VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 13394

Last change on this file since 13394 was 13186, checked in by vboxsync, 16 years ago

PGMPhys: Fix for silly edge case bug.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 83.7 KB
Line 
1/* $Id: PGMAllPhys.cpp 13186 2008-10-10 22:21:18Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @def PGM_IGNORE_RAM_FLAGS_RESERVED
23 * Don't respect the MM_RAM_FLAGS_RESERVED flag when converting to HC addresses.
24 *
25 * Since this flag is currently incorrectly kept set for ROM regions we will
26 * have to ignore it for now so we don't break stuff.
27 *
28 * @todo this has been fixed now I believe, remove this hack.
29 */
30#define PGM_IGNORE_RAM_FLAGS_RESERVED
31
32
33/*******************************************************************************
34* Header Files *
35*******************************************************************************/
36#define LOG_GROUP LOG_GROUP_PGM_PHYS
37#include <VBox/pgm.h>
38#include <VBox/trpm.h>
39#include <VBox/vmm.h>
40#include <VBox/iom.h>
41#include <VBox/em.h>
42#include <VBox/rem.h>
43#include "PGMInternal.h"
44#include <VBox/vm.h>
45#include <VBox/param.h>
46#include <VBox/err.h>
47#include <iprt/assert.h>
48#include <iprt/string.h>
49#include <iprt/asm.h>
50#include <VBox/log.h>
51#ifdef IN_RING3
52# include <iprt/thread.h>
53#endif
54
55
56
57#ifndef IN_RING3
58
59/**
60 * \#PF Handler callback for Guest ROM range write access.
61 * We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
62 *
63 * @returns VBox status code (appropritate for trap handling and GC return).
64 * @param pVM VM Handle.
65 * @param uErrorCode CPU Error code.
66 * @param pRegFrame Trap register frame.
67 * @param pvFault The fault address (cr2).
68 * @param GCPhysFault The GC physical address corresponding to pvFault.
69 * @param pvUser User argument. Pointer to the ROM range structure.
70 */
71VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser)
72{
73 int rc;
74#ifdef VBOX_WITH_NEW_PHYS_CODE
75 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
76 uint32_t iPage = GCPhysFault - pRom->GCPhys;
77 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
78 switch (pRom->aPages[iPage].enmProt)
79 {
80 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
81 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
82 {
83#endif
84 /*
85 * If it's a simple instruction which doesn't change the cpu state
86 * we will simply skip it. Otherwise we'll have to defer it to REM.
87 */
88 uint32_t cbOp;
89 DISCPUSTATE Cpu;
90 rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, &cbOp);
91 if ( RT_SUCCESS(rc)
92 && Cpu.mode == CPUMODE_32BIT /** @todo why does this matter? */
93 && !(Cpu.prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG)))
94 {
95 switch (Cpu.opcode)
96 {
97 /** @todo Find other instructions we can safely skip, possibly
98 * adding this kind of detection to DIS or EM. */
99 case OP_MOV:
100 pRegFrame->rip += cbOp;
101 STAM_COUNTER_INC(&pVM->pgm.s.StatRZGuestROMWriteHandled);
102 return VINF_SUCCESS;
103 }
104 }
105 else if (RT_UNLIKELY(rc == VERR_INTERNAL_ERROR))
106 return rc;
107#ifdef VBOX_WITH_NEW_PHYS_CODE
108 break;
109 }
110
111 case PGMROMPROT_READ_RAM_WRITE_RAM:
112 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
113 AssertRC(rc);
114 case PGMROMPROT_READ_ROM_WRITE_RAM:
115 /* Handle it in ring-3 because it's *way* easier there. */
116 break;
117
118 default:
119 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
120 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
121 VERR_INTERNAL_ERROR);
122 }
123#endif
124
125 STAM_COUNTER_INC(&pVM->pgm.s.StatRZGuestROMWriteUnhandled);
126 return VINF_EM_RAW_EMULATE_INSTR;
127}
128
129#endif /* IN_RING3 */
130
131/**
132 * Checks if Address Gate 20 is enabled or not.
133 *
134 * @returns true if enabled.
135 * @returns false if disabled.
136 * @param pVM VM handle.
137 */
138VMMDECL(bool) PGMPhysIsA20Enabled(PVM pVM)
139{
140 LogFlow(("PGMPhysIsA20Enabled %d\n", pVM->pgm.s.fA20Enabled));
141 return !!pVM->pgm.s.fA20Enabled ; /* stupid MS compiler doesn't trust me. */
142}
143
144
145/**
146 * Validates a GC physical address.
147 *
148 * @returns true if valid.
149 * @returns false if invalid.
150 * @param pVM The VM handle.
151 * @param GCPhys The physical address to validate.
152 */
153VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
154{
155 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
156 return pPage != NULL;
157}
158
159
160/**
161 * Checks if a GC physical address is a normal page,
162 * i.e. not ROM, MMIO or reserved.
163 *
164 * @returns true if normal.
165 * @returns false if invalid, ROM, MMIO or reserved page.
166 * @param pVM The VM handle.
167 * @param GCPhys The physical address to check.
168 */
169VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
170{
171 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
172 return pPage
173 && !(pPage->HCPhys & (MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2));
174}
175
176
177/**
178 * Converts a GC physical address to a HC physical address.
179 *
180 * @returns VINF_SUCCESS on success.
181 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
182 * page but has no physical backing.
183 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
184 * GC physical address.
185 *
186 * @param pVM The VM handle.
187 * @param GCPhys The GC physical address to convert.
188 * @param pHCPhys Where to store the HC physical address on success.
189 */
190VMMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
191{
192 PPGMPAGE pPage;
193 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
194 if (VBOX_FAILURE(rc))
195 return rc;
196
197#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
198 if (RT_UNLIKELY(pPage->HCPhys & MM_RAM_FLAGS_RESERVED)) /** @todo PAGE FLAGS */
199 return VERR_PGM_PHYS_PAGE_RESERVED;
200#endif
201
202 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
203 return VINF_SUCCESS;
204}
205
206
207/**
208 * Invalidates the GC page mapping TLB.
209 *
210 * @param pVM The VM handle.
211 */
212VMMDECL(void) PGMPhysInvalidatePageGCMapTLB(PVM pVM)
213{
214 /* later */
215 NOREF(pVM);
216}
217
218
219/**
220 * Invalidates the ring-0 page mapping TLB.
221 *
222 * @param pVM The VM handle.
223 */
224VMMDECL(void) PGMPhysInvalidatePageR0MapTLB(PVM pVM)
225{
226 PGMPhysInvalidatePageR3MapTLB(pVM);
227}
228
229
230/**
231 * Invalidates the ring-3 page mapping TLB.
232 *
233 * @param pVM The VM handle.
234 */
235VMMDECL(void) PGMPhysInvalidatePageR3MapTLB(PVM pVM)
236{
237 pgmLock(pVM);
238 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
239 {
240 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
241 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
242 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
243 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
244 }
245 pgmUnlock(pVM);
246}
247
248
249/**
250 * Frees the specified RAM page.
251 *
252 * This is used by ballooning and remapping MMIO2.
253 *
254 * @param pVM Pointer to the shared VM structure.
255 * @param pPage Pointer to the page structure.
256 * @param GCPhys The guest physical address of the page, if applicable.
257 */
258void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
259{
260 AssertFatal(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
261
262 /** @todo implement this... */
263 AssertFatalFailed();
264}
265
266
267
268/**
269 * Makes sure that there is at least one handy page ready for use.
270 *
271 * This will also take the appropriate actions when reaching water-marks.
272 *
273 * @returns The following VBox status codes.
274 * @retval VINF_SUCCESS on success.
275 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
276 *
277 * @param pVM The VM handle.
278 *
279 * @remarks Must be called from within the PGM critical section. It may
280 * nip back to ring-3/0 in some cases.
281 */
282static int pgmPhysEnsureHandyPage(PVM pVM)
283{
284 /** @remarks
285 * low-water mark logic for R0 & GC:
286 * - 75%: Set FF.
287 * - 50%: Force return to ring-3 ASAP.
288 *
289 * For ring-3 there is a little problem wrt to the recompiler, so:
290 * - 75%: Set FF.
291 * - 50%: Try allocate pages; on failure we'll force REM to quite ASAP.
292 *
293 * The basic idea is that we should be able to get out of any situation with
294 * only 50% of handy pages remaining.
295 *
296 * At the moment we'll not adjust the number of handy pages relative to the
297 * actual VM RAM committment, that's too much work for now.
298 */
299 Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
300 if ( !pVM->pgm.s.cHandyPages
301#ifdef IN_RING3
302 || pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2 /* 50% */
303#endif
304 )
305 {
306 Log(("PGM: cHandyPages=%u out of %u -> allocate more\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
307#ifdef IN_RING3
308 int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
309#elif defined(IN_RING0)
310 /** @todo call PGMR0PhysAllocateHandyPages directly - need to make sure we can call kernel code first and deal with the seeding fallback. */
311 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
312#else
313 int rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
314#endif
315 if (RT_UNLIKELY(rc != VINF_SUCCESS))
316 {
317 Assert(rc == VINF_EM_NO_MEMORY);
318 if (!pVM->pgm.s.cHandyPages)
319 {
320 LogRel(("PGM: no more handy pages!\n"));
321 return VERR_EM_NO_MEMORY;
322 }
323 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
324#ifdef IN_RING3
325 REMR3NotifyFF(pVM);
326#else
327 VM_FF_SET(pVM, VM_FF_TO_R3);
328#endif
329 }
330 Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
331 }
332 else if (pVM->pgm.s.cHandyPages - 1 <= (RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 4) * 3) /* 75% */
333 {
334 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
335#ifndef IN_RING3
336 if (pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2)
337 {
338 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
339 VM_FF_SET(pVM, VM_FF_TO_R3);
340 }
341#endif
342 }
343
344 return VINF_SUCCESS;
345}
346
347
348/**
349 * Replace a zero or shared page with new page that we can write to.
350 *
351 * @returns The following VBox status codes.
352 * @retval VINF_SUCCESS on success, pPage is modified.
353 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
354 *
355 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
356 *
357 * @param pVM The VM address.
358 * @param pPage The physical page tracking structure. This will
359 * be modified on success.
360 * @param GCPhys The address of the page.
361 *
362 * @remarks Must be called from within the PGM critical section. It may
363 * nip back to ring-3/0 in some cases.
364 *
365 * @remarks This function shouldn't really fail, however if it does
366 * it probably means we've screwed up the size of the amount
367 * and/or the low-water mark of handy pages. Or, that some
368 * device I/O is causing a lot of pages to be allocated while
369 * while the host is in a low-memory condition.
370 */
371int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
372{
373 /*
374 * Ensure that we've got a page handy, take it and use it.
375 */
376 int rc = pgmPhysEnsureHandyPage(pVM);
377 if (VBOX_FAILURE(rc))
378 {
379 Assert(rc == VERR_EM_NO_MEMORY);
380 return rc;
381 }
382 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%d %RGp\n", PGM_PAGE_GET_STATE(pPage), GCPhys));
383 Assert(!PGM_PAGE_IS_RESERVED(pPage));
384 Assert(!PGM_PAGE_IS_MMIO(pPage));
385
386 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
387 Assert(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages));
388 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
389 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
390 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
391 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
392
393 /*
394 * There are one or two action to be taken the next time we allocate handy pages:
395 * - Tell the GMM (global memory manager) what the page is being used for.
396 * (Speeds up replacement operations - sharing and defragmenting.)
397 * - If the current backing is shared, it must be freed.
398 */
399 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
400 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys;
401
402 if (PGM_PAGE_IS_SHARED(pPage))
403 {
404 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
405 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
406 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
407
408 Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
409 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
410 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageReplaceShared));
411 pVM->pgm.s.cSharedPages--;
412/** @todo err.. what about copying the page content? */
413 }
414 else
415 {
416 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
417 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
418 pVM->pgm.s.cZeroPages--;
419/** @todo verify that the handy page is zero! */
420 }
421
422 /*
423 * Do the PGMPAGE modifications.
424 */
425 pVM->pgm.s.cPrivatePages++;
426 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
427 PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
428 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
429
430 return VINF_SUCCESS;
431}
432
433
434/**
435 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
436 *
437 * @returns VBox status code.
438 * @retval VINF_SUCCESS on success.
439 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
440 *
441 * @param pVM The VM address.
442 * @param pPage The physical page tracking structure.
443 * @param GCPhys The address of the page.
444 *
445 * @remarks Called from within the PGM critical section.
446 */
447int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
448{
449 switch (PGM_PAGE_GET_STATE(pPage))
450 {
451 case PGM_PAGE_STATE_WRITE_MONITORED:
452 PGM_PAGE_SET_WRITTEN_TO(pPage);
453 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
454 /* fall thru */
455 default: /* to shut up GCC */
456 case PGM_PAGE_STATE_ALLOCATED:
457 return VINF_SUCCESS;
458
459 /*
460 * Zero pages can be dummy pages for MMIO or reserved memory,
461 * so we need to check the flags before joining cause with
462 * shared page replacement.
463 */
464 case PGM_PAGE_STATE_ZERO:
465 if ( PGM_PAGE_IS_MMIO(pPage)
466 || PGM_PAGE_IS_RESERVED(pPage))
467 return VERR_PGM_PHYS_PAGE_RESERVED;
468 /* fall thru */
469 case PGM_PAGE_STATE_SHARED:
470 return pgmPhysAllocPage(pVM, pPage, GCPhys);
471 }
472}
473
474
475/**
476 * Maps a page into the current virtual address space so it can be accessed.
477 *
478 * @returns VBox status code.
479 * @retval VINF_SUCCESS on success.
480 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
481 *
482 * @param pVM The VM address.
483 * @param pPage The physical page tracking structure.
484 * @param GCPhys The address of the page.
485 * @param ppMap Where to store the address of the mapping tracking structure.
486 * @param ppv Where to store the mapping address of the page. The page
487 * offset is masked off!
488 *
489 * @remarks Called from within the PGM critical section.
490 */
491int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
492{
493#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
494 /*
495 * Just some sketchy GC/R0-darwin code.
496 */
497 *ppMap = NULL;
498 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
499 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
500 return PGMDynMapHCPage(pVM, HCPhys, ppv);
501
502#else /* IN_RING3 || IN_RING0 */
503
504 /*
505 * Find/make Chunk TLB entry for the mapping chunk.
506 */
507 PPGMCHUNKR3MAP pMap;
508 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
509 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
510 if (pTlbe->idChunk == idChunk)
511 {
512 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
513 pMap = pTlbe->pChunk;
514 }
515 else if (idChunk != NIL_GMM_CHUNKID)
516 {
517 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
518
519 /*
520 * Find the chunk, map it if necessary.
521 */
522 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
523 if (!pMap)
524 {
525#ifdef IN_RING0
526 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk);
527 AssertRCReturn(rc, rc);
528 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
529 Assert(pMap);
530#else
531 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
532 if (VBOX_FAILURE(rc))
533 return rc;
534#endif
535 }
536
537 /*
538 * Enter it into the Chunk TLB.
539 */
540 pTlbe->idChunk = idChunk;
541 pTlbe->pChunk = pMap;
542 pMap->iAge = 0;
543 }
544 else
545 {
546 Assert(PGM_PAGE_IS_ZERO(pPage));
547 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
548 *ppMap = NULL;
549 return VINF_SUCCESS;
550 }
551
552 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
553 *ppMap = pMap;
554 return VINF_SUCCESS;
555#endif /* IN_RING3 */
556}
557
558
559#if !defined(IN_GC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
560/**
561 * Load a guest page into the ring-3 physical TLB.
562 *
563 * @returns VBox status code.
564 * @retval VINF_SUCCESS on success
565 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
566 * @param pPGM The PGM instance pointer.
567 * @param GCPhys The guest physical address in question.
568 */
569int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys)
570{
571 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
572
573 /*
574 * Find the ram range.
575 * 99.8% of requests are expected to be in the first range.
576 */
577 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
578 RTGCPHYS off = GCPhys - pRam->GCPhys;
579 if (RT_UNLIKELY(off >= pRam->cb))
580 {
581 do
582 {
583 pRam = pRam->CTX_SUFF(pNext);
584 if (!pRam)
585 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
586 off = GCPhys - pRam->GCPhys;
587 } while (off >= pRam->cb);
588 }
589
590 /*
591 * Map the page.
592 * Make a special case for the zero page as it is kind of special.
593 */
594 PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT];
595 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
596 if (!PGM_PAGE_IS_ZERO(pPage))
597 {
598 void *pv;
599 PPGMPAGEMAP pMap;
600 int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
601 if (VBOX_FAILURE(rc))
602 return rc;
603 pTlbe->pMap = pMap;
604 pTlbe->pv = pv;
605 }
606 else
607 {
608 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
609 pTlbe->pMap = NULL;
610 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
611 }
612 pTlbe->pPage = pPage;
613 return VINF_SUCCESS;
614}
615#endif /* !IN_GC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
616
617
618/**
619 * Requests the mapping of a guest page into the current context.
620 *
621 * This API should only be used for very short term, as it will consume
622 * scarse resources (R0 and GC) in the mapping cache. When you're done
623 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
624 *
625 * This API will assume your intention is to write to the page, and will
626 * therefore replace shared and zero pages. If you do not intend to modify
627 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
628 *
629 * @returns VBox status code.
630 * @retval VINF_SUCCESS on success.
631 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
632 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
633 *
634 * @param pVM The VM handle.
635 * @param GCPhys The guest physical address of the page that should be mapped.
636 * @param ppv Where to store the address corresponding to GCPhys.
637 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
638 *
639 * @remark Avoid calling this API from within critical sections (other than
640 * the PGM one) because of the deadlock risk.
641 * @thread Any thread.
642 */
643VMMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
644{
645#ifdef VBOX_WITH_NEW_PHYS_CODE
646# if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
647/** @todo this needs to be fixed, it really ain't right. */
648 /* Until a physical TLB is implemented for GC or/and R0-darwin, let PGMDynMapGCPageEx handle it. */
649 return PGMDynMapGCPageOff(pVM, GCPhys, ppv);
650
651#else
652 int rc = pgmLock(pVM);
653 AssertRCReturn(rc);
654
655 /*
656 * Query the Physical TLB entry for the page (may fail).
657 */
658 PGMPHYSTLBE pTlbe;
659 int rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
660 if (RT_SUCCESS(rc))
661 {
662 /*
663 * If the page is shared, the zero page, or being write monitored
664 * it must be converted to an page that's writable if possible.
665 */
666 PPGMPAGE pPage = pTlbe->pPage;
667 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
668 {
669 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
670 /** @todo stuff is missing here! */
671 }
672 if (RT_SUCCESS(rc))
673 {
674 /*
675 * Now, just perform the locking and calculate the return address.
676 */
677 PPGMPAGEMAP pMap = pTlbe->pMap;
678 pMap->cRefs++;
679 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
680 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
681 {
682 AssertMsgFailed(("%VGp is entering permanent locked state!\n", GCPhys));
683 pMap->cRefs++; /* Extra ref to prevent it from going away. */
684 }
685
686 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
687 pLock->pvPage = pPage;
688 pLock->pvMap = pMap;
689 }
690 }
691
692 pgmUnlock(pVM);
693 return rc;
694
695#endif /* IN_RING3 || IN_RING0 */
696
697#else
698 /*
699 * Temporary fallback code.
700 */
701# if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
702/** @todo @bugref{3202}: check up this path. */
703 return PGMDynMapGCPageOff(pVM, GCPhys, ppv);
704# else
705 return PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1, ppv);
706# endif
707#endif
708}
709
710
711/**
712 * Requests the mapping of a guest page into the current context.
713 *
714 * This API should only be used for very short term, as it will consume
715 * scarse resources (R0 and GC) in the mapping cache. When you're done
716 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
717 *
718 * @returns VBox status code.
719 * @retval VINF_SUCCESS on success.
720 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
721 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
722 *
723 * @param pVM The VM handle.
724 * @param GCPhys The guest physical address of the page that should be mapped.
725 * @param ppv Where to store the address corresponding to GCPhys.
726 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
727 *
728 * @remark Avoid calling this API from within critical sections (other than
729 * the PGM one) because of the deadlock risk.
730 * @thread Any thread.
731 */
732VMMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
733{
734 /** @todo implement this */
735 return PGMPhysGCPhys2CCPtr(pVM, GCPhys, (void **)ppv, pLock);
736}
737
738
739/**
740 * Requests the mapping of a guest page given by virtual address into the current context.
741 *
742 * This API should only be used for very short term, as it will consume
743 * scarse resources (R0 and GC) in the mapping cache. When you're done
744 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
745 *
746 * This API will assume your intention is to write to the page, and will
747 * therefore replace shared and zero pages. If you do not intend to modify
748 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
749 *
750 * @returns VBox status code.
751 * @retval VINF_SUCCESS on success.
752 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
753 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
754 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
755 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
756 *
757 * @param pVM The VM handle.
758 * @param GCPhys The guest physical address of the page that should be mapped.
759 * @param ppv Where to store the address corresponding to GCPhys.
760 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
761 *
762 * @remark Avoid calling this API from within critical sections (other than
763 * the PGM one) because of the deadlock risk.
764 * @thread EMT
765 */
766VMMDECL(int) PGMPhysGCPtr2CCPtr(PVM pVM, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
767{
768 RTGCPHYS GCPhys;
769 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
770 if (VBOX_SUCCESS(rc))
771 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, pLock);
772 return rc;
773}
774
775
776/**
777 * Requests the mapping of a guest page given by virtual address into the current context.
778 *
779 * This API should only be used for very short term, as it will consume
780 * scarse resources (R0 and GC) in the mapping cache. When you're done
781 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
782 *
783 * @returns VBox status code.
784 * @retval VINF_SUCCESS on success.
785 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
786 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
787 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
788 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
789 *
790 * @param pVM The VM handle.
791 * @param GCPhys The guest physical address of the page that should be mapped.
792 * @param ppv Where to store the address corresponding to GCPhys.
793 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
794 *
795 * @remark Avoid calling this API from within critical sections (other than
796 * the PGM one) because of the deadlock risk.
797 * @thread EMT
798 */
799VMMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVM pVM, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
800{
801 RTGCPHYS GCPhys;
802 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
803 if (VBOX_SUCCESS(rc))
804 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, pLock);
805 return rc;
806}
807
808
809/**
810 * Release the mapping of a guest page.
811 *
812 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
813 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
814 *
815 * @param pVM The VM handle.
816 * @param pLock The lock structure initialized by the mapping function.
817 */
818VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
819{
820#ifdef VBOX_WITH_NEW_PHYS_CODE
821#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
822 /* currently nothing to do here. */
823/* --- postponed
824#elif defined(IN_RING0)
825*/
826
827#else /* IN_RING3 */
828 pgmLock(pVM);
829
830 PPGMPAGE pPage = (PPGMPAGE)pLock->pvPage;
831 Assert(pPage->cLocks >= 1);
832 if (pPage->cLocks != PGM_PAGE_MAX_LOCKS)
833 pPage->cLocks--;
834
835 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pLock->pvChunk;
836 Assert(pChunk->cRefs >= 1);
837 pChunk->cRefs--;
838 pChunk->iAge = 0;
839
840 pgmUnlock(pVM);
841#endif /* IN_RING3 */
842#else
843 NOREF(pVM);
844 NOREF(pLock);
845#endif
846}
847
848
849/**
850 * Converts a GC physical address to a HC pointer.
851 *
852 * @returns VINF_SUCCESS on success.
853 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
854 * page but has no physical backing.
855 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
856 * GC physical address.
857 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
858 * a dynamic ram chunk boundary
859 * @param pVM The VM handle.
860 * @param GCPhys The GC physical address to convert.
861 * @param cbRange Physical range
862 * @param pHCPtr Where to store the HC pointer on success.
863 */
864VMMDECL(int) PGMPhysGCPhys2HCPtr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTHCPTR pHCPtr) /** @todo @bugref{1865}: HCPtr -> R3Ptr */
865{
866#ifdef VBOX_WITH_NEW_PHYS_CODE
867 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
868#endif
869
870 if ((GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK) != ((GCPhys+cbRange-1) & PGM_DYNAMIC_CHUNK_BASE_MASK))
871 {
872 AssertMsgFailed(("%VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
873 LogRel(("PGMPhysGCPhys2HCPtr %VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
874 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
875 }
876
877 PPGMRAMRANGE pRam;
878 PPGMPAGE pPage;
879 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
880 if (VBOX_FAILURE(rc))
881 return rc;
882
883#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
884 if (RT_UNLIKELY(PGM_PAGE_IS_RESERVED(pPage)))
885 return VERR_PGM_PHYS_PAGE_RESERVED;
886#endif
887
888 RTGCPHYS off = GCPhys - pRam->GCPhys;
889 if (RT_UNLIKELY(off + cbRange > pRam->cb))
890 {
891 AssertMsgFailed(("%VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys + cbRange));
892 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
893 }
894
895 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
896 {
897 unsigned iChunk = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
898#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES this is a rare occurence */
899 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(pVM, pRam->paChunkR3Ptrs);
900 *pHCPtr = (RTHCPTR)(paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
901#else
902 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
903#endif
904 }
905 else if (RT_LIKELY(pRam->pvR3))
906 *pHCPtr = (RTHCPTR)((RTR3UINTPTR)pRam->pvR3 + off);
907 else
908 return VERR_PGM_PHYS_PAGE_RESERVED;
909 return VINF_SUCCESS;
910}
911
912
913/**
914 * PGMPhysGCPhys2HCPtr convenience for use with assertions.
915 *
916 * @returns The HCPtr, NIL_RTHCPTR on failure.
917 * @param pVM The VM handle.
918 * @param GCPhys The GC Physical addresss.
919 * @param cbRange Physical range.
920 */
921VMMDECL(RTHCPTR) PGMPhysGCPhys2HCPtrAssert(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange) /** @todo @bugref{1865}: HCPtr -> R3Ptr */
922{
923 RTHCPTR HCPtr;
924 int rc = PGMPhysGCPhys2HCPtr(pVM, GCPhys, cbRange, &HCPtr);
925 if (VBOX_SUCCESS(rc))
926 return HCPtr;
927 return NIL_RTHCPTR;
928}
929
930
931/**
932 * Converts a guest pointer to a GC physical address.
933 *
934 * This uses the current CR3/CR0/CR4 of the guest.
935 *
936 * @returns VBox status code.
937 * @param pVM The VM Handle
938 * @param GCPtr The guest pointer to convert.
939 * @param pGCPhys Where to store the GC physical address.
940 */
941VMMDECL(int) PGMPhysGCPtr2GCPhys(PVM pVM, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
942{
943 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
944 if (pGCPhys && VBOX_SUCCESS(rc))
945 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
946 return rc;
947}
948
949
950/**
951 * Converts a guest pointer to a HC physical address.
952 *
953 * This uses the current CR3/CR0/CR4 of the guest.
954 *
955 * @returns VBox status code.
956 * @param pVM The VM Handle
957 * @param GCPtr The guest pointer to convert.
958 * @param pHCPhys Where to store the HC physical address.
959 */
960VMMDECL(int) PGMPhysGCPtr2HCPhys(PVM pVM, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
961{
962 RTGCPHYS GCPhys;
963 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
964 if (VBOX_SUCCESS(rc))
965 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
966 return rc;
967}
968
969
970/**
971 * Converts a guest pointer to a HC pointer.
972 *
973 * This uses the current CR3/CR0/CR4 of the guest.
974 *
975 * @returns VBox status code.
976 * @param pVM The VM Handle
977 * @param GCPtr The guest pointer to convert.
978 * @param pHCPtr Where to store the HC virtual address.
979 */
980VMMDECL(int) PGMPhysGCPtr2HCPtr(PVM pVM, RTGCPTR GCPtr, PRTHCPTR pHCPtr) /** @todo @bugref{1865}: HCPtr -> R3Ptr */
981{
982#ifdef VBOX_WITH_NEW_PHYS_CODE
983 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
984#endif
985
986 RTGCPHYS GCPhys;
987 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
988 if (VBOX_SUCCESS(rc))
989 rc = PGMPhysGCPhys2HCPtr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
990 return rc;
991}
992
993
994/**
995 * Converts a guest virtual address to a HC pointer by specfied CR3 and flags.
996 *
997 * @returns VBox status code.
998 * @param pVM The VM Handle
999 * @param GCPtr The guest pointer to convert.
1000 * @param cr3 The guest CR3.
1001 * @param fFlags Flags used for interpreting the PD correctly: X86_CR4_PSE and X86_CR4_PAE
1002 * @param pHCPtr Where to store the HC pointer.
1003 *
1004 * @remark This function is used by the REM at a time where PGM could
1005 * potentially not be in sync. It could also be used by a
1006 * future DBGF API to cpu state independent conversions.
1007 */
1008VMMDECL(int) PGMPhysGCPtr2HCPtrByGstCR3(PVM pVM, RTGCPTR GCPtr, uint64_t cr3, unsigned fFlags, PRTHCPTR pHCPtr) /** @todo @bugref{1865}: HCPtr -> R3Ptr */
1009{
1010#ifdef VBOX_WITH_NEW_PHYS_CODE
1011 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1012#endif
1013 /*
1014 * PAE or 32-bit?
1015 */
1016 Assert(!CPUMIsGuestInLongMode(pVM));
1017
1018 int rc;
1019 if (!(fFlags & X86_CR4_PAE))
1020 {
1021 PX86PD pPD;
1022 rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
1023 if (VBOX_SUCCESS(rc))
1024 {
1025 X86PDE Pde = pPD->a[(RTGCUINTPTR)GCPtr >> X86_PD_SHIFT];
1026 if (Pde.n.u1Present)
1027 {
1028 if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
1029 { /* (big page) */
1030 rc = PGMPhysGCPhys2HCPtr(pVM, pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde) | ((RTGCUINTPTR)GCPtr & X86_PAGE_4M_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1031 }
1032 else
1033 { /* (normal page) */
1034 PX86PT pPT;
1035 rc = PGM_GCPHYS_2_PTR(pVM, Pde.u & X86_PDE_PG_MASK, &pPT);
1036 if (VBOX_SUCCESS(rc))
1037 {
1038 X86PTE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_SHIFT) & X86_PT_MASK];
1039 if (Pte.n.u1Present)
1040 return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1041 rc = VERR_PAGE_NOT_PRESENT;
1042 }
1043 }
1044 }
1045 else
1046 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1047 }
1048 }
1049 else
1050 {
1051 /** @todo long mode! */
1052 Assert(PGMGetGuestMode(pVM) < PGMMODE_AMD64);
1053
1054 PX86PDPT pPdpt;
1055 rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, &pPdpt);
1056 if (VBOX_SUCCESS(rc))
1057 {
1058 X86PDPE Pdpe = pPdpt->a[((RTGCUINTPTR)GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
1059 if (Pdpe.n.u1Present)
1060 {
1061 PX86PDPAE pPD;
1062 rc = PGM_GCPHYS_2_PTR(pVM, Pdpe.u & X86_PDPE_PG_MASK, &pPD);
1063 if (VBOX_SUCCESS(rc))
1064 {
1065 X86PDEPAE Pde = pPD->a[((RTGCUINTPTR)GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK];
1066 if (Pde.n.u1Present)
1067 {
1068 if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
1069 { /* (big page) */
1070 rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE2M_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_2M_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1071 }
1072 else
1073 { /* (normal page) */
1074 PX86PTPAE pPT;
1075 rc = PGM_GCPHYS_2_PTR(pVM, (Pde.u & X86_PDE_PAE_PG_MASK), &pPT);
1076 if (VBOX_SUCCESS(rc))
1077 {
1078 X86PTEPAE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK];
1079 if (Pte.n.u1Present)
1080 return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1081 rc = VERR_PAGE_NOT_PRESENT;
1082 }
1083 }
1084 }
1085 else
1086 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1087 }
1088 }
1089 else
1090 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1091 }
1092 }
1093 return rc;
1094}
1095
1096
1097#undef LOG_GROUP
1098#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
1099
1100
1101#ifdef IN_RING3
1102/**
1103 * Cache PGMPhys memory access
1104 *
1105 * @param pVM VM Handle.
1106 * @param pCache Cache structure pointer
1107 * @param GCPhys GC physical address
1108 * @param pbHC HC pointer corresponding to physical page
1109 *
1110 * @thread EMT.
1111 */
1112static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
1113{
1114 uint32_t iCacheIndex;
1115
1116 Assert(VM_IS_EMT(pVM));
1117
1118 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
1119 pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
1120
1121 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
1122
1123 ASMBitSet(&pCache->aEntries, iCacheIndex);
1124
1125 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
1126 pCache->Entry[iCacheIndex].pbR3 = pbR3;
1127}
1128#endif
1129
1130/**
1131 * Read physical memory.
1132 *
1133 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
1134 * want to ignore those.
1135 *
1136 * @param pVM VM Handle.
1137 * @param GCPhys Physical address start reading from.
1138 * @param pvBuf Where to put the read bits.
1139 * @param cbRead How many bytes to read.
1140 */
1141VMMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
1142{
1143#ifdef IN_RING3
1144 bool fGrabbedLock = false;
1145#endif
1146
1147 AssertMsg(cbRead > 0, ("don't even think about reading zero bytes!\n"));
1148 if (cbRead == 0)
1149 return;
1150
1151 LogFlow(("PGMPhysRead: %VGp %d\n", GCPhys, cbRead));
1152
1153#ifdef IN_RING3
1154 if (!VM_IS_EMT(pVM))
1155 {
1156 pgmLock(pVM);
1157 fGrabbedLock = true;
1158 }
1159#endif
1160
1161 /*
1162 * Copy loop on ram ranges.
1163 */
1164 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1165 for (;;)
1166 {
1167 /* Find range. */
1168 while (pRam && GCPhys > pRam->GCPhysLast)
1169 pRam = pRam->CTX_SUFF(pNext);
1170 /* Inside range or not? */
1171 if (pRam && GCPhys >= pRam->GCPhys)
1172 {
1173 /*
1174 * Must work our way thru this page by page.
1175 */
1176 RTGCPHYS off = GCPhys - pRam->GCPhys;
1177 while (off < pRam->cb)
1178 {
1179 unsigned iPage = off >> PAGE_SHIFT;
1180 PPGMPAGE pPage = &pRam->aPages[iPage];
1181 size_t cb;
1182
1183 /* Physical chunk in dynamically allocated range not present? */
1184 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1185 {
1186 /* Treat it as reserved; return zeros */
1187 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1188 if (cb >= cbRead)
1189 {
1190 memset(pvBuf, 0, cbRead);
1191 goto end;
1192 }
1193 memset(pvBuf, 0, cb);
1194 }
1195 /* temp hacks, will be reorganized. */
1196 /*
1197 * Physical handler.
1198 */
1199 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_ALL)
1200 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1201 {
1202 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1203 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1204
1205#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1206 /* find and call the handler */
1207 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
1208 if (pNode && pNode->pfnHandlerR3)
1209 {
1210 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1211 if (cbRange < cb)
1212 cb = cbRange;
1213 if (cb > cbRead)
1214 cb = cbRead;
1215
1216 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1217
1218 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1219 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pNode->pvUserR3);
1220 }
1221#endif /* IN_RING3 */
1222 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1223 {
1224#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1225 void *pvSrc = NULL;
1226 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvSrc);
1227#else
1228 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1229#endif
1230
1231 if (cb >= cbRead)
1232 {
1233 memcpy(pvBuf, pvSrc, cbRead);
1234 goto end;
1235 }
1236 memcpy(pvBuf, pvSrc, cb);
1237 }
1238 else if (cb >= cbRead)
1239 goto end;
1240 }
1241 /*
1242 * Virtual handlers.
1243 */
1244 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) >= PGM_PAGE_HNDL_VIRT_STATE_ALL)
1245 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1246 {
1247 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1248 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1249#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1250 /* Search the whole tree for matching physical addresses (rather expensive!) */
1251 PPGMVIRTHANDLER pNode;
1252 unsigned iPage;
1253 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1254 if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerR3)
1255 {
1256 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1257 if (cbRange < cb)
1258 cb = cbRange;
1259 if (cb > cbRead)
1260 cb = cbRead;
1261 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->Core.Key & PAGE_BASE_GC_MASK)
1262 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1263
1264 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1265
1266 /* Note: Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1267 rc = pNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, 0);
1268 }
1269#endif /* IN_RING3 */
1270 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1271 {
1272#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1273 void *pvSrc = NULL;
1274 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvSrc);
1275#else
1276 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1277#endif
1278 if (cb >= cbRead)
1279 {
1280 memcpy(pvBuf, pvSrc, cbRead);
1281 goto end;
1282 }
1283 memcpy(pvBuf, pvSrc, cb);
1284 }
1285 else if (cb >= cbRead)
1286 goto end;
1287 }
1288 else
1289 {
1290 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM)) /** @todo PAGE FLAGS */
1291 {
1292 /*
1293 * Normal memory or ROM.
1294 */
1295 case 0:
1296 case MM_RAM_FLAGS_ROM:
1297 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED:
1298 //case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* = shadow */ - //MMIO2 isn't in the mask.
1299 case MM_RAM_FLAGS_MMIO2: // MMIO2 isn't in the mask.
1300 {
1301#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1302 void *pvSrc = NULL;
1303 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvSrc);
1304#else
1305 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1306#endif
1307 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1308 if (cb >= cbRead)
1309 {
1310#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1311 if (cbRead <= 4 && !fGrabbedLock /* i.e. EMT */)
1312 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphysreadcache, GCPhys, (uint8_t*)pvSrc);
1313#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1314 memcpy(pvBuf, pvSrc, cbRead);
1315 goto end;
1316 }
1317 memcpy(pvBuf, pvSrc, cb);
1318 break;
1319 }
1320
1321 /*
1322 * All reserved, nothing there.
1323 */
1324 case MM_RAM_FLAGS_RESERVED:
1325 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1326 if (cb >= cbRead)
1327 {
1328 memset(pvBuf, 0, cbRead);
1329 goto end;
1330 }
1331 memset(pvBuf, 0, cb);
1332 break;
1333
1334 /*
1335 * The rest needs to be taken more carefully.
1336 */
1337 default:
1338#if 1 /** @todo r=bird: Can you do this properly please. */
1339 /** @todo Try MMIO; quick hack */
1340 if (cbRead <= 8 && IOMMMIORead(pVM, GCPhys, (uint32_t *)pvBuf, cbRead) == VINF_SUCCESS)
1341 goto end;
1342#endif
1343
1344 /** @todo fix me later. */
1345 AssertReleaseMsgFailed(("Unknown read at %VGp size %d implement the complex physical reading case %x\n",
1346 GCPhys, cbRead,
1347 pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM))); /** @todo PAGE FLAGS */
1348 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1349 break;
1350 }
1351 }
1352 cbRead -= cb;
1353 off += cb;
1354 pvBuf = (char *)pvBuf + cb;
1355 }
1356
1357 GCPhys = pRam->GCPhysLast + 1;
1358 }
1359 else
1360 {
1361 LogFlow(("PGMPhysRead: Unassigned %VGp size=%d\n", GCPhys, cbRead));
1362
1363 /*
1364 * Unassigned address space.
1365 */
1366 size_t cb;
1367 if ( !pRam
1368 || (cb = pRam->GCPhys - GCPhys) >= cbRead)
1369 {
1370 memset(pvBuf, 0, cbRead);
1371 goto end;
1372 }
1373
1374 memset(pvBuf, 0, cb);
1375 cbRead -= cb;
1376 pvBuf = (char *)pvBuf + cb;
1377 GCPhys += cb;
1378 }
1379 }
1380end:
1381#ifdef IN_RING3
1382 if (fGrabbedLock)
1383 pgmUnlock(pVM);
1384#endif
1385 return;
1386}
1387
1388/**
1389 * Write to physical memory.
1390 *
1391 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
1392 * want to ignore those.
1393 *
1394 * @param pVM VM Handle.
1395 * @param GCPhys Physical address to write to.
1396 * @param pvBuf What to write.
1397 * @param cbWrite How many bytes to write.
1398 */
1399VMMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
1400{
1401#ifdef IN_RING3
1402 bool fGrabbedLock = false;
1403#endif
1404
1405 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
1406 AssertMsg(cbWrite > 0, ("don't even think about writing zero bytes!\n"));
1407 if (cbWrite == 0)
1408 return;
1409
1410 LogFlow(("PGMPhysWrite: %VGp %d\n", GCPhys, cbWrite));
1411
1412#ifdef IN_RING3
1413 if (!VM_IS_EMT(pVM))
1414 {
1415 pgmLock(pVM);
1416 fGrabbedLock = true;
1417 }
1418#endif
1419 /*
1420 * Copy loop on ram ranges.
1421 */
1422 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1423 for (;;)
1424 {
1425 /* Find range. */
1426 while (pRam && GCPhys > pRam->GCPhysLast)
1427 pRam = pRam->CTX_SUFF(pNext);
1428 /* Inside range or not? */
1429 if (pRam && GCPhys >= pRam->GCPhys)
1430 {
1431 /*
1432 * Must work our way thru this page by page.
1433 */
1434 unsigned off = GCPhys - pRam->GCPhys;
1435 while (off < pRam->cb)
1436 {
1437 unsigned iPage = off >> PAGE_SHIFT;
1438 PPGMPAGE pPage = &pRam->aPages[iPage];
1439
1440 /* Physical chunk in dynamically allocated range not present? */
1441 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1442 {
1443 int rc;
1444#ifdef IN_RING3
1445 if (fGrabbedLock)
1446 {
1447 pgmUnlock(pVM);
1448 rc = pgmr3PhysGrowRange(pVM, GCPhys);
1449 if (rc == VINF_SUCCESS)
1450 PGMPhysWrite(pVM, GCPhys, pvBuf, cbWrite); /* try again; can't assume pRam is still valid (paranoia) */
1451 return;
1452 }
1453 rc = pgmr3PhysGrowRange(pVM, GCPhys);
1454#else
1455 rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
1456#endif
1457 if (rc != VINF_SUCCESS)
1458 goto end;
1459 }
1460
1461 size_t cb;
1462 /* temporary hack, will reogranize is later. */
1463 /*
1464 * Virtual handlers
1465 */
1466 if ( PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
1467 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1468 {
1469 if (PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
1470 {
1471 /*
1472 * Physical write handler + virtual write handler.
1473 * Consider this a quick workaround for the CSAM + shadow caching problem.
1474 *
1475 * We hand it to the shadow caching first since it requires the unchanged
1476 * data. CSAM will have to put up with it already being changed.
1477 */
1478 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1479 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1480#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1481 /* 1. The physical handler */
1482 PPGMPHYSHANDLER pPhysNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
1483 if (pPhysNode && pPhysNode->pfnHandlerR3)
1484 {
1485 size_t cbRange = pPhysNode->Core.KeyLast - GCPhys + 1;
1486 if (cbRange < cb)
1487 cb = cbRange;
1488 if (cb > cbWrite)
1489 cb = cbWrite;
1490
1491 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1492
1493 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
1494 rc = pPhysNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pPhysNode->pvUserR3);
1495 }
1496
1497 /* 2. The virtual handler (will see incorrect data) */
1498 PPGMVIRTHANDLER pVirtNode;
1499 unsigned iPage;
1500 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirtNode, &iPage);
1501 if (VBOX_SUCCESS(rc2) && pVirtNode->pfnHandlerR3)
1502 {
1503 size_t cbRange = pVirtNode->Core.KeyLast - GCPhys + 1;
1504 if (cbRange < cb)
1505 cb = cbRange;
1506 if (cb > cbWrite)
1507 cb = cbWrite;
1508 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirtNode->Core.Key & PAGE_BASE_GC_MASK)
1509 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1510
1511 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1512
1513 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
1514 rc2 = pVirtNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
1515 if ( ( rc2 != VINF_PGM_HANDLER_DO_DEFAULT
1516 && rc == VINF_PGM_HANDLER_DO_DEFAULT)
1517 || ( VBOX_FAILURE(rc2)
1518 && VBOX_SUCCESS(rc)))
1519 rc = rc2;
1520 }
1521#endif /* IN_RING3 */
1522 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1523 {
1524#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1525 void *pvDst = NULL;
1526 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvDst);
1527#else
1528 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1529#endif
1530 if (cb >= cbWrite)
1531 {
1532 memcpy(pvDst, pvBuf, cbWrite);
1533 goto end;
1534 }
1535 memcpy(pvDst, pvBuf, cb);
1536 }
1537 else if (cb >= cbWrite)
1538 goto end;
1539 }
1540 else
1541 {
1542 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1543 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1544#ifdef IN_RING3
1545/** @todo deal with this in GC and R0! */
1546 /* Search the whole tree for matching physical addresses (rather expensive!) */
1547 PPGMVIRTHANDLER pNode;
1548 unsigned iPage;
1549 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1550 if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerR3)
1551 {
1552 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1553 if (cbRange < cb)
1554 cb = cbRange;
1555 if (cb > cbWrite)
1556 cb = cbWrite;
1557 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->Core.Key & PAGE_BASE_GC_MASK)
1558 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1559
1560 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1561
1562 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
1563 rc = pNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
1564 }
1565#endif /* IN_RING3 */
1566 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1567 {
1568#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1569 void *pvDst = NULL;
1570 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvDst);
1571#else
1572 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1573#endif
1574 if (cb >= cbWrite)
1575 {
1576 memcpy(pvDst, pvBuf, cbWrite);
1577 goto end;
1578 }
1579 memcpy(pvDst, pvBuf, cb);
1580 }
1581 else if (cb >= cbWrite)
1582 goto end;
1583 }
1584 }
1585 /*
1586 * Physical handler.
1587 */
1588 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE)
1589 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1590 {
1591 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1592 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1593#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1594 /* find and call the handler */
1595 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
1596 if (pNode && pNode->pfnHandlerR3)
1597 {
1598 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1599 if (cbRange < cb)
1600 cb = cbRange;
1601 if (cb > cbWrite)
1602 cb = cbWrite;
1603
1604 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1605
1606 /** @todo Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1607 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pNode->pvUserR3);
1608 }
1609#endif /* IN_RING3 */
1610 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1611 {
1612#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1613 void *pvDst = NULL;
1614 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvDst);
1615#else
1616 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1617#endif
1618 if (cb >= cbWrite)
1619 {
1620 memcpy(pvDst, pvBuf, cbWrite);
1621 goto end;
1622 }
1623 memcpy(pvDst, pvBuf, cb);
1624 }
1625 else if (cb >= cbWrite)
1626 goto end;
1627 }
1628 else
1629 {
1630 /** @todo r=bird: missing MM_RAM_FLAGS_ROM here, we shall not allow anyone to overwrite the ROM! */
1631 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */
1632 {
1633 /*
1634 * Normal memory, MMIO2 or writable shadow ROM.
1635 */
1636 case 0:
1637 case MM_RAM_FLAGS_MMIO2:
1638 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* shadow rom */
1639 {
1640#if defined(IN_GC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1641 void *pvDst = NULL;
1642 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvDst);
1643#else
1644 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1645#endif
1646 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1647 if (cb >= cbWrite)
1648 {
1649#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1650 if (cbWrite <= 4 && !fGrabbedLock /* i.e. EMT */)
1651 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphyswritecache, GCPhys, (uint8_t*)pvDst);
1652#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1653 memcpy(pvDst, pvBuf, cbWrite);
1654 goto end;
1655 }
1656 memcpy(pvDst, pvBuf, cb);
1657 break;
1658 }
1659
1660 /*
1661 * All reserved, nothing there.
1662 */
1663 case MM_RAM_FLAGS_RESERVED:
1664 case MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2:
1665 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1666 if (cb >= cbWrite)
1667 goto end;
1668 break;
1669
1670
1671 /*
1672 * The rest needs to be taken more carefully.
1673 */
1674 default:
1675#if 1 /** @todo r=bird: Can you do this properly please. */
1676 /** @todo Try MMIO; quick hack */
1677 if (cbWrite <= 8 && IOMMMIOWrite(pVM, GCPhys, *(uint32_t *)pvBuf, cbWrite) == VINF_SUCCESS)
1678 goto end;
1679#endif
1680
1681 /** @todo fix me later. */
1682 AssertReleaseMsgFailed(("Unknown write at %VGp size %d implement the complex physical writing case %x\n",
1683 GCPhys, cbWrite,
1684 (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)))); /** @todo PAGE FLAGS */
1685 /* skip the write */
1686 cb = cbWrite;
1687 break;
1688 }
1689 }
1690
1691 cbWrite -= cb;
1692 off += cb;
1693 pvBuf = (const char *)pvBuf + cb;
1694 }
1695
1696 GCPhys = pRam->GCPhysLast + 1;
1697 }
1698 else
1699 {
1700 /*
1701 * Unassigned address space.
1702 */
1703 size_t cb;
1704 if ( !pRam
1705 || (cb = pRam->GCPhys - GCPhys) >= cbWrite)
1706 goto end;
1707
1708 cbWrite -= cb;
1709 pvBuf = (const char *)pvBuf + cb;
1710 GCPhys += cb;
1711 }
1712 }
1713end:
1714#ifdef IN_RING3
1715 if (fGrabbedLock)
1716 pgmUnlock(pVM);
1717#endif
1718 return;
1719}
1720
1721#ifndef IN_GC /* Ring 0 & 3 only. (Just not needed in GC.) */
1722
1723/**
1724 * Read from guest physical memory by GC physical address, bypassing
1725 * MMIO and access handlers.
1726 *
1727 * @returns VBox status.
1728 * @param pVM VM handle.
1729 * @param pvDst The destination address.
1730 * @param GCPhysSrc The source address (GC physical address).
1731 * @param cb The number of bytes to read.
1732 */
1733VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
1734{
1735 /*
1736 * Treat the first page as a special case.
1737 */
1738 if (!cb)
1739 return VINF_SUCCESS;
1740
1741 /* map the 1st page */
1742 void const *pvSrc;
1743 PGMPAGEMAPLOCK Lock;
1744 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
1745 if (RT_FAILURE(rc))
1746 return rc;
1747
1748 /* optimize for the case where access is completely within the first page. */
1749 size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
1750 if (RT_LIKELY(cb <= cbPage))
1751 {
1752 memcpy(pvDst, pvSrc, cb);
1753 PGMPhysReleasePageMappingLock(pVM, &Lock);
1754 return VINF_SUCCESS;
1755 }
1756
1757 /* copy to the end of the page. */
1758 memcpy(pvDst, pvSrc, cbPage);
1759 PGMPhysReleasePageMappingLock(pVM, &Lock);
1760 GCPhysSrc += cbPage;
1761 pvDst = (uint8_t *)pvDst + cbPage;
1762 cb -= cbPage;
1763
1764 /*
1765 * Page by page.
1766 */
1767 for (;;)
1768 {
1769 /* map the page */
1770 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
1771 if (RT_FAILURE(rc))
1772 return rc;
1773
1774 /* last page? */
1775 if (cb <= PAGE_SIZE)
1776 {
1777 memcpy(pvDst, pvSrc, cb);
1778 PGMPhysReleasePageMappingLock(pVM, &Lock);
1779 return VINF_SUCCESS;
1780 }
1781
1782 /* copy the entire page and advance */
1783 memcpy(pvDst, pvSrc, PAGE_SIZE);
1784 PGMPhysReleasePageMappingLock(pVM, &Lock);
1785 GCPhysSrc += PAGE_SIZE;
1786 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
1787 cb -= PAGE_SIZE;
1788 }
1789 /* won't ever get here. */
1790}
1791
1792
1793/**
1794 * Write to guest physical memory referenced by GC pointer.
1795 * Write memory to GC physical address in guest physical memory.
1796 *
1797 * This will bypass MMIO and access handlers.
1798 *
1799 * @returns VBox status.
1800 * @param pVM VM handle.
1801 * @param GCPhysDst The GC physical address of the destination.
1802 * @param pvSrc The source buffer.
1803 * @param cb The number of bytes to write.
1804 */
1805VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
1806{
1807 LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
1808
1809 /*
1810 * Treat the first page as a special case.
1811 */
1812 if (!cb)
1813 return VINF_SUCCESS;
1814
1815 /* map the 1st page */
1816 void *pvDst;
1817 PGMPAGEMAPLOCK Lock;
1818 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
1819 if (RT_FAILURE(rc))
1820 return rc;
1821
1822 /* optimize for the case where access is completely within the first page. */
1823 size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
1824 if (RT_LIKELY(cb <= cbPage))
1825 {
1826 memcpy(pvDst, pvSrc, cb);
1827 PGMPhysReleasePageMappingLock(pVM, &Lock);
1828 return VINF_SUCCESS;
1829 }
1830
1831 /* copy to the end of the page. */
1832 memcpy(pvDst, pvSrc, cbPage);
1833 PGMPhysReleasePageMappingLock(pVM, &Lock);
1834 GCPhysDst += cbPage;
1835 pvSrc = (const uint8_t *)pvSrc + cbPage;
1836 cb -= cbPage;
1837
1838 /*
1839 * Page by page.
1840 */
1841 for (;;)
1842 {
1843 /* map the page */
1844 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
1845 if (RT_FAILURE(rc))
1846 return rc;
1847
1848 /* last page? */
1849 if (cb <= PAGE_SIZE)
1850 {
1851 memcpy(pvDst, pvSrc, cb);
1852 PGMPhysReleasePageMappingLock(pVM, &Lock);
1853 return VINF_SUCCESS;
1854 }
1855
1856 /* copy the entire page and advance */
1857 memcpy(pvDst, pvSrc, PAGE_SIZE);
1858 PGMPhysReleasePageMappingLock(pVM, &Lock);
1859 GCPhysDst += PAGE_SIZE;
1860 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
1861 cb -= PAGE_SIZE;
1862 }
1863 /* won't ever get here. */
1864}
1865
1866
1867/**
1868 * Read from guest physical memory referenced by GC pointer.
1869 *
1870 * This function uses the current CR3/CR0/CR4 of the guest and will
1871 * bypass access handlers and not set any accessed bits.
1872 *
1873 * @returns VBox status.
1874 * @param pVM VM handle.
1875 * @param pvDst The destination address.
1876 * @param GCPtrSrc The source address (GC pointer).
1877 * @param cb The number of bytes to read.
1878 */
1879VMMDECL(int) PGMPhysSimpleReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
1880{
1881 /*
1882 * Treat the first page as a special case.
1883 */
1884 if (!cb)
1885 return VINF_SUCCESS;
1886
1887 /* map the 1st page */
1888 void const *pvSrc;
1889 PGMPAGEMAPLOCK Lock;
1890 int rc = PGMPhysGCPtr2CCPtrReadOnly(pVM, GCPtrSrc, &pvSrc, &Lock);
1891 if (RT_FAILURE(rc))
1892 return rc;
1893
1894 /* optimize for the case where access is completely within the first page. */
1895 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
1896 if (RT_LIKELY(cb <= cbPage))
1897 {
1898 memcpy(pvDst, pvSrc, cb);
1899 PGMPhysReleasePageMappingLock(pVM, &Lock);
1900 return VINF_SUCCESS;
1901 }
1902
1903 /* copy to the end of the page. */
1904 memcpy(pvDst, pvSrc, cbPage);
1905 PGMPhysReleasePageMappingLock(pVM, &Lock);
1906 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
1907 pvDst = (uint8_t *)pvDst + cbPage;
1908 cb -= cbPage;
1909
1910 /*
1911 * Page by page.
1912 */
1913 for (;;)
1914 {
1915 /* map the page */
1916 rc = PGMPhysGCPtr2CCPtrReadOnly(pVM, GCPtrSrc, &pvSrc, &Lock);
1917 if (RT_FAILURE(rc))
1918 return rc;
1919
1920 /* last page? */
1921 if (cb <= PAGE_SIZE)
1922 {
1923 memcpy(pvDst, pvSrc, cb);
1924 PGMPhysReleasePageMappingLock(pVM, &Lock);
1925 return VINF_SUCCESS;
1926 }
1927
1928 /* copy the entire page and advance */
1929 memcpy(pvDst, pvSrc, PAGE_SIZE);
1930 PGMPhysReleasePageMappingLock(pVM, &Lock);
1931 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
1932 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
1933 cb -= PAGE_SIZE;
1934 }
1935 /* won't ever get here. */
1936}
1937
1938
1939/**
1940 * Write to guest physical memory referenced by GC pointer.
1941 *
1942 * This function uses the current CR3/CR0/CR4 of the guest and will
1943 * bypass access handlers and not set dirty or accessed bits.
1944 *
1945 * @returns VBox status.
1946 * @param pVM VM handle.
1947 * @param GCPtrDst The destination address (GC pointer).
1948 * @param pvSrc The source address.
1949 * @param cb The number of bytes to write.
1950 */
1951VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
1952{
1953 /*
1954 * Treat the first page as a special case.
1955 */
1956 if (!cb)
1957 return VINF_SUCCESS;
1958
1959 /* map the 1st page */
1960 void *pvDst;
1961 PGMPAGEMAPLOCK Lock;
1962 int rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
1963 if (RT_FAILURE(rc))
1964 return rc;
1965
1966 /* optimize for the case where access is completely within the first page. */
1967 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
1968 if (RT_LIKELY(cb <= cbPage))
1969 {
1970 memcpy(pvDst, pvSrc, cb);
1971 PGMPhysReleasePageMappingLock(pVM, &Lock);
1972 return VINF_SUCCESS;
1973 }
1974
1975 /* copy to the end of the page. */
1976 memcpy(pvDst, pvSrc, cbPage);
1977 PGMPhysReleasePageMappingLock(pVM, &Lock);
1978 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
1979 pvSrc = (const uint8_t *)pvSrc + cbPage;
1980 cb -= cbPage;
1981
1982 /*
1983 * Page by page.
1984 */
1985 for (;;)
1986 {
1987 /* map the page */
1988 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
1989 if (RT_FAILURE(rc))
1990 return rc;
1991
1992 /* last page? */
1993 if (cb <= PAGE_SIZE)
1994 {
1995 memcpy(pvDst, pvSrc, cb);
1996 PGMPhysReleasePageMappingLock(pVM, &Lock);
1997 return VINF_SUCCESS;
1998 }
1999
2000 /* copy the entire page and advance */
2001 memcpy(pvDst, pvSrc, PAGE_SIZE);
2002 PGMPhysReleasePageMappingLock(pVM, &Lock);
2003 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
2004 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2005 cb -= PAGE_SIZE;
2006 }
2007 /* won't ever get here. */
2008}
2009
2010
2011/**
2012 * Write to guest physical memory referenced by GC pointer and update the PTE.
2013 *
2014 * This function uses the current CR3/CR0/CR4 of the guest and will
2015 * bypass access handlers but will set any dirty and accessed bits in the PTE.
2016 *
2017 * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
2018 *
2019 * @returns VBox status.
2020 * @param pVM VM handle.
2021 * @param GCPtrDst The destination address (GC pointer).
2022 * @param pvSrc The source address.
2023 * @param cb The number of bytes to write.
2024 */
2025VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2026{
2027 /*
2028 * Treat the first page as a special case.
2029 * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
2030 */
2031 if (!cb)
2032 return VINF_SUCCESS;
2033
2034 /* map the 1st page */
2035 void *pvDst;
2036 PGMPAGEMAPLOCK Lock;
2037 int rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
2038 if (RT_FAILURE(rc))
2039 return rc;
2040
2041 /* optimize for the case where access is completely within the first page. */
2042 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2043 if (RT_LIKELY(cb <= cbPage))
2044 {
2045 memcpy(pvDst, pvSrc, cb);
2046 PGMPhysReleasePageMappingLock(pVM, &Lock);
2047 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2048 return VINF_SUCCESS;
2049 }
2050
2051 /* copy to the end of the page. */
2052 memcpy(pvDst, pvSrc, cbPage);
2053 PGMPhysReleasePageMappingLock(pVM, &Lock);
2054 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2055 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
2056 pvSrc = (const uint8_t *)pvSrc + cbPage;
2057 cb -= cbPage;
2058
2059 /*
2060 * Page by page.
2061 */
2062 for (;;)
2063 {
2064 /* map the page */
2065 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
2066 if (RT_FAILURE(rc))
2067 return rc;
2068
2069 /* last page? */
2070 if (cb <= PAGE_SIZE)
2071 {
2072 memcpy(pvDst, pvSrc, cb);
2073 PGMPhysReleasePageMappingLock(pVM, &Lock);
2074 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2075 return VINF_SUCCESS;
2076 }
2077
2078 /* copy the entire page and advance */
2079 memcpy(pvDst, pvSrc, PAGE_SIZE);
2080 PGMPhysReleasePageMappingLock(pVM, &Lock);
2081 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2082 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
2083 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2084 cb -= PAGE_SIZE;
2085 }
2086 /* won't ever get here. */
2087}
2088
2089
2090/**
2091 * Read from guest physical memory referenced by GC pointer.
2092 *
2093 * This function uses the current CR3/CR0/CR4 of the guest and will
2094 * respect access handlers and set accessed bits.
2095 *
2096 * @returns VBox status.
2097 * @param pVM VM handle.
2098 * @param pvDst The destination address.
2099 * @param GCPtrSrc The source address (GC pointer).
2100 * @param cb The number of bytes to read.
2101 */
2102VMMDECL(int) PGMPhysReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2103{
2104 RTGCPHYS GCPhys;
2105 int rc;
2106
2107 /*
2108 * Anything to do?
2109 */
2110 if (!cb)
2111 return VINF_SUCCESS;
2112
2113 LogFlow(("PGMPhysReadGCPtr: %VGv %d\n", GCPtrSrc, cb));
2114
2115 /*
2116 * Optimize reads within a single page.
2117 */
2118 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2119 {
2120 /* Convert virtual to physical address */
2121 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
2122 AssertRCReturn(rc, rc);
2123
2124 /* mark the guest page as accessed. */
2125 rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2126 AssertRC(rc);
2127
2128 PGMPhysRead(pVM, GCPhys, pvDst, cb);
2129 return VINF_SUCCESS;
2130 }
2131
2132 /*
2133 * Page by page.
2134 */
2135 for (;;)
2136 {
2137 /* Convert virtual to physical address */
2138 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
2139 AssertRCReturn(rc, rc);
2140
2141 /* mark the guest page as accessed. */
2142 int rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2143 AssertRC(rc);
2144
2145 /* copy */
2146 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2147 if (cbRead >= cb)
2148 {
2149 PGMPhysRead(pVM, GCPhys, pvDst, cb);
2150 return VINF_SUCCESS;
2151 }
2152 PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
2153
2154 /* next */
2155 cb -= cbRead;
2156 pvDst = (uint8_t *)pvDst + cbRead;
2157 GCPtrSrc += cbRead;
2158 }
2159}
2160
2161
2162/**
2163 * Write to guest physical memory referenced by GC pointer.
2164 *
2165 * This function uses the current CR3/CR0/CR4 of the guest and will
2166 * respect access handlers and set dirty and accessed bits.
2167 *
2168 * @returns VBox status.
2169 * @param pVM VM handle.
2170 * @param GCPtrDst The destination address (GC pointer).
2171 * @param pvSrc The source address.
2172 * @param cb The number of bytes to write.
2173 */
2174VMMDECL(int) PGMPhysWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2175{
2176 RTGCPHYS GCPhys;
2177 int rc;
2178
2179 /*
2180 * Anything to do?
2181 */
2182 if (!cb)
2183 return VINF_SUCCESS;
2184
2185 LogFlow(("PGMPhysWriteGCPtr: %VGv %d\n", GCPtrDst, cb));
2186
2187 /*
2188 * Optimize writes within a single page.
2189 */
2190 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2191 {
2192 /* Convert virtual to physical address */
2193 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
2194 AssertRCReturn(rc, rc);
2195
2196 /* mark the guest page as accessed and dirty. */
2197 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2198 AssertRC(rc);
2199
2200 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2201 return VINF_SUCCESS;
2202 }
2203
2204 /*
2205 * Page by page.
2206 */
2207 for (;;)
2208 {
2209 /* Convert virtual to physical address */
2210 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
2211 AssertRCReturn(rc, rc);
2212
2213 /* mark the guest page as accessed and dirty. */
2214 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2215 AssertRC(rc);
2216
2217 /* copy */
2218 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2219 if (cbWrite >= cb)
2220 {
2221 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2222 return VINF_SUCCESS;
2223 }
2224 PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
2225
2226 /* next */
2227 cb -= cbWrite;
2228 pvSrc = (uint8_t *)pvSrc + cbWrite;
2229 GCPtrDst += cbWrite;
2230 }
2231}
2232
2233#endif /* !IN_GC */
2234
2235/**
2236 * Performs a read of guest virtual memory for instruction emulation.
2237 *
2238 * This will check permissions, raise exceptions and update the access bits.
2239 *
2240 * The current implementation will bypass all access handlers. It may later be
2241 * changed to at least respect MMIO.
2242 *
2243 *
2244 * @returns VBox status code suitable to scheduling.
2245 * @retval VINF_SUCCESS if the read was performed successfully.
2246 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
2247 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
2248 *
2249 * @param pVM The VM handle.
2250 * @param pCtxCore The context core.
2251 * @param pvDst Where to put the bytes we've read.
2252 * @param GCPtrSrc The source address.
2253 * @param cb The number of bytes to read. Not more than a page.
2254 *
2255 * @remark This function will dynamically map physical pages in GC. This may unmap
2256 * mappings done by the caller. Be careful!
2257 */
2258VMMDECL(int) PGMPhysInterpretedRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
2259{
2260 Assert(cb <= PAGE_SIZE);
2261
2262/** @todo r=bird: This isn't perfect!
2263 * -# It's not checking for reserved bits being 1.
2264 * -# It's not correctly dealing with the access bit.
2265 * -# It's not respecting MMIO memory or any other access handlers.
2266 */
2267 /*
2268 * 1. Translate virtual to physical. This may fault.
2269 * 2. Map the physical address.
2270 * 3. Do the read operation.
2271 * 4. Set access bits if required.
2272 */
2273 int rc;
2274 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
2275 if (cb <= cb1)
2276 {
2277 /*
2278 * Not crossing pages.
2279 */
2280 RTGCPHYS GCPhys;
2281 uint64_t fFlags;
2282 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys);
2283 if (VBOX_SUCCESS(rc))
2284 {
2285 /** @todo we should check reserved bits ... */
2286 void *pvSrc;
2287 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
2288 switch (rc)
2289 {
2290 case VINF_SUCCESS:
2291 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
2292 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
2293 break;
2294 case VERR_PGM_PHYS_PAGE_RESERVED:
2295 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2296 memset(pvDst, 0, cb); /** @todo this is wrong, it should be 0xff */
2297 break;
2298 default:
2299 return rc;
2300 }
2301
2302 /** @todo access bit emulation isn't 100% correct. */
2303 if (!(fFlags & X86_PTE_A))
2304 {
2305 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2306 AssertRC(rc);
2307 }
2308 return VINF_SUCCESS;
2309 }
2310 }
2311 else
2312 {
2313 /*
2314 * Crosses pages.
2315 */
2316 unsigned cb2 = cb - cb1;
2317 uint64_t fFlags1;
2318 RTGCPHYS GCPhys1;
2319 uint64_t fFlags2;
2320 RTGCPHYS GCPhys2;
2321 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1);
2322 if (VBOX_SUCCESS(rc))
2323 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
2324 if (VBOX_SUCCESS(rc))
2325 {
2326 /** @todo we should check reserved bits ... */
2327 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%VGv\n", cb, cb1, cb2, GCPtrSrc));
2328 void *pvSrc1;
2329 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
2330 switch (rc)
2331 {
2332 case VINF_SUCCESS:
2333 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
2334 break;
2335 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2336 memset(pvDst, 0, cb1); /** @todo this is wrong, it should be 0xff */
2337 break;
2338 default:
2339 return rc;
2340 }
2341
2342 void *pvSrc2;
2343 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
2344 switch (rc)
2345 {
2346 case VINF_SUCCESS:
2347 memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
2348 break;
2349 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2350 memset((uint8_t *)pvDst + cb1, 0, cb2); /** @todo this is wrong, it should be 0xff */
2351 break;
2352 default:
2353 return rc;
2354 }
2355
2356 if (!(fFlags1 & X86_PTE_A))
2357 {
2358 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2359 AssertRC(rc);
2360 }
2361 if (!(fFlags2 & X86_PTE_A))
2362 {
2363 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2364 AssertRC(rc);
2365 }
2366 return VINF_SUCCESS;
2367 }
2368 }
2369
2370 /*
2371 * Raise a #PF.
2372 */
2373 uint32_t uErr;
2374
2375 /* Get the current privilege level. */
2376 uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore);
2377 switch (rc)
2378 {
2379 case VINF_SUCCESS:
2380 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
2381 break;
2382
2383 case VERR_PAGE_NOT_PRESENT:
2384 case VERR_PAGE_TABLE_NOT_PRESENT:
2385 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
2386 break;
2387
2388 default:
2389 AssertMsgFailed(("rc=%Vrc GCPtrSrc=%VGv cb=%#x\n", rc, GCPtrSrc, cb));
2390 return rc;
2391 }
2392 Log(("PGMPhysInterpretedRead: GCPtrSrc=%VGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
2393 return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
2394}
2395
2396/// @todo VMMDECL(int) PGMPhysInterpretedWrite(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2397
2398
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette