VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 56634

Last change on this file since 56634 was 56634, checked in by vboxsync, 9 years ago

VGA MMIO write handler may return VINF_EM_RAW_EMULATE_INSTR as it turns out.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 163.8 KB
Line 
1/* $Id: PGMAllPhys.cpp 56634 2015-06-25 11:05:39Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_PGM_PHYS
22#include <VBox/vmm/pgm.h>
23#include <VBox/vmm/trpm.h>
24#include <VBox/vmm/vmm.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/em.h>
27#ifdef VBOX_WITH_REM
28# include <VBox/vmm/rem.h>
29#endif
30#include "PGMInternal.h"
31#include <VBox/vmm/vm.h>
32#include "PGMInline.h"
33#include <VBox/param.h>
34#include <VBox/err.h>
35#include <iprt/assert.h>
36#include <iprt/string.h>
37#include <iprt/asm-amd64-x86.h>
38#include <VBox/log.h>
39#ifdef IN_RING3
40# include <iprt/thread.h>
41#endif
42
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47/** Enable the physical TLB. */
48#define PGM_WITH_PHYS_TLB
49
50/** @def PGM_HANDLER_PHYS_IS_VALID_STATUS
51 * Checks if valid physical access handler return code (normal handler, not PF).
52 *
53 * Checks if the given strict status code is one of the expected ones for a
54 * physical access handler in the current context.
55 *
56 * @returns true or false.
57 * @param a_rcStrict The status code.
58 * @param a_fWrite Whether it is a write or read being serviced.
59 *
60 * @remarks We wish to keep the list of statuses here as short as possible.
61 * When changing, please make sure to update the PGMPhysRead,
62 * PGMPhysWrite, PGMPhysReadGCPtr and PGMPhysWriteGCPtr docs too.
63 */
64#ifdef IN_RING3
65# define PGM_HANDLER_PHYS_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
66 ( (a_rcStrict) == VINF_SUCCESS \
67 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT)
68#elif defined(IN_RING0) || defined(IN_RC)
69# define PGM_HANDLER_PHYS_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
70 ( (a_rcStrict) == VINF_SUCCESS \
71 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT \
72 \
73 || (a_rcStrict) == ((a_fWrite) ? VINF_IOM_R3_MMIO_WRITE : VINF_IOM_R3_MMIO_READ) \
74 || (a_rcStrict) == VINF_IOM_R3_MMIO_READ_WRITE \
75 \
76 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_IO_BLOCK : false) \
77 \
78 || (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR \
79 || (a_rcStrict) == VINF_EM_DBG_STOP \
80 || (a_rcStrict) == VINF_EM_DBG_BREAKPOINT \
81 || (a_rcStrict) == VINF_EM_OFF \
82 || (a_rcStrict) == VINF_EM_SUSPEND \
83 || (a_rcStrict) == VINF_EM_RESET \
84 )
85#else
86# error "Context?"
87#endif
88
89/** @def PGM_HANDLER_VIRT_IS_VALID_STATUS
90 * Checks if valid virtual access handler return code (normal handler, not PF).
91 *
92 * Checks if the given strict status code is one of the expected ones for a
93 * virtual access handler in the current context.
94 *
95 * @returns true or false.
96 * @param a_rcStrict The status code.
97 * @param a_fWrite Whether it is a write or read being serviced.
98 *
99 * @remarks We wish to keep the list of statuses here as short as possible.
100 * When changing, please make sure to update the PGMPhysRead,
101 * PGMPhysWrite, PGMPhysReadGCPtr and PGMPhysWriteGCPtr docs too.
102 */
103#ifdef IN_RING3
104# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
105 ( (a_rcStrict) == VINF_SUCCESS \
106 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT)
107#elif defined(IN_RING0)
108# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
109 (false /* no virtual handlers in ring-0! */ )
110#elif defined(IN_RC)
111# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
112 ( (a_rcStrict) == VINF_SUCCESS \
113 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT \
114 \
115 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT : 0) \
116 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT : 0) \
117 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT : 0) \
118 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT : 0) \
119 || ((a_fWrite) ? (a_rcStrict) == VINF_SELM_SYNC_GDT : 0) \
120 || ((a_fWrite) ? (a_rcStrict) == VINF_CSAM_PENDING_ACTION : 0) \
121 || (a_rcStrict) == VINF_PATM_CHECK_PATCH_PAGE \
122 \
123 || (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR \
124 || (a_rcStrict) == VINF_EM_DBG_STOP \
125 || (a_rcStrict) == VINF_EM_DBG_BREAKPOINT \
126 )
127#else
128# error "Context?"
129#endif
130
131
132
133#ifndef IN_RING3
134
135/**
136 * @callback_method_impl{FNPGMPHYSHANDLER,
137 * Dummy for forcing ring-3 handling of the access.}
138 */
139DECLEXPORT(VBOXSTRICTRC)
140pgmPhysHandlerRedirectToHC(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
141 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
142{
143 NOREF(pVM); NOREF(pVCpu); NOREF(GCPhys); NOREF(pvPhys); NOREF(pvBuf); NOREF(cbBuf);
144 NOREF(enmAccessType); NOREF(enmOrigin); NOREF(pvUser);
145 return VINF_EM_RAW_EMULATE_INSTR;
146}
147
148
149/**
150 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
151 * Dummy for forcing ring-3 handling of the access.}
152 */
153VMMDECL(VBOXSTRICTRC) pgmPhysPfHandlerRedirectToHC(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
154 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
155{
156 NOREF(pVM); NOREF(pVCpu); NOREF(uErrorCode); NOREF(pRegFrame); NOREF(pvFault); NOREF(GCPhysFault); NOREF(pvUser);
157 return VINF_EM_RAW_EMULATE_INSTR;
158}
159
160
161/**
162 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
163 * \#PF access handler callback for guest ROM range write access.}
164 *
165 * @remarks The @a pvUser argument points to the PGMROMRANGE.
166 */
167DECLEXPORT(VBOXSTRICTRC) pgmPhysRomWritePfHandler(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
168 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
169{
170 int rc;
171 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
172 uint32_t iPage = (GCPhysFault - pRom->GCPhys) >> PAGE_SHIFT;
173 NOREF(uErrorCode); NOREF(pvFault);
174
175 Assert(uErrorCode & X86_TRAP_PF_RW); /* This shall not be used for read access! */
176
177 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
178 switch (pRom->aPages[iPage].enmProt)
179 {
180 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
181 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
182 {
183 /*
184 * If it's a simple instruction which doesn't change the cpu state
185 * we will simply skip it. Otherwise we'll have to defer it to REM.
186 */
187 uint32_t cbOp;
188 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
189 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
190 if ( RT_SUCCESS(rc)
191 && pDis->uCpuMode == DISCPUMODE_32BIT /** @todo why does this matter? */
192 && !(pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP | DISPREFIX_SEG)))
193 {
194 switch (pDis->bOpCode)
195 {
196 /** @todo Find other instructions we can safely skip, possibly
197 * adding this kind of detection to DIS or EM. */
198 case OP_MOV:
199 pRegFrame->rip += cbOp;
200 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteHandled);
201 return VINF_SUCCESS;
202 }
203 }
204 break;
205 }
206
207 case PGMROMPROT_READ_RAM_WRITE_RAM:
208 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
209 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
210 AssertRC(rc);
211 break; /** @todo Must edit the shadow PT and restart the instruction, not use the interpreter! */
212
213 case PGMROMPROT_READ_ROM_WRITE_RAM:
214 /* Handle it in ring-3 because it's *way* easier there. */
215 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
216 break;
217
218 default:
219 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
220 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
221 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
222 }
223
224 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteUnhandled);
225 return VINF_EM_RAW_EMULATE_INSTR;
226}
227
228#endif /* !IN_RING3 */
229
230
231/**
232 * @callback_method_impl{FNPGMPHYSHANDLER,
233 * Access handler callback for ROM write accesses.}
234 *
235 * @remarks The @a pvUser argument points to the PGMROMRANGE.
236 */
237PGM_ALL_CB2_DECL(VBOXSTRICTRC)
238pgmPhysRomWriteHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
239 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
240{
241 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
242 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
243 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
244 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
245 Log5(("pgmPhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
246 NOREF(pVCpu); NOREF(pvPhys); NOREF(enmOrigin);
247
248 if (enmAccessType == PGMACCESSTYPE_READ)
249 {
250 switch (pRomPage->enmProt)
251 {
252 /*
253 * Take the default action.
254 */
255 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
256 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
257 case PGMROMPROT_READ_ROM_WRITE_RAM:
258 case PGMROMPROT_READ_RAM_WRITE_RAM:
259 return VINF_PGM_HANDLER_DO_DEFAULT;
260
261 default:
262 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
263 pRom->aPages[iPage].enmProt, iPage, GCPhys),
264 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
265 }
266 }
267 else
268 {
269 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
270 switch (pRomPage->enmProt)
271 {
272 /*
273 * Ignore writes.
274 */
275 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
276 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
277 return VINF_SUCCESS;
278
279 /*
280 * Write to the RAM page.
281 */
282 case PGMROMPROT_READ_ROM_WRITE_RAM:
283 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
284 {
285 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
286 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
287
288 /*
289 * Take the lock, do lazy allocation, map the page and copy the data.
290 *
291 * Note that we have to bypass the mapping TLB since it works on
292 * guest physical addresses and entering the shadow page would
293 * kind of screw things up...
294 */
295 int rc = pgmLock(pVM);
296 AssertRC(rc);
297
298 PPGMPAGE pShadowPage = &pRomPage->Shadow;
299 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
300 {
301 pShadowPage = pgmPhysGetPage(pVM, GCPhys);
302 AssertLogRelReturn(pShadowPage, VERR_PGM_PHYS_PAGE_GET_IPE);
303 }
304
305 void *pvDstPage;
306 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
307 if (RT_SUCCESS(rc))
308 {
309 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
310 pRomPage->LiveSave.fWrittenTo = true;
311
312 AssertMsg( rc == VINF_SUCCESS
313 || ( rc == VINF_PGM_SYNC_CR3
314 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
315 , ("%Rrc\n", rc));
316 rc = VINF_SUCCESS;
317 }
318
319 pgmUnlock(pVM);
320 return rc;
321 }
322
323 default:
324 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
325 pRom->aPages[iPage].enmProt, iPage, GCPhys),
326 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
327 }
328 }
329}
330
331
332/**
333 * Invalidates the RAM range TLBs.
334 *
335 * @param pVM Pointer to the VM.
336 */
337void pgmPhysInvalidRamRangeTlbs(PVM pVM)
338{
339 pgmLock(pVM);
340 for (uint32_t i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
341 {
342 pVM->pgm.s.apRamRangesTlbR3[i] = NIL_RTR3PTR;
343 pVM->pgm.s.apRamRangesTlbR0[i] = NIL_RTR0PTR;
344 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
345 }
346 pgmUnlock(pVM);
347}
348
349
350/**
351 * Tests if a value of type RTGCPHYS is negative if the type had been signed
352 * instead of unsigned.
353 *
354 * @returns @c true if negative, @c false if positive or zero.
355 * @param a_GCPhys The value to test.
356 * @todo Move me to iprt/types.h.
357 */
358#define RTGCPHYS_IS_NEGATIVE(a_GCPhys) ((a_GCPhys) & ((RTGCPHYS)1 << (sizeof(RTGCPHYS)*8 - 1)))
359
360
361/**
362 * Slow worker for pgmPhysGetRange.
363 *
364 * @copydoc pgmPhysGetRange
365 */
366PPGMRAMRANGE pgmPhysGetRangeSlow(PVM pVM, RTGCPHYS GCPhys)
367{
368 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
369
370 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
371 while (pRam)
372 {
373 RTGCPHYS off = GCPhys - pRam->GCPhys;
374 if (off < pRam->cb)
375 {
376 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
377 return pRam;
378 }
379 if (RTGCPHYS_IS_NEGATIVE(off))
380 pRam = pRam->CTX_SUFF(pLeft);
381 else
382 pRam = pRam->CTX_SUFF(pRight);
383 }
384 return NULL;
385}
386
387
388/**
389 * Slow worker for pgmPhysGetRangeAtOrAbove.
390 *
391 * @copydoc pgmPhysGetRangeAtOrAbove
392 */
393PPGMRAMRANGE pgmPhysGetRangeAtOrAboveSlow(PVM pVM, RTGCPHYS GCPhys)
394{
395 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
396
397 PPGMRAMRANGE pLastLeft = NULL;
398 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
399 while (pRam)
400 {
401 RTGCPHYS off = GCPhys - pRam->GCPhys;
402 if (off < pRam->cb)
403 {
404 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
405 return pRam;
406 }
407 if (RTGCPHYS_IS_NEGATIVE(off))
408 {
409 pLastLeft = pRam;
410 pRam = pRam->CTX_SUFF(pLeft);
411 }
412 else
413 pRam = pRam->CTX_SUFF(pRight);
414 }
415 return pLastLeft;
416}
417
418
419/**
420 * Slow worker for pgmPhysGetPage.
421 *
422 * @copydoc pgmPhysGetPage
423 */
424PPGMPAGE pgmPhysGetPageSlow(PVM pVM, RTGCPHYS GCPhys)
425{
426 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
427
428 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
429 while (pRam)
430 {
431 RTGCPHYS off = GCPhys - pRam->GCPhys;
432 if (off < pRam->cb)
433 {
434 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
435 return &pRam->aPages[off >> PAGE_SHIFT];
436 }
437
438 if (RTGCPHYS_IS_NEGATIVE(off))
439 pRam = pRam->CTX_SUFF(pLeft);
440 else
441 pRam = pRam->CTX_SUFF(pRight);
442 }
443 return NULL;
444}
445
446
447/**
448 * Slow worker for pgmPhysGetPageEx.
449 *
450 * @copydoc pgmPhysGetPageEx
451 */
452int pgmPhysGetPageExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
453{
454 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
455
456 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
457 while (pRam)
458 {
459 RTGCPHYS off = GCPhys - pRam->GCPhys;
460 if (off < pRam->cb)
461 {
462 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
463 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
464 return VINF_SUCCESS;
465 }
466
467 if (RTGCPHYS_IS_NEGATIVE(off))
468 pRam = pRam->CTX_SUFF(pLeft);
469 else
470 pRam = pRam->CTX_SUFF(pRight);
471 }
472
473 *ppPage = NULL;
474 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
475}
476
477
478/**
479 * Slow worker for pgmPhysGetPageAndRangeEx.
480 *
481 * @copydoc pgmPhysGetPageAndRangeEx
482 */
483int pgmPhysGetPageAndRangeExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
484{
485 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
486
487 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
488 while (pRam)
489 {
490 RTGCPHYS off = GCPhys - pRam->GCPhys;
491 if (off < pRam->cb)
492 {
493 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
494 *ppRam = pRam;
495 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
496 return VINF_SUCCESS;
497 }
498
499 if (RTGCPHYS_IS_NEGATIVE(off))
500 pRam = pRam->CTX_SUFF(pLeft);
501 else
502 pRam = pRam->CTX_SUFF(pRight);
503 }
504
505 *ppRam = NULL;
506 *ppPage = NULL;
507 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
508}
509
510
511/**
512 * Checks if Address Gate 20 is enabled or not.
513 *
514 * @returns true if enabled.
515 * @returns false if disabled.
516 * @param pVCpu Pointer to the VMCPU.
517 */
518VMMDECL(bool) PGMPhysIsA20Enabled(PVMCPU pVCpu)
519{
520 LogFlow(("PGMPhysIsA20Enabled %d\n", pVCpu->pgm.s.fA20Enabled));
521 return pVCpu->pgm.s.fA20Enabled;
522}
523
524
525/**
526 * Validates a GC physical address.
527 *
528 * @returns true if valid.
529 * @returns false if invalid.
530 * @param pVM Pointer to the VM.
531 * @param GCPhys The physical address to validate.
532 */
533VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
534{
535 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
536 return pPage != NULL;
537}
538
539
540/**
541 * Checks if a GC physical address is a normal page,
542 * i.e. not ROM, MMIO or reserved.
543 *
544 * @returns true if normal.
545 * @returns false if invalid, ROM, MMIO or reserved page.
546 * @param pVM Pointer to the VM.
547 * @param GCPhys The physical address to check.
548 */
549VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
550{
551 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
552 return pPage
553 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM;
554}
555
556
557/**
558 * Converts a GC physical address to a HC physical address.
559 *
560 * @returns VINF_SUCCESS on success.
561 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
562 * page but has no physical backing.
563 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
564 * GC physical address.
565 *
566 * @param pVM Pointer to the VM.
567 * @param GCPhys The GC physical address to convert.
568 * @param pHCPhys Where to store the HC physical address on success.
569 */
570VMM_INT_DECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
571{
572 pgmLock(pVM);
573 PPGMPAGE pPage;
574 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
575 if (RT_SUCCESS(rc))
576 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
577 pgmUnlock(pVM);
578 return rc;
579}
580
581
582/**
583 * Invalidates all page mapping TLBs.
584 *
585 * @param pVM Pointer to the VM.
586 */
587void pgmPhysInvalidatePageMapTLB(PVM pVM)
588{
589 pgmLock(pVM);
590 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushes);
591
592 /* Clear the shared R0/R3 TLB completely. */
593 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
594 {
595 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
596 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
597 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
598 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
599 }
600
601 /** @todo clear the RC TLB whenever we add it. */
602
603 pgmUnlock(pVM);
604}
605
606
607/**
608 * Invalidates a page mapping TLB entry
609 *
610 * @param pVM Pointer to the VM.
611 * @param GCPhys GCPhys entry to flush
612 */
613void pgmPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys)
614{
615 PGM_LOCK_ASSERT_OWNER(pVM);
616
617 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushEntry);
618
619#ifdef IN_RC
620 unsigned idx = PGM_PAGER3MAPTLB_IDX(GCPhys);
621 pVM->pgm.s.PhysTlbHC.aEntries[idx].GCPhys = NIL_RTGCPHYS;
622 pVM->pgm.s.PhysTlbHC.aEntries[idx].pPage = 0;
623 pVM->pgm.s.PhysTlbHC.aEntries[idx].pMap = 0;
624 pVM->pgm.s.PhysTlbHC.aEntries[idx].pv = 0;
625#else
626 /* Clear the shared R0/R3 TLB entry. */
627 PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
628 pTlbe->GCPhys = NIL_RTGCPHYS;
629 pTlbe->pPage = 0;
630 pTlbe->pMap = 0;
631 pTlbe->pv = 0;
632#endif
633
634 /** @todo clear the RC TLB whenever we add it. */
635}
636
637/**
638 * Makes sure that there is at least one handy page ready for use.
639 *
640 * This will also take the appropriate actions when reaching water-marks.
641 *
642 * @returns VBox status code.
643 * @retval VINF_SUCCESS on success.
644 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
645 *
646 * @param pVM Pointer to the VM.
647 *
648 * @remarks Must be called from within the PGM critical section. It may
649 * nip back to ring-3/0 in some cases.
650 */
651static int pgmPhysEnsureHandyPage(PVM pVM)
652{
653 AssertMsg(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", pVM->pgm.s.cHandyPages));
654
655 /*
656 * Do we need to do anything special?
657 */
658#ifdef IN_RING3
659 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_R3_ALLOC))
660#else
661 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_RZ_TO_R3))
662#endif
663 {
664 /*
665 * Allocate pages only if we're out of them, or in ring-3, almost out.
666 */
667#ifdef IN_RING3
668 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_R3_ALLOC)
669#else
670 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_ALLOC)
671#endif
672 {
673 Log(("PGM: cHandyPages=%u out of %u -> allocate more; VM_FF_PGM_NO_MEMORY=%RTbool\n",
674 pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages), VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY) ));
675#ifdef IN_RING3
676 int rc = PGMR3PhysAllocateHandyPages(pVM);
677#else
678 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES, 0);
679#endif
680 if (RT_UNLIKELY(rc != VINF_SUCCESS))
681 {
682 if (RT_FAILURE(rc))
683 return rc;
684 AssertMsgReturn(rc == VINF_EM_NO_MEMORY, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
685 if (!pVM->pgm.s.cHandyPages)
686 {
687 LogRel(("PGM: no more handy pages!\n"));
688 return VERR_EM_NO_MEMORY;
689 }
690 Assert(VM_FF_IS_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
691 Assert(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY));
692#ifdef IN_RING3
693# ifdef VBOX_WITH_REM
694 REMR3NotifyFF(pVM);
695# endif
696#else
697 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); /* paranoia */
698#endif
699 }
700 AssertMsgReturn( pVM->pgm.s.cHandyPages > 0
701 && pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages),
702 ("%u\n", pVM->pgm.s.cHandyPages),
703 VERR_PGM_HANDY_PAGE_IPE);
704 }
705 else
706 {
707 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_SET_FF)
708 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
709#ifndef IN_RING3
710 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_TO_R3)
711 {
712 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
713 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
714 }
715#endif
716 }
717 }
718
719 return VINF_SUCCESS;
720}
721
722
723/**
724 * Replace a zero or shared page with new page that we can write to.
725 *
726 * @returns The following VBox status codes.
727 * @retval VINF_SUCCESS on success, pPage is modified.
728 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
729 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
730 *
731 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
732 *
733 * @param pVM Pointer to the VM.
734 * @param pPage The physical page tracking structure. This will
735 * be modified on success.
736 * @param GCPhys The address of the page.
737 *
738 * @remarks Must be called from within the PGM critical section. It may
739 * nip back to ring-3/0 in some cases.
740 *
741 * @remarks This function shouldn't really fail, however if it does
742 * it probably means we've screwed up the size of handy pages and/or
743 * the low-water mark. Or, that some device I/O is causing a lot of
744 * pages to be allocated while while the host is in a low-memory
745 * condition. This latter should be handled elsewhere and in a more
746 * controlled manner, it's on the @bugref{3170} todo list...
747 */
748int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
749{
750 LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys));
751
752 /*
753 * Prereqs.
754 */
755 PGM_LOCK_ASSERT_OWNER(pVM);
756 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
757 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage));
758
759# ifdef PGM_WITH_LARGE_PAGES
760 /*
761 * Try allocate a large page if applicable.
762 */
763 if ( PGMIsUsingLargePages(pVM)
764 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
765 {
766 RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
767 PPGMPAGE pBasePage;
768
769 int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pBasePage);
770 AssertRCReturn(rc, rc); /* paranoia; can't happen. */
771 if (PGM_PAGE_GET_PDE_TYPE(pBasePage) == PGM_PAGE_PDE_TYPE_DONTCARE)
772 {
773 rc = pgmPhysAllocLargePage(pVM, GCPhys);
774 if (rc == VINF_SUCCESS)
775 return rc;
776 }
777 /* Mark the base as type page table, so we don't check over and over again. */
778 PGM_PAGE_SET_PDE_TYPE(pVM, pBasePage, PGM_PAGE_PDE_TYPE_PT);
779
780 /* fall back to 4KB pages. */
781 }
782# endif
783
784 /*
785 * Flush any shadow page table mappings of the page.
786 * When VBOX_WITH_NEW_LAZY_PAGE_ALLOC isn't defined, there shouldn't be any.
787 */
788 bool fFlushTLBs = false;
789 int rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhys, pPage, true /*fFlushTLBs*/, &fFlushTLBs);
790 AssertMsgReturn(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc), RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_STATUS);
791
792 /*
793 * Ensure that we've got a page handy, take it and use it.
794 */
795 int rc2 = pgmPhysEnsureHandyPage(pVM);
796 if (RT_FAILURE(rc2))
797 {
798 if (fFlushTLBs)
799 PGM_INVL_ALL_VCPU_TLBS(pVM);
800 Assert(rc2 == VERR_EM_NO_MEMORY);
801 return rc2;
802 }
803 /* re-assert preconditions since pgmPhysEnsureHandyPage may do a context switch. */
804 PGM_LOCK_ASSERT_OWNER(pVM);
805 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
806 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage));
807
808 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
809 AssertMsg(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", iHandyPage));
810 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
811 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
812 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
813 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
814
815 /*
816 * There are one or two action to be taken the next time we allocate handy pages:
817 * - Tell the GMM (global memory manager) what the page is being used for.
818 * (Speeds up replacement operations - sharing and defragmenting.)
819 * - If the current backing is shared, it must be freed.
820 */
821 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
822 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
823
824 void const *pvSharedPage = NULL;
825 if (PGM_PAGE_IS_SHARED(pPage))
826 {
827 /* Mark this shared page for freeing/dereferencing. */
828 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
829 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
830
831 Log(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
832 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
833 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageReplaceShared));
834 pVM->pgm.s.cSharedPages--;
835
836 /* Grab the address of the page so we can make a copy later on. (safe) */
837 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvSharedPage);
838 AssertRC(rc);
839 }
840 else
841 {
842 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
843 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
844 pVM->pgm.s.cZeroPages--;
845 }
846
847 /*
848 * Do the PGMPAGE modifications.
849 */
850 pVM->pgm.s.cPrivatePages++;
851 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
852 PGM_PAGE_SET_PAGEID(pVM, pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
853 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
854 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PT);
855 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
856
857 /* Copy the shared page contents to the replacement page. */
858 if (pvSharedPage)
859 {
860 /* Get the virtual address of the new page. */
861 PGMPAGEMAPLOCK PgMpLck;
862 void *pvNewPage;
863 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvNewPage, &PgMpLck); AssertRC(rc);
864 if (RT_SUCCESS(rc))
865 {
866 memcpy(pvNewPage, pvSharedPage, PAGE_SIZE); /** @todo todo write ASMMemCopyPage */
867 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
868 }
869 }
870
871 if ( fFlushTLBs
872 && rc != VINF_PGM_GCPHYS_ALIASED)
873 PGM_INVL_ALL_VCPU_TLBS(pVM);
874 return rc;
875}
876
877#ifdef PGM_WITH_LARGE_PAGES
878
879/**
880 * Replace a 2 MB range of zero pages with new pages that we can write to.
881 *
882 * @returns The following VBox status codes.
883 * @retval VINF_SUCCESS on success, pPage is modified.
884 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
885 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
886 *
887 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
888 *
889 * @param pVM Pointer to the VM.
890 * @param GCPhys The address of the page.
891 *
892 * @remarks Must be called from within the PGM critical section. It may
893 * nip back to ring-3/0 in some cases.
894 */
895int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys)
896{
897 RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
898 LogFlow(("pgmPhysAllocLargePage: %RGp base %RGp\n", GCPhys, GCPhysBase));
899
900 /*
901 * Prereqs.
902 */
903 PGM_LOCK_ASSERT_OWNER(pVM);
904 Assert(PGMIsUsingLargePages(pVM));
905
906 PPGMPAGE pFirstPage;
907 int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pFirstPage);
908 if ( RT_SUCCESS(rc)
909 && PGM_PAGE_GET_TYPE(pFirstPage) == PGMPAGETYPE_RAM)
910 {
911 unsigned uPDEType = PGM_PAGE_GET_PDE_TYPE(pFirstPage);
912
913 /* Don't call this function for already allocated pages. */
914 Assert(uPDEType != PGM_PAGE_PDE_TYPE_PDE);
915
916 if ( uPDEType == PGM_PAGE_PDE_TYPE_DONTCARE
917 && PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ZERO)
918 {
919 /* Lazy approach: check all pages in the 2 MB range.
920 * The whole range must be ram and unallocated. */
921 GCPhys = GCPhysBase;
922 unsigned iPage;
923 for (iPage = 0; iPage < _2M/PAGE_SIZE; iPage++)
924 {
925 PPGMPAGE pSubPage;
926 rc = pgmPhysGetPageEx(pVM, GCPhys, &pSubPage);
927 if ( RT_FAILURE(rc)
928 || PGM_PAGE_GET_TYPE(pSubPage) != PGMPAGETYPE_RAM /* Anything other than ram implies monitoring. */
929 || PGM_PAGE_GET_STATE(pSubPage) != PGM_PAGE_STATE_ZERO) /* Allocated, monitored or shared means we can't use a large page here */
930 {
931 LogFlow(("Found page %RGp with wrong attributes (type=%d; state=%d); cancel check. rc=%d\n", GCPhys, PGM_PAGE_GET_TYPE(pSubPage), PGM_PAGE_GET_STATE(pSubPage), rc));
932 break;
933 }
934 Assert(PGM_PAGE_GET_PDE_TYPE(pSubPage) == PGM_PAGE_PDE_TYPE_DONTCARE);
935 GCPhys += PAGE_SIZE;
936 }
937 if (iPage != _2M/PAGE_SIZE)
938 {
939 /* Failed. Mark as requiring a PT so we don't check the whole thing again in the future. */
940 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRefused);
941 PGM_PAGE_SET_PDE_TYPE(pVM, pFirstPage, PGM_PAGE_PDE_TYPE_PT);
942 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
943 }
944
945 /*
946 * Do the allocation.
947 */
948# ifdef IN_RING3
949 rc = PGMR3PhysAllocateLargeHandyPage(pVM, GCPhysBase);
950# else
951 rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE, GCPhysBase);
952# endif
953 if (RT_SUCCESS(rc))
954 {
955 Assert(PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ALLOCATED);
956 pVM->pgm.s.cLargePages++;
957 return VINF_SUCCESS;
958 }
959
960 /* If we fail once, it most likely means the host's memory is too
961 fragmented; don't bother trying again. */
962 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
963 PGMSetLargePageUsage(pVM, false);
964 return rc;
965 }
966 }
967 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
968}
969
970
971/**
972 * Recheck the entire 2 MB range to see if we can use it again as a large page.
973 *
974 * @returns The following VBox status codes.
975 * @retval VINF_SUCCESS on success, the large page can be used again
976 * @retval VERR_PGM_INVALID_LARGE_PAGE_RANGE if it can't be reused
977 *
978 * @param pVM Pointer to the VM.
979 * @param GCPhys The address of the page.
980 * @param pLargePage Page structure of the base page
981 */
982int pgmPhysRecheckLargePage(PVM pVM, RTGCPHYS GCPhys, PPGMPAGE pLargePage)
983{
984 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRecheck);
985
986 GCPhys &= X86_PDE2M_PAE_PG_MASK;
987
988 /* Check the base page. */
989 Assert(PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED);
990 if ( PGM_PAGE_GET_STATE(pLargePage) != PGM_PAGE_STATE_ALLOCATED
991 || PGM_PAGE_GET_TYPE(pLargePage) != PGMPAGETYPE_RAM
992 || PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
993 {
994 LogFlow(("pgmPhysRecheckLargePage: checks failed for base page %x %x %x\n", PGM_PAGE_GET_STATE(pLargePage), PGM_PAGE_GET_TYPE(pLargePage), PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage)));
995 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
996 }
997
998 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a);
999 /* Check all remaining pages in the 2 MB range. */
1000 unsigned i;
1001 GCPhys += PAGE_SIZE;
1002 for (i = 1; i < _2M/PAGE_SIZE; i++)
1003 {
1004 PPGMPAGE pPage;
1005 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1006 AssertRCBreak(rc);
1007
1008 if ( PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1009 || PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
1010 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
1011 || PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
1012 {
1013 LogFlow(("pgmPhysRecheckLargePage: checks failed for page %d; %x %x %x\n", i, PGM_PAGE_GET_STATE(pPage), PGM_PAGE_GET_TYPE(pPage), PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)));
1014 break;
1015 }
1016
1017 GCPhys += PAGE_SIZE;
1018 }
1019 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a);
1020
1021 if (i == _2M/PAGE_SIZE)
1022 {
1023 PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE);
1024 pVM->pgm.s.cLargePagesDisabled--;
1025 Log(("pgmPhysRecheckLargePage: page %RGp can be reused!\n", GCPhys - _2M));
1026 return VINF_SUCCESS;
1027 }
1028
1029 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
1030}
1031
1032#endif /* PGM_WITH_LARGE_PAGES */
1033
1034/**
1035 * Deal with a write monitored page.
1036 *
1037 * @returns VBox strict status code.
1038 *
1039 * @param pVM Pointer to the VM.
1040 * @param pPage The physical page tracking structure.
1041 *
1042 * @remarks Called from within the PGM critical section.
1043 */
1044void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage)
1045{
1046 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED);
1047 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
1048 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
1049 Assert(pVM->pgm.s.cMonitoredPages > 0);
1050 pVM->pgm.s.cMonitoredPages--;
1051 pVM->pgm.s.cWrittenToPages++;
1052}
1053
1054
1055/**
1056 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
1057 *
1058 * @returns VBox strict status code.
1059 * @retval VINF_SUCCESS on success.
1060 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
1061 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1062 *
1063 * @param pVM Pointer to the VM.
1064 * @param pPage The physical page tracking structure.
1065 * @param GCPhys The address of the page.
1066 *
1067 * @remarks Called from within the PGM critical section.
1068 */
1069int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
1070{
1071 PGM_LOCK_ASSERT_OWNER(pVM);
1072 switch (PGM_PAGE_GET_STATE(pPage))
1073 {
1074 case PGM_PAGE_STATE_WRITE_MONITORED:
1075 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
1076 /* fall thru */
1077 default: /* to shut up GCC */
1078 case PGM_PAGE_STATE_ALLOCATED:
1079 return VINF_SUCCESS;
1080
1081 /*
1082 * Zero pages can be dummy pages for MMIO or reserved memory,
1083 * so we need to check the flags before joining cause with
1084 * shared page replacement.
1085 */
1086 case PGM_PAGE_STATE_ZERO:
1087 if (PGM_PAGE_IS_MMIO(pPage))
1088 return VERR_PGM_PHYS_PAGE_RESERVED;
1089 /* fall thru */
1090 case PGM_PAGE_STATE_SHARED:
1091 return pgmPhysAllocPage(pVM, pPage, GCPhys);
1092
1093 /* Not allowed to write to ballooned pages. */
1094 case PGM_PAGE_STATE_BALLOONED:
1095 return VERR_PGM_PHYS_PAGE_BALLOONED;
1096 }
1097}
1098
1099
1100/**
1101 * Internal usage: Map the page specified by its GMM ID.
1102 *
1103 * This is similar to pgmPhysPageMap
1104 *
1105 * @returns VBox status code.
1106 *
1107 * @param pVM Pointer to the VM.
1108 * @param idPage The Page ID.
1109 * @param HCPhys The physical address (for RC).
1110 * @param ppv Where to store the mapping address.
1111 *
1112 * @remarks Called from within the PGM critical section. The mapping is only
1113 * valid while you are inside this section.
1114 */
1115int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv)
1116{
1117 /*
1118 * Validation.
1119 */
1120 PGM_LOCK_ASSERT_OWNER(pVM);
1121 AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1122 const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT;
1123 AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER);
1124
1125#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1126 /*
1127 * Map it by HCPhys.
1128 */
1129 return pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS);
1130
1131#else
1132 /*
1133 * Find/make Chunk TLB entry for the mapping chunk.
1134 */
1135 PPGMCHUNKR3MAP pMap;
1136 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
1137 if (pTlbe->idChunk == idChunk)
1138 {
1139 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits));
1140 pMap = pTlbe->pChunk;
1141 }
1142 else
1143 {
1144 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
1145
1146 /*
1147 * Find the chunk, map it if necessary.
1148 */
1149 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1150 if (pMap)
1151 pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
1152 else
1153 {
1154# ifdef IN_RING0
1155 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
1156 AssertRCReturn(rc, rc);
1157 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1158 Assert(pMap);
1159# else
1160 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
1161 if (RT_FAILURE(rc))
1162 return rc;
1163# endif
1164 }
1165
1166 /*
1167 * Enter it into the Chunk TLB.
1168 */
1169 pTlbe->idChunk = idChunk;
1170 pTlbe->pChunk = pMap;
1171 }
1172
1173 *ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
1174 return VINF_SUCCESS;
1175#endif
1176}
1177
1178
1179/**
1180 * Maps a page into the current virtual address space so it can be accessed.
1181 *
1182 * @returns VBox status code.
1183 * @retval VINF_SUCCESS on success.
1184 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1185 *
1186 * @param pVM Pointer to the VM.
1187 * @param pPage The physical page tracking structure.
1188 * @param GCPhys The address of the page.
1189 * @param ppMap Where to store the address of the mapping tracking structure.
1190 * @param ppv Where to store the mapping address of the page. The page
1191 * offset is masked off!
1192 *
1193 * @remarks Called from within the PGM critical section.
1194 */
1195static int pgmPhysPageMapCommon(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
1196{
1197 PGM_LOCK_ASSERT_OWNER(pVM);
1198 NOREF(GCPhys);
1199
1200#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1201 /*
1202 * Just some sketchy GC/R0-darwin code.
1203 */
1204 *ppMap = NULL;
1205 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
1206 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
1207 pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS);
1208 return VINF_SUCCESS;
1209
1210#else /* IN_RING3 || IN_RING0 */
1211
1212
1213 /*
1214 * Special cases: MMIO2, ZERO and specially aliased MMIO pages.
1215 */
1216 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2
1217 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
1218 {
1219 /* Decode the page id to a page in a MMIO2 ram range. */
1220 uint8_t idMmio2 = PGM_MMIO2_PAGEID_GET_MMIO2_ID(PGM_PAGE_GET_PAGEID(pPage));
1221 uint32_t iPage = PGM_MMIO2_PAGEID_GET_IDX(PGM_PAGE_GET_PAGEID(pPage));
1222 AssertLogRelMsgReturn((uint8_t)(idMmio2 - 1U) < RT_ELEMENTS(pVM->pgm.s.CTX_SUFF(apMmio2Ranges)),
1223 ("idMmio2=%u size=%u type=%u GCPHys=%#RGp Id=%u State=%u", idMmio2,
1224 RT_ELEMENTS(pVM->pgm.s.CTX_SUFF(apMmio2Ranges)), PGM_PAGE_GET_TYPE(pPage), GCPhys,
1225 pPage->s.idPage, pPage->s.uStateY),
1226 VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1227 PPGMMMIO2RANGE pMmio2Range = pVM->pgm.s.CTX_SUFF(apMmio2Ranges)[idMmio2 - 1];
1228 AssertLogRelReturn(pMmio2Range, VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1229 AssertLogRelReturn(pMmio2Range->idMmio2 == idMmio2, VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1230 AssertLogRelReturn(iPage < (pMmio2Range->RamRange.cb >> PAGE_SHIFT), VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1231 *ppv = (uint8_t *)pMmio2Range->RamRange.pvR3 + ((uintptr_t)iPage << PAGE_SHIFT);
1232 *ppMap = NULL;
1233 return VINF_SUCCESS;
1234 }
1235
1236 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
1237 if (idChunk == NIL_GMM_CHUNKID)
1238 {
1239 AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage),
1240 VERR_PGM_PHYS_PAGE_MAP_IPE_1);
1241 if (!PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1242 {
1243 AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage),
1244 VERR_PGM_PHYS_PAGE_MAP_IPE_3);
1245 AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage)== pVM->pgm.s.HCPhysZeroPg, ("pPage=%R[pgmpage]\n", pPage),
1246 VERR_PGM_PHYS_PAGE_MAP_IPE_4);
1247 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1248 }
1249 else
1250# ifdef VBOX_WITH_2ND_IEM_STEP
1251 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1252# else
1253 {
1254 /* This kind of screws up the TLB entry if accessed from a different section afterwards. */
1255 static uint8_t s_abPlayItSafe[0x1000*2]; /* I don't dare return the zero page at the moment. */
1256 *ppv = (uint8_t *)((uintptr_t)&s_abPlayItSafe[0x1000] & ~(uintptr_t)0xfff);
1257 }
1258# endif
1259 *ppMap = NULL;
1260 return VINF_SUCCESS;
1261 }
1262
1263 /*
1264 * Find/make Chunk TLB entry for the mapping chunk.
1265 */
1266 PPGMCHUNKR3MAP pMap;
1267 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
1268 if (pTlbe->idChunk == idChunk)
1269 {
1270 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits));
1271 pMap = pTlbe->pChunk;
1272 AssertPtr(pMap->pv);
1273 }
1274 else
1275 {
1276 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
1277
1278 /*
1279 * Find the chunk, map it if necessary.
1280 */
1281 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1282 if (pMap)
1283 {
1284 AssertPtr(pMap->pv);
1285 pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
1286 }
1287 else
1288 {
1289#ifdef IN_RING0
1290 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
1291 AssertRCReturn(rc, rc);
1292 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1293 Assert(pMap);
1294#else
1295 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
1296 if (RT_FAILURE(rc))
1297 return rc;
1298#endif
1299 AssertPtr(pMap->pv);
1300 }
1301
1302 /*
1303 * Enter it into the Chunk TLB.
1304 */
1305 pTlbe->idChunk = idChunk;
1306 pTlbe->pChunk = pMap;
1307 }
1308
1309 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
1310 *ppMap = pMap;
1311 return VINF_SUCCESS;
1312#endif /* IN_RING3 */
1313}
1314
1315
1316/**
1317 * Combination of pgmPhysPageMakeWritable and pgmPhysPageMapWritable.
1318 *
1319 * This is typically used is paths where we cannot use the TLB methods (like ROM
1320 * pages) or where there is no point in using them since we won't get many hits.
1321 *
1322 * @returns VBox strict status code.
1323 * @retval VINF_SUCCESS on success.
1324 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
1325 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1326 *
1327 * @param pVM Pointer to the VM.
1328 * @param pPage The physical page tracking structure.
1329 * @param GCPhys The address of the page.
1330 * @param ppv Where to store the mapping address of the page. The page
1331 * offset is masked off!
1332 *
1333 * @remarks Called from within the PGM critical section. The mapping is only
1334 * valid while you are inside section.
1335 */
1336int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1337{
1338 int rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1339 if (RT_SUCCESS(rc))
1340 {
1341 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc));
1342 PPGMPAGEMAP pMapIgnore;
1343 int rc2 = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
1344 if (RT_FAILURE(rc2)) /* preserve rc */
1345 rc = rc2;
1346 }
1347 return rc;
1348}
1349
1350
1351/**
1352 * Maps a page into the current virtual address space so it can be accessed for
1353 * both writing and reading.
1354 *
1355 * This is typically used is paths where we cannot use the TLB methods (like ROM
1356 * pages) or where there is no point in using them since we won't get many hits.
1357 *
1358 * @returns VBox status code.
1359 * @retval VINF_SUCCESS on success.
1360 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1361 *
1362 * @param pVM Pointer to the VM.
1363 * @param pPage The physical page tracking structure. Must be in the
1364 * allocated state.
1365 * @param GCPhys The address of the page.
1366 * @param ppv Where to store the mapping address of the page. The page
1367 * offset is masked off!
1368 *
1369 * @remarks Called from within the PGM critical section. The mapping is only
1370 * valid while you are inside section.
1371 */
1372int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1373{
1374 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
1375 PPGMPAGEMAP pMapIgnore;
1376 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
1377}
1378
1379
1380/**
1381 * Maps a page into the current virtual address space so it can be accessed for
1382 * reading.
1383 *
1384 * This is typically used is paths where we cannot use the TLB methods (like ROM
1385 * pages) or where there is no point in using them since we won't get many hits.
1386 *
1387 * @returns VBox status code.
1388 * @retval VINF_SUCCESS on success.
1389 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1390 *
1391 * @param pVM Pointer to the VM.
1392 * @param pPage The physical page tracking structure.
1393 * @param GCPhys The address of the page.
1394 * @param ppv Where to store the mapping address of the page. The page
1395 * offset is masked off!
1396 *
1397 * @remarks Called from within the PGM critical section. The mapping is only
1398 * valid while you are inside this section.
1399 */
1400int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv)
1401{
1402 PPGMPAGEMAP pMapIgnore;
1403 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, (void **)ppv);
1404}
1405
1406#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1407
1408/**
1409 * Load a guest page into the ring-3 physical TLB.
1410 *
1411 * @returns VBox status code.
1412 * @retval VINF_SUCCESS on success
1413 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1414 * @param pPGM The PGM instance pointer.
1415 * @param GCPhys The guest physical address in question.
1416 */
1417int pgmPhysPageLoadIntoTlb(PVM pVM, RTGCPHYS GCPhys)
1418{
1419 PGM_LOCK_ASSERT_OWNER(pVM);
1420
1421 /*
1422 * Find the ram range and page and hand it over to the with-page function.
1423 * 99.8% of requests are expected to be in the first range.
1424 */
1425 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
1426 if (!pPage)
1427 {
1428 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses));
1429 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1430 }
1431
1432 return pgmPhysPageLoadIntoTlbWithPage(pVM, pPage, GCPhys);
1433}
1434
1435
1436/**
1437 * Load a guest page into the ring-3 physical TLB.
1438 *
1439 * @returns VBox status code.
1440 * @retval VINF_SUCCESS on success
1441 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1442 *
1443 * @param pVM Pointer to the VM.
1444 * @param pPage Pointer to the PGMPAGE structure corresponding to
1445 * GCPhys.
1446 * @param GCPhys The guest physical address in question.
1447 */
1448int pgmPhysPageLoadIntoTlbWithPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
1449{
1450 PGM_LOCK_ASSERT_OWNER(pVM);
1451 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses));
1452
1453 /*
1454 * Map the page.
1455 * Make a special case for the zero page as it is kind of special.
1456 */
1457 PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
1458 if ( !PGM_PAGE_IS_ZERO(pPage)
1459 && !PGM_PAGE_IS_BALLOONED(pPage))
1460 {
1461 void *pv;
1462 PPGMPAGEMAP pMap;
1463 int rc = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMap, &pv);
1464 if (RT_FAILURE(rc))
1465 return rc;
1466 pTlbe->pMap = pMap;
1467 pTlbe->pv = pv;
1468 Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK));
1469 }
1470 else
1471 {
1472 AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg, ("%RGp/%R[pgmpage]\n", GCPhys, pPage));
1473 pTlbe->pMap = NULL;
1474 pTlbe->pv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1475 }
1476#ifdef PGM_WITH_PHYS_TLB
1477 if ( PGM_PAGE_GET_TYPE(pPage) < PGMPAGETYPE_ROM_SHADOW
1478 || PGM_PAGE_GET_TYPE(pPage) > PGMPAGETYPE_ROM)
1479 pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK;
1480 else
1481 pTlbe->GCPhys = NIL_RTGCPHYS; /* ROM: Problematic because of the two pages. :-/ */
1482#else
1483 pTlbe->GCPhys = NIL_RTGCPHYS;
1484#endif
1485 pTlbe->pPage = pPage;
1486 return VINF_SUCCESS;
1487}
1488
1489#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1490
1491/**
1492 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
1493 * own the PGM lock and therefore not need to lock the mapped page.
1494 *
1495 * @returns VBox status code.
1496 * @retval VINF_SUCCESS on success.
1497 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1498 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1499 *
1500 * @param pVM Pointer to the VM.
1501 * @param GCPhys The guest physical address of the page that should be mapped.
1502 * @param pPage Pointer to the PGMPAGE structure for the page.
1503 * @param ppv Where to store the address corresponding to GCPhys.
1504 *
1505 * @internal
1506 * @deprecated Use pgmPhysGCPhys2CCPtrInternalEx.
1507 */
1508int pgmPhysGCPhys2CCPtrInternalDepr(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1509{
1510 int rc;
1511 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1512 PGM_LOCK_ASSERT_OWNER(pVM);
1513 pVM->pgm.s.cDeprecatedPageLocks++;
1514
1515 /*
1516 * Make sure the page is writable.
1517 */
1518 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1519 {
1520 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1521 if (RT_FAILURE(rc))
1522 return rc;
1523 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1524 }
1525 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1526
1527 /*
1528 * Get the mapping address.
1529 */
1530#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1531 void *pv;
1532 rc = pgmRZDynMapHCPageInlined(VMMGetCpu(pVM),
1533 PGM_PAGE_GET_HCPHYS(pPage),
1534 &pv
1535 RTLOG_COMMA_SRC_POS);
1536 if (RT_FAILURE(rc))
1537 return rc;
1538 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1539#else
1540 PPGMPAGEMAPTLBE pTlbe;
1541 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1542 if (RT_FAILURE(rc))
1543 return rc;
1544 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1545#endif
1546 return VINF_SUCCESS;
1547}
1548
1549#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1550
1551/**
1552 * Locks a page mapping for writing.
1553 *
1554 * @param pVM Pointer to the VM.
1555 * @param pPage The page.
1556 * @param pTlbe The mapping TLB entry for the page.
1557 * @param pLock The lock structure (output).
1558 */
1559DECLINLINE(void) pgmPhysPageMapLockForWriting(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock)
1560{
1561 PPGMPAGEMAP pMap = pTlbe->pMap;
1562 if (pMap)
1563 pMap->cRefs++;
1564
1565 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
1566 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1567 {
1568 if (cLocks == 0)
1569 pVM->pgm.s.cWriteLockedPages++;
1570 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1571 }
1572 else if (cLocks != PGM_PAGE_MAX_LOCKS)
1573 {
1574 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1575 AssertMsgFailed(("%R[pgmpage] is entering permanent write locked state!\n", pPage));
1576 if (pMap)
1577 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1578 }
1579
1580 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
1581 pLock->pvMap = pMap;
1582}
1583
1584/**
1585 * Locks a page mapping for reading.
1586 *
1587 * @param pVM Pointer to the VM.
1588 * @param pPage The page.
1589 * @param pTlbe The mapping TLB entry for the page.
1590 * @param pLock The lock structure (output).
1591 */
1592DECLINLINE(void) pgmPhysPageMapLockForReading(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock)
1593{
1594 PPGMPAGEMAP pMap = pTlbe->pMap;
1595 if (pMap)
1596 pMap->cRefs++;
1597
1598 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
1599 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1600 {
1601 if (cLocks == 0)
1602 pVM->pgm.s.cReadLockedPages++;
1603 PGM_PAGE_INC_READ_LOCKS(pPage);
1604 }
1605 else if (cLocks != PGM_PAGE_MAX_LOCKS)
1606 {
1607 PGM_PAGE_INC_READ_LOCKS(pPage);
1608 AssertMsgFailed(("%R[pgmpage] is entering permanent read locked state!\n", pPage));
1609 if (pMap)
1610 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1611 }
1612
1613 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
1614 pLock->pvMap = pMap;
1615}
1616
1617#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1618
1619
1620/**
1621 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
1622 * own the PGM lock and have access to the page structure.
1623 *
1624 * @returns VBox status code.
1625 * @retval VINF_SUCCESS on success.
1626 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1627 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1628 *
1629 * @param pVM Pointer to the VM.
1630 * @param GCPhys The guest physical address of the page that should be mapped.
1631 * @param pPage Pointer to the PGMPAGE structure for the page.
1632 * @param ppv Where to store the address corresponding to GCPhys.
1633 * @param pLock Where to store the lock information that
1634 * pgmPhysReleaseInternalPageMappingLock needs.
1635 *
1636 * @internal
1637 */
1638int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
1639{
1640 int rc;
1641 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1642 PGM_LOCK_ASSERT_OWNER(pVM);
1643
1644 /*
1645 * Make sure the page is writable.
1646 */
1647 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1648 {
1649 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1650 if (RT_FAILURE(rc))
1651 return rc;
1652 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1653 }
1654 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1655
1656 /*
1657 * Do the job.
1658 */
1659#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1660 void *pv;
1661 PVMCPU pVCpu = VMMGetCpu(pVM);
1662 rc = pgmRZDynMapHCPageInlined(pVCpu,
1663 PGM_PAGE_GET_HCPHYS(pPage),
1664 &pv
1665 RTLOG_COMMA_SRC_POS);
1666 if (RT_FAILURE(rc))
1667 return rc;
1668 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1669 pLock->pvPage = pv;
1670 pLock->pVCpu = pVCpu;
1671
1672#else
1673 PPGMPAGEMAPTLBE pTlbe;
1674 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1675 if (RT_FAILURE(rc))
1676 return rc;
1677 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
1678 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1679#endif
1680 return VINF_SUCCESS;
1681}
1682
1683
1684/**
1685 * Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to
1686 * own the PGM lock and have access to the page structure.
1687 *
1688 * @returns VBox status code.
1689 * @retval VINF_SUCCESS on success.
1690 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1691 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1692 *
1693 * @param pVM Pointer to the VM.
1694 * @param GCPhys The guest physical address of the page that should be mapped.
1695 * @param pPage Pointer to the PGMPAGE structure for the page.
1696 * @param ppv Where to store the address corresponding to GCPhys.
1697 * @param pLock Where to store the lock information that
1698 * pgmPhysReleaseInternalPageMappingLock needs.
1699 *
1700 * @internal
1701 */
1702int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv, PPGMPAGEMAPLOCK pLock)
1703{
1704 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1705 PGM_LOCK_ASSERT_OWNER(pVM);
1706 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1707
1708 /*
1709 * Do the job.
1710 */
1711#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1712 void *pv;
1713 PVMCPU pVCpu = VMMGetCpu(pVM);
1714 int rc = pgmRZDynMapHCPageInlined(pVCpu,
1715 PGM_PAGE_GET_HCPHYS(pPage),
1716 &pv
1717 RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */
1718 if (RT_FAILURE(rc))
1719 return rc;
1720 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1721 pLock->pvPage = pv;
1722 pLock->pVCpu = pVCpu;
1723
1724#else
1725 PPGMPAGEMAPTLBE pTlbe;
1726 int rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1727 if (RT_FAILURE(rc))
1728 return rc;
1729 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
1730 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1731#endif
1732 return VINF_SUCCESS;
1733}
1734
1735
1736/**
1737 * Requests the mapping of a guest page into the current context.
1738 *
1739 * This API should only be used for very short term, as it will consume scarse
1740 * resources (R0 and GC) in the mapping cache. When you're done with the page,
1741 * call PGMPhysReleasePageMappingLock() ASAP to release it.
1742 *
1743 * This API will assume your intention is to write to the page, and will
1744 * therefore replace shared and zero pages. If you do not intend to modify
1745 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
1746 *
1747 * @returns VBox status code.
1748 * @retval VINF_SUCCESS on success.
1749 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1750 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1751 *
1752 * @param pVM Pointer to the VM.
1753 * @param GCPhys The guest physical address of the page that should be
1754 * mapped.
1755 * @param ppv Where to store the address corresponding to GCPhys.
1756 * @param pLock Where to store the lock information that
1757 * PGMPhysReleasePageMappingLock needs.
1758 *
1759 * @remarks The caller is responsible for dealing with access handlers.
1760 * @todo Add an informational return code for pages with access handlers?
1761 *
1762 * @remark Avoid calling this API from within critical sections (other than
1763 * the PGM one) because of the deadlock risk. External threads may
1764 * need to delegate jobs to the EMTs.
1765 * @remarks Only one page is mapped! Make no assumption about what's after or
1766 * before the returned page!
1767 * @thread Any thread.
1768 */
1769VMM_INT_DECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
1770{
1771 int rc = pgmLock(pVM);
1772 AssertRCReturn(rc, rc);
1773
1774#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1775 /*
1776 * Find the page and make sure it's writable.
1777 */
1778 PPGMPAGE pPage;
1779 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1780 if (RT_SUCCESS(rc))
1781 {
1782 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1783 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1784 if (RT_SUCCESS(rc))
1785 {
1786 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1787
1788 PVMCPU pVCpu = VMMGetCpu(pVM);
1789 void *pv;
1790 rc = pgmRZDynMapHCPageInlined(pVCpu,
1791 PGM_PAGE_GET_HCPHYS(pPage),
1792 &pv
1793 RTLOG_COMMA_SRC_POS);
1794 if (RT_SUCCESS(rc))
1795 {
1796 AssertRCSuccess(rc);
1797
1798 pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1799 *ppv = pv;
1800 pLock->pvPage = pv;
1801 pLock->pVCpu = pVCpu;
1802 }
1803 }
1804 }
1805
1806#else /* IN_RING3 || IN_RING0 */
1807 /*
1808 * Query the Physical TLB entry for the page (may fail).
1809 */
1810 PPGMPAGEMAPTLBE pTlbe;
1811 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
1812 if (RT_SUCCESS(rc))
1813 {
1814 /*
1815 * If the page is shared, the zero page, or being write monitored
1816 * it must be converted to a page that's writable if possible.
1817 */
1818 PPGMPAGE pPage = pTlbe->pPage;
1819 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1820 {
1821 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1822 if (RT_SUCCESS(rc))
1823 {
1824 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1825 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1826 }
1827 }
1828 if (RT_SUCCESS(rc))
1829 {
1830 /*
1831 * Now, just perform the locking and calculate the return address.
1832 */
1833 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
1834 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1835 }
1836 }
1837
1838#endif /* IN_RING3 || IN_RING0 */
1839 pgmUnlock(pVM);
1840 return rc;
1841}
1842
1843
1844/**
1845 * Requests the mapping of a guest page into the current context.
1846 *
1847 * This API should only be used for very short term, as it will consume scarse
1848 * resources (R0 and GC) in the mapping cache. When you're done with the page,
1849 * call PGMPhysReleasePageMappingLock() ASAP to release it.
1850 *
1851 * @returns VBox status code.
1852 * @retval VINF_SUCCESS on success.
1853 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1854 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1855 *
1856 * @param pVM Pointer to the VM.
1857 * @param GCPhys The guest physical address of the page that should be
1858 * mapped.
1859 * @param ppv Where to store the address corresponding to GCPhys.
1860 * @param pLock Where to store the lock information that
1861 * PGMPhysReleasePageMappingLock needs.
1862 *
1863 * @remarks The caller is responsible for dealing with access handlers.
1864 * @todo Add an informational return code for pages with access handlers?
1865 *
1866 * @remarks Avoid calling this API from within critical sections (other than
1867 * the PGM one) because of the deadlock risk.
1868 * @remarks Only one page is mapped! Make no assumption about what's after or
1869 * before the returned page!
1870 * @thread Any thread.
1871 */
1872VMM_INT_DECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
1873{
1874 int rc = pgmLock(pVM);
1875 AssertRCReturn(rc, rc);
1876
1877#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1878 /*
1879 * Find the page and make sure it's readable.
1880 */
1881 PPGMPAGE pPage;
1882 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1883 if (RT_SUCCESS(rc))
1884 {
1885 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)))
1886 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1887 else
1888 {
1889 PVMCPU pVCpu = VMMGetCpu(pVM);
1890 void *pv;
1891 rc = pgmRZDynMapHCPageInlined(pVCpu,
1892 PGM_PAGE_GET_HCPHYS(pPage),
1893 &pv
1894 RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */
1895 if (RT_SUCCESS(rc))
1896 {
1897 AssertRCSuccess(rc);
1898
1899 pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1900 *ppv = pv;
1901 pLock->pvPage = pv;
1902 pLock->pVCpu = pVCpu;
1903 }
1904 }
1905 }
1906
1907#else /* IN_RING3 || IN_RING0 */
1908 /*
1909 * Query the Physical TLB entry for the page (may fail).
1910 */
1911 PPGMPAGEMAPTLBE pTlbe;
1912 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
1913 if (RT_SUCCESS(rc))
1914 {
1915 /* MMIO pages doesn't have any readable backing. */
1916 PPGMPAGE pPage = pTlbe->pPage;
1917 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)))
1918 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1919 else
1920 {
1921 /*
1922 * Now, just perform the locking and calculate the return address.
1923 */
1924 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
1925 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1926 }
1927 }
1928
1929#endif /* IN_RING3 || IN_RING0 */
1930 pgmUnlock(pVM);
1931 return rc;
1932}
1933
1934
1935/**
1936 * Requests the mapping of a guest page given by virtual address into the current context.
1937 *
1938 * This API should only be used for very short term, as it will consume
1939 * scarse resources (R0 and GC) in the mapping cache. When you're done
1940 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1941 *
1942 * This API will assume your intention is to write to the page, and will
1943 * therefore replace shared and zero pages. If you do not intend to modify
1944 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
1945 *
1946 * @returns VBox status code.
1947 * @retval VINF_SUCCESS on success.
1948 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1949 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1950 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1951 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1952 *
1953 * @param pVCpu Pointer to the VMCPU.
1954 * @param GCPhys The guest physical address of the page that should be mapped.
1955 * @param ppv Where to store the address corresponding to GCPhys.
1956 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1957 *
1958 * @remark Avoid calling this API from within critical sections (other than
1959 * the PGM one) because of the deadlock risk.
1960 * @thread EMT
1961 */
1962VMM_INT_DECL(int) PGMPhysGCPtr2CCPtr(PVMCPU pVCpu, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
1963{
1964 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
1965 RTGCPHYS GCPhys;
1966 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
1967 if (RT_SUCCESS(rc))
1968 rc = PGMPhysGCPhys2CCPtr(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
1969 return rc;
1970}
1971
1972
1973/**
1974 * Requests the mapping of a guest page given by virtual address into the current context.
1975 *
1976 * This API should only be used for very short term, as it will consume
1977 * scarse resources (R0 and GC) in the mapping cache. When you're done
1978 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1979 *
1980 * @returns VBox status code.
1981 * @retval VINF_SUCCESS on success.
1982 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1983 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1984 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1985 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1986 *
1987 * @param pVCpu Pointer to the VMCPU.
1988 * @param GCPtr The guest physical address of the page that should be
1989 * mapped.
1990 * @param ppv Where to store the address corresponding to GCPtr.
1991 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1992 *
1993 * @remark Avoid calling this API from within critical sections (other than
1994 * the PGM one) because of the deadlock risk.
1995 * @thread EMT
1996 */
1997VMM_INT_DECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVMCPU pVCpu, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
1998{
1999 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
2000 RTGCPHYS GCPhys;
2001 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
2002 if (RT_SUCCESS(rc))
2003 rc = PGMPhysGCPhys2CCPtrReadOnly(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
2004 return rc;
2005}
2006
2007
2008/**
2009 * Release the mapping of a guest page.
2010 *
2011 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
2012 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
2013 *
2014 * @param pVM Pointer to the VM.
2015 * @param pLock The lock structure initialized by the mapping function.
2016 */
2017VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
2018{
2019#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2020 Assert(pLock->pvPage != NULL);
2021 Assert(pLock->pVCpu == VMMGetCpu(pVM));
2022 PGM_DYNMAP_UNUSED_HINT(pLock->pVCpu, pLock->pvPage);
2023 pLock->pVCpu = NULL;
2024 pLock->pvPage = NULL;
2025
2026#else
2027 PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap;
2028 PPGMPAGE pPage = (PPGMPAGE)(pLock->uPageAndType & ~PGMPAGEMAPLOCK_TYPE_MASK);
2029 bool fWriteLock = (pLock->uPageAndType & PGMPAGEMAPLOCK_TYPE_MASK) == PGMPAGEMAPLOCK_TYPE_WRITE;
2030
2031 pLock->uPageAndType = 0;
2032 pLock->pvMap = NULL;
2033
2034 pgmLock(pVM);
2035 if (fWriteLock)
2036 {
2037 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
2038 Assert(cLocks > 0);
2039 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
2040 {
2041 if (cLocks == 1)
2042 {
2043 Assert(pVM->pgm.s.cWriteLockedPages > 0);
2044 pVM->pgm.s.cWriteLockedPages--;
2045 }
2046 PGM_PAGE_DEC_WRITE_LOCKS(pPage);
2047 }
2048
2049 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
2050 {
2051 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
2052 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
2053 Assert(pVM->pgm.s.cMonitoredPages > 0);
2054 pVM->pgm.s.cMonitoredPages--;
2055 pVM->pgm.s.cWrittenToPages++;
2056 }
2057 }
2058 else
2059 {
2060 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
2061 Assert(cLocks > 0);
2062 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
2063 {
2064 if (cLocks == 1)
2065 {
2066 Assert(pVM->pgm.s.cReadLockedPages > 0);
2067 pVM->pgm.s.cReadLockedPages--;
2068 }
2069 PGM_PAGE_DEC_READ_LOCKS(pPage);
2070 }
2071 }
2072
2073 if (pMap)
2074 {
2075 Assert(pMap->cRefs >= 1);
2076 pMap->cRefs--;
2077 }
2078 pgmUnlock(pVM);
2079#endif /* IN_RING3 */
2080}
2081
2082
2083/**
2084 * Release the internal mapping of a guest page.
2085 *
2086 * This is the counter part of pgmPhysGCPhys2CCPtrInternalEx and
2087 * pgmPhysGCPhys2CCPtrInternalReadOnly.
2088 *
2089 * @param pVM Pointer to the VM.
2090 * @param pLock The lock structure initialized by the mapping function.
2091 *
2092 * @remarks Caller must hold the PGM lock.
2093 */
2094void pgmPhysReleaseInternalPageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
2095{
2096 PGM_LOCK_ASSERT_OWNER(pVM);
2097 PGMPhysReleasePageMappingLock(pVM, pLock); /* lazy for now */
2098}
2099
2100
2101/**
2102 * Converts a GC physical address to a HC ring-3 pointer.
2103 *
2104 * @returns VINF_SUCCESS on success.
2105 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
2106 * page but has no physical backing.
2107 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
2108 * GC physical address.
2109 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
2110 * a dynamic ram chunk boundary
2111 *
2112 * @param pVM Pointer to the VM.
2113 * @param GCPhys The GC physical address to convert.
2114 * @param pR3Ptr Where to store the R3 pointer on success.
2115 *
2116 * @deprecated Avoid when possible!
2117 */
2118int pgmPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2119{
2120/** @todo this is kind of hacky and needs some more work. */
2121#ifndef DEBUG_sandervl
2122 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
2123#endif
2124
2125 Log(("pgmPhysGCPhys2R3Ptr(,%RGp,): dont use this API!\n", GCPhys)); /** @todo eliminate this API! */
2126#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2127 NOREF(pVM); NOREF(pR3Ptr);
2128 AssertFailedReturn(VERR_NOT_IMPLEMENTED);
2129#else
2130 pgmLock(pVM);
2131
2132 PPGMRAMRANGE pRam;
2133 PPGMPAGE pPage;
2134 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
2135 if (RT_SUCCESS(rc))
2136 rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr);
2137
2138 pgmUnlock(pVM);
2139 Assert(rc <= VINF_SUCCESS);
2140 return rc;
2141#endif
2142}
2143
2144#if 0 /*defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)*/
2145
2146/**
2147 * Maps and locks a guest CR3 or PD (PAE) page.
2148 *
2149 * @returns VINF_SUCCESS on success.
2150 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
2151 * page but has no physical backing.
2152 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
2153 * GC physical address.
2154 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
2155 * a dynamic ram chunk boundary
2156 *
2157 * @param pVM Pointer to the VM.
2158 * @param GCPhys The GC physical address to convert.
2159 * @param pR3Ptr Where to store the R3 pointer on success. This may or
2160 * may not be valid in ring-0 depending on the
2161 * VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 build option.
2162 *
2163 * @remarks The caller must own the PGM lock.
2164 */
2165int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2166{
2167
2168 PPGMRAMRANGE pRam;
2169 PPGMPAGE pPage;
2170 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
2171 if (RT_SUCCESS(rc))
2172 rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr);
2173 Assert(rc <= VINF_SUCCESS);
2174 return rc;
2175}
2176
2177
2178int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2179{
2180
2181}
2182
2183#endif
2184
2185/**
2186 * Converts a guest pointer to a GC physical address.
2187 *
2188 * This uses the current CR3/CR0/CR4 of the guest.
2189 *
2190 * @returns VBox status code.
2191 * @param pVCpu Pointer to the VMCPU.
2192 * @param GCPtr The guest pointer to convert.
2193 * @param pGCPhys Where to store the GC physical address.
2194 */
2195VMMDECL(int) PGMPhysGCPtr2GCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
2196{
2197 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
2198 if (pGCPhys && RT_SUCCESS(rc))
2199 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
2200 return rc;
2201}
2202
2203
2204/**
2205 * Converts a guest pointer to a HC physical address.
2206 *
2207 * This uses the current CR3/CR0/CR4 of the guest.
2208 *
2209 * @returns VBox status code.
2210 * @param pVCpu Pointer to the VMCPU.
2211 * @param GCPtr The guest pointer to convert.
2212 * @param pHCPhys Where to store the HC physical address.
2213 */
2214VMM_INT_DECL(int) PGMPhysGCPtr2HCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
2215{
2216 PVM pVM = pVCpu->CTX_SUFF(pVM);
2217 RTGCPHYS GCPhys;
2218 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
2219 if (RT_SUCCESS(rc))
2220 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
2221 return rc;
2222}
2223
2224
2225
2226#undef LOG_GROUP
2227#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
2228
2229
2230#if defined(IN_RING3) && defined(SOME_UNUSED_FUNCTION)
2231/**
2232 * Cache PGMPhys memory access
2233 *
2234 * @param pVM Pointer to the VM.
2235 * @param pCache Cache structure pointer
2236 * @param GCPhys GC physical address
2237 * @param pbHC HC pointer corresponding to physical page
2238 *
2239 * @thread EMT.
2240 */
2241static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
2242{
2243 uint32_t iCacheIndex;
2244
2245 Assert(VM_IS_EMT(pVM));
2246
2247 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
2248 pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
2249
2250 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
2251
2252 ASMBitSet(&pCache->aEntries, iCacheIndex);
2253
2254 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
2255 pCache->Entry[iCacheIndex].pbR3 = pbR3;
2256}
2257#endif /* IN_RING3 */
2258
2259
2260/**
2261 * Deals with reading from a page with one or more ALL access handlers.
2262 *
2263 * @returns Strict VBox status code in ring-0 and raw-mode, ignorable in ring-3.
2264 * See PGM_HANDLER_PHYS_IS_VALID_STATUS and
2265 * PGM_HANDLER_VIRT_IS_VALID_STATUS for details.
2266 *
2267 * @param pVM Pointer to the VM.
2268 * @param pPage The page descriptor.
2269 * @param GCPhys The physical address to start reading at.
2270 * @param pvBuf Where to put the bits we read.
2271 * @param cb How much to read - less or equal to a page.
2272 * @param enmOrigin The origin of this call.
2273 */
2274static VBOXSTRICTRC pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb,
2275 PGMACCESSORIGIN enmOrigin)
2276{
2277 /*
2278 * The most frequent access here is MMIO and shadowed ROM.
2279 * The current code ASSUMES all these access handlers covers full pages!
2280 */
2281
2282 /*
2283 * Whatever we do we need the source page, map it first.
2284 */
2285 PGMPAGEMAPLOCK PgMpLck;
2286 const void *pvSrc = NULL;
2287 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc, &PgMpLck);
2288/** @todo Check how this can work for MMIO pages? */
2289 if (RT_FAILURE(rc))
2290 {
2291 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
2292 GCPhys, pPage, rc));
2293 memset(pvBuf, 0xff, cb);
2294 return VINF_SUCCESS;
2295 }
2296
2297 VBOXSTRICTRC rcStrict = VINF_PGM_HANDLER_DO_DEFAULT;
2298
2299 /*
2300 * Deal with any physical handlers.
2301 */
2302 PVMCPU pVCpu = VMMGetCpu(pVM);
2303 PPGMPHYSHANDLER pPhys = NULL;
2304 if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL
2305 || PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
2306 {
2307 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2308 AssertReleaseMsg(pPhys, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
2309 Assert(GCPhys >= pPhys->Core.Key && GCPhys <= pPhys->Core.KeyLast);
2310 Assert((pPhys->Core.Key & PAGE_OFFSET_MASK) == 0);
2311 Assert((pPhys->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
2312#ifndef IN_RING3
2313 if (enmOrigin != PGMACCESSORIGIN_IEM)
2314 {
2315 /* Cannot reliably handle informational status codes in this context */
2316 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2317 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2318 }
2319#endif
2320 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler); Assert(pfnHandler);
2321 void *pvUser = pPhys->CTX_SUFF(pvUser);
2322
2323 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cb, pPage, R3STRING(pPhys->pszDesc) ));
2324 STAM_PROFILE_START(&pPhys->Stat, h);
2325 PGM_LOCK_ASSERT_OWNER(pVM);
2326
2327 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2328 pgmUnlock(pVM);
2329 rcStrict = pfnHandler(pVM, pVCpu, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, enmOrigin, pvUser);
2330 pgmLock(pVM);
2331
2332#ifdef VBOX_WITH_STATISTICS
2333 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2334 if (pPhys)
2335 STAM_PROFILE_STOP(&pPhys->Stat, h);
2336#else
2337 pPhys = NULL; /* might not be valid anymore. */
2338#endif
2339 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict, false),
2340 ("rcStrict=%Rrc GCPhys=%RGp\n", VBOXSTRICTRC_VAL(rcStrict), GCPhys));
2341 if ( rcStrict != VINF_PGM_HANDLER_DO_DEFAULT
2342 && !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2343 {
2344 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2345 return rcStrict;
2346 }
2347 }
2348
2349#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2350 /*
2351 * Deal with any virtual handlers.
2352 */
2353 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL)
2354 {
2355 unsigned iPage;
2356 PPGMVIRTHANDLER pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iPage);
2357 AssertReleaseMsg(pVirt, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
2358 Assert((pVirt->Core.Key & PAGE_OFFSET_MASK) == 0);
2359 Assert((pVirt->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
2360 Assert(GCPhys >= pVirt->aPhysToVirt[iPage].Core.Key && GCPhys <= pVirt->aPhysToVirt[iPage].Core.KeyLast);
2361
2362# ifndef IN_RING3
2363 if (enmOrigin != PGMACCESSORIGIN_IEM)
2364 {
2365 /* Cannot reliably handle informational status codes in this context */
2366 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2367 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2368 }
2369# endif
2370 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2371 if (!pPhys)
2372 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
2373 else
2374 Log(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc), R3STRING(pPhys->pszDesc) ));
2375 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2376 + (iPage << PAGE_SHIFT)
2377 + (GCPhys & PAGE_OFFSET_MASK);
2378
2379 STAM_PROFILE_START(&pVirt->Stat, h);
2380 VBOXSTRICTRC rcStrict2 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, (void *)pvSrc, pvBuf, cb,
2381 PGMACCESSTYPE_READ, enmOrigin, pVirt->CTX_SUFF(pvUser));
2382 STAM_PROFILE_STOP(&pVirt->Stat, h);
2383
2384 /* Merge status codes. */
2385 if (rcStrict2 == VINF_SUCCESS)
2386 {
2387 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2388 rcStrict = VINF_SUCCESS;
2389 }
2390 else if (rcStrict2 != VINF_PGM_HANDLER_DO_DEFAULT)
2391 {
2392 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict2, false),
2393 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2394 VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pVirt->pszDesc));
2395 if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
2396 {
2397 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2398 return rcStrict2;
2399 }
2400 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2401 rcStrict = rcStrict2;
2402 else
2403 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
2404 }
2405 }
2406#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
2407
2408 /*
2409 * Take the default action.
2410 */
2411 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2412 {
2413 memcpy(pvBuf, pvSrc, cb);
2414 rcStrict = VINF_SUCCESS;
2415 }
2416 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2417 return rcStrict;
2418}
2419
2420
2421/**
2422 * Read physical memory.
2423 *
2424 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
2425 * want to ignore those.
2426 *
2427 * @returns Strict VBox status code in raw-mode and ring-0, normal VBox status
2428 * code in ring-3. Use PGM_PHYS_RW_IS_SUCCESS to check.
2429 * @retval VINF_SUCCESS in all context - read completed.
2430 *
2431 * @retval VINF_EM_OFF in RC and R0 - read completed.
2432 * @retval VINF_EM_SUSPEND in RC and R0 - read completed.
2433 * @retval VINF_EM_RESET in RC and R0 - read completed.
2434 * @retval VINF_EM_HALT in RC and R0 - read completed.
2435 * @retval VINF_SELM_SYNC_GDT in RC only - read completed.
2436 *
2437 * @retval VINF_EM_DBG_STOP in RC and R0 - read completed.
2438 * @retval VINF_EM_DBG_BREAKPOINT in RC and R0 - read completed.
2439 * @retval VINF_EM_RAW_EMULATE_INSTR in RC and R0 only.
2440 *
2441 * @retval VINF_IOM_R3_MMIO_READ in RC and R0.
2442 * @retval VINF_IOM_R3_MMIO_READ_WRITE in RC and R0.
2443 *
2444 * @retval VINF_PATM_CHECK_PATCH_PAGE in RC only.
2445 *
2446 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in RC and R0 for access origins that
2447 * haven't been cleared for strict status codes yet.
2448 *
2449 * @param pVM Pointer to the VM.
2450 * @param GCPhys Physical address start reading from.
2451 * @param pvBuf Where to put the read bits.
2452 * @param cbRead How many bytes to read.
2453 * @param enmOrigin The origin of this call.
2454 */
2455VMMDECL(VBOXSTRICTRC) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
2456{
2457 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
2458 LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
2459
2460 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysRead));
2461 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysReadBytes), cbRead);
2462
2463 pgmLock(pVM);
2464
2465 /*
2466 * Copy loop on ram ranges.
2467 */
2468 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2469 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2470 for (;;)
2471 {
2472 /* Inside range or not? */
2473 if (pRam && GCPhys >= pRam->GCPhys)
2474 {
2475 /*
2476 * Must work our way thru this page by page.
2477 */
2478 RTGCPHYS off = GCPhys - pRam->GCPhys;
2479 while (off < pRam->cb)
2480 {
2481 unsigned iPage = off >> PAGE_SHIFT;
2482 PPGMPAGE pPage = &pRam->aPages[iPage];
2483 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2484 if (cb > cbRead)
2485 cb = cbRead;
2486
2487 /*
2488 * Normal page? Get the pointer to it.
2489 */
2490 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
2491 && !PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
2492 {
2493 /*
2494 * Get the pointer to the page.
2495 */
2496 PGMPAGEMAPLOCK PgMpLck;
2497 const void *pvSrc;
2498 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
2499 if (RT_SUCCESS(rc))
2500 {
2501 memcpy(pvBuf, pvSrc, cb);
2502 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2503 }
2504 else
2505 {
2506 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
2507 pRam->GCPhys + off, pPage, rc));
2508 memset(pvBuf, 0xff, cb);
2509 }
2510 }
2511 /*
2512 * Have ALL/MMIO access handlers.
2513 */
2514 else
2515 {
2516 VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
2517 if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
2518 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
2519 else
2520 {
2521 pgmUnlock(pVM);
2522 return rcStrict2;
2523 }
2524 }
2525
2526 /* next page */
2527 if (cb >= cbRead)
2528 {
2529 pgmUnlock(pVM);
2530 return rcStrict;
2531 }
2532 cbRead -= cb;
2533 off += cb;
2534 pvBuf = (char *)pvBuf + cb;
2535 } /* walk pages in ram range. */
2536
2537 GCPhys = pRam->GCPhysLast + 1;
2538 }
2539 else
2540 {
2541 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
2542
2543 /*
2544 * Unassigned address space.
2545 */
2546 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
2547 if (cb >= cbRead)
2548 {
2549 memset(pvBuf, 0xff, cbRead);
2550 break;
2551 }
2552 memset(pvBuf, 0xff, cb);
2553
2554 cbRead -= cb;
2555 pvBuf = (char *)pvBuf + cb;
2556 GCPhys += cb;
2557 }
2558
2559 /* Advance range if necessary. */
2560 while (pRam && GCPhys > pRam->GCPhysLast)
2561 pRam = pRam->CTX_SUFF(pNext);
2562 } /* Ram range walk */
2563
2564 pgmUnlock(pVM);
2565 return rcStrict;
2566}
2567
2568
2569/**
2570 * Deals with writing to a page with one or more WRITE or ALL access handlers.
2571 *
2572 * @returns Strict VBox status code in ring-0 and raw-mode, ignorable in ring-3.
2573 * See PGM_HANDLER_PHYS_IS_VALID_STATUS and
2574 * PGM_HANDLER_VIRT_IS_VALID_STATUS for details.
2575 *
2576 * @param pVM Pointer to the VM.
2577 * @param pPage The page descriptor.
2578 * @param GCPhys The physical address to start writing at.
2579 * @param pvBuf What to write.
2580 * @param cbWrite How much to write - less or equal to a page.
2581 * @param enmOrigin The origin of this call.
2582 */
2583static VBOXSTRICTRC pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite,
2584 PGMACCESSORIGIN enmOrigin)
2585{
2586 PGMPAGEMAPLOCK PgMpLck;
2587 void *pvDst = NULL;
2588 VBOXSTRICTRC rcStrict;
2589
2590 /*
2591 * Give priority to physical handlers (like #PF does).
2592 *
2593 * Hope for a lonely physical handler first that covers the whole
2594 * write area. This should be a pretty frequent case with MMIO and
2595 * the heavy usage of full page handlers in the page pool.
2596 */
2597 PVMCPU pVCpu = VMMGetCpu(pVM);
2598 if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
2599 || PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage) /* screw virtual handlers on MMIO pages */)
2600 {
2601 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
2602 if (pCur)
2603 {
2604 Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
2605#ifndef IN_RING3
2606 if (enmOrigin != PGMACCESSORIGIN_IEM)
2607 /* Cannot reliably handle informational status codes in this context */
2608 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2609#endif
2610 size_t cbRange = pCur->Core.KeyLast - GCPhys + 1;
2611 if (cbRange > cbWrite)
2612 cbRange = cbWrite;
2613
2614 Assert(PGMPHYSHANDLER_GET_TYPE(pVM, pCur)->CTX_SUFF(pfnHandler));
2615 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n",
2616 GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
2617 if (!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
2618 rcStrict = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2619 else
2620 rcStrict = VINF_SUCCESS;
2621 if (RT_SUCCESS(rcStrict))
2622 {
2623 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pCur)->CTX_SUFF(pfnHandler);
2624 void *pvUser = pCur->CTX_SUFF(pvUser);
2625 STAM_PROFILE_START(&pCur->Stat, h);
2626
2627 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2628 PGM_LOCK_ASSERT_OWNER(pVM);
2629 pgmUnlock(pVM);
2630 rcStrict = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2631 pgmLock(pVM);
2632
2633#ifdef VBOX_WITH_STATISTICS
2634 pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
2635 if (pCur)
2636 STAM_PROFILE_STOP(&pCur->Stat, h);
2637#else
2638 pCur = NULL; /* might not be valid anymore. */
2639#endif
2640 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2641 {
2642 if (pvDst)
2643 memcpy(pvDst, pvBuf, cbRange);
2644 rcStrict = VINF_SUCCESS;
2645 }
2646 else
2647 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict, true),
2648 ("rcStrict=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2649 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pCur ? R3STRING(pCur->pszDesc) : ""));
2650 }
2651 else
2652 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2653 GCPhys, pPage, VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
2654 if (RT_LIKELY(cbRange == cbWrite) || !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2655 {
2656 if (pvDst)
2657 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2658 return rcStrict;
2659 }
2660
2661 /* more fun to be had below */
2662 cbWrite -= cbRange;
2663 GCPhys += cbRange;
2664 pvBuf = (uint8_t *)pvBuf + cbRange;
2665 pvDst = (uint8_t *)pvDst + cbRange;
2666 }
2667 else /* The handler is somewhere else in the page, deal with it below. */
2668 rcStrict = VINF_SUCCESS;
2669 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)); /* MMIO handlers are all PAGE_SIZEed! */
2670 }
2671#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2672 /*
2673 * A virtual handler without any interfering physical handlers.
2674 * Hopefully it'll cover the whole write.
2675 */
2676 else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
2677 {
2678 unsigned iPage;
2679 PPGMVIRTHANDLER pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iPage);
2680 if (pVirt)
2681 {
2682# ifndef IN_RING3
2683 if (enmOrigin != PGMACCESSORIGIN_IEM)
2684 /* Cannot reliably handle informational status codes in this context */
2685 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2686# endif
2687 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2688 size_t cbRange = (PAGE_OFFSET_MASK & pVirt->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1;
2689 if (cbRange > cbWrite)
2690 cbRange = cbWrite;
2691
2692 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] virt %s\n",
2693 GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2694 rcStrict = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2695 if (RT_SUCCESS(rcStrict))
2696 {
2697 Assert(pVirtType->CTX_SUFF(pfnHandler));
2698 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2699 + (iPage << PAGE_SHIFT)
2700 + (GCPhys & PAGE_OFFSET_MASK);
2701
2702 STAM_PROFILE_START(&pVirt->Stat, h);
2703 rcStrict = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange,
2704 PGMACCESSTYPE_WRITE, enmOrigin, pVirt->CTX_SUFF(pvUser));
2705 STAM_PROFILE_STOP(&pVirt->Stat, h);
2706 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2707 {
2708 memcpy(pvDst, pvBuf, cbRange);
2709 rcStrict = VINF_SUCCESS;
2710 }
2711 else
2712 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict, true),
2713 ("rcStrict=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2714 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, R3STRING(pVirt->pszDesc)));
2715 }
2716 else
2717 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2718 GCPhys, pPage, VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
2719 if (RT_LIKELY(cbRange == cbWrite) || !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2720 {
2721 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2722 return rcStrict;
2723 }
2724
2725 /* more fun to be had below */
2726 cbWrite -= cbRange;
2727 GCPhys += cbRange;
2728 pvBuf = (uint8_t *)pvBuf + cbRange;
2729 pvDst = (uint8_t *)pvDst + cbRange;
2730 }
2731 else /* The handler is somewhere else in the page, deal with it below. */
2732 rcStrict = VINF_SUCCESS;
2733 }
2734#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
2735 else
2736 rcStrict = VINF_SUCCESS;
2737
2738
2739 /*
2740 * Deal with all the odd ends.
2741 */
2742 Assert(rcStrict != VINF_PGM_HANDLER_DO_DEFAULT);
2743
2744 /* We need a writable destination page. */
2745 if (!pvDst)
2746 {
2747 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2748 AssertLogRelMsgReturn(RT_SUCCESS(rc2),
2749 ("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", GCPhys, pPage, rc2),
2750 rc2);
2751 }
2752
2753 /* The loop state (big + ugly). */
2754#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2755 unsigned iVirtPage = 0;
2756 PPGMVIRTHANDLER pVirt = NULL;
2757 uint32_t offVirt = PAGE_SIZE;
2758 uint32_t offVirtLast = PAGE_SIZE;
2759 bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage);
2760#else
2761 uint32_t const offVirt = UINT32_MAX;
2762#endif
2763
2764 PPGMPHYSHANDLER pPhys = NULL;
2765 uint32_t offPhys = PAGE_SIZE;
2766 uint32_t offPhysLast = PAGE_SIZE;
2767 bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage);
2768
2769 /* The loop. */
2770 for (;;)
2771 {
2772#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2773 /*
2774 * Find the closest handler at or above GCPhys.
2775 */
2776 if (fMoreVirt && !pVirt)
2777 {
2778 pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iVirtPage);
2779 if (pVirt)
2780 {
2781 offVirt = 0;
2782 offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2783 }
2784 else
2785 {
2786 PPGMPHYS2VIRTHANDLER pVirtPhys;
2787 pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
2788 GCPhys, true /* fAbove */);
2789 if ( pVirtPhys
2790 && (pVirtPhys->Core.Key >> PAGE_SHIFT) == (GCPhys >> PAGE_SHIFT))
2791 {
2792 /* ASSUME that pVirtPhys only covers one page. */
2793 Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT));
2794 Assert(pVirtPhys->Core.Key > GCPhys);
2795
2796 pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler);
2797 iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0);
2798 offVirt = (pVirtPhys->Core.Key & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2799 offVirtLast = (pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2800 }
2801 else
2802 {
2803 pVirt = NULL;
2804 fMoreVirt = false;
2805 offVirt = offVirtLast = PAGE_SIZE;
2806 }
2807 }
2808 }
2809#endif
2810
2811 if (fMorePhys && !pPhys)
2812 {
2813 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2814 if (pPhys)
2815 {
2816 offPhys = 0;
2817 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2818 }
2819 else
2820 {
2821 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers,
2822 GCPhys, true /* fAbove */);
2823 if ( pPhys
2824 && pPhys->Core.Key <= GCPhys + (cbWrite - 1))
2825 {
2826 offPhys = pPhys->Core.Key - GCPhys;
2827 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2828 }
2829 else
2830 {
2831 pPhys = NULL;
2832 fMorePhys = false;
2833 offPhys = offPhysLast = PAGE_SIZE;
2834 }
2835 }
2836 }
2837
2838 /*
2839 * Handle access to space without handlers (that's easy).
2840 */
2841 VBOXSTRICTRC rcStrict2 = VINF_PGM_HANDLER_DO_DEFAULT;
2842 uint32_t cbRange = (uint32_t)cbWrite;
2843 if (offPhys && offVirt)
2844 {
2845 if (cbRange > offPhys)
2846 cbRange = offPhys;
2847 if (cbRange > offVirt)
2848 cbRange = offVirt;
2849 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] miss\n", GCPhys, cbRange, pPage));
2850 }
2851 /*
2852 * Physical handler.
2853 */
2854 else if (!offPhys && offVirt)
2855 {
2856#ifndef IN_RING3
2857 if (enmOrigin != PGMACCESSORIGIN_IEM)
2858 /* Cannot reliably handle informational status codes in this context */
2859 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2860#endif
2861 if (cbRange > offPhysLast + 1)
2862 cbRange = offPhysLast + 1;
2863 if (cbRange > offVirt)
2864 cbRange = offVirt;
2865
2866 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler);
2867 void *pvUser = pPhys->CTX_SUFF(pvUser);
2868
2869 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc) ));
2870 STAM_PROFILE_START(&pPhys->Stat, h);
2871
2872 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2873 PGM_LOCK_ASSERT_OWNER(pVM);
2874 pgmUnlock(pVM);
2875 rcStrict2 = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2876 pgmLock(pVM);
2877
2878#ifdef VBOX_WITH_STATISTICS
2879 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2880 if (pPhys)
2881 STAM_PROFILE_STOP(&pPhys->Stat, h);
2882#else
2883 pPhys = NULL; /* might not be valid anymore. */
2884#endif
2885 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict2, true),
2886 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
2887 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
2888 }
2889#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2890 /*
2891 * Virtual handler.
2892 */
2893 else if (offPhys && !offVirt)
2894 {
2895# ifndef IN_RING3
2896 if (enmOrigin != PGMACCESSORIGIN_IEM)
2897 /* Cannot reliably handle informational status codes in this context */
2898 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2899# endif
2900 if (cbRange > offVirtLast + 1)
2901 cbRange = offVirtLast + 1;
2902 if (cbRange > offPhys)
2903 cbRange = offPhys;
2904
2905 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2906 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2907 Assert(pVirtType->CTX_SUFF(pfnHandler));
2908 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2909 + (iVirtPage << PAGE_SHIFT)
2910 + (GCPhys & PAGE_OFFSET_MASK);
2911 STAM_PROFILE_START(&pVirt->Stat, h);
2912 rcStrict2 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE,
2913 enmOrigin, pVirt->CTX_SUFF(pvUser));
2914 STAM_PROFILE_STOP(&pVirt->Stat, h);
2915 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict2, true),
2916 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
2917 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
2918 pVirt = NULL;
2919 }
2920 /*
2921 * Both... give the physical one priority.
2922 */
2923 else
2924 {
2925# ifndef IN_RING3
2926 if (enmOrigin != PGMACCESSORIGIN_IEM)
2927 /* Cannot reliably handle informational status codes in this context */
2928 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2929# endif
2930 Assert(!offPhys && !offVirt);
2931 if (cbRange > offVirtLast + 1)
2932 cbRange = offVirtLast + 1;
2933 if (cbRange > offPhysLast + 1)
2934 cbRange = offPhysLast + 1;
2935
2936 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2937 if (pVirtType->pfnHandlerR3)
2938 Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange));
2939 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc), R3STRING(pVirt->pszDesc) ));
2940
2941 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler);
2942 void *pvUser = pPhys->CTX_SUFF(pvUser);
2943 STAM_PROFILE_START(&pPhys->Stat, h);
2944
2945 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2946 PGM_LOCK_ASSERT_OWNER(pVM);
2947 pgmUnlock(pVM);
2948 rcStrict2 = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2949 pgmLock(pVM);
2950
2951# ifdef VBOX_WITH_STATISTICS
2952 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2953 if (pPhys)
2954 STAM_PROFILE_STOP(&pPhys->Stat, h);
2955# else
2956 pPhys = NULL; /* might not be valid anymore. */
2957# endif
2958 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict2, true),
2959 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
2960 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
2961 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT || PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
2962 {
2963 Assert(pVirtType->CTX_SUFF(pfnHandler));
2964 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2965 + (iVirtPage << PAGE_SHIFT)
2966 + (GCPhys & PAGE_OFFSET_MASK);
2967 pvUser = pVirt->CTX_SUFF(pvUser);
2968
2969 STAM_PROFILE_START(&pVirt->Stat, h2);
2970 VBOXSTRICTRC rcStrict3 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange,
2971 PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2972 STAM_PROFILE_STOP(&pVirt->Stat, h2);
2973
2974 /* Merge the 3rd status into the 2nd. */
2975 if (rcStrict3 == VINF_SUCCESS)
2976 {
2977 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
2978 rcStrict2 = VINF_SUCCESS;
2979 }
2980 else if (rcStrict3 != VINF_PGM_HANDLER_DO_DEFAULT)
2981 {
2982 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict3, true),
2983 ("rcStrict3=%Rrc (rcStrict2=%Rrc) (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2984 VBOXSTRICTRC_VAL(rcStrict3), VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict),
2985 GCPhys, pPage, R3STRING(pVirt->pszDesc) ));
2986 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
2987 rcStrict2 = rcStrict3;
2988 else if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict3))
2989 rcStrict2 = rcStrict3;
2990 else
2991 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict2, rcStrict3);
2992 }
2993 }
2994 pPhys = NULL;
2995 pVirt = NULL;
2996 }
2997#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
2998
2999
3000 /*
3001 * Execute the default action and merge the status codes.
3002 */
3003 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
3004 {
3005 memcpy(pvDst, pvBuf, cbRange);
3006 rcStrict2 = VINF_SUCCESS;
3007 }
3008 else if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
3009 {
3010 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3011 return rcStrict2;
3012 }
3013 else
3014 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
3015
3016 /*
3017 * Advance if we've got more stuff to do.
3018 */
3019 if (cbRange >= cbWrite)
3020 {
3021 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3022 return rcStrict;
3023 }
3024
3025
3026 cbWrite -= cbRange;
3027 GCPhys += cbRange;
3028 pvBuf = (uint8_t *)pvBuf + cbRange;
3029 pvDst = (uint8_t *)pvDst + cbRange;
3030
3031 offPhys -= cbRange;
3032 offPhysLast -= cbRange;
3033#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
3034 offVirt -= cbRange;
3035 offVirtLast -= cbRange;
3036#endif
3037 }
3038}
3039
3040
3041/**
3042 * Write to physical memory.
3043 *
3044 * This API respects access handlers and MMIO. Use PGMPhysSimpleWriteGCPhys() if you
3045 * want to ignore those.
3046 *
3047 * @returns Strict VBox status code in raw-mode and ring-0, normal VBox status
3048 * code in ring-3. Use PGM_PHYS_RW_IS_SUCCESS to check.
3049 * @retval VINF_SUCCESS in all context - write completed.
3050 *
3051 * @retval VINF_EM_OFF in RC and R0 - write completed.
3052 * @retval VINF_EM_SUSPEND in RC and R0 - write completed.
3053 * @retval VINF_EM_RESET in RC and R0 - write completed.
3054 * @retval VINF_EM_HALT in RC and R0 - write completed.
3055 * @retval VINF_SELM_SYNC_GDT in RC only - write completed.
3056 *
3057 * @retval VINF_EM_DBG_STOP in RC and R0 - write completed.
3058 * @retval VINF_EM_DBG_BREAKPOINT in RC and R0 - write completed.
3059 * @retval VINF_EM_RAW_EMULATE_INSTR in RC and R0 only.
3060 *
3061 * @retval VINF_IOM_R3_MMIO_WRITE in RC and R0.
3062 * @retval VINF_IOM_R3_MMIO_READ_WRITE in RC and R0.
3063 *
3064 * @retval VINF_EM_RAW_EMULATE_IO_BLOCK in R0 only.
3065 *
3066 * @retval VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT in RC only - write completed.
3067 * @retval VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT in RC only.
3068 * @retval VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT in RC only.
3069 * @retval VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT in RC only.
3070 * @retval VINF_CSAM_PENDING_ACTION in RC only.
3071 * @retval VINF_PATM_CHECK_PATCH_PAGE in RC only.
3072 *
3073 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in RC and R0 for access origins that
3074 * haven't been cleared for strict status codes yet.
3075 *
3076 *
3077 * @param pVM Pointer to the VM.
3078 * @param GCPhys Physical address to write to.
3079 * @param pvBuf What to write.
3080 * @param cbWrite How many bytes to write.
3081 * @param enmOrigin Who is calling.
3082 */
3083VMMDECL(VBOXSTRICTRC) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
3084{
3085 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()! enmOrigin=%d\n", enmOrigin));
3086 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
3087 LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
3088
3089 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWrite));
3090 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWriteBytes), cbWrite);
3091
3092 pgmLock(pVM);
3093
3094 /*
3095 * Copy loop on ram ranges.
3096 */
3097 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3098 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
3099 for (;;)
3100 {
3101 /* Inside range or not? */
3102 if (pRam && GCPhys >= pRam->GCPhys)
3103 {
3104 /*
3105 * Must work our way thru this page by page.
3106 */
3107 RTGCPTR off = GCPhys - pRam->GCPhys;
3108 while (off < pRam->cb)
3109 {
3110 RTGCPTR iPage = off >> PAGE_SHIFT;
3111 PPGMPAGE pPage = &pRam->aPages[iPage];
3112 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
3113 if (cb > cbWrite)
3114 cb = cbWrite;
3115
3116 /*
3117 * Normal page? Get the pointer to it.
3118 */
3119 if ( !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
3120 && !PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
3121 {
3122 PGMPAGEMAPLOCK PgMpLck;
3123 void *pvDst;
3124 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
3125 if (RT_SUCCESS(rc))
3126 {
3127 Assert(!PGM_PAGE_IS_BALLOONED(pPage));
3128 memcpy(pvDst, pvBuf, cb);
3129 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3130 }
3131 /* Ignore writes to ballooned pages. */
3132 else if (!PGM_PAGE_IS_BALLOONED(pPage))
3133 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
3134 pRam->GCPhys + off, pPage, rc));
3135 }
3136 /*
3137 * Active WRITE or ALL access handlers.
3138 */
3139 else
3140 {
3141 VBOXSTRICTRC rcStrict2 = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
3142 if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
3143 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
3144 else
3145 {
3146 pgmUnlock(pVM);
3147 return rcStrict2;
3148 }
3149 }
3150
3151 /* next page */
3152 if (cb >= cbWrite)
3153 {
3154 pgmUnlock(pVM);
3155 return rcStrict;
3156 }
3157
3158 cbWrite -= cb;
3159 off += cb;
3160 pvBuf = (const char *)pvBuf + cb;
3161 } /* walk pages in ram range */
3162
3163 GCPhys = pRam->GCPhysLast + 1;
3164 }
3165 else
3166 {
3167 /*
3168 * Unassigned address space, skip it.
3169 */
3170 if (!pRam)
3171 break;
3172 size_t cb = pRam->GCPhys - GCPhys;
3173 if (cb >= cbWrite)
3174 break;
3175 cbWrite -= cb;
3176 pvBuf = (const char *)pvBuf + cb;
3177 GCPhys += cb;
3178 }
3179
3180 /* Advance range if necessary. */
3181 while (pRam && GCPhys > pRam->GCPhysLast)
3182 pRam = pRam->CTX_SUFF(pNext);
3183 } /* Ram range walk */
3184
3185 pgmUnlock(pVM);
3186 return rcStrict;
3187}
3188
3189
3190/**
3191 * Read from guest physical memory by GC physical address, bypassing
3192 * MMIO and access handlers.
3193 *
3194 * @returns VBox status.
3195 * @param pVM Pointer to the VM.
3196 * @param pvDst The destination address.
3197 * @param GCPhysSrc The source address (GC physical address).
3198 * @param cb The number of bytes to read.
3199 */
3200VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
3201{
3202 /*
3203 * Treat the first page as a special case.
3204 */
3205 if (!cb)
3206 return VINF_SUCCESS;
3207
3208 /* map the 1st page */
3209 void const *pvSrc;
3210 PGMPAGEMAPLOCK Lock;
3211 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
3212 if (RT_FAILURE(rc))
3213 return rc;
3214
3215 /* optimize for the case where access is completely within the first page. */
3216 size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
3217 if (RT_LIKELY(cb <= cbPage))
3218 {
3219 memcpy(pvDst, pvSrc, cb);
3220 PGMPhysReleasePageMappingLock(pVM, &Lock);
3221 return VINF_SUCCESS;
3222 }
3223
3224 /* copy to the end of the page. */
3225 memcpy(pvDst, pvSrc, cbPage);
3226 PGMPhysReleasePageMappingLock(pVM, &Lock);
3227 GCPhysSrc += cbPage;
3228 pvDst = (uint8_t *)pvDst + cbPage;
3229 cb -= cbPage;
3230
3231 /*
3232 * Page by page.
3233 */
3234 for (;;)
3235 {
3236 /* map the page */
3237 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
3238 if (RT_FAILURE(rc))
3239 return rc;
3240
3241 /* last page? */
3242 if (cb <= PAGE_SIZE)
3243 {
3244 memcpy(pvDst, pvSrc, cb);
3245 PGMPhysReleasePageMappingLock(pVM, &Lock);
3246 return VINF_SUCCESS;
3247 }
3248
3249 /* copy the entire page and advance */
3250 memcpy(pvDst, pvSrc, PAGE_SIZE);
3251 PGMPhysReleasePageMappingLock(pVM, &Lock);
3252 GCPhysSrc += PAGE_SIZE;
3253 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
3254 cb -= PAGE_SIZE;
3255 }
3256 /* won't ever get here. */
3257}
3258
3259
3260/**
3261 * Write to guest physical memory referenced by GC pointer.
3262 * Write memory to GC physical address in guest physical memory.
3263 *
3264 * This will bypass MMIO and access handlers.
3265 *
3266 * @returns VBox status.
3267 * @param pVM Pointer to the VM.
3268 * @param GCPhysDst The GC physical address of the destination.
3269 * @param pvSrc The source buffer.
3270 * @param cb The number of bytes to write.
3271 */
3272VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
3273{
3274 LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
3275
3276 /*
3277 * Treat the first page as a special case.
3278 */
3279 if (!cb)
3280 return VINF_SUCCESS;
3281
3282 /* map the 1st page */
3283 void *pvDst;
3284 PGMPAGEMAPLOCK Lock;
3285 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
3286 if (RT_FAILURE(rc))
3287 return rc;
3288
3289 /* optimize for the case where access is completely within the first page. */
3290 size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
3291 if (RT_LIKELY(cb <= cbPage))
3292 {
3293 memcpy(pvDst, pvSrc, cb);
3294 PGMPhysReleasePageMappingLock(pVM, &Lock);
3295 return VINF_SUCCESS;
3296 }
3297
3298 /* copy to the end of the page. */
3299 memcpy(pvDst, pvSrc, cbPage);
3300 PGMPhysReleasePageMappingLock(pVM, &Lock);
3301 GCPhysDst += cbPage;
3302 pvSrc = (const uint8_t *)pvSrc + cbPage;
3303 cb -= cbPage;
3304
3305 /*
3306 * Page by page.
3307 */
3308 for (;;)
3309 {
3310 /* map the page */
3311 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
3312 if (RT_FAILURE(rc))
3313 return rc;
3314
3315 /* last page? */
3316 if (cb <= PAGE_SIZE)
3317 {
3318 memcpy(pvDst, pvSrc, cb);
3319 PGMPhysReleasePageMappingLock(pVM, &Lock);
3320 return VINF_SUCCESS;
3321 }
3322
3323 /* copy the entire page and advance */
3324 memcpy(pvDst, pvSrc, PAGE_SIZE);
3325 PGMPhysReleasePageMappingLock(pVM, &Lock);
3326 GCPhysDst += PAGE_SIZE;
3327 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3328 cb -= PAGE_SIZE;
3329 }
3330 /* won't ever get here. */
3331}
3332
3333
3334/**
3335 * Read from guest physical memory referenced by GC pointer.
3336 *
3337 * This function uses the current CR3/CR0/CR4 of the guest and will
3338 * bypass access handlers and not set any accessed bits.
3339 *
3340 * @returns VBox status.
3341 * @param pVCpu Handle to the current virtual CPU.
3342 * @param pvDst The destination address.
3343 * @param GCPtrSrc The source address (GC pointer).
3344 * @param cb The number of bytes to read.
3345 */
3346VMMDECL(int) PGMPhysSimpleReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
3347{
3348 PVM pVM = pVCpu->CTX_SUFF(pVM);
3349/** @todo fix the macro / state handling: VMCPU_ASSERT_EMT_OR_GURU(pVCpu); */
3350
3351 /*
3352 * Treat the first page as a special case.
3353 */
3354 if (!cb)
3355 return VINF_SUCCESS;
3356
3357 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleRead));
3358 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleReadBytes), cb);
3359
3360 /* Take the PGM lock here, because many called functions take the lock for a very short period. That's counter-productive
3361 * when many VCPUs are fighting for the lock.
3362 */
3363 pgmLock(pVM);
3364
3365 /* map the 1st page */
3366 void const *pvSrc;
3367 PGMPAGEMAPLOCK Lock;
3368 int rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
3369 if (RT_FAILURE(rc))
3370 {
3371 pgmUnlock(pVM);
3372 return rc;
3373 }
3374
3375 /* optimize for the case where access is completely within the first page. */
3376 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
3377 if (RT_LIKELY(cb <= cbPage))
3378 {
3379 memcpy(pvDst, pvSrc, cb);
3380 PGMPhysReleasePageMappingLock(pVM, &Lock);
3381 pgmUnlock(pVM);
3382 return VINF_SUCCESS;
3383 }
3384
3385 /* copy to the end of the page. */
3386 memcpy(pvDst, pvSrc, cbPage);
3387 PGMPhysReleasePageMappingLock(pVM, &Lock);
3388 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
3389 pvDst = (uint8_t *)pvDst + cbPage;
3390 cb -= cbPage;
3391
3392 /*
3393 * Page by page.
3394 */
3395 for (;;)
3396 {
3397 /* map the page */
3398 rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
3399 if (RT_FAILURE(rc))
3400 {
3401 pgmUnlock(pVM);
3402 return rc;
3403 }
3404
3405 /* last page? */
3406 if (cb <= PAGE_SIZE)
3407 {
3408 memcpy(pvDst, pvSrc, cb);
3409 PGMPhysReleasePageMappingLock(pVM, &Lock);
3410 pgmUnlock(pVM);
3411 return VINF_SUCCESS;
3412 }
3413
3414 /* copy the entire page and advance */
3415 memcpy(pvDst, pvSrc, PAGE_SIZE);
3416 PGMPhysReleasePageMappingLock(pVM, &Lock);
3417 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
3418 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
3419 cb -= PAGE_SIZE;
3420 }
3421 /* won't ever get here. */
3422}
3423
3424
3425/**
3426 * Write to guest physical memory referenced by GC pointer.
3427 *
3428 * This function uses the current CR3/CR0/CR4 of the guest and will
3429 * bypass access handlers and not set dirty or accessed bits.
3430 *
3431 * @returns VBox status.
3432 * @param pVCpu Handle to the current virtual CPU.
3433 * @param GCPtrDst The destination address (GC pointer).
3434 * @param pvSrc The source address.
3435 * @param cb The number of bytes to write.
3436 */
3437VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
3438{
3439 PVM pVM = pVCpu->CTX_SUFF(pVM);
3440 VMCPU_ASSERT_EMT(pVCpu);
3441
3442 /*
3443 * Treat the first page as a special case.
3444 */
3445 if (!cb)
3446 return VINF_SUCCESS;
3447
3448 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWrite));
3449 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWriteBytes), cb);
3450
3451 /* map the 1st page */
3452 void *pvDst;
3453 PGMPAGEMAPLOCK Lock;
3454 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3455 if (RT_FAILURE(rc))
3456 return rc;
3457
3458 /* optimize for the case where access is completely within the first page. */
3459 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3460 if (RT_LIKELY(cb <= cbPage))
3461 {
3462 memcpy(pvDst, pvSrc, cb);
3463 PGMPhysReleasePageMappingLock(pVM, &Lock);
3464 return VINF_SUCCESS;
3465 }
3466
3467 /* copy to the end of the page. */
3468 memcpy(pvDst, pvSrc, cbPage);
3469 PGMPhysReleasePageMappingLock(pVM, &Lock);
3470 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
3471 pvSrc = (const uint8_t *)pvSrc + cbPage;
3472 cb -= cbPage;
3473
3474 /*
3475 * Page by page.
3476 */
3477 for (;;)
3478 {
3479 /* map the page */
3480 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3481 if (RT_FAILURE(rc))
3482 return rc;
3483
3484 /* last page? */
3485 if (cb <= PAGE_SIZE)
3486 {
3487 memcpy(pvDst, pvSrc, cb);
3488 PGMPhysReleasePageMappingLock(pVM, &Lock);
3489 return VINF_SUCCESS;
3490 }
3491
3492 /* copy the entire page and advance */
3493 memcpy(pvDst, pvSrc, PAGE_SIZE);
3494 PGMPhysReleasePageMappingLock(pVM, &Lock);
3495 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
3496 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3497 cb -= PAGE_SIZE;
3498 }
3499 /* won't ever get here. */
3500}
3501
3502
3503/**
3504 * Write to guest physical memory referenced by GC pointer and update the PTE.
3505 *
3506 * This function uses the current CR3/CR0/CR4 of the guest and will
3507 * bypass access handlers but will set any dirty and accessed bits in the PTE.
3508 *
3509 * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
3510 *
3511 * @returns VBox status.
3512 * @param pVCpu Handle to the current virtual CPU.
3513 * @param GCPtrDst The destination address (GC pointer).
3514 * @param pvSrc The source address.
3515 * @param cb The number of bytes to write.
3516 */
3517VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
3518{
3519 PVM pVM = pVCpu->CTX_SUFF(pVM);
3520 VMCPU_ASSERT_EMT(pVCpu);
3521
3522 /*
3523 * Treat the first page as a special case.
3524 * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
3525 */
3526 if (!cb)
3527 return VINF_SUCCESS;
3528
3529 /* map the 1st page */
3530 void *pvDst;
3531 PGMPAGEMAPLOCK Lock;
3532 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3533 if (RT_FAILURE(rc))
3534 return rc;
3535
3536 /* optimize for the case where access is completely within the first page. */
3537 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3538 if (RT_LIKELY(cb <= cbPage))
3539 {
3540 memcpy(pvDst, pvSrc, cb);
3541 PGMPhysReleasePageMappingLock(pVM, &Lock);
3542 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3543 return VINF_SUCCESS;
3544 }
3545
3546 /* copy to the end of the page. */
3547 memcpy(pvDst, pvSrc, cbPage);
3548 PGMPhysReleasePageMappingLock(pVM, &Lock);
3549 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3550 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
3551 pvSrc = (const uint8_t *)pvSrc + cbPage;
3552 cb -= cbPage;
3553
3554 /*
3555 * Page by page.
3556 */
3557 for (;;)
3558 {
3559 /* map the page */
3560 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3561 if (RT_FAILURE(rc))
3562 return rc;
3563
3564 /* last page? */
3565 if (cb <= PAGE_SIZE)
3566 {
3567 memcpy(pvDst, pvSrc, cb);
3568 PGMPhysReleasePageMappingLock(pVM, &Lock);
3569 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3570 return VINF_SUCCESS;
3571 }
3572
3573 /* copy the entire page and advance */
3574 memcpy(pvDst, pvSrc, PAGE_SIZE);
3575 PGMPhysReleasePageMappingLock(pVM, &Lock);
3576 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3577 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
3578 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3579 cb -= PAGE_SIZE;
3580 }
3581 /* won't ever get here. */
3582}
3583
3584
3585/**
3586 * Read from guest physical memory referenced by GC pointer.
3587 *
3588 * This function uses the current CR3/CR0/CR4 of the guest and will
3589 * respect access handlers and set accessed bits.
3590 *
3591 * @returns Strict VBox status, see PGMPhysRead for details.
3592 * @retval VERR_PAGE_TABLE_NOT_PRESENT if there is no page mapped at the
3593 * specified virtual address.
3594 *
3595 * @param pVCpu Handle to the current virtual CPU.
3596 * @param pvDst The destination address.
3597 * @param GCPtrSrc The source address (GC pointer).
3598 * @param cb The number of bytes to read.
3599 * @param enmOrigin Who is calling.
3600 * @thread EMT(pVCpu)
3601 */
3602VMMDECL(VBOXSTRICTRC) PGMPhysReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb, PGMACCESSORIGIN enmOrigin)
3603{
3604 RTGCPHYS GCPhys;
3605 uint64_t fFlags;
3606 int rc;
3607 PVM pVM = pVCpu->CTX_SUFF(pVM);
3608 VMCPU_ASSERT_EMT(pVCpu);
3609
3610 /*
3611 * Anything to do?
3612 */
3613 if (!cb)
3614 return VINF_SUCCESS;
3615
3616 LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
3617
3618 /*
3619 * Optimize reads within a single page.
3620 */
3621 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
3622 {
3623 /* Convert virtual to physical address + flags */
3624 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
3625 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
3626 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
3627
3628 /* mark the guest page as accessed. */
3629 if (!(fFlags & X86_PTE_A))
3630 {
3631 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
3632 AssertRC(rc);
3633 }
3634
3635 return PGMPhysRead(pVM, GCPhys, pvDst, cb, enmOrigin);
3636 }
3637
3638 /*
3639 * Page by page.
3640 */
3641 for (;;)
3642 {
3643 /* Convert virtual to physical address + flags */
3644 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
3645 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
3646 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
3647
3648 /* mark the guest page as accessed. */
3649 if (!(fFlags & X86_PTE_A))
3650 {
3651 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
3652 AssertRC(rc);
3653 }
3654
3655 /* copy */
3656 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
3657 if (cbRead < cb)
3658 {
3659 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, GCPhys, pvDst, cbRead, enmOrigin);
3660 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3661 { /* likely */ }
3662 else
3663 return rcStrict;
3664 }
3665 else /* Last page (cbRead is PAGE_SIZE, we only need cb!) */
3666 return PGMPhysRead(pVM, GCPhys, pvDst, cb, enmOrigin);
3667
3668 /* next */
3669 Assert(cb > cbRead);
3670 cb -= cbRead;
3671 pvDst = (uint8_t *)pvDst + cbRead;
3672 GCPtrSrc += cbRead;
3673 }
3674}
3675
3676
3677/**
3678 * Write to guest physical memory referenced by GC pointer.
3679 *
3680 * This function uses the current CR3/CR0/CR4 of the guest and will
3681 * respect access handlers and set dirty and accessed bits.
3682 *
3683 * @returns Strict VBox status, see PGMPhysWrite for details.
3684 * @retval VERR_PAGE_TABLE_NOT_PRESENT if there is no page mapped at the
3685 * specified virtual address.
3686 *
3687 * @param pVCpu Handle to the current virtual CPU.
3688 * @param GCPtrDst The destination address (GC pointer).
3689 * @param pvSrc The source address.
3690 * @param cb The number of bytes to write.
3691 * @param enmOrigin Who is calling.
3692 */
3693VMMDECL(VBOXSTRICTRC) PGMPhysWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb, PGMACCESSORIGIN enmOrigin)
3694{
3695 RTGCPHYS GCPhys;
3696 uint64_t fFlags;
3697 int rc;
3698 PVM pVM = pVCpu->CTX_SUFF(pVM);
3699 VMCPU_ASSERT_EMT(pVCpu);
3700
3701 /*
3702 * Anything to do?
3703 */
3704 if (!cb)
3705 return VINF_SUCCESS;
3706
3707 LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
3708
3709 /*
3710 * Optimize writes within a single page.
3711 */
3712 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
3713 {
3714 /* Convert virtual to physical address + flags */
3715 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
3716 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
3717 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
3718
3719 /* Mention when we ignore X86_PTE_RW... */
3720 if (!(fFlags & X86_PTE_RW))
3721 Log(("PGMPhysWriteGCPtr: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3722
3723 /* Mark the guest page as accessed and dirty if necessary. */
3724 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3725 {
3726 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3727 AssertRC(rc);
3728 }
3729
3730 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb, enmOrigin);
3731 }
3732
3733 /*
3734 * Page by page.
3735 */
3736 for (;;)
3737 {
3738 /* Convert virtual to physical address + flags */
3739 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
3740 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
3741 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
3742
3743 /* Mention when we ignore X86_PTE_RW... */
3744 if (!(fFlags & X86_PTE_RW))
3745 Log(("PGMPhysWriteGCPtr: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3746
3747 /* Mark the guest page as accessed and dirty if necessary. */
3748 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3749 {
3750 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3751 AssertRC(rc);
3752 }
3753
3754 /* copy */
3755 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3756 if (cbWrite < cb)
3757 {
3758 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite, enmOrigin);
3759 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3760 { /* likely */ }
3761 else
3762 return rcStrict;
3763 }
3764 else /* Last page (cbWrite is PAGE_SIZE, we only need cb!) */
3765 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb, enmOrigin);
3766
3767 /* next */
3768 Assert(cb > cbWrite);
3769 cb -= cbWrite;
3770 pvSrc = (uint8_t *)pvSrc + cbWrite;
3771 GCPtrDst += cbWrite;
3772 }
3773}
3774
3775
3776/**
3777 * Performs a read of guest virtual memory for instruction emulation.
3778 *
3779 * This will check permissions, raise exceptions and update the access bits.
3780 *
3781 * The current implementation will bypass all access handlers. It may later be
3782 * changed to at least respect MMIO.
3783 *
3784 *
3785 * @returns VBox status code suitable to scheduling.
3786 * @retval VINF_SUCCESS if the read was performed successfully.
3787 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3788 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3789 *
3790 * @param pVCpu Handle to the current virtual CPU.
3791 * @param pCtxCore The context core.
3792 * @param pvDst Where to put the bytes we've read.
3793 * @param GCPtrSrc The source address.
3794 * @param cb The number of bytes to read. Not more than a page.
3795 *
3796 * @remark This function will dynamically map physical pages in GC. This may unmap
3797 * mappings done by the caller. Be careful!
3798 */
3799VMMDECL(int) PGMPhysInterpretedRead(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
3800{
3801 PVM pVM = pVCpu->CTX_SUFF(pVM);
3802 Assert(cb <= PAGE_SIZE);
3803 VMCPU_ASSERT_EMT(pVCpu);
3804
3805/** @todo r=bird: This isn't perfect!
3806 * -# It's not checking for reserved bits being 1.
3807 * -# It's not correctly dealing with the access bit.
3808 * -# It's not respecting MMIO memory or any other access handlers.
3809 */
3810 /*
3811 * 1. Translate virtual to physical. This may fault.
3812 * 2. Map the physical address.
3813 * 3. Do the read operation.
3814 * 4. Set access bits if required.
3815 */
3816 int rc;
3817 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3818 if (cb <= cb1)
3819 {
3820 /*
3821 * Not crossing pages.
3822 */
3823 RTGCPHYS GCPhys;
3824 uint64_t fFlags;
3825 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
3826 if (RT_SUCCESS(rc))
3827 {
3828 /** @todo we should check reserved bits ... */
3829 PGMPAGEMAPLOCK PgMpLck;
3830 void const *pvSrc;
3831 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &PgMpLck);
3832 switch (rc)
3833 {
3834 case VINF_SUCCESS:
3835 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
3836 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
3837 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3838 break;
3839 case VERR_PGM_PHYS_PAGE_RESERVED:
3840 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3841 memset(pvDst, 0xff, cb);
3842 break;
3843 default:
3844 Assert(RT_FAILURE_NP(rc));
3845 return rc;
3846 }
3847
3848 /** @todo access bit emulation isn't 100% correct. */
3849 if (!(fFlags & X86_PTE_A))
3850 {
3851 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3852 AssertRC(rc);
3853 }
3854 return VINF_SUCCESS;
3855 }
3856 }
3857 else
3858 {
3859 /*
3860 * Crosses pages.
3861 */
3862 size_t cb2 = cb - cb1;
3863 uint64_t fFlags1;
3864 RTGCPHYS GCPhys1;
3865 uint64_t fFlags2;
3866 RTGCPHYS GCPhys2;
3867 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
3868 if (RT_SUCCESS(rc))
3869 {
3870 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
3871 if (RT_SUCCESS(rc))
3872 {
3873 /** @todo we should check reserved bits ... */
3874 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
3875 PGMPAGEMAPLOCK PgMpLck;
3876 void const *pvSrc1;
3877 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc1, &PgMpLck);
3878 switch (rc)
3879 {
3880 case VINF_SUCCESS:
3881 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3882 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3883 break;
3884 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3885 memset(pvDst, 0xff, cb1);
3886 break;
3887 default:
3888 Assert(RT_FAILURE_NP(rc));
3889 return rc;
3890 }
3891
3892 void const *pvSrc2;
3893 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc2, &PgMpLck);
3894 switch (rc)
3895 {
3896 case VINF_SUCCESS:
3897 memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
3898 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3899 break;
3900 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3901 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
3902 break;
3903 default:
3904 Assert(RT_FAILURE_NP(rc));
3905 return rc;
3906 }
3907
3908 if (!(fFlags1 & X86_PTE_A))
3909 {
3910 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3911 AssertRC(rc);
3912 }
3913 if (!(fFlags2 & X86_PTE_A))
3914 {
3915 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3916 AssertRC(rc);
3917 }
3918 return VINF_SUCCESS;
3919 }
3920 }
3921 }
3922
3923 /*
3924 * Raise a #PF.
3925 */
3926 uint32_t uErr;
3927
3928 /* Get the current privilege level. */
3929 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
3930 switch (rc)
3931 {
3932 case VINF_SUCCESS:
3933 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3934 break;
3935
3936 case VERR_PAGE_NOT_PRESENT:
3937 case VERR_PAGE_TABLE_NOT_PRESENT:
3938 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3939 break;
3940
3941 default:
3942 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3943 return rc;
3944 }
3945 Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
3946 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3947}
3948
3949
3950/**
3951 * Performs a read of guest virtual memory for instruction emulation.
3952 *
3953 * This will check permissions, raise exceptions and update the access bits.
3954 *
3955 * The current implementation will bypass all access handlers. It may later be
3956 * changed to at least respect MMIO.
3957 *
3958 *
3959 * @returns VBox status code suitable to scheduling.
3960 * @retval VINF_SUCCESS if the read was performed successfully.
3961 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3962 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3963 *
3964 * @param pVCpu Handle to the current virtual CPU.
3965 * @param pCtxCore The context core.
3966 * @param pvDst Where to put the bytes we've read.
3967 * @param GCPtrSrc The source address.
3968 * @param cb The number of bytes to read. Not more than a page.
3969 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
3970 * an appropriate error status will be returned (no
3971 * informational at all).
3972 *
3973 *
3974 * @remarks Takes the PGM lock.
3975 * @remarks A page fault on the 2nd page of the access will be raised without
3976 * writing the bits on the first page since we're ASSUMING that the
3977 * caller is emulating an instruction access.
3978 * @remarks This function will dynamically map physical pages in GC. This may
3979 * unmap mappings done by the caller. Be careful!
3980 */
3981VMMDECL(int) PGMPhysInterpretedReadNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb,
3982 bool fRaiseTrap)
3983{
3984 PVM pVM = pVCpu->CTX_SUFF(pVM);
3985 Assert(cb <= PAGE_SIZE);
3986 VMCPU_ASSERT_EMT(pVCpu);
3987
3988 /*
3989 * 1. Translate virtual to physical. This may fault.
3990 * 2. Map the physical address.
3991 * 3. Do the read operation.
3992 * 4. Set access bits if required.
3993 */
3994 int rc;
3995 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3996 if (cb <= cb1)
3997 {
3998 /*
3999 * Not crossing pages.
4000 */
4001 RTGCPHYS GCPhys;
4002 uint64_t fFlags;
4003 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
4004 if (RT_SUCCESS(rc))
4005 {
4006 if (1) /** @todo we should check reserved bits ... */
4007 {
4008 const void *pvSrc;
4009 PGMPAGEMAPLOCK Lock;
4010 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &Lock);
4011 switch (rc)
4012 {
4013 case VINF_SUCCESS:
4014 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d\n",
4015 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb));
4016 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
4017 PGMPhysReleasePageMappingLock(pVM, &Lock);
4018 break;
4019 case VERR_PGM_PHYS_PAGE_RESERVED:
4020 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4021 memset(pvDst, 0xff, cb);
4022 break;
4023 default:
4024 AssertMsgFailed(("%Rrc\n", rc));
4025 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4026 return rc;
4027 }
4028
4029 if (!(fFlags & X86_PTE_A))
4030 {
4031 /** @todo access bit emulation isn't 100% correct. */
4032 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4033 AssertRC(rc);
4034 }
4035 return VINF_SUCCESS;
4036 }
4037 }
4038 }
4039 else
4040 {
4041 /*
4042 * Crosses pages.
4043 */
4044 size_t cb2 = cb - cb1;
4045 uint64_t fFlags1;
4046 RTGCPHYS GCPhys1;
4047 uint64_t fFlags2;
4048 RTGCPHYS GCPhys2;
4049 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
4050 if (RT_SUCCESS(rc))
4051 {
4052 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
4053 if (RT_SUCCESS(rc))
4054 {
4055 if (1) /** @todo we should check reserved bits ... */
4056 {
4057 const void *pvSrc;
4058 PGMPAGEMAPLOCK Lock;
4059 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc, &Lock);
4060 switch (rc)
4061 {
4062 case VINF_SUCCESS:
4063 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d [2]\n",
4064 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb1));
4065 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
4066 PGMPhysReleasePageMappingLock(pVM, &Lock);
4067 break;
4068 case VERR_PGM_PHYS_PAGE_RESERVED:
4069 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4070 memset(pvDst, 0xff, cb1);
4071 break;
4072 default:
4073 AssertMsgFailed(("%Rrc\n", rc));
4074 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4075 return rc;
4076 }
4077
4078 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc, &Lock);
4079 switch (rc)
4080 {
4081 case VINF_SUCCESS:
4082 memcpy((uint8_t *)pvDst + cb1, pvSrc, cb2);
4083 PGMPhysReleasePageMappingLock(pVM, &Lock);
4084 break;
4085 case VERR_PGM_PHYS_PAGE_RESERVED:
4086 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4087 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
4088 break;
4089 default:
4090 AssertMsgFailed(("%Rrc\n", rc));
4091 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4092 return rc;
4093 }
4094
4095 if (!(fFlags1 & X86_PTE_A))
4096 {
4097 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4098 AssertRC(rc);
4099 }
4100 if (!(fFlags2 & X86_PTE_A))
4101 {
4102 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4103 AssertRC(rc);
4104 }
4105 return VINF_SUCCESS;
4106 }
4107 /* sort out which page */
4108 }
4109 else
4110 GCPtrSrc += cb1; /* fault on 2nd page */
4111 }
4112 }
4113
4114 /*
4115 * Raise a #PF if we're allowed to do that.
4116 */
4117 /* Calc the error bits. */
4118 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
4119 uint32_t uErr;
4120 switch (rc)
4121 {
4122 case VINF_SUCCESS:
4123 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
4124 rc = VERR_ACCESS_DENIED;
4125 break;
4126
4127 case VERR_PAGE_NOT_PRESENT:
4128 case VERR_PAGE_TABLE_NOT_PRESENT:
4129 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
4130 break;
4131
4132 default:
4133 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
4134 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4135 return rc;
4136 }
4137 if (fRaiseTrap)
4138 {
4139 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrSrc, cb, uErr));
4140 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
4141 }
4142 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrSrc, cb, uErr));
4143 return rc;
4144}
4145
4146
4147/**
4148 * Performs a write to guest virtual memory for instruction emulation.
4149 *
4150 * This will check permissions, raise exceptions and update the dirty and access
4151 * bits.
4152 *
4153 * @returns VBox status code suitable to scheduling.
4154 * @retval VINF_SUCCESS if the read was performed successfully.
4155 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
4156 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
4157 *
4158 * @param pVCpu Handle to the current virtual CPU.
4159 * @param pCtxCore The context core.
4160 * @param GCPtrDst The destination address.
4161 * @param pvSrc What to write.
4162 * @param cb The number of bytes to write. Not more than a page.
4163 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
4164 * an appropriate error status will be returned (no
4165 * informational at all).
4166 *
4167 * @remarks Takes the PGM lock.
4168 * @remarks A page fault on the 2nd page of the access will be raised without
4169 * writing the bits on the first page since we're ASSUMING that the
4170 * caller is emulating an instruction access.
4171 * @remarks This function will dynamically map physical pages in GC. This may
4172 * unmap mappings done by the caller. Be careful!
4173 */
4174VMMDECL(int) PGMPhysInterpretedWriteNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc,
4175 size_t cb, bool fRaiseTrap)
4176{
4177 Assert(cb <= PAGE_SIZE);
4178 PVM pVM = pVCpu->CTX_SUFF(pVM);
4179 VMCPU_ASSERT_EMT(pVCpu);
4180
4181 /*
4182 * 1. Translate virtual to physical. This may fault.
4183 * 2. Map the physical address.
4184 * 3. Do the write operation.
4185 * 4. Set access bits if required.
4186 */
4187 /** @todo Since this method is frequently used by EMInterpret or IOM
4188 * upon a write fault to an write access monitored page, we can
4189 * reuse the guest page table walking from the \#PF code. */
4190 int rc;
4191 unsigned cb1 = PAGE_SIZE - (GCPtrDst & PAGE_OFFSET_MASK);
4192 if (cb <= cb1)
4193 {
4194 /*
4195 * Not crossing pages.
4196 */
4197 RTGCPHYS GCPhys;
4198 uint64_t fFlags;
4199 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags, &GCPhys);
4200 if (RT_SUCCESS(rc))
4201 {
4202 if ( (fFlags & X86_PTE_RW) /** @todo Also check reserved bits. */
4203 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
4204 && CPUMGetGuestCPL(pVCpu) <= 2) ) /** @todo it's 2, right? Check cpl check below as well. */
4205 {
4206 void *pvDst;
4207 PGMPAGEMAPLOCK Lock;
4208 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, &pvDst, &Lock);
4209 switch (rc)
4210 {
4211 case VINF_SUCCESS:
4212 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
4213 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb));
4214 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb);
4215 PGMPhysReleasePageMappingLock(pVM, &Lock);
4216 break;
4217 case VERR_PGM_PHYS_PAGE_RESERVED:
4218 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4219 /* bit bucket */
4220 break;
4221 default:
4222 AssertMsgFailed(("%Rrc\n", rc));
4223 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4224 return rc;
4225 }
4226
4227 if (!(fFlags & (X86_PTE_A | X86_PTE_D)))
4228 {
4229 /** @todo dirty & access bit emulation isn't 100% correct. */
4230 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
4231 AssertRC(rc);
4232 }
4233 return VINF_SUCCESS;
4234 }
4235 rc = VERR_ACCESS_DENIED;
4236 }
4237 }
4238 else
4239 {
4240 /*
4241 * Crosses pages.
4242 */
4243 size_t cb2 = cb - cb1;
4244 uint64_t fFlags1;
4245 RTGCPHYS GCPhys1;
4246 uint64_t fFlags2;
4247 RTGCPHYS GCPhys2;
4248 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags1, &GCPhys1);
4249 if (RT_SUCCESS(rc))
4250 {
4251 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst + cb1, &fFlags2, &GCPhys2);
4252 if (RT_SUCCESS(rc))
4253 {
4254 if ( ( (fFlags1 & X86_PTE_RW) /** @todo Also check reserved bits. */
4255 && (fFlags2 & X86_PTE_RW))
4256 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
4257 && CPUMGetGuestCPL(pVCpu) <= 2) )
4258 {
4259 void *pvDst;
4260 PGMPAGEMAPLOCK Lock;
4261 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys1, &pvDst, &Lock);
4262 switch (rc)
4263 {
4264 case VINF_SUCCESS:
4265 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
4266 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb1));
4267 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb1);
4268 PGMPhysReleasePageMappingLock(pVM, &Lock);
4269 break;
4270 case VERR_PGM_PHYS_PAGE_RESERVED:
4271 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4272 /* bit bucket */
4273 break;
4274 default:
4275 AssertMsgFailed(("%Rrc\n", rc));
4276 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4277 return rc;
4278 }
4279
4280 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys2, &pvDst, &Lock);
4281 switch (rc)
4282 {
4283 case VINF_SUCCESS:
4284 memcpy(pvDst, (const uint8_t *)pvSrc + cb1, cb2);
4285 PGMPhysReleasePageMappingLock(pVM, &Lock);
4286 break;
4287 case VERR_PGM_PHYS_PAGE_RESERVED:
4288 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4289 /* bit bucket */
4290 break;
4291 default:
4292 AssertMsgFailed(("%Rrc\n", rc));
4293 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4294 return rc;
4295 }
4296
4297 if (!(fFlags1 & (X86_PTE_A | X86_PTE_RW)))
4298 {
4299 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
4300 AssertRC(rc);
4301 }
4302 if (!(fFlags2 & (X86_PTE_A | X86_PTE_RW)))
4303 {
4304 rc = PGMGstModifyPage(pVCpu, GCPtrDst + cb1, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
4305 AssertRC(rc);
4306 }
4307 return VINF_SUCCESS;
4308 }
4309 if ((fFlags1 & (X86_PTE_RW)) == X86_PTE_RW)
4310 GCPtrDst += cb1; /* fault on the 2nd page. */
4311 rc = VERR_ACCESS_DENIED;
4312 }
4313 else
4314 GCPtrDst += cb1; /* fault on the 2nd page. */
4315 }
4316 }
4317
4318 /*
4319 * Raise a #PF if we're allowed to do that.
4320 */
4321 /* Calc the error bits. */
4322 uint32_t uErr;
4323 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
4324 switch (rc)
4325 {
4326 case VINF_SUCCESS:
4327 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
4328 rc = VERR_ACCESS_DENIED;
4329 break;
4330
4331 case VERR_ACCESS_DENIED:
4332 uErr = (cpl >= 2) ? X86_TRAP_PF_RW | X86_TRAP_PF_US : X86_TRAP_PF_RW;
4333 break;
4334
4335 case VERR_PAGE_NOT_PRESENT:
4336 case VERR_PAGE_TABLE_NOT_PRESENT:
4337 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
4338 break;
4339
4340 default:
4341 AssertMsgFailed(("rc=%Rrc GCPtrDst=%RGv cb=%#x\n", rc, GCPtrDst, cb));
4342 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4343 return rc;
4344 }
4345 if (fRaiseTrap)
4346 {
4347 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrDst, cb, uErr));
4348 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrDst);
4349 }
4350 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrDst, cb, uErr));
4351 return rc;
4352}
4353
4354
4355/**
4356 * Return the page type of the specified physical address.
4357 *
4358 * @returns The page type.
4359 * @param pVM Pointer to the VM.
4360 * @param GCPhys Guest physical address
4361 */
4362VMM_INT_DECL(PGMPAGETYPE) PGMPhysGetPageType(PVM pVM, RTGCPHYS GCPhys)
4363{
4364 pgmLock(pVM);
4365 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4366 PGMPAGETYPE enmPgType = pPage ? (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage) : PGMPAGETYPE_INVALID;
4367 pgmUnlock(pVM);
4368
4369 return enmPgType;
4370}
4371
4372
4373
4374
4375/**
4376 * Converts a GC physical address to a HC ring-3 pointer, with some
4377 * additional checks.
4378 *
4379 * @returns VBox status code (no informational statuses).
4380 * @retval VINF_SUCCESS on success.
4381 * @retval VERR_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4382 * access handler of some kind.
4383 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4384 * accesses or is odd in any way.
4385 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4386 *
4387 * @param pVM Pointer to the cross context VM structure.
4388 * @param pVCpu Pointer to the cross context virtual CPU structure of
4389 * the calling EMT.
4390 * @param GCPhys The GC physical address to convert. This API mask the
4391 * A20 line when necessary.
4392 * @param fWritable Whether write access is required.
4393 * @param ppv Where to store the pointer corresponding to GCPhys on
4394 * success.
4395 * @param pLock
4396 *
4397 * @remarks This is more or a less a copy of PGMR3PhysTlbGCPhys2Ptr.
4398 * @thread EMT(pVCpu).
4399 */
4400VMM_INT_DECL(int) PGMPhysIemGCPhys2Ptr(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, bool fWritable, bool fByPassHandlers,
4401 void **ppv, PPGMPAGEMAPLOCK pLock)
4402{
4403 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
4404
4405 pgmLock(pVM);
4406
4407 PPGMRAMRANGE pRam;
4408 PPGMPAGE pPage;
4409 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4410 if (RT_SUCCESS(rc))
4411 {
4412 if (PGM_PAGE_IS_BALLOONED(pPage))
4413 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4414 else if (PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
4415 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4416 else if ( !PGM_PAGE_HAS_ANY_HANDLERS(pPage)
4417 || (fByPassHandlers && !PGM_PAGE_IS_MMIO(pPage)) )
4418 rc = VINF_SUCCESS;
4419 else
4420 {
4421 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4422 {
4423 Assert(!fByPassHandlers || PGM_PAGE_IS_MMIO(pPage));
4424 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4425 }
4426 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && fWritable)
4427 {
4428 Assert(!fByPassHandlers);
4429 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4430 }
4431 }
4432 if (RT_SUCCESS(rc))
4433 {
4434 int rc2;
4435
4436 /* Make sure what we return is writable. */
4437 if (fWritable)
4438 switch (PGM_PAGE_GET_STATE(pPage))
4439 {
4440 case PGM_PAGE_STATE_ALLOCATED:
4441 break;
4442 case PGM_PAGE_STATE_BALLOONED:
4443 AssertFailed();
4444 case PGM_PAGE_STATE_ZERO:
4445 case PGM_PAGE_STATE_SHARED:
4446 case PGM_PAGE_STATE_WRITE_MONITORED:
4447 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4448 AssertLogRelRCReturn(rc2, rc2);
4449 break;
4450 }
4451
4452#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4453 void *pv;
4454 rc = pgmRZDynMapHCPageInlined(pVCpu,
4455 PGM_PAGE_GET_HCPHYS(pPage),
4456 &pv
4457 RTLOG_COMMA_SRC_POS);
4458 if (RT_FAILURE(rc))
4459 return rc;
4460 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4461 pLock->pvPage = pv;
4462 pLock->pVCpu = pVCpu;
4463
4464#else
4465 /* Get a ring-3 mapping of the address. */
4466 PPGMPAGER3MAPTLBE pTlbe;
4467 rc2 = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
4468 AssertLogRelRCReturn(rc2, rc2);
4469
4470 /* Lock it and calculate the address. */
4471 if (fWritable)
4472 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
4473 else
4474 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
4475 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4476#endif
4477
4478 Log6(("PGMPhysIemGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4479 }
4480 else
4481 Log6(("PGMPhysIemGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4482
4483 /* else: handler catching all access, no pointer returned. */
4484 }
4485 else
4486 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4487
4488 pgmUnlock(pVM);
4489 return rc;
4490}
4491
4492
4493/**
4494 * Checks if the give GCPhys page requires special handling for the given access
4495 * because it's MMIO or otherwise monitored.
4496 *
4497 * @returns VBox status code (no informational statuses).
4498 * @retval VINF_SUCCESS on success.
4499 * @retval VERR_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4500 * access handler of some kind.
4501 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4502 * accesses or is odd in any way.
4503 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4504 *
4505 * @param pVM Pointer to the VM.
4506 * @param GCPhys The GC physical address to convert. Since this is only
4507 * used for filling the REM TLB, the A20 mask must be
4508 * applied before calling this API.
4509 * @param fWritable Whether write access is required.
4510 *
4511 * @remarks This is a watered down version PGMPhysIemGCPhys2Ptr and really just
4512 * a stop gap thing that should be removed once there is a better TLB
4513 * for virtual address accesses.
4514 */
4515VMM_INT_DECL(int) PGMPhysIemQueryAccess(PVM pVM, RTGCPHYS GCPhys, bool fWritable, bool fByPassHandlers)
4516{
4517 pgmLock(pVM);
4518 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
4519
4520 PPGMRAMRANGE pRam;
4521 PPGMPAGE pPage;
4522 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4523 if (RT_SUCCESS(rc))
4524 {
4525 if (PGM_PAGE_IS_BALLOONED(pPage))
4526 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4527 else if (PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
4528 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4529 else if ( !PGM_PAGE_HAS_ANY_HANDLERS(pPage)
4530 || (fByPassHandlers && !PGM_PAGE_IS_MMIO(pPage)) )
4531 rc = VINF_SUCCESS;
4532 else
4533 {
4534 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4535 {
4536 Assert(!fByPassHandlers || PGM_PAGE_IS_MMIO(pPage));
4537 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4538 }
4539 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && fWritable)
4540 {
4541 Assert(!fByPassHandlers);
4542 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4543 }
4544 }
4545 }
4546
4547 pgmUnlock(pVM);
4548 return rc;
4549}
4550
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette