VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllHandler.cpp@ 35499

Last change on this file since 35499 was 35346, checked in by vboxsync, 14 years ago

VMM reorg: Moving the public include files from include/VBox to include/VBox/vmm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 70.5 KB
Line 
1/* $Id: PGMAllHandler.cpp 35346 2010-12-27 16:13:13Z vboxsync $ */
2/** @file
3 * PGM - Page Manager / Monitor, Access Handlers.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/vmm/dbgf.h>
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/mm.h>
27#include <VBox/vmm/em.h>
28#include <VBox/vmm/stam.h>
29#include <VBox/vmm/rem.h>
30#include <VBox/vmm/dbgf.h>
31#include <VBox/vmm/rem.h>
32#include "PGMInternal.h"
33#include <VBox/vmm/vm.h>
34#include "PGMInline.h"
35
36#include <VBox/log.h>
37#include <iprt/assert.h>
38#include <iprt/asm-amd64-x86.h>
39#include <iprt/string.h>
40#include <VBox/param.h>
41#include <VBox/err.h>
42#include <VBox/vmm/selm.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48static int pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(PVM pVM, PPGMPHYSHANDLER pCur, PPGMRAMRANGE pRam);
49static void pgmHandlerPhysicalDeregisterNotifyREM(PVM pVM, PPGMPHYSHANDLER pCur);
50static void pgmHandlerPhysicalResetRamFlags(PVM pVM, PPGMPHYSHANDLER pCur);
51
52
53
54/**
55 * Register a access handler for a physical range.
56 *
57 * @returns VBox status code.
58 * @retval VINF_SUCCESS when successfully installed.
59 * @retval VINF_PGM_GCPHYS_ALIASED when the shadow PTs could be updated because
60 * the guest page aliased or/and mapped by multiple PTs. A CR3 sync has been
61 * flagged together with a pool clearing.
62 * @retval VERR_PGM_HANDLER_PHYSICAL_CONFLICT if the range conflicts with an existing
63 * one. A debug assertion is raised.
64 *
65 * @param pVM VM Handle.
66 * @param enmType Handler type. Any of the PGMPHYSHANDLERTYPE_PHYSICAL* enums.
67 * @param GCPhys Start physical address.
68 * @param GCPhysLast Last physical address. (inclusive)
69 * @param pfnHandlerR3 The R3 handler.
70 * @param pvUserR3 User argument to the R3 handler.
71 * @param pfnHandlerR0 The R0 handler.
72 * @param pvUserR0 User argument to the R0 handler.
73 * @param pfnHandlerRC The RC handler.
74 * @param pvUserRC User argument to the RC handler. This can be a value
75 * less that 0x10000 or a (non-null) pointer that is
76 * automatically relocated.
77 * @param pszDesc Pointer to description string. This must not be freed.
78 */
79VMMDECL(int) PGMHandlerPhysicalRegisterEx(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
80 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
81 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
82 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
83 R3PTRTYPE(const char *) pszDesc)
84{
85 Log(("PGMHandlerPhysicalRegisterEx: enmType=%d GCPhys=%RGp GCPhysLast=%RGp pfnHandlerR3=%RHv pvUserR3=%RHv pfnHandlerR0=%RHv pvUserR0=%RHv pfnHandlerGC=%RRv pvUserGC=%RRv pszDesc=%s\n",
86 enmType, GCPhys, GCPhysLast, pfnHandlerR3, pvUserR3, pfnHandlerR0, pvUserR0, pfnHandlerRC, pvUserRC, R3STRING(pszDesc)));
87
88 /*
89 * Validate input.
90 */
91 AssertMsgReturn(GCPhys < GCPhysLast, ("GCPhys >= GCPhysLast (%#x >= %#x)\n", GCPhys, GCPhysLast), VERR_INVALID_PARAMETER);
92 switch (enmType)
93 {
94 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
95 break;
96 case PGMPHYSHANDLERTYPE_MMIO:
97 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
98 /* Simplification for PGMPhysRead, PGMR0Trap0eHandlerNPMisconfig and others. */
99 AssertMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_INVALID_PARAMETER);
100 AssertMsgReturn((GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK, ("%RGp\n", GCPhysLast), VERR_INVALID_PARAMETER);
101 break;
102 default:
103 AssertMsgFailed(("Invalid input enmType=%d!\n", enmType));
104 return VERR_INVALID_PARAMETER;
105 }
106 AssertMsgReturn( (RTRCUINTPTR)pvUserRC < 0x10000
107 || MMHyperR3ToRC(pVM, MMHyperRCToR3(pVM, pvUserRC)) == pvUserRC,
108 ("Not RC pointer! pvUserRC=%RRv\n", pvUserRC),
109 VERR_INVALID_PARAMETER);
110 AssertMsgReturn( (RTR0UINTPTR)pvUserR0 < 0x10000
111 || MMHyperR3ToR0(pVM, MMHyperR0ToR3(pVM, pvUserR0)) == pvUserR0,
112 ("Not R0 pointer! pvUserR0=%RHv\n", pvUserR0),
113 VERR_INVALID_PARAMETER);
114 AssertPtrReturn(pfnHandlerR3, VERR_INVALID_POINTER);
115 AssertReturn(pfnHandlerR0, VERR_INVALID_PARAMETER);
116 AssertReturn(pfnHandlerRC, VERR_INVALID_PARAMETER);
117
118 /*
119 * We require the range to be within registered ram.
120 * There is no apparent need to support ranges which cover more than one ram range.
121 */
122 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
123 while (pRam && GCPhys > pRam->GCPhysLast)
124 pRam = pRam->CTX_SUFF(pNext);
125 if ( !pRam
126 || GCPhysLast < pRam->GCPhys
127 || GCPhys > pRam->GCPhysLast)
128 {
129#ifdef IN_RING3
130 DBGFR3Info(pVM, "phys", NULL, NULL);
131#endif
132 AssertMsgFailed(("No RAM range for %RGp-%RGp\n", GCPhys, GCPhysLast));
133 return VERR_PGM_HANDLER_PHYSICAL_NO_RAM_RANGE;
134 }
135
136 /*
137 * Allocate and initialize the new entry.
138 */
139 PPGMPHYSHANDLER pNew;
140 int rc = MMHyperAlloc(pVM, sizeof(*pNew), 0, MM_TAG_PGM_HANDLERS, (void **)&pNew);
141 if (RT_FAILURE(rc))
142 return rc;
143
144 pNew->Core.Key = GCPhys;
145 pNew->Core.KeyLast = GCPhysLast;
146 pNew->enmType = enmType;
147 pNew->cPages = (GCPhysLast - (GCPhys & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
148 pNew->cAliasedPages = 0;
149 pNew->cTmpOffPages = 0;
150 pNew->pfnHandlerR3 = pfnHandlerR3;
151 pNew->pvUserR3 = pvUserR3;
152 pNew->pfnHandlerR0 = pfnHandlerR0;
153 pNew->pvUserR0 = pvUserR0;
154 pNew->pfnHandlerRC = pfnHandlerRC;
155 pNew->pvUserRC = pvUserRC;
156 pNew->pszDesc = pszDesc;
157
158 pgmLock(pVM);
159
160 /*
161 * Try insert into list.
162 */
163 if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pNew->Core))
164 {
165 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pNew, pRam);
166 if (rc == VINF_PGM_SYNC_CR3)
167 rc = VINF_PGM_GCPHYS_ALIASED;
168 pgmUnlock(pVM);
169#ifndef IN_RING3
170 REMNotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, GCPhysLast - GCPhys + 1, !!pfnHandlerR3);
171#else
172 REMR3NotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, GCPhysLast - GCPhys + 1, !!pfnHandlerR3);
173#endif
174 if (rc != VINF_SUCCESS)
175 Log(("PGMHandlerPhysicalRegisterEx: returns %Rrc (%RGp-%RGp)\n", rc, GCPhys, GCPhysLast));
176 return rc;
177 }
178
179 pgmUnlock(pVM);
180
181#if defined(IN_RING3) && defined(VBOX_STRICT)
182 DBGFR3Info(pVM, "handlers", "phys nostats", NULL);
183#endif
184 AssertMsgFailed(("Conflict! GCPhys=%RGp GCPhysLast=%RGp pszDesc=%s\n", GCPhys, GCPhysLast, pszDesc));
185 MMHyperFree(pVM, pNew);
186 return VERR_PGM_HANDLER_PHYSICAL_CONFLICT;
187}
188
189
190/**
191 * Sets ram range flags and attempts updating shadow PTs.
192 *
193 * @returns VBox status code.
194 * @retval VINF_SUCCESS when shadow PTs was successfully updated.
195 * @retval VINF_PGM_SYNC_CR3 when the shadow PTs could be updated because
196 * the guest page aliased or/and mapped by multiple PTs. FFs set.
197 * @param pVM The VM handle.
198 * @param pCur The physical handler.
199 * @param pRam The RAM range.
200 */
201static int pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(PVM pVM, PPGMPHYSHANDLER pCur, PPGMRAMRANGE pRam)
202{
203 /*
204 * Iterate the guest ram pages updating the flags and flushing PT entries
205 * mapping the page.
206 */
207 bool fFlushTLBs = false;
208 int rc = VINF_SUCCESS;
209 const unsigned uState = pgmHandlerPhysicalCalcState(pCur);
210 uint32_t cPages = pCur->cPages;
211 uint32_t i = (pCur->Core.Key - pRam->GCPhys) >> PAGE_SHIFT;
212 for (;;)
213 {
214 PPGMPAGE pPage = &pRam->aPages[i];
215 AssertMsg(pCur->enmType != PGMPHYSHANDLERTYPE_MMIO || PGM_PAGE_IS_MMIO(pPage),
216 ("%RGp %R[pgmpage]\n", pRam->GCPhys + (i << PAGE_SHIFT), pPage));
217
218 /* Only do upgrades. */
219 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) < uState)
220 {
221 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, uState);
222
223 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRam->GCPhys + (i << PAGE_SHIFT), pPage,
224 false /* allow updates of PTEs (instead of flushing) */, &fFlushTLBs);
225 if (rc2 != VINF_SUCCESS && rc == VINF_SUCCESS)
226 rc = rc2;
227 }
228
229 /* next */
230 if (--cPages == 0)
231 break;
232 i++;
233 }
234
235 if (fFlushTLBs)
236 {
237 PGM_INVL_ALL_VCPU_TLBS(pVM);
238 Log(("pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs: flushing guest TLBs; rc=%d\n", rc));
239 }
240 else
241 Log(("pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs: doesn't flush guest TLBs. rc=%Rrc; sync flags=%x VMCPU_FF_PGM_SYNC_CR3=%d\n", rc, VMMGetCpu(pVM)->pgm.s.fSyncFlags, VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3)));
242
243 return rc;
244}
245
246
247/**
248 * Register a physical page access handler.
249 *
250 * @returns VBox status code.
251 * @param pVM VM Handle.
252 * @param GCPhys Start physical address.
253 */
254VMMDECL(int) PGMHandlerPhysicalDeregister(PVM pVM, RTGCPHYS GCPhys)
255{
256 /*
257 * Find the handler.
258 */
259 pgmLock(pVM);
260 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
261 if (pCur)
262 {
263 LogFlow(("PGMHandlerPhysicalDeregister: Removing Range %RGp-%RGp %s\n",
264 pCur->Core.Key, pCur->Core.KeyLast, R3STRING(pCur->pszDesc)));
265
266 /*
267 * Clear the page bits, notify the REM about this change and clear
268 * the cache.
269 */
270 pgmHandlerPhysicalResetRamFlags(pVM, pCur);
271 pgmHandlerPhysicalDeregisterNotifyREM(pVM, pCur);
272 pVM->pgm.s.pLastPhysHandlerR0 = 0;
273 pVM->pgm.s.pLastPhysHandlerR3 = 0;
274 pVM->pgm.s.pLastPhysHandlerRC = 0;
275 MMHyperFree(pVM, pCur);
276 pgmUnlock(pVM);
277 return VINF_SUCCESS;
278 }
279 pgmUnlock(pVM);
280
281 AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys));
282 return VERR_PGM_HANDLER_NOT_FOUND;
283}
284
285
286/**
287 * Shared code with modify.
288 */
289static void pgmHandlerPhysicalDeregisterNotifyREM(PVM pVM, PPGMPHYSHANDLER pCur)
290{
291 RTGCPHYS GCPhysStart = pCur->Core.Key;
292 RTGCPHYS GCPhysLast = pCur->Core.KeyLast;
293
294 /*
295 * Page align the range.
296 *
297 * Since we've reset (recalculated) the physical handler state of all pages
298 * we can make use of the page states to figure out whether a page should be
299 * included in the REM notification or not.
300 */
301 if ( (pCur->Core.Key & PAGE_OFFSET_MASK)
302 || ((pCur->Core.KeyLast + 1) & PAGE_OFFSET_MASK))
303 {
304 Assert(pCur->enmType != PGMPHYSHANDLERTYPE_MMIO);
305
306 if (GCPhysStart & PAGE_OFFSET_MASK)
307 {
308 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysStart);
309 if ( pPage
310 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
311 {
312 RTGCPHYS GCPhys = (GCPhysStart + (PAGE_SIZE - 1)) & X86_PTE_PAE_PG_MASK;
313 if ( GCPhys > GCPhysLast
314 || GCPhys < GCPhysStart)
315 return;
316 GCPhysStart = GCPhys;
317 }
318 else
319 GCPhysStart &= X86_PTE_PAE_PG_MASK;
320 Assert(!pPage || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO); /* these are page aligned atm! */
321 }
322
323 if (GCPhysLast & PAGE_OFFSET_MASK)
324 {
325 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysLast);
326 if ( pPage
327 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
328 {
329 RTGCPHYS GCPhys = (GCPhysLast & X86_PTE_PAE_PG_MASK) - 1;
330 if ( GCPhys < GCPhysStart
331 || GCPhys > GCPhysLast)
332 return;
333 GCPhysLast = GCPhys;
334 }
335 else
336 GCPhysLast |= PAGE_OFFSET_MASK;
337 Assert(!pPage || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO); /* these are page aligned atm! */
338 }
339 }
340
341 /*
342 * Tell REM.
343 */
344 const bool fRestoreAsRAM = pCur->pfnHandlerR3
345 && pCur->enmType != PGMPHYSHANDLERTYPE_MMIO; /** @todo this isn't entirely correct. */
346#ifndef IN_RING3
347 REMNotifyHandlerPhysicalDeregister(pVM, pCur->enmType, GCPhysStart, GCPhysLast - GCPhysStart + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
348#else
349 REMR3NotifyHandlerPhysicalDeregister(pVM, pCur->enmType, GCPhysStart, GCPhysLast - GCPhysStart + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
350#endif
351}
352
353
354/**
355 * pgmHandlerPhysicalResetRamFlags helper that checks for other handlers on
356 * edge pages.
357 */
358DECLINLINE(void) pgmHandlerPhysicalRecalcPageState(PVM pVM, RTGCPHYS GCPhys, bool fAbove, PPGMRAMRANGE *ppRamHint)
359{
360 /*
361 * Look for other handlers.
362 */
363 unsigned uState = PGM_PAGE_HNDL_PHYS_STATE_NONE;
364 for (;;)
365 {
366 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys, fAbove);
367 if ( !pCur
368 || ((fAbove ? pCur->Core.Key : pCur->Core.KeyLast) >> PAGE_SHIFT) != (GCPhys >> PAGE_SHIFT))
369 break;
370 unsigned uThisState = pgmHandlerPhysicalCalcState(pCur);
371 uState = RT_MAX(uState, uThisState);
372
373 /* next? */
374 RTGCPHYS GCPhysNext = fAbove
375 ? pCur->Core.KeyLast + 1
376 : pCur->Core.Key - 1;
377 if ((GCPhysNext >> PAGE_SHIFT) != (GCPhys >> PAGE_SHIFT))
378 break;
379 GCPhys = GCPhysNext;
380 }
381
382 /*
383 * Update if we found something that is a higher priority
384 * state than the current.
385 */
386 if (uState != PGM_PAGE_HNDL_PHYS_STATE_NONE)
387 {
388 PPGMPAGE pPage;
389 int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, ppRamHint);
390 if ( RT_SUCCESS(rc)
391 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) < uState)
392 {
393 /* This should normally not be necessary. */
394 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, uState);
395 bool fFlushTLBs ;
396 rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhys, pPage, false /*fFlushPTEs*/, &fFlushTLBs);
397 if (RT_SUCCESS(rc) && fFlushTLBs)
398 PGM_INVL_ALL_VCPU_TLBS(pVM);
399 else
400 AssertRC(rc);
401 }
402 else
403 AssertRC(rc);
404 }
405}
406
407
408/**
409 * Resets an aliased page.
410 *
411 * @param pVM The VM.
412 * @param pPage The page.
413 * @param GCPhysPage The page address in case it comes in handy.
414 * @param fDoAccounting Whether to perform accounting. (Only set during
415 * reset where pgmR3PhysRamReset doesn't have the
416 * handler structure handy.)
417 */
418void pgmHandlerPhysicalResetAliasedPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhysPage, bool fDoAccounting)
419{
420 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO);
421 Assert(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
422
423 /*
424 * Flush any shadow page table references *first*.
425 */
426 bool fFlushTLBs = false;
427 int rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysPage, pPage, true /*fFlushPTEs*/, &fFlushTLBs);
428 AssertLogRelRCReturnVoid(rc);
429# ifdef IN_RC
430 if (fFlushTLBs && rc != VINF_PGM_SYNC_CR3)
431 PGM_INVL_VCPU_TLBS(VMMGetCpu0(pVM));
432# else
433 HWACCMFlushTLBOnAllVCpus(pVM);
434# endif
435
436 /*
437 * Make it an MMIO/Zero page.
438 */
439 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
440 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_MMIO);
441 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
442 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
443 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_ALL);
444
445 /* Flush its TLB entry. */
446 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhysPage);
447
448 /*
449 * Do accounting for pgmR3PhysRamReset.
450 */
451 if (fDoAccounting)
452 {
453 PPGMPHYSHANDLER pHandler = pgmHandlerPhysicalLookup(pVM, GCPhysPage);
454 if (RT_LIKELY(pHandler))
455 {
456 Assert(pHandler->cAliasedPages > 0);
457 pHandler->cAliasedPages--;
458 }
459 else
460 AssertFailed();
461 }
462}
463
464
465/**
466 * Resets ram range flags.
467 *
468 * @returns VBox status code.
469 * @retval VINF_SUCCESS when shadow PTs was successfully updated.
470 * @param pVM The VM handle.
471 * @param pCur The physical handler.
472 *
473 * @remark We don't start messing with the shadow page tables, as we've
474 * already got code in Trap0e which deals with out of sync handler
475 * flags (originally conceived for global pages).
476 */
477static void pgmHandlerPhysicalResetRamFlags(PVM pVM, PPGMPHYSHANDLER pCur)
478{
479 /*
480 * Iterate the guest ram pages updating the state.
481 */
482 RTUINT cPages = pCur->cPages;
483 RTGCPHYS GCPhys = pCur->Core.Key;
484 PPGMRAMRANGE pRamHint = NULL;
485 PPGM pPGM = &pVM->pgm.s;
486 for (;;)
487 {
488 PPGMPAGE pPage;
489 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, &pRamHint);
490 if (RT_SUCCESS(rc))
491 {
492 /* Reset MMIO2 for MMIO pages to MMIO, since this aliasing is our business.
493 (We don't flip MMIO to RAM though, that's PGMPhys.cpp's job.) */
494 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
495 {
496 Assert(pCur->cAliasedPages > 0);
497 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, GCPhys, false /*fDoAccounting*/);
498 pCur->cAliasedPages--;
499 }
500 AssertMsg(pCur->enmType != PGMPHYSHANDLERTYPE_MMIO || PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", GCPhys, pPage));
501 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_NONE);
502 }
503 else
504 AssertRC(rc);
505
506 /* next */
507 if (--cPages == 0)
508 break;
509 GCPhys += PAGE_SIZE;
510 }
511
512 pCur->cAliasedPages = 0;
513 pCur->cTmpOffPages = 0;
514
515 /*
516 * Check for partial start and end pages.
517 */
518 if (pCur->Core.Key & PAGE_OFFSET_MASK)
519 pgmHandlerPhysicalRecalcPageState(pVM, pCur->Core.Key - 1, false /* fAbove */, &pRamHint);
520 if ((pCur->Core.KeyLast & PAGE_OFFSET_MASK) != PAGE_OFFSET_MASK)
521 pgmHandlerPhysicalRecalcPageState(pVM, pCur->Core.KeyLast + 1, true /* fAbove */, &pRamHint);
522}
523
524
525/**
526 * Modify a physical page access handler.
527 *
528 * Modification can only be done to the range it self, not the type or anything else.
529 *
530 * @returns VBox status code.
531 * For all return codes other than VERR_PGM_HANDLER_NOT_FOUND and VINF_SUCCESS the range is deregistered
532 * and a new registration must be performed!
533 * @param pVM VM handle.
534 * @param GCPhysCurrent Current location.
535 * @param GCPhys New location.
536 * @param GCPhysLast New last location.
537 */
538VMMDECL(int) PGMHandlerPhysicalModify(PVM pVM, RTGCPHYS GCPhysCurrent, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast)
539{
540 /*
541 * Remove it.
542 */
543 int rc;
544 pgmLock(pVM);
545 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysCurrent);
546 if (pCur)
547 {
548 /*
549 * Clear the ram flags. (We're gonna move or free it!)
550 */
551 pgmHandlerPhysicalResetRamFlags(pVM, pCur);
552 const bool fRestoreAsRAM = pCur->pfnHandlerR3
553 && pCur->enmType != PGMPHYSHANDLERTYPE_MMIO; /** @todo this isn't entirely correct. */
554
555 /*
556 * Validate the new range, modify and reinsert.
557 */
558 if (GCPhysLast >= GCPhys)
559 {
560 /*
561 * We require the range to be within registered ram.
562 * There is no apparent need to support ranges which cover more than one ram range.
563 */
564 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
565 while (pRam && GCPhys > pRam->GCPhysLast)
566 pRam = pRam->CTX_SUFF(pNext);
567 if ( pRam
568 && GCPhys <= pRam->GCPhysLast
569 && GCPhysLast >= pRam->GCPhys)
570 {
571 pCur->Core.Key = GCPhys;
572 pCur->Core.KeyLast = GCPhysLast;
573 pCur->cPages = (GCPhysLast - (GCPhys & X86_PTE_PAE_PG_MASK) + 1) >> PAGE_SHIFT;
574
575 if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pCur->Core))
576 {
577 PGMPHYSHANDLERTYPE enmType = pCur->enmType;
578 RTGCPHYS cb = GCPhysLast - GCPhys + 1;
579 bool fHasHCHandler = !!pCur->pfnHandlerR3;
580
581 /*
582 * Set ram flags, flush shadow PT entries and finally tell REM about this.
583 */
584 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pCur, pRam);
585 pgmUnlock(pVM);
586
587#ifndef IN_RING3
588 REMNotifyHandlerPhysicalModify(pVM, enmType, GCPhysCurrent, GCPhys, cb,
589 fHasHCHandler, fRestoreAsRAM);
590#else
591 REMR3NotifyHandlerPhysicalModify(pVM, enmType, GCPhysCurrent, GCPhys, cb,
592 fHasHCHandler, fRestoreAsRAM);
593#endif
594 PGM_INVL_ALL_VCPU_TLBS(pVM);
595 Log(("PGMHandlerPhysicalModify: GCPhysCurrent=%RGp -> GCPhys=%RGp GCPhysLast=%RGp\n",
596 GCPhysCurrent, GCPhys, GCPhysLast));
597 return VINF_SUCCESS;
598 }
599
600 AssertMsgFailed(("Conflict! GCPhys=%RGp GCPhysLast=%RGp\n", GCPhys, GCPhysLast));
601 rc = VERR_PGM_HANDLER_PHYSICAL_CONFLICT;
602 }
603 else
604 {
605 AssertMsgFailed(("No RAM range for %RGp-%RGp\n", GCPhys, GCPhysLast));
606 rc = VERR_PGM_HANDLER_PHYSICAL_NO_RAM_RANGE;
607 }
608 }
609 else
610 {
611 AssertMsgFailed(("Invalid range %RGp-%RGp\n", GCPhys, GCPhysLast));
612 rc = VERR_INVALID_PARAMETER;
613 }
614
615 /*
616 * Invalid new location, flush the cache and free it.
617 * We've only gotta notify REM and free the memory.
618 */
619 pgmHandlerPhysicalDeregisterNotifyREM(pVM, pCur);
620 pVM->pgm.s.pLastPhysHandlerR0 = 0;
621 pVM->pgm.s.pLastPhysHandlerR3 = 0;
622 pVM->pgm.s.pLastPhysHandlerRC = 0;
623 MMHyperFree(pVM, pCur);
624 }
625 else
626 {
627 AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhysCurrent));
628 rc = VERR_PGM_HANDLER_NOT_FOUND;
629 }
630
631 pgmUnlock(pVM);
632 return rc;
633}
634
635
636/**
637 * Changes the callbacks associated with a physical access handler.
638 *
639 * @returns VBox status code.
640 * @param pVM VM Handle.
641 * @param GCPhys Start physical address.
642 * @param pfnHandlerR3 The R3 handler.
643 * @param pvUserR3 User argument to the R3 handler.
644 * @param pfnHandlerR0 The R0 handler.
645 * @param pvUserR0 User argument to the R0 handler.
646 * @param pfnHandlerRC The RC handler.
647 * @param pvUserRC User argument to the RC handler. Values larger or
648 * equal to 0x10000 will be relocated automatically.
649 * @param pszDesc Pointer to description string. This must not be freed.
650 */
651VMMDECL(int) PGMHandlerPhysicalChangeCallbacks(PVM pVM, RTGCPHYS GCPhys,
652 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
653 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
654 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
655 R3PTRTYPE(const char *) pszDesc)
656{
657 /*
658 * Get the handler.
659 */
660 int rc = VINF_SUCCESS;
661 pgmLock(pVM);
662 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
663 if (pCur)
664 {
665 /*
666 * Change callbacks.
667 */
668 pCur->pfnHandlerR3 = pfnHandlerR3;
669 pCur->pvUserR3 = pvUserR3;
670 pCur->pfnHandlerR0 = pfnHandlerR0;
671 pCur->pvUserR0 = pvUserR0;
672 pCur->pfnHandlerRC = pfnHandlerRC;
673 pCur->pvUserRC = pvUserRC;
674 pCur->pszDesc = pszDesc;
675 }
676 else
677 {
678 AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys));
679 rc = VERR_PGM_HANDLER_NOT_FOUND;
680 }
681
682 pgmUnlock(pVM);
683 return rc;
684}
685
686
687/**
688 * Splits a physical access handler in two.
689 *
690 * @returns VBox status code.
691 * @param pVM VM Handle.
692 * @param GCPhys Start physical address of the handler.
693 * @param GCPhysSplit The split address.
694 */
695VMMDECL(int) PGMHandlerPhysicalSplit(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysSplit)
696{
697 AssertReturn(GCPhys < GCPhysSplit, VERR_INVALID_PARAMETER);
698
699 /*
700 * Do the allocation without owning the lock.
701 */
702 PPGMPHYSHANDLER pNew;
703 int rc = MMHyperAlloc(pVM, sizeof(*pNew), 0, MM_TAG_PGM_HANDLERS, (void **)&pNew);
704 if (RT_FAILURE(rc))
705 return rc;
706
707 /*
708 * Get the handler.
709 */
710 pgmLock(pVM);
711 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
712 if (RT_LIKELY(pCur))
713 {
714 if (RT_LIKELY(GCPhysSplit <= pCur->Core.KeyLast))
715 {
716 /*
717 * Create new handler node for the 2nd half.
718 */
719 *pNew = *pCur;
720 pNew->Core.Key = GCPhysSplit;
721 pNew->cPages = (pNew->Core.KeyLast - (pNew->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
722
723 pCur->Core.KeyLast = GCPhysSplit - 1;
724 pCur->cPages = (pCur->Core.KeyLast - (pCur->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
725
726 if (RT_LIKELY(RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pNew->Core)))
727 {
728 LogFlow(("PGMHandlerPhysicalSplit: %RGp-%RGp and %RGp-%RGp\n",
729 pCur->Core.Key, pCur->Core.KeyLast, pNew->Core.Key, pNew->Core.KeyLast));
730 pgmUnlock(pVM);
731 return VINF_SUCCESS;
732 }
733 AssertMsgFailed(("whu?\n"));
734 rc = VERR_INTERNAL_ERROR;
735 }
736 else
737 {
738 AssertMsgFailed(("outside range: %RGp-%RGp split %RGp\n", pCur->Core.Key, pCur->Core.KeyLast, GCPhysSplit));
739 rc = VERR_INVALID_PARAMETER;
740 }
741 }
742 else
743 {
744 AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys));
745 rc = VERR_PGM_HANDLER_NOT_FOUND;
746 }
747 pgmUnlock(pVM);
748 MMHyperFree(pVM, pNew);
749 return rc;
750}
751
752
753/**
754 * Joins up two adjacent physical access handlers which has the same callbacks.
755 *
756 * @returns VBox status code.
757 * @param pVM VM Handle.
758 * @param GCPhys1 Start physical address of the first handler.
759 * @param GCPhys2 Start physical address of the second handler.
760 */
761VMMDECL(int) PGMHandlerPhysicalJoin(PVM pVM, RTGCPHYS GCPhys1, RTGCPHYS GCPhys2)
762{
763 /*
764 * Get the handlers.
765 */
766 int rc;
767 pgmLock(pVM);
768 PPGMPHYSHANDLER pCur1 = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys1);
769 if (RT_LIKELY(pCur1))
770 {
771 PPGMPHYSHANDLER pCur2 = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys2);
772 if (RT_LIKELY(pCur2))
773 {
774 /*
775 * Make sure that they are adjacent, and that they've got the same callbacks.
776 */
777 if (RT_LIKELY(pCur1->Core.KeyLast + 1 == pCur2->Core.Key))
778 {
779 if (RT_LIKELY( pCur1->pfnHandlerRC == pCur2->pfnHandlerRC
780 && pCur1->pfnHandlerR0 == pCur2->pfnHandlerR0
781 && pCur1->pfnHandlerR3 == pCur2->pfnHandlerR3))
782 {
783 PPGMPHYSHANDLER pCur3 = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys2);
784 if (RT_LIKELY(pCur3 == pCur2))
785 {
786 pCur1->Core.KeyLast = pCur2->Core.KeyLast;
787 pCur1->cPages = (pCur1->Core.KeyLast - (pCur1->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
788 LogFlow(("PGMHandlerPhysicalJoin: %RGp-%RGp %RGp-%RGp\n",
789 pCur1->Core.Key, pCur1->Core.KeyLast, pCur2->Core.Key, pCur2->Core.KeyLast));
790 pVM->pgm.s.pLastPhysHandlerR0 = 0;
791 pVM->pgm.s.pLastPhysHandlerR3 = 0;
792 pVM->pgm.s.pLastPhysHandlerRC = 0;
793 MMHyperFree(pVM, pCur2);
794 pgmUnlock(pVM);
795 return VINF_SUCCESS;
796 }
797
798 Assert(pCur3 == pCur2);
799 rc = VERR_INTERNAL_ERROR;
800 }
801 else
802 {
803 AssertMsgFailed(("mismatching handlers\n"));
804 rc = VERR_ACCESS_DENIED;
805 }
806 }
807 else
808 {
809 AssertMsgFailed(("not adjacent: %RGp-%RGp %RGp-%RGp\n",
810 pCur1->Core.Key, pCur1->Core.KeyLast, pCur2->Core.Key, pCur2->Core.KeyLast));
811 rc = VERR_INVALID_PARAMETER;
812 }
813 }
814 else
815 {
816 AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys2));
817 rc = VERR_PGM_HANDLER_NOT_FOUND;
818 }
819 }
820 else
821 {
822 AssertMsgFailed(("Didn't find range starting at %RGp\n", GCPhys1));
823 rc = VERR_PGM_HANDLER_NOT_FOUND;
824 }
825 pgmUnlock(pVM);
826 return rc;
827
828}
829
830
831/**
832 * Resets any modifications to individual pages in a physical page access
833 * handler region.
834 *
835 * This is used in pair with PGMHandlerPhysicalPageTempOff(),
836 * PGMHandlerPhysicalPageAlias() or PGMHandlerPhysicalPageAliasHC().
837 *
838 * @returns VBox status code.
839 * @param pVM VM Handle
840 * @param GCPhys The start address of the handler regions, i.e. what you
841 * passed to PGMR3HandlerPhysicalRegister(),
842 * PGMHandlerPhysicalRegisterEx() or
843 * PGMHandlerPhysicalModify().
844 */
845VMMDECL(int) PGMHandlerPhysicalReset(PVM pVM, RTGCPHYS GCPhys)
846{
847 LogFlow(("PGMHandlerPhysicalReset GCPhys=%RGp\n", GCPhys));
848 pgmLock(pVM);
849
850 /*
851 * Find the handler.
852 */
853 int rc;
854 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
855 if (RT_LIKELY(pCur))
856 {
857 /*
858 * Validate type.
859 */
860 switch (pCur->enmType)
861 {
862 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
863 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
864 case PGMPHYSHANDLERTYPE_MMIO: /* NOTE: Only use when clearing MMIO ranges with aliased MMIO2 pages! */
865 {
866 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysHandlerReset)); /**@Todo move out of switch */
867 PPGMRAMRANGE pRam = pgmPhysGetRange(&pVM->pgm.s, GCPhys);
868 Assert(pRam);
869 Assert(pRam->GCPhys <= pCur->Core.Key);
870 Assert(pRam->GCPhysLast >= pCur->Core.KeyLast);
871
872 if (pCur->enmType == PGMPHYSHANDLERTYPE_MMIO)
873 {
874 /*
875 * Reset all the PGMPAGETYPE_MMIO2_ALIAS_MMIO pages first and that's it.
876 * This could probably be optimized a bit wrt to flushing, but I'm too lazy
877 * to do that now...
878 */
879 if (pCur->cAliasedPages)
880 {
881 PPGMPAGE pPage = &pRam->aPages[(pCur->Core.Key - pRam->GCPhys) >> PAGE_SHIFT];
882 uint32_t cLeft = pCur->cPages;
883 while (cLeft-- > 0)
884 {
885 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
886 {
887 Assert(pCur->cAliasedPages > 0);
888 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)cLeft << PAGE_SHIFT),
889 false /*fDoAccounting*/);
890 --pCur->cAliasedPages;
891#ifndef VBOX_STRICT
892 if (pCur->cAliasedPages == 0)
893 break;
894#endif
895 }
896 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO);
897 pPage++;
898 }
899 Assert(pCur->cAliasedPages == 0);
900 }
901 }
902 else if (pCur->cTmpOffPages > 0)
903 {
904 /*
905 * Set the flags and flush shadow PT entries.
906 */
907 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pCur, pRam);
908 }
909
910 pCur->cAliasedPages = 0;
911 pCur->cTmpOffPages = 0;
912
913 rc = VINF_SUCCESS;
914 break;
915 }
916
917 /*
918 * Invalid.
919 */
920 default:
921 AssertMsgFailed(("Invalid type %d! Corruption!\n", pCur->enmType));
922 rc = VERR_INTERNAL_ERROR;
923 break;
924 }
925 }
926 else
927 {
928 AssertMsgFailed(("Didn't find MMIO Range starting at %#x\n", GCPhys));
929 rc = VERR_PGM_HANDLER_NOT_FOUND;
930 }
931
932 pgmUnlock(pVM);
933 return rc;
934}
935
936
937/**
938 * Temporarily turns off the access monitoring of a page within a monitored
939 * physical write/all page access handler region.
940 *
941 * Use this when no further \#PFs are required for that page. Be aware that
942 * a page directory sync might reset the flags, and turn on access monitoring
943 * for the page.
944 *
945 * The caller must do required page table modifications.
946 *
947 * @returns VBox status code.
948 * @param pVM VM Handle
949 * @param GCPhys The start address of the access handler. This
950 * must be a fully page aligned range or we risk
951 * messing up other handlers installed for the
952 * start and end pages.
953 * @param GCPhysPage The physical address of the page to turn off
954 * access monitoring for.
955 */
956VMMDECL(int) PGMHandlerPhysicalPageTempOff(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
957{
958 LogFlow(("PGMHandlerPhysicalPageTempOff GCPhysPage=%RGp\n", GCPhysPage));
959
960 pgmLock(pVM);
961 /*
962 * Validate the range.
963 */
964 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
965 if (RT_LIKELY(pCur))
966 {
967 if (RT_LIKELY( GCPhysPage >= pCur->Core.Key
968 && GCPhysPage <= pCur->Core.KeyLast))
969 {
970 Assert(!(pCur->Core.Key & PAGE_OFFSET_MASK));
971 Assert((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
972
973 AssertReturnStmt( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
974 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL,
975 pgmUnlock(pVM), VERR_ACCESS_DENIED);
976
977 /*
978 * Change the page status.
979 */
980 PPGMPAGE pPage;
981 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
982 AssertReturnStmt(RT_SUCCESS_NP(rc), pgmUnlock(pVM), rc);
983 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
984 {
985 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
986 pCur->cTmpOffPages++;
987 }
988 pgmUnlock(pVM);
989 return VINF_SUCCESS;
990 }
991 pgmUnlock(pVM);
992 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
993 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
994 return VERR_INVALID_PARAMETER;
995 }
996 pgmUnlock(pVM);
997 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
998 return VERR_PGM_HANDLER_NOT_FOUND;
999}
1000
1001
1002/**
1003 * Replaces an MMIO page with an MMIO2 page.
1004 *
1005 * This is a worker for IOMMMIOMapMMIO2Page that works in a similar way to
1006 * PGMHandlerPhysicalPageTempOff but for an MMIO page. Since an MMIO page has no
1007 * backing, the caller must provide a replacement page. For various reasons the
1008 * replacement page must be an MMIO2 page.
1009 *
1010 * The caller must do required page table modifications. You can get away
1011 * without making any modifications since it's an MMIO page, the cost is an extra
1012 * \#PF which will the resync the page.
1013 *
1014 * Call PGMHandlerPhysicalReset() to restore the MMIO page.
1015 *
1016 * The caller may still get handler callback even after this call and must be
1017 * able to deal correctly with such calls. The reason for these callbacks are
1018 * either that we're executing in the recompiler (which doesn't know about this
1019 * arrangement) or that we've been restored from saved state (where we won't
1020 * save the change).
1021 *
1022 * @returns VBox status code.
1023 * @param pVM The VM handle
1024 * @param GCPhys The start address of the access handler. This
1025 * must be a fully page aligned range or we risk
1026 * messing up other handlers installed for the
1027 * start and end pages.
1028 * @param GCPhysPage The physical address of the page to turn off
1029 * access monitoring for.
1030 * @param GCPhysPageRemap The physical address of the MMIO2 page that
1031 * serves as backing memory.
1032 *
1033 * @remark May cause a page pool flush if used on a page that is already
1034 * aliased.
1035 *
1036 * @note This trick does only work reliably if the two pages are never ever
1037 * mapped in the same page table. If they are the page pool code will
1038 * be confused should either of them be flushed. See the special case
1039 * of zero page aliasing mentioned in #3170.
1040 *
1041 */
1042VMMDECL(int) PGMHandlerPhysicalPageAlias(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage, RTGCPHYS GCPhysPageRemap)
1043{
1044/// Assert(!IOMIsLockOwner(pVM)); /* We mustn't own any other locks when calling this */
1045
1046 pgmLock(pVM);
1047 /*
1048 * Lookup and validate the range.
1049 */
1050 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1051 if (RT_LIKELY(pCur))
1052 {
1053 if (RT_LIKELY( GCPhysPage >= pCur->Core.Key
1054 && GCPhysPage <= pCur->Core.KeyLast))
1055 {
1056 AssertReturnStmt(pCur->enmType == PGMPHYSHANDLERTYPE_MMIO, pgmUnlock(pVM), VERR_ACCESS_DENIED);
1057 AssertReturnStmt(!(pCur->Core.Key & PAGE_OFFSET_MASK), pgmUnlock(pVM), VERR_INVALID_PARAMETER);
1058 AssertReturnStmt((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK, pgmUnlock(pVM), VERR_INVALID_PARAMETER);
1059
1060 /*
1061 * Get and validate the two pages.
1062 */
1063 PPGMPAGE pPageRemap;
1064 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPageRemap, &pPageRemap);
1065 AssertReturnStmt(RT_SUCCESS_NP(rc), pgmUnlock(pVM), rc);
1066 AssertMsgReturnStmt(PGM_PAGE_GET_TYPE(pPageRemap) == PGMPAGETYPE_MMIO2,
1067 ("GCPhysPageRemap=%RGp %R[pgmpage]\n", GCPhysPageRemap, pPageRemap),
1068 pgmUnlock(pVM), VERR_PGM_PHYS_NOT_MMIO2);
1069
1070 PPGMPAGE pPage;
1071 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
1072 AssertReturnStmt(RT_SUCCESS_NP(rc), pgmUnlock(pVM), rc);
1073 if (PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO)
1074 {
1075 AssertMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO,
1076 ("GCPhysPage=%RGp %R[pgmpage]\n", GCPhysPage, pPage),
1077 VERR_PGM_PHYS_NOT_MMIO2);
1078 if (PGM_PAGE_GET_HCPHYS(pPage) == PGM_PAGE_GET_HCPHYS(pPageRemap))
1079 {
1080 pgmUnlock(pVM);
1081 return VINF_PGM_HANDLER_ALREADY_ALIASED;
1082 }
1083
1084 /*
1085 * The page is already mapped as some other page, reset it
1086 * to an MMIO/ZERO page before doing the new mapping.
1087 */
1088 Log(("PGMHandlerPhysicalPageAlias: GCPhysPage=%RGp (%R[pgmpage]; %RHp -> %RHp\n",
1089 GCPhysPage, pPage, PGM_PAGE_GET_HCPHYS(pPage), PGM_PAGE_GET_HCPHYS(pPageRemap)));
1090 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, GCPhysPage, false /*fDoAccounting*/);
1091 pCur->cAliasedPages--;
1092 }
1093 Assert(PGM_PAGE_IS_ZERO(pPage));
1094
1095 /*
1096 * Do the actual remapping here.
1097 * This page now serves as an alias for the backing memory specified.
1098 */
1099 LogFlow(("PGMHandlerPhysicalPageAlias: %RGp (%R[pgmpage]) alias for %RGp (%R[pgmpage])\n",
1100 GCPhysPage, pPage, GCPhysPageRemap, pPageRemap ));
1101 PGM_PAGE_SET_HCPHYS(pPage, PGM_PAGE_GET_HCPHYS(pPageRemap));
1102 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1103 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
1104 PGM_PAGE_SET_PAGEID(pPage, PGM_PAGE_GET_PAGEID(pPageRemap));
1105 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
1106 pCur->cAliasedPages++;
1107 Assert(pCur->cAliasedPages <= pCur->cPages);
1108
1109 /* Flush its TLB entry. */
1110 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhysPage);
1111
1112 LogFlow(("PGMHandlerPhysicalPageAlias: => %R[pgmpage]\n", pPage));
1113 pgmUnlock(pVM);
1114 return VINF_SUCCESS;
1115 }
1116
1117 pgmUnlock(pVM);
1118 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
1119 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
1120 return VERR_INVALID_PARAMETER;
1121 }
1122
1123 pgmUnlock(pVM);
1124 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
1125 return VERR_PGM_HANDLER_NOT_FOUND;
1126}
1127
1128/**
1129 * Replaces an MMIO page with an arbitrary HC page.
1130 *
1131 * This is a worker for IOMMMIOMapMMIO2Page that works in a similar way to
1132 * PGMHandlerPhysicalPageTempOff but for an MMIO page. Since an MMIO page has no
1133 * backing, the caller must provide a replacement page. For various reasons the
1134 * replacement page must be an MMIO2 page.
1135 *
1136 * The caller must do required page table modifications. You can get away
1137 * without making any modifications since it's an MMIO page, the cost is an extra
1138 * \#PF which will the resync the page.
1139 *
1140 * Call PGMHandlerPhysicalReset() to restore the MMIO page.
1141 *
1142 * The caller may still get handler callback even after this call and must be
1143 * able to deal correctly with such calls. The reason for these callbacks are
1144 * either that we're executing in the recompiler (which doesn't know about this
1145 * arrangement) or that we've been restored from saved state (where we won't
1146 * save the change).
1147 *
1148 * @returns VBox status code.
1149 * @param pVM The VM handle
1150 * @param GCPhys The start address of the access handler. This
1151 * must be a fully page aligned range or we risk
1152 * messing up other handlers installed for the
1153 * start and end pages.
1154 * @param GCPhysPage The physical address of the page to turn off
1155 * access monitoring for.
1156 * @param HCPhysPageRemap The physical address of the HC page that
1157 * serves as backing memory.
1158 *
1159 * @remark May cause a page pool flush if used on a page that is already
1160 * aliased.
1161 */
1162VMMDECL(int) PGMHandlerPhysicalPageAliasHC(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage, RTHCPHYS HCPhysPageRemap)
1163{
1164/// Assert(!IOMIsLockOwner(pVM)); /* We mustn't own any other locks when calling this */
1165
1166 /*
1167 * Lookup and validate the range.
1168 */
1169 pgmLock(pVM);
1170 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1171 if (RT_LIKELY(pCur))
1172 {
1173 if (RT_LIKELY( GCPhysPage >= pCur->Core.Key
1174 && GCPhysPage <= pCur->Core.KeyLast))
1175 {
1176 AssertReturnStmt(pCur->enmType == PGMPHYSHANDLERTYPE_MMIO, pgmUnlock(pVM), VERR_ACCESS_DENIED);
1177 AssertReturnStmt(!(pCur->Core.Key & PAGE_OFFSET_MASK), pgmUnlock(pVM), VERR_INVALID_PARAMETER);
1178 AssertReturnStmt((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK, pgmUnlock(pVM), VERR_INVALID_PARAMETER);
1179
1180 /*
1181 * Get and validate the pages.
1182 */
1183 PPGMPAGE pPage;
1184 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
1185 AssertReturnStmt(RT_SUCCESS_NP(rc), pgmUnlock(pVM), rc);
1186 if (PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO)
1187 {
1188 pgmUnlock(pVM);
1189 AssertMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO,
1190 ("GCPhysPage=%RGp %R[pgmpage]\n", GCPhysPage, pPage),
1191 VERR_PGM_PHYS_NOT_MMIO2);
1192 return VINF_PGM_HANDLER_ALREADY_ALIASED;
1193 }
1194 Assert(PGM_PAGE_IS_ZERO(pPage));
1195
1196 /*
1197 * Do the actual remapping here.
1198 * This page now serves as an alias for the backing memory specified.
1199 */
1200 LogFlow(("PGMHandlerPhysicalPageAlias: %RGp (%R[pgmpage]) alias for %RHp\n",
1201 GCPhysPage, pPage, HCPhysPageRemap));
1202 PGM_PAGE_SET_HCPHYS(pPage, HCPhysPageRemap);
1203 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1204 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
1205 /** @todo hack alert
1206 * This needs to be done properly. Currently we get away with it as the recompiler directly calls
1207 * IOM read and write functions. Access through PGMPhysRead/Write will crash the process.
1208 */
1209 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
1210 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
1211 pCur->cAliasedPages++;
1212 Assert(pCur->cAliasedPages <= pCur->cPages);
1213
1214 /* Flush its TLB entry. */
1215 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhysPage);
1216
1217 LogFlow(("PGMHandlerPhysicalPageAliasHC: => %R[pgmpage]\n", pPage));
1218 pgmUnlock(pVM);
1219 return VINF_SUCCESS;
1220 }
1221 pgmUnlock(pVM);
1222 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
1223 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
1224 return VERR_INVALID_PARAMETER;
1225 }
1226 pgmUnlock(pVM);
1227
1228 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
1229 return VERR_PGM_HANDLER_NOT_FOUND;
1230}
1231
1232
1233/**
1234 * Checks if a physical range is handled
1235 *
1236 * @returns boolean
1237 * @param pVM VM Handle.
1238 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
1239 * @remarks Caller must take the PGM lock...
1240 * @thread EMT.
1241 */
1242VMMDECL(bool) PGMHandlerPhysicalIsRegistered(PVM pVM, RTGCPHYS GCPhys)
1243{
1244 /*
1245 * Find the handler.
1246 */
1247 pgmLock(pVM);
1248 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
1249 if (pCur)
1250 {
1251 Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
1252 Assert( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
1253 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL
1254 || pCur->enmType == PGMPHYSHANDLERTYPE_MMIO);
1255 pgmUnlock(pVM);
1256 return true;
1257 }
1258 pgmUnlock(pVM);
1259 return false;
1260}
1261
1262
1263/**
1264 * Checks if it's an disabled all access handler or write access handler at the
1265 * given address.
1266 *
1267 * @returns true if it's an all access handler, false if it's a write access
1268 * handler.
1269 * @param pVM Pointer to the shared VM structure.
1270 * @param GCPhys The address of the page with a disabled handler.
1271 *
1272 * @remarks The caller, PGMR3PhysTlbGCPhys2Ptr, must hold the PGM lock.
1273 */
1274bool pgmHandlerPhysicalIsAll(PVM pVM, RTGCPHYS GCPhys)
1275{
1276 pgmLock(pVM);
1277 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
1278 if (!pCur)
1279 {
1280 pgmUnlock(pVM);
1281 AssertFailed();
1282 return true;
1283 }
1284 Assert( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
1285 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL
1286 || pCur->enmType == PGMPHYSHANDLERTYPE_MMIO); /* sanity */
1287 /* Only whole pages can be disabled. */
1288 Assert( pCur->Core.Key <= (GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK)
1289 && pCur->Core.KeyLast >= (GCPhys | PAGE_OFFSET_MASK));
1290
1291 bool bRet = pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE;
1292 pgmUnlock(pVM);
1293 return bRet;
1294}
1295
1296
1297/**
1298 * Check if particular guest's VA is being monitored.
1299 *
1300 * @returns true or false
1301 * @param pVM VM handle.
1302 * @param GCPtr Virtual address.
1303 * @remarks Will acquire the PGM lock.
1304 * @thread Any.
1305 */
1306VMMDECL(bool) PGMHandlerVirtualIsRegistered(PVM pVM, RTGCPTR GCPtr)
1307{
1308 pgmLock(pVM);
1309 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtr);
1310 pgmUnlock(pVM);
1311
1312 return pCur != NULL;
1313}
1314
1315
1316/**
1317 * Search for virtual handler with matching physical address
1318 *
1319 * @returns VBox status code
1320 * @param pVM The VM handle.
1321 * @param GCPhys GC physical address to search for.
1322 * @param ppVirt Where to store the pointer to the virtual handler structure.
1323 * @param piPage Where to store the pointer to the index of the cached physical page.
1324 */
1325int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage)
1326{
1327 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,VirtHandlerSearchByPhys), a);
1328 Assert(ppVirt);
1329
1330 pgmLock(pVM);
1331 PPGMPHYS2VIRTHANDLER pCur;
1332 pCur = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, GCPhys);
1333 if (pCur)
1334 {
1335 /* found a match! */
1336 *ppVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
1337 *piPage = pCur - &(*ppVirt)->aPhysToVirt[0];
1338 pgmUnlock(pVM);
1339
1340#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1341 AssertRelease(pCur->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD);
1342#endif
1343 LogFlow(("PHYS2VIRT: found match for %RGp -> %RGv *piPage=%#x\n", GCPhys, (*ppVirt)->Core.Key, *piPage));
1344 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,VirtHandlerSearchByPhys), a);
1345 return VINF_SUCCESS;
1346 }
1347
1348 pgmUnlock(pVM);
1349 *ppVirt = NULL;
1350 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,VirtHandlerSearchByPhys), a);
1351 return VERR_PGM_HANDLER_NOT_FOUND;
1352}
1353
1354
1355/**
1356 * Deal with aliases in phys2virt.
1357 *
1358 * As pointed out by the various todos, this currently only deals with
1359 * aliases where the two ranges match 100%.
1360 *
1361 * @param pVM The VM handle.
1362 * @param pPhys2Virt The node we failed insert.
1363 */
1364static void pgmHandlerVirtualInsertAliased(PVM pVM, PPGMPHYS2VIRTHANDLER pPhys2Virt)
1365{
1366 /*
1367 * First find the node which is conflicting with us.
1368 */
1369 /** @todo Deal with partial overlapping. (Unlikely situation, so I'm too lazy to do anything about it now.) */
1370 /** @todo check if the current head node covers the ground we do. This is highly unlikely
1371 * and I'm too lazy to implement this now as it will require sorting the list and stuff like that. */
1372 PPGMPHYS2VIRTHANDLER pHead = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
1373#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1374 AssertReleaseMsg(pHead != pPhys2Virt, ("%RGp-%RGp offVirtHandler=%#RX32\n",
1375 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler));
1376#endif
1377 if (RT_UNLIKELY(!pHead || pHead->Core.KeyLast != pPhys2Virt->Core.KeyLast))
1378 {
1379 /** @todo do something clever here... */
1380 LogRel(("pgmHandlerVirtualInsertAliased: %RGp-%RGp\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
1381 pPhys2Virt->offNextAlias = 0;
1382 return;
1383 }
1384
1385 /*
1386 * Insert ourselves as the next node.
1387 */
1388 if (!(pHead->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
1389 pPhys2Virt->offNextAlias = PGMPHYS2VIRTHANDLER_IN_TREE;
1390 else
1391 {
1392 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pHead + (pHead->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
1393 pPhys2Virt->offNextAlias = ((intptr_t)pNext - (intptr_t)pPhys2Virt)
1394 | PGMPHYS2VIRTHANDLER_IN_TREE;
1395 }
1396 pHead->offNextAlias = ((intptr_t)pPhys2Virt - (intptr_t)pHead)
1397 | (pHead->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
1398 Log(("pgmHandlerVirtualInsertAliased: %RGp-%RGp offNextAlias=%#RX32\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias));
1399}
1400
1401
1402/**
1403 * Resets one virtual handler range.
1404 *
1405 * This is called by HandlerVirtualUpdate when it has detected some kind of
1406 * problem and have started clearing the virtual handler page states (or
1407 * when there have been registration/deregistrations). For this reason this
1408 * function will only update the page status if it's lower than desired.
1409 *
1410 * @returns 0
1411 * @param pNode Pointer to a PGMVIRTHANDLER.
1412 * @param pvUser The VM handle.
1413 */
1414DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1415{
1416 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1417 PVM pVM = (PVM)pvUser;
1418
1419 Assert(PGMIsLockOwner(pVM));
1420 /*
1421 * Iterate the pages and apply the new state.
1422 */
1423 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1424 PPGMRAMRANGE pRamHint = NULL;
1425 RTGCUINTPTR offPage = ((RTGCUINTPTR)pCur->Core.Key & PAGE_OFFSET_MASK);
1426 RTGCUINTPTR cbLeft = pCur->cb;
1427 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1428 {
1429 PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
1430 if (pPhys2Virt->Core.Key != NIL_RTGCPHYS)
1431 {
1432 /*
1433 * Update the page state wrt virtual handlers.
1434 */
1435 PPGMPAGE pPage;
1436 int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, pPhys2Virt->Core.Key, &pPage, &pRamHint);
1437 if ( RT_SUCCESS(rc)
1438 && PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < uState)
1439 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, uState);
1440 else
1441 AssertRC(rc);
1442
1443 /*
1444 * Need to insert the page in the Phys2Virt lookup tree?
1445 */
1446 if (pPhys2Virt->Core.KeyLast == NIL_RTGCPHYS)
1447 {
1448#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1449 AssertRelease(!pPhys2Virt->offNextAlias);
1450#endif
1451 unsigned cbPhys = cbLeft;
1452 if (cbPhys > PAGE_SIZE - offPage)
1453 cbPhys = PAGE_SIZE - offPage;
1454 else
1455 Assert(iPage == pCur->cPages - 1);
1456 pPhys2Virt->Core.KeyLast = pPhys2Virt->Core.Key + cbPhys - 1; /* inclusive */
1457 pPhys2Virt->offNextAlias = PGMPHYS2VIRTHANDLER_IS_HEAD | PGMPHYS2VIRTHANDLER_IN_TREE;
1458 if (!RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, &pPhys2Virt->Core))
1459 pgmHandlerVirtualInsertAliased(pVM, pPhys2Virt);
1460#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1461 else
1462 AssertReleaseMsg(RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key) == &pPhys2Virt->Core,
1463 ("%RGp-%RGp offNextAlias=%#RX32\n",
1464 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias));
1465#endif
1466 Log2(("PHYS2VIRT: Insert physical range %RGp-%RGp offNextAlias=%#RX32 %s\n",
1467 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
1468 }
1469 }
1470 cbLeft -= PAGE_SIZE - offPage;
1471 offPage = 0;
1472 }
1473
1474 return 0;
1475}
1476
1477#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
1478
1479/**
1480 * Worker for pgmHandlerVirtualDumpPhysPages.
1481 *
1482 * @returns 0 (continue enumeration).
1483 * @param pNode The virtual handler node.
1484 * @param pvUser User argument, unused.
1485 */
1486static DECLCALLBACK(int) pgmHandlerVirtualDumpPhysPagesCallback(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1487{
1488 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
1489 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
1490 Log(("PHYS2VIRT: Range %RGp-%RGp for virtual handler: %s\n", pCur->Core.Key, pCur->Core.KeyLast, pVirt->pszDesc));
1491 return 0;
1492}
1493
1494
1495/**
1496 * Assertion / logging helper for dumping all the
1497 * virtual handlers to the log.
1498 *
1499 * @param pVM Pointer to the shared VM structure.
1500 */
1501void pgmHandlerVirtualDumpPhysPages(PVM pVM)
1502{
1503 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, true /* from left */,
1504 pgmHandlerVirtualDumpPhysPagesCallback, 0);
1505}
1506
1507#endif /* VBOX_STRICT || LOG_ENABLED */
1508#ifdef VBOX_STRICT
1509
1510/**
1511 * State structure used by the PGMAssertHandlerAndFlagsInSync() function
1512 * and its AVL enumerators.
1513 */
1514typedef struct PGMAHAFIS
1515{
1516 /** The current physical address. */
1517 RTGCPHYS GCPhys;
1518 /** The state we've calculated. */
1519 unsigned uVirtStateFound;
1520 /** The state we're matching up to. */
1521 unsigned uVirtState;
1522 /** Number of errors. */
1523 unsigned cErrors;
1524 /** The VM handle. */
1525 PVM pVM;
1526} PGMAHAFIS, *PPGMAHAFIS;
1527
1528
1529#if 0 /* unused */
1530/**
1531 * Verify virtual handler by matching physical address.
1532 *
1533 * @returns 0
1534 * @param pNode Pointer to a PGMVIRTHANDLER.
1535 * @param pvUser Pointer to user parameter.
1536 */
1537static DECLCALLBACK(int) pgmHandlerVirtualVerifyOneByPhysAddr(PAVLROGCPTRNODECORE pNode, void *pvUser)
1538{
1539 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1540 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1541
1542 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1543 {
1544 if ((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == pState->GCPhys)
1545 {
1546 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1547 if (pState->uVirtState < uState)
1548 {
1549 error
1550 }
1551
1552 if (pState->uVirtState == uState)
1553 break; //??
1554 }
1555 }
1556 return 0;
1557}
1558#endif /* unused */
1559
1560
1561/**
1562 * Verify a virtual handler (enumeration callback).
1563 *
1564 * Called by PGMAssertHandlerAndFlagsInSync to check the sanity of all
1565 * the virtual handlers, esp. that the physical addresses matches up.
1566 *
1567 * @returns 0
1568 * @param pNode Pointer to a PGMVIRTHANDLER.
1569 * @param pvUser Pointer to a PPGMAHAFIS structure.
1570 */
1571static DECLCALLBACK(int) pgmHandlerVirtualVerifyOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1572{
1573 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)pNode;
1574 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1575 PVM pVM = pState->pVM;
1576
1577 /*
1578 * Validate the type and calc state.
1579 */
1580 switch (pVirt->enmType)
1581 {
1582 case PGMVIRTHANDLERTYPE_WRITE:
1583 case PGMVIRTHANDLERTYPE_ALL:
1584 break;
1585 default:
1586 AssertMsgFailed(("unknown/wrong enmType=%d\n", pVirt->enmType));
1587 pState->cErrors++;
1588 return 0;
1589 }
1590 const unsigned uState = pgmHandlerVirtualCalcState(pVirt);
1591
1592 /*
1593 * Check key alignment.
1594 */
1595 if ( (pVirt->aPhysToVirt[0].Core.Key & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->Core.Key & PAGE_OFFSET_MASK)
1596 && pVirt->aPhysToVirt[0].Core.Key != NIL_RTGCPHYS)
1597 {
1598 AssertMsgFailed(("virt handler phys has incorrect key! %RGp %RGv %s\n",
1599 pVirt->aPhysToVirt[0].Core.Key, pVirt->Core.Key, R3STRING(pVirt->pszDesc)));
1600 pState->cErrors++;
1601 }
1602
1603 if ( (pVirt->aPhysToVirt[pVirt->cPages - 1].Core.KeyLast & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->Core.KeyLast & PAGE_OFFSET_MASK)
1604 && pVirt->aPhysToVirt[pVirt->cPages - 1].Core.Key != NIL_RTGCPHYS)
1605 {
1606 AssertMsgFailed(("virt handler phys has incorrect key! %RGp %RGv %s\n",
1607 pVirt->aPhysToVirt[pVirt->cPages - 1].Core.KeyLast, pVirt->Core.KeyLast, R3STRING(pVirt->pszDesc)));
1608 pState->cErrors++;
1609 }
1610
1611 /*
1612 * Check pages for sanity and state.
1613 */
1614 RTGCUINTPTR GCPtr = (RTGCUINTPTR)pVirt->Core.Key;
1615 for (unsigned iPage = 0; iPage < pVirt->cPages; iPage++, GCPtr += PAGE_SIZE)
1616 {
1617 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1618 {
1619 PVMCPU pVCpu = &pVM->aCpus[i];
1620
1621 RTGCPHYS GCPhysGst;
1622 uint64_t fGst;
1623 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)GCPtr, &fGst, &GCPhysGst);
1624 if ( rc == VERR_PAGE_NOT_PRESENT
1625 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
1626 {
1627 if (pVirt->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
1628 {
1629 AssertMsgFailed(("virt handler phys out of sync. %RGp GCPhysNew=~0 iPage=%#x %RGv %s\n",
1630 pVirt->aPhysToVirt[iPage].Core.Key, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
1631 pState->cErrors++;
1632 }
1633 continue;
1634 }
1635
1636 AssertRCReturn(rc, 0);
1637 if ((pVirt->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) != GCPhysGst)
1638 {
1639 AssertMsgFailed(("virt handler phys out of sync. %RGp GCPhysGst=%RGp iPage=%#x %RGv %s\n",
1640 pVirt->aPhysToVirt[iPage].Core.Key, GCPhysGst, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
1641 pState->cErrors++;
1642 continue;
1643 }
1644
1645 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
1646 if (!pPage)
1647 {
1648 AssertMsgFailed(("virt handler getting ram flags. GCPhysGst=%RGp iPage=%#x %RGv %s\n",
1649 GCPhysGst, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
1650 pState->cErrors++;
1651 continue;
1652 }
1653
1654 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < uState)
1655 {
1656 AssertMsgFailed(("virt handler state mismatch. pPage=%R[pgmpage] GCPhysGst=%RGp iPage=%#x %RGv state=%d expected>=%d %s\n",
1657 pPage, GCPhysGst, iPage, GCPtr, PGM_PAGE_GET_HNDL_VIRT_STATE(pPage), uState, R3STRING(pVirt->pszDesc)));
1658 pState->cErrors++;
1659 continue;
1660 }
1661 } /* for each VCPU */
1662 } /* for pages in virtual mapping. */
1663
1664 return 0;
1665}
1666
1667
1668/**
1669 * Asserts that the handlers+guest-page-tables == ramrange-flags and
1670 * that the physical addresses associated with virtual handlers are correct.
1671 *
1672 * @returns Number of mismatches.
1673 * @param pVM The VM handle.
1674 */
1675VMMDECL(unsigned) PGMAssertHandlerAndFlagsInSync(PVM pVM)
1676{
1677 PPGM pPGM = &pVM->pgm.s;
1678 PGMAHAFIS State;
1679 State.GCPhys = 0;
1680 State.uVirtState = 0;
1681 State.uVirtStateFound = 0;
1682 State.cErrors = 0;
1683 State.pVM = pVM;
1684
1685 Assert(PGMIsLockOwner(pVM));
1686
1687 /*
1688 * Check the RAM flags against the handlers.
1689 */
1690 for (PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); pRam; pRam = pRam->CTX_SUFF(pNext))
1691 {
1692 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
1693 for (unsigned iPage = 0; iPage < cPages; iPage++)
1694 {
1695 PGMPAGE const *pPage = &pRam->aPages[iPage];
1696 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
1697 {
1698 State.GCPhys = pRam->GCPhys + (iPage << PAGE_SHIFT);
1699
1700 /*
1701 * Physical first - calculate the state based on the handlers
1702 * active on the page, then compare.
1703 */
1704 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
1705 {
1706 /* the first */
1707 PPGMPHYSHANDLER pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pPGM->CTX_SUFF(pTrees)->PhysHandlers, State.GCPhys);
1708 if (!pPhys)
1709 {
1710 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTX_SUFF(pTrees)->PhysHandlers, State.GCPhys, true);
1711 if ( pPhys
1712 && pPhys->Core.Key > (State.GCPhys + PAGE_SIZE - 1))
1713 pPhys = NULL;
1714 Assert(!pPhys || pPhys->Core.Key >= State.GCPhys);
1715 }
1716 if (pPhys)
1717 {
1718 unsigned uState = pgmHandlerPhysicalCalcState(pPhys);
1719
1720 /* more? */
1721 while (pPhys->Core.KeyLast < (State.GCPhys | PAGE_OFFSET_MASK))
1722 {
1723 PPGMPHYSHANDLER pPhys2 = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTX_SUFF(pTrees)->PhysHandlers,
1724 pPhys->Core.KeyLast + 1, true);
1725 if ( !pPhys2
1726 || pPhys2->Core.Key > (State.GCPhys | PAGE_OFFSET_MASK))
1727 break;
1728 unsigned uState2 = pgmHandlerPhysicalCalcState(pPhys2);
1729 uState = RT_MAX(uState, uState2);
1730 pPhys = pPhys2;
1731 }
1732
1733 /* compare.*/
1734 if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != uState
1735 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
1736 {
1737 AssertMsgFailed(("ram range vs phys handler flags mismatch. GCPhys=%RGp state=%d expected=%d %s\n",
1738 State.GCPhys, PGM_PAGE_GET_HNDL_PHYS_STATE(pPage), uState, pPhys->pszDesc));
1739 State.cErrors++;
1740 }
1741
1742#ifdef IN_RING3
1743 /* validate that REM is handling it. */
1744 if ( !REMR3IsPageAccessHandled(pVM, State.GCPhys)
1745 /* ignore shadowed ROM for the time being. */
1746 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW)
1747 {
1748 AssertMsgFailed(("ram range vs phys handler REM mismatch. GCPhys=%RGp state=%d %s\n",
1749 State.GCPhys, PGM_PAGE_GET_HNDL_PHYS_STATE(pPage), pPhys->pszDesc));
1750 State.cErrors++;
1751 }
1752#endif
1753 }
1754 else
1755 {
1756 AssertMsgFailed(("ram range vs phys handler mismatch. no handler for GCPhys=%RGp\n", State.GCPhys));
1757 State.cErrors++;
1758 }
1759 }
1760
1761 /*
1762 * Virtual handlers.
1763 */
1764 if (PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage))
1765 {
1766 State.uVirtState = PGM_PAGE_GET_HNDL_VIRT_STATE(pPage);
1767#if 1
1768 /* locate all the matching physical ranges. */
1769 State.uVirtStateFound = PGM_PAGE_HNDL_VIRT_STATE_NONE;
1770 RTGCPHYS GCPhysKey = State.GCPhys;
1771 for (;;)
1772 {
1773 PPGMPHYS2VIRTHANDLER pPhys2Virt = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
1774 GCPhysKey, true /* above-or-equal */);
1775 if ( !pPhys2Virt
1776 || (pPhys2Virt->Core.Key & X86_PTE_PAE_PG_MASK) != State.GCPhys)
1777 break;
1778
1779 /* the head */
1780 GCPhysKey = pPhys2Virt->Core.KeyLast;
1781 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)((uintptr_t)pPhys2Virt + pPhys2Virt->offVirtHandler);
1782 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1783 State.uVirtStateFound = RT_MAX(State.uVirtStateFound, uState);
1784
1785 /* any aliases */
1786 while (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
1787 {
1788 pPhys2Virt = (PPGMPHYS2VIRTHANDLER)((uintptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
1789 pCur = (PPGMVIRTHANDLER)((uintptr_t)pPhys2Virt + pPhys2Virt->offVirtHandler);
1790 uState = pgmHandlerVirtualCalcState(pCur);
1791 State.uVirtStateFound = RT_MAX(State.uVirtStateFound, uState);
1792 }
1793
1794 /* done? */
1795 if ((GCPhysKey & X86_PTE_PAE_PG_MASK) != State.GCPhys)
1796 break;
1797 }
1798#else
1799 /* very slow */
1800 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualVerifyOneByPhysAddr, &State);
1801#endif
1802 if (State.uVirtState != State.uVirtStateFound)
1803 {
1804 AssertMsgFailed(("ram range vs virt handler flags mismatch. GCPhys=%RGp uVirtState=%#x uVirtStateFound=%#x\n",
1805 State.GCPhys, State.uVirtState, State.uVirtStateFound));
1806 State.cErrors++;
1807 }
1808 }
1809 }
1810 } /* foreach page in ram range. */
1811 } /* foreach ram range. */
1812
1813 /*
1814 * Check that the physical addresses of the virtual handlers matches up
1815 * and that they are otherwise sane.
1816 */
1817 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualVerifyOne, &State);
1818
1819 /*
1820 * Do the reverse check for physical handlers.
1821 */
1822 /** @todo */
1823
1824 return State.cErrors;
1825}
1826
1827#endif /* VBOX_STRICT */
1828
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette