VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 18215

Last change on this file since 18215 was 18207, checked in by vboxsync, 16 years ago

PGMPhysGCPhys2R3Ptr: quiet, please.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 139.1 KB
Line 
1/* $Id: PGMAllPhys.cpp 18207 2009-03-24 16:55:17Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Defined Constants And Macros *
24*******************************************************************************/
25/** @def PGM_IGNORE_RAM_FLAGS_RESERVED
26 * Don't respect the MM_RAM_FLAGS_RESERVED flag when converting to HC addresses.
27 *
28 * Since this flag is currently incorrectly kept set for ROM regions we will
29 * have to ignore it for now so we don't break stuff.
30 *
31 * @todo this has been fixed now I believe, remove this hack.
32 */
33#define PGM_IGNORE_RAM_FLAGS_RESERVED
34
35
36/*******************************************************************************
37* Header Files *
38*******************************************************************************/
39#define LOG_GROUP LOG_GROUP_PGM_PHYS
40#include <VBox/pgm.h>
41#include <VBox/trpm.h>
42#include <VBox/vmm.h>
43#include <VBox/iom.h>
44#include <VBox/em.h>
45#include <VBox/rem.h>
46#include "PGMInternal.h"
47#include <VBox/vm.h>
48#include <VBox/param.h>
49#include <VBox/err.h>
50#include <iprt/assert.h>
51#include <iprt/string.h>
52#include <iprt/asm.h>
53#include <VBox/log.h>
54#ifdef IN_RING3
55# include <iprt/thread.h>
56#endif
57
58
59
60#ifndef IN_RING3
61
62/**
63 * \#PF Handler callback for Guest ROM range write access.
64 * We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
65 *
66 * @returns VBox status code (appropritate for trap handling and GC return).
67 * @param pVM VM Handle.
68 * @param uErrorCode CPU Error code.
69 * @param pRegFrame Trap register frame.
70 * @param pvFault The fault address (cr2).
71 * @param GCPhysFault The GC physical address corresponding to pvFault.
72 * @param pvUser User argument. Pointer to the ROM range structure.
73 */
74VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
75{
76 int rc;
77#ifdef VBOX_WITH_NEW_PHYS_CODE
78 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
79 uint32_t iPage = (GCPhysFault - pRom->GCPhys) >> PAGE_SHIFT;
80 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
81 switch (pRom->aPages[iPage].enmProt)
82 {
83 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
84 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
85 {
86#endif
87 /*
88 * If it's a simple instruction which doesn't change the cpu state
89 * we will simply skip it. Otherwise we'll have to defer it to REM.
90 */
91 uint32_t cbOp;
92 DISCPUSTATE Cpu;
93 rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, &cbOp);
94 if ( RT_SUCCESS(rc)
95 && Cpu.mode == CPUMODE_32BIT /** @todo why does this matter? */
96 && !(Cpu.prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG)))
97 {
98 switch (Cpu.opcode)
99 {
100 /** @todo Find other instructions we can safely skip, possibly
101 * adding this kind of detection to DIS or EM. */
102 case OP_MOV:
103 pRegFrame->rip += cbOp;
104 STAM_COUNTER_INC(&pVM->pgm.s.StatRZGuestROMWriteHandled);
105 return VINF_SUCCESS;
106 }
107 }
108 else if (RT_UNLIKELY(rc == VERR_INTERNAL_ERROR))
109 return rc;
110#ifdef VBOX_WITH_NEW_PHYS_CODE
111 break;
112 }
113
114 case PGMROMPROT_READ_RAM_WRITE_RAM:
115 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
116 AssertRC(rc);
117 break; /** @todo Must edit the shadow PT and restart the instruction, not use the interpreter! */
118
119 case PGMROMPROT_READ_ROM_WRITE_RAM:
120 /* Handle it in ring-3 because it's *way* easier there. */
121 break;
122
123 default:
124 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
125 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
126 VERR_INTERNAL_ERROR);
127 }
128#endif
129
130 STAM_COUNTER_INC(&pVM->pgm.s.StatRZGuestROMWriteUnhandled);
131 return VINF_EM_RAW_EMULATE_INSTR;
132}
133
134#endif /* IN_RING3 */
135
136/**
137 * Checks if Address Gate 20 is enabled or not.
138 *
139 * @returns true if enabled.
140 * @returns false if disabled.
141 * @param pVM VM handle.
142 */
143VMMDECL(bool) PGMPhysIsA20Enabled(PVM pVM)
144{
145 LogFlow(("PGMPhysIsA20Enabled %d\n", pVM->pgm.s.fA20Enabled));
146 return pVM->pgm.s.fA20Enabled;
147}
148
149
150/**
151 * Validates a GC physical address.
152 *
153 * @returns true if valid.
154 * @returns false if invalid.
155 * @param pVM The VM handle.
156 * @param GCPhys The physical address to validate.
157 */
158VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
159{
160 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
161 return pPage != NULL;
162}
163
164
165/**
166 * Checks if a GC physical address is a normal page,
167 * i.e. not ROM, MMIO or reserved.
168 *
169 * @returns true if normal.
170 * @returns false if invalid, ROM, MMIO or reserved page.
171 * @param pVM The VM handle.
172 * @param GCPhys The physical address to check.
173 */
174VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
175{
176 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
177#ifdef VBOX_WITH_NEW_PHYS_CODE
178 return pPage
179 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM;
180#else
181 return pPage
182 && !(pPage->HCPhys & (MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2));
183#endif
184}
185
186
187/**
188 * Converts a GC physical address to a HC physical address.
189 *
190 * @returns VINF_SUCCESS on success.
191 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
192 * page but has no physical backing.
193 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
194 * GC physical address.
195 *
196 * @param pVM The VM handle.
197 * @param GCPhys The GC physical address to convert.
198 * @param pHCPhys Where to store the HC physical address on success.
199 */
200VMMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
201{
202 PPGMPAGE pPage;
203 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
204 if (RT_FAILURE(rc))
205 return rc;
206
207#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
208 if (RT_UNLIKELY(pPage->HCPhys & MM_RAM_FLAGS_RESERVED)) /** @todo PAGE FLAGS */
209 return VERR_PGM_PHYS_PAGE_RESERVED;
210#endif
211
212 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
213 return VINF_SUCCESS;
214}
215
216
217/**
218 * Invalidates the GC page mapping TLB.
219 *
220 * @param pVM The VM handle.
221 */
222VMMDECL(void) PGMPhysInvalidatePageGCMapTLB(PVM pVM)
223{
224 /* later */
225 NOREF(pVM);
226}
227
228
229/**
230 * Invalidates the ring-0 page mapping TLB.
231 *
232 * @param pVM The VM handle.
233 */
234VMMDECL(void) PGMPhysInvalidatePageR0MapTLB(PVM pVM)
235{
236 PGMPhysInvalidatePageR3MapTLB(pVM);
237}
238
239
240/**
241 * Invalidates the ring-3 page mapping TLB.
242 *
243 * @param pVM The VM handle.
244 */
245VMMDECL(void) PGMPhysInvalidatePageR3MapTLB(PVM pVM)
246{
247 pgmLock(pVM);
248 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
249 {
250 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
251 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
252 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
253 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
254 }
255 pgmUnlock(pVM);
256}
257
258
259/**
260 * Makes sure that there is at least one handy page ready for use.
261 *
262 * This will also take the appropriate actions when reaching water-marks.
263 *
264 * @returns The following VBox status codes.
265 * @retval VINF_SUCCESS on success.
266 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
267 *
268 * @param pVM The VM handle.
269 *
270 * @remarks Must be called from within the PGM critical section. It may
271 * nip back to ring-3/0 in some cases.
272 */
273static int pgmPhysEnsureHandyPage(PVM pVM)
274{
275 /** @remarks
276 * low-water mark logic for R0 & GC:
277 * - 75%: Set FF.
278 * - 50%: Force return to ring-3 ASAP.
279 *
280 * For ring-3 there is a little problem wrt to the recompiler, so:
281 * - 75%: Set FF.
282 * - 50%: Try allocate pages; on failure we'll force REM to quite ASAP.
283 *
284 * The basic idea is that we should be able to get out of any situation with
285 * only 50% of handy pages remaining.
286 *
287 * At the moment we'll not adjust the number of handy pages relative to the
288 * actual VM RAM committment, that's too much work for now.
289 */
290 Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
291 AssertMsg(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", pVM->pgm.s.cHandyPages));
292 if ( !pVM->pgm.s.cHandyPages
293#ifdef IN_RING3
294 || pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2 /* 50% */
295#endif
296 )
297 {
298 Log(("PGM: cHandyPages=%u out of %u -> allocate more\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
299#ifdef IN_RING3
300 int rc = PGMR3PhysAllocateHandyPages(pVM);
301#elif defined(IN_RING0)
302 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
303#else
304 int rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
305#endif
306 if (RT_UNLIKELY(rc != VINF_SUCCESS))
307 {
308 AssertMsg(rc == VINF_EM_NO_MEMORY || rc == VERR_EM_NO_MEMORY, ("%Rrc\n", rc));
309 if (!pVM->pgm.s.cHandyPages)
310 {
311 LogRel(("PGM: no more handy pages!\n"));
312 return VERR_EM_NO_MEMORY;
313 }
314 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
315#ifdef IN_RING3
316 REMR3NotifyFF(pVM);
317#else
318 VM_FF_SET(pVM, VM_FF_TO_R3);
319#endif
320 }
321 AssertMsgReturn( pVM->pgm.s.cHandyPages > 0
322 && pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages),
323 ("%u\n", pVM->pgm.s.cHandyPages),
324 VERR_INTERNAL_ERROR);
325 }
326 else if (pVM->pgm.s.cHandyPages - 1 <= (RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 4) * 3) /* 75% */
327 {
328 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
329#ifndef IN_RING3
330 if (pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2)
331 {
332 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages - 1, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
333 VM_FF_SET(pVM, VM_FF_TO_R3);
334 }
335#endif
336 }
337
338 return VINF_SUCCESS;
339}
340
341
342/**
343 * Replace a zero or shared page with new page that we can write to.
344 *
345 * @returns The following VBox status codes.
346 * @retval VINF_SUCCESS on success, pPage is modified.
347 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
348 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
349 *
350 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
351 *
352 * @param pVM The VM address.
353 * @param pPage The physical page tracking structure. This will
354 * be modified on success.
355 * @param GCPhys The address of the page.
356 *
357 * @remarks Must be called from within the PGM critical section. It may
358 * nip back to ring-3/0 in some cases.
359 *
360 * @remarks This function shouldn't really fail, however if it does
361 * it probably means we've screwed up the size of the amount
362 * and/or the low-water mark of handy pages. Or, that some
363 * device I/O is causing a lot of pages to be allocated while
364 * while the host is in a low-memory condition.
365 */
366int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
367{
368 LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys));
369
370 /*
371 * Prereqs.
372 */
373 Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
374 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
375 Assert(!PGM_PAGE_IS_MMIO(pPage));
376
377
378 /*
379 * Flush any shadow page table mappings of the page.
380 * When VBOX_WITH_NEW_LAZY_PAGE_ALLOC isn't defined, there shouldn't be any.
381 */
382 bool fFlushTLBs = false;
383 int rc = pgmPoolTrackFlushGCPhys(pVM, pPage, &fFlushTLBs);
384 if (rc == VINF_SUCCESS)
385 /* nothing */;
386 else if (rc == VINF_PGM_GCPHYS_ALIASED)
387 {
388 pVM->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
389 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
390 rc = VINF_PGM_SYNC_CR3;
391 }
392 else
393 {
394 AssertRCReturn(rc, rc);
395 AssertMsgFailedReturn(("%Rrc\n", rc), VERR_INTERNAL_ERROR);
396 }
397
398 /*
399 * Ensure that we've got a page handy, take it and use it.
400 */
401 int rc2 = pgmPhysEnsureHandyPage(pVM);
402 if (RT_FAILURE(rc2))
403 {
404 if (fFlushTLBs)
405 PGM_INVL_GUEST_TLBS();
406 Assert(rc2 == VERR_EM_NO_MEMORY);
407 return rc2;
408 }
409 /* re-assert preconditions since pgmPhysEnsureHandyPage may do a context switch. */
410 Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
411 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
412 Assert(!PGM_PAGE_IS_MMIO(pPage));
413
414 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
415 AssertMsg(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", iHandyPage));
416 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
417 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
418 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
419 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
420
421 /*
422 * There are one or two action to be taken the next time we allocate handy pages:
423 * - Tell the GMM (global memory manager) what the page is being used for.
424 * (Speeds up replacement operations - sharing and defragmenting.)
425 * - If the current backing is shared, it must be freed.
426 */
427 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
428 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
429
430 if (PGM_PAGE_IS_SHARED(pPage))
431 {
432 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
433 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
434 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
435
436 Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
437 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
438 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageReplaceShared));
439 pVM->pgm.s.cSharedPages--;
440 AssertMsgFailed(("TODO: copy shared page content")); /** @todo err.. what about copying the page content? */
441 }
442 else
443 {
444 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
445 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
446 pVM->pgm.s.cZeroPages--;
447 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
448 }
449
450 /*
451 * Do the PGMPAGE modifications.
452 */
453 pVM->pgm.s.cPrivatePages++;
454 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
455 PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
456 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
457
458 if ( fFlushTLBs
459 && rc != VINF_PGM_GCPHYS_ALIASED)
460 PGM_INVL_GUEST_TLBS();
461 return rc;
462}
463
464
465/**
466 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
467 *
468 * @returns VBox status code.
469 * @retval VINF_SUCCESS on success.
470 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
471 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
472 *
473 * @param pVM The VM address.
474 * @param pPage The physical page tracking structure.
475 * @param GCPhys The address of the page.
476 *
477 * @remarks Called from within the PGM critical section.
478 */
479int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
480{
481 switch (PGM_PAGE_GET_STATE(pPage))
482 {
483 case PGM_PAGE_STATE_WRITE_MONITORED:
484 PGM_PAGE_SET_WRITTEN_TO(pPage);
485 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
486 /* fall thru */
487 default: /* to shut up GCC */
488 case PGM_PAGE_STATE_ALLOCATED:
489 return VINF_SUCCESS;
490
491 /*
492 * Zero pages can be dummy pages for MMIO or reserved memory,
493 * so we need to check the flags before joining cause with
494 * shared page replacement.
495 */
496 case PGM_PAGE_STATE_ZERO:
497 if (PGM_PAGE_IS_MMIO(pPage))
498 return VERR_PGM_PHYS_PAGE_RESERVED;
499 /* fall thru */
500 case PGM_PAGE_STATE_SHARED:
501 return pgmPhysAllocPage(pVM, pPage, GCPhys);
502 }
503}
504
505
506/**
507 * Wrapper for pgmPhysPageMakeWritable which enters the critsect.
508 *
509 * @returns VBox status code.
510 * @retval VINF_SUCCESS on success.
511 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
512 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
513 *
514 * @param pVM The VM address.
515 * @param pPage The physical page tracking structure.
516 * @param GCPhys The address of the page.
517 */
518int pgmPhysPageMakeWritableUnlocked(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
519{
520 int rc = pgmLock(pVM);
521 if (RT_SUCCESS(rc))
522 {
523 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
524 pgmUnlock(pVM);
525 }
526 return rc;
527}
528
529
530/**
531 * Internal usage: Map the page specified by its GMM ID.
532 *
533 * This is similar to pgmPhysPageMap
534 *
535 * @returns VBox status code.
536 *
537 * @param pVM The VM handle.
538 * @param idPage The Page ID.
539 * @param HCPhys The physical address (for RC).
540 * @param ppv Where to store the mapping address.
541 *
542 * @remarks Called from within the PGM critical section.
543 */
544int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv)
545{
546 /*
547 * Validation.
548 */
549 Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
550 AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
551 const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT;
552 AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER);
553
554#ifdef IN_RC
555 /*
556 * Map it by HCPhys.
557 */
558 return PGMDynMapHCPage(pVM, HCPhys, ppv);
559
560#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
561 /*
562 * Map it by HCPhys.
563 */
564 return pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
565
566#else
567 /*
568 * Find/make Chunk TLB entry for the mapping chunk.
569 */
570 PPGMCHUNKR3MAP pMap;
571 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
572 if (pTlbe->idChunk == idChunk)
573 {
574 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
575 pMap = pTlbe->pChunk;
576 }
577 else
578 {
579 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
580
581 /*
582 * Find the chunk, map it if necessary.
583 */
584 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
585 if (!pMap)
586 {
587# ifdef IN_RING0
588 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk);
589 AssertRCReturn(rc, rc);
590 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
591 Assert(pMap);
592# else
593 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
594 if (RT_FAILURE(rc))
595 return rc;
596# endif
597 }
598
599 /*
600 * Enter it into the Chunk TLB.
601 */
602 pTlbe->idChunk = idChunk;
603 pTlbe->pChunk = pMap;
604 pMap->iAge = 0;
605 }
606
607 *ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
608 return VINF_SUCCESS;
609#endif
610}
611
612
613/**
614 * Maps a page into the current virtual address space so it can be accessed.
615 *
616 * @returns VBox status code.
617 * @retval VINF_SUCCESS on success.
618 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
619 *
620 * @param pVM The VM address.
621 * @param pPage The physical page tracking structure.
622 * @param GCPhys The address of the page.
623 * @param ppMap Where to store the address of the mapping tracking structure.
624 * @param ppv Where to store the mapping address of the page. The page
625 * offset is masked off!
626 *
627 * @remarks Called from within the PGM critical section.
628 */
629int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
630{
631 Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
632
633#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
634 /*
635 * Just some sketchy GC/R0-darwin code.
636 */
637 *ppMap = NULL;
638 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
639 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
640# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
641 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
642# else
643 PGMDynMapHCPage(pVM, HCPhys, ppv);
644# endif
645 return VINF_SUCCESS;
646
647#else /* IN_RING3 || IN_RING0 */
648
649
650 /*
651 * Special case: ZERO and MMIO2 pages.
652 */
653 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
654 if (idChunk == NIL_GMM_CHUNKID)
655 {
656 AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage), VERR_INTERNAL_ERROR);
657 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2)
658 {
659 /* Lookup the MMIO2 range and use pvR3 to calc the address. */
660 PPGMRAMRANGE pRam = pgmPhysGetRange(&pVM->pgm.s, GCPhys);
661 AssertMsgReturn(pRam || !pRam->pvR3, ("pRam=%p pPage=%R[pgmpage]\n", pRam, pPage), VERR_INTERNAL_ERROR);
662 *ppv = (void *)((uintptr_t)pRam->pvR3 + (GCPhys - pRam->GCPhys));
663 }
664 else if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
665 {
666 /** @todo deal with aliased MMIO2 pages somehow...
667 * One solution would be to seed MMIO2 pages to GMM and get unique Page IDs for
668 * them, that would also avoid this mess. It would actually be kind of
669 * elegant... */
670 AssertFailedReturn(VERR_INTERNAL_ERROR);
671 }
672 else
673 {
674 /** @todo handle MMIO2 */
675 AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage), VERR_INTERNAL_ERROR);
676 AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg,
677 ("pPage=%R[pgmpage]\n", pPage),
678 VERR_INTERNAL_ERROR);
679 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
680 }
681 *ppMap = NULL;
682 return VINF_SUCCESS;
683 }
684
685 /*
686 * Find/make Chunk TLB entry for the mapping chunk.
687 */
688 PPGMCHUNKR3MAP pMap;
689 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
690 if (pTlbe->idChunk == idChunk)
691 {
692 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
693 pMap = pTlbe->pChunk;
694 }
695 else
696 {
697 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
698
699 /*
700 * Find the chunk, map it if necessary.
701 */
702 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
703 if (!pMap)
704 {
705#ifdef IN_RING0
706 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk);
707 AssertRCReturn(rc, rc);
708 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
709 Assert(pMap);
710#else
711 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
712 if (RT_FAILURE(rc))
713 return rc;
714#endif
715 }
716
717 /*
718 * Enter it into the Chunk TLB.
719 */
720 pTlbe->idChunk = idChunk;
721 pTlbe->pChunk = pMap;
722 pMap->iAge = 0;
723 }
724
725 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
726 *ppMap = pMap;
727 return VINF_SUCCESS;
728#endif /* IN_RING3 */
729}
730
731
732#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
733/**
734 * Load a guest page into the ring-3 physical TLB.
735 *
736 * @returns VBox status code.
737 * @retval VINF_SUCCESS on success
738 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
739 * @param pPGM The PGM instance pointer.
740 * @param GCPhys The guest physical address in question.
741 */
742int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys)
743{
744 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
745
746 /*
747 * Find the ram range.
748 * 99.8% of requests are expected to be in the first range.
749 */
750 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
751 RTGCPHYS off = GCPhys - pRam->GCPhys;
752 if (RT_UNLIKELY(off >= pRam->cb))
753 {
754 do
755 {
756 pRam = pRam->CTX_SUFF(pNext);
757 if (!pRam)
758 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
759 off = GCPhys - pRam->GCPhys;
760 } while (off >= pRam->cb);
761 }
762
763 /*
764 * Map the page.
765 * Make a special case for the zero page as it is kind of special.
766 */
767 PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT];
768 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
769 if (!PGM_PAGE_IS_ZERO(pPage))
770 {
771 void *pv;
772 PPGMPAGEMAP pMap;
773 int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
774 if (RT_FAILURE(rc))
775 return rc;
776 pTlbe->pMap = pMap;
777 pTlbe->pv = pv;
778 }
779 else
780 {
781 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
782 pTlbe->pMap = NULL;
783 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
784 }
785 pTlbe->pPage = pPage;
786 return VINF_SUCCESS;
787}
788
789
790/**
791 * Load a guest page into the ring-3 physical TLB.
792 *
793 * @returns VBox status code.
794 * @retval VINF_SUCCESS on success
795 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
796 *
797 * @param pPGM The PGM instance pointer.
798 * @param pPage Pointer to the PGMPAGE structure corresponding to
799 * GCPhys.
800 * @param GCPhys The guest physical address in question.
801 */
802int pgmPhysPageLoadIntoTlbWithPage(PPGM pPGM, PPGMPAGE pPage, RTGCPHYS GCPhys)
803{
804 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
805
806 /*
807 * Map the page.
808 * Make a special case for the zero page as it is kind of special.
809 */
810 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
811 if (!PGM_PAGE_IS_ZERO(pPage))
812 {
813 void *pv;
814 PPGMPAGEMAP pMap;
815 int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
816 if (RT_FAILURE(rc))
817 return rc;
818 pTlbe->pMap = pMap;
819 pTlbe->pv = pv;
820 }
821 else
822 {
823 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
824 pTlbe->pMap = NULL;
825 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
826 }
827 pTlbe->pPage = pPage;
828 return VINF_SUCCESS;
829}
830#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
831
832
833/**
834 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
835 * own the PGM lock and therefore not need to lock the mapped page.
836 *
837 * @returns VBox status code.
838 * @retval VINF_SUCCESS on success.
839 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
840 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
841 *
842 * @param pVM The VM handle.
843 * @param GCPhys The guest physical address of the page that should be mapped.
844 * @param pPage Pointer to the PGMPAGE structure for the page.
845 * @param ppv Where to store the address corresponding to GCPhys.
846 *
847 * @internal
848 */
849int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
850{
851 int rc;
852 AssertReturn(pPage, VERR_INTERNAL_ERROR);
853 Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect) || VM_IS_EMT(pVM));
854
855 /*
856 * Make sure the page is writable.
857 */
858 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
859 {
860 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
861 if (RT_FAILURE(rc))
862 return rc;
863 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
864 }
865 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
866
867 /*
868 * Get the mapping address.
869 */
870#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
871 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK));
872#else
873 PPGMPAGEMAPTLBE pTlbe;
874 rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
875 if (RT_FAILURE(rc))
876 return rc;
877 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
878#endif
879 return VINF_SUCCESS;
880}
881
882
883/**
884 * Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to
885 * own the PGM lock and therefore not need to lock the mapped page.
886 *
887 * @returns VBox status code.
888 * @retval VINF_SUCCESS on success.
889 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
890 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
891 *
892 * @param pVM The VM handle.
893 * @param GCPhys The guest physical address of the page that should be mapped.
894 * @param pPage Pointer to the PGMPAGE structure for the page.
895 * @param ppv Where to store the address corresponding to GCPhys.
896 *
897 * @internal
898 */
899int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv)
900{
901 AssertReturn(pPage, VERR_INTERNAL_ERROR);
902 Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect) || VM_IS_EMT(pVM));
903 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
904
905 /*
906 * Get the mapping address.
907 */
908#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
909 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
910#else
911 PPGMPAGEMAPTLBE pTlbe;
912 int rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
913 if (RT_FAILURE(rc))
914 return rc;
915 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
916#endif
917 return VINF_SUCCESS;
918}
919
920
921/**
922 * Requests the mapping of a guest page into the current context.
923 *
924 * This API should only be used for very short term, as it will consume
925 * scarse resources (R0 and GC) in the mapping cache. When you're done
926 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
927 *
928 * This API will assume your intention is to write to the page, and will
929 * therefore replace shared and zero pages. If you do not intend to modify
930 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
931 *
932 * @returns VBox status code.
933 * @retval VINF_SUCCESS on success.
934 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
935 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
936 *
937 * @param pVM The VM handle.
938 * @param GCPhys The guest physical address of the page that should be mapped.
939 * @param ppv Where to store the address corresponding to GCPhys.
940 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
941 *
942 * @remarks The caller is responsible for dealing with access handlers.
943 * @todo Add an informational return code for pages with access handlers?
944 *
945 * @remark Avoid calling this API from within critical sections (other than the
946 * PGM one) because of the deadlock risk. External threads may need to
947 * delegate jobs to the EMTs.
948 * @thread Any thread.
949 */
950VMMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
951{
952#ifdef VBOX_WITH_NEW_PHYS_CODE
953# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
954
955 /*
956 * Find the page and make sure it's writable.
957 */
958 PPGMPAGE pPage;
959 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
960 if (RT_SUCCESS(rc))
961 {
962 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
963 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
964 if (RT_SUCCESS(rc))
965 {
966 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
967#if 0
968 pLock->pvMap = 0;
969 pLock->pvPage = pPage;
970#else
971 pLock->u32Dummy = UINT32_MAX;
972#endif
973 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
974 rc = VINF_SUCCESS;
975 }
976 }
977
978# else /* IN_RING3 || IN_RING0 */
979 int rc = pgmLock(pVM);
980 AssertRCReturn(rc, rc);
981
982 /*
983 * Query the Physical TLB entry for the page (may fail).
984 */
985 PPGMPAGEMAPTLBE pTlbe;
986 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
987 if (RT_SUCCESS(rc))
988 {
989 /*
990 * If the page is shared, the zero page, or being write monitored
991 * it must be converted to an page that's writable if possible.
992 */
993 PPGMPAGE pPage = pTlbe->pPage;
994 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
995 {
996 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
997 if (RT_SUCCESS(rc))
998 {
999 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1000 rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
1001 }
1002 }
1003 if (RT_SUCCESS(rc))
1004 {
1005 /*
1006 * Now, just perform the locking and calculate the return address.
1007 */
1008 PPGMPAGEMAP pMap = pTlbe->pMap;
1009 if (pMap)
1010 pMap->cRefs++;
1011#if 0 /** @todo implement locking properly */
1012 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
1013 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
1014 {
1015 AssertMsgFailed(("%RGp is entering permanent locked state!\n", GCPhys));
1016 if (pMap)
1017 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1018 }
1019#endif
1020 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
1021 pLock->pvPage = pPage;
1022 pLock->pvMap = pMap;
1023 }
1024 }
1025
1026 pgmUnlock(pVM);
1027#endif /* IN_RING3 || IN_RING0 */
1028 return rc;
1029
1030#else
1031 /*
1032 * Temporary fallback code.
1033 */
1034# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1035/** @todo @bugref{3202}: check up this path. */
1036 return PGMDynMapGCPageOff(pVM, GCPhys, ppv);
1037# else
1038 return PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1, (PRTR3PTR)ppv);
1039# endif
1040#endif
1041}
1042
1043
1044/**
1045 * Requests the mapping of a guest page into the current context.
1046 *
1047 * This API should only be used for very short term, as it will consume
1048 * scarse resources (R0 and GC) in the mapping cache. When you're done
1049 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1050 *
1051 * @returns VBox status code.
1052 * @retval VINF_SUCCESS on success.
1053 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1054 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1055 *
1056 * @param pVM The VM handle.
1057 * @param GCPhys The guest physical address of the page that should be mapped.
1058 * @param ppv Where to store the address corresponding to GCPhys.
1059 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1060 *
1061 * @remarks The caller is responsible for dealing with access handlers.
1062 * @todo Add an informational return code for pages with access handlers?
1063 *
1064 * @remark Avoid calling this API from within critical sections (other than
1065 * the PGM one) because of the deadlock risk.
1066 * @thread Any thread.
1067 */
1068VMMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
1069{
1070#ifdef VBOX_WITH_NEW_PHYS_CODE
1071# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1072
1073 /*
1074 * Find the page and make sure it's readable.
1075 */
1076 PPGMPAGE pPage;
1077 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1078 if (RT_SUCCESS(rc))
1079 {
1080 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO(pPage)))
1081 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1082 else
1083 {
1084 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
1085#if 0
1086 pLock->pvMap = 0;
1087 pLock->pvPage = pPage;
1088#else
1089 pLock->u32Dummy = UINT32_MAX;
1090#endif
1091 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1092 rc = VINF_SUCCESS;
1093 }
1094 }
1095
1096# else /* IN_RING3 || IN_RING0 */
1097 int rc = pgmLock(pVM);
1098 AssertRCReturn(rc, rc);
1099
1100 /*
1101 * Query the Physical TLB entry for the page (may fail).
1102 */
1103 PPGMPAGEMAPTLBE pTlbe;
1104 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
1105 if (RT_SUCCESS(rc))
1106 {
1107 /* MMIO pages doesn't have any readable backing. */
1108 PPGMPAGE pPage = pTlbe->pPage;
1109 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO(pPage)))
1110 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1111 else
1112 {
1113 /*
1114 * Now, just perform the locking and calculate the return address.
1115 */
1116 PPGMPAGEMAP pMap = pTlbe->pMap;
1117 if (pMap)
1118 pMap->cRefs++;
1119#if 0 /** @todo implement locking properly */
1120 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
1121 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
1122 {
1123 AssertMsgFailed(("%RGp is entering permanent locked state!\n", GCPhys));
1124 if (pMap)
1125 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1126 }
1127#endif
1128 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
1129 pLock->pvPage = pPage;
1130 pLock->pvMap = pMap;
1131 }
1132 }
1133
1134 pgmUnlock(pVM);
1135#endif /* IN_RING3 || IN_RING0 */
1136 return rc;
1137
1138#else /* !VBOX_WITH_NEW_PHYS_CODE */
1139 /*
1140 * Fallback code.
1141 */
1142 return PGMPhysGCPhys2CCPtr(pVM, GCPhys, (void **)ppv, pLock);
1143#endif /* !VBOX_WITH_NEW_PHYS_CODE */
1144}
1145
1146
1147/**
1148 * Requests the mapping of a guest page given by virtual address into the current context.
1149 *
1150 * This API should only be used for very short term, as it will consume
1151 * scarse resources (R0 and GC) in the mapping cache. When you're done
1152 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1153 *
1154 * This API will assume your intention is to write to the page, and will
1155 * therefore replace shared and zero pages. If you do not intend to modify
1156 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
1157 *
1158 * @returns VBox status code.
1159 * @retval VINF_SUCCESS on success.
1160 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1161 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1162 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1163 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1164 *
1165 * @param pVM The VM handle.
1166 * @param GCPhys The guest physical address of the page that should be mapped.
1167 * @param ppv Where to store the address corresponding to GCPhys.
1168 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1169 *
1170 * @remark Avoid calling this API from within critical sections (other than
1171 * the PGM one) because of the deadlock risk.
1172 * @thread EMT
1173 */
1174VMMDECL(int) PGMPhysGCPtr2CCPtr(PVM pVM, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
1175{
1176 VM_ASSERT_EMT(pVM);
1177 RTGCPHYS GCPhys;
1178 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
1179 if (RT_SUCCESS(rc))
1180 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, pLock);
1181 return rc;
1182}
1183
1184
1185/**
1186 * Requests the mapping of a guest page given by virtual address into the current context.
1187 *
1188 * This API should only be used for very short term, as it will consume
1189 * scarse resources (R0 and GC) in the mapping cache. When you're done
1190 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1191 *
1192 * @returns VBox status code.
1193 * @retval VINF_SUCCESS on success.
1194 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1195 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1196 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1197 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1198 *
1199 * @param pVM The VM handle.
1200 * @param GCPhys The guest physical address of the page that should be mapped.
1201 * @param ppv Where to store the address corresponding to GCPhys.
1202 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1203 *
1204 * @remark Avoid calling this API from within critical sections (other than
1205 * the PGM one) because of the deadlock risk.
1206 * @thread EMT
1207 */
1208VMMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVM pVM, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
1209{
1210 /* Debugger uses this API too */
1211 //VM_ASSERT_EMT(pVM);
1212 RTGCPHYS GCPhys;
1213 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
1214 if (RT_SUCCESS(rc))
1215 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, pLock);
1216 return rc;
1217}
1218
1219
1220/**
1221 * Release the mapping of a guest page.
1222 *
1223 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
1224 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
1225 *
1226 * @param pVM The VM handle.
1227 * @param pLock The lock structure initialized by the mapping function.
1228 */
1229VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
1230{
1231#ifdef VBOX_WITH_NEW_PHYS_CODE
1232#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1233 /* currently nothing to do here. */
1234 Assert(pLock->u32Dummy == UINT32_MAX);
1235 pLock->u32Dummy = 0;
1236
1237#else /* IN_RING3 */
1238 PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap;
1239 if (!pMap)
1240 {
1241 /* The ZERO page and MMIO2 ends up here. */
1242 Assert(pLock->pvPage);
1243 pLock->pvPage = NULL;
1244 }
1245 else
1246 {
1247 pgmLock(pVM);
1248
1249# if 0 /** @todo implement page locking */
1250 PPGMPAGE pPage = (PPGMPAGE)pLock->pvPage;
1251 Assert(pPage->cLocks >= 1);
1252 if (pPage->cLocks != PGM_PAGE_MAX_LOCKS)
1253 pPage->cLocks--;
1254# endif
1255
1256 Assert(pMap->cRefs >= 1);
1257 pMap->cRefs--;
1258 pMap->iAge = 0;
1259
1260 pgmUnlock(pVM);
1261 }
1262#endif /* IN_RING3 */
1263#else
1264 NOREF(pVM);
1265 NOREF(pLock);
1266#endif
1267}
1268
1269
1270/**
1271 * Converts a GC physical address to a HC ring-3 pointer.
1272 *
1273 * @returns VINF_SUCCESS on success.
1274 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
1275 * page but has no physical backing.
1276 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
1277 * GC physical address.
1278 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
1279 * a dynamic ram chunk boundary
1280 *
1281 * @param pVM The VM handle.
1282 * @param GCPhys The GC physical address to convert.
1283 * @param cbRange Physical range
1284 * @param pR3Ptr Where to store the R3 pointer on success.
1285 *
1286 * @deprecated Avoid when possible!
1287 */
1288VMMDECL(int) PGMPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTR3PTR pR3Ptr)
1289{
1290#ifdef VBOX_WITH_NEW_PHYS_CODE
1291/** @todo this is kind of hacky and needs some more work. */
1292 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1293
1294 Log(("PGMPhysGCPhys2R3Ptr(,%RGp,%#x,): dont use this API!\n", GCPhys, cbRange)); /** @todo eliminate this API! */
1295# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1296 AssertFailedReturn(VERR_NOT_IMPLEMENTED);
1297# else
1298 pgmLock(pVM);
1299
1300 PPGMRAMRANGE pRam;
1301 PPGMPAGE pPage;
1302 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
1303 if (RT_SUCCESS(rc))
1304 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)pR3Ptr);
1305
1306 pgmUnlock(pVM);
1307 Assert(rc <= VINF_SUCCESS);
1308 return rc;
1309# endif
1310
1311#else /* !VBOX_WITH_NEW_PHYS_CODE */
1312
1313 if ((GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK) != ((GCPhys+cbRange-1) & PGM_DYNAMIC_CHUNK_BASE_MASK))
1314 {
1315 AssertMsgFailed(("%RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
1316 LogRel(("PGMPhysGCPhys2HCPtr %RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
1317 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
1318 }
1319
1320 PPGMRAMRANGE pRam;
1321 PPGMPAGE pPage;
1322 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
1323 if (RT_FAILURE(rc))
1324 return rc;
1325
1326#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
1327 if (RT_UNLIKELY(PGM_PAGE_IS_RESERVED(pPage)))
1328 return VERR_PGM_PHYS_PAGE_RESERVED;
1329#endif
1330
1331 RTGCPHYS off = GCPhys - pRam->GCPhys;
1332 if (RT_UNLIKELY(off + cbRange > pRam->cb))
1333 {
1334 AssertMsgFailed(("%RGp - %RGp crosses a chunk boundary!!\n", GCPhys, GCPhys + cbRange));
1335 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
1336 }
1337
1338 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
1339 {
1340 unsigned iChunk = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
1341#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES this is a rare occurence */
1342 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(pVM, pRam->paChunkR3Ptrs);
1343 *pR3Ptr = (RTR3PTR)(paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
1344#else
1345 *pR3Ptr = (RTR3PTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
1346#endif
1347 }
1348 else if (RT_LIKELY(pRam->pvR3))
1349 *pR3Ptr = (RTR3PTR)((RTR3UINTPTR)pRam->pvR3 + off);
1350 else
1351 return VERR_PGM_PHYS_PAGE_RESERVED;
1352 return VINF_SUCCESS;
1353#endif /* !VBOX_WITH_NEW_PHYS_CODE */
1354}
1355
1356
1357#ifdef VBOX_STRICT
1358/**
1359 * PGMPhysGCPhys2R3Ptr convenience for use with assertions.
1360 *
1361 * @returns The R3Ptr, NIL_RTR3PTR on failure.
1362 * @param pVM The VM handle.
1363 * @param GCPhys The GC Physical addresss.
1364 * @param cbRange Physical range.
1365 *
1366 * @deprecated Avoid when possible.
1367 */
1368VMMDECL(RTR3PTR) PGMPhysGCPhys2R3PtrAssert(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange)
1369{
1370 RTR3PTR R3Ptr;
1371 int rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys, cbRange, &R3Ptr);
1372 if (RT_SUCCESS(rc))
1373 return R3Ptr;
1374 return NIL_RTR3PTR;
1375}
1376#endif /* VBOX_STRICT */
1377
1378
1379/**
1380 * Converts a guest pointer to a GC physical address.
1381 *
1382 * This uses the current CR3/CR0/CR4 of the guest.
1383 *
1384 * @returns VBox status code.
1385 * @param pVM The VM Handle
1386 * @param GCPtr The guest pointer to convert.
1387 * @param pGCPhys Where to store the GC physical address.
1388 */
1389VMMDECL(int) PGMPhysGCPtr2GCPhys(PVM pVM, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
1390{
1391 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
1392 if (pGCPhys && RT_SUCCESS(rc))
1393 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
1394 return rc;
1395}
1396
1397
1398/**
1399 * Converts a guest pointer to a HC physical address.
1400 *
1401 * This uses the current CR3/CR0/CR4 of the guest.
1402 *
1403 * @returns VBox status code.
1404 * @param pVM The VM Handle
1405 * @param GCPtr The guest pointer to convert.
1406 * @param pHCPhys Where to store the HC physical address.
1407 */
1408VMMDECL(int) PGMPhysGCPtr2HCPhys(PVM pVM, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
1409{
1410 RTGCPHYS GCPhys;
1411 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
1412 if (RT_SUCCESS(rc))
1413 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
1414 return rc;
1415}
1416
1417
1418/**
1419 * Converts a guest pointer to a R3 pointer.
1420 *
1421 * This uses the current CR3/CR0/CR4 of the guest.
1422 *
1423 * @returns VBox status code.
1424 * @param pVM The VM Handle
1425 * @param GCPtr The guest pointer to convert.
1426 * @param pR3Ptr Where to store the R3 virtual address.
1427 *
1428 * @deprecated Don't use this.
1429 */
1430VMMDECL(int) PGMPhysGCPtr2R3Ptr(PVM pVM, RTGCPTR GCPtr, PRTR3PTR pR3Ptr)
1431{
1432#ifdef VBOX_WITH_NEW_PHYS_CODE
1433 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1434#endif
1435
1436 RTGCPHYS GCPhys;
1437 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
1438 if (RT_SUCCESS(rc))
1439 rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pR3Ptr);
1440 return rc;
1441}
1442
1443
1444
1445#undef LOG_GROUP
1446#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
1447
1448
1449#ifdef IN_RING3
1450/**
1451 * Cache PGMPhys memory access
1452 *
1453 * @param pVM VM Handle.
1454 * @param pCache Cache structure pointer
1455 * @param GCPhys GC physical address
1456 * @param pbHC HC pointer corresponding to physical page
1457 *
1458 * @thread EMT.
1459 */
1460static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
1461{
1462 uint32_t iCacheIndex;
1463
1464 Assert(VM_IS_EMT(pVM));
1465
1466 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
1467 pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
1468
1469 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
1470
1471 ASMBitSet(&pCache->aEntries, iCacheIndex);
1472
1473 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
1474 pCache->Entry[iCacheIndex].pbR3 = pbR3;
1475}
1476#endif /* IN_RING3 */
1477
1478#ifdef VBOX_WITH_NEW_PHYS_CODE
1479
1480/**
1481 * Deals with reading from a page with one or more ALL access handlers.
1482 *
1483 * @returns VBox status code. Can be ignored in ring-3.
1484 * @retval VINF_SUCCESS.
1485 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1486 *
1487 * @param pVM The VM handle.
1488 * @param pPage The page descriptor.
1489 * @param GCPhys The physical address to start reading at.
1490 * @param pvBuf Where to put the bits we read.
1491 * @param cb How much to read - less or equal to a page.
1492 */
1493static int pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb)
1494{
1495 /*
1496 * The most frequent access here is MMIO and shadowed ROM.
1497 * The current code ASSUMES all these access handlers covers full pages!
1498 */
1499
1500 /*
1501 * Whatever we do we need the source page, map it first.
1502 */
1503 const void *pvSrc = NULL;
1504 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc);
1505 if (RT_FAILURE(rc))
1506 {
1507 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
1508 GCPhys, pPage, rc));
1509 memset(pvBuf, 0xff, cb);
1510 return VINF_SUCCESS;
1511 }
1512 rc = VINF_PGM_HANDLER_DO_DEFAULT;
1513
1514 /*
1515 * Deal with any physical handlers.
1516 */
1517 PPGMPHYSHANDLER pPhys = NULL;
1518 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL)
1519 {
1520#ifdef IN_RING3
1521 PPGMPHYSHANDLER pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1522 AssertReleaseMsg(pPhys, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1523 Assert(GCPhys >= pPhys->Core.Key && GCPhys <= pPhys->Core.KeyLast);
1524 Assert((pPhys->Core.Key & PAGE_OFFSET_MASK) == 0);
1525 Assert((pPhys->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1526 Assert(pPhys->CTX_SUFF(pfnHandler));
1527
1528 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cb, pPage, R3STRING(pPhys->pszDesc) ));
1529 STAM_PROFILE_START(&pPhys->Stat, h);
1530 rc = pPhys->CTX_SUFF(pfnHandler)(pVM, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pPhys->CTX_SUFF(pvUser));
1531 STAM_PROFILE_STOP(&pPhys->Stat, h);
1532 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys));
1533#else
1534 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1535 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1536 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1537#endif
1538 }
1539
1540 /*
1541 * Deal with any virtual handlers.
1542 */
1543 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL)
1544 {
1545 unsigned iPage;
1546 PPGMVIRTHANDLER pVirt;
1547
1548 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iPage);
1549 AssertReleaseMsg(RT_SUCCESS(rc2), ("GCPhys=%RGp cb=%#x rc2=%Rrc\n", GCPhys, cb, rc2));
1550 Assert((pVirt->Core.Key & PAGE_OFFSET_MASK) == 0);
1551 Assert((pVirt->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1552 Assert(GCPhys >= pVirt->aPhysToVirt[iPage].Core.Key && GCPhys <= pVirt->aPhysToVirt[iPage].Core.KeyLast);
1553
1554#ifdef IN_RING3
1555 if (pVirt->pfnHandlerR3)
1556 {
1557 if (!pPhys)
1558 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
1559 else
1560 Log(("pgmPhysWriteHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc), R3STRING(pPhys->pszDesc) ));
1561 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
1562 + (iPage << PAGE_SHIFT)
1563 + (GCPhys & PAGE_OFFSET_MASK);
1564
1565 STAM_PROFILE_START(&pVirt->Stat, h);
1566 rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, /*pVirt->CTX_SUFF(pvUser)*/ NULL);
1567 STAM_PROFILE_STOP(&pVirt->Stat, h);
1568 if (rc2 == VINF_SUCCESS)
1569 rc = VINF_SUCCESS;
1570 AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc2, GCPhys, pPage, pVirt->pszDesc));
1571 }
1572 else
1573 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s [no handler]\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
1574#else
1575 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1576 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1577 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1578#endif
1579 }
1580
1581 /*
1582 * Take the default action.
1583 */
1584 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1585 memcpy(pvBuf, pvSrc, cb);
1586 return rc;
1587}
1588
1589
1590/**
1591 * Read physical memory.
1592 *
1593 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
1594 * want to ignore those.
1595 *
1596 * @returns VBox status code. Can be ignored in ring-3.
1597 * @retval VINF_SUCCESS.
1598 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1599 *
1600 * @param pVM VM Handle.
1601 * @param GCPhys Physical address start reading from.
1602 * @param pvBuf Where to put the read bits.
1603 * @param cbRead How many bytes to read.
1604 */
1605VMMDECL(int) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
1606{
1607 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
1608 LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
1609
1610 pgmLock(pVM);
1611
1612 /*
1613 * Copy loop on ram ranges.
1614 */
1615 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1616 for (;;)
1617 {
1618 /* Find range. */
1619 while (pRam && GCPhys > pRam->GCPhysLast)
1620 pRam = pRam->CTX_SUFF(pNext);
1621 /* Inside range or not? */
1622 if (pRam && GCPhys >= pRam->GCPhys)
1623 {
1624 /*
1625 * Must work our way thru this page by page.
1626 */
1627 RTGCPHYS off = GCPhys - pRam->GCPhys;
1628 while (off < pRam->cb)
1629 {
1630 unsigned iPage = off >> PAGE_SHIFT;
1631 PPGMPAGE pPage = &pRam->aPages[iPage];
1632 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1633 if (cb > cbRead)
1634 cb = cbRead;
1635
1636 /*
1637 * Any ALL access handlers?
1638 */
1639 if (RT_UNLIKELY(PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)))
1640 {
1641 int rc = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
1642 if (RT_FAILURE(rc))
1643 return rc;
1644 }
1645 else
1646 {
1647 /*
1648 * Get the pointer to the page.
1649 */
1650 const void *pvSrc;
1651 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
1652 if (RT_SUCCESS(rc))
1653 memcpy(pvBuf, pvSrc, cb);
1654 else
1655 {
1656 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
1657 pRam->GCPhys + off, pPage, rc));
1658 memset(pvBuf, 0xff, cb);
1659 }
1660 }
1661
1662 /* next page */
1663 if (cb >= cbRead)
1664 {
1665 pgmUnlock(pVM);
1666 return VINF_SUCCESS;
1667 }
1668 cbRead -= cb;
1669 off += cb;
1670 pvBuf = (char *)pvBuf + cb;
1671 } /* walk pages in ram range. */
1672
1673 GCPhys = pRam->GCPhysLast + 1;
1674 }
1675 else
1676 {
1677 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
1678
1679 /*
1680 * Unassigned address space.
1681 */
1682 if (!pRam)
1683 break;
1684 size_t cb = pRam->GCPhys - GCPhys;
1685 if (cb >= cbRead)
1686 {
1687 memset(pvBuf, 0xff, cbRead);
1688 break;
1689 }
1690 memset(pvBuf, 0xff, cb);
1691
1692 cbRead -= cb;
1693 pvBuf = (char *)pvBuf + cb;
1694 GCPhys += cb;
1695 }
1696 } /* Ram range walk */
1697
1698 pgmUnlock(pVM);
1699 return VINF_SUCCESS;
1700}
1701
1702#else /* Old PGMPhysRead */
1703
1704/**
1705 * Read physical memory.
1706 *
1707 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
1708 * want to ignore those.
1709 *
1710 * @param pVM VM Handle.
1711 * @param GCPhys Physical address start reading from.
1712 * @param pvBuf Where to put the read bits.
1713 * @param cbRead How many bytes to read.
1714 */
1715VMMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
1716{
1717#ifdef IN_RING3
1718 bool fGrabbedLock = false;
1719#endif
1720
1721 AssertMsg(cbRead > 0, ("don't even think about reading zero bytes!\n"));
1722 if (cbRead == 0)
1723 return;
1724
1725 LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
1726
1727#ifdef IN_RING3
1728 if (!VM_IS_EMT(pVM))
1729 {
1730 pgmLock(pVM);
1731 fGrabbedLock = true;
1732 }
1733#endif
1734
1735 /*
1736 * Copy loop on ram ranges.
1737 */
1738 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1739 for (;;)
1740 {
1741 /* Find range. */
1742 while (pRam && GCPhys > pRam->GCPhysLast)
1743 pRam = pRam->CTX_SUFF(pNext);
1744 /* Inside range or not? */
1745 if (pRam && GCPhys >= pRam->GCPhys)
1746 {
1747 /*
1748 * Must work our way thru this page by page.
1749 */
1750 RTGCPHYS off = GCPhys - pRam->GCPhys;
1751 while (off < pRam->cb)
1752 {
1753 unsigned iPage = off >> PAGE_SHIFT;
1754 PPGMPAGE pPage = &pRam->aPages[iPage];
1755 size_t cb;
1756
1757 /* Physical chunk in dynamically allocated range not present? */
1758 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1759 {
1760 /* Treat it as reserved; return zeros */
1761 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1762 if (cb >= cbRead)
1763 {
1764 memset(pvBuf, 0, cbRead);
1765 goto l_End;
1766 }
1767 memset(pvBuf, 0, cb);
1768 }
1769 /* temp hacks, will be reorganized. */
1770 /*
1771 * Physical handler.
1772 */
1773 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_ALL)
1774 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1775 {
1776 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1777 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1778
1779#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1780 /* find and call the handler */
1781 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
1782 if (pNode && pNode->pfnHandlerR3)
1783 {
1784 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1785 if (cbRange < cb)
1786 cb = cbRange;
1787 if (cb > cbRead)
1788 cb = cbRead;
1789
1790 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1791
1792 /* Note! Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1793 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pNode->pvUserR3);
1794 }
1795#endif /* IN_RING3 */
1796 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1797 {
1798#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1799 void *pvSrc = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
1800#else
1801 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1802#endif
1803
1804 if (cb >= cbRead)
1805 {
1806 memcpy(pvBuf, pvSrc, cbRead);
1807 goto l_End;
1808 }
1809 memcpy(pvBuf, pvSrc, cb);
1810 }
1811 else if (cb >= cbRead)
1812 goto l_End;
1813 }
1814 /*
1815 * Virtual handlers.
1816 */
1817 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) >= PGM_PAGE_HNDL_VIRT_STATE_ALL)
1818 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1819 {
1820 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1821 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1822#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1823 /* Search the whole tree for matching physical addresses (rather expensive!) */
1824 PPGMVIRTHANDLER pNode;
1825 unsigned iPage;
1826 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1827 if (RT_SUCCESS(rc2) && pNode->pfnHandlerR3)
1828 {
1829 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1830 if (cbRange < cb)
1831 cb = cbRange;
1832 if (cb > cbRead)
1833 cb = cbRead;
1834 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->Core.Key & PAGE_BASE_GC_MASK)
1835 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1836
1837 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1838
1839 /* Note! Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1840 rc = pNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, 0);
1841 }
1842#endif /* IN_RING3 */
1843 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1844 {
1845#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1846 void *pvSrc = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
1847#else
1848 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1849#endif
1850 if (cb >= cbRead)
1851 {
1852 memcpy(pvBuf, pvSrc, cbRead);
1853 goto l_End;
1854 }
1855 memcpy(pvBuf, pvSrc, cb);
1856 }
1857 else if (cb >= cbRead)
1858 goto l_End;
1859 }
1860 else
1861 {
1862 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM)) /** @todo PAGE FLAGS */
1863 {
1864 /*
1865 * Normal memory or ROM.
1866 */
1867 case 0:
1868 case MM_RAM_FLAGS_ROM:
1869 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED:
1870 //case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* = shadow */ - //MMIO2 isn't in the mask.
1871 case MM_RAM_FLAGS_MMIO2: // MMIO2 isn't in the mask.
1872 {
1873#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1874 void *pvSrc = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
1875#else
1876 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1877#endif
1878 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1879 if (cb >= cbRead)
1880 {
1881#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1882 if (cbRead <= 4 && !fGrabbedLock /* i.e. EMT */)
1883 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphysreadcache, GCPhys, (uint8_t*)pvSrc);
1884#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1885 memcpy(pvBuf, pvSrc, cbRead);
1886 goto l_End;
1887 }
1888 memcpy(pvBuf, pvSrc, cb);
1889 break;
1890 }
1891
1892 /*
1893 * All reserved, nothing there.
1894 */
1895 case MM_RAM_FLAGS_RESERVED:
1896 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1897 if (cb >= cbRead)
1898 {
1899 memset(pvBuf, 0, cbRead);
1900 goto l_End;
1901 }
1902 memset(pvBuf, 0, cb);
1903 break;
1904
1905 /*
1906 * The rest needs to be taken more carefully.
1907 */
1908 default:
1909#if 1 /** @todo r=bird: Can you do this properly please. */
1910 /** @todo Try MMIO; quick hack */
1911 if (cbRead <= 8 && IOMMMIORead(pVM, GCPhys, (uint32_t *)pvBuf, cbRead) == VINF_SUCCESS)
1912 goto l_End;
1913#endif
1914
1915 /** @todo fix me later. */
1916 AssertReleaseMsgFailed(("Unknown read at %RGp size %u implement the complex physical reading case %RHp\n",
1917 GCPhys, cbRead,
1918 pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM))); /** @todo PAGE FLAGS */
1919 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1920 break;
1921 }
1922 }
1923
1924 cbRead -= cb;
1925 off += cb;
1926 pvBuf = (char *)pvBuf + cb;
1927 }
1928
1929 GCPhys = pRam->GCPhysLast + 1;
1930 }
1931 else
1932 {
1933 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
1934
1935 /*
1936 * Unassigned address space.
1937 */
1938 size_t cb;
1939 if ( !pRam
1940 || (cb = pRam->GCPhys - GCPhys) >= cbRead)
1941 {
1942 memset(pvBuf, 0, cbRead);
1943 goto l_End;
1944 }
1945
1946 memset(pvBuf, 0, cb); /** @todo this is wrong, unassigne == 0xff not 0x00! */
1947 cbRead -= cb;
1948 pvBuf = (char *)pvBuf + cb;
1949 GCPhys += cb;
1950 }
1951 }
1952l_End:
1953#ifdef IN_RING3
1954 if (fGrabbedLock)
1955 pgmUnlock(pVM);
1956#endif
1957 return;
1958}
1959
1960#endif /* Old PGMPhysRead */
1961#ifdef VBOX_WITH_NEW_PHYS_CODE
1962
1963/**
1964 * Deals with writing to a page with one or more WRITE or ALL access handlers.
1965 *
1966 * @returns VBox status code. Can be ignored in ring-3.
1967 * @retval VINF_SUCCESS.
1968 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1969 *
1970 * @param pVM The VM handle.
1971 * @param pPage The page descriptor.
1972 * @param GCPhys The physical address to start writing at.
1973 * @param pvBuf What to write.
1974 * @param cbWrite How much to write - less or equal to a page.
1975 */
1976static int pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite)
1977{
1978 void *pvDst = NULL;
1979 int rc;
1980
1981 /*
1982 * Give priority to physical handlers (like #PF does).
1983 *
1984 * Hope for a lonely physical handler first that covers the whole
1985 * write area. This should be a pretty frequent case with MMIO and
1986 * the heavy usage of full page handlers in the page pool.
1987 */
1988 if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
1989 || PGM_PAGE_IS_MMIO(pPage) /* screw virtual handlers on MMIO pages */)
1990 {
1991 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1992 if (pCur)
1993 {
1994 Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
1995 Assert(pCur->CTX_SUFF(pfnHandler));
1996
1997 size_t cbRange = pCur->Core.KeyLast - GCPhys + 1;
1998 if (cbRange > cbWrite)
1999 cbRange = cbWrite;
2000
2001#ifndef IN_RING3
2002 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2003 NOREF(cbRange);
2004 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2005 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2006
2007#else /* IN_RING3 */
2008 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
2009 if (!PGM_PAGE_IS_MMIO(pPage))
2010 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
2011 else
2012 rc = VINF_SUCCESS;
2013 if (RT_SUCCESS(rc))
2014 {
2015 STAM_PROFILE_START(&pCur->Stat, h);
2016 rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pCur->CTX_SUFF(pvUser));
2017 STAM_PROFILE_STOP(&pCur->Stat, h);
2018 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2019 memcpy(pvDst, pvBuf, cbRange);
2020 else
2021 AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pCur->pszDesc));
2022 }
2023 else
2024 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2025 GCPhys, pPage, rc), rc);
2026 if (RT_LIKELY(cbRange == cbWrite))
2027 return VINF_SUCCESS;
2028
2029 /* more fun to be had below */
2030 cbWrite -= cbRange;
2031 GCPhys += cbRange;
2032 pvBuf = (uint8_t *)pvBuf + cbRange;
2033 pvDst = (uint8_t *)pvDst + cbRange;
2034#endif /* IN_RING3 */
2035 }
2036 /* else: the handler is somewhere else in the page, deal with it below. */
2037 Assert(!PGM_PAGE_IS_MMIO(pPage)); /* MMIO handlers are all PAGE_SIZEed! */
2038 }
2039 /*
2040 * A virtual handler without any interfering physical handlers.
2041 * Hopefully it'll conver the whole write.
2042 */
2043 else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
2044 {
2045 unsigned iPage;
2046 PPGMVIRTHANDLER pCur;
2047 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pCur, &iPage);
2048 if (RT_SUCCESS(rc))
2049 {
2050 size_t cbRange = (PAGE_OFFSET_MASK & pCur->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1;
2051 if (cbRange > cbWrite)
2052 cbRange = cbWrite;
2053
2054#ifndef IN_RING3
2055 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2056 NOREF(cbRange);
2057 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2058 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2059
2060#else /* IN_RING3 */
2061
2062 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
2063 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
2064 if (RT_SUCCESS(rc))
2065 {
2066 rc = VINF_PGM_HANDLER_DO_DEFAULT;
2067 if (pCur->pfnHandlerR3)
2068 {
2069 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pCur->Core.Key & PAGE_BASE_GC_MASK)
2070 + (iPage << PAGE_SHIFT)
2071 + (GCPhys & PAGE_OFFSET_MASK);
2072
2073 STAM_PROFILE_START(&pCur->Stat, h);
2074 rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
2075 STAM_PROFILE_STOP(&pCur->Stat, h);
2076 }
2077 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2078 memcpy(pvDst, pvBuf, cbRange);
2079 else
2080 AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pCur->pszDesc));
2081 }
2082 else
2083 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2084 GCPhys, pPage, rc), rc);
2085 if (RT_LIKELY(cbRange == cbWrite))
2086 return VINF_SUCCESS;
2087
2088 /* more fun to be had below */
2089 cbWrite -= cbRange;
2090 GCPhys += cbRange;
2091 pvBuf = (uint8_t *)pvBuf + cbRange;
2092 pvDst = (uint8_t *)pvDst + cbRange;
2093#endif
2094 }
2095 /* else: the handler is somewhere else in the page, deal with it below. */
2096 }
2097
2098 /*
2099 * Deal with all the odd ends.
2100 */
2101
2102 /* We need a writable destination page. */
2103 if (!pvDst)
2104 {
2105 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
2106 AssertLogRelMsgReturn(RT_SUCCESS(rc),
2107 ("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2108 GCPhys, pPage, rc), rc);
2109 }
2110
2111 /* The loop state (big + ugly). */
2112 unsigned iVirtPage = 0;
2113 PPGMVIRTHANDLER pVirt = NULL;
2114 uint32_t offVirt = PAGE_SIZE;
2115 uint32_t offVirtLast = PAGE_SIZE;
2116 bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage);
2117
2118 PPGMPHYSHANDLER pPhys = NULL;
2119 uint32_t offPhys = PAGE_SIZE;
2120 uint32_t offPhysLast = PAGE_SIZE;
2121 bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage);
2122
2123 /* The loop. */
2124 for (;;)
2125 {
2126 /*
2127 * Find the closest handler at or above GCPhys.
2128 */
2129 if (fMoreVirt && !pVirt)
2130 {
2131 int rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iVirtPage);
2132 if (RT_SUCCESS(rc))
2133 {
2134 offVirt = 0;
2135 offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2136 }
2137 else
2138 {
2139 PPGMPHYS2VIRTHANDLER pVirtPhys;
2140 pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
2141 GCPhys, true /* fAbove */);
2142 if ( pVirtPhys
2143 && (pVirtPhys->Core.Key >> PAGE_SHIFT) == (GCPhys >> PAGE_SHIFT))
2144 {
2145 /* ASSUME that pVirtPhys only covers one page. */
2146 Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT));
2147 Assert(pVirtPhys->Core.Key > GCPhys);
2148
2149 pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler);
2150 iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0);
2151 offVirt = (pVirtPhys->Core.Key & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2152 offVirtLast = (pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2153 }
2154 else
2155 {
2156 pVirt = NULL;
2157 fMoreVirt = false;
2158 offVirt = offVirtLast = PAGE_SIZE;
2159 }
2160 }
2161 }
2162
2163 if (fMorePhys && !pPhys)
2164 {
2165 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
2166 if (pPhys)
2167 {
2168 offPhys = 0;
2169 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2170 }
2171 else
2172 {
2173 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers,
2174 GCPhys, true /* fAbove */);
2175 if ( pPhys
2176 && pPhys->Core.Key <= GCPhys + (cbWrite - 1))
2177 {
2178 offPhys = pPhys->Core.Key - GCPhys;
2179 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2180 }
2181 else
2182 {
2183 pPhys = NULL;
2184 fMorePhys = false;
2185 offPhys = offPhysLast = PAGE_SIZE;
2186 }
2187 }
2188 }
2189
2190 /*
2191 * Handle access to space without handlers (that's easy).
2192 */
2193 rc = VINF_PGM_HANDLER_DO_DEFAULT;
2194 uint32_t cbRange = (uint32_t)cbWrite;
2195 if (offPhys && offVirt)
2196 {
2197 if (cbRange > offPhys)
2198 cbRange = offPhys;
2199 if (cbRange > offVirt)
2200 cbRange = offVirt;
2201 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] miss\n", GCPhys, cbRange, pPage));
2202 }
2203 /*
2204 * Physical handler.
2205 */
2206 else if (!offPhys && offVirt)
2207 {
2208 if (cbRange > offPhysLast + 1)
2209 cbRange = offPhysLast + 1;
2210 if (cbRange > offVirt)
2211 cbRange = offVirt;
2212#ifdef IN_RING3
2213 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc) ));
2214 STAM_PROFILE_START(&pPhys->Stat, h);
2215 rc = pPhys->CTX_SUFF(pfnHandler)(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pPhys->CTX_SUFF(pvUser));
2216 STAM_PROFILE_STOP(&pPhys->Stat, h);
2217 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pPhys->pszDesc));
2218 pPhys = NULL;
2219#else
2220 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2221 NOREF(cbRange);
2222 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2223 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2224#endif
2225 }
2226 /*
2227 * Virtual handler.
2228 */
2229 else if (offPhys && !offVirt)
2230 {
2231 if (cbRange > offVirtLast + 1)
2232 cbRange = offVirtLast + 1;
2233 if (cbRange > offPhys)
2234 cbRange = offPhys;
2235#ifdef IN_RING3
2236 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2237 if (pVirt->pfnHandlerR3)
2238 {
2239 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2240 + (iVirtPage << PAGE_SHIFT)
2241 + (GCPhys & PAGE_OFFSET_MASK);
2242 STAM_PROFILE_START(&pVirt->Stat, h);
2243 rc = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
2244 STAM_PROFILE_STOP(&pVirt->Stat, h);
2245 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
2246 }
2247 pVirt = NULL;
2248#else
2249 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2250 NOREF(cbRange);
2251 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2252 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2253#endif
2254 }
2255 /*
2256 * Both... give the physical one priority.
2257 */
2258 else
2259 {
2260 Assert(!offPhys && !offVirt);
2261 if (cbRange > offVirtLast + 1)
2262 cbRange = offVirtLast + 1;
2263 if (cbRange > offPhysLast + 1)
2264 cbRange = offPhysLast + 1;
2265
2266#ifdef IN_RING3
2267 if (pVirt->pfnHandlerR3)
2268 Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange));
2269 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc), R3STRING(pVirt->pszDesc) ));
2270
2271 STAM_PROFILE_START(&pPhys->Stat, h);
2272 rc = pPhys->CTX_SUFF(pfnHandler)(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pPhys->CTX_SUFF(pvUser));
2273 STAM_PROFILE_STOP(&pPhys->Stat, h);
2274 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pPhys->pszDesc));
2275 if (pVirt->pfnHandlerR3)
2276 {
2277
2278 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2279 + (iVirtPage << PAGE_SHIFT)
2280 + (GCPhys & PAGE_OFFSET_MASK);
2281 STAM_PROFILE_START(&pVirt->Stat, h);
2282 int rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
2283 STAM_PROFILE_STOP(&pVirt->Stat, h);
2284 AssertLogRelMsg(rc2 != VINF_SUCCESS && rc2 != VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
2285 if (rc2 == VINF_SUCCESS && rc == VINF_PGM_HANDLER_DO_DEFAULT)
2286 rc = VINF_SUCCESS;
2287 }
2288 pPhys = NULL;
2289 pVirt = NULL;
2290#else
2291 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2292 NOREF(cbRange);
2293 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2294 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2295#endif
2296 }
2297 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2298 memcpy(pvDst, pvBuf, cbRange);
2299
2300 /*
2301 * Advance if we've got more stuff to do.
2302 */
2303 if (cbRange >= cbWrite)
2304 return VINF_SUCCESS;
2305
2306 cbWrite -= cbRange;
2307 GCPhys += cbRange;
2308 pvBuf = (uint8_t *)pvBuf + cbRange;
2309 pvDst = (uint8_t *)pvDst + cbRange;
2310
2311 offPhys -= cbRange;
2312 offPhysLast -= cbRange;
2313 offVirt -= cbRange;
2314 offVirtLast -= cbRange;
2315 }
2316}
2317
2318
2319/**
2320 * Write to physical memory.
2321 *
2322 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
2323 * want to ignore those.
2324 *
2325 * @returns VBox status code. Can be ignored in ring-3.
2326 * @retval VINF_SUCCESS.
2327 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
2328 *
2329 * @param pVM VM Handle.
2330 * @param GCPhys Physical address to write to.
2331 * @param pvBuf What to write.
2332 * @param cbWrite How many bytes to write.
2333 */
2334VMMDECL(int) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
2335{
2336 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
2337 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
2338 LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
2339
2340 pgmLock(pVM);
2341
2342 /*
2343 * Copy loop on ram ranges.
2344 */
2345 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2346 for (;;)
2347 {
2348 /* Find range. */
2349 while (pRam && GCPhys > pRam->GCPhysLast)
2350 pRam = pRam->CTX_SUFF(pNext);
2351 /* Inside range or not? */
2352 if (pRam && GCPhys >= pRam->GCPhys)
2353 {
2354 /*
2355 * Must work our way thru this page by page.
2356 */
2357 RTGCPTR off = GCPhys - pRam->GCPhys;
2358 while (off < pRam->cb)
2359 {
2360 RTGCPTR iPage = off >> PAGE_SHIFT;
2361 PPGMPAGE pPage = &pRam->aPages[iPage];
2362 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2363 if (cb > cbWrite)
2364 cb = cbWrite;
2365
2366 /*
2367 * Any active WRITE or ALL access handlers?
2368 */
2369 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2370 {
2371 int rc = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
2372 if (RT_FAILURE(rc))
2373 return rc;
2374 }
2375 else
2376 {
2377 /*
2378 * Get the pointer to the page.
2379 */
2380 void *pvDst;
2381 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
2382 if (RT_SUCCESS(rc))
2383 memcpy(pvDst, pvBuf, cb);
2384 else
2385 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2386 pRam->GCPhys + off, pPage, rc));
2387 }
2388
2389 /* next page */
2390 if (cb >= cbWrite)
2391 {
2392 pgmUnlock(pVM);
2393 return VINF_SUCCESS;
2394 }
2395
2396 cbWrite -= cb;
2397 off += cb;
2398 pvBuf = (const char *)pvBuf + cb;
2399 } /* walk pages in ram range */
2400
2401 GCPhys = pRam->GCPhysLast + 1;
2402 }
2403 else
2404 {
2405 /*
2406 * Unassigned address space, skip it.
2407 */
2408 if (!pRam)
2409 break;
2410 size_t cb = pRam->GCPhys - GCPhys;
2411 if (cb >= cbWrite)
2412 break;
2413 cbWrite -= cb;
2414 pvBuf = (const char *)pvBuf + cb;
2415 GCPhys += cb;
2416 }
2417 } /* Ram range walk */
2418
2419 pgmUnlock(pVM);
2420 return VINF_SUCCESS;
2421}
2422
2423#else /* Old PGMPhysWrite */
2424
2425/**
2426 * Write to physical memory.
2427 *
2428 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
2429 * want to ignore those.
2430 *
2431 * @param pVM VM Handle.
2432 * @param GCPhys Physical address to write to.
2433 * @param pvBuf What to write.
2434 * @param cbWrite How many bytes to write.
2435 */
2436VMMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
2437{
2438#ifdef IN_RING3
2439 bool fGrabbedLock = false;
2440#endif
2441
2442 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
2443 AssertMsg(cbWrite > 0, ("don't even think about writing zero bytes!\n"));
2444 if (cbWrite == 0)
2445 return;
2446
2447 LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
2448
2449#ifdef IN_RING3
2450 if (!VM_IS_EMT(pVM))
2451 {
2452 pgmLock(pVM);
2453 fGrabbedLock = true;
2454 }
2455#endif
2456 /*
2457 * Copy loop on ram ranges.
2458 */
2459 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2460 for (;;)
2461 {
2462 /* Find range. */
2463 while (pRam && GCPhys > pRam->GCPhysLast)
2464 pRam = pRam->CTX_SUFF(pNext);
2465 /* Inside range or not? */
2466 if (pRam && GCPhys >= pRam->GCPhys)
2467 {
2468 /*
2469 * Must work our way thru this page by page.
2470 */
2471 RTGCPTR off = GCPhys - pRam->GCPhys;
2472 while (off < pRam->cb)
2473 {
2474 RTGCPTR iPage = off >> PAGE_SHIFT;
2475 PPGMPAGE pPage = &pRam->aPages[iPage];
2476
2477 /* Physical chunk in dynamically allocated range not present? */
2478 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2479 {
2480 int rc;
2481 RTGCPHYS GCPhysPage = pRam->GCPhys + off;
2482#ifdef IN_RING3
2483 if (fGrabbedLock)
2484 {
2485 pgmUnlock(pVM);
2486 rc = pgmr3PhysGrowRange(pVM, GCPhysPage);
2487 if (rc == VINF_SUCCESS)
2488 PGMPhysWrite(pVM, GCPhysPage, pvBuf, cbWrite); /* try again; can't assume pRam is still valid (paranoia) */
2489 return;
2490 }
2491 rc = pgmr3PhysGrowRange(pVM, GCPhysPage);
2492#else
2493 rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhysPage);
2494#endif
2495 if (rc != VINF_SUCCESS)
2496 goto l_End;
2497 }
2498
2499 size_t cb;
2500 /* temporary hack, will reogranize is later. */
2501 /*
2502 * Virtual handlers
2503 */
2504 if ( PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
2505 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
2506 {
2507 if (PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
2508 {
2509 /*
2510 * Physical write handler + virtual write handler.
2511 * Consider this a quick workaround for the CSAM + shadow caching problem.
2512 *
2513 * We hand it to the shadow caching first since it requires the unchanged
2514 * data. CSAM will have to put up with it already being changed.
2515 */
2516 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
2517 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2518#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
2519 /* 1. The physical handler */
2520 PPGMPHYSHANDLER pPhysNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
2521 if (pPhysNode && pPhysNode->pfnHandlerR3)
2522 {
2523 size_t cbRange = pPhysNode->Core.KeyLast - GCPhys + 1;
2524 if (cbRange < cb)
2525 cb = cbRange;
2526 if (cb > cbWrite)
2527 cb = cbWrite;
2528
2529 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
2530
2531 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
2532 rc = pPhysNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pPhysNode->pvUserR3);
2533 }
2534
2535 /* 2. The virtual handler (will see incorrect data) */
2536 PPGMVIRTHANDLER pVirtNode;
2537 unsigned iPage;
2538 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirtNode, &iPage);
2539 if (RT_SUCCESS(rc2) && pVirtNode->pfnHandlerR3)
2540 {
2541 size_t cbRange = pVirtNode->Core.KeyLast - GCPhys + 1;
2542 if (cbRange < cb)
2543 cb = cbRange;
2544 if (cb > cbWrite)
2545 cb = cbWrite;
2546 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirtNode->Core.Key & PAGE_BASE_GC_MASK)
2547 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
2548
2549 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
2550
2551 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
2552 rc2 = pVirtNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
2553 if ( ( rc2 != VINF_PGM_HANDLER_DO_DEFAULT
2554 && rc == VINF_PGM_HANDLER_DO_DEFAULT)
2555 || ( RT_FAILURE(rc2)
2556 && RT_SUCCESS(rc)))
2557 rc = rc2;
2558 }
2559#endif /* IN_RING3 */
2560 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2561 {
2562#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2563 void *pvDst = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
2564#else
2565 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
2566#endif
2567 if (cb >= cbWrite)
2568 {
2569 memcpy(pvDst, pvBuf, cbWrite);
2570 goto l_End;
2571 }
2572 memcpy(pvDst, pvBuf, cb);
2573 }
2574 else if (cb >= cbWrite)
2575 goto l_End;
2576 }
2577 else
2578 {
2579 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
2580 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2581#ifdef IN_RING3
2582/** @todo deal with this in GC and R0! */
2583 /* Search the whole tree for matching physical addresses (rather expensive!) */
2584 PPGMVIRTHANDLER pNode;
2585 unsigned iPage;
2586 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
2587 if (RT_SUCCESS(rc2) && pNode->pfnHandlerR3)
2588 {
2589 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
2590 if (cbRange < cb)
2591 cb = cbRange;
2592 if (cb > cbWrite)
2593 cb = cbWrite;
2594 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->Core.Key & PAGE_BASE_GC_MASK)
2595 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
2596
2597 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
2598
2599 /* Note! Dangerous assumption that R3 handlers don't do anything that really requires an EMT lock! */
2600 rc = pNode->pfnHandlerR3(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
2601 }
2602#endif /* IN_RING3 */
2603 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2604 {
2605#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2606 void *pvDst = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
2607#else
2608 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
2609#endif
2610 if (cb >= cbWrite)
2611 {
2612 memcpy(pvDst, pvBuf, cbWrite);
2613 goto l_End;
2614 }
2615 memcpy(pvDst, pvBuf, cb);
2616 }
2617 else if (cb >= cbWrite)
2618 goto l_End;
2619 }
2620 }
2621 /*
2622 * Physical handler.
2623 */
2624 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE)
2625 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
2626 {
2627 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
2628 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2629#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
2630 /* find and call the handler */
2631 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesR3->PhysHandlers, GCPhys);
2632 if (pNode && pNode->pfnHandlerR3)
2633 {
2634 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
2635 if (cbRange < cb)
2636 cb = cbRange;
2637 if (cb > cbWrite)
2638 cb = cbWrite;
2639
2640 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
2641
2642 /** @todo Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
2643 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pNode->pvUserR3);
2644 }
2645#endif /* IN_RING3 */
2646 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2647 {
2648#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2649 void *pvDst = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
2650#else
2651 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
2652#endif
2653 if (cb >= cbWrite)
2654 {
2655 memcpy(pvDst, pvBuf, cbWrite);
2656 goto l_End;
2657 }
2658 memcpy(pvDst, pvBuf, cb);
2659 }
2660 else if (cb >= cbWrite)
2661 goto l_End;
2662 }
2663 else
2664 {
2665 /** @todo r=bird: missing MM_RAM_FLAGS_ROM here, we shall not allow anyone to overwrite the ROM! */
2666 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */
2667 {
2668 /*
2669 * Normal memory, MMIO2 or writable shadow ROM.
2670 */
2671 case 0:
2672 case MM_RAM_FLAGS_MMIO2:
2673 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* shadow rom */
2674 {
2675#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2676 void *pvDst = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) + (off & PAGE_OFFSET_MASK));
2677#else
2678 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
2679#endif
2680 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2681 if (cb >= cbWrite)
2682 {
2683#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
2684 if (cbWrite <= 4 && !fGrabbedLock /* i.e. EMT */)
2685 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphyswritecache, GCPhys, (uint8_t*)pvDst);
2686#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
2687 memcpy(pvDst, pvBuf, cbWrite);
2688 goto l_End;
2689 }
2690 memcpy(pvDst, pvBuf, cb);
2691 break;
2692 }
2693
2694 /*
2695 * All reserved, nothing there.
2696 */
2697 case MM_RAM_FLAGS_RESERVED:
2698 case MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2:
2699 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2700 if (cb >= cbWrite)
2701 goto l_End;
2702 break;
2703
2704
2705 /*
2706 * The rest needs to be taken more carefully.
2707 */
2708 default:
2709#if 1 /** @todo r=bird: Can you do this properly please. */
2710 /** @todo Try MMIO; quick hack */
2711 if (cbWrite <= 8 && IOMMMIOWrite(pVM, GCPhys, *(uint32_t *)pvBuf, cbWrite) == VINF_SUCCESS)
2712 goto l_End;
2713#endif
2714
2715 /** @todo fix me later. */
2716 AssertReleaseMsgFailed(("Unknown write at %RGp size %u implement the complex physical writing case %RHp\n",
2717 GCPhys, cbWrite,
2718 (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)))); /** @todo PAGE FLAGS */
2719 /* skip the write */
2720 cb = cbWrite;
2721 break;
2722 }
2723 }
2724
2725 cbWrite -= cb;
2726 off += cb;
2727 pvBuf = (const char *)pvBuf + cb;
2728 }
2729
2730 GCPhys = pRam->GCPhysLast + 1;
2731 }
2732 else
2733 {
2734 /*
2735 * Unassigned address space.
2736 */
2737 size_t cb;
2738 if ( !pRam
2739 || (cb = pRam->GCPhys - GCPhys) >= cbWrite)
2740 goto l_End;
2741
2742 cbWrite -= cb;
2743 pvBuf = (const char *)pvBuf + cb;
2744 GCPhys += cb;
2745 }
2746 }
2747l_End:
2748#ifdef IN_RING3
2749 if (fGrabbedLock)
2750 pgmUnlock(pVM);
2751#endif
2752 return;
2753}
2754
2755#endif /* Old PGMPhysWrite */
2756
2757
2758/**
2759 * Read from guest physical memory by GC physical address, bypassing
2760 * MMIO and access handlers.
2761 *
2762 * @returns VBox status.
2763 * @param pVM VM handle.
2764 * @param pvDst The destination address.
2765 * @param GCPhysSrc The source address (GC physical address).
2766 * @param cb The number of bytes to read.
2767 */
2768VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
2769{
2770 /*
2771 * Treat the first page as a special case.
2772 */
2773 if (!cb)
2774 return VINF_SUCCESS;
2775
2776 /* map the 1st page */
2777 void const *pvSrc;
2778 PGMPAGEMAPLOCK Lock;
2779 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
2780 if (RT_FAILURE(rc))
2781 return rc;
2782
2783 /* optimize for the case where access is completely within the first page. */
2784 size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
2785 if (RT_LIKELY(cb <= cbPage))
2786 {
2787 memcpy(pvDst, pvSrc, cb);
2788 PGMPhysReleasePageMappingLock(pVM, &Lock);
2789 return VINF_SUCCESS;
2790 }
2791
2792 /* copy to the end of the page. */
2793 memcpy(pvDst, pvSrc, cbPage);
2794 PGMPhysReleasePageMappingLock(pVM, &Lock);
2795 GCPhysSrc += cbPage;
2796 pvDst = (uint8_t *)pvDst + cbPage;
2797 cb -= cbPage;
2798
2799 /*
2800 * Page by page.
2801 */
2802 for (;;)
2803 {
2804 /* map the page */
2805 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
2806 if (RT_FAILURE(rc))
2807 return rc;
2808
2809 /* last page? */
2810 if (cb <= PAGE_SIZE)
2811 {
2812 memcpy(pvDst, pvSrc, cb);
2813 PGMPhysReleasePageMappingLock(pVM, &Lock);
2814 return VINF_SUCCESS;
2815 }
2816
2817 /* copy the entire page and advance */
2818 memcpy(pvDst, pvSrc, PAGE_SIZE);
2819 PGMPhysReleasePageMappingLock(pVM, &Lock);
2820 GCPhysSrc += PAGE_SIZE;
2821 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
2822 cb -= PAGE_SIZE;
2823 }
2824 /* won't ever get here. */
2825}
2826
2827#ifndef IN_RC /* Ring 0 & 3 only. (Just not needed in GC.) */
2828
2829/**
2830 * Write to guest physical memory referenced by GC pointer.
2831 * Write memory to GC physical address in guest physical memory.
2832 *
2833 * This will bypass MMIO and access handlers.
2834 *
2835 * @returns VBox status.
2836 * @param pVM VM handle.
2837 * @param GCPhysDst The GC physical address of the destination.
2838 * @param pvSrc The source buffer.
2839 * @param cb The number of bytes to write.
2840 */
2841VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
2842{
2843 LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
2844
2845 /*
2846 * Treat the first page as a special case.
2847 */
2848 if (!cb)
2849 return VINF_SUCCESS;
2850
2851 /* map the 1st page */
2852 void *pvDst;
2853 PGMPAGEMAPLOCK Lock;
2854 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
2855 if (RT_FAILURE(rc))
2856 return rc;
2857
2858 /* optimize for the case where access is completely within the first page. */
2859 size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
2860 if (RT_LIKELY(cb <= cbPage))
2861 {
2862 memcpy(pvDst, pvSrc, cb);
2863 PGMPhysReleasePageMappingLock(pVM, &Lock);
2864 return VINF_SUCCESS;
2865 }
2866
2867 /* copy to the end of the page. */
2868 memcpy(pvDst, pvSrc, cbPage);
2869 PGMPhysReleasePageMappingLock(pVM, &Lock);
2870 GCPhysDst += cbPage;
2871 pvSrc = (const uint8_t *)pvSrc + cbPage;
2872 cb -= cbPage;
2873
2874 /*
2875 * Page by page.
2876 */
2877 for (;;)
2878 {
2879 /* map the page */
2880 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
2881 if (RT_FAILURE(rc))
2882 return rc;
2883
2884 /* last page? */
2885 if (cb <= PAGE_SIZE)
2886 {
2887 memcpy(pvDst, pvSrc, cb);
2888 PGMPhysReleasePageMappingLock(pVM, &Lock);
2889 return VINF_SUCCESS;
2890 }
2891
2892 /* copy the entire page and advance */
2893 memcpy(pvDst, pvSrc, PAGE_SIZE);
2894 PGMPhysReleasePageMappingLock(pVM, &Lock);
2895 GCPhysDst += PAGE_SIZE;
2896 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2897 cb -= PAGE_SIZE;
2898 }
2899 /* won't ever get here. */
2900}
2901
2902
2903/**
2904 * Read from guest physical memory referenced by GC pointer.
2905 *
2906 * This function uses the current CR3/CR0/CR4 of the guest and will
2907 * bypass access handlers and not set any accessed bits.
2908 *
2909 * @returns VBox status.
2910 * @param pVM VM handle.
2911 * @param pvDst The destination address.
2912 * @param GCPtrSrc The source address (GC pointer).
2913 * @param cb The number of bytes to read.
2914 */
2915VMMDECL(int) PGMPhysSimpleReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2916{
2917 /*
2918 * Treat the first page as a special case.
2919 */
2920 if (!cb)
2921 return VINF_SUCCESS;
2922
2923 /* map the 1st page */
2924 void const *pvSrc;
2925 PGMPAGEMAPLOCK Lock;
2926 int rc = PGMPhysGCPtr2CCPtrReadOnly(pVM, GCPtrSrc, &pvSrc, &Lock);
2927 if (RT_FAILURE(rc))
2928 return rc;
2929
2930 /* optimize for the case where access is completely within the first page. */
2931 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2932 if (RT_LIKELY(cb <= cbPage))
2933 {
2934 memcpy(pvDst, pvSrc, cb);
2935 PGMPhysReleasePageMappingLock(pVM, &Lock);
2936 return VINF_SUCCESS;
2937 }
2938
2939 /* copy to the end of the page. */
2940 memcpy(pvDst, pvSrc, cbPage);
2941 PGMPhysReleasePageMappingLock(pVM, &Lock);
2942 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
2943 pvDst = (uint8_t *)pvDst + cbPage;
2944 cb -= cbPage;
2945
2946 /*
2947 * Page by page.
2948 */
2949 for (;;)
2950 {
2951 /* map the page */
2952 rc = PGMPhysGCPtr2CCPtrReadOnly(pVM, GCPtrSrc, &pvSrc, &Lock);
2953 if (RT_FAILURE(rc))
2954 return rc;
2955
2956 /* last page? */
2957 if (cb <= PAGE_SIZE)
2958 {
2959 memcpy(pvDst, pvSrc, cb);
2960 PGMPhysReleasePageMappingLock(pVM, &Lock);
2961 return VINF_SUCCESS;
2962 }
2963
2964 /* copy the entire page and advance */
2965 memcpy(pvDst, pvSrc, PAGE_SIZE);
2966 PGMPhysReleasePageMappingLock(pVM, &Lock);
2967 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
2968 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
2969 cb -= PAGE_SIZE;
2970 }
2971 /* won't ever get here. */
2972}
2973
2974
2975/**
2976 * Write to guest physical memory referenced by GC pointer.
2977 *
2978 * This function uses the current CR3/CR0/CR4 of the guest and will
2979 * bypass access handlers and not set dirty or accessed bits.
2980 *
2981 * @returns VBox status.
2982 * @param pVM VM handle.
2983 * @param GCPtrDst The destination address (GC pointer).
2984 * @param pvSrc The source address.
2985 * @param cb The number of bytes to write.
2986 */
2987VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2988{
2989 /*
2990 * Treat the first page as a special case.
2991 */
2992 if (!cb)
2993 return VINF_SUCCESS;
2994
2995 /* map the 1st page */
2996 void *pvDst;
2997 PGMPAGEMAPLOCK Lock;
2998 int rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
2999 if (RT_FAILURE(rc))
3000 return rc;
3001
3002 /* optimize for the case where access is completely within the first page. */
3003 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3004 if (RT_LIKELY(cb <= cbPage))
3005 {
3006 memcpy(pvDst, pvSrc, cb);
3007 PGMPhysReleasePageMappingLock(pVM, &Lock);
3008 return VINF_SUCCESS;
3009 }
3010
3011 /* copy to the end of the page. */
3012 memcpy(pvDst, pvSrc, cbPage);
3013 PGMPhysReleasePageMappingLock(pVM, &Lock);
3014 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
3015 pvSrc = (const uint8_t *)pvSrc + cbPage;
3016 cb -= cbPage;
3017
3018 /*
3019 * Page by page.
3020 */
3021 for (;;)
3022 {
3023 /* map the page */
3024 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
3025 if (RT_FAILURE(rc))
3026 return rc;
3027
3028 /* last page? */
3029 if (cb <= PAGE_SIZE)
3030 {
3031 memcpy(pvDst, pvSrc, cb);
3032 PGMPhysReleasePageMappingLock(pVM, &Lock);
3033 return VINF_SUCCESS;
3034 }
3035
3036 /* copy the entire page and advance */
3037 memcpy(pvDst, pvSrc, PAGE_SIZE);
3038 PGMPhysReleasePageMappingLock(pVM, &Lock);
3039 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
3040 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3041 cb -= PAGE_SIZE;
3042 }
3043 /* won't ever get here. */
3044}
3045
3046
3047/**
3048 * Write to guest physical memory referenced by GC pointer and update the PTE.
3049 *
3050 * This function uses the current CR3/CR0/CR4 of the guest and will
3051 * bypass access handlers but will set any dirty and accessed bits in the PTE.
3052 *
3053 * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
3054 *
3055 * @returns VBox status.
3056 * @param pVM VM handle.
3057 * @param GCPtrDst The destination address (GC pointer).
3058 * @param pvSrc The source address.
3059 * @param cb The number of bytes to write.
3060 */
3061VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
3062{
3063 /*
3064 * Treat the first page as a special case.
3065 * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
3066 */
3067 if (!cb)
3068 return VINF_SUCCESS;
3069
3070 /* map the 1st page */
3071 void *pvDst;
3072 PGMPAGEMAPLOCK Lock;
3073 int rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
3074 if (RT_FAILURE(rc))
3075 return rc;
3076
3077 /* optimize for the case where access is completely within the first page. */
3078 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3079 if (RT_LIKELY(cb <= cbPage))
3080 {
3081 memcpy(pvDst, pvSrc, cb);
3082 PGMPhysReleasePageMappingLock(pVM, &Lock);
3083 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3084 return VINF_SUCCESS;
3085 }
3086
3087 /* copy to the end of the page. */
3088 memcpy(pvDst, pvSrc, cbPage);
3089 PGMPhysReleasePageMappingLock(pVM, &Lock);
3090 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3091 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
3092 pvSrc = (const uint8_t *)pvSrc + cbPage;
3093 cb -= cbPage;
3094
3095 /*
3096 * Page by page.
3097 */
3098 for (;;)
3099 {
3100 /* map the page */
3101 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrDst, &pvDst, &Lock);
3102 if (RT_FAILURE(rc))
3103 return rc;
3104
3105 /* last page? */
3106 if (cb <= PAGE_SIZE)
3107 {
3108 memcpy(pvDst, pvSrc, cb);
3109 PGMPhysReleasePageMappingLock(pVM, &Lock);
3110 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3111 return VINF_SUCCESS;
3112 }
3113
3114 /* copy the entire page and advance */
3115 memcpy(pvDst, pvSrc, PAGE_SIZE);
3116 PGMPhysReleasePageMappingLock(pVM, &Lock);
3117 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3118 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
3119 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3120 cb -= PAGE_SIZE;
3121 }
3122 /* won't ever get here. */
3123}
3124
3125
3126/**
3127 * Read from guest physical memory referenced by GC pointer.
3128 *
3129 * This function uses the current CR3/CR0/CR4 of the guest and will
3130 * respect access handlers and set accessed bits.
3131 *
3132 * @returns VBox status.
3133 * @param pVM VM handle.
3134 * @param pvDst The destination address.
3135 * @param GCPtrSrc The source address (GC pointer).
3136 * @param cb The number of bytes to read.
3137 * @thread The vCPU EMT.
3138 */
3139VMMDECL(int) PGMPhysReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
3140{
3141 RTGCPHYS GCPhys;
3142 uint64_t fFlags;
3143 int rc;
3144
3145 /*
3146 * Anything to do?
3147 */
3148 if (!cb)
3149 return VINF_SUCCESS;
3150
3151 LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
3152
3153 /*
3154 * Optimize reads within a single page.
3155 */
3156 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
3157 {
3158 /* Convert virtual to physical address + flags */
3159 rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
3160 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
3161 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
3162
3163 /* mark the guest page as accessed. */
3164 if (!(fFlags & X86_PTE_A))
3165 {
3166 rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
3167 AssertRC(rc);
3168 }
3169
3170#ifdef VBOX_WITH_NEW_PHYS_CODE
3171 return PGMPhysRead(pVM, GCPhys, pvDst, cb);
3172#else
3173 PGMPhysRead(pVM, GCPhys, pvDst, cb);
3174 return VINF_SUCCESS;
3175#endif
3176 }
3177
3178 /*
3179 * Page by page.
3180 */
3181 for (;;)
3182 {
3183 /* Convert virtual to physical address + flags */
3184 rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
3185 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
3186 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
3187
3188 /* mark the guest page as accessed. */
3189 if (!(fFlags & X86_PTE_A))
3190 {
3191 rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
3192 AssertRC(rc);
3193 }
3194
3195 /* copy */
3196 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
3197#ifdef VBOX_WITH_NEW_PHYS_CODE
3198 rc = PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
3199 if (cbRead >= cb || RT_FAILURE(rc))
3200 return rc;
3201#else
3202 if (cbRead >= cb)
3203 {
3204 PGMPhysRead(pVM, GCPhys, pvDst, cb);
3205 return VINF_SUCCESS;
3206 }
3207 PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
3208#endif
3209
3210 /* next */
3211 cb -= cbRead;
3212 pvDst = (uint8_t *)pvDst + cbRead;
3213 GCPtrSrc += cbRead;
3214 }
3215}
3216
3217
3218/**
3219 * Write to guest physical memory referenced by GC pointer.
3220 *
3221 * This function uses the current CR3/CR0/CR4 of the guest and will
3222 * respect access handlers and set dirty and accessed bits.
3223 *
3224 * @returns VBox status.
3225 * @retval VINF_SUCCESS.
3226 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
3227 *
3228 * @param pVM VM handle.
3229 * @param GCPtrDst The destination address (GC pointer).
3230 * @param pvSrc The source address.
3231 * @param cb The number of bytes to write.
3232 */
3233VMMDECL(int) PGMPhysWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
3234{
3235 RTGCPHYS GCPhys;
3236 uint64_t fFlags;
3237 int rc;
3238
3239 /*
3240 * Anything to do?
3241 */
3242 if (!cb)
3243 return VINF_SUCCESS;
3244
3245 LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
3246
3247 /*
3248 * Optimize writes within a single page.
3249 */
3250 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
3251 {
3252 /* Convert virtual to physical address + flags */
3253 rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
3254 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
3255 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
3256
3257 /* Mention when we ignore X86_PTE_RW... */
3258 if (!(fFlags & X86_PTE_RW))
3259 Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3260
3261 /* Mark the guest page as accessed and dirty if necessary. */
3262 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3263 {
3264 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3265 AssertRC(rc);
3266 }
3267
3268#ifdef VBOX_WITH_NEW_PHYS_CODE
3269 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
3270#else
3271 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
3272 return VINF_SUCCESS;
3273#endif
3274 }
3275
3276 /*
3277 * Page by page.
3278 */
3279 for (;;)
3280 {
3281 /* Convert virtual to physical address + flags */
3282 rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
3283 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
3284 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
3285
3286 /* Mention when we ignore X86_PTE_RW... */
3287 if (!(fFlags & X86_PTE_RW))
3288 Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3289
3290 /* Mark the guest page as accessed and dirty if necessary. */
3291 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3292 {
3293 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3294 AssertRC(rc);
3295 }
3296
3297 /* copy */
3298 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3299#ifdef VBOX_WITH_NEW_PHYS_CODE
3300 int rc = PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
3301 if (cbWrite >= cb || RT_FAILURE(rc))
3302 return rc;
3303#else
3304 if (cbWrite >= cb)
3305 {
3306 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
3307 return VINF_SUCCESS;
3308 }
3309 PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
3310#endif
3311
3312 /* next */
3313 cb -= cbWrite;
3314 pvSrc = (uint8_t *)pvSrc + cbWrite;
3315 GCPtrDst += cbWrite;
3316 }
3317}
3318
3319#endif /* !IN_RC */
3320
3321/**
3322 * Performs a read of guest virtual memory for instruction emulation.
3323 *
3324 * This will check permissions, raise exceptions and update the access bits.
3325 *
3326 * The current implementation will bypass all access handlers. It may later be
3327 * changed to at least respect MMIO.
3328 *
3329 *
3330 * @returns VBox status code suitable to scheduling.
3331 * @retval VINF_SUCCESS if the read was performed successfully.
3332 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3333 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3334 *
3335 * @param pVM The VM handle.
3336 * @param pCtxCore The context core.
3337 * @param pvDst Where to put the bytes we've read.
3338 * @param GCPtrSrc The source address.
3339 * @param cb The number of bytes to read. Not more than a page.
3340 *
3341 * @remark This function will dynamically map physical pages in GC. This may unmap
3342 * mappings done by the caller. Be careful!
3343 */
3344VMMDECL(int) PGMPhysInterpretedRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
3345{
3346 Assert(cb <= PAGE_SIZE);
3347
3348/** @todo r=bird: This isn't perfect!
3349 * -# It's not checking for reserved bits being 1.
3350 * -# It's not correctly dealing with the access bit.
3351 * -# It's not respecting MMIO memory or any other access handlers.
3352 */
3353 /*
3354 * 1. Translate virtual to physical. This may fault.
3355 * 2. Map the physical address.
3356 * 3. Do the read operation.
3357 * 4. Set access bits if required.
3358 */
3359 int rc;
3360 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3361 if (cb <= cb1)
3362 {
3363 /*
3364 * Not crossing pages.
3365 */
3366 RTGCPHYS GCPhys;
3367 uint64_t fFlags;
3368 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys);
3369 if (RT_SUCCESS(rc))
3370 {
3371 /** @todo we should check reserved bits ... */
3372 void *pvSrc;
3373 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
3374 switch (rc)
3375 {
3376 case VINF_SUCCESS:
3377 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
3378 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
3379 break;
3380 case VERR_PGM_PHYS_PAGE_RESERVED:
3381 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3382 memset(pvDst, 0, cb); /** @todo this is wrong, it should be 0xff */
3383 break;
3384 default:
3385 return rc;
3386 }
3387
3388 /** @todo access bit emulation isn't 100% correct. */
3389 if (!(fFlags & X86_PTE_A))
3390 {
3391 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3392 AssertRC(rc);
3393 }
3394 return VINF_SUCCESS;
3395 }
3396 }
3397 else
3398 {
3399 /*
3400 * Crosses pages.
3401 */
3402 size_t cb2 = cb - cb1;
3403 uint64_t fFlags1;
3404 RTGCPHYS GCPhys1;
3405 uint64_t fFlags2;
3406 RTGCPHYS GCPhys2;
3407 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1);
3408 if (RT_SUCCESS(rc))
3409 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
3410 if (RT_SUCCESS(rc))
3411 {
3412 /** @todo we should check reserved bits ... */
3413 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
3414 void *pvSrc1;
3415 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
3416 switch (rc)
3417 {
3418 case VINF_SUCCESS:
3419 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3420 break;
3421 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3422 memset(pvDst, 0, cb1); /** @todo this is wrong, it should be 0xff */
3423 break;
3424 default:
3425 return rc;
3426 }
3427
3428 void *pvSrc2;
3429 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
3430 switch (rc)
3431 {
3432 case VINF_SUCCESS:
3433 memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
3434 break;
3435 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3436 memset((uint8_t *)pvDst + cb1, 0, cb2); /** @todo this is wrong, it should be 0xff */
3437 break;
3438 default:
3439 return rc;
3440 }
3441
3442 if (!(fFlags1 & X86_PTE_A))
3443 {
3444 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3445 AssertRC(rc);
3446 }
3447 if (!(fFlags2 & X86_PTE_A))
3448 {
3449 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3450 AssertRC(rc);
3451 }
3452 return VINF_SUCCESS;
3453 }
3454 }
3455
3456 /*
3457 * Raise a #PF.
3458 */
3459 uint32_t uErr;
3460
3461 /* Get the current privilege level. */
3462 uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore);
3463 switch (rc)
3464 {
3465 case VINF_SUCCESS:
3466 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3467 break;
3468
3469 case VERR_PAGE_NOT_PRESENT:
3470 case VERR_PAGE_TABLE_NOT_PRESENT:
3471 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3472 break;
3473
3474 default:
3475 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3476 return rc;
3477 }
3478 Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
3479 return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3480}
3481
3482
3483/**
3484 * Performs a read of guest virtual memory for instruction emulation.
3485 *
3486 * This will check permissions, raise exceptions and update the access bits.
3487 *
3488 * The current implementation will bypass all access handlers. It may later be
3489 * changed to at least respect MMIO.
3490 *
3491 *
3492 * @returns VBox status code suitable to scheduling.
3493 * @retval VINF_SUCCESS if the read was performed successfully.
3494 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3495 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3496 *
3497 * @param pVM The VM handle.
3498 * @param pCtxCore The context core.
3499 * @param pvDst Where to put the bytes we've read.
3500 * @param GCPtrSrc The source address.
3501 * @param cb The number of bytes to read. Not more than a page.
3502 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
3503 * an appropriate error status will be returned (no
3504 * informational at all).
3505 *
3506 *
3507 * @remarks Takes the PGM lock.
3508 * @remarks A page fault on the 2nd page of the access will be raised without
3509 * writing the bits on the first page since we're ASSUMING that the
3510 * caller is emulating an instruction access.
3511 * @remarks This function will dynamically map physical pages in GC. This may
3512 * unmap mappings done by the caller. Be careful!
3513 */
3514VMMDECL(int) PGMPhysInterpretedReadNoHandlers(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb, bool fRaiseTrap)
3515{
3516 Assert(cb <= PAGE_SIZE);
3517
3518 /*
3519 * 1. Translate virtual to physical. This may fault.
3520 * 2. Map the physical address.
3521 * 3. Do the read operation.
3522 * 4. Set access bits if required.
3523 */
3524 int rc;
3525 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3526 if (cb <= cb1)
3527 {
3528 /*
3529 * Not crossing pages.
3530 */
3531 RTGCPHYS GCPhys;
3532 uint64_t fFlags;
3533 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys);
3534 if (RT_SUCCESS(rc))
3535 {
3536 if (1) /** @todo we should check reserved bits ... */
3537 {
3538 const void *pvSrc;
3539 PGMPAGEMAPLOCK Lock;
3540 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &Lock);
3541 switch (rc)
3542 {
3543 case VINF_SUCCESS:
3544 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d\n",
3545 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb));
3546 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
3547 break;
3548 case VERR_PGM_PHYS_PAGE_RESERVED:
3549 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3550 memset(pvDst, 0xff, cb);
3551 break;
3552 default:
3553 AssertMsgFailed(("%Rrc\n", rc));
3554 AssertReturn(RT_FAILURE(rc), VERR_INTERNAL_ERROR);
3555 return rc;
3556 }
3557 PGMPhysReleasePageMappingLock(pVM, &Lock);
3558
3559 if (!(fFlags & X86_PTE_A))
3560 {
3561 /** @todo access bit emulation isn't 100% correct. */
3562 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3563 AssertRC(rc);
3564 }
3565 return VINF_SUCCESS;
3566 }
3567 }
3568 }
3569 else
3570 {
3571 /*
3572 * Crosses pages.
3573 */
3574 size_t cb2 = cb - cb1;
3575 uint64_t fFlags1;
3576 RTGCPHYS GCPhys1;
3577 uint64_t fFlags2;
3578 RTGCPHYS GCPhys2;
3579 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1);
3580 if (RT_SUCCESS(rc))
3581 {
3582 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
3583 if (RT_SUCCESS(rc))
3584 {
3585 if (1) /** @todo we should check reserved bits ... */
3586 {
3587 const void *pvSrc;
3588 PGMPAGEMAPLOCK Lock;
3589 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc, &Lock);
3590 switch (rc)
3591 {
3592 case VINF_SUCCESS:
3593 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d [2]\n",
3594 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb1));
3595 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3596 PGMPhysReleasePageMappingLock(pVM, &Lock);
3597 break;
3598 case VERR_PGM_PHYS_PAGE_RESERVED:
3599 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3600 memset(pvDst, 0xff, cb1);
3601 break;
3602 default:
3603 AssertMsgFailed(("%Rrc\n", rc));
3604 AssertReturn(RT_FAILURE(rc), VERR_INTERNAL_ERROR);
3605 return rc;
3606 }
3607
3608 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc, &Lock);
3609 switch (rc)
3610 {
3611 case VINF_SUCCESS:
3612 memcpy((uint8_t *)pvDst + cb1, pvSrc, cb2);
3613 PGMPhysReleasePageMappingLock(pVM, &Lock);
3614 break;
3615 case VERR_PGM_PHYS_PAGE_RESERVED:
3616 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3617 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
3618 break;
3619 default:
3620 AssertMsgFailed(("%Rrc\n", rc));
3621 AssertReturn(RT_FAILURE(rc), VERR_INTERNAL_ERROR);
3622 return rc;
3623 }
3624
3625 if (!(fFlags1 & X86_PTE_A))
3626 {
3627 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3628 AssertRC(rc);
3629 }
3630 if (!(fFlags2 & X86_PTE_A))
3631 {
3632 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3633 AssertRC(rc);
3634 }
3635 return VINF_SUCCESS;
3636 }
3637 /* sort out which page */
3638 }
3639 else
3640 GCPtrSrc += cb1; /* fault on 2nd page */
3641 }
3642 }
3643
3644 /*
3645 * Raise a #PF if we're allowed to do that.
3646 */
3647 /* Calc the error bits. */
3648 uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore);
3649 uint32_t uErr;
3650 switch (rc)
3651 {
3652 case VINF_SUCCESS:
3653 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3654 rc = VERR_ACCESS_DENIED;
3655 break;
3656
3657 case VERR_PAGE_NOT_PRESENT:
3658 case VERR_PAGE_TABLE_NOT_PRESENT:
3659 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3660 break;
3661
3662 default:
3663 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3664 AssertReturn(RT_FAILURE(rc), VERR_INTERNAL_ERROR);
3665 return rc;
3666 }
3667 if (fRaiseTrap)
3668 {
3669 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrSrc, cb, uErr));
3670 return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3671 }
3672 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrSrc, cb, uErr));
3673 return rc;
3674}
3675
3676
3677/**
3678 * Performs a write to guest virtual memory for instruction emulation.
3679 *
3680 * This will check permissions, raise exceptions and update the dirty and access
3681 * bits.
3682 *
3683 * @returns VBox status code suitable to scheduling.
3684 * @retval VINF_SUCCESS if the read was performed successfully.
3685 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3686 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3687 *
3688 * @param pVM The VM handle.
3689 * @param pCtxCore The context core.
3690 * @param GCPtrDst The destination address.
3691 * @param pvSrc What to write.
3692 * @param cb The number of bytes to write. Not more than a page.
3693 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
3694 * an appropriate error status will be returned (no
3695 * informational at all).
3696 *
3697 * @remarks Takes the PGM lock.
3698 * @remarks A page fault on the 2nd page of the access will be raised without
3699 * writing the bits on the first page since we're ASSUMING that the
3700 * caller is emulating an instruction access.
3701 * @remarks This function will dynamically map physical pages in GC. This may
3702 * unmap mappings done by the caller. Be careful!
3703 */
3704VMMDECL(int) PGMPhysInterpretedWriteNoHandlers(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb, bool fRaiseTrap)
3705{
3706 Assert(cb <= PAGE_SIZE);
3707
3708 /*
3709 * 1. Translate virtual to physical. This may fault.
3710 * 2. Map the physical address.
3711 * 3. Do the write operation.
3712 * 4. Set access bits if required.
3713 */
3714 int rc;
3715 unsigned cb1 = PAGE_SIZE - (GCPtrDst & PAGE_OFFSET_MASK);
3716 if (cb <= cb1)
3717 {
3718 /*
3719 * Not crossing pages.
3720 */
3721 RTGCPHYS GCPhys;
3722 uint64_t fFlags;
3723 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrDst, &fFlags, &GCPhys);
3724 if (RT_SUCCESS(rc))
3725 {
3726 if ( (fFlags & X86_PTE_RW) /** @todo Also check reserved bits. */
3727 || ( !(CPUMGetGuestCR0(pVM) & X86_CR0_WP)
3728 && CPUMGetGuestCPL(pVM, pCtxCore) <= 2) ) /** @todo it's 2, right? Check cpl check below as well. */
3729 {
3730 void *pvDst;
3731 PGMPAGEMAPLOCK Lock;
3732 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, &pvDst, &Lock);
3733 switch (rc)
3734 {
3735 case VINF_SUCCESS:
3736 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
3737 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb));
3738 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb);
3739 PGMPhysReleasePageMappingLock(pVM, &Lock);
3740 break;
3741 case VERR_PGM_PHYS_PAGE_RESERVED:
3742 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3743 /* bit bucket */
3744 break;
3745 default:
3746 AssertMsgFailed(("%Rrc\n", rc));
3747 AssertReturn(RT_FAILURE(rc), VERR_INTERNAL_ERROR);
3748 return rc;
3749 }
3750
3751 if (!(fFlags & (X86_PTE_A | X86_PTE_D)))
3752 {
3753 /** @todo dirty & access bit emulation isn't 100% correct. */
3754 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3755 AssertRC(rc);
3756 }
3757 return VINF_SUCCESS;
3758 }
3759 rc = VERR_ACCESS_DENIED;
3760 }
3761 }
3762 else
3763 {
3764 /*
3765 * Crosses pages.
3766 */
3767 size_t cb2 = cb - cb1;
3768 uint64_t fFlags1;
3769 RTGCPHYS GCPhys1;
3770 uint64_t fFlags2;
3771 RTGCPHYS GCPhys2;
3772 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrDst, &fFlags1, &GCPhys1);
3773 if (RT_SUCCESS(rc))
3774 {
3775 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrDst + cb1, &fFlags2, &GCPhys2);
3776 if (RT_SUCCESS(rc))
3777 {
3778 if ( ( (fFlags1 & X86_PTE_RW) /** @todo Also check reserved bits. */
3779 && (fFlags2 & X86_PTE_RW))
3780 || ( !(CPUMGetGuestCR0(pVM) & X86_CR0_WP)
3781 && CPUMGetGuestCPL(pVM, pCtxCore) <= 2) )
3782 {
3783 void *pvDst;
3784 PGMPAGEMAPLOCK Lock;
3785 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys1, &pvDst, &Lock);
3786 switch (rc)
3787 {
3788 case VINF_SUCCESS:
3789 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
3790 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb1));
3791 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb1);
3792 PGMPhysReleasePageMappingLock(pVM, &Lock);
3793 break;
3794 case VERR_PGM_PHYS_PAGE_RESERVED:
3795 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3796 /* bit bucket */
3797 break;
3798 default:
3799 AssertMsgFailed(("%Rrc\n", rc));
3800 AssertReturn(RT_FAILURE(rc), VERR_INTERNAL_ERROR);
3801 return rc;
3802 }
3803
3804 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys2, &pvDst, &Lock);
3805 switch (rc)
3806 {
3807 case VINF_SUCCESS:
3808 memcpy(pvDst, (const uint8_t *)pvSrc + cb1, cb2);
3809 PGMPhysReleasePageMappingLock(pVM, &Lock);
3810 break;
3811 case VERR_PGM_PHYS_PAGE_RESERVED:
3812 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3813 /* bit bucket */
3814 break;
3815 default:
3816 AssertMsgFailed(("%Rrc\n", rc));
3817 AssertReturn(RT_FAILURE(rc), VERR_INTERNAL_ERROR);
3818 return rc;
3819 }
3820
3821 if (!(fFlags1 & (X86_PTE_A | X86_PTE_RW)))
3822 {
3823 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrDst, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
3824 AssertRC(rc);
3825 }
3826 if (!(fFlags2 & (X86_PTE_A | X86_PTE_RW)))
3827 {
3828 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrDst + cb1, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
3829 AssertRC(rc);
3830 }
3831 return VINF_SUCCESS;
3832 }
3833 if ((fFlags1 & (X86_PTE_RW)) == X86_PTE_RW)
3834 GCPtrDst += cb1; /* fault on the 2nd page. */
3835 rc = VERR_ACCESS_DENIED;
3836 }
3837 else
3838 GCPtrDst += cb1; /* fault on the 2nd page. */
3839 }
3840 }
3841
3842 /*
3843 * Raise a #PF if we're allowed to do that.
3844 */
3845 /* Calc the error bits. */
3846 uint32_t uErr;
3847 uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore);
3848 switch (rc)
3849 {
3850 case VINF_SUCCESS:
3851 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3852 rc = VERR_ACCESS_DENIED;
3853 break;
3854
3855 case VERR_ACCESS_DENIED:
3856 uErr = (cpl >= 2) ? X86_TRAP_PF_RW | X86_TRAP_PF_US : X86_TRAP_PF_RW;
3857 break;
3858
3859 case VERR_PAGE_NOT_PRESENT:
3860 case VERR_PAGE_TABLE_NOT_PRESENT:
3861 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3862 break;
3863
3864 default:
3865 AssertMsgFailed(("rc=%Rrc GCPtrDst=%RGv cb=%#x\n", rc, GCPtrDst, cb));
3866 AssertReturn(RT_FAILURE(rc), VERR_INTERNAL_ERROR);
3867 return rc;
3868 }
3869 if (fRaiseTrap)
3870 {
3871 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrDst, cb, uErr));
3872 return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrDst);
3873 }
3874 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrDst, cb, uErr));
3875 return rc;
3876}
3877
3878
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette