VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllGst.h@ 73261

Last change on this file since 73261 was 73261, checked in by vboxsync, 6 years ago

PGM: Moving guest and shadow mode Enter and Exit function to PGMAll. bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 27.6 KB
Line 
1/* $Id: PGMAllGst.h 73261 2018-07-20 11:00:53Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Guest Paging Template - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Internal Functions *
21*******************************************************************************/
22RT_C_DECLS_BEGIN
23#if PGM_GST_TYPE == PGM_TYPE_32BIT \
24 || PGM_GST_TYPE == PGM_TYPE_PAE \
25 || PGM_GST_TYPE == PGM_TYPE_AMD64
26static int PGM_GST_NAME(Walk)(PVMCPU pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk);
27#endif
28PGM_GST_DECL(int, GetPage)(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys);
29PGM_GST_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask);
30PGM_GST_DECL(int, GetPDE)(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE);
31PGM_GST_DECL(bool, HandlerVirtualUpdate)(PVM pVM, uint32_t cr4);
32
33#ifdef IN_RING3 /* r3 only for now. */
34PGM_GST_DECL(int, Enter)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
35PGM_GST_DECL(int, Relocate)(PVMCPU pVCpu, RTGCPTR offDelta);
36PGM_GST_DECL(int, Exit)(PVMCPU pVCpu);
37#endif
38RT_C_DECLS_END
39
40
41/**
42 * Enters the guest mode.
43 *
44 * @returns VBox status code.
45 * @param pVCpu The cross context virtual CPU structure.
46 * @param GCPhysCR3 The physical address from the CR3 register.
47 */
48PGM_GST_DECL(int, Enter)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
49{
50 /*
51 * Map and monitor CR3
52 */
53 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
54 AssertReturn(idxBth < RT_ELEMENTS(g_aPgmBothModeData), VERR_PGM_MODE_IPE);
55 AssertReturn(g_aPgmBothModeData[idxBth].pfnMapCR3, VERR_PGM_MODE_IPE);
56 return g_aPgmBothModeData[idxBth].pfnMapCR3(pVCpu, GCPhysCR3);
57}
58
59
60/**
61 * Exits the guest mode.
62 *
63 * @returns VBox status code.
64 * @param pVCpu The cross context virtual CPU structure.
65 */
66PGM_GST_DECL(int, Exit)(PVMCPU pVCpu)
67{
68 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
69 AssertReturn(idxBth < RT_ELEMENTS(g_aPgmBothModeData), VERR_PGM_MODE_IPE);
70 AssertReturn(g_aPgmBothModeData[idxBth].pfnUnmapCR3, VERR_PGM_MODE_IPE);
71 return g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
72}
73
74
75#if PGM_GST_TYPE == PGM_TYPE_32BIT \
76 || PGM_GST_TYPE == PGM_TYPE_PAE \
77 || PGM_GST_TYPE == PGM_TYPE_AMD64
78
79
80DECLINLINE(int) PGM_GST_NAME(WalkReturnNotPresent)(PVMCPU pVCpu, PGSTPTWALK pWalk, int iLevel)
81{
82 NOREF(iLevel); NOREF(pVCpu);
83 pWalk->Core.fNotPresent = true;
84 pWalk->Core.uLevel = (uint8_t)iLevel;
85 return VERR_PAGE_TABLE_NOT_PRESENT;
86}
87
88DECLINLINE(int) PGM_GST_NAME(WalkReturnBadPhysAddr)(PVMCPU pVCpu, PGSTPTWALK pWalk, int iLevel, int rc)
89{
90 AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu);
91 pWalk->Core.fBadPhysAddr = true;
92 pWalk->Core.uLevel = (uint8_t)iLevel;
93 return VERR_PAGE_TABLE_NOT_PRESENT;
94}
95
96DECLINLINE(int) PGM_GST_NAME(WalkReturnRsvdError)(PVMCPU pVCpu, PGSTPTWALK pWalk, int iLevel)
97{
98 NOREF(pVCpu);
99 pWalk->Core.fRsvdError = true;
100 pWalk->Core.uLevel = (uint8_t)iLevel;
101 return VERR_PAGE_TABLE_NOT_PRESENT;
102}
103
104
105/**
106 * Performs a guest page table walk.
107 *
108 * @returns VBox status code.
109 * @retval VINF_SUCCESS on success.
110 * @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details.
111 *
112 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
113 * @param GCPtr The guest virtual address to walk by.
114 * @param pWalk Where to return the walk result. This is always set.
115 */
116DECLINLINE(int) PGM_GST_NAME(Walk)(PVMCPU pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk)
117{
118 int rc;
119
120 /*
121 * Init the walking structure.
122 */
123 RT_ZERO(*pWalk);
124 pWalk->Core.GCPtr = GCPtr;
125
126# if PGM_GST_TYPE == PGM_TYPE_32BIT \
127 || PGM_GST_TYPE == PGM_TYPE_PAE
128 /*
129 * Boundary check for PAE and 32-bit (prevents trouble further down).
130 */
131 if (RT_UNLIKELY(GCPtr >= _4G))
132 return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 8);
133# endif
134
135 uint32_t register fEffective = X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | 1;
136 {
137# if PGM_GST_TYPE == PGM_TYPE_AMD64
138 /*
139 * The PMLE4.
140 */
141 rc = pgmGstGetLongModePML4PtrEx(pVCpu, &pWalk->pPml4);
142 if (RT_SUCCESS(rc)) { /* probable */ }
143 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc);
144
145 PX86PML4E register pPml4e;
146 pWalk->pPml4e = pPml4e = &pWalk->pPml4->a[(GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK];
147 X86PML4E register Pml4e;
148 pWalk->Pml4e.u = Pml4e.u = pPml4e->u;
149
150 if (Pml4e.n.u1Present) { /* probable */ }
151 else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 4);
152
153 if (RT_LIKELY(GST_IS_PML4E_VALID(pVCpu, Pml4e))) { /* likely */ }
154 else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 4);
155
156 pWalk->Core.fEffective = fEffective = ((uint32_t)Pml4e.u & (X86_PML4E_RW | X86_PML4E_US | X86_PML4E_PWT | X86_PML4E_PCD | X86_PML4E_A))
157 | ((uint32_t)(Pml4e.u >> 63) ^ 1) /*NX */;
158
159 /*
160 * The PDPE.
161 */
162 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pWalk->pPdpt);
163 if (RT_SUCCESS(rc)) { /* probable */ }
164 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc);
165
166# elif PGM_GST_TYPE == PGM_TYPE_PAE
167 rc = pgmGstGetPaePDPTPtrEx(pVCpu, &pWalk->pPdpt);
168 if (RT_SUCCESS(rc)) { /* probable */ }
169 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc);
170# endif
171 }
172 {
173# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
174 PX86PDPE register pPdpe;
175 pWalk->pPdpe = pPdpe = &pWalk->pPdpt->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
176 X86PDPE register Pdpe;
177 pWalk->Pdpe.u = Pdpe.u = pPdpe->u;
178
179 if (Pdpe.n.u1Present) { /* probable */ }
180 else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 3);
181
182 if (RT_LIKELY(GST_IS_PDPE_VALID(pVCpu, Pdpe))) { /* likely */ }
183 else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 3);
184
185# if PGM_GST_TYPE == PGM_TYPE_AMD64
186 pWalk->Core.fEffective = fEffective &= ((uint32_t)Pdpe.u & (X86_PDPE_RW | X86_PDPE_US | X86_PDPE_PWT | X86_PDPE_PCD | X86_PDPE_A))
187 | ((uint32_t)(Pdpe.u >> 63) ^ 1) /*NX */;
188# else
189 pWalk->Core.fEffective = fEffective = X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A
190 | ((uint32_t)Pdpe.u & (X86_PDPE_PWT | X86_PDPE_PCD))
191 | ((uint32_t)(Pdpe.u >> 63) ^ 1) /*NX */;
192# endif
193
194 /*
195 * The PDE.
196 */
197 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pWalk->pPd);
198 if (RT_SUCCESS(rc)) { /* probable */ }
199 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 2, rc);
200# elif PGM_GST_TYPE == PGM_TYPE_32BIT
201 rc = pgmGstGet32bitPDPtrEx(pVCpu, &pWalk->pPd);
202 if (RT_SUCCESS(rc)) { /* probable */ }
203 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc);
204# endif
205 }
206 {
207 PGSTPDE register pPde;
208 pWalk->pPde = pPde = &pWalk->pPd->a[(GCPtr >> GST_PD_SHIFT) & GST_PD_MASK];
209 GSTPDE Pde;
210 pWalk->Pde.u = Pde.u = pPde->u;
211 if (Pde.n.u1Present) { /* probable */ }
212 else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 2);
213 if (Pde.n.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
214 {
215 if (RT_LIKELY(GST_IS_BIG_PDE_VALID(pVCpu, Pde))) { /* likely */ }
216 else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2);
217
218 /*
219 * We're done.
220 */
221# if PGM_GST_TYPE == PGM_TYPE_32BIT
222 fEffective &= Pde.u & (X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PWT | X86_PDE4M_PCD | X86_PDE4M_A);
223# else
224 fEffective &= ((uint32_t)Pde.u & (X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PWT | X86_PDE4M_PCD | X86_PDE4M_A))
225 | ((uint32_t)(Pde.u >> 63) ^ 1) /*NX */;
226# endif
227 fEffective |= (uint32_t)Pde.u & (X86_PDE4M_D | X86_PDE4M_G);
228 fEffective |= (uint32_t)(Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT;
229 pWalk->Core.fEffective = fEffective;
230
231 pWalk->Core.fEffectiveRW = !!(fEffective & X86_PTE_RW);
232 pWalk->Core.fEffectiveUS = !!(fEffective & X86_PTE_US);
233# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
234 pWalk->Core.fEffectiveNX = !(fEffective & 1) && GST_IS_NX_ACTIVE(pVCpu);
235# else
236 pWalk->Core.fEffectiveNX = false;
237# endif
238 pWalk->Core.fBigPage = true;
239 pWalk->Core.fSucceeded = true;
240
241 pWalk->Core.GCPhys = GST_GET_BIG_PDE_GCPHYS(pVCpu->CTX_SUFF(pVM), Pde)
242 | (GCPtr & GST_BIG_PAGE_OFFSET_MASK);
243 PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->Core.GCPhys);
244 return VINF_SUCCESS;
245 }
246
247 if (RT_UNLIKELY(!GST_IS_PDE_VALID(pVCpu, Pde)))
248 return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2);
249# if PGM_GST_TYPE == PGM_TYPE_32BIT
250 pWalk->Core.fEffective = fEffective &= Pde.u & (X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD | X86_PDE_A);
251# else
252 pWalk->Core.fEffective = fEffective &= ((uint32_t)Pde.u & (X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD | X86_PDE_A))
253 | ((uint32_t)(Pde.u >> 63) ^ 1) /*NX */;
254# endif
255
256 /*
257 * The PTE.
258 */
259 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GST_GET_PDE_GCPHYS(Pde), &pWalk->pPt);
260 if (RT_SUCCESS(rc)) { /* probable */ }
261 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc);
262 }
263 {
264 PGSTPTE register pPte;
265 pWalk->pPte = pPte = &pWalk->pPt->a[(GCPtr >> GST_PT_SHIFT) & GST_PT_MASK];
266 GSTPTE register Pte;
267 pWalk->Pte.u = Pte.u = pPte->u;
268
269 if (Pte.n.u1Present) { /* probable */ }
270 else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 1);
271
272 if (RT_LIKELY(GST_IS_PTE_VALID(pVCpu, Pte))) { /* likely */ }
273 else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 1);
274
275 /*
276 * We're done.
277 */
278# if PGM_GST_TYPE == PGM_TYPE_32BIT
279 fEffective &= Pte.u & (X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A);
280# else
281 fEffective &= ((uint32_t)Pte.u & (X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A))
282 | ((uint32_t)(Pte.u >> 63) ^ 1) /*NX */;
283# endif
284 fEffective |= (uint32_t)Pte.u & (X86_PTE_D | X86_PTE_PAT | X86_PTE_G);
285 pWalk->Core.fEffective = fEffective;
286
287 pWalk->Core.fEffectiveRW = !!(fEffective & X86_PTE_RW);
288 pWalk->Core.fEffectiveUS = !!(fEffective & X86_PTE_US);
289# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
290 pWalk->Core.fEffectiveNX = !(fEffective & 1) && GST_IS_NX_ACTIVE(pVCpu);
291# else
292 pWalk->Core.fEffectiveNX = false;
293# endif
294 pWalk->Core.fSucceeded = true;
295
296 pWalk->Core.GCPhys = GST_GET_PDE_GCPHYS(Pte)
297 | (GCPtr & PAGE_OFFSET_MASK);
298 return VINF_SUCCESS;
299 }
300}
301
302#endif /* 32BIT, PAE, AMD64 */
303
304/**
305 * Gets effective Guest OS page information.
306 *
307 * When GCPtr is in a big page, the function will return as if it was a normal
308 * 4KB page. If the need for distinguishing between big and normal page becomes
309 * necessary at a later point, a PGMGstGetPage Ex() will be created for that
310 * purpose.
311 *
312 * @returns VBox status code.
313 * @param pVCpu The cross context virtual CPU structure.
314 * @param GCPtr Guest Context virtual address of the page.
315 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
316 * @param pGCPhys Where to store the GC physical address of the page.
317 * This is page aligned!
318 */
319PGM_GST_DECL(int, GetPage)(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
320{
321#if PGM_GST_TYPE == PGM_TYPE_REAL \
322 || PGM_GST_TYPE == PGM_TYPE_PROT
323 /*
324 * Fake it.
325 */
326 if (pfFlags)
327 *pfFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US;
328 if (pGCPhys)
329 *pGCPhys = GCPtr & PAGE_BASE_GC_MASK;
330 NOREF(pVCpu);
331 return VINF_SUCCESS;
332
333#elif PGM_GST_TYPE == PGM_TYPE_32BIT \
334 || PGM_GST_TYPE == PGM_TYPE_PAE \
335 || PGM_GST_TYPE == PGM_TYPE_AMD64
336
337 GSTPTWALK Walk;
338 int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk);
339 if (RT_FAILURE(rc))
340 return rc;
341
342 if (pGCPhys)
343 *pGCPhys = Walk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
344
345 if (pfFlags)
346 {
347 if (!Walk.Core.fBigPage)
348 *pfFlags = (Walk.Pte.u & ~(GST_PTE_PG_MASK | X86_PTE_RW | X86_PTE_US)) /* NX not needed */
349 | (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0)
350 | (Walk.Core.fEffectiveUS ? X86_PTE_US : 0)
351# if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE)
352 | (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0)
353# endif
354 ;
355 else
356 {
357 *pfFlags = (Walk.Pde.u & ~(GST_PTE_PG_MASK | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PS)) /* NX not needed */
358 | ((Walk.Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT)
359 | (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0)
360 | (Walk.Core.fEffectiveUS ? X86_PTE_US : 0)
361# if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE)
362 | (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0)
363# endif
364 ;
365 }
366 }
367
368 return VINF_SUCCESS;
369
370#else
371# error "shouldn't be here!"
372 /* something else... */
373 return VERR_NOT_SUPPORTED;
374#endif
375}
376
377
378/**
379 * Modify page flags for a range of pages in the guest's tables
380 *
381 * The existing flags are ANDed with the fMask and ORed with the fFlags.
382 *
383 * @returns VBox status code.
384 * @param pVCpu The cross context virtual CPU structure.
385 * @param GCPtr Virtual address of the first page in the range. Page aligned!
386 * @param cb Size (in bytes) of the page range to apply the modification to. Page aligned!
387 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
388 * @param fMask The AND mask - page flags X86_PTE_*.
389 */
390PGM_GST_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
391{
392 Assert((cb & PAGE_OFFSET_MASK) == 0); RT_NOREF_PV(cb);
393
394#if PGM_GST_TYPE == PGM_TYPE_32BIT \
395 || PGM_GST_TYPE == PGM_TYPE_PAE \
396 || PGM_GST_TYPE == PGM_TYPE_AMD64
397 for (;;)
398 {
399 GSTPTWALK Walk;
400 int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk);
401 if (RT_FAILURE(rc))
402 return rc;
403
404 if (!Walk.Core.fBigPage)
405 {
406 /*
407 * 4KB Page table, process
408 *
409 * Walk pages till we're done.
410 */
411 unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
412 while (iPTE < RT_ELEMENTS(Walk.pPt->a))
413 {
414 GSTPTE Pte = Walk.pPt->a[iPTE];
415 Pte.u = (Pte.u & (fMask | X86_PTE_PAE_PG_MASK))
416 | (fFlags & ~GST_PTE_PG_MASK);
417 Walk.pPt->a[iPTE] = Pte;
418
419 /* next page */
420 cb -= PAGE_SIZE;
421 if (!cb)
422 return VINF_SUCCESS;
423 GCPtr += PAGE_SIZE;
424 iPTE++;
425 }
426 }
427 else
428 {
429 /*
430 * 2/4MB Page table
431 */
432 GSTPDE PdeNew;
433# if PGM_GST_TYPE == PGM_TYPE_32BIT
434 PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PG_HIGH_MASK | X86_PDE4M_PS))
435# else
436 PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PS))
437# endif
438 | (fFlags & ~GST_PTE_PG_MASK)
439 | ((fFlags & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT);
440 *Walk.pPde = PdeNew;
441
442 /* advance */
443 const unsigned cbDone = GST_BIG_PAGE_SIZE - (GCPtr & GST_BIG_PAGE_OFFSET_MASK);
444 if (cbDone >= cb)
445 return VINF_SUCCESS;
446 cb -= cbDone;
447 GCPtr += cbDone;
448 }
449 }
450
451#else
452 /* real / protected mode: ignore. */
453 NOREF(pVCpu); NOREF(GCPtr); NOREF(fFlags); NOREF(fMask);
454 return VINF_SUCCESS;
455#endif
456}
457
458
459/**
460 * Retrieve guest PDE information.
461 *
462 * @returns VBox status code.
463 * @param pVCpu The cross context virtual CPU structure.
464 * @param GCPtr Guest context pointer.
465 * @param pPDE Pointer to guest PDE structure.
466 */
467PGM_GST_DECL(int, GetPDE)(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE)
468{
469#if PGM_GST_TYPE == PGM_TYPE_32BIT \
470 || PGM_GST_TYPE == PGM_TYPE_PAE \
471 || PGM_GST_TYPE == PGM_TYPE_AMD64
472
473# if PGM_GST_TYPE != PGM_TYPE_AMD64
474 /* Boundary check. */
475 if (RT_UNLIKELY(GCPtr >= _4G))
476 return VERR_PAGE_TABLE_NOT_PRESENT;
477# endif
478
479# if PGM_GST_TYPE == PGM_TYPE_32BIT
480 unsigned iPd = (GCPtr >> GST_PD_SHIFT) & GST_PD_MASK;
481 PX86PD pPd = pgmGstGet32bitPDPtr(pVCpu);
482
483# elif PGM_GST_TYPE == PGM_TYPE_PAE
484 unsigned iPd = 0; /* shut up gcc */
485 PCX86PDPAE pPd = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPd, NULL);
486
487# elif PGM_GST_TYPE == PGM_TYPE_AMD64
488 PX86PML4E pPml4eIgn;
489 X86PDPE PdpeIgn;
490 unsigned iPd = 0; /* shut up gcc */
491 PCX86PDPAE pPd = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eIgn, &PdpeIgn, &iPd);
492 /* Note! We do not return an effective PDE here like we do for the PTE in GetPage method. */
493# endif
494
495 if (RT_LIKELY(pPd))
496 pPDE->u = (X86PGPAEUINT)pPd->a[iPd].u;
497 else
498 pPDE->u = 0;
499 return VINF_SUCCESS;
500
501#else
502 NOREF(pVCpu); NOREF(GCPtr); NOREF(pPDE);
503 AssertFailed();
504 return VERR_NOT_IMPLEMENTED;
505#endif
506}
507
508
509#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
510 || PGM_GST_TYPE == PGM_TYPE_PAE \
511 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
512 && defined(VBOX_WITH_RAW_MODE)
513/**
514 * Updates one virtual handler range.
515 *
516 * @returns 0
517 * @param pNode Pointer to a PGMVIRTHANDLER.
518 * @param pvUser Pointer to a PGMVHUARGS structure (see PGM.cpp).
519 */
520static DECLCALLBACK(int) PGM_GST_NAME(VirtHandlerUpdateOne)(PAVLROGCPTRNODECORE pNode, void *pvUser)
521{
522 PPGMHVUSTATE pState = (PPGMHVUSTATE)pvUser;
523 PVM pVM = pState->pVM;
524 PVMCPU pVCpu = pState->pVCpu;
525 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
526 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
527
528 Assert(pCurType->enmKind != PGMVIRTHANDLERKIND_HYPERVISOR); NOREF(pCurType);
529
530# if PGM_GST_TYPE == PGM_TYPE_32BIT
531 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
532# endif
533
534 RTGCPTR GCPtr = pCur->Core.Key;
535# if PGM_GST_TYPE != PGM_TYPE_AMD64
536 /* skip all stuff above 4GB if not AMD64 mode. */
537 if (RT_UNLIKELY(GCPtr >= _4G))
538 return 0;
539# endif
540
541 unsigned offPage = GCPtr & PAGE_OFFSET_MASK;
542 unsigned iPage = 0;
543 while (iPage < pCur->cPages)
544 {
545# if PGM_GST_TYPE == PGM_TYPE_32BIT
546 X86PDE Pde = pPDSrc->a[GCPtr >> X86_PD_SHIFT];
547# elif PGM_GST_TYPE == PGM_TYPE_PAE
548 X86PDEPAE Pde = pgmGstGetPaePDE(pVCpu, GCPtr);
549# elif PGM_GST_TYPE == PGM_TYPE_AMD64
550 X86PDEPAE Pde = pgmGstGetLongModePDE(pVCpu, GCPtr);
551# endif
552# if PGM_GST_TYPE == PGM_TYPE_32BIT
553 bool const fBigPage = Pde.b.u1Size && (pState->cr4 & X86_CR4_PSE);
554# else
555 bool const fBigPage = Pde.b.u1Size;
556# endif
557 if ( Pde.n.u1Present
558 && ( !fBigPage
559 ? GST_IS_PDE_VALID(pVCpu, Pde)
560 : GST_IS_BIG_PDE_VALID(pVCpu, Pde)) )
561 {
562 if (!fBigPage)
563 {
564 /*
565 * Normal page table.
566 */
567 PGSTPT pPT;
568 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(Pde), &pPT);
569 if (RT_SUCCESS(rc))
570 {
571 for (unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
572 iPTE < RT_ELEMENTS(pPT->a) && iPage < pCur->cPages;
573 iPTE++, iPage++, GCPtr += PAGE_SIZE, offPage = 0)
574 {
575 GSTPTE Pte = pPT->a[iPTE];
576 RTGCPHYS GCPhysNew;
577 if (Pte.n.u1Present)
578 GCPhysNew = PGM_A20_APPLY(pVCpu, (RTGCPHYS)(pPT->a[iPTE].u & GST_PTE_PG_MASK) + offPage);
579 else
580 GCPhysNew = NIL_RTGCPHYS;
581 if (pCur->aPhysToVirt[iPage].Core.Key != GCPhysNew)
582 {
583 if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
584 pgmHandlerVirtualClearPage(pVM, pCur, iPage);
585#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
586 AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias,
587 ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} GCPhysNew=%RGp\n",
588 pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast,
589 pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias, GCPhysNew));
590#endif
591 pCur->aPhysToVirt[iPage].Core.Key = GCPhysNew;
592 pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
593 }
594 }
595 }
596 else
597 {
598 /* not-present. */
599 offPage = 0;
600 AssertRC(rc);
601 for (unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
602 iPTE < RT_ELEMENTS(pPT->a) && iPage < pCur->cPages;
603 iPTE++, iPage++, GCPtr += PAGE_SIZE)
604 {
605 if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
606 {
607 pgmHandlerVirtualClearPage(pVM, pCur, iPage);
608#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
609 AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias,
610 ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
611 pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast,
612 pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias));
613#endif
614 pCur->aPhysToVirt[iPage].Core.Key = NIL_RTGCPHYS;
615 pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
616 }
617 }
618 }
619 }
620 else
621 {
622 /*
623 * 2/4MB page.
624 */
625 RTGCPHYS GCPhys = (RTGCPHYS)GST_GET_PDE_GCPHYS(Pde);
626 for (unsigned i4KB = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
627 i4KB < PAGE_SIZE / sizeof(GSTPDE) && iPage < pCur->cPages;
628 i4KB++, iPage++, GCPtr += PAGE_SIZE, offPage = 0)
629 {
630 RTGCPHYS GCPhysNew = PGM_A20_APPLY(pVCpu, GCPhys + (i4KB << PAGE_SHIFT) + offPage);
631 if (pCur->aPhysToVirt[iPage].Core.Key != GCPhysNew)
632 {
633 if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
634 pgmHandlerVirtualClearPage(pVM, pCur, iPage);
635#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
636 AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias,
637 ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} GCPhysNew=%RGp\n",
638 pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast,
639 pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias, GCPhysNew));
640#endif
641 pCur->aPhysToVirt[iPage].Core.Key = GCPhysNew;
642 pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
643 }
644 }
645 } /* pde type */
646 }
647 else
648 {
649 /* not-present / invalid. */
650 Log(("VirtHandler: Not present / invalid Pde=%RX64\n", (uint64_t)Pde.u));
651 for (unsigned cPages = (GST_PT_MASK + 1) - ((GCPtr >> GST_PT_SHIFT) & GST_PT_MASK);
652 cPages && iPage < pCur->cPages;
653 iPage++, GCPtr += PAGE_SIZE)
654 {
655 if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
656 {
657 pgmHandlerVirtualClearPage(pVM, pCur, iPage);
658 pCur->aPhysToVirt[iPage].Core.Key = NIL_RTGCPHYS;
659 pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
660 }
661 }
662 offPage = 0;
663 }
664 } /* for pages in virtual mapping. */
665
666 return 0;
667}
668#endif /* 32BIT, PAE and AMD64 + VBOX_WITH_RAW_MODE */
669
670
671/**
672 * Updates the virtual page access handlers.
673 *
674 * @returns true if bits were flushed.
675 * @returns false if bits weren't flushed.
676 * @param pVM The cross context VM structure.
677 * @param cr4 The cr4 register value.
678 */
679PGM_GST_DECL(bool, HandlerVirtualUpdate)(PVM pVM, uint32_t cr4)
680{
681#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
682 || PGM_GST_TYPE == PGM_TYPE_PAE \
683 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
684 && defined(VBOX_WITH_RAW_MODE)
685
686 /** @todo
687 * In theory this is not sufficient: the guest can change a single page in a range with invlpg
688 */
689
690 /*
691 * Resolve any virtual address based access handlers to GC physical addresses.
692 * This should be fairly quick.
693 */
694 RTUINT fTodo = 0;
695
696 pgmLock(pVM);
697 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualUpdate), a);
698
699 for (VMCPUID i = 0; i < pVM->cCpus; i++)
700 {
701 PGMHVUSTATE State;
702 PVMCPU pVCpu = &pVM->aCpus[i];
703
704 State.pVM = pVM;
705 State.pVCpu = pVCpu;
706 State.fTodo = pVCpu->pgm.s.fSyncFlags;
707 State.cr4 = cr4;
708 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, PGM_GST_NAME(VirtHandlerUpdateOne), &State);
709
710 fTodo |= State.fTodo;
711 }
712 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualUpdate), a);
713
714
715 /*
716 * Set / reset bits?
717 */
718 if (fTodo & PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL)
719 {
720 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualReset), b);
721 Log(("HandlerVirtualUpdate: resets bits\n"));
722 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualResetOne, pVM);
723
724 for (VMCPUID i = 0; i < pVM->cCpus; i++)
725 {
726 PVMCPU pVCpu = &pVM->aCpus[i];
727 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
728 }
729
730 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualReset), b);
731 }
732 pgmUnlock(pVM);
733
734 return !!(fTodo & PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL);
735
736#else /* real / protected */
737 NOREF(pVM); NOREF(cr4);
738 return false;
739#endif
740}
741
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette