VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 14974

Last change on this file since 14974 was 14974, checked in by vboxsync, 16 years ago

reenabled VA in TLB code

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 85.4 KB
Line 
1/* $Id: PGMAllPhys.cpp 14974 2008-12-04 12:45:43Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Defined Constants And Macros *
24*******************************************************************************/
25/** @def PGM_IGNORE_RAM_FLAGS_RESERVED
26 * Don't respect the MM_RAM_FLAGS_RESERVED flag when converting to HC addresses.
27 *
28 * Since this flag is currently incorrectly kept set for ROM regions we will
29 * have to ignore it for now so we don't break stuff.
30 *
31 * @todo this has been fixed now I believe, remove this hack.
32 */
33#define PGM_IGNORE_RAM_FLAGS_RESERVED
34
35
36/*******************************************************************************
37* Header Files *
38*******************************************************************************/
39#define LOG_GROUP LOG_GROUP_PGM_PHYS
40#include <VBox/pgm.h>
41#include <VBox/trpm.h>
42#include <VBox/vmm.h>
43#include <VBox/iom.h>
44#include <VBox/em.h>
45#include <VBox/rem.h>
46#include "PGMInternal.h"
47#include <VBox/vm.h>
48#include <VBox/param.h>
49#include <VBox/err.h>
50#include <iprt/assert.h>
51#include <iprt/string.h>
52#include <iprt/asm.h>
53#include <VBox/log.h>
54#ifdef IN_RING3
55# include <iprt/thread.h>
56#endif
57
58
59
60#ifndef IN_RING3
61
62/**
63 * \#PF Handler callback for Guest ROM range write access.
64 * We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
65 *
66 * @returns VBox status code (appropritate for trap handling and GC return).
67 * @param pVM VM Handle.
68 * @param uErrorCode CPU Error code.
69 * @param pRegFrame Trap register frame.
70 * @param pvFault The fault address (cr2).
71 * @param GCPhysFault The GC physical address corresponding to pvFault.
72 * @param pvUser User argument. Pointer to the ROM range structure.
73 */
74VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser)
75{
76 int rc;
77#ifdef VBOX_WITH_NEW_PHYS_CODE
78 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
79 uint32_t iPage = GCPhysFault - pRom->GCPhys;
80 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
81 switch (pRom->aPages[iPage].enmProt)
82 {
83 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
84 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
85 {
86#endif
87 /*
88 * If it's a simple instruction which doesn't change the cpu state
89 * we will simply skip it. Otherwise we'll have to defer it to REM.
90 */
91 uint32_t cbOp;
92 DISCPUSTATE Cpu;
93 rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, &cbOp);
94 if ( RT_SUCCESS(rc)
95 && Cpu.mode == CPUMODE_32BIT /** @todo why does this matter? */
96 && !(Cpu.prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG)))
97 {
98 switch (Cpu.opcode)
99 {
100 /** @todo Find other instructions we can safely skip, possibly
101 * adding this kind of detection to DIS or EM. */
102 case OP_MOV:
103 pRegFrame->rip += cbOp;
104 STAM_COUNTER_INC(&pVM->pgm.s.StatRZGuestROMWriteHandled);
105 return VINF_SUCCESS;
106 }
107 }
108 else if (RT_UNLIKELY(rc == VERR_INTERNAL_ERROR))
109 return rc;
110#ifdef VBOX_WITH_NEW_PHYS_CODE
111 break;
112 }
113
114 case PGMROMPROT_READ_RAM_WRITE_RAM:
115 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
116 AssertRC(rc);
117 case PGMROMPROT_READ_ROM_WRITE_RAM:
118 /* Handle it in ring-3 because it's *way* easier there. */
119 break;
120
121 default:
122 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
123 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
124 VERR_INTERNAL_ERROR);
125 }
126#endif
127
128 STAM_COUNTER_INC(&pVM->pgm.s.StatRZGuestROMWriteUnhandled);
129 return VINF_EM_RAW_EMULATE_INSTR;
130}
131
132#endif /* IN_RING3 */
133
134/**
135 * Checks if Address Gate 20 is enabled or not.
136 *
137 * @returns true if enabled.
138 * @returns false if disabled.
139 * @param pVM VM handle.
140 */
141VMMDECL(bool) PGMPhysIsA20Enabled(PVM pVM)
142{
143 LogFlow(("PGMPhysIsA20Enabled %d\n", pVM->pgm.s.fA20Enabled));
144 return !!pVM->pgm.s.fA20Enabled ; /* stupid MS compiler doesn't trust me. */
145}
146
147
148/**
149 * Validates a GC physical address.
150 *
151 * @returns true if valid.
152 * @returns false if invalid.
153 * @param pVM The VM handle.
154 * @param GCPhys The physical address to validate.
155 */
156VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
157{
158 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
159 return pPage != NULL;
160}
161
162
163/**
164 * Checks if a GC physical address is a normal page,
165 * i.e. not ROM, MMIO or reserved.
166 *
167 * @returns true if normal.
168 * @returns false if invalid, ROM, MMIO or reserved page.
169 * @param pVM The VM handle.
170 * @param GCPhys The physical address to check.
171 */
172VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
173{
174 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
175 return pPage
176 && !(pPage->HCPhys & (MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2));
177}
178
179
180/**
181 * Converts a GC physical address to a HC physical address.
182 *
183 * @returns VINF_SUCCESS on success.
184 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
185 * page but has no physical backing.
186 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
187 * GC physical address.
188 *
189 * @param pVM The VM handle.
190 * @param GCPhys The GC physical address to convert.
191 * @param pHCPhys Where to store the HC physical address on success.
192 */
193VMMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
194{
195 PPGMPAGE pPage;
196 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
197 if (RT_FAILURE(rc))
198 return rc;
199
200#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
201 if (RT_UNLIKELY(pPage->HCPhys & MM_RAM_FLAGS_RESERVED)) /** @todo PAGE FLAGS */
202 return VERR_PGM_PHYS_PAGE_RESERVED;
203#endif
204
205 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
206 return VINF_SUCCESS;
207}
208
209
210/**
211 * Invalidates the GC page mapping TLB.
212 *
213 * @param pVM The VM handle.
214 */
215VMMDECL(void) PGMPhysInvalidatePageGCMapTLB(PVM pVM)
216{
217 /* later */
218 NOREF(pVM);
219}
220
221
222/**
223 * Invalidates the ring-0 page mapping TLB.
224 *
225 * @param pVM The VM handle.
226 */
227VMMDECL(void) PGMPhysInvalidatePageR0MapTLB(PVM pVM)
228{
229 PGMPhysInvalidatePageR3MapTLB(pVM);
230}
231
232
233/**
234 * Invalidates the ring-3 page mapping TLB.
235 *
236 * @param pVM The VM handle.
237 */
238VMMDECL(void) PGMPhysInvalidatePageR3MapTLB(PVM pVM)
239{
240 pgmLock(pVM);
241 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
242 {
243 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
244 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
245 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
246 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
247 }
248 pgmUnlock(pVM);
249}
250
251
252/**
253 * Frees the specified RAM page.
254 *
255 * This is used by ballooning and remapping MMIO2.
256 *
257 * @param pVM Pointer to the shared VM structure.
258 * @param pPage Pointer to the page structure.
259 * @param GCPhys The guest physical address of the page, if applicable.
260 */
261void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
262{
263 AssertFatal(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
264
265 /** @todo implement this... */
266 AssertFatalFailed();
267}
268
269
270/**
271 * Makes sure that there is at least one handy page ready for use.
272 *
273 * This will also take the appropriate actions when reaching water-marks.
274 *
275 * @returns The following VBox status codes.
276 * @retval VINF_SUCCESS on success.
277 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
278 *
279 * @param pVM The VM handle.
280 *
281 * @remarks Must be called from within the PGM critical section. It may
282 * nip back to ring-3/0 in some cases.
283 */
284static int pgmPhysEnsureHandyPage(PVM pVM)
285{
286 /** @remarks
287 * low-water mark logic for R0 & GC:
288 * - 75%: Set FF.
289 * - 50%: Force return to ring-3 ASAP.
290 *
291 * For ring-3 there is a little problem wrt to the recompiler, so:
292 * - 75%: Set FF.
293 * - 50%: Try allocate pages; on failure we'll force REM to quite ASAP.
294 *
295 * The basic idea is that we should be able to get out of any situation with
296 * only 50% of handy pages remaining.
297 *
298 * At the moment we'll not adjust the number of handy pages relative to the
299 * actual VM RAM committment, that's too much work for now.
300 */
301 Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
302 if ( !pVM->pgm.s.cHandyPages
303#ifdef IN_RING3
304 || pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2 /* 50% */
305#endif
306 )
307 {
308 Log(("PGM: cHandyPages=%u out of %u -> allocate more\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
309#ifdef IN_RING3
310 int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
311#elif defined(IN_RING0)
312 /** @todo call PGMR0PhysAllocateHandyPages directly - need to make sure we can call kernel code first and deal with the seeding fallback. */
313 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
314#else
315 int rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
316#endif
317 if (RT_UNLIKELY(rc != VINF_SUCCESS))
318 {
319 Assert(rc == VINF_EM_NO_MEMORY);
320 if (!pVM->pgm.s.cHandyPages)
321 {
322 LogRel(("PGM: no more handy pages!\n"));
323 return VERR_EM_NO_MEMORY;
324 }
325 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
326#ifdef IN_RING3
327 REMR3NotifyFF(pVM);
328#else
329 VM_FF_SET(pVM, VM_FF_TO_R3);
330#endif
331 }
332 Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
333 }
334 else if (pVM->pgm.s.cHandyPages - 1 <= (RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 4) * 3) /* 75% */
335 {
336 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
337#ifndef IN_RING3
338 if (pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2)
339 {
340 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
341 VM_FF_SET(pVM, VM_FF_TO_R3);
342 }
343#endif
344 }
345
346 return VINF_SUCCESS;
347}
348
349
350/**
351 * Replace a zero or shared page with new page that we can write to.
352 *
353 * @returns The following VBox status codes.
354 * @retval VINF_SUCCESS on success, pPage is modified.
355 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
356 *
357 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
358 *
359 * @param pVM The VM address.
360 * @param pPage The physical page tracking structure. This will
361 * be modified on success.
362 * @param GCPhys The address of the page.
363 *
364 * @remarks Must be called from within the PGM critical section. It may
365 * nip back to ring-3/0 in some cases.
366 *
367 * @remarks This function shouldn't really fail, however if it does
368 * it probably means we've screwed up the size of the amount
369 * and/or the low-water mark of handy pages. Or, that some
370 * device I/O is causing a lot of pages to be allocated while
371 * while the host is in a low-memory condition.
372 */
373int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
374{
375 /*
376 * Ensure that we've got a page handy, take it and use it.
377 */
378 int rc = pgmPhysEnsureHandyPage(pVM);
379 if (RT_FAILURE(rc))
380 {
381 Assert(rc == VERR_EM_NO_MEMORY);
382 return rc;
383 }
384 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%d %RGp\n", PGM_PAGE_GET_STATE(pPage), GCPhys));
385 Assert(!PGM_PAGE_IS_RESERVED(pPage));
386 Assert(!PGM_PAGE_IS_MMIO(pPage));
387
388 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
389 Assert(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages));
390 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
391 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
392 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
393 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
394
395 /*
396 * There are one or two action to be taken the next time we allocate handy pages:
397 * - Tell the GMM (global memory manager) what the page is being used for.
398 * (Speeds up replacement operations - sharing and defragmenting.)
399 * - If the current backing is shared, it must be freed.
400 */
401 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
402 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys;
403
404 if (PGM_PAGE_IS_SHARED(pPage))
405 {
406 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
407 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
408 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
409
410 Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
411 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
412 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageReplaceShared));
413 pVM->pgm.s.cSharedPages--;
414/** @todo err.. what about copying the page content? */
415 }
416 else
417 {
418 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
419 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
420 pVM->pgm.s.cZeroPages--;
421/** @todo verify that the handy page is zero! */
422 }
423
424 /*
425 * Do the PGMPAGE modifications.
426 */
427 pVM->pgm.s.cPrivatePages++;
428 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
429 PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
430 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
431
432 return VINF_SUCCESS;
433}
434
435
436/**
437 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
438 *
439 * @returns VBox status code.
440 * @retval VINF_SUCCESS on success.
441 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
442 *
443 * @param pVM The VM address.
444 * @param pPage The physical page tracking structure.
445 * @param GCPhys The address of the page.
446 *
447 * @remarks Called from within the PGM critical section.
448 */
449int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
450{
451 switch (PGM_PAGE_GET_STATE(pPage))
452 {
453 case PGM_PAGE_STATE_WRITE_MONITORED:
454 PGM_PAGE_SET_WRITTEN_TO(pPage);
455 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
456 /* fall thru */
457 default: /* to shut up GCC */
458 case PGM_PAGE_STATE_ALLOCATED:
459 return VINF_SUCCESS;
460
461 /*
462 * Zero pages can be dummy pages for MMIO or reserved memory,
463 * so we need to check the flags before joining cause with
464 * shared page replacement.
465 */
466 case PGM_PAGE_STATE_ZERO:
467 if ( PGM_PAGE_IS_MMIO(pPage)
468 || PGM_PAGE_IS_RESERVED(pPage))
469 return VERR_PGM_PHYS_PAGE_RESERVED;
470 /* fall thru */
471 case PGM_PAGE_STATE_SHARED:
472 return pgmPhysAllocPage(pVM, pPage, GCPhys);
473 }
474}
475
476
477/**
478 * Maps a page into the current virtual address space so it can be accessed.
479 *
480 * @returns VBox status code.
481 * @retval VINF_SUCCESS on success.
482 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
483 *
484 * @param pVM The VM address.
485 * @param pPage The physical page tracking structure.
486 * @param GCPhys The address of the page.
487 * @param ppMap Where to store the address of the mapping tracking structure.
488 * @param ppv Where to store the mapping address of the page. The page
489 * offset is masked off!
490 *
491 * @remarks Called from within the PGM critical section.
492 */
493int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
494{
495#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
496 /*
497 * Just some sketchy GC/R0-darwin code.
498 */
499 *ppMap = NULL;
500 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
501 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
502 return PGMDynMapHCPage(pVM, HCPhys, ppv);
503
504#else /* IN_RING3 || IN_RING0 */
505
506 /*
507 * Find/make Chunk TLB entry for the mapping chunk.
508 */
509 PPGMCHUNKR3MAP pMap;
510 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
511 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
512 if (pTlbe->idChunk == idChunk)
513 {
514 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
515 pMap = pTlbe->pChunk;
516 }
517 else if (idChunk != NIL_GMM_CHUNKID)
518 {
519 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
520
521 /*
522 * Find the chunk, map it if necessary.
523 */
524 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
525 if (!pMap)
526 {
527#ifdef IN_RING0
528 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk);
529 AssertRCReturn(rc, rc);
530 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
531 Assert(pMap);
532#else
533 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
534 if (RT_FAILURE(rc))
535 return rc;
536#endif
537 }
538
539 /*
540 * Enter it into the Chunk TLB.
541 */
542 pTlbe->idChunk = idChunk;
543 pTlbe->pChunk = pMap;
544 pMap->iAge = 0;
545 }
546 else
547 {
548 Assert(PGM_PAGE_IS_ZERO(pPage));
549 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
550 *ppMap = NULL;
551 return VINF_SUCCESS;
552 }
553
554 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
555 *ppMap = pMap;
556 return VINF_SUCCESS;
557#endif /* IN_RING3 */
558}
559
560
561#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
562/**
563 * Load a guest page into the ring-3 physical TLB.
564 *
565 * @returns VBox status code.
566 * @retval VINF_SUCCESS on success
567 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
568 * @param pPGM The PGM instance pointer.
569 * @param GCPhys The guest physical address in question.
570 */
571int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys)
572{
573 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
574
575 /*
576 * Find the ram range.
577 * 99.8% of requests are expected to be in the first range.
578 */
579 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
580 RTGCPHYS off = GCPhys - pRam->GCPhys;
581 if (RT_UNLIKELY(off >= pRam->cb))
582 {
583 do
584 {
585 pRam = pRam->CTX_SUFF(pNext);
586 if (!pRam)
587 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
588 off = GCPhys - pRam->GCPhys;
589 } while (off >= pRam->cb);
590 }
591
592 /*
593 * Map the page.
594 * Make a special case for the zero page as it is kind of special.
595 */
596 PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT];
597 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
598 if (!PGM_PAGE_IS_ZERO(pPage))
599 {
600 void *pv;
601 PPGMPAGEMAP pMap;
602 int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
603 if (RT_FAILURE(rc))
604 return rc;
605 pTlbe->pMap = pMap;
606 pTlbe->pv = pv;
607 }
608 else
609 {
610 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
611 pTlbe->pMap = NULL;
612 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
613 }
614 pTlbe->pPage = pPage;
615 return VINF_SUCCESS;
616}
617#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
618
619
620/**
621 * Requests the mapping of a guest page into the current context.
622 *
623 * This API should only be used for very short term, as it will consume
624 * scarse resources (R0 and GC) in the mapping cache. When you're done
625 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
626 *
627 * This API will assume your intention is to write to the page, and will
628 * therefore replace shared and zero pages. If you do not intend to modify
629 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
630 *
631 * @returns VBox status code.
632 * @retval VINF_SUCCESS on success.
633 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
634 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
635 *
636 * @param pVM The VM handle.
637 * @param GCPhys The guest physical address of the page that should be mapped.
638 * @param ppv Where to store the address corresponding to GCPhys.
639 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
640 *
641 * @remark Avoid calling this API from within critical sections (other than
642 * the PGM one) because of the deadlock risk.
643 * @thread Any thread.
644 */
645VMMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
646{
647#ifdef VBOX_WITH_NEW_PHYS_CODE
648# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
649/** @todo this needs to be fixed, it really ain't right. */
650 /* Until a physical TLB is implemented for GC or/and R0-darwin, let PGMDynMapGCPageEx handle it. */
651 return PGMDynMapGCPageOff(pVM, GCPhys, ppv);
652
653#else
654 int rc = pgmLock(pVM);
655 AssertRCReturn(rc);
656
657 /*
658 * Query the Physical TLB entry for the page (may fail).
659 */
660 PGMPHYSTLBE pTlbe;
661 int rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
662 if (RT_SUCCESS(rc))
663 {
664 /*
665 * If the page is shared, the zero page, or being write monitored
666 * it must be converted to an page that's writable if possible.
667 */
668 PPGMPAGE pPage = pTlbe->pPage;
669 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
670 {
671 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
672 /** @todo stuff is missing here! */
673 }
674 if (RT_SUCCESS(rc))
675 {
676 /*
677 * Now, just perform the locking and calculate the return address.
678 */
679 PPGMPAGEMAP pMap = pTlbe->pMap;
680 pMap->cRefs++;
681 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
682 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
683 {
684 AssertMsgFailed(("%RGp is entering permanent locked state!\n", GCPhys));
685 pMap->cRefs++; /* Extra ref to prevent it from going away. */
686 }
687
688 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
689 pLock->pvPage = pPage;
690 pLock->pvMap = pMap;
691 }
692 }
693
694 pgmUnlock(pVM);
695 return rc;
696
697#endif /* IN_RING3 || IN_RING0 */
698
699#else
700 /*
701 * Temporary fallback code.
702 */
703# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
704/** @todo @bugref{3202}: check up this path. */
705 return PGMDynMapGCPageOff(pVM, GCPhys, ppv);
706# else
707 return PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1, (PRTR3PTR)ppv);
708# endif
709#endif
710}
711
712
713/**
714 * Requests the mapping of a guest page into the current context.
715 *
716 * This API should only be used for very short term, as it will consume
717 * scarse resources (R0 and GC) in the mapping cache. When you're done
718 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
719 *
720 * @returns VBox status code.
721 * @retval VINF_SUCCESS on success.
722 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
723 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
724 *
725 * @param pVM The VM handle.
726 * @param GCPhys The guest physical address of the page that should be mapped.
727 * @param ppv Where to store the address corresponding to GCPhys.
728 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
729 *
730 * @remark Avoid calling this API from within critical sections (other than
731 * the PGM one) because of the deadlock risk.
732 * @thread Any thread.
733 */
734VMMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
735{
736 /** @todo implement this */
737 return PGMPhysGCPhys2CCPtr(pVM, GCPhys, (void **)ppv, pLock);
738}
739
740
741/**
742 * Requests the mapping of a guest page given by virtual address into the current context.
743 *
744 * This API should only be used for very short term, as it will consume
745 * scarse resources (R0 and GC) in the mapping cache. When you're done
746 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
747 *
748 * This API will assume your intention is to write to the page, and will
749 * therefore replace shared and zero pages. If you do not intend to modify
750 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
751 *
752 * @returns VBox status code.
753 * @retval VINF_SUCCESS on success.
754 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
755 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
756 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
757 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
758 *
759 * @param pVM The VM handle.
760 * @param GCPhys The guest physical address of the page that should be mapped.
761 * @param ppv Where to store the address corresponding to GCPhys.
762 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
763 *
764 * @remark Avoid calling this API from within critical sections (other than
765 * the PGM one) because of the deadlock risk.
766 * @thread EMT
767 */
768VMMDECL(int) PGMPhysGCPtr2CCPtr(PVM pVM, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
769{
770 RTGCPHYS GCPhys;
771 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
772 if (RT_SUCCESS(rc))
773 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, pLock);
774 return rc;
775}
776
777
778/**
779 * Requests the mapping of a guest page given by virtual address into the current context.
780 *
781 * This API should only be used for very short term, as it will consume
782 * scarse resources (R0 and GC) in the mapping cache. When you're done
783 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
784 *
785 * @returns VBox status code.
786 * @retval VINF_SUCCESS on success.
787 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
788 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
789 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
790 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
791 *
792 * @param pVM The VM handle.
793 * @param GCPhys The guest physical address of the page that should be mapped.
794 * @param ppv Where to store the address corresponding to GCPhys.
795 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
796 *
797 * @remark Avoid calling this API from within critical sections (other than
798 * the PGM one) because of the deadlock risk.
799 * @thread EMT
800 */
801VMMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVM pVM, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
802{
803 RTGCPHYS GCPhys;
804 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
805 if (RT_SUCCESS(rc))
806 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, pLock);
807 return rc;
808}
809
810
811/**
812 * Release the mapping of a guest page.
813 *
814 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
815 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
816 *
817 * @param pVM The VM handle.
818 * @param pLock The lock structure initialized by the mapping function.
819 */
820VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
821{
822#ifdef VBOX_WITH_NEW_PHYS_CODE
823#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
824 /* currently nothing to do here. */
825/* --- postponed
826#elif defined(IN_RING0)
827*/
828
829#else /* IN_RING3 */
830 pgmLock(pVM);
831
832 PPGMPAGE pPage = (PPGMPAGE)pLock->pvPage;
833 Assert(pPage->cLocks >= 1);
834 if (pPage->cLocks != PGM_PAGE_MAX_LOCKS)
835 pPage->cLocks--;
836
837 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pLock->pvChunk;
838 Assert(pChunk->cRefs >= 1);
839 pChunk->cRefs--;
840 pChunk->iAge = 0;
841
842 pgmUnlock(pVM);
843#endif /* IN_RING3 */
844#else
845 NOREF(pVM);
846 NOREF(pLock);
847#endif
848}
849
850
851/**
852 * Converts a GC physical address to a HC ring-3 pointer.
853 *
854 * @returns VINF_SUCCESS on success.
855 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
856 * page but has no physical backing.
857 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
858 * GC physical address.
859 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
860 * a dynamic ram chunk boundary
861 *
862 * @param pVM The VM handle.
863 * @param GCPhys The GC physical address to convert.
864 * @param cbRange Physical range
865 * @param pR3Ptr Where to store the R3 pointer on success.
866 */
867VMMDECL(int) PGMPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTR3PTR pR3Ptr)
868{
869#ifdef VBOX_WITH_NEW_PHYS_CODE
870 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
871#endif
872
873 if ((GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK) != ((GCPhys+cbRange-1) & PGM_DYNAMIC_CHUNK_BASE_MASK))
874 {
875 AssertMsgFailed(("%RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
876 LogRel(("PGMPhysGCPhys2HCPtr %RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
877 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
878 }
879
880 PPGMRAMRANGE pRam;
881 PPGMPAGE pPage;
882 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
883 if (RT_FAILURE(rc))
884 return rc;
885
886#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
887 if (RT_UNLIKELY(PGM_PAGE_IS_RESERVED(pPage)))
888 return VERR_PGM_PHYS_PAGE_RESERVED;
889#endif
890
891 RTGCPHYS off = GCPhys - pRam->GCPhys;
892 if (RT_UNLIKELY(off + cbRange > pRam->cb))
893 {
894 AssertMsgFailed(("%RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys + cbRange));
895 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
896 }
897
898 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
899 {
900 unsigned iChunk = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
901#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES this is a rare occurence */
902 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(pVM, pRam->paChunkR3Ptrs);
903 *pR3Ptr = (RTR3PTR)(paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
904#else
905 *pR3Ptr = (RTR3PTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
906#endif
907 }
908 else if (RT_LIKELY(pRam->pvR3))
909 *pR3Ptr = (RTR3PTR)((RTR3UINTPTR)pRam->pvR3 + off);
910 else
911 return VERR_PGM_PHYS_PAGE_RESERVED;
912 return VINF_SUCCESS;
913}
914
915/**
916 * Converts a GC physical address to a HC ring-3 pointer, with some
917 * additional checks.
918 *
919 * @returns VINF_SUCCESS on success.
920 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
921 * page but has no physical backing, or if partuclar
922 * memory access must always go via PGM, because of handlers.
923 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
924 * GC physical address.
925 *
926 * @param pVM The VM handle.
927 * @param GCPhys The GC physical address to convert.
928 * @param GCPtr The guest VA, to check virtual handler on.
929 * @param flags Flags controlling additional checks.
930 * @param pR3Ptr Where to store the R3 pointer on success.
931 */
932VMMDECL(int) PGMPhysGCPhys2R3PtrEx(PVM pVM, RTGCPHYS GCPhys, RTGCPTR GCPtr, uint32_t flags, PRTR3PTR pR3Ptr)
933{
934 int rc;
935
936 rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1, pR3Ptr);
937
938 if (RT_SUCCESS(rc) && (flags & PGMPHYS_TRANSLATION_FLAG_CHECK_PHYS_MONITORED))
939 {
940 /* Check if there's a physical handler for PA */
941 if (PGMHandlerPhysicalIsRegistered(pVM, GCPhys))
942 rc = VERR_PGM_PHYS_PAGE_RESERVED;
943 }
944
945 if (RT_SUCCESS(rc) && (flags & PGMPHYS_TRANSLATION_FLAG_CHECK_VIRT_MONITORED))
946 {
947 /* Check if there's a virtual handler for VA */
948 if (PGMHandlerVirtualIsRegistered(pVM, GCPtr))
949 rc = VERR_PGM_PHYS_PAGE_RESERVED;
950 }
951
952 return rc;
953}
954/**
955 * PGMPhysGCPhys2R3Ptr convenience for use with assertions.
956 *
957 * @returns The R3Ptr, NIL_RTR3PTR on failure.
958 * @param pVM The VM handle.
959 * @param GCPhys The GC Physical addresss.
960 * @param cbRange Physical range.
961 */
962VMMDECL(RTR3PTR) PGMPhysGCPhys2R3PtrAssert(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange)
963{
964 RTR3PTR R3Ptr;
965 int rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys, cbRange, &R3Ptr);
966 if (RT_SUCCESS(rc))
967 return R3Ptr;
968 return NIL_RTR3PTR;
969}
970
971
972/**
973 * Converts a guest pointer to a GC physical address.
974 *
975 * This uses the current CR3/CR0/CR4 of the guest.
976 *
977 * @returns VBox status code.
978 * @param pVM The VM Handle
979 * @param GCPtr The guest pointer to convert.
980 * @param pGCPhys Where to store the GC physical address.
981 */
982VMMDECL(int) PGMPhysGCPtr2GCPhys(PVM pVM, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
983{
984 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
985 if (pGCPhys && RT_SUCCESS(rc))
986 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
987 return rc;
988}
989
990
991/**
992 * Converts a guest pointer to a HC physical address.
993 *
994 * This uses the current CR3/CR0/CR4 of the guest.
995 *
996 * @returns VBox status code.
997 * @param pVM The VM Handle
998 * @param GCPtr The guest pointer to convert.
999 * @param pHCPhys Where to store the HC physical address.
1000 */
1001VMMDECL(int) PGMPhysGCPtr2HCPhys(PVM pVM, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
1002{
1003 RTGCPHYS GCPhys;
1004 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
1005 if (RT_SUCCESS(rc))
1006 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
1007 return rc;
1008}
1009
1010
1011/**
1012 * Converts a guest pointer to a R3 pointer.
1013 *
1014 * This uses the current CR3/CR0/CR4 of the guest.
1015 *
1016 * @returns VBox status code.
1017 * @param pVM The VM Handle
1018 * @param GCPtr The guest pointer to convert.
1019 * @param pR3Ptr Where to store the R3 virtual address.
1020 */
1021VMMDECL(int) PGMPhysGCPtr2R3Ptr(PVM pVM, RTGCPTR GCPtr, PRTR3PTR pR3Ptr)
1022{
1023#ifdef VBOX_WITH_NEW_PHYS_CODE
1024 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1025#endif
1026
1027 RTGCPHYS GCPhys;
1028 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
1029 if (RT_SUCCESS(rc))
1030 rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pR3Ptr);
1031 return rc;
1032}
1033
1034
1035/**
1036 * Converts a guest virtual address to a HC ring-3 pointer by specfied CR3 and
1037 * flags.
1038 *
1039 * @returns VBox status code.
1040 * @param pVM The VM Handle
1041 * @param GCPtr The guest pointer to convert.
1042 * @param cr3 The guest CR3.
1043 * @param fFlags Flags used for interpreting the PD correctly: X86_CR4_PSE and X86_CR4_PAE
1044 * @param pR3Ptr Where to store the R3 pointer.
1045 *
1046 * @remark This function is used by the REM at a time where PGM could
1047 * potentially not be in sync. It could also be used by a
1048 * future DBGF API to cpu state independent conversions.
1049 */
1050VMMDECL(int) PGMPhysGCPtr2R3PtrByGstCR3(PVM pVM, RTGCPTR GCPtr, uint64_t cr3, unsigned fFlags, PRTR3PTR pR3Ptr)
1051{
1052#ifdef VBOX_WITH_NEW_PHYS_CODE
1053 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1054#endif
1055 /*
1056 * PAE or 32-bit?
1057 */
1058 Assert(!CPUMIsGuestInLongMode(pVM));
1059
1060 int rc;
1061 if (!(fFlags & X86_CR4_PAE))
1062 {
1063 PX86PD pPD;
1064 rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
1065 if (RT_SUCCESS(rc))
1066 {
1067 X86PDE Pde = pPD->a[(RTGCUINTPTR)GCPtr >> X86_PD_SHIFT];
1068 if (Pde.n.u1Present)
1069 {
1070 if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
1071 { /* (big page) */
1072 rc = PGMPhysGCPhys2R3Ptr(pVM, pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde) | ((RTGCUINTPTR)GCPtr & X86_PAGE_4M_OFFSET_MASK),
1073 1 /* we always stay within one page */, pR3Ptr);
1074 }
1075 else
1076 { /* (normal page) */
1077 PX86PT pPT;
1078 rc = PGM_GCPHYS_2_PTR(pVM, Pde.u & X86_PDE_PG_MASK, &pPT);
1079 if (RT_SUCCESS(rc))
1080 {
1081 X86PTE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_SHIFT) & X86_PT_MASK];
1082 if (Pte.n.u1Present)
1083 return PGMPhysGCPhys2R3Ptr(pVM, (Pte.u & X86_PTE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK),
1084 1 /* we always stay within one page */, pR3Ptr);
1085 rc = VERR_PAGE_NOT_PRESENT;
1086 }
1087 }
1088 }
1089 else
1090 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1091 }
1092 }
1093 else
1094 {
1095 /** @todo long mode! */
1096 Assert(PGMGetGuestMode(pVM) < PGMMODE_AMD64);
1097
1098 PX86PDPT pPdpt;
1099 rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, &pPdpt);
1100 if (RT_SUCCESS(rc))
1101 {
1102 X86PDPE Pdpe = pPdpt->a[((RTGCUINTPTR)GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
1103 if (Pdpe.n.u1Present)
1104 {
1105 PX86PDPAE pPD;
1106 rc = PGM_GCPHYS_2_PTR(pVM, Pdpe.u & X86_PDPE_PG_MASK, &pPD);
1107 if (RT_SUCCESS(rc))
1108 {
1109 X86PDEPAE Pde = pPD->a[((RTGCUINTPTR)GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK];
1110 if (Pde.n.u1Present)
1111 {
1112 if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
1113 { /* (big page) */
1114 rc = PGMPhysGCPhys2R3Ptr(pVM, (Pde.u & X86_PDE2M_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_2M_OFFSET_MASK),
1115 1 /* we always stay within one page */, pR3Ptr);
1116 }
1117 else
1118 { /* (normal page) */
1119 PX86PTPAE pPT;
1120 rc = PGM_GCPHYS_2_PTR(pVM, (Pde.u & X86_PDE_PAE_PG_MASK), &pPT);
1121 if (RT_SUCCESS(rc))
1122 {
1123 X86PTEPAE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK];
1124 if (Pte.n.u1Present)
1125 return PGMPhysGCPhys2R3Ptr(pVM, (Pte.u & X86_PTE_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK),
1126 1 /* we always stay within one page */, pR3Ptr);
1127 rc = VERR_PAGE_NOT_PRESENT;
1128 }
1129 }
1130 }
1131 else
1132 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1133 }
1134 }
1135 else
1136 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1137 }
1138 }
1139 return rc;
1140}
1141
1142
1143#undef LOG_GROUP
1144#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
1145
1146
1147#ifdef IN_RING3
1148/**
1149 * Cache PGMPhys memory access
1150 *
1151 * @param pVM VM Handle.
1152 * @param pCache Cache structure pointer
1153 * @param GCPhys GC physical address
1154 * @param pbHC HC pointer corresponding to physical page
1155 *
1156 * @thread EMT.
1157 */
1158static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
1159{
1160 uint32_t iCacheIndex;
1161
1162 Assert(VM_IS_EMT(pVM));
1163
1164 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
1165 pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
1166
1167 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
1168
1169 ASMBitSet(&pCache->aEntries, iCacheIndex);
1170
1171 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
1172 pCache->Entry[iCacheIndex].pbR3 = pbR3;
1173}
1174#endif /* IN_RING3 */
1175
1176/**
1177 * Read physical memory.
1178 *
1179 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
1180 * want to ignore those.
1181 *
1182 * @param pVM VM Handle.
1183 * @param GCPhys Physical address start reading from.
1184 * @param pvBuf Where to put the read bits.
1185 * @param cbRead How many bytes to read.
1186 */
1187VMMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
1188{
1189#ifdef IN_RING3
1190 bool fGrabbedLock = false;
1191#endif
1192
1193 AssertMsg(cbRead > 0, ("don't even think about reading zero bytes!\n"));
1194 if (cbRead == 0)
1195 return;
1196
1197 LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
1198
1199#ifdef IN_RING3
1200 if (!VM_IS_EMT(pVM))
1201 {
1202 pgmLock(pVM);
1203 fGrabbedLock = true;
1204 }
1205#endif
1206
1207 /*
1208 * Copy loop on ram ranges.
1209 */
1210 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1211 for (;;)
1212 {
1213 /* Find range. */
1214 while (pRam && GCPhys > pRam->GCPhysLast)
1215 pRam = pRam->CTX_SUFF(pNext);
1216 /* Inside range or not? */
1217 if (pRam && GCPhys >= pRam->GCPhys)
1218 {
1219 /*
1220 * Must work our way thru this page by page.
1221 */
1222 RTGCPHYS off = GCPhys - pRam->GCPhys;
1223 while (off < pRam->cb)
1224 {
1225 unsigned iPage = off >> PAGE_SHIFT;
1226 PPGMPAGE pPage = &pRam->aPages[iPage];
1227 size_t cb;
1228
1229 /* Physical chunk in dynamically allocated range not present? */
1230 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1231 {
1232 /* Treat it as reserved; return zeros */
1233 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1234 if (cb >= cbRead)
1235 {
1236 memset(pvBuf, 0, cbRead);
1237 goto end;
1238 }
1239 memset(pvBuf, 0, cb);
1240 }
1241 /* temp hacks, will be reorganized. */
1242 /*
1243 * Physical handler.
1244 */
1245 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_ALL)
1246 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1247 {
1248 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1249 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1250
1251#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1252 /* find and call the handler */
1253 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
1254 if (pNode && pNode->pfnHandlerR3)
1255 {
1256 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1257 if (cbRange < cb)
1258 cb = cbRange;
1259 if (cb > cbRead)
1260 cb = cbRead;
1261
1262 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1263
1264 /* Note! Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1265 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pNode->pvUserR3);
1266 }
1267#endif /* IN_RING3 */
1268 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1269 {
1270#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1271 void *pvSrc = NULL;
1272 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvSrc);
1273#else
1274 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1275#endif
1276
1277 if (cb >= cbRead)
1278 {
1279 memcpy(pvBuf, pvSrc, cbRead);
1280 goto end;
1281 }
1282 memcpy(pvBuf, pvSrc, cb);
1283 }
1284 else if (cb >= cbRead)
1285 goto end;
1286 }
1287 /*
1288 * Virtual handlers.
1289 */
1290 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) >= PGM_PAGE_HNDL_VIRT_STATE_ALL)
1291 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1292 {
1293 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1294 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1295#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1296 /* Search the whole tree for matching physical addresses (rather expensive!) */
1297 PPGMVIRTHANDLER pNode;
1298 unsigned iPage;
1299 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1300 if (RT_SUCCESS(rc2) && pNode->pfnHandlerR3)
1301 {
1302 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1303 if (cbRange < cb)
1304 cb = cbRange;
1305 if (cb > cbRead)
1306 cb = cbRead;
1307 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->Core.Key & PAGE_BASE_GC_MASK)
1308 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1309
1310 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1311
1312 /* Note! Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1313 rc = pNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, 0);
1314 }
1315#endif /* IN_RING3 */
1316 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1317 {
1318#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1319 void *pvSrc = NULL;
1320 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvSrc);
1321#else
1322 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1323#endif
1324 if (cb >= cbRead)
1325 {
1326 memcpy(pvBuf, pvSrc, cbRead);
1327 goto end;
1328 }
1329 memcpy(pvBuf, pvSrc, cb);
1330 }
1331 else if (cb >= cbRead)
1332 goto end;
1333 }
1334 else
1335 {
1336 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM)) /** @todo PAGE FLAGS */
1337 {
1338 /*
1339 * Normal memory or ROM.
1340 */
1341 case 0:
1342 case MM_RAM_FLAGS_ROM:
1343 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED:
1344 //case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* = shadow */ - //MMIO2 isn't in the mask.
1345 case MM_RAM_FLAGS_MMIO2: // MMIO2 isn't in the mask.
1346 {
1347#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1348 void *pvSrc = NULL;
1349 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvSrc);
1350#else
1351 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1352#endif
1353 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1354 if (cb >= cbRead)
1355 {
1356#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1357 if (cbRead <= 4 && !fGrabbedLock /* i.e. EMT */)
1358 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphysreadcache, GCPhys, (uint8_t*)pvSrc);
1359#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1360 memcpy(pvBuf, pvSrc, cbRead);
1361 goto end;
1362 }
1363 memcpy(pvBuf, pvSrc, cb);
1364 break;
1365 }
1366
1367 /*
1368 * All reserved, nothing there.
1369 */
1370 case MM_RAM_FLAGS_RESERVED:
1371 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1372 if (cb >= cbRead)
1373 {
1374 memset(pvBuf, 0, cbRead);
1375 goto end;
1376 }
1377 memset(pvBuf, 0, cb);
1378 break;
1379
1380 /*
1381 * The rest needs to be taken more carefully.
1382 */
1383 default:
1384#if 1 /** @todo r=bird: Can you do this properly please. */
1385 /** @todo Try MMIO; quick hack */
1386 if (cbRead <= 8 && IOMMMIORead(pVM, GCPhys, (uint32_t *)pvBuf, cbRead) == VINF_SUCCESS)
1387 goto end;
1388#endif
1389
1390 /** @todo fix me later. */
1391 AssertReleaseMsgFailed(("Unknown read at %RGp size %u implement the complex physical reading case %RHp\n",
1392 GCPhys, cbRead,
1393 pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM))); /** @todo PAGE FLAGS */
1394 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1395 break;
1396 }
1397 }
1398 cbRead -= cb;
1399 off += cb;
1400 pvBuf = (char *)pvBuf + cb;
1401 }
1402
1403 GCPhys = pRam->GCPhysLast + 1;
1404 }
1405 else
1406 {
1407 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
1408
1409 /*
1410 * Unassigned address space.
1411 */
1412 size_t cb;
1413 if ( !pRam
1414 || (cb = pRam->GCPhys - GCPhys) >= cbRead)
1415 {
1416 memset(pvBuf, 0, cbRead);
1417 goto end;
1418 }
1419
1420 memset(pvBuf, 0, cb);
1421 cbRead -= cb;
1422 pvBuf = (char *)pvBuf + cb;
1423 GCPhys += cb;
1424 }
1425 }
1426end:
1427#ifdef IN_RING3
1428 if (fGrabbedLock)
1429 pgmUnlock(pVM);
1430#endif
1431 return;
1432}
1433
1434
1435/**
1436 * Write to physical memory.
1437 *
1438 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
1439 * want to ignore those.
1440 *
1441 * @param pVM VM Handle.
1442 * @param GCPhys Physical address to write to.
1443 * @param pvBuf What to write.
1444 * @param cbWrite How many bytes to write.
1445 */
1446VMMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
1447{
1448#ifdef IN_RING3
1449 bool fGrabbedLock = false;
1450#endif
1451
1452 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
1453 AssertMsg(cbWrite > 0, ("don't even think about writing zero bytes!\n"));
1454 if (cbWrite == 0)
1455 return;
1456
1457 LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
1458
1459#ifdef IN_RING3
1460 if (!VM_IS_EMT(pVM))
1461 {
1462 pgmLock(pVM);
1463 fGrabbedLock = true;
1464 }
1465#endif
1466 /*
1467 * Copy loop on ram ranges.
1468 */
1469 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1470 for (;;)
1471 {
1472 /* Find range. */
1473 while (pRam && GCPhys > pRam->GCPhysLast)
1474 pRam = pRam->CTX_SUFF(pNext);
1475 /* Inside range or not? */
1476 if (pRam && GCPhys >= pRam->GCPhys)
1477 {
1478 /*
1479 * Must work our way thru this page by page.
1480 */
1481 RTGCPTR off = GCPhys - pRam->GCPhys;
1482 while (off < pRam->cb)
1483 {
1484 RTGCPTR iPage = off >> PAGE_SHIFT;
1485 PPGMPAGE pPage = &pRam->aPages[iPage];
1486
1487 /* Physical chunk in dynamically allocated range not present? */
1488 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1489 {
1490 int rc;
1491#ifdef IN_RING3
1492 if (fGrabbedLock)
1493 {
1494 pgmUnlock(pVM);
1495 rc = pgmr3PhysGrowRange(pVM, GCPhys);
1496 if (rc == VINF_SUCCESS)
1497 PGMPhysWrite(pVM, GCPhys, pvBuf, cbWrite); /* try again; can't assume pRam is still valid (paranoia) */
1498 return;
1499 }
1500 rc = pgmr3PhysGrowRange(pVM, GCPhys);
1501#else
1502 rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
1503#endif
1504 if (rc != VINF_SUCCESS)
1505 goto end;
1506 }
1507
1508 size_t cb;
1509 /* temporary hack, will reogranize is later. */
1510 /*
1511 * Virtual handlers
1512 */
1513 if ( PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
1514 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1515 {
1516 if (PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
1517 {
1518 /*
1519 * Physical write handler + virtual write handler.
1520 * Consider this a quick workaround for the CSAM + shadow caching problem.
1521 *
1522 * We hand it to the shadow caching first since it requires the unchanged
1523 * data. CSAM will have to put up with it already being changed.
1524 */
1525 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1526 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1527#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1528 /* 1. The physical handler */
1529 PPGMPHYSHANDLER pPhysNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
1530 if (pPhysNode && pPhysNode->pfnHandlerR3)
1531 {
1532 size_t cbRange = pPhysNode->Core.KeyLast - GCPhys + 1;
1533 if (cbRange < cb)
1534 cb = cbRange;
1535 if (cb > cbWrite)
1536 cb = cbWrite;
1537
1538 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1539
1540 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
1541 rc = pPhysNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pPhysNode->pvUserR3);
1542 }
1543
1544 /* 2. The virtual handler (will see incorrect data) */
1545 PPGMVIRTHANDLER pVirtNode;
1546 unsigned iPage;
1547 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirtNode, &iPage);
1548 if (RT_SUCCESS(rc2) && pVirtNode->pfnHandlerR3)
1549 {
1550 size_t cbRange = pVirtNode->Core.KeyLast - GCPhys + 1;
1551 if (cbRange < cb)
1552 cb = cbRange;
1553 if (cb > cbWrite)
1554 cb = cbWrite;
1555 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirtNode->Core.Key & PAGE_BASE_GC_MASK)
1556 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1557
1558 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1559
1560 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
1561 rc2 = pVirtNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
1562 if ( ( rc2 != VINF_PGM_HANDLER_DO_DEFAULT
1563 && rc == VINF_PGM_HANDLER_DO_DEFAULT)
1564 || ( RT_FAILURE(rc2)
1565 && RT_SUCCESS(rc)))
1566 rc = rc2;
1567 }
1568#endif /* IN_RING3 */
1569 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1570 {
1571#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1572 void *pvDst = NULL;
1573 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvDst);
1574#else
1575 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1576#endif
1577 if (cb >= cbWrite)
1578 {
1579 memcpy(pvDst, pvBuf, cbWrite);
1580 goto end;
1581 }
1582 memcpy(pvDst, pvBuf, cb);
1583 }
1584 else if (cb >= cbWrite)
1585 goto end;
1586 }
1587 else
1588 {
1589 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1590 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1591#ifdef IN_RING3
1592/** @todo deal with this in GC and R0! */
1593 /* Search the whole tree for matching physical addresses (rather expensive!) */
1594 PPGMVIRTHANDLER pNode;
1595 unsigned iPage;
1596 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1597 if (RT_SUCCESS(rc2) && pNode->pfnHandlerR3)
1598 {
1599 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1600 if (cbRange < cb)
1601 cb = cbRange;
1602 if (cb > cbWrite)
1603 cb = cbWrite;
1604 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->Core.Key & PAGE_BASE_GC_MASK)
1605 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1606
1607 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1608
1609 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
1610 rc = pNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
1611 }
1612#endif /* IN_RING3 */
1613 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1614 {
1615#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1616 void *pvDst = NULL;
1617 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvDst);
1618#else
1619 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1620#endif
1621 if (cb >= cbWrite)
1622 {
1623 memcpy(pvDst, pvBuf, cbWrite);
1624 goto end;
1625 }
1626 memcpy(pvDst, pvBuf, cb);
1627 }
1628 else if (cb >= cbWrite)
1629 goto end;
1630 }
1631 }
1632 /*
1633 * Physical handler.
1634 */
1635 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE)
1636 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1637 {
1638 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1639 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1640#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1641 /* find and call the handler */
1642 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
1643 if (pNode && pNode->pfnHandlerR3)
1644 {
1645 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1646 if (cbRange < cb)
1647 cb = cbRange;
1648 if (cb > cbWrite)
1649 cb = cbWrite;
1650
1651 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1652
1653 /** @todo Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1654 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pNode->pvUserR3);
1655 }
1656#endif /* IN_RING3 */
1657 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1658 {
1659#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1660 void *pvDst = NULL;
1661 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvDst);
1662#else
1663 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1664#endif
1665 if (cb >= cbWrite)
1666 {
1667 memcpy(pvDst, pvBuf, cbWrite);
1668 goto end;
1669 }
1670 memcpy(pvDst, pvBuf, cb);
1671 }
1672 else if (cb >= cbWrite)
1673 goto end;
1674 }
1675 else
1676 {
1677 /** @todo r=bird: missing MM_RAM_FLAGS_ROM here, we shall not allow anyone to overwrite the ROM! */
1678 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */
1679 {
1680 /*
1681 * Normal memory, MMIO2 or writable shadow ROM.
1682 */
1683 case 0:
1684 case MM_RAM_FLAGS_MMIO2:
1685 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* shadow rom */
1686 {
1687#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1688 void *pvDst = NULL;
1689 PGMDynMapHCPageOff(pVM, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK), &pvDst);
1690#else
1691 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1692#endif
1693 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1694 if (cb >= cbWrite)
1695 {
1696#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1697 if (cbWrite <= 4 && !fGrabbedLock /* i.e. EMT */)
1698 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphyswritecache, GCPhys, (uint8_t*)pvDst);
1699#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1700 memcpy(pvDst, pvBuf, cbWrite);
1701 goto end;
1702 }
1703 memcpy(pvDst, pvBuf, cb);
1704 break;
1705 }
1706
1707 /*
1708 * All reserved, nothing there.
1709 */
1710 case MM_RAM_FLAGS_RESERVED:
1711 case MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2:
1712 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1713 if (cb >= cbWrite)
1714 goto end;
1715 break;
1716
1717
1718 /*
1719 * The rest needs to be taken more carefully.
1720 */
1721 default:
1722#if 1 /** @todo r=bird: Can you do this properly please. */
1723 /** @todo Try MMIO; quick hack */
1724 if (cbWrite <= 8 && IOMMMIOWrite(pVM, GCPhys, *(uint32_t *)pvBuf, cbWrite) == VINF_SUCCESS)
1725 goto end;
1726#endif
1727
1728 /** @todo fix me later. */
1729 AssertReleaseMsgFailed(("Unknown write at %RGp size %u implement the complex physical writing case %RHp\n",
1730 GCPhys, cbWrite,
1731 (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)))); /** @todo PAGE FLAGS */
1732 /* skip the write */
1733 cb = cbWrite;
1734 break;
1735 }
1736 }
1737
1738 cbWrite -= cb;
1739 off += cb;
1740 pvBuf = (const char *)pvBuf + cb;
1741 }
1742
1743 GCPhys = pRam->GCPhysLast + 1;
1744 }
1745 else
1746 {
1747 /*
1748 * Unassigned address space.
1749 */
1750 size_t cb;
1751 if ( !pRam
1752 || (cb = pRam->GCPhys - GCPhys) >= cbWrite)
1753 goto end;
1754
1755 cbWrite -= cb;
1756 pvBuf = (const char *)pvBuf + cb;
1757 GCPhys += cb;
1758 }
1759 }
1760end:
1761#ifdef IN_RING3
1762 if (fGrabbedLock)
1763 pgmUnlock(pVM);
1764#endif
1765 return;
1766}
1767
1768#ifndef IN_RC /* Ring 0 & 3 only. (Just not needed in GC.) */
1769
1770/**
1771 * Read from guest physical memory by GC physical address, bypassing
1772 * MMIO and access handlers.
1773 *
1774 * @returns VBox status.
1775 * @param pVM VM handle.
1776 * @param pvDst The destination address.
1777 * @param GCPhysSrc The source address (GC physical address).
1778 * @param cb The number of bytes to read.
1779 */
1780VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
1781{
1782 /*
1783 * Treat the first page as a special case.
1784 */
1785 if (!cb)
1786 return VINF_SUCCESS;
1787
1788 /* map the 1st page */
1789 void const *pvSrc;
1790 PGMPAGEMAPLOCK Lock;
1791 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
1792 if (RT_FAILURE(rc))
1793 return rc;
1794
1795 /* optimize for the case where access is completely within the first page. */
1796 size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
1797 if (RT_LIKELY(cb <= cbPage))
1798 {
1799 memcpy(pvDst, pvSrc, cb);
1800 PGMPhysReleasePageMappingLock(pVM, &Lock);
1801 return VINF_SUCCESS;
1802 }
1803
1804 /* copy to the end of the page. */
1805 memcpy(pvDst, pvSrc, cbPage);
1806 PGMPhysReleasePageMappingLock(pVM, &Lock);
1807 GCPhysSrc += cbPage;
1808 pvDst = (uint8_t *)pvDst + cbPage;
1809 cb -= cbPage;
1810
1811 /*
1812 * Page by page.
1813 */
1814 for (;;)
1815 {
1816 /* map the page */
1817 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
1818 if (RT_FAILURE(rc))
1819 return rc;
1820
1821 /* last page? */
1822 if (cb <= PAGE_SIZE)
1823 {
1824 memcpy(pvDst, pvSrc, cb);
1825 PGMPhysReleasePageMappingLock(pVM, &Lock);
1826 return VINF_SUCCESS;
1827 }
1828
1829 /* copy the entire page and advance */
1830 memcpy(pvDst, pvSrc, PAGE_SIZE);
1831 PGMPhysReleasePageMappingLock(pVM, &Lock);
1832 GCPhysSrc += PAGE_SIZE;
1833 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
1834 cb -= PAGE_SIZE;
1835 }
1836 /* won't ever get here. */
1837}
1838
1839
1840/**
1841 * Write to guest physical memory referenced by GC pointer.
1842 * Write memory to GC physical address in guest physical memory.
1843 *
1844 * This will bypass MMIO and access handlers.
1845 *
1846 * @returns VBox status.
1847 * @param pVM VM handle.
1848 * @param GCPhysDst The GC physical address of the destination.
1849 * @param pvSrc The source buffer.
1850 * @param cb The number of bytes to write.
1851 */
1852VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
1853{
1854 LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
1855
1856 /*
1857 * Treat the first page as a special case.
1858 */
1859 if (!cb)
1860 return VINF_SUCCESS;
1861
1862 /* map the 1st page */
1863 void *pvDst;
1864 PGMPAGEMAPLOCK Lock;
1865 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
1866 if (RT_FAILURE(rc))
1867 return rc;
1868
1869 /* optimize for the case where access is completely within the first page. */
1870 size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
1871 if (RT_LIKELY(cb <= cbPage))
1872 {
1873 memcpy(pvDst, pvSrc, cb);
1874 PGMPhysReleasePageMappingLock(pVM, &Lock);
1875 return VINF_SUCCESS;
1876 }
1877
1878 /* copy to the end of the page. */
1879 memcpy(pvDst, pvSrc, cbPage);
1880 PGMPhysReleasePageMappingLock(pVM, &Lock);
1881 GCPhysDst += cbPage;
1882 pvSrc = (const uint8_t *)pvSrc + cbPage;
1883 cb -= cbPage;
1884
1885 /*
1886 * Page by page.
1887 */
1888 for (;;)
1889 {
1890 /* map the page */
1891 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
1892 if (RT_FAILURE(rc))
1893 return rc;
1894
1895 /* last page? */
1896 if (cb <= PAGE_SIZE)
1897 {
1898 memcpy(pvDst, pvSrc, cb);
1899 PGMPhysReleasePageMappingLock(pVM, &Lock);
1900 return VINF_SUCCESS;
1901 }
1902
1903 /* copy the entire page and advance */
1904 memcpy(pvDst, pvSrc, PAGE_SIZE);
1905 PGMPhysReleasePageMappingLock(pVM, &Lock);
1906 GCPhysDst += PAGE_SIZE;
1907 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
1908 cb -= PAGE_SIZE;
1909 }
1910 /* won't ever get here. */
1911}
1912
1913
1914/**
1915 * Read from guest physical memory referenced by GC pointer.
1916 *
1917 * This function uses the current CR3/CR0/CR4 of the guest and will
1918 * bypass access handlers and not set any accessed bits.
1919 *
1920 * @returns VBox status.
1921 * @param pVM VM handle.
1922 * @param pvDst The destination address.
1923 * @param GCPtrSrc The source address (GC pointer).
1924 * @param cb The number of bytes to read.
1925 */
1926VMMDECL(int) PGMPhysSimpleReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
1927{
1928 /*
1929 * Treat the first page as a special case.
1930 */
1931 if (!cb)
1932 return VINF_SUCCESS;
1933
1934 /* map the 1st page */
1935 void const *pvSrc;
1936 PGMPAGEMAPLOCK Lock;
1937 int rc = PGMPhysGCPtr2CCPtrReadOnly(pVM, GCPtrSrc, &pvSrc, &Lock);
1938 if (RT_FAILURE(rc))
1939 return rc;
1940
1941 /* optimize for the case where access is completely within the first page. */
1942 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
1943 if (RT_LIKELY(cb <= cbPage))
1944 {
1945 memcpy(pvDst, pvSrc, cb);
1946 PGMPhysReleasePageMappingLock(pVM, &Lock);
1947 return VINF_SUCCESS;
1948 }
1949
1950 /* copy to the end of the page. */
1951 memcpy(pvDst, pvSrc, cbPage);
1952 PGMPhysReleasePageMappingLock(pVM, &Lock);
1953 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
1954 pvDst = (uint8_t *)pvDst + cbPage;
1955 cb -= cbPage;
1956
1957 /*
1958 * Page by page.
1959 */
1960 for (;;)
1961 {
1962 /* map the page */
1963 rc = PGMPhysGCPtr2CCPtrReadOnly(pVM, GCPtrSrc, &pvSrc, &Lock);
1964 if (RT_FAILURE(rc))
1965 return rc;
1966
1967 /* last page? */
1968 if (cb <= PAGE_SIZE)
1969 {
1970 memcpy(pvDst, pvSrc, cb);
1971 PGMPhysReleasePageMappingLock(pVM, &Lock);
1972 return VINF_SUCCESS;
1973 }
1974
1975 /* copy the entire page and advance */
1976 memcpy(pvDst, pvSrc, PAGE_SIZE);
1977 PGMPhysReleasePageMappingLock(pVM, &Lock);
1978 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
1979 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
1980 cb -= PAGE_SIZE;
1981 }
1982 /* won't ever get here. */
1983}
1984
1985
1986/**
1987 * Write to guest physical memory referenced by GC pointer.
1988 *
1989 * This function uses the current CR3/CR0/CR4 of the guest and will
1990 * bypass access handlers and not set dirty or accessed bits.
1991 *
1992 * @returns VBox status.
1993 * @param pVM VM handle.
1994 * @param GCPtrDst The destination address (GC pointer).
1995 * @param pvSrc The source address.
1996 * @param cb The number of bytes to write.
1997 */
1998VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
1999{
2000 /*
2001 * Treat the first page as a special case.
2002 */
2003 if (!cb)
2004 return VINF_SUCCESS;
2005
2006 /* map the 1st page */
2007 void *pvDst;
2008 PGMPAGEMAPLOCK Lock;
2009 int rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
2010 if (RT_FAILURE(rc))
2011 return rc;
2012
2013 /* optimize for the case where access is completely within the first page. */
2014 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2015 if (RT_LIKELY(cb <= cbPage))
2016 {
2017 memcpy(pvDst, pvSrc, cb);
2018 PGMPhysReleasePageMappingLock(pVM, &Lock);
2019 return VINF_SUCCESS;
2020 }
2021
2022 /* copy to the end of the page. */
2023 memcpy(pvDst, pvSrc, cbPage);
2024 PGMPhysReleasePageMappingLock(pVM, &Lock);
2025 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
2026 pvSrc = (const uint8_t *)pvSrc + cbPage;
2027 cb -= cbPage;
2028
2029 /*
2030 * Page by page.
2031 */
2032 for (;;)
2033 {
2034 /* map the page */
2035 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
2036 if (RT_FAILURE(rc))
2037 return rc;
2038
2039 /* last page? */
2040 if (cb <= PAGE_SIZE)
2041 {
2042 memcpy(pvDst, pvSrc, cb);
2043 PGMPhysReleasePageMappingLock(pVM, &Lock);
2044 return VINF_SUCCESS;
2045 }
2046
2047 /* copy the entire page and advance */
2048 memcpy(pvDst, pvSrc, PAGE_SIZE);
2049 PGMPhysReleasePageMappingLock(pVM, &Lock);
2050 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
2051 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2052 cb -= PAGE_SIZE;
2053 }
2054 /* won't ever get here. */
2055}
2056
2057
2058/**
2059 * Write to guest physical memory referenced by GC pointer and update the PTE.
2060 *
2061 * This function uses the current CR3/CR0/CR4 of the guest and will
2062 * bypass access handlers but will set any dirty and accessed bits in the PTE.
2063 *
2064 * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
2065 *
2066 * @returns VBox status.
2067 * @param pVM VM handle.
2068 * @param GCPtrDst The destination address (GC pointer).
2069 * @param pvSrc The source address.
2070 * @param cb The number of bytes to write.
2071 */
2072VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2073{
2074 /*
2075 * Treat the first page as a special case.
2076 * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
2077 */
2078 if (!cb)
2079 return VINF_SUCCESS;
2080
2081 /* map the 1st page */
2082 void *pvDst;
2083 PGMPAGEMAPLOCK Lock;
2084 int rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
2085 if (RT_FAILURE(rc))
2086 return rc;
2087
2088 /* optimize for the case where access is completely within the first page. */
2089 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2090 if (RT_LIKELY(cb <= cbPage))
2091 {
2092 memcpy(pvDst, pvSrc, cb);
2093 PGMPhysReleasePageMappingLock(pVM, &Lock);
2094 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2095 return VINF_SUCCESS;
2096 }
2097
2098 /* copy to the end of the page. */
2099 memcpy(pvDst, pvSrc, cbPage);
2100 PGMPhysReleasePageMappingLock(pVM, &Lock);
2101 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2102 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
2103 pvSrc = (const uint8_t *)pvSrc + cbPage;
2104 cb -= cbPage;
2105
2106 /*
2107 * Page by page.
2108 */
2109 for (;;)
2110 {
2111 /* map the page */
2112 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
2113 if (RT_FAILURE(rc))
2114 return rc;
2115
2116 /* last page? */
2117 if (cb <= PAGE_SIZE)
2118 {
2119 memcpy(pvDst, pvSrc, cb);
2120 PGMPhysReleasePageMappingLock(pVM, &Lock);
2121 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2122 return VINF_SUCCESS;
2123 }
2124
2125 /* copy the entire page and advance */
2126 memcpy(pvDst, pvSrc, PAGE_SIZE);
2127 PGMPhysReleasePageMappingLock(pVM, &Lock);
2128 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2129 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
2130 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2131 cb -= PAGE_SIZE;
2132 }
2133 /* won't ever get here. */
2134}
2135
2136
2137/**
2138 * Read from guest physical memory referenced by GC pointer.
2139 *
2140 * This function uses the current CR3/CR0/CR4 of the guest and will
2141 * respect access handlers and set accessed bits.
2142 *
2143 * @returns VBox status.
2144 * @param pVM VM handle.
2145 * @param pvDst The destination address.
2146 * @param GCPtrSrc The source address (GC pointer).
2147 * @param cb The number of bytes to read.
2148 */
2149VMMDECL(int) PGMPhysReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2150{
2151 RTGCPHYS GCPhys;
2152 int rc;
2153
2154 /*
2155 * Anything to do?
2156 */
2157 if (!cb)
2158 return VINF_SUCCESS;
2159
2160 LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
2161
2162 /*
2163 * Optimize reads within a single page.
2164 */
2165 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2166 {
2167 /* Convert virtual to physical address */
2168 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
2169 AssertRCReturn(rc, rc);
2170
2171 /* mark the guest page as accessed. */
2172 rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2173 AssertRC(rc);
2174
2175 PGMPhysRead(pVM, GCPhys, pvDst, cb);
2176 return VINF_SUCCESS;
2177 }
2178
2179 /*
2180 * Page by page.
2181 */
2182 for (;;)
2183 {
2184 /* Convert virtual to physical address */
2185 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
2186 AssertRCReturn(rc, rc);
2187
2188 /* mark the guest page as accessed. */
2189 int rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2190 AssertRC(rc);
2191
2192 /* copy */
2193 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2194 if (cbRead >= cb)
2195 {
2196 PGMPhysRead(pVM, GCPhys, pvDst, cb);
2197 return VINF_SUCCESS;
2198 }
2199 PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
2200
2201 /* next */
2202 cb -= cbRead;
2203 pvDst = (uint8_t *)pvDst + cbRead;
2204 GCPtrSrc += cbRead;
2205 }
2206}
2207
2208
2209/**
2210 * Write to guest physical memory referenced by GC pointer.
2211 *
2212 * This function uses the current CR3/CR0/CR4 of the guest and will
2213 * respect access handlers and set dirty and accessed bits.
2214 *
2215 * @returns VBox status.
2216 * @param pVM VM handle.
2217 * @param GCPtrDst The destination address (GC pointer).
2218 * @param pvSrc The source address.
2219 * @param cb The number of bytes to write.
2220 */
2221VMMDECL(int) PGMPhysWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2222{
2223 RTGCPHYS GCPhys;
2224 int rc;
2225
2226 /*
2227 * Anything to do?
2228 */
2229 if (!cb)
2230 return VINF_SUCCESS;
2231
2232 LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
2233
2234 /*
2235 * Optimize writes within a single page.
2236 */
2237 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2238 {
2239 /* Convert virtual to physical address */
2240 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
2241 AssertMsgRCReturn(rc, ("PGMPhysGCPtr2GCPhys failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
2242
2243 /* mark the guest page as accessed and dirty. */
2244 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2245 AssertRC(rc);
2246
2247 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2248 return VINF_SUCCESS;
2249 }
2250
2251 /*
2252 * Page by page.
2253 */
2254 for (;;)
2255 {
2256 /* Convert virtual to physical address */
2257 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
2258 AssertRCReturn(rc, rc);
2259
2260 /* mark the guest page as accessed and dirty. */
2261 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2262 AssertRC(rc);
2263
2264 /* copy */
2265 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2266 if (cbWrite >= cb)
2267 {
2268 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2269 return VINF_SUCCESS;
2270 }
2271 PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
2272
2273 /* next */
2274 cb -= cbWrite;
2275 pvSrc = (uint8_t *)pvSrc + cbWrite;
2276 GCPtrDst += cbWrite;
2277 }
2278}
2279
2280#endif /* !IN_RC */
2281
2282/**
2283 * Performs a read of guest virtual memory for instruction emulation.
2284 *
2285 * This will check permissions, raise exceptions and update the access bits.
2286 *
2287 * The current implementation will bypass all access handlers. It may later be
2288 * changed to at least respect MMIO.
2289 *
2290 *
2291 * @returns VBox status code suitable to scheduling.
2292 * @retval VINF_SUCCESS if the read was performed successfully.
2293 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
2294 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
2295 *
2296 * @param pVM The VM handle.
2297 * @param pCtxCore The context core.
2298 * @param pvDst Where to put the bytes we've read.
2299 * @param GCPtrSrc The source address.
2300 * @param cb The number of bytes to read. Not more than a page.
2301 *
2302 * @remark This function will dynamically map physical pages in GC. This may unmap
2303 * mappings done by the caller. Be careful!
2304 */
2305VMMDECL(int) PGMPhysInterpretedRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
2306{
2307 Assert(cb <= PAGE_SIZE);
2308
2309/** @todo r=bird: This isn't perfect!
2310 * -# It's not checking for reserved bits being 1.
2311 * -# It's not correctly dealing with the access bit.
2312 * -# It's not respecting MMIO memory or any other access handlers.
2313 */
2314 /*
2315 * 1. Translate virtual to physical. This may fault.
2316 * 2. Map the physical address.
2317 * 3. Do the read operation.
2318 * 4. Set access bits if required.
2319 */
2320 int rc;
2321 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
2322 if (cb <= cb1)
2323 {
2324 /*
2325 * Not crossing pages.
2326 */
2327 RTGCPHYS GCPhys;
2328 uint64_t fFlags;
2329 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys);
2330 if (RT_SUCCESS(rc))
2331 {
2332 /** @todo we should check reserved bits ... */
2333 void *pvSrc;
2334 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
2335 switch (rc)
2336 {
2337 case VINF_SUCCESS:
2338 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
2339 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
2340 break;
2341 case VERR_PGM_PHYS_PAGE_RESERVED:
2342 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2343 memset(pvDst, 0, cb); /** @todo this is wrong, it should be 0xff */
2344 break;
2345 default:
2346 return rc;
2347 }
2348
2349 /** @todo access bit emulation isn't 100% correct. */
2350 if (!(fFlags & X86_PTE_A))
2351 {
2352 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2353 AssertRC(rc);
2354 }
2355 return VINF_SUCCESS;
2356 }
2357 }
2358 else
2359 {
2360 /*
2361 * Crosses pages.
2362 */
2363 size_t cb2 = cb - cb1;
2364 uint64_t fFlags1;
2365 RTGCPHYS GCPhys1;
2366 uint64_t fFlags2;
2367 RTGCPHYS GCPhys2;
2368 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1);
2369 if (RT_SUCCESS(rc))
2370 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
2371 if (RT_SUCCESS(rc))
2372 {
2373 /** @todo we should check reserved bits ... */
2374 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
2375 void *pvSrc1;
2376 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
2377 switch (rc)
2378 {
2379 case VINF_SUCCESS:
2380 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
2381 break;
2382 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2383 memset(pvDst, 0, cb1); /** @todo this is wrong, it should be 0xff */
2384 break;
2385 default:
2386 return rc;
2387 }
2388
2389 void *pvSrc2;
2390 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
2391 switch (rc)
2392 {
2393 case VINF_SUCCESS:
2394 memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
2395 break;
2396 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2397 memset((uint8_t *)pvDst + cb1, 0, cb2); /** @todo this is wrong, it should be 0xff */
2398 break;
2399 default:
2400 return rc;
2401 }
2402
2403 if (!(fFlags1 & X86_PTE_A))
2404 {
2405 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2406 AssertRC(rc);
2407 }
2408 if (!(fFlags2 & X86_PTE_A))
2409 {
2410 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2411 AssertRC(rc);
2412 }
2413 return VINF_SUCCESS;
2414 }
2415 }
2416
2417 /*
2418 * Raise a #PF.
2419 */
2420 uint32_t uErr;
2421
2422 /* Get the current privilege level. */
2423 uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore);
2424 switch (rc)
2425 {
2426 case VINF_SUCCESS:
2427 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
2428 break;
2429
2430 case VERR_PAGE_NOT_PRESENT:
2431 case VERR_PAGE_TABLE_NOT_PRESENT:
2432 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
2433 break;
2434
2435 default:
2436 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
2437 return rc;
2438 }
2439 Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
2440 return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
2441}
2442
2443/// @todo VMMDECL(int) PGMPhysInterpretedWrite(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2444
2445
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette