/* $Id: PGMAllPhys.cpp 5323 2007-10-16 10:48:47Z vboxsync $ */ /** @file * PGM - Page Manager and Monitor, Physical Memory Addressing. */ /* * Copyright (C) 2006-2007 innotek GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License as published by the Free Software Foundation, * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE * distribution. VirtualBox OSE is distributed in the hope that it will * be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @def PGM_IGNORE_RAM_FLAGS_RESERVED * Don't respect the MM_RAM_FLAGS_RESERVED flag when converting to HC addresses. * * Since this flag is currently incorrectly kept set for ROM regions we will * have to ignore it for now so we don't break stuff. * * @todo this has been fixed now I believe, remove this hack. */ #define PGM_IGNORE_RAM_FLAGS_RESERVED /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_PHYS #include #include #include #include #include #include "PGMInternal.h" #include #include #include #include #include #include #include #ifdef IN_RING3 # include #endif /** * Checks if Address Gate 20 is enabled or not. * * @returns true if enabled. * @returns false if disabled. * @param pVM VM handle. */ PGMDECL(bool) PGMPhysIsA20Enabled(PVM pVM) { LogFlow(("PGMPhysIsA20Enabled %d\n", pVM->pgm.s.fA20Enabled)); return !!pVM->pgm.s.fA20Enabled ; /* stupid MS compiler doesn't trust me. */ } /** * Validates a GC physical address. * * @returns true if valid. * @returns false if invalid. * @param pVM The VM handle. * @param GCPhys The physical address to validate. */ PGMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys) { PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys); return pPage != NULL; } /** * Checks if a GC physical address is a normal page, * i.e. not ROM, MMIO or reserved. * * @returns true if normal. * @returns false if invalid, ROM, MMIO or reserved page. * @param pVM The VM handle. * @param GCPhys The physical address to check. */ PGMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys) { PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys); return pPage && !(pPage->HCPhys & (MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2)); } /** * Converts a GC physical address to a HC physical address. * * @returns VINF_SUCCESS on success. * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical * page but has no physical backing. * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid * GC physical address. * * @param pVM The VM handle. * @param GCPhys The GC physical address to convert. * @param pHCPhys Where to store the HC physical address on success. */ PGMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys) { PPGMPAGE pPage; int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage); if (VBOX_FAILURE(rc)) return rc; #ifndef PGM_IGNORE_RAM_FLAGS_RESERVED if (RT_UNLIKELY(pPage->HCPhys & MM_RAM_FLAGS_RESERVED)) /** @todo PAGE FLAGS */ return VERR_PGM_PHYS_PAGE_RESERVED; #endif *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK); return VINF_SUCCESS; } /** * Invalidates the GC page mapping TLB. * * @param pVM The VM handle. */ PDMDECL(void) PGMPhysInvalidatePageGCMapTLB(PVM pVM) { /* later */ NOREF(pVM); } /** * Invalidates the ring-0 page mapping TLB. * * @param pVM The VM handle. */ PDMDECL(void) PGMPhysInvalidatePageR0MapTLB(PVM pVM) { PGMPhysInvalidatePageR3MapTLB(pVM); } /** * Invalidates the ring-3 page mapping TLB. * * @param pVM The VM handle. */ PDMDECL(void) PGMPhysInvalidatePageR3MapTLB(PVM pVM) { pgmLock(pVM); for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++) { pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS; pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0; pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0; pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0; } pgmUnlock(pVM); } /** * Makes sure that there is at least one handy page ready for use. * * This will also take the appropriate actions when reaching water-marks. * * @returns The following VBox status codes. * @retval VINF_SUCCESS on success. * @retval VERR_EM_NO_MEMORY if we're really out of memory. * * @param pVM The VM handle. * * @remarks Must be called from within the PGM critical section. It may * nip back to ring-3/0 in some cases. */ static int pgmPhysEnsureHandyPage(PVM pVM) { /** @remarks * low-water mark logic for R0 & GC: * - 75%: Set FF. * - 50%: Force return to ring-3 ASAP. * * For ring-3 there is a little problem wrt to the recompiler, so: * - 75%: Set FF. * - 50%: Try allocate pages; on failure we'll force REM to quite ASAP. * * The basic idea is that we should be able to get out of any situation with * only 50% of handy pages remaining. * * At the moment we'll not adjust the number of handy pages relative to the * actual VM RAM committment, that's too much work for now. */ Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)); if ( !pVM->pgm.s.cHandyPages #ifdef IN_RING3 || pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2 /* 50% */ #endif ) { Log(("PGM: cHandyPages=%u out of %u -> allocate more\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages))); #ifdef IN_RING3 int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL); #elif defined(IN_RING0) /** @todo call PGMR0PhysAllocateHandyPages directly - need to make sure we can call kernel code first and deal with the seeding fallback. */ int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0); #else int rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0); #endif if (RT_UNLIKELY(rc != VINF_SUCCESS)) { Assert(rc == VINF_EM_NO_MEMORY); if (!pVM->pgm.s.cHandyPages) { LogRel(("PGM: no more handy pages!\n")); return VERR_EM_NO_MEMORY; } Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES)); #ifdef IN_RING3 REMR3NotifyFF(pVM); #else VM_FF_SET(pVM, VM_FF_TO_R3); #endif } Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)); } else if (pVM->pgm.s.cHandyPages - 1 <= (RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 4) * 3) /* 75% */ { VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES); #ifndef IN_RING3 if (pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2) { Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages))); VM_FF_SET(pVM, VM_FF_TO_R3); } #endif } return VINF_SUCCESS; } /** * Replace a zero or shared page with new page that we can write to. * * @returns The following VBox status codes. * @retval VINF_SUCCESS on success, pPage is modified. * @retval VERR_EM_NO_MEMORY if we're totally out of memory. * * @todo Propagate VERR_EM_NO_MEMORY up the call tree. * * @param pVM The VM address. * @param pPage The physical page tracking structure. This will * be modified on success. * @param GCPhys The address of the page. * * @remarks Must be called from within the PGM critical section. It may * nip back to ring-3/0 in some cases. * * @remarks This function shouldn't really fail, however if it does * it probably means we've screwed up the size of the amount * and/or the low-water mark of handy pages. Or, that some * device I/O is causing a lot of pages to be allocated while * while the host is in a low-memory condition. */ int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys) { /* * Ensure that we've got a page handy, take it and use it. */ int rc = pgmPhysEnsureHandyPage(pVM); if (VBOX_FAILURE(rc)) { Assert(rc == VERR_EM_NO_MEMORY); return rc; } AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%d %RGp\n", PGM_PAGE_GET_STATE(pPage), GCPhys)); Assert(!PGM_PAGE_IS_RESERVED(pPage)); Assert(!PGM_PAGE_IS_MMIO(pPage)); uint32_t iHandyPage = --pVM->pgm.s.cHandyPages; Assert(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages)); Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS); Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK)); Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID); Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID); /* * There are one or two action to be taken the next time we allocate handy pages: * - Tell the GMM (global memory manager) what the page is being used for. * (Speeds up replacement operations - sharing and defragmenting.) * - If the current backing is shared, it must be freed. */ const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys; pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys; if (PGM_PAGE_IS_SHARED(pPage)) { pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage); Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID); VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES); Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage), GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys)); STAM_COUNTER_INC(&pVM->pgm.s.StatPageReplaceShared); pVM->pgm.s.cSharedPages--; } else { Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys)); STAM_COUNTER_INC(&pVM->pgm.s.StatPageReplaceZero); pVM->pgm.s.cZeroPages--; } /* * Do the PGMPAGE modifications. */ pVM->pgm.s.cPrivatePages++; PGM_PAGE_SET_HCPHYS(pPage, HCPhys); PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage); PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED); return VINF_SUCCESS; } /** * Deal with pages that are not writable, i.e. not in the ALLOCATED state. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * * @param pVM The VM address. * @param pPage The physical page tracking structure. * @param GCPhys The address of the page. * * @remarks Called from within the PGM critical section. */ int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys) { switch (pPage->u2State) { case PGM_PAGE_STATE_WRITE_MONITORED: pPage->fWrittenTo = true; pPage->u2State = PGM_PAGE_STATE_ALLOCATED; /* fall thru */ default: /* to shut up GCC */ case PGM_PAGE_STATE_ALLOCATED: return VINF_SUCCESS; /* * Zero pages can be dummy pages for MMIO or reserved memory, * so we need to check the flags before joining cause with * shared page replacement. */ case PGM_PAGE_STATE_ZERO: if ( PGM_PAGE_IS_MMIO(pPage) || PGM_PAGE_IS_RESERVED(pPage)) return VERR_PGM_PHYS_PAGE_RESERVED; /* fall thru */ case PGM_PAGE_STATE_SHARED: return pgmPhysAllocPage(pVM, pPage, GCPhys); } } /** * Maps a page into the current virtual address space so it can be accessed. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * * @param pVM The VM address. * @param pPage The physical page tracking structure. * @param GCPhys The address of the page. * @param ppMap Where to store the address of the mapping tracking structure. * @param ppv Where to store the mapping address of the page. The page * offset is masked off! * * @remarks Called from within the PGM critical section. */ int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv) { #ifdef IN_GC /* * Just some sketchy GC code. */ *ppMap = NULL; RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage); Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg); return PGMGCDynMapHCPage(pVM, HCPhys, ppv); #else /* IN_RING3 || IN_RING0 */ /* * Find/make Chunk TLB entry for the mapping chunk. */ PPGMCHUNKR3MAP pMap; const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage); PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)]; if (pTlbe->idChunk == idChunk) { STAM_COUNTER_INC(&pVM->pgm.s.StatChunkR3MapTlbHits); pMap = pTlbe->pChunk; } else if (idChunk != NIL_GMM_CHUNKID) { STAM_COUNTER_INC(&pVM->pgm.s.StatChunkR3MapTlbMisses); /* * Find the chunk, map it if necessary. */ pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk); if (!pMap) { #ifdef IN_RING0 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk); AssertRCReturn(rc, rc); pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk); Assert(pMap); #else int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap); if (VBOX_FAILURE(rc)) return rc; #endif } /* * Enter it into the Chunk TLB. */ pTlbe->idChunk = idChunk; pTlbe->pChunk = pMap; pMap->iAge = 0; } else { Assert(PGM_PAGE_IS_ZERO(pPage)); *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg); *ppMap = NULL; return VINF_SUCCESS; } *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT); *ppMap = pMap; return VINF_SUCCESS; #endif /* IN_RING3 */ } #ifndef IN_GC /** * Load a guest page into the ring-3 physical TLB. * * @returns VBox status code. * @retval VINF_SUCCESS on success * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * @param pPGM The PGM instance pointer. * @param GCPhys The guest physical address in question. */ int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys) { STAM_COUNTER_INC(&pPGM->CTXMID(StatPage,MapTlbMisses)); /* * Find the ram range. * 99.8% of requests are expected to be in the first range. */ PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb)) { do { pRam = CTXSUFF(pRam->pNext); if (!pRam) return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; off = GCPhys - pRam->GCPhys; } while (off >= pRam->cb); } /* * Map the page. * Make a special case for the zero page as it is kind of special. */ PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT]; PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)]; if (!PGM_PAGE_IS_ZERO(pPage)) { void *pv; PPGMPAGEMAP pMap; int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv); if (VBOX_FAILURE(rc)) return rc; pTlbe->pMap = pMap; pTlbe->pv = pv; } else { Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg); pTlbe->pMap = NULL; pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg); } pTlbe->pPage = pPage; return VINF_SUCCESS; } #endif /* !IN_GC */ /** * Requests the mapping of a guest page into the current context. * * This API should only be used for very short term, as it will consume * scarse resources (R0 and GC) in the mapping cache. When you're done * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it. * * This API will assume your intention is to write to the page, and will * therefore replace shared and zero pages. If you do not intend to modify * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread Any thread. */ PGMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) { #ifdef NEW_PHYS_CODE #ifdef IN_GC /* Until a physical TLB is implemented for GC, let PGMGCDynMapGCPageEx handle it. */ return PGMGCDynMapGCPageEx(pVM, GCPhys, ppv); #else int rc = pgmLock(pVM); AssertRCReturn(rc); /* * Query the Physical TLB entry for the page (may fail). */ PGMPHYSTLBE pTlbe; int rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe); if (RT_SUCCESS(rc)) { /* * If the page is shared, the zero page, or being write monitored * it must be converted to an page that's writable if possible. */ PPGMPAGE pPage = pTlbe->pPage; if (RT_UNLIKELY(pPage->u2State != PGM_PAGE_STATE_ALLOCATED)) rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (RT_SUCCESS(rc)) { /* * Now, just perform the locking and calculate the return address. */ PPGMPAGEMAP pMap = pTlbe->pMap; pMap->cRefs++; if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS)) if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS)) { AssertMsgFailed(("%VGp is entering permanent locked state!\n", GCPhys)); pMap->cRefs++; /* Extra ref to prevent it from going away. */ } *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK)); pLock->pvPage = pPage; pLock->pvMap = pMap; } } pgmUnlock(pVM); return rc; #endif /* IN_RING3 || IN_RING0 */ #else /* * Temporary fallback code. */ # ifdef IN_GC return PGMGCDynMapGCPageEx(pVM, GCPhys, ppv); # else return PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1, ppv); # endif #endif } /** * Requests the mapping of a guest page into the current context. * * This API should only be used for very short term, as it will consume * scarse resources (R0 and GC) in the mapping cache. When you're done * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread Any thread. */ PGMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void * const *ppv, PPGMPAGEMAPLOCK pLock) { /** @todo implement this */ return PGMPhysGCPhys2CCPtr(pVM, GCPhys, (void **)ppv, pLock); } /** * Requests the mapping of a guest page given by virtual address into the current context. * * This API should only be used for very short term, as it will consume * scarse resources (R0 and GC) in the mapping cache. When you're done * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it. * * This API will assume your intention is to write to the page, and will * therefore replace shared and zero pages. If you do not intend to modify * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present. * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread EMT */ PGMDECL(int) PGMPhysGCPtr2CCPtr(PVM pVM, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock) { RTGCPHYS GCPhys; int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys); if (VBOX_SUCCESS(rc)) rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, pLock); return rc; } /** * Requests the mapping of a guest page given by virtual address into the current context. * * This API should only be used for very short term, as it will consume * scarse resources (R0 and GC) in the mapping cache. When you're done * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present. * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread EMT */ PGMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVM pVM, RTGCPTR GCPtr, void * const *ppv, PPGMPAGEMAPLOCK pLock) { RTGCPHYS GCPhys; int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys); if (VBOX_SUCCESS(rc)) rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, pLock); return rc; } /** * Release the mapping of a guest page. * * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly. * * @param pVM The VM handle. * @param pLock The lock structure initialized by the mapping function. */ PGMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock) { #ifdef NEW_PHYS_CODE #ifdef IN_GC /* currently nothing to do here. */ /* --- postponed #elif defined(IN_RING0) */ #else /* IN_RING3 */ pgmLock(pVM); PPGMPAGE pPage = (PPGMPAGE)pLock->pvPage; Assert(pPage->cLocks >= 1); if (pPage->cLocks != PGM_PAGE_MAX_LOCKS) pPage->cLocks--; PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pLock->pvChunk; Assert(pChunk->cRefs >= 1); pChunk->cRefs--; pChunk->iAge = 0; pgmUnlock(pVM); #endif /* IN_RING3 */ #else NOREF(pVM); NOREF(pLock); #endif } /** * Converts a GC physical address to a HC pointer. * * @returns VINF_SUCCESS on success. * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical * page but has no physical backing. * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid * GC physical address. * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses * a dynamic ram chunk boundary * @param pVM The VM handle. * @param GCPhys The GC physical address to convert. * @param cbRange Physical range * @param pHCPtr Where to store the HC pointer on success. */ PGMDECL(int) PGMPhysGCPhys2HCPtr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTHCPTR pHCPtr) { #ifdef NEW_PHYS_CODE VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */ #endif #ifdef PGM_DYNAMIC_RAM_ALLOC if ((GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK) != ((GCPhys+cbRange-1) & PGM_DYNAMIC_CHUNK_BASE_MASK)) { AssertMsgFailed(("%VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange)); LogRel(("PGMPhysGCPhys2HCPtr %VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange)); return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY; } #endif PPGMRAMRANGE pRam; PPGMPAGE pPage; int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam); if (VBOX_FAILURE(rc)) return rc; #ifndef PGM_IGNORE_RAM_FLAGS_RESERVED if (RT_UNLIKELY(PGM_PAGE_IS_RESERVED(pPage))) return VERR_PGM_PHYS_PAGE_RESERVED; #endif RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off + cbRange > pRam->cb)) { AssertMsgFailed(("%VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys + cbRange)); return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY; } if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { unsigned iChunk = (off >> PGM_DYNAMIC_CHUNK_SHIFT); *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)); } else if (RT_LIKELY(pRam->pvHC)) *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off); else return VERR_PGM_PHYS_PAGE_RESERVED; return VINF_SUCCESS; } /** * Converts a guest pointer to a GC physical address. * * This uses the current CR3/CR0/CR4 of the guest. * * @returns VBox status code. * @param pVM The VM Handle * @param GCPtr The guest pointer to convert. * @param pGCPhys Where to store the GC physical address. */ PGMDECL(int) PGMPhysGCPtr2GCPhys(PVM pVM, RTGCPTR GCPtr, PRTGCPHYS pGCPhys) { int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, pGCPhys); if (pGCPhys && VBOX_SUCCESS(rc)) *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK; return rc; } /** * Converts a guest pointer to a HC physical address. * * This uses the current CR3/CR0/CR4 of the guest. * * @returns VBox status code. * @param pVM The VM Handle * @param GCPtr The guest pointer to convert. * @param pHCPhys Where to store the HC physical address. */ PGMDECL(int) PGMPhysGCPtr2HCPhys(PVM pVM, RTGCPTR GCPtr, PRTHCPHYS pHCPhys) { RTGCPHYS GCPhys; int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys); if (VBOX_SUCCESS(rc)) rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys); return rc; } /** * Converts a guest pointer to a HC pointer. * * This uses the current CR3/CR0/CR4 of the guest. * * @returns VBox status code. * @param pVM The VM Handle * @param GCPtr The guest pointer to convert. * @param pHCPtr Where to store the HC virtual address. */ PGMDECL(int) PGMPhysGCPtr2HCPtr(PVM pVM, RTGCPTR GCPtr, PRTHCPTR pHCPtr) { #ifdef NEW_PHYS_CODE VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */ #endif RTGCPHYS GCPhys; int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys); if (VBOX_SUCCESS(rc)) rc = PGMPhysGCPhys2HCPtr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr); return rc; } /** * Converts a guest virtual address to a HC pointer by specfied CR3 and flags. * * @returns VBox status code. * @param pVM The VM Handle * @param GCPtr The guest pointer to convert. * @param cr3 The guest CR3. * @param fFlags Flags used for interpreting the PD correctly: X86_CR4_PSE and X86_CR4_PAE * @param pHCPtr Where to store the HC pointer. * * @remark This function is used by the REM at a time where PGM could * potentially not be in sync. It could also be used by a * future DBGF API to cpu state independent conversions. */ PGMDECL(int) PGMPhysGCPtr2HCPtrByGstCR3(PVM pVM, RTGCPTR GCPtr, uint32_t cr3, unsigned fFlags, PRTHCPTR pHCPtr) { #ifdef NEW_PHYS_CODE VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */ #endif /* * PAE or 32-bit? */ int rc; if (!(fFlags & X86_CR4_PAE)) { PX86PD pPD; rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD); if (VBOX_SUCCESS(rc)) { X86PDE Pde = pPD->a[(RTGCUINTPTR)GCPtr >> X86_PD_SHIFT]; if (Pde.n.u1Present) { if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size) { /* (big page) */ rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE4M_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_4M_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr); } else { /* (normal page) */ PVBOXPT pPT; rc = PGM_GCPHYS_2_PTR(pVM, Pde.u & X86_PDE_PG_MASK, &pPT); if (VBOX_SUCCESS(rc)) { VBOXPTE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_SHIFT) & X86_PT_MASK]; if (Pte.n.u1Present) return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr); rc = VERR_PAGE_NOT_PRESENT; } } } else rc = VERR_PAGE_TABLE_NOT_PRESENT; } } else { /** @todo long mode! */ PX86PDPTR pPdptr; rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, &pPdptr); if (VBOX_SUCCESS(rc)) { X86PDPE Pdpe = pPdptr->a[((RTGCUINTPTR)GCPtr >> X86_PDPTR_SHIFT) & X86_PDPTR_MASK]; if (Pdpe.n.u1Present) { PX86PDPAE pPD; rc = PGM_GCPHYS_2_PTR(pVM, Pdpe.u & X86_PDPE_PG_MASK, &pPD); if (VBOX_SUCCESS(rc)) { X86PDEPAE Pde = pPD->a[((RTGCUINTPTR)GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK]; if (Pde.n.u1Present) { if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size) { /* (big page) */ rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE4M_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_4M_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr); } else { /* (normal page) */ PX86PTPAE pPT; rc = PGM_GCPHYS_2_PTR(pVM, (Pde.u & X86_PDE_PAE_PG_MASK), &pPT); if (VBOX_SUCCESS(rc)) { X86PTEPAE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK]; if (Pte.n.u1Present) return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr); rc = VERR_PAGE_NOT_PRESENT; } } } else rc = VERR_PAGE_TABLE_NOT_PRESENT; } } else rc = VERR_PAGE_TABLE_NOT_PRESENT; } } return rc; } #undef LOG_GROUP #define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS #ifdef IN_RING3 /** * Cache PGMPhys memory access * * @param pVM VM Handle. * @param pCache Cache structure pointer * @param GCPhys GC physical address * @param pbHC HC pointer corresponding to physical page * * @thread EMT. */ static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbHC) { uint32_t iCacheIndex; GCPhys = PAGE_ADDRESS(GCPhys); pbHC = (uint8_t *)PAGE_ADDRESS(pbHC); iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK); ASMBitSet(&pCache->aEntries, iCacheIndex); pCache->Entry[iCacheIndex].GCPhys = GCPhys; pCache->Entry[iCacheIndex].pbHC = pbHC; } #endif /** * Read physical memory. * * This API respects access handlers and MMIO. Use PGMPhysReadGCPhys() if you * want to ignore those. * * @param pVM VM Handle. * @param GCPhys Physical address start reading from. * @param pvBuf Where to put the read bits. * @param cbRead How many bytes to read. */ PGMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead) { #ifdef IN_RING3 bool fGrabbedLock = false; #endif AssertMsg(cbRead > 0, ("don't even think about reading zero bytes!\n")); if (cbRead == 0) return; LogFlow(("PGMPhysRead: %VGp %d\n", GCPhys, cbRead)); #ifdef IN_RING3 if (!VM_IS_EMT(pVM)) { pgmLock(pVM); fGrabbedLock = true; } #endif /* * Copy loop on ram ranges. */ PPGMRAMRANGE pCur = CTXSUFF(pVM->pgm.s.pRamRanges); for (;;) { /* Find range. */ while (pCur && GCPhys > pCur->GCPhysLast) pCur = CTXSUFF(pCur->pNext); /* Inside range or not? */ if (pCur && GCPhys >= pCur->GCPhys) { /* * Must work our way thru this page by page. */ RTGCPHYS off = GCPhys - pCur->GCPhys; while (off < pCur->cb) { unsigned iPage = off >> PAGE_SHIFT; PPGMPAGE pPage = &pCur->aPages[iPage]; size_t cb; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage))) { /* Treat it as reserved; return zeros */ cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb >= cbRead) { memset(pvBuf, 0, cbRead); goto end; } memset(pvBuf, 0, cb); } else { switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_ROM)) /** @todo PAGE FLAGS */ { /* * Normal memory or ROM. */ case 0: case MM_RAM_FLAGS_ROM: case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED: //case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* = shadow */ - //MMIO2 isn't in the mask. case MM_RAM_FLAGS_PHYSICAL_WRITE: case MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_PHYSICAL_WRITE: // MMIO2 isn't in the mask. case MM_RAM_FLAGS_VIRTUAL_WRITE: { #ifdef IN_GC void *pvSrc = NULL; PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc); pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK); #else void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off) #endif cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb >= cbRead) { #if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING) if (cbRead <= 4 && !fGrabbedLock /* i.e. EMT */) pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphysreadcache, GCPhys, (uint8_t*)pvSrc); #endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */ memcpy(pvBuf, pvSrc, cbRead); goto end; } memcpy(pvBuf, pvSrc, cb); break; } /* * All reserved, nothing there. */ case MM_RAM_FLAGS_RESERVED: cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb >= cbRead) { memset(pvBuf, 0, cbRead); goto end; } memset(pvBuf, 0, cb); break; /* * Physical handler. */ case MM_RAM_FLAGS_PHYSICAL_ALL: case MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_PHYSICAL_ALL: /** r=bird: MMIO2 isn't in the mask! */ { int rc = VINF_PGM_HANDLER_DO_DEFAULT; cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); #ifdef IN_RING3 /** @todo deal with this in GC and R0! */ /* find and call the handler */ PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys); if (pNode && pNode->pfnHandlerR3) { size_t cbRange = pNode->Core.KeyLast - GCPhys + 1; if (cbRange < cb) cb = cbRange; if (cb > cbRead) cb = cbRead; void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off) /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */ rc = pNode->pfnHandlerR3(pVM, GCPhys, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pNode->pvUserR3); } #endif /* IN_RING3 */ if (rc == VINF_PGM_HANDLER_DO_DEFAULT) { #ifdef IN_GC void *pvSrc = NULL; PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc); pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK); #else void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off) #endif if (cb >= cbRead) { memcpy(pvBuf, pvSrc, cbRead); goto end; } memcpy(pvBuf, pvSrc, cb); } else if (cb >= cbRead) goto end; break; } case MM_RAM_FLAGS_VIRTUAL_ALL: { int rc = VINF_PGM_HANDLER_DO_DEFAULT; cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); #ifdef IN_RING3 /** @todo deal with this in GC and R0! */ /* Search the whole tree for matching physical addresses (rather expensive!) */ PPGMVIRTHANDLER pNode; unsigned iPage; int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage); if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerHC) { size_t cbRange = pNode->Core.KeyLast - GCPhys + 1; if (cbRange < cb) cb = cbRange; if (cb > cbRead) cb = cbRead; RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->GCPtr & PAGE_BASE_GC_MASK) + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK); void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off) /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */ rc = pNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, 0); } #endif /* IN_RING3 */ if (rc == VINF_PGM_HANDLER_DO_DEFAULT) { #ifdef IN_GC void *pvSrc = NULL; PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc); pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK); #else void *pvSrc = PGMRAMRANGE_GETHCPTR(pCur, off) #endif if (cb >= cbRead) { memcpy(pvBuf, pvSrc, cbRead); goto end; } memcpy(pvBuf, pvSrc, cb); } else if (cb >= cbRead) goto end; break; } /* * The rest needs to be taken more carefully. */ default: #if 1 /** @todo r=bird: Can you do this properly please. */ /** @todo Try MMIO; quick hack */ if (cbRead <= 4 && IOMMMIORead(pVM, GCPhys, (uint32_t *)pvBuf, cbRead) == VINF_SUCCESS) goto end; #endif /** @todo fix me later. */ AssertReleaseMsgFailed(("Unknown read at %VGp size %d implement the complex physical reading case %x\n", GCPhys, cbRead, pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_ROM))); /** @todo PAGE FLAGS */ cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); break; } } cbRead -= cb; off += cb; pvBuf = (char *)pvBuf + cb; } GCPhys = pCur->GCPhysLast + 1; } else { LogFlow(("PGMPhysRead: Unassigned %VGp size=%d\n", GCPhys, cbRead)); /* * Unassigned address space. */ size_t cb; if ( !pCur || (cb = pCur->GCPhys - GCPhys) >= cbRead) { memset(pvBuf, 0, cbRead); goto end; } memset(pvBuf, 0, cb); cbRead -= cb; pvBuf = (char *)pvBuf + cb; GCPhys += cb; } } end: #ifdef IN_RING3 if (fGrabbedLock) pgmUnlock(pVM); #endif return; } /** * Write to physical memory. * * This API respects access handlers and MMIO. Use PGMPhysReadGCPhys() if you * want to ignore those. * * @param pVM VM Handle. * @param GCPhys Physical address to write to. * @param pvBuf What to write. * @param cbWrite How many bytes to write. */ PGMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite) { #ifdef IN_RING3 bool fGrabbedLock = false; #endif AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n")); AssertMsg(cbWrite > 0, ("don't even think about writing zero bytes!\n")); if (cbWrite == 0) return; LogFlow(("PGMPhysWrite: %VGp %d\n", GCPhys, cbWrite)); #ifdef IN_RING3 if (!VM_IS_EMT(pVM)) { pgmLock(pVM); fGrabbedLock = true; } #endif /* * Copy loop on ram ranges. */ PPGMRAMRANGE pCur = CTXSUFF(pVM->pgm.s.pRamRanges); for (;;) { /* Find range. */ while (pCur && GCPhys > pCur->GCPhysLast) pCur = CTXSUFF(pCur->pNext); /* Inside range or not? */ if (pCur && GCPhys >= pCur->GCPhys) { /* * Must work our way thru this page by page. */ unsigned off = GCPhys - pCur->GCPhys; while (off < pCur->cb) { unsigned iPage = off >> PAGE_SHIFT; PPGMPAGE pPage = &pCur->aPages[iPage]; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage))) { int rc; #ifdef IN_RING3 if (fGrabbedLock) { pgmUnlock(pVM); rc = pgmr3PhysGrowRange(pVM, GCPhys); if (rc == VINF_SUCCESS) PGMPhysWrite(pVM, GCPhys, pvBuf, cbWrite); /* try again; can't assume pCur is still valid (paranoia) */ return; } rc = pgmr3PhysGrowRange(pVM, GCPhys); #else rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) goto end; } size_t cb; /** @todo r=bird: missing MM_RAM_FLAGS_ROM here, we shall not allow anyone to overwrite the ROM! */ switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE)) /** @todo PAGE FLAGS */ { /* * Normal memory, MMIO2 or writable shadow ROM. */ case 0: case MM_RAM_FLAGS_MMIO2: case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* shadow rom */ { #ifdef IN_GC void *pvDst = NULL; PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst); pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK); #else void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off) #endif cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb >= cbWrite) { #if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING) if (cbWrite <= 4 && !fGrabbedLock /* i.e. EMT */) pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphyswritecache, GCPhys, (uint8_t*)pvDst); #endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */ memcpy(pvDst, pvBuf, cbWrite); goto end; } memcpy(pvDst, pvBuf, cb); break; } /* * All reserved, nothing there. */ case MM_RAM_FLAGS_RESERVED: case MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2: cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb >= cbWrite) goto end; break; /* * Physical handler. */ case MM_RAM_FLAGS_PHYSICAL_ALL: case MM_RAM_FLAGS_PHYSICAL_WRITE: case MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_PHYSICAL_ALL: case MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_PHYSICAL_WRITE: { int rc = VINF_PGM_HANDLER_DO_DEFAULT; cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); #ifdef IN_RING3 /** @todo deal with this in GC and R0! */ /* find and call the handler */ PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys); if (pNode && pNode->pfnHandlerR3) { size_t cbRange = pNode->Core.KeyLast - GCPhys + 1; if (cbRange < cb) cb = cbRange; if (cb > cbWrite) cb = cbWrite; void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off) /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */ rc = pNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pNode->pvUserR3); } #endif /* IN_RING3 */ if (rc == VINF_PGM_HANDLER_DO_DEFAULT) { #ifdef IN_GC void *pvDst = NULL; PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst); pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK); #else void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off) #endif if (cb >= cbWrite) { memcpy(pvDst, pvBuf, cbWrite); goto end; } memcpy(pvDst, pvBuf, cb); } else if (cb >= cbWrite) goto end; break; } case MM_RAM_FLAGS_VIRTUAL_ALL: case MM_RAM_FLAGS_VIRTUAL_WRITE: { int rc = VINF_PGM_HANDLER_DO_DEFAULT; cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); #ifdef IN_RING3 /** @todo deal with this in GC and R0! */ /* Search the whole tree for matching physical addresses (rather expensive!) */ PPGMVIRTHANDLER pNode; unsigned iPage; int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage); if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerHC) { size_t cbRange = pNode->Core.KeyLast - GCPhys + 1; if (cbRange < cb) cb = cbRange; if (cb > cbWrite) cb = cbWrite; RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->GCPtr & PAGE_BASE_GC_MASK) + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK); void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off) /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */ rc = pNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0); } #endif /* IN_RING3 */ if (rc == VINF_PGM_HANDLER_DO_DEFAULT) { #ifdef IN_GC void *pvDst = NULL; PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst); pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK); #else void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off) #endif if (cb >= cbWrite) { memcpy(pvDst, pvBuf, cbWrite); goto end; } memcpy(pvDst, pvBuf, cb); } else if (cb >= cbWrite) goto end; break; } /* * Physical write handler + virtual write handler. * Consider this a quick workaround for the CSAM + shadow caching problem. * * We hand it to the shadow caching first since it requires the unchanged * data. CSAM will have to put up with it already being changed. */ case MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE: { int rc = VINF_PGM_HANDLER_DO_DEFAULT; cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); #ifdef IN_RING3 /** @todo deal with this in GC and R0! */ /* 1. The physical handler */ PPGMPHYSHANDLER pPhysNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys); if (pPhysNode && pPhysNode->pfnHandlerR3) { size_t cbRange = pPhysNode->Core.KeyLast - GCPhys + 1; if (cbRange < cb) cb = cbRange; if (cb > cbWrite) cb = cbWrite; void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off) /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */ rc = pPhysNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pPhysNode->pvUserR3); } /* 2. The virtual handler (will see incorrect data) */ PPGMVIRTHANDLER pVirtNode; unsigned iPage; int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirtNode, &iPage); if (VBOX_SUCCESS(rc2) && pVirtNode->pfnHandlerHC) { size_t cbRange = pVirtNode->Core.KeyLast - GCPhys + 1; if (cbRange < cb) cb = cbRange; if (cb > cbWrite) cb = cbWrite; RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirtNode->GCPtr & PAGE_BASE_GC_MASK) + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK); void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off) /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */ rc2 = pVirtNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0); if ( ( rc2 != VINF_PGM_HANDLER_DO_DEFAULT && rc == VINF_PGM_HANDLER_DO_DEFAULT) || ( VBOX_FAILURE(rc2) && VBOX_SUCCESS(rc))) rc = rc2; } #endif /* IN_RING3 */ if (rc == VINF_PGM_HANDLER_DO_DEFAULT) { #ifdef IN_GC void *pvDst = NULL; PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst); pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK); #else void *pvDst = PGMRAMRANGE_GETHCPTR(pCur, off) #endif if (cb >= cbWrite) { memcpy(pvDst, pvBuf, cbWrite); goto end; } memcpy(pvDst, pvBuf, cb); } else if (cb >= cbWrite) goto end; break; } /* * The rest needs to be taken more carefully. */ default: #if 1 /** @todo r=bird: Can you do this properly please. */ /** @todo Try MMIO; quick hack */ if (cbWrite <= 4 && IOMMMIOWrite(pVM, GCPhys, *(uint32_t *)pvBuf, cbWrite) == VINF_SUCCESS) goto end; #endif /** @todo fix me later. */ AssertReleaseMsgFailed(("Unknown write at %VGp size %d implement the complex physical writing case %x\n", GCPhys, cbWrite, (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE)))); /** @todo PAGE FLAGS */ /* skip the write */ cb = cbWrite; break; } cbWrite -= cb; off += cb; pvBuf = (const char *)pvBuf + cb; } GCPhys = pCur->GCPhysLast + 1; } else { /* * Unassigned address space. */ size_t cb; if ( !pCur || (cb = pCur->GCPhys - GCPhys) >= cbWrite) goto end; cbWrite -= cb; pvBuf = (const char *)pvBuf + cb; GCPhys += cb; } } end: #ifdef IN_RING3 if (fGrabbedLock) pgmUnlock(pVM); #endif return; } #ifndef IN_GC /* Ring 0 & 3 only */ /** * Read from guest physical memory by GC physical address, bypassing * MMIO and access handlers. * * @returns VBox status. * @param pVM VM handle. * @param pvDst The destination address. * @param GCPhysSrc The source address (GC physical address). * @param cb The number of bytes to read. */ PGMDECL(int) PGMPhysReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb) { /* * Anything to be done? */ if (!cb) return VINF_SUCCESS; /* * Loop ram ranges. */ for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges); pRam; pRam = pRam->CTXSUFF(pNext)) { RTGCPHYS off = GCPhysSrc - pRam->GCPhys; if (off < pRam->cb) { if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { /* Copy page by page as we're not dealing with a linear HC range. */ for (;;) { /* convert */ void *pvSrc; int rc = pgmRamGCPhys2HCPtrWithRange(pVM, pRam, GCPhysSrc, &pvSrc); if (VBOX_FAILURE(rc)) return rc; /* copy */ size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPhysSrc & PAGE_OFFSET_MASK); if (cbRead >= cb) { memcpy(pvDst, pvSrc, cb); return VINF_SUCCESS; } memcpy(pvDst, pvSrc, cbRead); /* next */ cb -= cbRead; pvDst = (uint8_t *)pvDst + cbRead; GCPhysSrc += cbRead; } } else if (pRam->pvHC) { /* read */ size_t cbRead = pRam->cb - off; if (cbRead >= cb) { memcpy(pvDst, (uint8_t *)pRam->pvHC + off, cb); return VINF_SUCCESS; } memcpy(pvDst, (uint8_t *)pRam->pvHC + off, cbRead); /* next */ cb -= cbRead; pvDst = (uint8_t *)pvDst + cbRead; GCPhysSrc += cbRead; } else return VERR_PGM_PHYS_PAGE_RESERVED; } else if (GCPhysSrc < pRam->GCPhysLast) break; } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Write to guest physical memory referenced by GC pointer. * Write memory to GC physical address in guest physical memory. * * This will bypass MMIO and access handlers. * * @returns VBox status. * @param pVM VM handle. * @param GCPhysDst The GC physical address of the destination. * @param pvSrc The source buffer. * @param cb The number of bytes to write. */ PGMDECL(int) PGMPhysWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb) { /* * Anything to be done? */ if (!cb) return VINF_SUCCESS; LogFlow(("PGMPhysWriteGCPhys: %VGp %d\n", GCPhysDst, cb)); /* * Loop ram ranges. */ for (PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges); pRam; pRam = pRam->CTXSUFF(pNext)) { RTGCPHYS off = GCPhysDst - pRam->GCPhys; if (off < pRam->cb) { #ifdef NEW_PHYS_CODE /** @todo PGMRamGCPhys2HCPtrWithRange. */ #endif if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { /* Copy page by page as we're not dealing with a linear HC range. */ for (;;) { /* convert */ void *pvDst; int rc = pgmRamGCPhys2HCPtrWithRange(pVM, pRam, GCPhysDst, &pvDst); if (VBOX_FAILURE(rc)) return rc; /* copy */ size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPhysDst & PAGE_OFFSET_MASK); if (cbWrite >= cb) { memcpy(pvDst, pvSrc, cb); return VINF_SUCCESS; } memcpy(pvDst, pvSrc, cbWrite); /* next */ cb -= cbWrite; pvSrc = (uint8_t *)pvSrc + cbWrite; GCPhysDst += cbWrite; } } else if (pRam->pvHC) { /* write */ size_t cbWrite = pRam->cb - off; if (cbWrite >= cb) { memcpy((uint8_t *)pRam->pvHC + off, pvSrc, cb); return VINF_SUCCESS; } memcpy((uint8_t *)pRam->pvHC + off, pvSrc, cbWrite); /* next */ cb -= cbWrite; GCPhysDst += cbWrite; pvSrc = (uint8_t *)pvSrc + cbWrite; } else return VERR_PGM_PHYS_PAGE_RESERVED; } else if (GCPhysDst < pRam->GCPhysLast) break; } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Read from guest physical memory referenced by GC pointer. * * This function uses the current CR3/CR0/CR4 of the guest and will * bypass access handlers and not set any accessed bits. * * @returns VBox status. * @param pVM VM handle. * @param pvDst The destination address. * @param GCPtrSrc The source address (GC pointer). * @param cb The number of bytes to read. */ PGMDECL(int) PGMPhysReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb) { /* * Anything to do? */ if (!cb) return VINF_SUCCESS; /* * Optimize reads within a single page. */ if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE) { void *pvSrc; int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrSrc, &pvSrc); if (VBOX_FAILURE(rc)) return rc; memcpy(pvDst, pvSrc, cb); return VINF_SUCCESS; } /* * Page by page. */ for (;;) { /* convert */ void *pvSrc; int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrSrc, &pvSrc); if (VBOX_FAILURE(rc)) return rc; /* copy */ size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK); if (cbRead >= cb) { memcpy(pvDst, pvSrc, cb); return VINF_SUCCESS; } memcpy(pvDst, pvSrc, cbRead); /* next */ cb -= cbRead; pvDst = (uint8_t *)pvDst + cbRead; GCPtrSrc += cbRead; } } /** * Write to guest physical memory referenced by GC pointer. * * This function uses the current CR3/CR0/CR4 of the guest and will * bypass access handlers and not set dirty or accessed bits. * * @returns VBox status. * @param pVM VM handle. * @param GCPtrDst The destination address (GC pointer). * @param pvSrc The source address. * @param cb The number of bytes to write. */ PGMDECL(int) PGMPhysWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb) { /* * Anything to do? */ if (!cb) return VINF_SUCCESS; LogFlow(("PGMPhysWriteGCPtr: %VGv %d\n", GCPtrDst, cb)); /* * Optimize writes within a single page. */ if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE) { void *pvDst; int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst); if (VBOX_FAILURE(rc)) return rc; memcpy(pvDst, pvSrc, cb); return VINF_SUCCESS; } /* * Page by page. */ for (;;) { /* convert */ void *pvDst; int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst); if (VBOX_FAILURE(rc)) return rc; /* copy */ size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK); if (cbWrite >= cb) { memcpy(pvDst, pvSrc, cb); return VINF_SUCCESS; } memcpy(pvDst, pvSrc, cbWrite); /* next */ cb -= cbWrite; pvSrc = (uint8_t *)pvSrc + cbWrite; GCPtrDst += cbWrite; } } /** * Read from guest physical memory referenced by GC pointer. * * This function uses the current CR3/CR0/CR4 of the guest and will * respect access handlers and set accessed bits. * * @returns VBox status. * @param pVM VM handle. * @param pvDst The destination address. * @param GCPtrSrc The source address (GC pointer). * @param cb The number of bytes to read. */ /** @todo use the PGMPhysReadGCPtr name and rename the unsafe one to something appropriate */ PGMDECL(int) PGMPhysReadGCPtrSafe(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb) { RTGCPHYS GCPhys; int rc; /* * Anything to do? */ if (!cb) return VINF_SUCCESS; LogFlow(("PGMPhysReadGCPtrSafe: %VGv %d\n", GCPtrSrc, cb)); /* * Optimize reads within a single page. */ if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE) { /* Convert virtual to physical address */ rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys); AssertRCReturn(rc, rc); /* mark the guest page as accessed. */ rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A)); AssertRC(rc); PGMPhysRead(pVM, GCPhys, pvDst, cb); return VINF_SUCCESS; } /* * Page by page. */ for (;;) { /* Convert virtual to physical address */ rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys); AssertRCReturn(rc, rc); /* mark the guest page as accessed. */ int rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A)); AssertRC(rc); /* copy */ size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK); if (cbRead >= cb) { PGMPhysRead(pVM, GCPhys, pvDst, cb); return VINF_SUCCESS; } PGMPhysRead(pVM, GCPhys, pvDst, cbRead); /* next */ cb -= cbRead; pvDst = (uint8_t *)pvDst + cbRead; GCPtrSrc += cbRead; } } /** * Write to guest physical memory referenced by GC pointer. * * This function uses the current CR3/CR0/CR4 of the guest and will * respect access handlers and set dirty and accessed bits. * * @returns VBox status. * @param pVM VM handle. * @param GCPtrDst The destination address (GC pointer). * @param pvSrc The source address. * @param cb The number of bytes to write. */ /** @todo use the PGMPhysWriteGCPtr name and rename the unsafe one to something appropriate */ PGMDECL(int) PGMPhysWriteGCPtrSafe(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb) { RTGCPHYS GCPhys; int rc; /* * Anything to do? */ if (!cb) return VINF_SUCCESS; LogFlow(("PGMPhysWriteGCPtrSafe: %VGv %d\n", GCPtrDst, cb)); /* * Optimize writes within a single page. */ if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE) { /* Convert virtual to physical address */ rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys); AssertRCReturn(rc, rc); /* mark the guest page as accessed and dirty. */ rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); PGMPhysWrite(pVM, GCPhys, pvSrc, cb); return VINF_SUCCESS; } /* * Page by page. */ for (;;) { /* Convert virtual to physical address */ rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys); AssertRCReturn(rc, rc); /* mark the guest page as accessed and dirty. */ rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); /* copy */ size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK); if (cbWrite >= cb) { PGMPhysWrite(pVM, GCPhys, pvSrc, cb); return VINF_SUCCESS; } PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite); /* next */ cb -= cbWrite; pvSrc = (uint8_t *)pvSrc + cbWrite; GCPtrDst += cbWrite; } } /** * Write to guest physical memory referenced by GC pointer and update the PTE. * * This function uses the current CR3/CR0/CR4 of the guest and will * bypass access handlers and set any dirty and accessed bits in the PTE. * * If you don't want to set the dirty bit, use PGMPhysWriteGCPtr(). * * @returns VBox status. * @param pVM VM handle. * @param GCPtrDst The destination address (GC pointer). * @param pvSrc The source address. * @param cb The number of bytes to write. */ PGMDECL(int) PGMPhysWriteGCPtrDirty(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb) { /* * Anything to do? */ if (!cb) return VINF_SUCCESS; /* * Optimize writes within a single page. */ if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE) { void *pvDst; int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst); if (VBOX_FAILURE(rc)) return rc; memcpy(pvDst, pvSrc, cb); rc = PGMGstModifyPage(pVM, GCPtrDst, cb, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); return VINF_SUCCESS; } /* * Page by page. */ for (;;) { /* convert */ void *pvDst; int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst); if (VBOX_FAILURE(rc)) return rc; /* mark the guest page as accessed and dirty. */ rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); /* copy */ size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK); if (cbWrite >= cb) { memcpy(pvDst, pvSrc, cb); return VINF_SUCCESS; } memcpy(pvDst, pvSrc, cbWrite); /* next */ cb -= cbWrite; GCPtrDst += cbWrite; pvSrc = (char *)pvSrc + cbWrite; } } #endif /* !IN_GC */ /** * Performs a read of guest virtual memory for instruction emulation. * * This will check permissions, raise exceptions and update the access bits. * * The current implementation will bypass all access handlers. It may later be * changed to at least respect MMIO. * * * @returns VBox status code suitable to scheduling. * @retval VINF_SUCCESS if the read was performed successfully. * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet. * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched. * * @param pVM The VM handle. * @param pCtxCore The context core. * @param pvDst Where to put the bytes we've read. * @param GCPtrSrc The source address. * @param cb The number of bytes to read. Not more than a page. * * @remark This function will dynamically map physical pages in GC. This may unmap * mappings done by the caller. Be careful! */ PGMDECL(int) PGMPhysInterpretedRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb) { Assert(cb <= PAGE_SIZE); /** @todo r=bird: This isn't perfect! * -# It's not checking for reserved bits being 1. * -# It's not correctly dealing with the access bit. * -# It's not respecting MMIO memory or any other access handlers. */ /* * 1. Translate virtual to physical. This may fault. * 2. Map the physical address. * 3. Do the read operation. * 4. Set access bits if required. */ int rc; unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK); if (cb <= cb1) { /* * Not crossing pages. */ RTGCPHYS GCPhys; uint64_t fFlags; rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys); if (VBOX_SUCCESS(rc)) { /** @todo we should check reserved bits ... */ void *pvSrc; rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc); switch (rc) { case VINF_SUCCESS: Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb)); memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb); break; case VERR_PGM_PHYS_PAGE_RESERVED: case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset(pvDst, 0, cb); break; default: return rc; } /** @todo access bit emulation isn't 100% correct. */ if (!(fFlags & X86_PTE_A)) { rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } return VINF_SUCCESS; } } else { /* * Crosses pages. */ unsigned cb2 = cb - cb1; uint64_t fFlags1; RTGCPHYS GCPhys1; uint64_t fFlags2; RTGCPHYS GCPhys2; rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1); if (VBOX_SUCCESS(rc)) rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2); if (VBOX_SUCCESS(rc)) { /** @todo we should check reserved bits ... */ AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%VGv\n", cb, cb1, cb2, GCPtrSrc)); void *pvSrc1; rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1); switch (rc) { case VINF_SUCCESS: memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1); break; case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset(pvDst, 0, cb1); break; default: return rc; } void *pvSrc2; rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2); switch (rc) { case VINF_SUCCESS: memcpy((uint8_t *)pvDst + cb2, pvSrc2, cb2); break; case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset((uint8_t *)pvDst + cb2, 0, cb2); break; default: return rc; } if (!(fFlags1 & X86_PTE_A)) { rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } if (!(fFlags2 & X86_PTE_A)) { rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } return VINF_SUCCESS; } } /* * Raise a #PF. */ uint32_t uErr; /* Get the current privilege level. */ uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore); switch (rc) { case VINF_SUCCESS: uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD; break; case VERR_PAGE_NOT_PRESENT: case VERR_PAGE_TABLE_NOT_PRESENT: uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0; break; default: AssertMsgFailed(("rc=%Vrc GCPtrSrc=%VGv cb=%#x\n", rc, GCPtrSrc, cb)); return rc; } Log(("PGMPhysInterpretedRead: GCPtrSrc=%VGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr)); return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc); } /// @todo PGMDECL(int) PGMPhysInterpretedWrite(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)