VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 27580

Last change on this file since 27580 was 27580, checked in by vboxsync, 15 years ago

Ignore writes to ballooned pages.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 127.3 KB
Line 
1/* $Id: PGMAllPhys.cpp 27580 2010-03-22 10:35:52Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM_PHYS
26#include <VBox/pgm.h>
27#include <VBox/trpm.h>
28#include <VBox/vmm.h>
29#include <VBox/iom.h>
30#include <VBox/em.h>
31#include <VBox/rem.h>
32#include "../PGMInternal.h"
33#include <VBox/vm.h>
34#include "../PGMInline.h"
35#include <VBox/param.h>
36#include <VBox/err.h>
37#include <iprt/assert.h>
38#include <iprt/string.h>
39#include <iprt/asm.h>
40#include <VBox/log.h>
41#ifdef IN_RING3
42# include <iprt/thread.h>
43#endif
44
45
46/*******************************************************************************
47* Defined Constants And Macros *
48*******************************************************************************/
49/** Enable the physical TLB. */
50#define PGM_WITH_PHYS_TLB
51
52
53
54#ifndef IN_RING3
55
56/**
57 * \#PF Handler callback for Guest ROM range write access.
58 * We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
59 *
60 * @returns VBox status code (appropritate for trap handling and GC return).
61 * @param pVM VM Handle.
62 * @param uErrorCode CPU Error code.
63 * @param pRegFrame Trap register frame.
64 * @param pvFault The fault address (cr2).
65 * @param GCPhysFault The GC physical address corresponding to pvFault.
66 * @param pvUser User argument. Pointer to the ROM range structure.
67 */
68VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
69{
70 int rc;
71 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
72 uint32_t iPage = (GCPhysFault - pRom->GCPhys) >> PAGE_SHIFT;
73 PVMCPU pVCpu = VMMGetCpu(pVM);
74
75 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
76 switch (pRom->aPages[iPage].enmProt)
77 {
78 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
79 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
80 {
81 /*
82 * If it's a simple instruction which doesn't change the cpu state
83 * we will simply skip it. Otherwise we'll have to defer it to REM.
84 */
85 uint32_t cbOp;
86 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
87 rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, &cbOp);
88 if ( RT_SUCCESS(rc)
89 && pDis->mode == CPUMODE_32BIT /** @todo why does this matter? */
90 && !(pDis->prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG)))
91 {
92 switch (pDis->opcode)
93 {
94 /** @todo Find other instructions we can safely skip, possibly
95 * adding this kind of detection to DIS or EM. */
96 case OP_MOV:
97 pRegFrame->rip += cbOp;
98 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZGuestROMWriteHandled);
99 return VINF_SUCCESS;
100 }
101 }
102 else if (RT_UNLIKELY(rc == VERR_INTERNAL_ERROR))
103 return rc;
104 break;
105 }
106
107 case PGMROMPROT_READ_RAM_WRITE_RAM:
108 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
109 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
110 AssertRC(rc);
111 break; /** @todo Must edit the shadow PT and restart the instruction, not use the interpreter! */
112
113 case PGMROMPROT_READ_ROM_WRITE_RAM:
114 /* Handle it in ring-3 because it's *way* easier there. */
115 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
116 break;
117
118 default:
119 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
120 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
121 VERR_INTERNAL_ERROR);
122 }
123
124 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZGuestROMWriteUnhandled);
125 return VINF_EM_RAW_EMULATE_INSTR;
126}
127
128#endif /* IN_RING3 */
129
130/**
131 * Checks if Address Gate 20 is enabled or not.
132 *
133 * @returns true if enabled.
134 * @returns false if disabled.
135 * @param pVCpu VMCPU handle.
136 */
137VMMDECL(bool) PGMPhysIsA20Enabled(PVMCPU pVCpu)
138{
139 LogFlow(("PGMPhysIsA20Enabled %d\n", pVCpu->pgm.s.fA20Enabled));
140 return pVCpu->pgm.s.fA20Enabled;
141}
142
143
144/**
145 * Validates a GC physical address.
146 *
147 * @returns true if valid.
148 * @returns false if invalid.
149 * @param pVM The VM handle.
150 * @param GCPhys The physical address to validate.
151 */
152VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
153{
154 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
155 return pPage != NULL;
156}
157
158
159/**
160 * Checks if a GC physical address is a normal page,
161 * i.e. not ROM, MMIO or reserved.
162 *
163 * @returns true if normal.
164 * @returns false if invalid, ROM, MMIO or reserved page.
165 * @param pVM The VM handle.
166 * @param GCPhys The physical address to check.
167 */
168VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
169{
170 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
171 return pPage
172 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM;
173}
174
175
176/**
177 * Converts a GC physical address to a HC physical address.
178 *
179 * @returns VINF_SUCCESS on success.
180 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
181 * page but has no physical backing.
182 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
183 * GC physical address.
184 *
185 * @param pVM The VM handle.
186 * @param GCPhys The GC physical address to convert.
187 * @param pHCPhys Where to store the HC physical address on success.
188 */
189VMMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
190{
191 pgmLock(pVM);
192 PPGMPAGE pPage;
193 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
194 if (RT_SUCCESS(rc))
195 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
196 pgmUnlock(pVM);
197 return rc;
198}
199
200
201/**
202 * Invalidates all page mapping TLBs.
203 *
204 * @param pVM The VM handle.
205 */
206VMMDECL(void) PGMPhysInvalidatePageMapTLB(PVM pVM)
207{
208 pgmLock(pVM);
209 STAM_COUNTER_INC(&pVM->pgm.s.StatPageMapTlbFlushes);
210 /* Clear the shared R0/R3 TLB completely. */
211 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
212 {
213 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
214 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
215 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
216 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
217 }
218 /* @todo clear the RC TLB whenever we add it. */
219 pgmUnlock(pVM);
220}
221
222/**
223 * Invalidates a page mapping TLB entry
224 *
225 * @param pVM The VM handle.
226 * @param GCPhys GCPhys entry to flush
227 */
228VMMDECL(void) PGMPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys)
229{
230 Assert(PGMIsLocked(pVM));
231
232 STAM_COUNTER_INC(&pVM->pgm.s.StatPageMapTlbFlushEntry);
233 /* Clear the shared R0/R3 TLB entry. */
234#ifdef IN_RC
235 unsigned idx = PGM_PAGER3MAPTLB_IDX(GCPhys);
236 pVM->pgm.s.PhysTlbHC.aEntries[idx].GCPhys = NIL_RTGCPHYS;
237 pVM->pgm.s.PhysTlbHC.aEntries[idx].pPage = 0;
238 pVM->pgm.s.PhysTlbHC.aEntries[idx].pMap = 0;
239 pVM->pgm.s.PhysTlbHC.aEntries[idx].pv = 0;
240#else
241 PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
242 pTlbe->GCPhys = NIL_RTGCPHYS;
243 pTlbe->pPage = 0;
244 pTlbe->pMap = 0;
245 pTlbe->pv = 0;
246#endif
247 /* @todo clear the RC TLB whenever we add it. */
248}
249
250/**
251 * Makes sure that there is at least one handy page ready for use.
252 *
253 * This will also take the appropriate actions when reaching water-marks.
254 *
255 * @returns VBox status code.
256 * @retval VINF_SUCCESS on success.
257 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
258 *
259 * @param pVM The VM handle.
260 *
261 * @remarks Must be called from within the PGM critical section. It may
262 * nip back to ring-3/0 in some cases.
263 */
264static int pgmPhysEnsureHandyPage(PVM pVM)
265{
266 AssertMsg(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", pVM->pgm.s.cHandyPages));
267
268 /*
269 * Do we need to do anything special?
270 */
271#ifdef IN_RING3
272 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_R3_ALLOC))
273#else
274 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_RZ_TO_R3))
275#endif
276 {
277 /*
278 * Allocate pages only if we're out of them, or in ring-3, almost out.
279 */
280#ifdef IN_RING3
281 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_R3_ALLOC)
282#else
283 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_ALLOC)
284#endif
285 {
286 Log(("PGM: cHandyPages=%u out of %u -> allocate more; VM_FF_PGM_NO_MEMORY=%RTbool\n",
287 pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages), VM_FF_ISSET(pVM, VM_FF_PGM_NO_MEMORY) ));
288#ifdef IN_RING3
289 int rc = PGMR3PhysAllocateHandyPages(pVM);
290#else
291 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES, 0);
292#endif
293 if (RT_UNLIKELY(rc != VINF_SUCCESS))
294 {
295 if (RT_FAILURE(rc))
296 return rc;
297 AssertMsgReturn(rc == VINF_EM_NO_MEMORY, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
298 if (!pVM->pgm.s.cHandyPages)
299 {
300 LogRel(("PGM: no more handy pages!\n"));
301 return VERR_EM_NO_MEMORY;
302 }
303 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
304 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NO_MEMORY));
305#ifdef IN_RING3
306 REMR3NotifyFF(pVM);
307#else
308 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); /* paranoia */
309#endif
310 }
311 AssertMsgReturn( pVM->pgm.s.cHandyPages > 0
312 && pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages),
313 ("%u\n", pVM->pgm.s.cHandyPages),
314 VERR_INTERNAL_ERROR);
315 }
316 else
317 {
318 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_SET_FF)
319 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
320#ifndef IN_RING3
321 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_TO_R3)
322 {
323 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
324 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
325 }
326#endif
327 }
328 }
329
330 return VINF_SUCCESS;
331}
332
333
334/**
335 * Replace a zero or shared page with new page that we can write to.
336 *
337 * @returns The following VBox status codes.
338 * @retval VINF_SUCCESS on success, pPage is modified.
339 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
340 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
341 *
342 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
343 *
344 * @param pVM The VM address.
345 * @param pPage The physical page tracking structure. This will
346 * be modified on success.
347 * @param GCPhys The address of the page.
348 *
349 * @remarks Must be called from within the PGM critical section. It may
350 * nip back to ring-3/0 in some cases.
351 *
352 * @remarks This function shouldn't really fail, however if it does
353 * it probably means we've screwed up the size of handy pages and/or
354 * the low-water mark. Or, that some device I/O is causing a lot of
355 * pages to be allocated while while the host is in a low-memory
356 * condition. This latter should be handled elsewhere and in a more
357 * controlled manner, it's on the @bugref{3170} todo list...
358 */
359int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
360{
361 LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys));
362
363 /*
364 * Prereqs.
365 */
366 Assert(PGMIsLocked(pVM));
367 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
368 Assert(!PGM_PAGE_IS_MMIO(pPage));
369
370# ifdef PGM_WITH_LARGE_PAGES
371 if ( PGMIsUsingLargePages(pVM)
372 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
373 {
374 int rc = pgmPhysAllocLargePage(pVM, GCPhys);
375 if (rc == VINF_SUCCESS)
376 return rc;
377
378 /* fall back to 4kb pages. */
379 }
380# endif
381
382 /*
383 * Flush any shadow page table mappings of the page.
384 * When VBOX_WITH_NEW_LAZY_PAGE_ALLOC isn't defined, there shouldn't be any.
385 */
386 bool fFlushTLBs = false;
387 int rc = pgmPoolTrackFlushGCPhys(pVM, GCPhys, pPage, &fFlushTLBs);
388 AssertMsgReturn(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc), RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_STATUS);
389
390 /*
391 * Ensure that we've got a page handy, take it and use it.
392 */
393 int rc2 = pgmPhysEnsureHandyPage(pVM);
394 if (RT_FAILURE(rc2))
395 {
396 if (fFlushTLBs)
397 PGM_INVL_ALL_VCPU_TLBS(pVM);
398 Assert(rc2 == VERR_EM_NO_MEMORY);
399 return rc2;
400 }
401 /* re-assert preconditions since pgmPhysEnsureHandyPage may do a context switch. */
402 Assert(PGMIsLocked(pVM));
403 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
404 Assert(!PGM_PAGE_IS_MMIO(pPage));
405
406 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
407 AssertMsg(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", iHandyPage));
408 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
409 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
410 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
411 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
412
413 /*
414 * There are one or two action to be taken the next time we allocate handy pages:
415 * - Tell the GMM (global memory manager) what the page is being used for.
416 * (Speeds up replacement operations - sharing and defragmenting.)
417 * - If the current backing is shared, it must be freed.
418 */
419 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
420 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
421
422 if (PGM_PAGE_IS_SHARED(pPage))
423 {
424 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
425 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
426 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
427
428 Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
429 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
430 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageReplaceShared));
431 pVM->pgm.s.cSharedPages--;
432 AssertMsgFailed(("TODO: copy shared page content")); /** @todo err.. what about copying the page content? */
433 }
434 else
435 {
436 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
437 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
438 pVM->pgm.s.cZeroPages--;
439 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
440 }
441
442 /*
443 * Do the PGMPAGE modifications.
444 */
445 pVM->pgm.s.cPrivatePages++;
446 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
447 PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
448 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
449 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PT);
450 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
451
452 if ( fFlushTLBs
453 && rc != VINF_PGM_GCPHYS_ALIASED)
454 PGM_INVL_ALL_VCPU_TLBS(pVM);
455 return rc;
456}
457
458#ifdef PGM_WITH_LARGE_PAGES
459/**
460 * Replace a 2 MB range of zero pages with new pages that we can write to.
461 *
462 * @returns The following VBox status codes.
463 * @retval VINF_SUCCESS on success, pPage is modified.
464 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
465 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
466 *
467 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
468 *
469 * @param pVM The VM address.
470 * @param GCPhys The address of the page.
471 *
472 * @remarks Must be called from within the PGM critical section. It may
473 * nip back to ring-3/0 in some cases.
474 */
475int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys)
476{
477 RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
478 LogFlow(("pgmPhysAllocLargePage: %RGp base %RGp\n", GCPhys, GCPhysBase));
479
480 /*
481 * Prereqs.
482 */
483 Assert(PGMIsLocked(pVM));
484 Assert(PGMIsUsingLargePages(pVM));
485
486 PPGMPAGE pPage;
487 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysBase, &pPage);
488 if ( RT_SUCCESS(rc)
489 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
490 {
491 unsigned uPDEType = PGM_PAGE_GET_PDE_TYPE(pPage);
492
493 /* Don't call this function for already allocated pages. */
494 Assert(uPDEType != PGM_PAGE_PDE_TYPE_PDE);
495
496 if ( uPDEType == PGM_PAGE_PDE_TYPE_DONTCARE
497 && PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
498 {
499 unsigned iPage;
500
501 GCPhys = GCPhysBase;
502
503 /* Lazy approach: check all pages in the 2 MB range.
504 * The whole range must be ram and unallocated
505 */
506 for (iPage = 0; iPage < _2M/PAGE_SIZE; iPage++)
507 {
508 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
509 if ( RT_FAILURE(rc)
510 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM /* Anything other than ram implies monitoring. */
511 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ZERO) /* allocated, monitored or shared means we can't use a large page here */
512 {
513 LogFlow(("Found page %RGp with wrong attributes (type=%d; state=%d); cancel check. rc=%d\n", GCPhys, PGM_PAGE_GET_TYPE(pPage), PGM_PAGE_GET_STATE(pPage), rc));
514 break;
515 }
516 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_DONTCARE);
517 GCPhys += PAGE_SIZE;
518 }
519 /* Fetch the start page of the 2 MB range again. */
520 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysBase, &pPage);
521 AssertRC(rc); /* can't fail */
522
523 if (iPage != _2M/PAGE_SIZE)
524 {
525 /* Failed. Mark as requiring a PT so we don't check the whole thing again in the future. */
526 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRefused);
527 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PT);
528 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
529 }
530 else
531 {
532# ifdef IN_RING3
533 rc = PGMR3PhysAllocateLargeHandyPage(pVM, GCPhysBase);
534# else
535 rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE, GCPhysBase);
536# endif
537 if (RT_SUCCESS(rc))
538 {
539 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
540 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageAlloc);
541 return VINF_SUCCESS;
542 }
543 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
544
545 /* If we fail once, it most likely means the host's memory is too fragmented; don't bother trying again. */
546 PGMSetLargePageUsage(pVM, false);
547 return rc;
548 }
549 }
550 }
551 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
552}
553
554/**
555 * Recheck the entire 2 MB range to see if we can use it again as a large page.
556 *
557 * @returns The following VBox status codes.
558 * @retval VINF_SUCCESS on success, the large page can be used again
559 * @retval VERR_PGM_INVALID_LARGE_PAGE_RANGE if it can't be reused
560 *
561 * @param pVM The VM address.
562 * @param GCPhys The address of the page.
563 * @param pLargePage Page structure of the base page
564 */
565int pgmPhysIsValidLargePage(PVM pVM, RTGCPHYS GCPhys, PPGMPAGE pLargePage)
566{
567 unsigned i;
568
569 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRecheck);
570
571 GCPhys &= X86_PDE2M_PAE_PG_MASK;
572
573 /* Check the base page. */
574 Assert(PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED);
575 if ( PGM_PAGE_GET_STATE(pLargePage) != PGM_PAGE_STATE_ALLOCATED
576 || PGM_PAGE_GET_TYPE(pLargePage) != PGMPAGETYPE_RAM
577 || PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
578 {
579 LogFlow(("pgmPhysIsValidLargePage: checks failed for base page %x %x %x\n", PGM_PAGE_GET_STATE(pLargePage), PGM_PAGE_GET_TYPE(pLargePage), PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage)));
580 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
581 }
582
583 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,IsValidLargePage), a);
584 /* Check all remaining pages in the 2 MB range. */
585 GCPhys += PAGE_SIZE;
586 for (i = 1; i < _2M/PAGE_SIZE; i++)
587 {
588 PPGMPAGE pPage;
589 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
590 AssertRCBreak(rc);
591
592 if ( PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
593 || PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
594 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
595 || PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
596 {
597 LogFlow(("pgmPhysIsValidLargePage: checks failed for page %d; %x %x %x\n", i, PGM_PAGE_GET_STATE(pPage), PGM_PAGE_GET_TYPE(pPage), PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)));
598 break;
599 }
600
601 GCPhys += PAGE_SIZE;
602 }
603 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,IsValidLargePage), a);
604
605 if (i == _2M/PAGE_SIZE)
606 {
607 PGM_PAGE_SET_PDE_TYPE(pLargePage, PGM_PAGE_PDE_TYPE_PDE);
608 Log(("pgmPhysIsValidLargePage: page %RGp can be reused!\n", GCPhys - _2M));
609 return VINF_SUCCESS;
610 }
611
612 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
613}
614
615#endif /* PGM_WITH_LARGE_PAGES */
616
617/**
618 * Deal with a write monitored page.
619 *
620 * @returns VBox strict status code.
621 *
622 * @param pVM The VM address.
623 * @param pPage The physical page tracking structure.
624 *
625 * @remarks Called from within the PGM critical section.
626 */
627void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage)
628{
629 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED);
630 PGM_PAGE_SET_WRITTEN_TO(pPage);
631 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
632 Assert(pVM->pgm.s.cMonitoredPages > 0);
633 pVM->pgm.s.cMonitoredPages--;
634 pVM->pgm.s.cWrittenToPages++;
635}
636
637
638/**
639 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
640 *
641 * @returns VBox strict status code.
642 * @retval VINF_SUCCESS on success.
643 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
644 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
645 *
646 * @param pVM The VM address.
647 * @param pPage The physical page tracking structure.
648 * @param GCPhys The address of the page.
649 *
650 * @remarks Called from within the PGM critical section.
651 */
652int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
653{
654 Assert(PGMIsLockOwner(pVM));
655 switch (PGM_PAGE_GET_STATE(pPage))
656 {
657 case PGM_PAGE_STATE_WRITE_MONITORED:
658 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
659 /* fall thru */
660 default: /* to shut up GCC */
661 case PGM_PAGE_STATE_ALLOCATED:
662 return VINF_SUCCESS;
663
664 /*
665 * Zero pages can be dummy pages for MMIO or reserved memory,
666 * so we need to check the flags before joining cause with
667 * shared page replacement.
668 */
669 case PGM_PAGE_STATE_ZERO:
670 if (PGM_PAGE_IS_MMIO(pPage))
671 return VERR_PGM_PHYS_PAGE_RESERVED;
672 /* fall thru */
673 case PGM_PAGE_STATE_SHARED:
674 return pgmPhysAllocPage(pVM, pPage, GCPhys);
675
676 /* Not allowed to write to ballooned pages. */
677 case PGM_PAGE_STATE_BALLOONED:
678 return VERR_PGM_PHYS_PAGE_BALLOONED;
679 }
680}
681
682
683/**
684 * Internal usage: Map the page specified by its GMM ID.
685 *
686 * This is similar to pgmPhysPageMap
687 *
688 * @returns VBox status code.
689 *
690 * @param pVM The VM handle.
691 * @param idPage The Page ID.
692 * @param HCPhys The physical address (for RC).
693 * @param ppv Where to store the mapping address.
694 *
695 * @remarks Called from within the PGM critical section. The mapping is only
696 * valid while your inside this section.
697 */
698int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv)
699{
700 /*
701 * Validation.
702 */
703 Assert(PGMIsLocked(pVM));
704 AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
705 const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT;
706 AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER);
707
708#ifdef IN_RC
709 /*
710 * Map it by HCPhys.
711 */
712 return PGMDynMapHCPage(pVM, HCPhys, ppv);
713
714#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
715 /*
716 * Map it by HCPhys.
717 */
718 return pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
719
720#else
721 /*
722 * Find/make Chunk TLB entry for the mapping chunk.
723 */
724 PPGMCHUNKR3MAP pMap;
725 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
726 if (pTlbe->idChunk == idChunk)
727 {
728 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
729 pMap = pTlbe->pChunk;
730 }
731 else
732 {
733 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
734
735 /*
736 * Find the chunk, map it if necessary.
737 */
738 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
739 if (!pMap)
740 {
741# ifdef IN_RING0
742 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
743 AssertRCReturn(rc, rc);
744 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
745 Assert(pMap);
746# else
747 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
748 if (RT_FAILURE(rc))
749 return rc;
750# endif
751 }
752
753 /*
754 * Enter it into the Chunk TLB.
755 */
756 pTlbe->idChunk = idChunk;
757 pTlbe->pChunk = pMap;
758 pMap->iAge = 0;
759 }
760
761 *ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
762 return VINF_SUCCESS;
763#endif
764}
765
766
767/**
768 * Maps a page into the current virtual address space so it can be accessed.
769 *
770 * @returns VBox status code.
771 * @retval VINF_SUCCESS on success.
772 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
773 *
774 * @param pVM The VM address.
775 * @param pPage The physical page tracking structure.
776 * @param GCPhys The address of the page.
777 * @param ppMap Where to store the address of the mapping tracking structure.
778 * @param ppv Where to store the mapping address of the page. The page
779 * offset is masked off!
780 *
781 * @remarks Called from within the PGM critical section.
782 */
783static int pgmPhysPageMapCommon(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
784{
785 Assert(PGMIsLocked(pVM));
786
787#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
788 /*
789 * Just some sketchy GC/R0-darwin code.
790 */
791 *ppMap = NULL;
792 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
793 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
794# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
795 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
796# else
797 PGMDynMapHCPage(pVM, HCPhys, ppv);
798# endif
799 return VINF_SUCCESS;
800
801#else /* IN_RING3 || IN_RING0 */
802
803
804 /*
805 * Special case: ZERO and MMIO2 pages.
806 */
807 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
808 if (idChunk == NIL_GMM_CHUNKID)
809 {
810 AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage), VERR_INTERNAL_ERROR_2);
811 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2)
812 {
813 /* Lookup the MMIO2 range and use pvR3 to calc the address. */
814 PPGMRAMRANGE pRam = pgmPhysGetRange(&pVM->pgm.s, GCPhys);
815 AssertMsgReturn(pRam || !pRam->pvR3, ("pRam=%p pPage=%R[pgmpage]\n", pRam, pPage), VERR_INTERNAL_ERROR_2);
816 *ppv = (void *)((uintptr_t)pRam->pvR3 + (uintptr_t)((GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK) - pRam->GCPhys));
817 }
818 else if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
819 {
820 /** @todo deal with aliased MMIO2 pages somehow...
821 * One solution would be to seed MMIO2 pages to GMM and get unique Page IDs for
822 * them, that would also avoid this mess. It would actually be kind of
823 * elegant... */
824 AssertLogRelMsgFailedReturn(("%RGp\n", GCPhys), VERR_INTERNAL_ERROR_3);
825 }
826 else
827 {
828 /** @todo handle MMIO2 */
829 AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage), VERR_INTERNAL_ERROR_2);
830 AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg,
831 ("pPage=%R[pgmpage]\n", pPage),
832 VERR_INTERNAL_ERROR_2);
833 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
834 }
835 *ppMap = NULL;
836 return VINF_SUCCESS;
837 }
838
839 /*
840 * Find/make Chunk TLB entry for the mapping chunk.
841 */
842 PPGMCHUNKR3MAP pMap;
843 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
844 if (pTlbe->idChunk == idChunk)
845 {
846 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
847 pMap = pTlbe->pChunk;
848 }
849 else
850 {
851 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
852
853 /*
854 * Find the chunk, map it if necessary.
855 */
856 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
857 if (!pMap)
858 {
859#ifdef IN_RING0
860 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
861 AssertRCReturn(rc, rc);
862 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
863 Assert(pMap);
864#else
865 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
866 if (RT_FAILURE(rc))
867 return rc;
868#endif
869 }
870
871 /*
872 * Enter it into the Chunk TLB.
873 */
874 pTlbe->idChunk = idChunk;
875 pTlbe->pChunk = pMap;
876 pMap->iAge = 0;
877 }
878
879 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
880 *ppMap = pMap;
881 return VINF_SUCCESS;
882#endif /* IN_RING3 */
883}
884
885
886/**
887 * Combination of pgmPhysPageMakeWritable and pgmPhysPageMapWritable.
888 *
889 * This is typically used is paths where we cannot use the TLB methods (like ROM
890 * pages) or where there is no point in using them since we won't get many hits.
891 *
892 * @returns VBox strict status code.
893 * @retval VINF_SUCCESS on success.
894 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
895 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
896 *
897 * @param pVM The VM address.
898 * @param pPage The physical page tracking structure.
899 * @param GCPhys The address of the page.
900 * @param ppv Where to store the mapping address of the page. The page
901 * offset is masked off!
902 *
903 * @remarks Called from within the PGM critical section. The mapping is only
904 * valid while your inside this section.
905 */
906int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
907{
908 int rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
909 if (RT_SUCCESS(rc))
910 {
911 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc));
912 PPGMPAGEMAP pMapIgnore;
913 int rc2 = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
914 if (RT_FAILURE(rc2)) /* preserve rc */
915 rc = rc2;
916 }
917 return rc;
918}
919
920
921/**
922 * Maps a page into the current virtual address space so it can be accessed for
923 * both writing and reading.
924 *
925 * This is typically used is paths where we cannot use the TLB methods (like ROM
926 * pages) or where there is no point in using them since we won't get many hits.
927 *
928 * @returns VBox status code.
929 * @retval VINF_SUCCESS on success.
930 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
931 *
932 * @param pVM The VM address.
933 * @param pPage The physical page tracking structure. Must be in the
934 * allocated state.
935 * @param GCPhys The address of the page.
936 * @param ppv Where to store the mapping address of the page. The page
937 * offset is masked off!
938 *
939 * @remarks Called from within the PGM critical section. The mapping is only
940 * valid while your inside this section.
941 */
942int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
943{
944 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
945 PPGMPAGEMAP pMapIgnore;
946 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
947}
948
949
950/**
951 * Maps a page into the current virtual address space so it can be accessed for
952 * reading.
953 *
954 * This is typically used is paths where we cannot use the TLB methods (like ROM
955 * pages) or where there is no point in using them since we won't get many hits.
956 *
957 * @returns VBox status code.
958 * @retval VINF_SUCCESS on success.
959 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
960 *
961 * @param pVM The VM address.
962 * @param pPage The physical page tracking structure.
963 * @param GCPhys The address of the page.
964 * @param ppv Where to store the mapping address of the page. The page
965 * offset is masked off!
966 *
967 * @remarks Called from within the PGM critical section. The mapping is only
968 * valid while your inside this section.
969 */
970int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv)
971{
972 PPGMPAGEMAP pMapIgnore;
973 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, (void **)ppv);
974}
975
976
977#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
978/**
979 * Load a guest page into the ring-3 physical TLB.
980 *
981 * @returns VBox status code.
982 * @retval VINF_SUCCESS on success
983 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
984 * @param pPGM The PGM instance pointer.
985 * @param GCPhys The guest physical address in question.
986 */
987int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys)
988{
989 Assert(PGMIsLocked(PGM2VM(pPGM)));
990 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
991
992 /*
993 * Find the ram range.
994 * 99.8% of requests are expected to be in the first range.
995 */
996 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
997 RTGCPHYS off = GCPhys - pRam->GCPhys;
998 if (RT_UNLIKELY(off >= pRam->cb))
999 {
1000 do
1001 {
1002 pRam = pRam->CTX_SUFF(pNext);
1003 if (!pRam)
1004 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1005 off = GCPhys - pRam->GCPhys;
1006 } while (off >= pRam->cb);
1007 }
1008
1009 /*
1010 * Map the page.
1011 * Make a special case for the zero page as it is kind of special.
1012 */
1013 PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT];
1014 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
1015 if ( !PGM_PAGE_IS_ZERO(pPage)
1016 && !PGM_PAGE_IS_BALLOONED(pPage))
1017 {
1018 void *pv;
1019 PPGMPAGEMAP pMap;
1020 int rc = pgmPhysPageMapCommon(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
1021 if (RT_FAILURE(rc))
1022 return rc;
1023 pTlbe->pMap = pMap;
1024 pTlbe->pv = pv;
1025 Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK));
1026 }
1027 else
1028 {
1029 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
1030 pTlbe->pMap = NULL;
1031 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
1032 }
1033#ifdef PGM_WITH_PHYS_TLB
1034 pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK;
1035#else
1036 pTlbe->GCPhys = NIL_RTGCPHYS;
1037#endif
1038 pTlbe->pPage = pPage;
1039 return VINF_SUCCESS;
1040}
1041
1042
1043/**
1044 * Load a guest page into the ring-3 physical TLB.
1045 *
1046 * @returns VBox status code.
1047 * @retval VINF_SUCCESS on success
1048 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1049 *
1050 * @param pPGM The PGM instance pointer.
1051 * @param pPage Pointer to the PGMPAGE structure corresponding to
1052 * GCPhys.
1053 * @param GCPhys The guest physical address in question.
1054 */
1055int pgmPhysPageLoadIntoTlbWithPage(PPGM pPGM, PPGMPAGE pPage, RTGCPHYS GCPhys)
1056{
1057 Assert(PGMIsLocked(PGM2VM(pPGM)));
1058 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
1059
1060 /*
1061 * Map the page.
1062 * Make a special case for the zero page as it is kind of special.
1063 */
1064 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
1065 if ( !PGM_PAGE_IS_ZERO(pPage)
1066 && !PGM_PAGE_IS_BALLOONED(pPage))
1067 {
1068 void *pv;
1069 PPGMPAGEMAP pMap;
1070 int rc = pgmPhysPageMapCommon(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
1071 if (RT_FAILURE(rc))
1072 return rc;
1073 pTlbe->pMap = pMap;
1074 pTlbe->pv = pv;
1075 Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK));
1076 }
1077 else
1078 {
1079 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
1080 pTlbe->pMap = NULL;
1081 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
1082 }
1083#ifdef PGM_WITH_PHYS_TLB
1084 pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK;
1085#else
1086 pTlbe->GCPhys = NIL_RTGCPHYS;
1087#endif
1088 pTlbe->pPage = pPage;
1089 return VINF_SUCCESS;
1090}
1091#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1092
1093
1094/**
1095 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
1096 * own the PGM lock and therefore not need to lock the mapped page.
1097 *
1098 * @returns VBox status code.
1099 * @retval VINF_SUCCESS on success.
1100 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1101 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1102 *
1103 * @param pVM The VM handle.
1104 * @param GCPhys The guest physical address of the page that should be mapped.
1105 * @param pPage Pointer to the PGMPAGE structure for the page.
1106 * @param ppv Where to store the address corresponding to GCPhys.
1107 *
1108 * @internal
1109 */
1110int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1111{
1112 int rc;
1113 AssertReturn(pPage, VERR_INTERNAL_ERROR);
1114 Assert(PGMIsLocked(pVM));
1115
1116 /*
1117 * Make sure the page is writable.
1118 */
1119 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1120 {
1121 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1122 if (RT_FAILURE(rc))
1123 return rc;
1124 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1125 }
1126 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1127
1128 /*
1129 * Get the mapping address.
1130 */
1131#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1132 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK));
1133#else
1134 PPGMPAGEMAPTLBE pTlbe;
1135 rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
1136 if (RT_FAILURE(rc))
1137 return rc;
1138 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1139#endif
1140 return VINF_SUCCESS;
1141}
1142
1143
1144/**
1145 * Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to
1146 * own the PGM lock and therefore not need to lock the mapped page.
1147 *
1148 * @returns VBox status code.
1149 * @retval VINF_SUCCESS on success.
1150 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1151 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1152 *
1153 * @param pVM The VM handle.
1154 * @param GCPhys The guest physical address of the page that should be mapped.
1155 * @param pPage Pointer to the PGMPAGE structure for the page.
1156 * @param ppv Where to store the address corresponding to GCPhys.
1157 *
1158 * @internal
1159 */
1160int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv)
1161{
1162 AssertReturn(pPage, VERR_INTERNAL_ERROR);
1163 Assert(PGMIsLocked(pVM));
1164 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1165
1166 /*
1167 * Get the mapping address.
1168 */
1169#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1170 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
1171#else
1172 PPGMPAGEMAPTLBE pTlbe;
1173 int rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
1174 if (RT_FAILURE(rc))
1175 return rc;
1176 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1177#endif
1178 return VINF_SUCCESS;
1179}
1180
1181
1182/**
1183 * Requests the mapping of a guest page into the current context.
1184 *
1185 * This API should only be used for very short term, as it will consume
1186 * scarse resources (R0 and GC) in the mapping cache. When you're done
1187 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1188 *
1189 * This API will assume your intention is to write to the page, and will
1190 * therefore replace shared and zero pages. If you do not intend to modify
1191 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
1192 *
1193 * @returns VBox status code.
1194 * @retval VINF_SUCCESS on success.
1195 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1196 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1197 *
1198 * @param pVM The VM handle.
1199 * @param GCPhys The guest physical address of the page that should be mapped.
1200 * @param ppv Where to store the address corresponding to GCPhys.
1201 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1202 *
1203 * @remarks The caller is responsible for dealing with access handlers.
1204 * @todo Add an informational return code for pages with access handlers?
1205 *
1206 * @remark Avoid calling this API from within critical sections (other than the
1207 * PGM one) because of the deadlock risk. External threads may need to
1208 * delegate jobs to the EMTs.
1209 * @thread Any thread.
1210 */
1211VMMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
1212{
1213#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1214
1215 /*
1216 * Find the page and make sure it's writable.
1217 */
1218 PPGMPAGE pPage;
1219 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1220 if (RT_SUCCESS(rc))
1221 {
1222 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1223 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1224 if (RT_SUCCESS(rc))
1225 {
1226 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
1227# if 0
1228 pLock->pvMap = 0;
1229 pLock->pvPage = pPage;
1230# else
1231 pLock->u32Dummy = UINT32_MAX;
1232# endif
1233 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1234 rc = VINF_SUCCESS;
1235 }
1236 }
1237
1238#else /* IN_RING3 || IN_RING0 */
1239 int rc = pgmLock(pVM);
1240 AssertRCReturn(rc, rc);
1241
1242 /*
1243 * Query the Physical TLB entry for the page (may fail).
1244 */
1245 PPGMPAGEMAPTLBE pTlbe;
1246 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
1247 if (RT_SUCCESS(rc))
1248 {
1249 /*
1250 * If the page is shared, the zero page, or being write monitored
1251 * it must be converted to a page that's writable if possible.
1252 */
1253 PPGMPAGE pPage = pTlbe->pPage;
1254 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1255 {
1256 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1257 if (RT_SUCCESS(rc))
1258 {
1259 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1260 rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
1261 }
1262 }
1263 if (RT_SUCCESS(rc))
1264 {
1265 /*
1266 * Now, just perform the locking and calculate the return address.
1267 */
1268 PPGMPAGEMAP pMap = pTlbe->pMap;
1269 if (pMap)
1270 pMap->cRefs++;
1271
1272 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
1273 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1274 {
1275 if (cLocks == 0)
1276 pVM->pgm.s.cWriteLockedPages++;
1277 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1278 }
1279 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
1280 {
1281 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1282 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
1283 if (pMap)
1284 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1285 }
1286
1287 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1288 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
1289 pLock->pvMap = pMap;
1290 }
1291 }
1292
1293 pgmUnlock(pVM);
1294#endif /* IN_RING3 || IN_RING0 */
1295 return rc;
1296}
1297
1298
1299/**
1300 * Requests the mapping of a guest page into the current context.
1301 *
1302 * This API should only be used for very short term, as it will consume
1303 * scarse resources (R0 and GC) in the mapping cache. When you're done
1304 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1305 *
1306 * @returns VBox status code.
1307 * @retval VINF_SUCCESS on success.
1308 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1309 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1310 *
1311 * @param pVM The VM handle.
1312 * @param GCPhys The guest physical address of the page that should be mapped.
1313 * @param ppv Where to store the address corresponding to GCPhys.
1314 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1315 *
1316 * @remarks The caller is responsible for dealing with access handlers.
1317 * @todo Add an informational return code for pages with access handlers?
1318 *
1319 * @remark Avoid calling this API from within critical sections (other than
1320 * the PGM one) because of the deadlock risk.
1321 * @thread Any thread.
1322 */
1323VMMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
1324{
1325#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1326
1327 /*
1328 * Find the page and make sure it's readable.
1329 */
1330 PPGMPAGE pPage;
1331 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1332 if (RT_SUCCESS(rc))
1333 {
1334 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO(pPage)))
1335 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1336 else
1337 {
1338 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
1339# if 0
1340 pLock->pvMap = 0;
1341 pLock->pvPage = pPage;
1342# else
1343 pLock->u32Dummy = UINT32_MAX;
1344# endif
1345 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1346 rc = VINF_SUCCESS;
1347 }
1348 }
1349
1350#else /* IN_RING3 || IN_RING0 */
1351 int rc = pgmLock(pVM);
1352 AssertRCReturn(rc, rc);
1353
1354 /*
1355 * Query the Physical TLB entry for the page (may fail).
1356 */
1357 PPGMPAGEMAPTLBE pTlbe;
1358 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
1359 if (RT_SUCCESS(rc))
1360 {
1361 /* MMIO pages doesn't have any readable backing. */
1362 PPGMPAGE pPage = pTlbe->pPage;
1363 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO(pPage)))
1364 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1365 else
1366 {
1367 /*
1368 * Now, just perform the locking and calculate the return address.
1369 */
1370 PPGMPAGEMAP pMap = pTlbe->pMap;
1371 if (pMap)
1372 pMap->cRefs++;
1373
1374 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
1375 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1376 {
1377 if (cLocks == 0)
1378 pVM->pgm.s.cReadLockedPages++;
1379 PGM_PAGE_INC_READ_LOCKS(pPage);
1380 }
1381 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
1382 {
1383 PGM_PAGE_INC_READ_LOCKS(pPage);
1384 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
1385 if (pMap)
1386 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1387 }
1388
1389 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1390 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
1391 pLock->pvMap = pMap;
1392 }
1393 }
1394
1395 pgmUnlock(pVM);
1396#endif /* IN_RING3 || IN_RING0 */
1397 return rc;
1398}
1399
1400
1401/**
1402 * Requests the mapping of a guest page given by virtual address into the current context.
1403 *
1404 * This API should only be used for very short term, as it will consume
1405 * scarse resources (R0 and GC) in the mapping cache. When you're done
1406 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1407 *
1408 * This API will assume your intention is to write to the page, and will
1409 * therefore replace shared and zero pages. If you do not intend to modify
1410 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
1411 *
1412 * @returns VBox status code.
1413 * @retval VINF_SUCCESS on success.
1414 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1415 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1416 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1417 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1418 *
1419 * @param pVCpu VMCPU handle.
1420 * @param GCPhys The guest physical address of the page that should be mapped.
1421 * @param ppv Where to store the address corresponding to GCPhys.
1422 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1423 *
1424 * @remark Avoid calling this API from within critical sections (other than
1425 * the PGM one) because of the deadlock risk.
1426 * @thread EMT
1427 */
1428VMMDECL(int) PGMPhysGCPtr2CCPtr(PVMCPU pVCpu, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
1429{
1430 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
1431 RTGCPHYS GCPhys;
1432 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
1433 if (RT_SUCCESS(rc))
1434 rc = PGMPhysGCPhys2CCPtr(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
1435 return rc;
1436}
1437
1438
1439/**
1440 * Requests the mapping of a guest page given by virtual address into the current context.
1441 *
1442 * This API should only be used for very short term, as it will consume
1443 * scarse resources (R0 and GC) in the mapping cache. When you're done
1444 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1445 *
1446 * @returns VBox status code.
1447 * @retval VINF_SUCCESS on success.
1448 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1449 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1450 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1451 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1452 *
1453 * @param pVCpu VMCPU handle.
1454 * @param GCPhys The guest physical address of the page that should be mapped.
1455 * @param ppv Where to store the address corresponding to GCPhys.
1456 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1457 *
1458 * @remark Avoid calling this API from within critical sections (other than
1459 * the PGM one) because of the deadlock risk.
1460 * @thread EMT
1461 */
1462VMMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVMCPU pVCpu, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
1463{
1464 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
1465 RTGCPHYS GCPhys;
1466 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
1467 if (RT_SUCCESS(rc))
1468 rc = PGMPhysGCPhys2CCPtrReadOnly(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
1469 return rc;
1470}
1471
1472
1473/**
1474 * Release the mapping of a guest page.
1475 *
1476 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
1477 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
1478 *
1479 * @param pVM The VM handle.
1480 * @param pLock The lock structure initialized by the mapping function.
1481 */
1482VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
1483{
1484#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1485 /* currently nothing to do here. */
1486 Assert(pLock->u32Dummy == UINT32_MAX);
1487 pLock->u32Dummy = 0;
1488
1489#else /* IN_RING3 */
1490 PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap;
1491 PPGMPAGE pPage = (PPGMPAGE)(pLock->uPageAndType & ~PGMPAGEMAPLOCK_TYPE_MASK);
1492 bool fWriteLock = (pLock->uPageAndType & PGMPAGEMAPLOCK_TYPE_MASK) == PGMPAGEMAPLOCK_TYPE_WRITE;
1493
1494 pLock->uPageAndType = 0;
1495 pLock->pvMap = NULL;
1496
1497 pgmLock(pVM);
1498 if (fWriteLock)
1499 {
1500 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
1501 Assert(cLocks > 0);
1502 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
1503 {
1504 if (cLocks == 1)
1505 {
1506 Assert(pVM->pgm.s.cWriteLockedPages > 0);
1507 pVM->pgm.s.cWriteLockedPages--;
1508 }
1509 PGM_PAGE_DEC_WRITE_LOCKS(pPage);
1510 }
1511
1512 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1513 {
1514 PGM_PAGE_SET_WRITTEN_TO(pPage);
1515 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
1516 Assert(pVM->pgm.s.cMonitoredPages > 0);
1517 pVM->pgm.s.cMonitoredPages--;
1518 pVM->pgm.s.cWrittenToPages++;
1519 }
1520 }
1521 else
1522 {
1523 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
1524 Assert(cLocks > 0);
1525 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
1526 {
1527 if (cLocks == 1)
1528 {
1529 Assert(pVM->pgm.s.cReadLockedPages > 0);
1530 pVM->pgm.s.cReadLockedPages--;
1531 }
1532 PGM_PAGE_DEC_READ_LOCKS(pPage);
1533 }
1534 }
1535
1536 if (pMap)
1537 {
1538 Assert(pMap->cRefs >= 1);
1539 pMap->cRefs--;
1540 pMap->iAge = 0;
1541 }
1542 pgmUnlock(pVM);
1543#endif /* IN_RING3 */
1544}
1545
1546
1547/**
1548 * Converts a GC physical address to a HC ring-3 pointer.
1549 *
1550 * @returns VINF_SUCCESS on success.
1551 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
1552 * page but has no physical backing.
1553 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
1554 * GC physical address.
1555 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
1556 * a dynamic ram chunk boundary
1557 *
1558 * @param pVM The VM handle.
1559 * @param GCPhys The GC physical address to convert.
1560 * @param cbRange Physical range
1561 * @param pR3Ptr Where to store the R3 pointer on success.
1562 *
1563 * @deprecated Avoid when possible!
1564 */
1565VMMDECL(int) PGMPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTR3PTR pR3Ptr)
1566{
1567/** @todo this is kind of hacky and needs some more work. */
1568#ifndef DEBUG_sandervl
1569 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1570#endif
1571
1572 Log(("PGMPhysGCPhys2R3Ptr(,%RGp,%#x,): dont use this API!\n", GCPhys, cbRange)); /** @todo eliminate this API! */
1573#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1574 AssertFailedReturn(VERR_NOT_IMPLEMENTED);
1575#else
1576 pgmLock(pVM);
1577
1578 PPGMRAMRANGE pRam;
1579 PPGMPAGE pPage;
1580 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
1581 if (RT_SUCCESS(rc))
1582 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)pR3Ptr);
1583
1584 pgmUnlock(pVM);
1585 Assert(rc <= VINF_SUCCESS);
1586 return rc;
1587#endif
1588}
1589
1590
1591#ifdef VBOX_STRICT
1592/**
1593 * PGMPhysGCPhys2R3Ptr convenience for use with assertions.
1594 *
1595 * @returns The R3Ptr, NIL_RTR3PTR on failure.
1596 * @param pVM The VM handle.
1597 * @param GCPhys The GC Physical addresss.
1598 * @param cbRange Physical range.
1599 *
1600 * @deprecated Avoid when possible.
1601 */
1602VMMDECL(RTR3PTR) PGMPhysGCPhys2R3PtrAssert(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange)
1603{
1604 RTR3PTR R3Ptr;
1605 int rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys, cbRange, &R3Ptr);
1606 if (RT_SUCCESS(rc))
1607 return R3Ptr;
1608 return NIL_RTR3PTR;
1609}
1610#endif /* VBOX_STRICT */
1611
1612
1613/**
1614 * Converts a guest pointer to a GC physical address.
1615 *
1616 * This uses the current CR3/CR0/CR4 of the guest.
1617 *
1618 * @returns VBox status code.
1619 * @param pVCpu The VMCPU Handle
1620 * @param GCPtr The guest pointer to convert.
1621 * @param pGCPhys Where to store the GC physical address.
1622 */
1623VMMDECL(int) PGMPhysGCPtr2GCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
1624{
1625 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
1626 if (pGCPhys && RT_SUCCESS(rc))
1627 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
1628 return rc;
1629}
1630
1631
1632/**
1633 * Converts a guest pointer to a HC physical address.
1634 *
1635 * This uses the current CR3/CR0/CR4 of the guest.
1636 *
1637 * @returns VBox status code.
1638 * @param pVCpu The VMCPU Handle
1639 * @param GCPtr The guest pointer to convert.
1640 * @param pHCPhys Where to store the HC physical address.
1641 */
1642VMMDECL(int) PGMPhysGCPtr2HCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
1643{
1644 PVM pVM = pVCpu->CTX_SUFF(pVM);
1645 RTGCPHYS GCPhys;
1646 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
1647 if (RT_SUCCESS(rc))
1648 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
1649 return rc;
1650}
1651
1652
1653/**
1654 * Converts a guest pointer to a R3 pointer.
1655 *
1656 * This uses the current CR3/CR0/CR4 of the guest.
1657 *
1658 * @returns VBox status code.
1659 * @param pVCpu The VMCPU Handle
1660 * @param GCPtr The guest pointer to convert.
1661 * @param pR3Ptr Where to store the R3 virtual address.
1662 *
1663 * @deprecated Don't use this.
1664 */
1665VMMDECL(int) PGMPhysGCPtr2R3Ptr(PVMCPU pVCpu, RTGCPTR GCPtr, PRTR3PTR pR3Ptr)
1666{
1667 PVM pVM = pVCpu->CTX_SUFF(pVM);
1668 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1669 RTGCPHYS GCPhys;
1670 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
1671 if (RT_SUCCESS(rc))
1672 rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pR3Ptr);
1673 return rc;
1674}
1675
1676
1677
1678#undef LOG_GROUP
1679#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
1680
1681
1682#ifdef IN_RING3
1683/**
1684 * Cache PGMPhys memory access
1685 *
1686 * @param pVM VM Handle.
1687 * @param pCache Cache structure pointer
1688 * @param GCPhys GC physical address
1689 * @param pbHC HC pointer corresponding to physical page
1690 *
1691 * @thread EMT.
1692 */
1693static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
1694{
1695 uint32_t iCacheIndex;
1696
1697 Assert(VM_IS_EMT(pVM));
1698
1699 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
1700 pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
1701
1702 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
1703
1704 ASMBitSet(&pCache->aEntries, iCacheIndex);
1705
1706 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
1707 pCache->Entry[iCacheIndex].pbR3 = pbR3;
1708}
1709#endif /* IN_RING3 */
1710
1711
1712/**
1713 * Deals with reading from a page with one or more ALL access handlers.
1714 *
1715 * @returns VBox status code. Can be ignored in ring-3.
1716 * @retval VINF_SUCCESS.
1717 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1718 *
1719 * @param pVM The VM handle.
1720 * @param pPage The page descriptor.
1721 * @param GCPhys The physical address to start reading at.
1722 * @param pvBuf Where to put the bits we read.
1723 * @param cb How much to read - less or equal to a page.
1724 */
1725static int pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb)
1726{
1727 /*
1728 * The most frequent access here is MMIO and shadowed ROM.
1729 * The current code ASSUMES all these access handlers covers full pages!
1730 */
1731
1732 /*
1733 * Whatever we do we need the source page, map it first.
1734 */
1735 const void *pvSrc = NULL;
1736 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc);
1737 if (RT_FAILURE(rc))
1738 {
1739 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
1740 GCPhys, pPage, rc));
1741 memset(pvBuf, 0xff, cb);
1742 return VINF_SUCCESS;
1743 }
1744 rc = VINF_PGM_HANDLER_DO_DEFAULT;
1745
1746 /*
1747 * Deal with any physical handlers.
1748 */
1749 PPGMPHYSHANDLER pPhys = NULL;
1750 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL)
1751 {
1752#ifdef IN_RING3
1753 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1754 AssertReleaseMsg(pPhys, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1755 Assert(GCPhys >= pPhys->Core.Key && GCPhys <= pPhys->Core.KeyLast);
1756 Assert((pPhys->Core.Key & PAGE_OFFSET_MASK) == 0);
1757 Assert((pPhys->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1758 Assert(pPhys->CTX_SUFF(pfnHandler));
1759
1760 PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
1761 void *pvUser = pPhys->CTX_SUFF(pvUser);
1762
1763 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cb, pPage, R3STRING(pPhys->pszDesc) ));
1764 STAM_PROFILE_START(&pPhys->Stat, h);
1765 Assert(PGMIsLockOwner(pVM));
1766 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
1767 pgmUnlock(pVM);
1768 rc = pfnHandler(pVM, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pvUser);
1769 pgmLock(pVM);
1770# ifdef VBOX_WITH_STATISTICS
1771 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1772 if (pPhys)
1773 STAM_PROFILE_STOP(&pPhys->Stat, h);
1774# else
1775 pPhys = NULL; /* might not be valid anymore. */
1776# endif
1777 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys));
1778#else
1779 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1780 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1781 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1782#endif
1783 }
1784
1785 /*
1786 * Deal with any virtual handlers.
1787 */
1788 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL)
1789 {
1790 unsigned iPage;
1791 PPGMVIRTHANDLER pVirt;
1792
1793 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iPage);
1794 AssertReleaseMsg(RT_SUCCESS(rc2), ("GCPhys=%RGp cb=%#x rc2=%Rrc\n", GCPhys, cb, rc2));
1795 Assert((pVirt->Core.Key & PAGE_OFFSET_MASK) == 0);
1796 Assert((pVirt->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1797 Assert(GCPhys >= pVirt->aPhysToVirt[iPage].Core.Key && GCPhys <= pVirt->aPhysToVirt[iPage].Core.KeyLast);
1798
1799#ifdef IN_RING3
1800 if (pVirt->pfnHandlerR3)
1801 {
1802 if (!pPhys)
1803 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
1804 else
1805 Log(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc), R3STRING(pPhys->pszDesc) ));
1806 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
1807 + (iPage << PAGE_SHIFT)
1808 + (GCPhys & PAGE_OFFSET_MASK);
1809
1810 STAM_PROFILE_START(&pVirt->Stat, h);
1811 rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, /*pVirt->CTX_SUFF(pvUser)*/ NULL);
1812 STAM_PROFILE_STOP(&pVirt->Stat, h);
1813 if (rc2 == VINF_SUCCESS)
1814 rc = VINF_SUCCESS;
1815 AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc2, GCPhys, pPage, pVirt->pszDesc));
1816 }
1817 else
1818 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s [no handler]\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
1819#else
1820 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1821 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1822 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1823#endif
1824 }
1825
1826 /*
1827 * Take the default action.
1828 */
1829 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1830 memcpy(pvBuf, pvSrc, cb);
1831 return rc;
1832}
1833
1834
1835/**
1836 * Read physical memory.
1837 *
1838 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
1839 * want to ignore those.
1840 *
1841 * @returns VBox status code. Can be ignored in ring-3.
1842 * @retval VINF_SUCCESS.
1843 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1844 *
1845 * @param pVM VM Handle.
1846 * @param GCPhys Physical address start reading from.
1847 * @param pvBuf Where to put the read bits.
1848 * @param cbRead How many bytes to read.
1849 */
1850VMMDECL(int) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
1851{
1852 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
1853 LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
1854
1855 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysRead));
1856 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_MID_Z(Stat,PhysReadBytes), cbRead);
1857
1858 pgmLock(pVM);
1859
1860 /*
1861 * Copy loop on ram ranges.
1862 */
1863 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1864 for (;;)
1865 {
1866 /* Find range. */
1867 while (pRam && GCPhys > pRam->GCPhysLast)
1868 pRam = pRam->CTX_SUFF(pNext);
1869 /* Inside range or not? */
1870 if (pRam && GCPhys >= pRam->GCPhys)
1871 {
1872 /*
1873 * Must work our way thru this page by page.
1874 */
1875 RTGCPHYS off = GCPhys - pRam->GCPhys;
1876 while (off < pRam->cb)
1877 {
1878 unsigned iPage = off >> PAGE_SHIFT;
1879 PPGMPAGE pPage = &pRam->aPages[iPage];
1880 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1881 if (cb > cbRead)
1882 cb = cbRead;
1883
1884 /*
1885 * Any ALL access handlers?
1886 */
1887 if (RT_UNLIKELY(PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)))
1888 {
1889 int rc = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
1890 if (RT_FAILURE(rc))
1891 {
1892 pgmUnlock(pVM);
1893 return rc;
1894 }
1895 }
1896 else
1897 {
1898 /*
1899 * Get the pointer to the page.
1900 */
1901 const void *pvSrc;
1902 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
1903 if (RT_SUCCESS(rc))
1904 memcpy(pvBuf, pvSrc, cb);
1905 else
1906 {
1907 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
1908 pRam->GCPhys + off, pPage, rc));
1909 memset(pvBuf, 0xff, cb);
1910 }
1911 }
1912
1913 /* next page */
1914 if (cb >= cbRead)
1915 {
1916 pgmUnlock(pVM);
1917 return VINF_SUCCESS;
1918 }
1919 cbRead -= cb;
1920 off += cb;
1921 pvBuf = (char *)pvBuf + cb;
1922 } /* walk pages in ram range. */
1923
1924 GCPhys = pRam->GCPhysLast + 1;
1925 }
1926 else
1927 {
1928 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
1929
1930 /*
1931 * Unassigned address space.
1932 */
1933 if (!pRam)
1934 break;
1935 size_t cb = pRam->GCPhys - GCPhys;
1936 if (cb >= cbRead)
1937 {
1938 memset(pvBuf, 0xff, cbRead);
1939 break;
1940 }
1941 memset(pvBuf, 0xff, cb);
1942
1943 cbRead -= cb;
1944 pvBuf = (char *)pvBuf + cb;
1945 GCPhys += cb;
1946 }
1947 } /* Ram range walk */
1948
1949 pgmUnlock(pVM);
1950 return VINF_SUCCESS;
1951}
1952
1953
1954/**
1955 * Deals with writing to a page with one or more WRITE or ALL access handlers.
1956 *
1957 * @returns VBox status code. Can be ignored in ring-3.
1958 * @retval VINF_SUCCESS.
1959 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1960 *
1961 * @param pVM The VM handle.
1962 * @param pPage The page descriptor.
1963 * @param GCPhys The physical address to start writing at.
1964 * @param pvBuf What to write.
1965 * @param cbWrite How much to write - less or equal to a page.
1966 */
1967static int pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite)
1968{
1969 void *pvDst = NULL;
1970 int rc;
1971
1972 /*
1973 * Give priority to physical handlers (like #PF does).
1974 *
1975 * Hope for a lonely physical handler first that covers the whole
1976 * write area. This should be a pretty frequent case with MMIO and
1977 * the heavy usage of full page handlers in the page pool.
1978 */
1979 if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
1980 || PGM_PAGE_IS_MMIO(pPage) /* screw virtual handlers on MMIO pages */)
1981 {
1982 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1983 if (pCur)
1984 {
1985 Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
1986 Assert(pCur->CTX_SUFF(pfnHandler));
1987
1988 size_t cbRange = pCur->Core.KeyLast - GCPhys + 1;
1989 if (cbRange > cbWrite)
1990 cbRange = cbWrite;
1991
1992#ifndef IN_RING3
1993 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1994 NOREF(cbRange);
1995 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
1996 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1997
1998#else /* IN_RING3 */
1999 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
2000 if (!PGM_PAGE_IS_MMIO(pPage))
2001 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
2002 else
2003 rc = VINF_SUCCESS;
2004 if (RT_SUCCESS(rc))
2005 {
2006 PFNPGMR3PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
2007 void *pvUser = pCur->CTX_SUFF(pvUser);
2008
2009 STAM_PROFILE_START(&pCur->Stat, h);
2010 Assert(PGMIsLockOwner(pVM));
2011 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2012 pgmUnlock(pVM);
2013 rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
2014 pgmLock(pVM);
2015# ifdef VBOX_WITH_STATISTICS
2016 pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
2017 if (pCur)
2018 STAM_PROFILE_STOP(&pCur->Stat, h);
2019# else
2020 pCur = NULL; /* might not be valid anymore. */
2021# endif
2022 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2023 memcpy(pvDst, pvBuf, cbRange);
2024 else
2025 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pCur) ? pCur->pszDesc : ""));
2026 }
2027 else
2028 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2029 GCPhys, pPage, rc), rc);
2030 if (RT_LIKELY(cbRange == cbWrite))
2031 return VINF_SUCCESS;
2032
2033 /* more fun to be had below */
2034 cbWrite -= cbRange;
2035 GCPhys += cbRange;
2036 pvBuf = (uint8_t *)pvBuf + cbRange;
2037 pvDst = (uint8_t *)pvDst + cbRange;
2038#endif /* IN_RING3 */
2039 }
2040 /* else: the handler is somewhere else in the page, deal with it below. */
2041 Assert(!PGM_PAGE_IS_MMIO(pPage)); /* MMIO handlers are all PAGE_SIZEed! */
2042 }
2043 /*
2044 * A virtual handler without any interfering physical handlers.
2045 * Hopefully it'll conver the whole write.
2046 */
2047 else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
2048 {
2049 unsigned iPage;
2050 PPGMVIRTHANDLER pCur;
2051 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pCur, &iPage);
2052 if (RT_SUCCESS(rc))
2053 {
2054 size_t cbRange = (PAGE_OFFSET_MASK & pCur->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1;
2055 if (cbRange > cbWrite)
2056 cbRange = cbWrite;
2057
2058#ifndef IN_RING3
2059 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2060 NOREF(cbRange);
2061 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2062 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2063
2064#else /* IN_RING3 */
2065
2066 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
2067 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
2068 if (RT_SUCCESS(rc))
2069 {
2070 rc = VINF_PGM_HANDLER_DO_DEFAULT;
2071 if (pCur->pfnHandlerR3)
2072 {
2073 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pCur->Core.Key & PAGE_BASE_GC_MASK)
2074 + (iPage << PAGE_SHIFT)
2075 + (GCPhys & PAGE_OFFSET_MASK);
2076
2077 STAM_PROFILE_START(&pCur->Stat, h);
2078 rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
2079 STAM_PROFILE_STOP(&pCur->Stat, h);
2080 }
2081 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2082 memcpy(pvDst, pvBuf, cbRange);
2083 else
2084 AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pCur->pszDesc));
2085 }
2086 else
2087 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2088 GCPhys, pPage, rc), rc);
2089 if (RT_LIKELY(cbRange == cbWrite))
2090 return VINF_SUCCESS;
2091
2092 /* more fun to be had below */
2093 cbWrite -= cbRange;
2094 GCPhys += cbRange;
2095 pvBuf = (uint8_t *)pvBuf + cbRange;
2096 pvDst = (uint8_t *)pvDst + cbRange;
2097#endif
2098 }
2099 /* else: the handler is somewhere else in the page, deal with it below. */
2100 }
2101
2102 /*
2103 * Deal with all the odd ends.
2104 */
2105
2106 /* We need a writable destination page. */
2107 if (!pvDst)
2108 {
2109 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
2110 AssertLogRelMsgReturn(RT_SUCCESS(rc),
2111 ("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2112 GCPhys, pPage, rc), rc);
2113 }
2114
2115 /* The loop state (big + ugly). */
2116 unsigned iVirtPage = 0;
2117 PPGMVIRTHANDLER pVirt = NULL;
2118 uint32_t offVirt = PAGE_SIZE;
2119 uint32_t offVirtLast = PAGE_SIZE;
2120 bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage);
2121
2122 PPGMPHYSHANDLER pPhys = NULL;
2123 uint32_t offPhys = PAGE_SIZE;
2124 uint32_t offPhysLast = PAGE_SIZE;
2125 bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage);
2126
2127 /* The loop. */
2128 for (;;)
2129 {
2130 /*
2131 * Find the closest handler at or above GCPhys.
2132 */
2133 if (fMoreVirt && !pVirt)
2134 {
2135 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iVirtPage);
2136 if (RT_SUCCESS(rc))
2137 {
2138 offVirt = 0;
2139 offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2140 }
2141 else
2142 {
2143 PPGMPHYS2VIRTHANDLER pVirtPhys;
2144 pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
2145 GCPhys, true /* fAbove */);
2146 if ( pVirtPhys
2147 && (pVirtPhys->Core.Key >> PAGE_SHIFT) == (GCPhys >> PAGE_SHIFT))
2148 {
2149 /* ASSUME that pVirtPhys only covers one page. */
2150 Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT));
2151 Assert(pVirtPhys->Core.Key > GCPhys);
2152
2153 pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler);
2154 iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0);
2155 offVirt = (pVirtPhys->Core.Key & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2156 offVirtLast = (pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2157 }
2158 else
2159 {
2160 pVirt = NULL;
2161 fMoreVirt = false;
2162 offVirt = offVirtLast = PAGE_SIZE;
2163 }
2164 }
2165 }
2166
2167 if (fMorePhys && !pPhys)
2168 {
2169 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
2170 if (pPhys)
2171 {
2172 offPhys = 0;
2173 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2174 }
2175 else
2176 {
2177 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers,
2178 GCPhys, true /* fAbove */);
2179 if ( pPhys
2180 && pPhys->Core.Key <= GCPhys + (cbWrite - 1))
2181 {
2182 offPhys = pPhys->Core.Key - GCPhys;
2183 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2184 }
2185 else
2186 {
2187 pPhys = NULL;
2188 fMorePhys = false;
2189 offPhys = offPhysLast = PAGE_SIZE;
2190 }
2191 }
2192 }
2193
2194 /*
2195 * Handle access to space without handlers (that's easy).
2196 */
2197 rc = VINF_PGM_HANDLER_DO_DEFAULT;
2198 uint32_t cbRange = (uint32_t)cbWrite;
2199 if (offPhys && offVirt)
2200 {
2201 if (cbRange > offPhys)
2202 cbRange = offPhys;
2203 if (cbRange > offVirt)
2204 cbRange = offVirt;
2205 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] miss\n", GCPhys, cbRange, pPage));
2206 }
2207 /*
2208 * Physical handler.
2209 */
2210 else if (!offPhys && offVirt)
2211 {
2212 if (cbRange > offPhysLast + 1)
2213 cbRange = offPhysLast + 1;
2214 if (cbRange > offVirt)
2215 cbRange = offVirt;
2216#ifdef IN_RING3
2217 PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
2218 void *pvUser = pPhys->CTX_SUFF(pvUser);
2219
2220 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc) ));
2221 STAM_PROFILE_START(&pPhys->Stat, h);
2222 Assert(PGMIsLockOwner(pVM));
2223 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2224 pgmUnlock(pVM);
2225 rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
2226 pgmLock(pVM);
2227# ifdef VBOX_WITH_STATISTICS
2228 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
2229 if (pPhys)
2230 STAM_PROFILE_STOP(&pPhys->Stat, h);
2231# else
2232 pPhys = NULL; /* might not be valid anymore. */
2233# endif
2234 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pPhys) ? pPhys->pszDesc : ""));
2235#else
2236 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2237 NOREF(cbRange);
2238 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2239 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2240#endif
2241 }
2242 /*
2243 * Virtual handler.
2244 */
2245 else if (offPhys && !offVirt)
2246 {
2247 if (cbRange > offVirtLast + 1)
2248 cbRange = offVirtLast + 1;
2249 if (cbRange > offPhys)
2250 cbRange = offPhys;
2251#ifdef IN_RING3
2252 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2253 if (pVirt->pfnHandlerR3)
2254 {
2255 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2256 + (iVirtPage << PAGE_SHIFT)
2257 + (GCPhys & PAGE_OFFSET_MASK);
2258 STAM_PROFILE_START(&pVirt->Stat, h);
2259 rc = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
2260 STAM_PROFILE_STOP(&pVirt->Stat, h);
2261 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
2262 }
2263 pVirt = NULL;
2264#else
2265 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2266 NOREF(cbRange);
2267 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2268 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2269#endif
2270 }
2271 /*
2272 * Both... give the physical one priority.
2273 */
2274 else
2275 {
2276 Assert(!offPhys && !offVirt);
2277 if (cbRange > offVirtLast + 1)
2278 cbRange = offVirtLast + 1;
2279 if (cbRange > offPhysLast + 1)
2280 cbRange = offPhysLast + 1;
2281
2282#ifdef IN_RING3
2283 if (pVirt->pfnHandlerR3)
2284 Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange));
2285 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc), R3STRING(pVirt->pszDesc) ));
2286
2287 PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
2288 void *pvUser = pPhys->CTX_SUFF(pvUser);
2289
2290 STAM_PROFILE_START(&pPhys->Stat, h);
2291 Assert(PGMIsLockOwner(pVM));
2292 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2293 pgmUnlock(pVM);
2294 rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
2295 pgmLock(pVM);
2296# ifdef VBOX_WITH_STATISTICS
2297 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
2298 if (pPhys)
2299 STAM_PROFILE_STOP(&pPhys->Stat, h);
2300# else
2301 pPhys = NULL; /* might not be valid anymore. */
2302# endif
2303 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pPhys) ? pPhys->pszDesc : ""));
2304 if (pVirt->pfnHandlerR3)
2305 {
2306
2307 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2308 + (iVirtPage << PAGE_SHIFT)
2309 + (GCPhys & PAGE_OFFSET_MASK);
2310 STAM_PROFILE_START(&pVirt->Stat, h2);
2311 int rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
2312 STAM_PROFILE_STOP(&pVirt->Stat, h2);
2313 if (rc2 == VINF_SUCCESS && rc == VINF_PGM_HANDLER_DO_DEFAULT)
2314 rc = VINF_SUCCESS;
2315 else
2316 AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
2317 }
2318 pPhys = NULL;
2319 pVirt = NULL;
2320#else
2321 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2322 NOREF(cbRange);
2323 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2324 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2325#endif
2326 }
2327 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2328 memcpy(pvDst, pvBuf, cbRange);
2329
2330 /*
2331 * Advance if we've got more stuff to do.
2332 */
2333 if (cbRange >= cbWrite)
2334 return VINF_SUCCESS;
2335
2336 cbWrite -= cbRange;
2337 GCPhys += cbRange;
2338 pvBuf = (uint8_t *)pvBuf + cbRange;
2339 pvDst = (uint8_t *)pvDst + cbRange;
2340
2341 offPhys -= cbRange;
2342 offPhysLast -= cbRange;
2343 offVirt -= cbRange;
2344 offVirtLast -= cbRange;
2345 }
2346}
2347
2348
2349/**
2350 * Write to physical memory.
2351 *
2352 * This API respects access handlers and MMIO. Use PGMPhysSimpleWriteGCPhys() if you
2353 * want to ignore those.
2354 *
2355 * @returns VBox status code. Can be ignored in ring-3.
2356 * @retval VINF_SUCCESS.
2357 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
2358 *
2359 * @param pVM VM Handle.
2360 * @param GCPhys Physical address to write to.
2361 * @param pvBuf What to write.
2362 * @param cbWrite How many bytes to write.
2363 */
2364VMMDECL(int) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
2365{
2366 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
2367 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
2368 LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
2369
2370 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysWrite));
2371 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_MID_Z(Stat,PhysWriteBytes), cbWrite);
2372
2373 pgmLock(pVM);
2374
2375 /*
2376 * Copy loop on ram ranges.
2377 */
2378 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2379 for (;;)
2380 {
2381 /* Find range. */
2382 while (pRam && GCPhys > pRam->GCPhysLast)
2383 pRam = pRam->CTX_SUFF(pNext);
2384 /* Inside range or not? */
2385 if (pRam && GCPhys >= pRam->GCPhys)
2386 {
2387 /*
2388 * Must work our way thru this page by page.
2389 */
2390 RTGCPTR off = GCPhys - pRam->GCPhys;
2391 while (off < pRam->cb)
2392 {
2393 RTGCPTR iPage = off >> PAGE_SHIFT;
2394 PPGMPAGE pPage = &pRam->aPages[iPage];
2395 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2396 if (cb > cbWrite)
2397 cb = cbWrite;
2398
2399 /*
2400 * Any active WRITE or ALL access handlers?
2401 */
2402 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2403 {
2404 int rc = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
2405 if (RT_FAILURE(rc))
2406 {
2407 pgmUnlock(pVM);
2408 return rc;
2409 }
2410 }
2411 else
2412 {
2413 /*
2414 * Get the pointer to the page.
2415 */
2416 void *pvDst;
2417 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
2418 if (RT_SUCCESS(rc))
2419 memcpy(pvDst, pvBuf, cb);
2420 else
2421 /* Ignore writes to ballooned pages. */
2422 if (!PGM_PAGE_IS_BALLOONED(pPage))
2423 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2424 pRam->GCPhys + off, pPage, rc));
2425 }
2426
2427 /* next page */
2428 if (cb >= cbWrite)
2429 {
2430 pgmUnlock(pVM);
2431 return VINF_SUCCESS;
2432 }
2433
2434 cbWrite -= cb;
2435 off += cb;
2436 pvBuf = (const char *)pvBuf + cb;
2437 } /* walk pages in ram range */
2438
2439 GCPhys = pRam->GCPhysLast + 1;
2440 }
2441 else
2442 {
2443 /*
2444 * Unassigned address space, skip it.
2445 */
2446 if (!pRam)
2447 break;
2448 size_t cb = pRam->GCPhys - GCPhys;
2449 if (cb >= cbWrite)
2450 break;
2451 cbWrite -= cb;
2452 pvBuf = (const char *)pvBuf + cb;
2453 GCPhys += cb;
2454 }
2455 } /* Ram range walk */
2456
2457 pgmUnlock(pVM);
2458 return VINF_SUCCESS;
2459}
2460
2461
2462/**
2463 * Read from guest physical memory by GC physical address, bypassing
2464 * MMIO and access handlers.
2465 *
2466 * @returns VBox status.
2467 * @param pVM VM handle.
2468 * @param pvDst The destination address.
2469 * @param GCPhysSrc The source address (GC physical address).
2470 * @param cb The number of bytes to read.
2471 */
2472VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
2473{
2474 /*
2475 * Treat the first page as a special case.
2476 */
2477 if (!cb)
2478 return VINF_SUCCESS;
2479
2480 /* map the 1st page */
2481 void const *pvSrc;
2482 PGMPAGEMAPLOCK Lock;
2483 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
2484 if (RT_FAILURE(rc))
2485 return rc;
2486
2487 /* optimize for the case where access is completely within the first page. */
2488 size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
2489 if (RT_LIKELY(cb <= cbPage))
2490 {
2491 memcpy(pvDst, pvSrc, cb);
2492 PGMPhysReleasePageMappingLock(pVM, &Lock);
2493 return VINF_SUCCESS;
2494 }
2495
2496 /* copy to the end of the page. */
2497 memcpy(pvDst, pvSrc, cbPage);
2498 PGMPhysReleasePageMappingLock(pVM, &Lock);
2499 GCPhysSrc += cbPage;
2500 pvDst = (uint8_t *)pvDst + cbPage;
2501 cb -= cbPage;
2502
2503 /*
2504 * Page by page.
2505 */
2506 for (;;)
2507 {
2508 /* map the page */
2509 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
2510 if (RT_FAILURE(rc))
2511 return rc;
2512
2513 /* last page? */
2514 if (cb <= PAGE_SIZE)
2515 {
2516 memcpy(pvDst, pvSrc, cb);
2517 PGMPhysReleasePageMappingLock(pVM, &Lock);
2518 return VINF_SUCCESS;
2519 }
2520
2521 /* copy the entire page and advance */
2522 memcpy(pvDst, pvSrc, PAGE_SIZE);
2523 PGMPhysReleasePageMappingLock(pVM, &Lock);
2524 GCPhysSrc += PAGE_SIZE;
2525 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
2526 cb -= PAGE_SIZE;
2527 }
2528 /* won't ever get here. */
2529}
2530
2531
2532/**
2533 * Write to guest physical memory referenced by GC pointer.
2534 * Write memory to GC physical address in guest physical memory.
2535 *
2536 * This will bypass MMIO and access handlers.
2537 *
2538 * @returns VBox status.
2539 * @param pVM VM handle.
2540 * @param GCPhysDst The GC physical address of the destination.
2541 * @param pvSrc The source buffer.
2542 * @param cb The number of bytes to write.
2543 */
2544VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
2545{
2546 LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
2547
2548 /*
2549 * Treat the first page as a special case.
2550 */
2551 if (!cb)
2552 return VINF_SUCCESS;
2553
2554 /* map the 1st page */
2555 void *pvDst;
2556 PGMPAGEMAPLOCK Lock;
2557 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
2558 if (RT_FAILURE(rc))
2559 return rc;
2560
2561 /* optimize for the case where access is completely within the first page. */
2562 size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
2563 if (RT_LIKELY(cb <= cbPage))
2564 {
2565 memcpy(pvDst, pvSrc, cb);
2566 PGMPhysReleasePageMappingLock(pVM, &Lock);
2567 return VINF_SUCCESS;
2568 }
2569
2570 /* copy to the end of the page. */
2571 memcpy(pvDst, pvSrc, cbPage);
2572 PGMPhysReleasePageMappingLock(pVM, &Lock);
2573 GCPhysDst += cbPage;
2574 pvSrc = (const uint8_t *)pvSrc + cbPage;
2575 cb -= cbPage;
2576
2577 /*
2578 * Page by page.
2579 */
2580 for (;;)
2581 {
2582 /* map the page */
2583 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
2584 if (RT_FAILURE(rc))
2585 return rc;
2586
2587 /* last page? */
2588 if (cb <= PAGE_SIZE)
2589 {
2590 memcpy(pvDst, pvSrc, cb);
2591 PGMPhysReleasePageMappingLock(pVM, &Lock);
2592 return VINF_SUCCESS;
2593 }
2594
2595 /* copy the entire page and advance */
2596 memcpy(pvDst, pvSrc, PAGE_SIZE);
2597 PGMPhysReleasePageMappingLock(pVM, &Lock);
2598 GCPhysDst += PAGE_SIZE;
2599 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2600 cb -= PAGE_SIZE;
2601 }
2602 /* won't ever get here. */
2603}
2604
2605
2606/**
2607 * Read from guest physical memory referenced by GC pointer.
2608 *
2609 * This function uses the current CR3/CR0/CR4 of the guest and will
2610 * bypass access handlers and not set any accessed bits.
2611 *
2612 * @returns VBox status.
2613 * @param pVCpu The VMCPU handle.
2614 * @param pvDst The destination address.
2615 * @param GCPtrSrc The source address (GC pointer).
2616 * @param cb The number of bytes to read.
2617 */
2618VMMDECL(int) PGMPhysSimpleReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2619{
2620 PVM pVM = pVCpu->CTX_SUFF(pVM);
2621
2622 /*
2623 * Treat the first page as a special case.
2624 */
2625 if (!cb)
2626 return VINF_SUCCESS;
2627
2628 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysSimpleRead));
2629 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_MID_Z(Stat,PhysSimpleReadBytes), cb);
2630
2631 /* Take the PGM lock here, because many called functions take the lock for a very short period. That's counter-productive
2632 * when many VCPUs are fighting for the lock.
2633 */
2634 pgmLock(pVM);
2635
2636 /* map the 1st page */
2637 void const *pvSrc;
2638 PGMPAGEMAPLOCK Lock;
2639 int rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
2640 if (RT_FAILURE(rc))
2641 {
2642 pgmUnlock(pVM);
2643 return rc;
2644 }
2645
2646 /* optimize for the case where access is completely within the first page. */
2647 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2648 if (RT_LIKELY(cb <= cbPage))
2649 {
2650 memcpy(pvDst, pvSrc, cb);
2651 PGMPhysReleasePageMappingLock(pVM, &Lock);
2652 pgmUnlock(pVM);
2653 return VINF_SUCCESS;
2654 }
2655
2656 /* copy to the end of the page. */
2657 memcpy(pvDst, pvSrc, cbPage);
2658 PGMPhysReleasePageMappingLock(pVM, &Lock);
2659 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
2660 pvDst = (uint8_t *)pvDst + cbPage;
2661 cb -= cbPage;
2662
2663 /*
2664 * Page by page.
2665 */
2666 for (;;)
2667 {
2668 /* map the page */
2669 rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
2670 if (RT_FAILURE(rc))
2671 {
2672 pgmUnlock(pVM);
2673 return rc;
2674 }
2675
2676 /* last page? */
2677 if (cb <= PAGE_SIZE)
2678 {
2679 memcpy(pvDst, pvSrc, cb);
2680 PGMPhysReleasePageMappingLock(pVM, &Lock);
2681 pgmUnlock(pVM);
2682 return VINF_SUCCESS;
2683 }
2684
2685 /* copy the entire page and advance */
2686 memcpy(pvDst, pvSrc, PAGE_SIZE);
2687 PGMPhysReleasePageMappingLock(pVM, &Lock);
2688 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
2689 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
2690 cb -= PAGE_SIZE;
2691 }
2692 /* won't ever get here. */
2693}
2694
2695
2696/**
2697 * Write to guest physical memory referenced by GC pointer.
2698 *
2699 * This function uses the current CR3/CR0/CR4 of the guest and will
2700 * bypass access handlers and not set dirty or accessed bits.
2701 *
2702 * @returns VBox status.
2703 * @param pVCpu The VMCPU handle.
2704 * @param GCPtrDst The destination address (GC pointer).
2705 * @param pvSrc The source address.
2706 * @param cb The number of bytes to write.
2707 */
2708VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2709{
2710 PVM pVM = pVCpu->CTX_SUFF(pVM);
2711
2712 /*
2713 * Treat the first page as a special case.
2714 */
2715 if (!cb)
2716 return VINF_SUCCESS;
2717
2718 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysSimpleWrite));
2719 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_MID_Z(Stat,PhysSimpleWriteBytes), cb);
2720
2721 /* map the 1st page */
2722 void *pvDst;
2723 PGMPAGEMAPLOCK Lock;
2724 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
2725 if (RT_FAILURE(rc))
2726 return rc;
2727
2728 /* optimize for the case where access is completely within the first page. */
2729 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2730 if (RT_LIKELY(cb <= cbPage))
2731 {
2732 memcpy(pvDst, pvSrc, cb);
2733 PGMPhysReleasePageMappingLock(pVM, &Lock);
2734 return VINF_SUCCESS;
2735 }
2736
2737 /* copy to the end of the page. */
2738 memcpy(pvDst, pvSrc, cbPage);
2739 PGMPhysReleasePageMappingLock(pVM, &Lock);
2740 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
2741 pvSrc = (const uint8_t *)pvSrc + cbPage;
2742 cb -= cbPage;
2743
2744 /*
2745 * Page by page.
2746 */
2747 for (;;)
2748 {
2749 /* map the page */
2750 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
2751 if (RT_FAILURE(rc))
2752 return rc;
2753
2754 /* last page? */
2755 if (cb <= PAGE_SIZE)
2756 {
2757 memcpy(pvDst, pvSrc, cb);
2758 PGMPhysReleasePageMappingLock(pVM, &Lock);
2759 return VINF_SUCCESS;
2760 }
2761
2762 /* copy the entire page and advance */
2763 memcpy(pvDst, pvSrc, PAGE_SIZE);
2764 PGMPhysReleasePageMappingLock(pVM, &Lock);
2765 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
2766 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2767 cb -= PAGE_SIZE;
2768 }
2769 /* won't ever get here. */
2770}
2771
2772
2773/**
2774 * Write to guest physical memory referenced by GC pointer and update the PTE.
2775 *
2776 * This function uses the current CR3/CR0/CR4 of the guest and will
2777 * bypass access handlers but will set any dirty and accessed bits in the PTE.
2778 *
2779 * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
2780 *
2781 * @returns VBox status.
2782 * @param pVCpu The VMCPU handle.
2783 * @param GCPtrDst The destination address (GC pointer).
2784 * @param pvSrc The source address.
2785 * @param cb The number of bytes to write.
2786 */
2787VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2788{
2789 PVM pVM = pVCpu->CTX_SUFF(pVM);
2790
2791 /*
2792 * Treat the first page as a special case.
2793 * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
2794 */
2795 if (!cb)
2796 return VINF_SUCCESS;
2797
2798 /* map the 1st page */
2799 void *pvDst;
2800 PGMPAGEMAPLOCK Lock;
2801 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
2802 if (RT_FAILURE(rc))
2803 return rc;
2804
2805 /* optimize for the case where access is completely within the first page. */
2806 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2807 if (RT_LIKELY(cb <= cbPage))
2808 {
2809 memcpy(pvDst, pvSrc, cb);
2810 PGMPhysReleasePageMappingLock(pVM, &Lock);
2811 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2812 return VINF_SUCCESS;
2813 }
2814
2815 /* copy to the end of the page. */
2816 memcpy(pvDst, pvSrc, cbPage);
2817 PGMPhysReleasePageMappingLock(pVM, &Lock);
2818 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2819 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
2820 pvSrc = (const uint8_t *)pvSrc + cbPage;
2821 cb -= cbPage;
2822
2823 /*
2824 * Page by page.
2825 */
2826 for (;;)
2827 {
2828 /* map the page */
2829 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
2830 if (RT_FAILURE(rc))
2831 return rc;
2832
2833 /* last page? */
2834 if (cb <= PAGE_SIZE)
2835 {
2836 memcpy(pvDst, pvSrc, cb);
2837 PGMPhysReleasePageMappingLock(pVM, &Lock);
2838 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2839 return VINF_SUCCESS;
2840 }
2841
2842 /* copy the entire page and advance */
2843 memcpy(pvDst, pvSrc, PAGE_SIZE);
2844 PGMPhysReleasePageMappingLock(pVM, &Lock);
2845 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2846 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
2847 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2848 cb -= PAGE_SIZE;
2849 }
2850 /* won't ever get here. */
2851}
2852
2853
2854/**
2855 * Read from guest physical memory referenced by GC pointer.
2856 *
2857 * This function uses the current CR3/CR0/CR4 of the guest and will
2858 * respect access handlers and set accessed bits.
2859 *
2860 * @returns VBox status.
2861 * @param pVCpu The VMCPU handle.
2862 * @param pvDst The destination address.
2863 * @param GCPtrSrc The source address (GC pointer).
2864 * @param cb The number of bytes to read.
2865 * @thread The vCPU EMT.
2866 */
2867VMMDECL(int) PGMPhysReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2868{
2869 RTGCPHYS GCPhys;
2870 uint64_t fFlags;
2871 int rc;
2872 PVM pVM = pVCpu->CTX_SUFF(pVM);
2873
2874 /*
2875 * Anything to do?
2876 */
2877 if (!cb)
2878 return VINF_SUCCESS;
2879
2880 LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
2881
2882 /*
2883 * Optimize reads within a single page.
2884 */
2885 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2886 {
2887 /* Convert virtual to physical address + flags */
2888 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
2889 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
2890 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
2891
2892 /* mark the guest page as accessed. */
2893 if (!(fFlags & X86_PTE_A))
2894 {
2895 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2896 AssertRC(rc);
2897 }
2898
2899 return PGMPhysRead(pVM, GCPhys, pvDst, cb);
2900 }
2901
2902 /*
2903 * Page by page.
2904 */
2905 for (;;)
2906 {
2907 /* Convert virtual to physical address + flags */
2908 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
2909 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
2910 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
2911
2912 /* mark the guest page as accessed. */
2913 if (!(fFlags & X86_PTE_A))
2914 {
2915 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2916 AssertRC(rc);
2917 }
2918
2919 /* copy */
2920 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2921 rc = PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
2922 if (cbRead >= cb || RT_FAILURE(rc))
2923 return rc;
2924
2925 /* next */
2926 cb -= cbRead;
2927 pvDst = (uint8_t *)pvDst + cbRead;
2928 GCPtrSrc += cbRead;
2929 }
2930}
2931
2932
2933/**
2934 * Write to guest physical memory referenced by GC pointer.
2935 *
2936 * This function uses the current CR3/CR0/CR4 of the guest and will
2937 * respect access handlers and set dirty and accessed bits.
2938 *
2939 * @returns VBox status.
2940 * @retval VINF_SUCCESS.
2941 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
2942 *
2943 * @param pVCpu The VMCPU handle.
2944 * @param GCPtrDst The destination address (GC pointer).
2945 * @param pvSrc The source address.
2946 * @param cb The number of bytes to write.
2947 */
2948VMMDECL(int) PGMPhysWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2949{
2950 RTGCPHYS GCPhys;
2951 uint64_t fFlags;
2952 int rc;
2953 PVM pVM = pVCpu->CTX_SUFF(pVM);
2954
2955 /*
2956 * Anything to do?
2957 */
2958 if (!cb)
2959 return VINF_SUCCESS;
2960
2961 LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
2962
2963 /*
2964 * Optimize writes within a single page.
2965 */
2966 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2967 {
2968 /* Convert virtual to physical address + flags */
2969 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
2970 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
2971 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
2972
2973 /* Mention when we ignore X86_PTE_RW... */
2974 if (!(fFlags & X86_PTE_RW))
2975 Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
2976
2977 /* Mark the guest page as accessed and dirty if necessary. */
2978 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
2979 {
2980 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2981 AssertRC(rc);
2982 }
2983
2984 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2985 }
2986
2987 /*
2988 * Page by page.
2989 */
2990 for (;;)
2991 {
2992 /* Convert virtual to physical address + flags */
2993 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
2994 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
2995 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
2996
2997 /* Mention when we ignore X86_PTE_RW... */
2998 if (!(fFlags & X86_PTE_RW))
2999 Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3000
3001 /* Mark the guest page as accessed and dirty if necessary. */
3002 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3003 {
3004 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3005 AssertRC(rc);
3006 }
3007
3008 /* copy */
3009 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3010 rc = PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
3011 if (cbWrite >= cb || RT_FAILURE(rc))
3012 return rc;
3013
3014 /* next */
3015 cb -= cbWrite;
3016 pvSrc = (uint8_t *)pvSrc + cbWrite;
3017 GCPtrDst += cbWrite;
3018 }
3019}
3020
3021
3022/**
3023 * Performs a read of guest virtual memory for instruction emulation.
3024 *
3025 * This will check permissions, raise exceptions and update the access bits.
3026 *
3027 * The current implementation will bypass all access handlers. It may later be
3028 * changed to at least respect MMIO.
3029 *
3030 *
3031 * @returns VBox status code suitable to scheduling.
3032 * @retval VINF_SUCCESS if the read was performed successfully.
3033 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3034 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3035 *
3036 * @param pVCpu The VMCPU handle.
3037 * @param pCtxCore The context core.
3038 * @param pvDst Where to put the bytes we've read.
3039 * @param GCPtrSrc The source address.
3040 * @param cb The number of bytes to read. Not more than a page.
3041 *
3042 * @remark This function will dynamically map physical pages in GC. This may unmap
3043 * mappings done by the caller. Be careful!
3044 */
3045VMMDECL(int) PGMPhysInterpretedRead(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
3046{
3047 PVM pVM = pVCpu->CTX_SUFF(pVM);
3048 Assert(cb <= PAGE_SIZE);
3049
3050/** @todo r=bird: This isn't perfect!
3051 * -# It's not checking for reserved bits being 1.
3052 * -# It's not correctly dealing with the access bit.
3053 * -# It's not respecting MMIO memory or any other access handlers.
3054 */
3055 /*
3056 * 1. Translate virtual to physical. This may fault.
3057 * 2. Map the physical address.
3058 * 3. Do the read operation.
3059 * 4. Set access bits if required.
3060 */
3061 int rc;
3062 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3063 if (cb <= cb1)
3064 {
3065 /*
3066 * Not crossing pages.
3067 */
3068 RTGCPHYS GCPhys;
3069 uint64_t fFlags;
3070 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
3071 if (RT_SUCCESS(rc))
3072 {
3073 /** @todo we should check reserved bits ... */
3074 void *pvSrc;
3075 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
3076 switch (rc)
3077 {
3078 case VINF_SUCCESS:
3079 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
3080 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
3081 break;
3082 case VERR_PGM_PHYS_PAGE_RESERVED:
3083 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3084 memset(pvDst, 0, cb); /** @todo this is wrong, it should be 0xff */
3085 break;
3086 default:
3087 return rc;
3088 }
3089
3090 /** @todo access bit emulation isn't 100% correct. */
3091 if (!(fFlags & X86_PTE_A))
3092 {
3093 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3094 AssertRC(rc);
3095 }
3096 return VINF_SUCCESS;
3097 }
3098 }
3099 else
3100 {
3101 /*
3102 * Crosses pages.
3103 */
3104 size_t cb2 = cb - cb1;
3105 uint64_t fFlags1;
3106 RTGCPHYS GCPhys1;
3107 uint64_t fFlags2;
3108 RTGCPHYS GCPhys2;
3109 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
3110 if (RT_SUCCESS(rc))
3111 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
3112 if (RT_SUCCESS(rc))
3113 {
3114 /** @todo we should check reserved bits ... */
3115 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
3116 void *pvSrc1;
3117 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
3118 switch (rc)
3119 {
3120 case VINF_SUCCESS:
3121 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3122 break;
3123 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3124 memset(pvDst, 0, cb1); /** @todo this is wrong, it should be 0xff */
3125 break;
3126 default:
3127 return rc;
3128 }
3129
3130 void *pvSrc2;
3131 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
3132 switch (rc)
3133 {
3134 case VINF_SUCCESS:
3135 memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
3136 break;
3137 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3138 memset((uint8_t *)pvDst + cb1, 0, cb2); /** @todo this is wrong, it should be 0xff */
3139 break;
3140 default:
3141 return rc;
3142 }
3143
3144 if (!(fFlags1 & X86_PTE_A))
3145 {
3146 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3147 AssertRC(rc);
3148 }
3149 if (!(fFlags2 & X86_PTE_A))
3150 {
3151 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3152 AssertRC(rc);
3153 }
3154 return VINF_SUCCESS;
3155 }
3156 }
3157
3158 /*
3159 * Raise a #PF.
3160 */
3161 uint32_t uErr;
3162
3163 /* Get the current privilege level. */
3164 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore);
3165 switch (rc)
3166 {
3167 case VINF_SUCCESS:
3168 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3169 break;
3170
3171 case VERR_PAGE_NOT_PRESENT:
3172 case VERR_PAGE_TABLE_NOT_PRESENT:
3173 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3174 break;
3175
3176 default:
3177 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3178 return rc;
3179 }
3180 Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
3181 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3182}
3183
3184
3185/**
3186 * Performs a read of guest virtual memory for instruction emulation.
3187 *
3188 * This will check permissions, raise exceptions and update the access bits.
3189 *
3190 * The current implementation will bypass all access handlers. It may later be
3191 * changed to at least respect MMIO.
3192 *
3193 *
3194 * @returns VBox status code suitable to scheduling.
3195 * @retval VINF_SUCCESS if the read was performed successfully.
3196 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3197 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3198 *
3199 * @param pVCpu The VMCPU handle.
3200 * @param pCtxCore The context core.
3201 * @param pvDst Where to put the bytes we've read.
3202 * @param GCPtrSrc The source address.
3203 * @param cb The number of bytes to read. Not more than a page.
3204 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
3205 * an appropriate error status will be returned (no
3206 * informational at all).
3207 *
3208 *
3209 * @remarks Takes the PGM lock.
3210 * @remarks A page fault on the 2nd page of the access will be raised without
3211 * writing the bits on the first page since we're ASSUMING that the
3212 * caller is emulating an instruction access.
3213 * @remarks This function will dynamically map physical pages in GC. This may
3214 * unmap mappings done by the caller. Be careful!
3215 */
3216VMMDECL(int) PGMPhysInterpretedReadNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb, bool fRaiseTrap)
3217{
3218 PVM pVM = pVCpu->CTX_SUFF(pVM);
3219 Assert(cb <= PAGE_SIZE);
3220
3221 /*
3222 * 1. Translate virtual to physical. This may fault.
3223 * 2. Map the physical address.
3224 * 3. Do the read operation.
3225 * 4. Set access bits if required.
3226 */
3227 int rc;
3228 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3229 if (cb <= cb1)
3230 {
3231 /*
3232 * Not crossing pages.
3233 */
3234 RTGCPHYS GCPhys;
3235 uint64_t fFlags;
3236 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
3237 if (RT_SUCCESS(rc))
3238 {
3239 if (1) /** @todo we should check reserved bits ... */
3240 {
3241 const void *pvSrc;
3242 PGMPAGEMAPLOCK Lock;
3243 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &Lock);
3244 switch (rc)
3245 {
3246 case VINF_SUCCESS:
3247 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d\n",
3248 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb));
3249 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
3250 break;
3251 case VERR_PGM_PHYS_PAGE_RESERVED:
3252 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3253 memset(pvDst, 0xff, cb);
3254 break;
3255 default:
3256 AssertMsgFailed(("%Rrc\n", rc));
3257 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3258 return rc;
3259 }
3260 PGMPhysReleasePageMappingLock(pVM, &Lock);
3261
3262 if (!(fFlags & X86_PTE_A))
3263 {
3264 /** @todo access bit emulation isn't 100% correct. */
3265 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3266 AssertRC(rc);
3267 }
3268 return VINF_SUCCESS;
3269 }
3270 }
3271 }
3272 else
3273 {
3274 /*
3275 * Crosses pages.
3276 */
3277 size_t cb2 = cb - cb1;
3278 uint64_t fFlags1;
3279 RTGCPHYS GCPhys1;
3280 uint64_t fFlags2;
3281 RTGCPHYS GCPhys2;
3282 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
3283 if (RT_SUCCESS(rc))
3284 {
3285 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
3286 if (RT_SUCCESS(rc))
3287 {
3288 if (1) /** @todo we should check reserved bits ... */
3289 {
3290 const void *pvSrc;
3291 PGMPAGEMAPLOCK Lock;
3292 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc, &Lock);
3293 switch (rc)
3294 {
3295 case VINF_SUCCESS:
3296 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d [2]\n",
3297 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb1));
3298 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3299 PGMPhysReleasePageMappingLock(pVM, &Lock);
3300 break;
3301 case VERR_PGM_PHYS_PAGE_RESERVED:
3302 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3303 memset(pvDst, 0xff, cb1);
3304 break;
3305 default:
3306 AssertMsgFailed(("%Rrc\n", rc));
3307 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3308 return rc;
3309 }
3310
3311 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc, &Lock);
3312 switch (rc)
3313 {
3314 case VINF_SUCCESS:
3315 memcpy((uint8_t *)pvDst + cb1, pvSrc, cb2);
3316 PGMPhysReleasePageMappingLock(pVM, &Lock);
3317 break;
3318 case VERR_PGM_PHYS_PAGE_RESERVED:
3319 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3320 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
3321 break;
3322 default:
3323 AssertMsgFailed(("%Rrc\n", rc));
3324 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3325 return rc;
3326 }
3327
3328 if (!(fFlags1 & X86_PTE_A))
3329 {
3330 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3331 AssertRC(rc);
3332 }
3333 if (!(fFlags2 & X86_PTE_A))
3334 {
3335 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3336 AssertRC(rc);
3337 }
3338 return VINF_SUCCESS;
3339 }
3340 /* sort out which page */
3341 }
3342 else
3343 GCPtrSrc += cb1; /* fault on 2nd page */
3344 }
3345 }
3346
3347 /*
3348 * Raise a #PF if we're allowed to do that.
3349 */
3350 /* Calc the error bits. */
3351 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore);
3352 uint32_t uErr;
3353 switch (rc)
3354 {
3355 case VINF_SUCCESS:
3356 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3357 rc = VERR_ACCESS_DENIED;
3358 break;
3359
3360 case VERR_PAGE_NOT_PRESENT:
3361 case VERR_PAGE_TABLE_NOT_PRESENT:
3362 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3363 break;
3364
3365 default:
3366 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3367 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3368 return rc;
3369 }
3370 if (fRaiseTrap)
3371 {
3372 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrSrc, cb, uErr));
3373 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3374 }
3375 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrSrc, cb, uErr));
3376 return rc;
3377}
3378
3379
3380/**
3381 * Performs a write to guest virtual memory for instruction emulation.
3382 *
3383 * This will check permissions, raise exceptions and update the dirty and access
3384 * bits.
3385 *
3386 * @returns VBox status code suitable to scheduling.
3387 * @retval VINF_SUCCESS if the read was performed successfully.
3388 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3389 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3390 *
3391 * @param pVCpu The VMCPU handle.
3392 * @param pCtxCore The context core.
3393 * @param GCPtrDst The destination address.
3394 * @param pvSrc What to write.
3395 * @param cb The number of bytes to write. Not more than a page.
3396 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
3397 * an appropriate error status will be returned (no
3398 * informational at all).
3399 *
3400 * @remarks Takes the PGM lock.
3401 * @remarks A page fault on the 2nd page of the access will be raised without
3402 * writing the bits on the first page since we're ASSUMING that the
3403 * caller is emulating an instruction access.
3404 * @remarks This function will dynamically map physical pages in GC. This may
3405 * unmap mappings done by the caller. Be careful!
3406 */
3407VMMDECL(int) PGMPhysInterpretedWriteNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb, bool fRaiseTrap)
3408{
3409 Assert(cb <= PAGE_SIZE);
3410 PVM pVM = pVCpu->CTX_SUFF(pVM);
3411
3412 /*
3413 * 1. Translate virtual to physical. This may fault.
3414 * 2. Map the physical address.
3415 * 3. Do the write operation.
3416 * 4. Set access bits if required.
3417 */
3418 int rc;
3419 unsigned cb1 = PAGE_SIZE - (GCPtrDst & PAGE_OFFSET_MASK);
3420 if (cb <= cb1)
3421 {
3422 /*
3423 * Not crossing pages.
3424 */
3425 RTGCPHYS GCPhys;
3426 uint64_t fFlags;
3427 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags, &GCPhys);
3428 if (RT_SUCCESS(rc))
3429 {
3430 if ( (fFlags & X86_PTE_RW) /** @todo Also check reserved bits. */
3431 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
3432 && CPUMGetGuestCPL(pVCpu, pCtxCore) <= 2) ) /** @todo it's 2, right? Check cpl check below as well. */
3433 {
3434 void *pvDst;
3435 PGMPAGEMAPLOCK Lock;
3436 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, &pvDst, &Lock);
3437 switch (rc)
3438 {
3439 case VINF_SUCCESS:
3440 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
3441 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb));
3442 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb);
3443 PGMPhysReleasePageMappingLock(pVM, &Lock);
3444 break;
3445 case VERR_PGM_PHYS_PAGE_RESERVED:
3446 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3447 /* bit bucket */
3448 break;
3449 default:
3450 AssertMsgFailed(("%Rrc\n", rc));
3451 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3452 return rc;
3453 }
3454
3455 if (!(fFlags & (X86_PTE_A | X86_PTE_D)))
3456 {
3457 /** @todo dirty & access bit emulation isn't 100% correct. */
3458 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3459 AssertRC(rc);
3460 }
3461 return VINF_SUCCESS;
3462 }
3463 rc = VERR_ACCESS_DENIED;
3464 }
3465 }
3466 else
3467 {
3468 /*
3469 * Crosses pages.
3470 */
3471 size_t cb2 = cb - cb1;
3472 uint64_t fFlags1;
3473 RTGCPHYS GCPhys1;
3474 uint64_t fFlags2;
3475 RTGCPHYS GCPhys2;
3476 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags1, &GCPhys1);
3477 if (RT_SUCCESS(rc))
3478 {
3479 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst + cb1, &fFlags2, &GCPhys2);
3480 if (RT_SUCCESS(rc))
3481 {
3482 if ( ( (fFlags1 & X86_PTE_RW) /** @todo Also check reserved bits. */
3483 && (fFlags2 & X86_PTE_RW))
3484 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
3485 && CPUMGetGuestCPL(pVCpu, pCtxCore) <= 2) )
3486 {
3487 void *pvDst;
3488 PGMPAGEMAPLOCK Lock;
3489 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys1, &pvDst, &Lock);
3490 switch (rc)
3491 {
3492 case VINF_SUCCESS:
3493 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
3494 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb1));
3495 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb1);
3496 PGMPhysReleasePageMappingLock(pVM, &Lock);
3497 break;
3498 case VERR_PGM_PHYS_PAGE_RESERVED:
3499 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3500 /* bit bucket */
3501 break;
3502 default:
3503 AssertMsgFailed(("%Rrc\n", rc));
3504 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3505 return rc;
3506 }
3507
3508 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys2, &pvDst, &Lock);
3509 switch (rc)
3510 {
3511 case VINF_SUCCESS:
3512 memcpy(pvDst, (const uint8_t *)pvSrc + cb1, cb2);
3513 PGMPhysReleasePageMappingLock(pVM, &Lock);
3514 break;
3515 case VERR_PGM_PHYS_PAGE_RESERVED:
3516 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3517 /* bit bucket */
3518 break;
3519 default:
3520 AssertMsgFailed(("%Rrc\n", rc));
3521 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3522 return rc;
3523 }
3524
3525 if (!(fFlags1 & (X86_PTE_A | X86_PTE_RW)))
3526 {
3527 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
3528 AssertRC(rc);
3529 }
3530 if (!(fFlags2 & (X86_PTE_A | X86_PTE_RW)))
3531 {
3532 rc = PGMGstModifyPage(pVCpu, GCPtrDst + cb1, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
3533 AssertRC(rc);
3534 }
3535 return VINF_SUCCESS;
3536 }
3537 if ((fFlags1 & (X86_PTE_RW)) == X86_PTE_RW)
3538 GCPtrDst += cb1; /* fault on the 2nd page. */
3539 rc = VERR_ACCESS_DENIED;
3540 }
3541 else
3542 GCPtrDst += cb1; /* fault on the 2nd page. */
3543 }
3544 }
3545
3546 /*
3547 * Raise a #PF if we're allowed to do that.
3548 */
3549 /* Calc the error bits. */
3550 uint32_t uErr;
3551 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore);
3552 switch (rc)
3553 {
3554 case VINF_SUCCESS:
3555 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3556 rc = VERR_ACCESS_DENIED;
3557 break;
3558
3559 case VERR_ACCESS_DENIED:
3560 uErr = (cpl >= 2) ? X86_TRAP_PF_RW | X86_TRAP_PF_US : X86_TRAP_PF_RW;
3561 break;
3562
3563 case VERR_PAGE_NOT_PRESENT:
3564 case VERR_PAGE_TABLE_NOT_PRESENT:
3565 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3566 break;
3567
3568 default:
3569 AssertMsgFailed(("rc=%Rrc GCPtrDst=%RGv cb=%#x\n", rc, GCPtrDst, cb));
3570 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3571 return rc;
3572 }
3573 if (fRaiseTrap)
3574 {
3575 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrDst, cb, uErr));
3576 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrDst);
3577 }
3578 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrDst, cb, uErr));
3579 return rc;
3580}
3581
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette