VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllGst.h@ 93582

Last change on this file since 93582 was 93572, checked in by vboxsync, 3 years ago

VMM: Nested VMX: bugref:10092 When paging isn't enabled when using EPT, linear addresses are guest-physical addresses but we still need to translate guest-physical to system-physical addresses.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 19.0 KB
Line 
1/* $Id: PGMAllGst.h 93572 2022-02-03 11:17:37Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Guest Paging Template - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Internal Functions *
21*********************************************************************************************************************************/
22RT_C_DECLS_BEGIN
23#if PGM_GST_TYPE == PGM_TYPE_32BIT \
24 || PGM_GST_TYPE == PGM_TYPE_PAE \
25 || PGM_GST_TYPE == PGM_TYPE_AMD64
26DECLINLINE(int) PGM_GST_NAME(Walk)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PPGMPTWALK pWalk, PGSTPTWALK pGstWalk);
27#endif
28PGM_GST_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PPGMPTWALK pWalk);
29PGM_GST_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask);
30
31#ifdef IN_RING3 /* r3 only for now. */
32PGM_GST_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
33PGM_GST_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta);
34PGM_GST_DECL(int, Exit)(PVMCPUCC pVCpu);
35#endif
36RT_C_DECLS_END
37
38
39/**
40 * Enters the guest mode.
41 *
42 * @returns VBox status code.
43 * @param pVCpu The cross context virtual CPU structure.
44 * @param GCPhysCR3 The physical address from the CR3 register.
45 */
46PGM_GST_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
47{
48 /*
49 * Map and monitor CR3
50 */
51 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
52 AssertReturn(idxBth < RT_ELEMENTS(g_aPgmBothModeData), VERR_PGM_MODE_IPE);
53 AssertReturn(g_aPgmBothModeData[idxBth].pfnMapCR3, VERR_PGM_MODE_IPE);
54 return g_aPgmBothModeData[idxBth].pfnMapCR3(pVCpu, GCPhysCR3);
55}
56
57
58/**
59 * Exits the guest mode.
60 *
61 * @returns VBox status code.
62 * @param pVCpu The cross context virtual CPU structure.
63 */
64PGM_GST_DECL(int, Exit)(PVMCPUCC pVCpu)
65{
66 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
67 AssertReturn(idxBth < RT_ELEMENTS(g_aPgmBothModeData), VERR_PGM_MODE_IPE);
68 AssertReturn(g_aPgmBothModeData[idxBth].pfnUnmapCR3, VERR_PGM_MODE_IPE);
69 return g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
70}
71
72
73#if PGM_GST_TYPE == PGM_TYPE_32BIT \
74 || PGM_GST_TYPE == PGM_TYPE_PAE \
75 || PGM_GST_TYPE == PGM_TYPE_AMD64
76
77
78DECLINLINE(int) PGM_GST_NAME(WalkReturnNotPresent)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, int iLevel)
79{
80 NOREF(iLevel); NOREF(pVCpu);
81 pWalk->fNotPresent = true;
82 pWalk->uLevel = (uint8_t)iLevel;
83 return VERR_PAGE_TABLE_NOT_PRESENT;
84}
85
86DECLINLINE(int) PGM_GST_NAME(WalkReturnBadPhysAddr)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, int iLevel, int rc)
87{
88 AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu);
89 pWalk->fBadPhysAddr = true;
90 pWalk->uLevel = (uint8_t)iLevel;
91 return VERR_PAGE_TABLE_NOT_PRESENT;
92}
93
94DECLINLINE(int) PGM_GST_NAME(WalkReturnRsvdError)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, int iLevel)
95{
96 NOREF(pVCpu);
97 pWalk->fRsvdError = true;
98 pWalk->uLevel = (uint8_t)iLevel;
99 return VERR_PAGE_TABLE_NOT_PRESENT;
100}
101
102
103/**
104 * Performs a guest page table walk.
105 *
106 * @returns VBox status code.
107 * @retval VINF_SUCCESS on success.
108 * @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details.
109 *
110 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
111 * @param GCPtr The guest virtual address to walk by.
112 * @param pWalk The page walk info.
113 * @param pGstWalk The guest mode specific page walk info.
114 */
115DECLINLINE(int) PGM_GST_NAME(Walk)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PPGMPTWALK pWalk, PGSTPTWALK pGstWalk)
116{
117 int rc;
118
119#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
120/** @def PGM_GST_SLAT_WALK
121 * Macro to perform guest second-level address translation (EPT or Nested).
122 *
123 * @param a_pVCpu The cross context virtual CPU structure of the calling
124 * EMT.
125 * @param a_GCPtrNested The nested-guest linear address that caused the
126 * second-level translation.
127 * @param a_GCPhysNested The nested-guest physical address to translate.
128 * @param a_GCPhysOut Where to store the guest-physical address (result).
129 */
130# define PGM_GST_SLAT_WALK(a_pVCpu, a_GCPtrNested, a_GCPhysNested, a_GCPhysOut, a_pWalk) \
131 do { \
132 if ((a_pVCpu)->pgm.s.enmGuestSlatMode == PGMSLAT_EPT) \
133 { \
134 PGMPTWALK SlatWalk; \
135 PGMPTWALKGST SlatGstWalk; \
136 int const rcX = pgmGstSlatWalk(a_pVCpu, a_GCPhysNested, true /* fIsLinearAddrValid */, a_GCPtrNested, &SlatWalk, \
137 &SlatGstWalk); \
138 if (RT_SUCCESS(rcX)) \
139 (a_GCPhysOut) = SlatWalk.GCPhys; \
140 else \
141 { \
142 *(a_pWalk) = SlatWalk; \
143 return rcX; \
144 } \
145 } \
146 } while (0)
147#endif
148
149 /*
150 * Init the walking structures.
151 */
152 RT_ZERO(*pWalk);
153 RT_ZERO(*pGstWalk);
154 pWalk->GCPtr = GCPtr;
155
156# if PGM_GST_TYPE == PGM_TYPE_32BIT \
157 || PGM_GST_TYPE == PGM_TYPE_PAE
158 /*
159 * Boundary check for PAE and 32-bit (prevents trouble further down).
160 */
161 if (RT_UNLIKELY(GCPtr >= _4G))
162 return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 8);
163# endif
164
165 uint64_t fEffective;
166 {
167# if PGM_GST_TYPE == PGM_TYPE_AMD64
168 /*
169 * The PML4 table.
170 */
171 rc = pgmGstGetLongModePML4PtrEx(pVCpu, &pGstWalk->pPml4);
172 if (RT_SUCCESS(rc)) { /* probable */ }
173 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc);
174
175 PX86PML4E pPml4e;
176 pGstWalk->pPml4e = pPml4e = &pGstWalk->pPml4->a[(GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK];
177 X86PML4E Pml4e;
178 pGstWalk->Pml4e.u = Pml4e.u = pPml4e->u;
179
180 if (GST_IS_PGENTRY_PRESENT(pVCpu, Pml4e)) { /* probable */ }
181 else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 4);
182
183 if (RT_LIKELY(GST_IS_PML4E_VALID(pVCpu, Pml4e))) { /* likely */ }
184 else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 4);
185
186 fEffective = Pml4e.u & ( X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_PWT | X86_PML4E_PCD | X86_PML4E_A
187 | X86_PML4E_NX);
188 pWalk->fEffective = fEffective;
189
190 /*
191 * The PDPT.
192 */
193 RTGCPHYS GCPhysPdpt = Pml4e.u & X86_PML4E_PG_MASK;
194#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
195 PGM_GST_SLAT_WALK(pVCpu, GCPtr, GCPhysPdpt, GCPhysPdpt, pWalk);
196#endif
197 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GCPhysPdpt, &pGstWalk->pPdpt);
198 if (RT_SUCCESS(rc)) { /* probable */ }
199 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc);
200
201# elif PGM_GST_TYPE == PGM_TYPE_PAE
202 rc = pgmGstGetPaePDPTPtrEx(pVCpu, &pGstWalk->pPdpt);
203 if (RT_SUCCESS(rc)) { /* probable */ }
204 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc);
205#endif
206 }
207 {
208# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
209 PX86PDPE pPdpe;
210 pGstWalk->pPdpe = pPdpe = &pGstWalk->pPdpt->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
211 X86PDPE Pdpe;
212 pGstWalk->Pdpe.u = Pdpe.u = pPdpe->u;
213
214 if (GST_IS_PGENTRY_PRESENT(pVCpu, Pdpe)) { /* probable */ }
215 else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 3);
216
217 if (RT_LIKELY(GST_IS_PDPE_VALID(pVCpu, Pdpe))) { /* likely */ }
218 else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 3);
219
220# if PGM_GST_TYPE == PGM_TYPE_AMD64
221 fEffective &= (Pdpe.u & ( X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US
222 | X86_PDPE_PWT | X86_PDPE_PCD | X86_PDPE_A));
223 fEffective |= Pdpe.u & X86_PDPE_LM_NX;
224# else
225 /*
226 * NX in the legacy-mode PAE PDPE is reserved. The valid check above ensures the NX bit is not set.
227 * The RW, US, A bits MBZ in PAE PDPTE entries but must be 1 the way we compute cumulative (effective) access rights.
228 */
229 Assert(!(Pdpe.u & X86_PDPE_LM_NX));
230 fEffective = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A
231 | (Pdpe.u & (X86_PDPE_PWT | X86_PDPE_PCD));
232# endif
233 pWalk->fEffective = fEffective;
234
235 /*
236 * The PD.
237 */
238 RTGCPHYS GCPhysPd = Pdpe.u & X86_PDPE_PG_MASK;
239# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
240 PGM_GST_SLAT_WALK(pVCpu, GCPtr, GCPhysPd, GCPhysPd, pWalk);
241# endif
242 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GCPhysPd, &pGstWalk->pPd);
243 if (RT_SUCCESS(rc)) { /* probable */ }
244 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 2, rc);
245
246# elif PGM_GST_TYPE == PGM_TYPE_32BIT
247 rc = pgmGstGet32bitPDPtrEx(pVCpu, &pGstWalk->pPd);
248 if (RT_SUCCESS(rc)) { /* probable */ }
249 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc);
250# endif
251 }
252 {
253 PGSTPDE pPde;
254 pGstWalk->pPde = pPde = &pGstWalk->pPd->a[(GCPtr >> GST_PD_SHIFT) & GST_PD_MASK];
255 GSTPDE Pde;
256 pGstWalk->Pde.u = Pde.u = pPde->u;
257 if (GST_IS_PGENTRY_PRESENT(pVCpu, Pde)) { /* probable */ }
258 else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 2);
259 if ((Pde.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu))
260 {
261 if (RT_LIKELY(GST_IS_BIG_PDE_VALID(pVCpu, Pde))) { /* likely */ }
262 else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2);
263
264 /*
265 * We're done.
266 */
267# if PGM_GST_TYPE == PGM_TYPE_32BIT
268 fEffective = Pde.u & (X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PWT | X86_PDE4M_PCD | X86_PDE4M_A);
269# else
270 fEffective &= Pde.u & (X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PWT | X86_PDE4M_PCD | X86_PDE4M_A);
271 fEffective |= Pde.u & X86_PDE2M_PAE_NX;
272# endif
273 fEffective |= Pde.u & (X86_PDE4M_D | X86_PDE4M_G);
274 fEffective |= (Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT;
275 pWalk->fEffective = fEffective;
276 Assert(GST_IS_NX_ACTIVE(pVCpu) || !(fEffective & PGM_PTATTRS_NX_MASK));
277 Assert(fEffective & PGM_PTATTRS_R_MASK);
278
279 pWalk->fBigPage = true;
280 pWalk->fSucceeded = true;
281 RTGCPHYS GCPhysPde = GST_GET_BIG_PDE_GCPHYS(pVCpu->CTX_SUFF(pVM), Pde)
282 | (GCPtr & GST_BIG_PAGE_OFFSET_MASK);
283# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
284 PGM_GST_SLAT_WALK(pVCpu, GCPtr, GCPhysPde, GCPhysPde, pWalk);
285# endif
286 pWalk->GCPhys = GCPhysPde;
287 PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->GCPhys);
288 return VINF_SUCCESS;
289 }
290
291 if (RT_UNLIKELY(!GST_IS_PDE_VALID(pVCpu, Pde)))
292 return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2);
293# if PGM_GST_TYPE == PGM_TYPE_32BIT
294 fEffective = Pde.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD | X86_PDE_A);
295# else
296 fEffective &= Pde.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD | X86_PDE_A);
297 fEffective |= Pde.u & X86_PDE_PAE_NX;
298# endif
299 pWalk->fEffective = fEffective;
300
301 /*
302 * The PT.
303 */
304 RTGCPHYS GCPhysPt = GST_GET_PDE_GCPHYS(Pde);
305# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
306 PGM_GST_SLAT_WALK(pVCpu, GCPtr, GCPhysPt, GCPhysPt, pWalk);
307# endif
308 rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GCPhysPt, &pGstWalk->pPt);
309 if (RT_SUCCESS(rc)) { /* probable */ }
310 else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc);
311 }
312 {
313 PGSTPTE pPte;
314 pGstWalk->pPte = pPte = &pGstWalk->pPt->a[(GCPtr >> GST_PT_SHIFT) & GST_PT_MASK];
315 GSTPTE Pte;
316 pGstWalk->Pte.u = Pte.u = pPte->u;
317
318 if (GST_IS_PGENTRY_PRESENT(pVCpu, Pte)) { /* probable */ }
319 else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 1);
320
321 if (RT_LIKELY(GST_IS_PTE_VALID(pVCpu, Pte))) { /* likely */ }
322 else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 1);
323
324 /*
325 * We're done.
326 */
327 fEffective &= Pte.u & (X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A);
328 fEffective |= Pte.u & (X86_PTE_D | X86_PTE_PAT | X86_PTE_G);
329# if PGM_GST_TYPE != PGM_TYPE_32BIT
330 fEffective |= Pte.u & X86_PTE_PAE_NX;
331# endif
332 pWalk->fEffective = fEffective;
333 Assert(GST_IS_NX_ACTIVE(pVCpu) || !(fEffective & PGM_PTATTRS_NX_MASK));
334 Assert(fEffective & PGM_PTATTRS_R_MASK);
335
336 pWalk->fSucceeded = true;
337 RTGCPHYS GCPhysPte = GST_GET_PTE_GCPHYS(Pte)
338 | (GCPtr & GUEST_PAGE_OFFSET_MASK);
339# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
340 PGM_GST_SLAT_WALK(pVCpu, GCPtr, GCPhysPte, GCPhysPte, pWalk);
341# endif
342 pWalk->GCPhys = GCPhysPte;
343 return VINF_SUCCESS;
344 }
345}
346
347#endif /* 32BIT, PAE, AMD64 */
348
349/**
350 * Gets effective Guest OS page information.
351 *
352 * When GCPtr is in a big page, the function will return as if it was a normal
353 * 4KB page. If the need for distinguishing between big and normal page becomes
354 * necessary at a later point, a PGMGstGetPage Ex() will be created for that
355 * purpose.
356 *
357 * @returns VBox status code.
358 * @param pVCpu The cross context virtual CPU structure.
359 * @param GCPtr Guest Context virtual address of the page.
360 * @param pWalk Where to store the page walk info.
361 */
362PGM_GST_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PPGMPTWALK pWalk)
363{
364#if PGM_GST_TYPE == PGM_TYPE_REAL \
365 || PGM_GST_TYPE == PGM_TYPE_PROT
366
367 RT_ZERO(*pWalk);
368# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
369 if (pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT)
370 {
371 PGMPTWALK SlatWalk;
372 PGMPTWALKGST SlatGstWalk;
373 int const rc = pgmGstSlatWalk(pVCpu, GCPtr, true /* fIsLinearAddrValid */, GCPtr, &SlatWalk, &SlatGstWalk);
374 if (RT_SUCCESS(rc))
375 {
376 pWalk->fSucceeded = true;
377 pWalk->GCPtr = GCPtr;
378 pWalk->GCPhys = SlatWalk.GCPhys & PAGE_BASE_GC_MASK;
379 pWalk->fEffective = X86_PTE_P | X86_PTE_RW | X86_PTE_US;
380 }
381 else
382 *pWalk = SlatWalk;
383 return rc;
384 }
385# endif
386
387 /*
388 * Fake it.
389 */
390 pWalk->fSucceeded = true;
391 pWalk->GCPtr = GCPtr;
392 pWalk->GCPhys = GCPtr & PAGE_BASE_GC_MASK;
393 pWalk->fEffective = X86_PTE_P | X86_PTE_RW | X86_PTE_US;
394 NOREF(pVCpu);
395 return VINF_SUCCESS;
396
397#elif PGM_GST_TYPE == PGM_TYPE_32BIT \
398 || PGM_GST_TYPE == PGM_TYPE_PAE \
399 || PGM_GST_TYPE == PGM_TYPE_AMD64
400
401 GSTPTWALK GstWalk;
402 int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, pWalk, &GstWalk);
403 if (RT_FAILURE(rc))
404 return rc;
405
406 Assert(pWalk->fSucceeded);
407 Assert(pWalk->GCPtr == GCPtr);
408
409 PGMPTATTRS fFlags;
410 if (!pWalk->fBigPage)
411 fFlags = (GstWalk.Pte.u & ~(GST_PTE_PG_MASK | X86_PTE_RW | X86_PTE_US)) /* NX not needed */
412 | (pWalk->fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK))
413# if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE)
414 | (pWalk->fEffective & PGM_PTATTRS_NX_MASK)
415# endif
416 ;
417 else
418 {
419 fFlags = (GstWalk.Pde.u & ~(GST_PTE_PG_MASK | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PS)) /* NX not needed */
420 | (pWalk->fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK | PGM_PTATTRS_PAT_MASK))
421# if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE)
422 | (pWalk->fEffective & PGM_PTATTRS_NX_MASK)
423# endif
424 ;
425 }
426
427 pWalk->GCPhys &= ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
428 pWalk->fEffective = fFlags;
429 return VINF_SUCCESS;
430
431#else
432# error "shouldn't be here!"
433 /* something else... */
434 return VERR_NOT_SUPPORTED;
435#endif
436}
437
438
439/**
440 * Modify page flags for a range of pages in the guest's tables
441 *
442 * The existing flags are ANDed with the fMask and ORed with the fFlags.
443 *
444 * @returns VBox status code.
445 * @param pVCpu The cross context virtual CPU structure.
446 * @param GCPtr Virtual address of the first page in the range. Page aligned!
447 * @param cb Size (in bytes) of the page range to apply the modification to. Page aligned!
448 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
449 * @param fMask The AND mask - page flags X86_PTE_*.
450 */
451PGM_GST_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
452{
453 Assert((cb & GUEST_PAGE_OFFSET_MASK) == 0); RT_NOREF_PV(cb);
454
455#if PGM_GST_TYPE == PGM_TYPE_32BIT \
456 || PGM_GST_TYPE == PGM_TYPE_PAE \
457 || PGM_GST_TYPE == PGM_TYPE_AMD64
458 for (;;)
459 {
460 PGMPTWALK Walk;
461 GSTPTWALK GstWalk;
462 int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk, &GstWalk);
463 if (RT_FAILURE(rc))
464 return rc;
465
466 if (!Walk.fBigPage)
467 {
468 /*
469 * 4KB Page table, process
470 *
471 * Walk pages till we're done.
472 */
473 unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK;
474 while (iPTE < RT_ELEMENTS(GstWalk.pPt->a))
475 {
476 GSTPTE Pte = GstWalk.pPt->a[iPTE];
477 Pte.u = (Pte.u & (fMask | X86_PTE_PAE_PG_MASK))
478 | (fFlags & ~GST_PTE_PG_MASK);
479 GstWalk.pPt->a[iPTE] = Pte;
480
481 /* next page */
482 cb -= GUEST_PAGE_SIZE;
483 if (!cb)
484 return VINF_SUCCESS;
485 GCPtr += GUEST_PAGE_SIZE;
486 iPTE++;
487 }
488 }
489 else
490 {
491 /*
492 * 2/4MB Page table
493 */
494 GSTPDE PdeNew;
495# if PGM_GST_TYPE == PGM_TYPE_32BIT
496 PdeNew.u = (GstWalk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PG_HIGH_MASK | X86_PDE4M_PS))
497# else
498 PdeNew.u = (GstWalk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PS))
499# endif
500 | (fFlags & ~GST_PTE_PG_MASK)
501 | ((fFlags & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT);
502 *GstWalk.pPde = PdeNew;
503
504 /* advance */
505 const unsigned cbDone = GST_BIG_PAGE_SIZE - (GCPtr & GST_BIG_PAGE_OFFSET_MASK);
506 if (cbDone >= cb)
507 return VINF_SUCCESS;
508 cb -= cbDone;
509 GCPtr += cbDone;
510 }
511 }
512
513#else
514 /* real / protected mode: ignore. */
515 NOREF(pVCpu); NOREF(GCPtr); NOREF(fFlags); NOREF(fMask);
516 return VINF_SUCCESS;
517#endif
518}
519
520
521#ifdef IN_RING3
522/**
523 * Relocate any GC pointers related to guest mode paging.
524 *
525 * @returns VBox status code.
526 * @param pVCpu The cross context virtual CPU structure.
527 * @param offDelta The relocation offset.
528 */
529PGM_GST_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta)
530{
531 RT_NOREF(pVCpu, offDelta);
532 return VINF_SUCCESS;
533}
534#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette