VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllHandler.cpp@ 13062

Last change on this file since 13062 was 13062, checked in by vboxsync, 16 years ago

#1865: More PGM changes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 55.2 KB
Line 
1/* $Id: PGMAllHandler.cpp 13062 2008-10-08 08:06:56Z vboxsync $ */
2/** @file
3 * PGM - Page Manager / Monitor, Access Handlers.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM
27#include <VBox/dbgf.h>
28#include <VBox/pgm.h>
29#include <VBox/iom.h>
30#include <VBox/mm.h>
31#include <VBox/em.h>
32#include <VBox/stam.h>
33#include <VBox/rem.h>
34#include <VBox/dbgf.h>
35#include <VBox/rem.h>
36#include "PGMInternal.h"
37#include <VBox/vm.h>
38
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43#include <VBox/param.h>
44#include <VBox/err.h>
45#include <VBox/selm.h>
46
47
48/*******************************************************************************
49* Internal Functions *
50*******************************************************************************/
51static int pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(PVM pVM, PPGMPHYSHANDLER pCur, PPGMRAMRANGE pRam);
52static void pgmHandlerPhysicalDeregisterNotifyREM(PVM pVM, PPGMPHYSHANDLER pCur);
53static void pgmHandlerPhysicalResetRamFlags(PVM pVM, PPGMPHYSHANDLER pCur);
54
55
56
57/**
58 * Register a access handler for a physical range.
59 *
60 * @returns VBox status code.
61 * @retval VINF_SUCCESS when successfully installed.
62 * @retval VINF_PGM_GCPHYS_ALIASED when the shadow PTs could be updated because
63 * the guest page aliased or/and mapped by multiple PTs. A CR3 sync has been
64 * flagged together with a pool clearing.
65 * @retval VERR_PGM_HANDLER_PHYSICAL_CONFLICT if the range conflicts with an existing
66 * one. A debug assertion is raised.
67 *
68 * @param pVM VM Handle.
69 * @param enmType Handler type. Any of the PGMPHYSHANDLERTYPE_PHYSICAL* enums.
70 * @param GCPhys Start physical address.
71 * @param GCPhysLast Last physical address. (inclusive)
72 * @param pfnHandlerR3 The R3 handler.
73 * @param pvUserR3 User argument to the R3 handler.
74 * @param pfnHandlerR0 The R0 handler.
75 * @param pvUserR0 User argument to the R0 handler.
76 * @param pfnHandlerGC The RC handler.
77 * @param pvUserRC User argument to the RC handler. This can be a value
78 * less that 0x10000 or a (non-null) pointer that is
79 * automatically relocatated.
80 * @param pszDesc Pointer to description string. This must not be freed.
81 */
82VMMDECL(int) PGMHandlerPhysicalRegisterEx(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
83 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
84 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
85 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
86 R3PTRTYPE(const char *) pszDesc)
87{
88 Log(("PGMHandlerPhysicalRegisterEx: enmType=%d GCPhys=%RGp GCPhysLast=%RGp pfnHandlerR3=%RHv pvUserR3=%RHv pfnHandlerR0=%RHv pvUserR0=%RHv pfnHandlerGC=%RRv pvUserGC=%RRv pszDesc=%s\n",
89 enmType, GCPhys, GCPhysLast, pfnHandlerR3, pvUserR3, pfnHandlerR0, pvUserR0, pfnHandlerRC, pvUserRC, R3STRING(pszDesc)));
90
91 /*
92 * Validate input.
93 */
94 if (GCPhys >= GCPhysLast)
95 {
96 AssertMsgFailed(("GCPhys >= GCPhysLast (%#x >= %#x)\n", GCPhys, GCPhysLast));
97 return VERR_INVALID_PARAMETER;
98 }
99 switch (enmType)
100 {
101 case PGMPHYSHANDLERTYPE_MMIO:
102 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
103 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
104 break;
105 default:
106 AssertMsgFailed(("Invalid input enmType=%d!\n", enmType));
107 return VERR_INVALID_PARAMETER;
108 }
109 if ( (RTRCUINTPTR)pvUserRC >= 0x10000
110 && MMHyperR3ToRC(pVM, MMHyperRCToR3(pVM, pvUserRC)) != pvUserRC)
111 {
112 AssertMsgFailed(("Not RC pointer! pvUserRC=%RRv\n", pvUserRC));
113 return VERR_INVALID_PARAMETER;
114 }
115 AssertReturn(pfnHandlerR3 || pfnHandlerR0 || pfnHandlerRC, VERR_INVALID_PARAMETER);
116
117 /*
118 * We require the range to be within registered ram.
119 * There is no apparent need to support ranges which cover more than one ram range.
120 */
121 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
122 while (pRam && GCPhys > pRam->GCPhysLast)
123 pRam = pRam->CTX_SUFF(pNext);
124 if ( !pRam
125 || GCPhysLast < pRam->GCPhys
126 || GCPhys > pRam->GCPhysLast)
127 {
128#ifdef IN_RING3
129 DBGFR3Info(pVM, "phys", NULL, NULL);
130#endif
131 AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
132 return VERR_PGM_HANDLER_PHYSICAL_NO_RAM_RANGE;
133 }
134
135 /*
136 * Allocate and initialize the new entry.
137 */
138 PPGMPHYSHANDLER pNew;
139 int rc = MMHyperAlloc(pVM, sizeof(*pNew), 0, MM_TAG_PGM_HANDLERS, (void **)&pNew);
140 if (VBOX_FAILURE(rc))
141 return rc;
142
143 pNew->Core.Key = GCPhys;
144 pNew->Core.KeyLast = GCPhysLast;
145 pNew->enmType = enmType;
146 pNew->cPages = (GCPhysLast - (GCPhys & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
147 pNew->pfnHandlerR3 = pfnHandlerR3;
148 pNew->pvUserR3 = pvUserR3;
149 pNew->pfnHandlerR0 = pfnHandlerR0;
150 pNew->pvUserR0 = pvUserR0;
151 pNew->pfnHandlerRC = pfnHandlerRC;
152 pNew->pvUserRC = pvUserRC;
153 pNew->pszDesc = pszDesc;
154
155 pgmLock(pVM);
156
157 /*
158 * Try insert into list.
159 */
160 if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pNew->Core))
161 {
162 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pNew, pRam);
163 if (rc == VINF_PGM_GCPHYS_ALIASED)
164 {
165 pVM->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
166 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
167 }
168 pVM->pgm.s.fPhysCacheFlushPending = true;
169 HWACCMFlushTLB(pVM);
170#ifndef IN_RING3
171 REMNotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, GCPhysLast - GCPhys + 1, !!pfnHandlerR3);
172#else
173 REMR3NotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, GCPhysLast - GCPhys + 1, !!pfnHandlerR3);
174#endif
175 pgmUnlock(pVM);
176 if (rc != VINF_SUCCESS)
177 Log(("PGMHandlerPhysicalRegisterEx: returns %Vrc (%VGp-%VGp)\n", rc, GCPhys, GCPhysLast));
178 return rc;
179 }
180
181 pgmUnlock(pVM);
182
183#if defined(IN_RING3) && defined(VBOX_STRICT)
184 DBGFR3Info(pVM, "handlers", "phys nostats", NULL);
185#endif
186 AssertMsgFailed(("Conflict! GCPhys=%VGp GCPhysLast=%VGp pszDesc=%s\n", GCPhys, GCPhysLast, pszDesc));
187 MMHyperFree(pVM, pNew);
188 return VERR_PGM_HANDLER_PHYSICAL_CONFLICT;
189}
190
191
192/**
193 * Sets ram range flags and attempts updating shadow PTs.
194 *
195 * @returns VBox status code.
196 * @retval VINF_SUCCESS when shadow PTs was successfully updated.
197 * @retval VINF_PGM_GCPHYS_ALIASED when the shadow PTs could be updated because
198 * the guest page aliased or/and mapped by multiple PTs.
199 * @param pVM The VM handle.
200 * @param pCur The physical handler.
201 * @param pRam The RAM range.
202 */
203static int pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(PVM pVM, PPGMPHYSHANDLER pCur, PPGMRAMRANGE pRam)
204{
205 /*
206 * Iterate the guest ram pages updating the flags and flushing PT entries
207 * mapping the page.
208 */
209 bool fFlushTLBs = false;
210#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE)
211 int rc = VINF_SUCCESS;
212#else
213 const int rc = VINF_PGM_GCPHYS_ALIASED;
214#endif
215 const unsigned uState = pgmHandlerPhysicalCalcState(pCur);
216 RTUINT cPages = pCur->cPages;
217 RTUINT i = (pCur->Core.Key - pRam->GCPhys) >> PAGE_SHIFT;
218 for (;;)
219 {
220 /* Physical chunk in dynamically allocated range not present? */
221 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(&pRam->aPages[i])))
222 {
223 RTGCPHYS GCPhys = pRam->GCPhys + (i << PAGE_SHIFT);
224#ifdef IN_RING3
225 int rc2 = pgmr3PhysGrowRange(pVM, GCPhys);
226#else
227 int rc2 = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
228#endif
229 if (rc2 != VINF_SUCCESS)
230 return rc2;
231 }
232
233 /* Only do upgrades. */
234 PPGMPAGE pPage = &pRam->aPages[i];
235 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) < uState)
236 {
237 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, uState);
238 Assert(PGM_PAGE_GET_HCPHYS(pPage));
239
240#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
241 /* This code also makes ASSUMPTIONS about the cRefs and stuff. */
242 Assert(MM_RAM_FLAGS_IDX_SHIFT < MM_RAM_FLAGS_CREFS_SHIFT);
243 const uint16_t u16 = pRam->aPages[i].HCPhys >> MM_RAM_FLAGS_IDX_SHIFT; /** @todo PAGE FLAGS */
244 if (u16)
245 {
246 if ((u16 >> (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) != MM_RAM_FLAGS_CREFS_PHYSEXT)
247 pgmPoolTrackFlushGCPhysPT(pVM,
248 pPage,
249 u16 & MM_RAM_FLAGS_IDX_MASK,
250 u16 >> (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
251 else if (u16 != ((MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | MM_RAM_FLAGS_IDX_OVERFLOWED))
252 pgmPoolTrackFlushGCPhysPTs(pVM, pPage, u16 & MM_RAM_FLAGS_IDX_MASK);
253 else
254 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPage);
255 fFlushTLBs = true;
256 }
257#elif defined(PGMPOOL_WITH_CACHE)
258 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPage);
259 fFlushTLBs = true;
260#endif
261 }
262
263 /* next */
264 if (--cPages == 0)
265 break;
266 i++;
267 }
268
269 if (fFlushTLBs && rc == VINF_SUCCESS)
270 {
271 PGM_INVL_GUEST_TLBS();
272 Log(("pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs: flushing guest TLBs\n"));
273 }
274 else
275 Log(("pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs: doesn't flush guest TLBs. rc=%Vrc\n", rc));
276 return rc;
277}
278
279
280/**
281 * Register a physical page access handler.
282 *
283 * @returns VBox status code.
284 * @param pVM VM Handle.
285 * @param GCPhys Start physical address.
286 */
287VMMDECL(int) PGMHandlerPhysicalDeregister(PVM pVM, RTGCPHYS GCPhys)
288{
289 /*
290 * Find the handler.
291 */
292 pgmLock(pVM);
293 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
294 if (pCur)
295 {
296 LogFlow(("PGMHandlerPhysicalDeregister: Removing Range %#VGp-%#VGp %s\n",
297 pCur->Core.Key, pCur->Core.KeyLast, R3STRING(pCur->pszDesc)));
298
299 /*
300 * Clear the page bits and notify the REM about this change.
301 */
302 HWACCMFlushTLB(pVM);
303 pgmHandlerPhysicalResetRamFlags(pVM, pCur);
304 pgmHandlerPhysicalDeregisterNotifyREM(pVM, pCur);
305 pgmUnlock(pVM);
306 MMHyperFree(pVM, pCur);
307 return VINF_SUCCESS;
308 }
309 pgmUnlock(pVM);
310
311 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys));
312 return VERR_PGM_HANDLER_NOT_FOUND;
313}
314
315
316/**
317 * Shared code with modify.
318 */
319static void pgmHandlerPhysicalDeregisterNotifyREM(PVM pVM, PPGMPHYSHANDLER pCur)
320{
321 RTGCPHYS GCPhysStart = pCur->Core.Key;
322 RTGCPHYS GCPhysLast = pCur->Core.KeyLast;
323
324 /*
325 * Page align the range.
326 *
327 * Since we've reset (recalculated) the physical handler state of all pages
328 * we can make use of the page states to figure out whether a page should be
329 * included in the REM notification or not.
330 */
331 if ( (pCur->Core.Key & PAGE_OFFSET_MASK)
332 || ((pCur->Core.KeyLast + 1) & PAGE_OFFSET_MASK))
333 {
334 Assert(pCur->enmType != PGMPHYSHANDLERTYPE_MMIO);
335
336 if (GCPhysStart & PAGE_OFFSET_MASK)
337 {
338 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysStart);
339 if ( pPage
340 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
341 {
342 RTGCPHYS GCPhys = (GCPhysStart + (PAGE_SIZE - 1)) & X86_PTE_PAE_PG_MASK;
343 if ( GCPhys > GCPhysLast
344 || GCPhys < GCPhysStart)
345 return;
346 GCPhysStart = GCPhys;
347 }
348 else
349 GCPhysStart &= X86_PTE_PAE_PG_MASK;
350 Assert(!pPage || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO); /* these are page aligned atm! */
351 }
352
353 if (GCPhysLast & PAGE_OFFSET_MASK)
354 {
355 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysLast);
356 if ( pPage
357 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
358 {
359 RTGCPHYS GCPhys = (GCPhysLast & X86_PTE_PAE_PG_MASK) - 1;
360 if ( GCPhys < GCPhysStart
361 || GCPhys > GCPhysLast)
362 return;
363 GCPhysLast = GCPhys;
364 }
365 else
366 GCPhysLast |= PAGE_OFFSET_MASK;
367 Assert(!pPage || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO); /* these are page aligned atm! */
368 }
369 }
370
371 /*
372 * Tell REM.
373 */
374 const bool fRestoreAsRAM = pCur->pfnHandlerR3
375 && pCur->enmType != PGMPHYSHANDLERTYPE_MMIO; /** @todo this isn't entirely correct. */
376#ifndef IN_RING3
377 REMNotifyHandlerPhysicalDeregister(pVM, pCur->enmType, GCPhysStart, GCPhysLast - GCPhysStart + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
378#else
379 REMR3NotifyHandlerPhysicalDeregister(pVM, pCur->enmType, GCPhysStart, GCPhysLast - GCPhysStart + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
380#endif
381}
382
383
384/**
385 * pgmHandlerPhysicalResetRamFlags helper that checks for
386 * other handlers on edge pages.
387 */
388DECLINLINE(void) pgmHandlerPhysicalRecalcPageState(PPGM pPGM, RTGCPHYS GCPhys, bool fAbove, PPGMRAMRANGE *ppRamHint)
389{
390 /*
391 * Look for other handlers.
392 */
393 unsigned uState = PGM_PAGE_HNDL_PHYS_STATE_NONE;
394 for (;;)
395 {
396 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTX_SUFF(pTrees)->PhysHandlers, GCPhys, fAbove);
397 if ( !pCur
398 || ((fAbove ? pCur->Core.Key : pCur->Core.KeyLast) >> PAGE_SHIFT) != (GCPhys >> PAGE_SHIFT))
399 break;
400 unsigned uThisState = pgmHandlerPhysicalCalcState(pCur);
401 uState = RT_MAX(uState, uThisState);
402
403 /* next? */
404 RTGCPHYS GCPhysNext = fAbove
405 ? pCur->Core.KeyLast + 1
406 : pCur->Core.Key - 1;
407 if ((GCPhysNext >> PAGE_SHIFT) != (GCPhys >> PAGE_SHIFT))
408 break;
409 GCPhys = GCPhysNext;
410 }
411
412 /*
413 * Update if we found something that is a higher priority
414 * state than the current.
415 */
416 if (uState != PGM_PAGE_HNDL_PHYS_STATE_NONE)
417 {
418 PPGMPAGE pPage;
419 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
420 if ( RT_SUCCESS(rc)
421 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) < uState)
422 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, uState);
423 else
424 AssertRC(rc);
425 }
426}
427
428
429/**
430 * Resets ram range flags.
431 *
432 * @returns VBox status code.
433 * @retval VINF_SUCCESS when shadow PTs was successfully updated.
434 * @param pVM The VM handle.
435 * @param pCur The physical handler.
436 *
437 * @remark We don't start messing with the shadow page tables, as we've already got code
438 * in Trap0e which deals with out of sync handler flags (originally conceived for
439 * global pages).
440 */
441static void pgmHandlerPhysicalResetRamFlags(PVM pVM, PPGMPHYSHANDLER pCur)
442{
443 /*
444 * Iterate the guest ram pages updating the state.
445 */
446 RTUINT cPages = pCur->cPages;
447 RTGCPHYS GCPhys = pCur->Core.Key;
448 PPGMRAMRANGE pRamHint = NULL;
449 PPGM pPGM = &pVM->pgm.s;
450 for (;;)
451 {
452 PPGMPAGE pPage;
453 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, &pRamHint);
454 if (RT_SUCCESS(rc))
455 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_NONE);
456 else
457 AssertRC(rc);
458
459 /* next */
460 if (--cPages == 0)
461 break;
462 GCPhys += PAGE_SIZE;
463 }
464
465 /*
466 * Check for partial start and end pages.
467 */
468 if (pCur->Core.Key & PAGE_OFFSET_MASK)
469 pgmHandlerPhysicalRecalcPageState(pPGM, pCur->Core.Key - 1, false /* fAbove */, &pRamHint);
470 if ((pCur->Core.KeyLast & PAGE_OFFSET_MASK) != PAGE_SIZE - 1)
471 pgmHandlerPhysicalRecalcPageState(pPGM, pCur->Core.KeyLast + 1, true /* fAbove */, &pRamHint);
472}
473
474
475/**
476 * Modify a physical page access handler.
477 *
478 * Modification can only be done to the range it self, not the type or anything else.
479 *
480 * @returns VBox status code.
481 * For all return codes other than VERR_PGM_HANDLER_NOT_FOUND and VINF_SUCCESS the range is deregistered
482 * and a new registration must be performed!
483 * @param pVM VM handle.
484 * @param GCPhysCurrent Current location.
485 * @param GCPhys New location.
486 * @param GCPhysLast New last location.
487 */
488VMMDECL(int) PGMHandlerPhysicalModify(PVM pVM, RTGCPHYS GCPhysCurrent, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast)
489{
490 /*
491 * Remove it.
492 */
493 int rc;
494 pgmLock(pVM);
495 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysCurrent);
496 if (pCur)
497 {
498 /*
499 * Clear the ram flags. (We're gonna move or free it!)
500 */
501 pgmHandlerPhysicalResetRamFlags(pVM, pCur);
502 const bool fRestoreAsRAM = pCur->pfnHandlerR3
503 && pCur->enmType != PGMPHYSHANDLERTYPE_MMIO; /** @todo this isn't entirely correct. */
504
505 /*
506 * Validate the new range, modify and reinsert.
507 */
508 if (GCPhysLast >= GCPhys)
509 {
510 /*
511 * We require the range to be within registered ram.
512 * There is no apparent need to support ranges which cover more than one ram range.
513 */
514 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
515 while (pRam && GCPhys > pRam->GCPhysLast)
516 pRam = pRam->CTX_SUFF(pNext);
517 if ( pRam
518 && GCPhys <= pRam->GCPhysLast
519 && GCPhysLast >= pRam->GCPhys)
520 {
521 pCur->Core.Key = GCPhys;
522 pCur->Core.KeyLast = GCPhysLast;
523 pCur->cPages = (GCPhysLast - (GCPhys & X86_PTE_PAE_PG_MASK) + 1) >> PAGE_SHIFT;
524
525 if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pCur->Core))
526 {
527 /*
528 * Set ram flags, flush shadow PT entries and finally tell REM about this.
529 */
530 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pCur, pRam);
531 if (rc == VINF_PGM_GCPHYS_ALIASED)
532 {
533 pVM->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
534 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
535 }
536 pVM->pgm.s.fPhysCacheFlushPending = true;
537
538#ifndef IN_RING3
539 REMNotifyHandlerPhysicalModify(pVM, pCur->enmType, GCPhysCurrent, GCPhys,
540 pCur->Core.KeyLast - GCPhys + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
541#else
542 REMR3NotifyHandlerPhysicalModify(pVM, pCur->enmType, GCPhysCurrent, GCPhys,
543 pCur->Core.KeyLast - GCPhys + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
544#endif
545 HWACCMFlushTLB(pVM);
546 pgmUnlock(pVM);
547 Log(("PGMHandlerPhysicalModify: GCPhysCurrent=%VGp -> GCPhys=%VGp GCPhysLast=%VGp\n",
548 GCPhysCurrent, GCPhys, GCPhysLast));
549 return VINF_SUCCESS;
550 }
551
552 AssertMsgFailed(("Conflict! GCPhys=%VGp GCPhysLast=%VGp\n", GCPhys, GCPhysLast));
553 rc = VERR_PGM_HANDLER_PHYSICAL_CONFLICT;
554 }
555 else
556 {
557 AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
558 rc = VERR_PGM_HANDLER_PHYSICAL_NO_RAM_RANGE;
559 }
560 }
561 else
562 {
563 AssertMsgFailed(("Invalid range %VGp-%VGp\n", GCPhys, GCPhysLast));
564 rc = VERR_INVALID_PARAMETER;
565 }
566
567 /*
568 * Invalid new location, free it.
569 * We've only gotta notify REM and free the memory.
570 */
571 pgmHandlerPhysicalDeregisterNotifyREM(pVM, pCur);
572 MMHyperFree(pVM, pCur);
573 }
574 else
575 {
576 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhysCurrent));
577 rc = VERR_PGM_HANDLER_NOT_FOUND;
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Changes the callbacks associated with a physical access handler.
587 *
588 * @returns VBox status code.
589 * @param pVM VM Handle.
590 * @param GCPhys Start physical address.
591 * @param pfnHandlerR3 The R3 handler.
592 * @param pvUserR3 User argument to the R3 handler.
593 * @param pfnHandlerR0 The R0 handler.
594 * @param pvUserR0 User argument to the R0 handler.
595 * @param pfnHandlerRC The RC handler.
596 * @param pvUserRC User argument to the RC handler. Values larger or
597 * equal to 0x10000 will be relocated automatically.
598 * @param pszDesc Pointer to description string. This must not be freed.
599 */
600VMMDECL(int) PGMHandlerPhysicalChangeCallbacks(PVM pVM, RTGCPHYS GCPhys,
601 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
602 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
603 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
604 R3PTRTYPE(const char *) pszDesc)
605{
606 /*
607 * Get the handler.
608 */
609 int rc = VINF_SUCCESS;
610 pgmLock(pVM);
611 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
612 if (pCur)
613 {
614 /*
615 * Change callbacks.
616 */
617 pCur->pfnHandlerR3 = pfnHandlerR3;
618 pCur->pvUserR3 = pvUserR3;
619 pCur->pfnHandlerR0 = pfnHandlerR0;
620 pCur->pvUserR0 = pvUserR0;
621 pCur->pfnHandlerRC = pfnHandlerRC;
622 pCur->pvUserRC = pvUserRC;
623 pCur->pszDesc = pszDesc;
624 }
625 else
626 {
627 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys));
628 rc = VERR_PGM_HANDLER_NOT_FOUND;
629 }
630
631 pgmUnlock(pVM);
632 return rc;
633}
634
635
636/**
637 * Splits a physical access handler in two.
638 *
639 * @returns VBox status code.
640 * @param pVM VM Handle.
641 * @param GCPhys Start physical address of the handler.
642 * @param GCPhysSplit The split address.
643 */
644VMMDECL(int) PGMHandlerPhysicalSplit(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysSplit)
645{
646 AssertReturn(GCPhys < GCPhysSplit, VERR_INVALID_PARAMETER);
647
648 /*
649 * Do the allocation without owning the lock.
650 */
651 PPGMPHYSHANDLER pNew;
652 int rc = MMHyperAlloc(pVM, sizeof(*pNew), 0, MM_TAG_PGM_HANDLERS, (void **)&pNew);
653 if (VBOX_FAILURE(rc))
654 return rc;
655
656 /*
657 * Get the handler.
658 */
659 pgmLock(pVM);
660 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
661 if (pCur)
662 {
663 if (GCPhysSplit <= pCur->Core.KeyLast)
664 {
665 /*
666 * Create new handler node for the 2nd half.
667 */
668 *pNew = *pCur;
669 pNew->Core.Key = GCPhysSplit;
670 pNew->cPages = (pNew->Core.KeyLast - (pNew->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
671
672 pCur->Core.KeyLast = GCPhysSplit - 1;
673 pCur->cPages = (pCur->Core.KeyLast - (pCur->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
674
675 if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, &pNew->Core))
676 {
677 LogFlow(("PGMHandlerPhysicalSplit: %VGp-%VGp and %VGp-%VGp\n",
678 pCur->Core.Key, pCur->Core.KeyLast, pNew->Core.Key, pNew->Core.KeyLast));
679 pgmUnlock(pVM);
680 return VINF_SUCCESS;
681 }
682 AssertMsgFailed(("whu?\n"));
683 rc = VERR_INTERNAL_ERROR;
684 }
685 else
686 {
687 AssertMsgFailed(("outside range: %VGp-%VGp split %VGp\n", pCur->Core.Key, pCur->Core.KeyLast, GCPhysSplit));
688 rc = VERR_INVALID_PARAMETER;
689 }
690 }
691 else
692 {
693 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys));
694 rc = VERR_PGM_HANDLER_NOT_FOUND;
695 }
696 pgmUnlock(pVM);
697 MMHyperFree(pVM, pNew);
698 return rc;
699}
700
701
702/**
703 * Joins up two adjacent physical access handlers which has the same callbacks.
704 *
705 * @returns VBox status code.
706 * @param pVM VM Handle.
707 * @param GCPhys1 Start physical address of the first handler.
708 * @param GCPhys2 Start physical address of the second handler.
709 */
710VMMDECL(int) PGMHandlerPhysicalJoin(PVM pVM, RTGCPHYS GCPhys1, RTGCPHYS GCPhys2)
711{
712 /*
713 * Get the handlers.
714 */
715 int rc;
716 pgmLock(pVM);
717 PPGMPHYSHANDLER pCur1 = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys1);
718 if (pCur1)
719 {
720 PPGMPHYSHANDLER pCur2 = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys2);
721 if (pCur2)
722 {
723 /*
724 * Make sure that they are adjacent, and that they've got the same callbacks.
725 */
726 if (pCur1->Core.KeyLast + 1 == pCur2->Core.Key)
727 {
728 if ( pCur1->pfnHandlerRC == pCur2->pfnHandlerRC
729 && pCur1->pfnHandlerR0 == pCur2->pfnHandlerR0
730 && pCur1->pfnHandlerR3 == pCur2->pfnHandlerR3)
731 {
732 PPGMPHYSHANDLER pCur3 = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys2);
733 if (pCur3 == pCur2)
734 {
735 pCur1->Core.KeyLast = pCur2->Core.KeyLast;
736 pCur1->cPages = (pCur1->Core.KeyLast - (pCur1->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
737 LogFlow(("PGMHandlerPhysicalJoin: %VGp-%VGp %VGp-%VGp\n",
738 pCur1->Core.Key, pCur1->Core.KeyLast, pCur2->Core.Key, pCur2->Core.KeyLast));
739 pgmUnlock(pVM);
740 MMHyperFree(pVM, pCur2);
741 return VINF_SUCCESS;
742 }
743
744 Assert(pCur3 == pCur2);
745 rc = VERR_INTERNAL_ERROR;
746 }
747 else
748 {
749 AssertMsgFailed(("mismatching handlers\n"));
750 rc = VERR_ACCESS_DENIED;
751 }
752 }
753 else
754 {
755 AssertMsgFailed(("not adjacent: %VGp-%VGp %VGp-%VGp\n",
756 pCur1->Core.Key, pCur1->Core.KeyLast, pCur2->Core.Key, pCur2->Core.KeyLast));
757 rc = VERR_INVALID_PARAMETER;
758 }
759 }
760 else
761 {
762 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys2));
763 rc = VERR_PGM_HANDLER_NOT_FOUND;
764 }
765 }
766 else
767 {
768 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys1));
769 rc = VERR_PGM_HANDLER_NOT_FOUND;
770 }
771 pgmUnlock(pVM);
772 return rc;
773
774}
775
776
777/**
778 * Resets any modifications to individual pages in a physical
779 * page access handler region.
780 *
781 * This is used in pair with PGMHandlerPhysicalPageTempOff().
782 *
783 * @returns VBox status code.
784 * @param pVM VM Handle
785 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
786 */
787VMMDECL(int) PGMHandlerPhysicalReset(PVM pVM, RTGCPHYS GCPhys)
788{
789 pgmLock(pVM);
790
791 /*
792 * Find the handler.
793 */
794 int rc;
795 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
796 if (pCur)
797 {
798 /*
799 * Validate type.
800 */
801 switch (pCur->enmType)
802 {
803 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
804 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
805 {
806 /*
807 * Set the flags and flush shadow PT entries.
808 */
809 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlePhysicalReset);
810 PPGMRAMRANGE pRam = pgmPhysGetRange(&pVM->pgm.s, GCPhys);
811 Assert(pRam);
812 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pCur, pRam);
813 if (rc == VINF_PGM_GCPHYS_ALIASED)
814 {
815 pVM->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
816 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
817 }
818 pVM->pgm.s.fPhysCacheFlushPending = true;
819 HWACCMFlushTLB(pVM);
820
821 rc = VINF_SUCCESS;
822 break;
823 }
824
825 /*
826 * Invalid.
827 */
828 case PGMPHYSHANDLERTYPE_MMIO:
829 AssertMsgFailed(("Can't reset type %d!\n", pCur->enmType));
830 rc = VERR_INTERNAL_ERROR;
831 break;
832
833 default:
834 AssertMsgFailed(("Invalid type %d! Corruption!\n", pCur->enmType));
835 rc = VERR_INTERNAL_ERROR;
836 break;
837 }
838 }
839 else
840 {
841 AssertMsgFailed(("Didn't find MMIO Range starting at %#x\n", GCPhys));
842 rc = VERR_PGM_HANDLER_NOT_FOUND;
843 }
844
845 pgmUnlock(pVM);
846 return rc;
847}
848
849
850/**
851 * Temporarily turns off the access monitoring of a page within a monitored
852 * physical write/all page access handler region.
853 *
854 * Use this when no further \#PFs are required for that page. Be aware that
855 * a page directory sync might reset the flags, and turn on access monitoring
856 * for the page.
857 *
858 * The caller must do required page table modifications.
859 *
860 * @returns VBox status code.
861 * @param pVM VM Handle
862 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
863 * This must be a fully page aligned range or we risk messing up other
864 * handlers installed for the start and end pages.
865 * @param GCPhysPage Physical address of the page to turn off access monitoring for.
866 */
867VMMDECL(int) PGMHandlerPhysicalPageTempOff(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
868{
869 /*
870 * Validate the range.
871 */
872 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
873 if (pCur)
874 {
875 if ( GCPhysPage >= pCur->Core.Key
876 && GCPhysPage <= pCur->Core.KeyLast)
877 {
878 Assert(!(pCur->Core.Key & PAGE_OFFSET_MASK));
879 Assert((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
880
881 AssertReturn( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
882 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL,
883 VERR_ACCESS_DENIED);
884
885 /*
886 * Change the page status.
887 */
888 PPGMPAGE pPage;
889 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
890 AssertRCReturn(rc, rc);
891 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
892#ifdef IN_RING0
893 HWACCMInvalidatePhysPage(pVM, GCPhysPage);
894#endif
895 return VINF_SUCCESS;
896 }
897
898 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
899 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
900 return VERR_INVALID_PARAMETER;
901 }
902
903 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
904 return VERR_PGM_HANDLER_NOT_FOUND;
905}
906
907
908/**
909 * Turns access monitoring of a page within a monitored
910 * physical write/all page access handler regio back on.
911 *
912 * The caller must do required page table modifications.
913 *
914 * @returns VBox status code.
915 * @param pVM VM Handle
916 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
917 * This must be a fully page aligned range or we risk messing up other
918 * handlers installed for the start and end pages.
919 * @param GCPhysPage Physical address of the page to turn on access monitoring for.
920 */
921VMMDECL(int) PGMHandlerPhysicalPageReset(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
922{
923 /*
924 * Validate the range.
925 */
926 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
927 if (pCur)
928 {
929 if ( GCPhysPage >= pCur->Core.Key
930 && GCPhysPage <= pCur->Core.KeyLast)
931 {
932 Assert(!(pCur->Core.Key & PAGE_OFFSET_MASK));
933 Assert((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
934
935 AssertReturn( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
936 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL,
937 VERR_ACCESS_DENIED);
938
939 /*
940 * Change the page status.
941 */
942 PPGMPAGE pPage;
943 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
944 AssertRCReturn(rc, rc);
945 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, pgmHandlerPhysicalCalcState(pCur));
946 return VINF_SUCCESS;
947 }
948
949 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
950 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
951 return VERR_INVALID_PARAMETER;
952 }
953
954 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
955 return VERR_PGM_HANDLER_NOT_FOUND;
956}
957
958
959/**
960 * Checks if a physical range is handled
961 *
962 * @returns boolean
963 * @param pVM VM Handle
964 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
965 */
966VMMDECL(bool) PGMHandlerPhysicalIsRegistered(PVM pVM, RTGCPHYS GCPhys)
967{
968 /*
969 * Find the handler.
970 */
971 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
972 if (pCur)
973 {
974 if ( GCPhys >= pCur->Core.Key
975 && GCPhys <= pCur->Core.KeyLast)
976 {
977 Assert( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
978 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL
979 || pCur->enmType == PGMPHYSHANDLERTYPE_MMIO);
980 return true;
981 }
982 }
983
984 return false;
985}
986
987
988/**
989 * Search for virtual handler with matching physical address
990 *
991 * @returns VBox status code
992 * @param pVM The VM handle.
993 * @param GCPhys GC physical address to search for.
994 * @param ppVirt Where to store the pointer to the virtual handler structure.
995 * @param piPage Where to store the pointer to the index of the cached physical page.
996 */
997int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage)
998{
999 STAM_PROFILE_START(CTXSUFF(&pVM->pgm.s.StatVirtHandleSearchByPhys), a);
1000 Assert(ppVirt);
1001
1002 PPGMPHYS2VIRTHANDLER pCur;
1003 pCur = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, GCPhys);
1004 if (pCur)
1005 {
1006 /* found a match! */
1007#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1008 AssertRelease(pCur->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD);
1009#endif
1010 *ppVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
1011 *piPage = pCur - &(*ppVirt)->aPhysToVirt[0];
1012
1013 LogFlow(("PHYS2VIRT: found match for %RGp -> %RGv *piPage=%#x\n", GCPhys, (*ppVirt)->Core.Key, *piPage));
1014 STAM_PROFILE_STOP(CTXSUFF(&pVM->pgm.s.StatVirtHandleSearchByPhys), a);
1015 return VINF_SUCCESS;
1016 }
1017
1018 *ppVirt = NULL;
1019 STAM_PROFILE_STOP(CTXSUFF(&pVM->pgm.s.StatVirtHandleSearchByPhys), a);
1020 return VERR_PGM_HANDLER_NOT_FOUND;
1021}
1022
1023
1024/**
1025 * Deal with aliases in phys2virt.
1026 *
1027 * As pointed out by the various todos, this currently only deals with
1028 * aliases where the two ranges match 100%.
1029 *
1030 * @param pVM The VM handle.
1031 * @param pPhys2Virt The node we failed insert.
1032 */
1033static void pgmHandlerVirtualInsertAliased(PVM pVM, PPGMPHYS2VIRTHANDLER pPhys2Virt)
1034{
1035 /*
1036 * First find the node which is conflicting with us.
1037 */
1038 /** @todo Deal with partial overlapping. (Unlikly situation, so I'm too lazy to do anything about it now.) */
1039 /** @todo check if the current head node covers the ground we do. This is highly unlikely
1040 * and I'm too lazy to implement this now as it will require sorting the list and stuff like that. */
1041 PPGMPHYS2VIRTHANDLER pHead = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
1042#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1043 AssertReleaseMsg(pHead != pPhys2Virt, ("%VGp-%VGp offVirtHandler=%#RX32\n",
1044 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler));
1045#endif
1046 if (RT_UNLIKELY(!pHead || pHead->Core.KeyLast != pPhys2Virt->Core.KeyLast))
1047 {
1048 /** @todo do something clever here... */
1049 LogRel(("pgmHandlerVirtualInsertAliased: %VGp-%VGp\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
1050 pPhys2Virt->offNextAlias = 0;
1051 return;
1052 }
1053
1054 /*
1055 * Insert ourselves as the next node.
1056 */
1057 if (!(pHead->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
1058 pPhys2Virt->offNextAlias = PGMPHYS2VIRTHANDLER_IN_TREE;
1059 else
1060 {
1061 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pHead + (pHead->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
1062 pPhys2Virt->offNextAlias = ((intptr_t)pNext - (intptr_t)pPhys2Virt)
1063 | PGMPHYS2VIRTHANDLER_IN_TREE;
1064 }
1065 pHead->offNextAlias = ((intptr_t)pPhys2Virt - (intptr_t)pHead)
1066 | (pHead->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
1067 Log(("pgmHandlerVirtualInsertAliased: %VGp-%VGp offNextAlias=%#RX32\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias));
1068}
1069
1070
1071/**
1072 * Resets one virtual handler range.
1073 *
1074 * This is called by HandlerVirtualUpdate when it has detected some kind of
1075 * problem and have started clearing the virtual handler page states (or
1076 * when there have been registration/deregistrations). For this reason this
1077 * function will only update the page status if it's lower than desired.
1078 *
1079 * @returns 0
1080 * @param pNode Pointer to a PGMVIRTHANDLER.
1081 * @param pvUser The VM handle.
1082 */
1083DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1084{
1085 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1086 PVM pVM = (PVM)pvUser;
1087
1088 /*
1089 * Iterate the pages and apply the new state.
1090 */
1091 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1092 PPGMRAMRANGE pRamHint = NULL;
1093 RTGCUINTPTR offPage = ((RTGCUINTPTR)pCur->Core.Key & PAGE_OFFSET_MASK);
1094 RTGCUINTPTR cbLeft = pCur->cb;
1095 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1096 {
1097 PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
1098 if (pPhys2Virt->Core.Key != NIL_RTGCPHYS)
1099 {
1100 /*
1101 * Update the page state wrt virtual handlers.
1102 */
1103 PPGMPAGE pPage;
1104 int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, pPhys2Virt->Core.Key, &pPage, &pRamHint);
1105 if ( RT_SUCCESS(rc)
1106 && PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < uState)
1107 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, uState);
1108 else
1109 AssertRC(rc);
1110
1111 /*
1112 * Need to insert the page in the Phys2Virt lookup tree?
1113 */
1114 if (pPhys2Virt->Core.KeyLast == NIL_RTGCPHYS)
1115 {
1116#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1117 AssertRelease(!pPhys2Virt->offNextAlias);
1118#endif
1119 unsigned cbPhys = cbLeft;
1120 if (cbPhys > PAGE_SIZE - offPage)
1121 cbPhys = PAGE_SIZE - offPage;
1122 else
1123 Assert(iPage == pCur->cPages - 1);
1124 pPhys2Virt->Core.KeyLast = pPhys2Virt->Core.Key + cbPhys - 1; /* inclusive */
1125 pPhys2Virt->offNextAlias = PGMPHYS2VIRTHANDLER_IS_HEAD | PGMPHYS2VIRTHANDLER_IN_TREE;
1126 if (!RTAvlroGCPhysInsert(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, &pPhys2Virt->Core))
1127 pgmHandlerVirtualInsertAliased(pVM, pPhys2Virt);
1128#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1129 else
1130 AssertReleaseMsg(RTAvlroGCPhysGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key) == &pPhys2Virt->Core,
1131 ("%VGp-%VGp offNextAlias=%#RX32\n",
1132 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias));
1133#endif
1134 Log2(("PHYS2VIRT: Insert physical range %VGp-%VGp offNextAlias=%#RX32 %s\n",
1135 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
1136 }
1137 }
1138 cbLeft -= PAGE_SIZE - offPage;
1139 offPage = 0;
1140 }
1141
1142 return 0;
1143}
1144
1145
1146#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
1147/**
1148 * Worker for pgmHandlerVirtualDumpPhysPages.
1149 *
1150 * @returns 0 (continue enumeration).
1151 * @param pNode The virtual handler node.
1152 * @param pvUser User argument, unused.
1153 */
1154static DECLCALLBACK(int) pgmHandlerVirtualDumpPhysPagesCallback(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1155{
1156 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
1157 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
1158 Log(("PHYS2VIRT: Range %VGp-%VGp for virtual handler: %s\n", pCur->Core.Key, pCur->Core.KeyLast, pVirt->pszDesc));
1159 return 0;
1160}
1161
1162
1163/**
1164 * Assertion / logging helper for dumping all the
1165 * virtual handlers to the log.
1166 *
1167 * @param pVM Pointer to the shared VM structure.
1168 */
1169void pgmHandlerVirtualDumpPhysPages(PVM pVM)
1170{
1171 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, true /* from left */,
1172 pgmHandlerVirtualDumpPhysPagesCallback, 0);
1173}
1174#endif /* VBOX_STRICT || LOG_ENABLED */
1175
1176#ifdef VBOX_STRICT
1177
1178/**
1179 * State structure used by the PGMAssertHandlerAndFlagsInSync() function
1180 * and its AVL enumerators.
1181 */
1182typedef struct PGMAHAFIS
1183{
1184 /** The current physical address. */
1185 RTGCPHYS GCPhys;
1186 /** The state we've calculated. */
1187 unsigned uVirtStateFound;
1188 /** The state we're matching up to. */
1189 unsigned uVirtState;
1190 /** Number of errors. */
1191 unsigned cErrors;
1192 /** The VM handle. */
1193 PVM pVM;
1194} PGMAHAFIS, *PPGMAHAFIS;
1195
1196
1197#if 0 /* unused */
1198/**
1199 * Verify virtual handler by matching physical address.
1200 *
1201 * @returns 0
1202 * @param pNode Pointer to a PGMVIRTHANDLER.
1203 * @param pvUser Pointer to user parameter.
1204 */
1205static DECLCALLBACK(int) pgmHandlerVirtualVerifyOneByPhysAddr(PAVLROGCPTRNODECORE pNode, void *pvUser)
1206{
1207 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1208 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1209
1210 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1211 {
1212 if ((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == pState->GCPhys)
1213 {
1214 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1215 if (pState->uVirtState < uState)
1216 {
1217 error
1218 }
1219
1220 if (pState->uVirtState == uState)
1221 break; //??
1222 }
1223 }
1224 return 0;
1225}
1226#endif /* unused */
1227
1228
1229/**
1230 * Verify a virtual handler (enumeration callback).
1231 *
1232 * Called by PGMAssertHandlerAndFlagsInSync to check the sanity of all
1233 * the virtual handlers, esp. that the physical addresses matches up.
1234 *
1235 * @returns 0
1236 * @param pNode Pointer to a PGMVIRTHANDLER.
1237 * @param pvUser Pointer to a PPGMAHAFIS structure.
1238 */
1239static DECLCALLBACK(int) pgmHandlerVirtualVerifyOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1240{
1241 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)pNode;
1242 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1243 PVM pVM = pState->pVM;
1244
1245 /*
1246 * Validate the type and calc state.
1247 */
1248 switch (pVirt->enmType)
1249 {
1250 case PGMVIRTHANDLERTYPE_WRITE:
1251 case PGMVIRTHANDLERTYPE_ALL:
1252 break;
1253 default:
1254 AssertMsgFailed(("unknown/wrong enmType=%d\n", pVirt->enmType));
1255 pState->cErrors++;
1256 return 0;
1257 }
1258 const unsigned uState = pgmHandlerVirtualCalcState(pVirt);
1259
1260 /*
1261 * Check key alignment.
1262 */
1263 if ( (pVirt->aPhysToVirt[0].Core.Key & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->Core.Key & PAGE_OFFSET_MASK)
1264 && pVirt->aPhysToVirt[0].Core.Key != NIL_RTGCPHYS)
1265 {
1266 AssertMsgFailed(("virt handler phys has incorrect key! %RGp %RGv %s\n",
1267 pVirt->aPhysToVirt[0].Core.Key, pVirt->Core.Key, R3STRING(pVirt->pszDesc)));
1268 pState->cErrors++;
1269 }
1270
1271 if ( (pVirt->aPhysToVirt[pVirt->cPages - 1].Core.KeyLast & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->Core.KeyLast & PAGE_OFFSET_MASK)
1272 && pVirt->aPhysToVirt[pVirt->cPages - 1].Core.Key != NIL_RTGCPHYS)
1273 {
1274 AssertMsgFailed(("virt handler phys has incorrect key! %RGp %RGv %s\n",
1275 pVirt->aPhysToVirt[pVirt->cPages - 1].Core.KeyLast, pVirt->Core.KeyLast, R3STRING(pVirt->pszDesc)));
1276 pState->cErrors++;
1277 }
1278
1279 /*
1280 * Check pages for sanity and state.
1281 */
1282 RTGCUINTPTR GCPtr = (RTGCUINTPTR)pVirt->Core.Key;
1283 for (unsigned iPage = 0; iPage < pVirt->cPages; iPage++, GCPtr += PAGE_SIZE)
1284 {
1285 RTGCPHYS GCPhysGst;
1286 uint64_t fGst;
1287 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, &fGst, &GCPhysGst);
1288 if ( rc == VERR_PAGE_NOT_PRESENT
1289 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
1290 {
1291 if (pVirt->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
1292 {
1293 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysNew=~0 iPage=%#x %VGv %s\n",
1294 pVirt->aPhysToVirt[iPage].Core.Key, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
1295 pState->cErrors++;
1296 }
1297 continue;
1298 }
1299
1300 AssertRCReturn(rc, 0);
1301 if ((pVirt->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) != GCPhysGst)
1302 {
1303 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1304 pVirt->aPhysToVirt[iPage].Core.Key, GCPhysGst, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
1305 pState->cErrors++;
1306 continue;
1307 }
1308
1309 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
1310 if (!pPage)
1311 {
1312 AssertMsgFailed(("virt handler getting ram flags. GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1313 GCPhysGst, iPage, GCPtr, R3STRING(pVirt->pszDesc)));
1314 pState->cErrors++;
1315 continue;
1316 }
1317
1318 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < uState)
1319 {
1320 AssertMsgFailed(("virt handler state mismatch. HCPhys=%VHp GCPhysGst=%VGp iPage=%#x %VGv state=%d expected>=%d %s\n",
1321 pPage->HCPhys, GCPhysGst, iPage, GCPtr, PGM_PAGE_GET_HNDL_VIRT_STATE(pPage), uState, R3STRING(pVirt->pszDesc)));
1322 pState->cErrors++;
1323 continue;
1324 }
1325 } /* for pages in virtual mapping. */
1326
1327 return 0;
1328}
1329
1330
1331/**
1332 * Asserts that the handlers+guest-page-tables == ramrange-flags and
1333 * that the physical addresses associated with virtual handlers are correct.
1334 *
1335 * @returns Number of mismatches.
1336 * @param pVM The VM handle.
1337 */
1338VMMDECL(unsigned) PGMAssertHandlerAndFlagsInSync(PVM pVM)
1339{
1340 PPGM pPGM = &pVM->pgm.s;
1341 PGMAHAFIS State;
1342 State.GCPhys = 0;
1343 State.uVirtState = 0;
1344 State.uVirtStateFound = 0;
1345 State.cErrors = 0;
1346 State.pVM = pVM;
1347
1348 /*
1349 * Check the RAM flags against the handlers.
1350 */
1351 for (PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); pRam; pRam = pRam->CTX_SUFF(pNext))
1352 {
1353 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
1354 for (unsigned iPage = 0; iPage < cPages; iPage++)
1355 {
1356 PGMPAGE const *pPage = &pRam->aPages[iPage];
1357 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
1358 {
1359 State.GCPhys = pRam->GCPhys + (iPage << PAGE_SHIFT);
1360
1361 /*
1362 * Physical first - calculate the state based on the handlers
1363 * active on the page, then compare.
1364 */
1365 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
1366 {
1367 /* the first */
1368 PPGMPHYSHANDLER pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pPGM->CTX_SUFF(pTrees)->PhysHandlers, State.GCPhys);
1369 if (!pPhys)
1370 {
1371 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTX_SUFF(pTrees)->PhysHandlers, State.GCPhys, true);
1372 if ( pPhys
1373 && pPhys->Core.Key > (State.GCPhys + PAGE_SIZE - 1))
1374 pPhys = NULL;
1375 Assert(!pPhys || pPhys->Core.Key >= State.GCPhys);
1376 }
1377 if (pPhys)
1378 {
1379 unsigned uState = pgmHandlerPhysicalCalcState(pPhys);
1380
1381 /* more? */
1382 while (pPhys->Core.KeyLast < (State.GCPhys | PAGE_OFFSET_MASK))
1383 {
1384 PPGMPHYSHANDLER pPhys2 = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTX_SUFF(pTrees)->PhysHandlers,
1385 pPhys->Core.KeyLast + 1, true);
1386 if ( !pPhys2
1387 || pPhys2->Core.Key > (State.GCPhys | PAGE_OFFSET_MASK))
1388 break;
1389 unsigned uState2 = pgmHandlerPhysicalCalcState(pPhys2);
1390 uState = RT_MAX(uState, uState2);
1391 pPhys = pPhys2;
1392 }
1393
1394 /* compare.*/
1395 if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != uState
1396 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
1397 {
1398 AssertMsgFailed(("ram range vs phys handler flags mismatch. GCPhys=%RGp state=%d expected=%d %s\n",
1399 State.GCPhys, PGM_PAGE_GET_HNDL_PHYS_STATE(pPage), uState, pPhys->pszDesc));
1400 State.cErrors++;
1401 }
1402
1403#ifdef IN_RING3
1404 /* validate that REM is handling it. */
1405 if ( !REMR3IsPageAccessHandled(pVM, State.GCPhys)
1406 /* ignore shadowed ROM for the time being. */ /// @todo PAGE FLAGS
1407 && (pPage->HCPhys & (MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2)) != (MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2))
1408 {
1409 AssertMsgFailed(("ram range vs phys handler REM mismatch. GCPhys=%RGp state=%d %s\n",
1410 State.GCPhys, PGM_PAGE_GET_HNDL_PHYS_STATE(pPage), pPhys->pszDesc));
1411 State.cErrors++;
1412 }
1413#endif
1414 }
1415 else
1416 {
1417 AssertMsgFailed(("ram range vs phys handler mismatch. no handler for GCPhys=%RGp\n", State.GCPhys));
1418 State.cErrors++;
1419 }
1420 }
1421
1422 /*
1423 * Virtual handlers.
1424 */
1425 if (PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage))
1426 {
1427 State.uVirtState = PGM_PAGE_GET_HNDL_VIRT_STATE(pPage);
1428#if 1
1429 /* locate all the matching physical ranges. */
1430 State.uVirtStateFound = PGM_PAGE_HNDL_VIRT_STATE_NONE;
1431 RTGCPHYS GCPhysKey = State.GCPhys;
1432 for (;;)
1433 {
1434 PPGMPHYS2VIRTHANDLER pPhys2Virt = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
1435 GCPhysKey, true /* above-or-equal */);
1436 if ( !pPhys2Virt
1437 || (pPhys2Virt->Core.Key & X86_PTE_PAE_PG_MASK) != State.GCPhys)
1438 break;
1439
1440 /* the head */
1441 GCPhysKey = pPhys2Virt->Core.KeyLast;
1442 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)((uintptr_t)pPhys2Virt + pPhys2Virt->offVirtHandler);
1443 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1444 State.uVirtStateFound = RT_MAX(State.uVirtStateFound, uState);
1445
1446 /* any aliases */
1447 while (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
1448 {
1449 pPhys2Virt = (PPGMPHYS2VIRTHANDLER)((uintptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
1450 pCur = (PPGMVIRTHANDLER)((uintptr_t)pPhys2Virt + pPhys2Virt->offVirtHandler);
1451 uState = pgmHandlerVirtualCalcState(pCur);
1452 State.uVirtStateFound = RT_MAX(State.uVirtStateFound, uState);
1453 }
1454
1455 /* done? */
1456 if ((GCPhysKey & X86_PTE_PAE_PG_MASK) != State.GCPhys)
1457 break;
1458 }
1459#else
1460 /* very slow */
1461 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualVerifyOneByPhysAddr, &State);
1462#endif
1463 if (State.uVirtState != State.uVirtStateFound)
1464 {
1465 AssertMsgFailed(("ram range vs virt handler flags mismatch. GCPhys=%RGp uVirtState=%#x uVirtStateFound=%#x\n",
1466 State.GCPhys, State.uVirtState, State.uVirtStateFound));
1467 State.cErrors++;
1468 }
1469 }
1470 }
1471 } /* foreach page in ram range. */
1472 } /* foreach ram range. */
1473
1474 /*
1475 * Check that the physical addresses of the virtual handlers matches up
1476 * and that they are otherwise sane.
1477 */
1478 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualVerifyOne, &State);
1479
1480 /*
1481 * Do the reverse check for physical handlers.
1482 */
1483 /** @todo */
1484
1485 return State.cErrors;
1486}
1487
1488#endif /* VBOX_STRICT */
1489
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette