert(pCurType->enmKind != PGMVIRTHANDLERKIND_HYPERVISOR);
471
472# if PGM_GST_TYPE == PGM_TYPE_32BIT
473 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
474# endif
475
476 RTGCPTR GCPtr = pCur->Core.Key;
477# if PGM_GST_TYPE != PGM_TYPE_AMD64
478 /* skip all stuff above 4GB if not AMD64 mode. */
479 if (RT_UNLIKELY(GCPtr >= _4G))
480 return 0;
481# endif
482
483 unsigned offPage = GCPtr & PAGE_OFFSET_MASK;
484 unsigned iPage = 0;
485 while (iPage < pCur->cPages)
486 {
487# if PGM_GST_TYPE == PGM_TYPE_32BIT
488 X86PDE Pde = pPDSrc->a[GCPtr >> X86_PD_SHIFT];
489# elif PGM_GST_TYPE == PGM_TYPE_PAE
490 X86PDEPAE Pde = pgmGstGetPaePDE(pVCpu, GCPtr);
491# elif PGM_GST_TYPE == PGM_TYPE_AMD64
492 X86PDEPAE Pde = pgmGstGetLongModePDE(pVCpu, GCPtr);
493# endif
494# if PGM_GST_TYPE == PGM_TYPE_32BIT
495 bool const fBigPage = Pde.b.u1Size && (pState->cr4 & X86_CR4_PSE);
496# else
497 bool const fBigPage = Pde.b.u1Size;
498# endif
499 if ( Pde.n.u1Present
500 && ( !fBigPage
501 ? GST_IS_PDE_VALID(pVCpu, Pde)
502 : GST_IS_BIG_PDE_VALID(pVCpu, Pde)) )
503 {
504 if (!fBigPage)
505 {
506 /*
507 * Normal page table.
508 */
509 PGSTPT pPT;
510 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(Pde), &pPT);
511 if (RT_SUCCESS(rc))
512 {
513 for (unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
514 iPTE < RT_ELEMENTS(pPT->a) && iPage < pCur->cPages;
515 iPTE++, iPage++, GCPtr += PAGE_SIZE, offPage = 0)
516 {
517 GSTPTE Pte = pPT->a[iPTE];
518 RTGCPHYS GCPhysNew;
519 if (Pte.n.u1Present)
520 GCPhysNew = PGM_A20_APPLY(pVCpu, (RTGCPHYS)(pPT->a[iPTE].u & GST_PTE_PG_MASK) + offPage);
521 else
522 GCPhysNew = NIL_RTGCPHYS;
523 if (pCur->aPhysToVirt[iPage].Core.Key != GCPhysNew)
524 {
525 if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
526 pgmHandlerVirtualClearPage(pVM, pCur, iPage);
527#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
528 AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias,
529 ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} GCPhysNew=%RGp\n",
530 pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast,
531 pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias, GCPhysNew));
532#endif
533 pCur->aPhysToVirt[iPage].Core.Key = GCPhysNew;
534 pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
535 }
536 }
537 }
538 else
539 {
540 /* not-present. */
541 offPage = 0;
542 AssertRC(rc);
543 for (unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
544 iPTE < RT_ELEMENTS(pPT->a) && iPage < pCur->cPages;
545 iPTE++, iPage++, GCPtr += PAGE_SIZE)
546 {
547 if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
548 {
549 pgmHandlerVirtualClearPage(pVM, pCur, iPage);
550#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
551 AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias,
552 ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
553 pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast,
554 pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias));
555#endif
556 pCur->aPhysToVirt[iPage].Core.Key = NIL_RTGCPHYS;
557 pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
558 }
559 }
560 }
561 }
562 else
563 {
564 /*
565 * 2/4MB page.
566 */
567 RTGCPHYS GCPhys = (RTGCPHYS)GST_GET_PDE_GCPHYS(Pde);
568 for (unsigned i4KB = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
569 i4KB < PAGE_SIZE / sizeof(GSTPDE) && iPage < pCur->cPages;
570 i4KB++, iPage++, GCPtr += PAGE_SIZE, offPage = 0)
571 {
572 RTGCPHYS GCPhysNew = PGM_A20_APPLY(pVCpu, GCPhys + (i4KB << PAGE_SHIFT) + offPage);
573 if (pCur->aPhysToVirt[iPage].Core.Key != GCPhysNew)
574 {
575 if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
576 pgmHandlerVirtualClearPage(pVM, pCur, iPage);
577#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
578 AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias,
579 ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} GCPhysNew=%RGp\n",
580 pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast,
581 pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias, GCPhysNew));
582#endif
583 pCur->aPhysToVirt[iPage].Core.Key = GCPhysNew;
584 pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
585 }
586 }
587 } /* pde type */
588 }
589 else
590 {
591 /* not-present / invalid. */
592 Log(("VirtHandler: Not present / invalid Pde=%RX64\n", (uint64_t)Pde.u));
593 for (unsigned cPages = (GST_PT_MASK + 1) - ((GCPtr >> GST_PT_SHIFT) & GST_PT_MASK);
594 cPages && iPage < pCur->cPages;
595 iPage++, GCPtr += PAGE_SIZE)
596 {
597 if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
598 {
599 pgmHandlerVirtualClearPage(pVM, pCur, iPage);
600 pCur->aPhysToVirt[iPage].Core.Key = NIL_RTGCPHYS;
601 pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
602 }
603 }
604 offPage = 0;
605 }
606 } /* for pages in virtual mapping. */
607
608 return 0;
609}
610#endif /* 32BIT, PAE and AMD64 */
611
612
613/**
614 * Updates the virtual page access handlers.
615 *
616 * @returns true if bits were flushed.
617 * @returns false if bits weren't flushed.
618 * @param pVM Pointer to the VM.
619 * @param pPDSrc The page directory.
620 * @param cr4 The cr4 register value.
621 */
622PGM_GST_DECL(bool, HandlerVirtualUpdate)(PVM pVM, uint32_t cr4)
623{
624#if PGM_GST_TYPE == PGM_TYPE_32BIT \
625 || PGM_GST_TYPE == PGM_TYPE_PAE \
626 || PGM_GST_TYPE == PGM_TYPE_AMD64
627
628 /** @todo
629 * In theory this is not sufficient: the guest can change a single page in a range with invlpg
630 */
631
632 /*
633 * Resolve any virtual address based access handlers to GC physical addresses.
634 * This should be fairly quick.
635 */
636 RTUINT fTodo = 0;
637
638 pgmLock(pVM);
639 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualUpdate), a);
640
641 for (VMCPUID i = 0; i < pVM->cCpus; i++)
642 {
643 PGMHVUSTATE State;
644 PVMCPU pVCpu = &pVM->aCpus[i];
645
646 State.pVM = pVM;
647 State.pVCpu = pVCpu;
648 State.fTodo = pVCpu->pgm.s.fSyncFlags;
649 State.cr4 = cr4;
650 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, PGM_GST_NAME(VirtHandlerUpdateOne), &State);
651
652 fTodo |= State.fTodo;
653 }
654 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualUpdate), a);
655
656
657 /*
658 * Set / reset bits?
659 */
660 if (fTodo & PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL)
661 {
662 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualReset), b);
663 Log(("HandlerVirtualUpdate: resets bits\n"));
664 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualResetOne, pVM);
665
666 for (VMCPUID i = 0; i < pVM->cCpus; i++)
667 {
668 PVMCPU pVCpu = &pVM->aCpus[i];
669 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
670 }
671
672 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualReset), b);
673 }
674 pgmUnlock(pVM);
675
676 return !!(fTodo & PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL);
677
678#else /* real / protected */
679 NOREF(pVM); NOREF(cr4);
680 return false;
681#endif
682}
683
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette