VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 74878

Last change on this file since 74878 was 74789, checked in by vboxsync, 6 years ago

vm.h,VMM,REM: s/VMCPU_FF_IS_PENDING/VMCPU_FF_IS_ANY_SET/g to emphasize the plurality of the flags argument and encourage using VMCPU_FF_IS_SET. bugref:9180

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 177.5 KB
Line 
1/* $Id: PGMAllPhys.cpp 74789 2018-10-12 10:34:32Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/trpm.h>
25#include <VBox/vmm/vmm.h>
26#include <VBox/vmm/iom.h>
27#include <VBox/vmm/em.h>
28#include <VBox/vmm/nem.h>
29#ifdef VBOX_WITH_REM
30# include <VBox/vmm/rem.h>
31#endif
32#include "PGMInternal.h"
33#include <VBox/vmm/vm.h>
34#include "PGMInline.h"
35#include <VBox/param.h>
36#include <VBox/err.h>
37#include <iprt/assert.h>
38#include <iprt/string.h>
39#include <iprt/asm-amd64-x86.h>
40#include <VBox/log.h>
41#ifdef IN_RING3
42# include <iprt/thread.h>
43#endif
44
45
46/*********************************************************************************************************************************
47* Defined Constants And Macros *
48*********************************************************************************************************************************/
49/** Enable the physical TLB. */
50#define PGM_WITH_PHYS_TLB
51
52/** @def PGM_HANDLER_PHYS_IS_VALID_STATUS
53 * Checks if valid physical access handler return code (normal handler, not PF).
54 *
55 * Checks if the given strict status code is one of the expected ones for a
56 * physical access handler in the current context.
57 *
58 * @returns true or false.
59 * @param a_rcStrict The status code.
60 * @param a_fWrite Whether it is a write or read being serviced.
61 *
62 * @remarks We wish to keep the list of statuses here as short as possible.
63 * When changing, please make sure to update the PGMPhysRead,
64 * PGMPhysWrite, PGMPhysReadGCPtr and PGMPhysWriteGCPtr docs too.
65 */
66#ifdef IN_RING3
67# define PGM_HANDLER_PHYS_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
68 ( (a_rcStrict) == VINF_SUCCESS \
69 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT)
70#elif defined(IN_RING0) || defined(IN_RC)
71#define PGM_HANDLER_PHYS_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
72 ( (a_rcStrict) == VINF_SUCCESS \
73 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT \
74 \
75 || (a_rcStrict) == ((a_fWrite) ? VINF_IOM_R3_MMIO_WRITE : VINF_IOM_R3_MMIO_READ) \
76 || (a_rcStrict) == VINF_IOM_R3_MMIO_READ_WRITE \
77 || ((a_rcStrict) == VINF_IOM_R3_MMIO_COMMIT_WRITE && (a_fWrite)) \
78 \
79 || (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR \
80 || (a_rcStrict) == VINF_EM_DBG_STOP \
81 || (a_rcStrict) == VINF_EM_DBG_EVENT \
82 || (a_rcStrict) == VINF_EM_DBG_BREAKPOINT \
83 || (a_rcStrict) == VINF_EM_OFF \
84 || (a_rcStrict) == VINF_EM_SUSPEND \
85 || (a_rcStrict) == VINF_EM_RESET \
86 )
87#else
88# error "Context?"
89#endif
90
91/** @def PGM_HANDLER_VIRT_IS_VALID_STATUS
92 * Checks if valid virtual access handler return code (normal handler, not PF).
93 *
94 * Checks if the given strict status code is one of the expected ones for a
95 * virtual access handler in the current context.
96 *
97 * @returns true or false.
98 * @param a_rcStrict The status code.
99 * @param a_fWrite Whether it is a write or read being serviced.
100 *
101 * @remarks We wish to keep the list of statuses here as short as possible.
102 * When changing, please make sure to update the PGMPhysRead,
103 * PGMPhysWrite, PGMPhysReadGCPtr and PGMPhysWriteGCPtr docs too.
104 */
105#ifdef IN_RING3
106# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
107 ( (a_rcStrict) == VINF_SUCCESS \
108 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT)
109#elif defined(IN_RING0)
110# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
111 (false /* no virtual handlers in ring-0! */ )
112#elif defined(IN_RC)
113# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
114 ( (a_rcStrict) == VINF_SUCCESS \
115 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT \
116 \
117 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT : 0) \
118 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT : 0) \
119 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT : 0) \
120 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT : 0) \
121 || ((a_fWrite) ? (a_rcStrict) == VINF_SELM_SYNC_GDT : 0) \
122 || ((a_fWrite) ? (a_rcStrict) == VINF_CSAM_PENDING_ACTION : 0) \
123 || (a_rcStrict) == VINF_PATM_CHECK_PATCH_PAGE \
124 \
125 || (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR \
126 || (a_rcStrict) == VINF_EM_DBG_STOP \
127 || (a_rcStrict) == VINF_EM_DBG_EVENT \
128 || (a_rcStrict) == VINF_EM_DBG_BREAKPOINT \
129 )
130#else
131# error "Context?"
132#endif
133
134
135
136#ifndef IN_RING3
137
138/**
139 * @callback_method_impl{FNPGMPHYSHANDLER,
140 * Dummy for forcing ring-3 handling of the access.}
141 */
142DECLEXPORT(VBOXSTRICTRC)
143pgmPhysHandlerRedirectToHC(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
144 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
145{
146 NOREF(pVM); NOREF(pVCpu); NOREF(GCPhys); NOREF(pvPhys); NOREF(pvBuf); NOREF(cbBuf);
147 NOREF(enmAccessType); NOREF(enmOrigin); NOREF(pvUser);
148 return VINF_EM_RAW_EMULATE_INSTR;
149}
150
151
152/**
153 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
154 * Dummy for forcing ring-3 handling of the access.}
155 */
156VMMDECL(VBOXSTRICTRC) pgmPhysPfHandlerRedirectToHC(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
157 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
158{
159 NOREF(pVM); NOREF(pVCpu); NOREF(uErrorCode); NOREF(pRegFrame); NOREF(pvFault); NOREF(GCPhysFault); NOREF(pvUser);
160 return VINF_EM_RAW_EMULATE_INSTR;
161}
162
163
164/**
165 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
166 * \#PF access handler callback for guest ROM range write access.}
167 *
168 * @remarks The @a pvUser argument points to the PGMROMRANGE.
169 */
170DECLEXPORT(VBOXSTRICTRC) pgmPhysRomWritePfHandler(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
171 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
172{
173 int rc;
174 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
175 uint32_t iPage = (GCPhysFault - pRom->GCPhys) >> PAGE_SHIFT;
176 NOREF(uErrorCode); NOREF(pvFault);
177
178 Assert(uErrorCode & X86_TRAP_PF_RW); /* This shall not be used for read access! */
179
180 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
181 switch (pRom->aPages[iPage].enmProt)
182 {
183 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
184 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
185 {
186 /*
187 * If it's a simple instruction which doesn't change the cpu state
188 * we will simply skip it. Otherwise we'll have to defer it to REM.
189 */
190 uint32_t cbOp;
191 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
192 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
193 if ( RT_SUCCESS(rc)
194 && pDis->uCpuMode == DISCPUMODE_32BIT /** @todo why does this matter? */
195 && !(pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP | DISPREFIX_SEG)))
196 {
197 switch (pDis->bOpCode)
198 {
199 /** @todo Find other instructions we can safely skip, possibly
200 * adding this kind of detection to DIS or EM. */
201 case OP_MOV:
202 pRegFrame->rip += cbOp;
203 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteHandled);
204 return VINF_SUCCESS;
205 }
206 }
207 break;
208 }
209
210 case PGMROMPROT_READ_RAM_WRITE_RAM:
211 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
212 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
213 AssertRC(rc);
214 break; /** @todo Must edit the shadow PT and restart the instruction, not use the interpreter! */
215
216 case PGMROMPROT_READ_ROM_WRITE_RAM:
217 /* Handle it in ring-3 because it's *way* easier there. */
218 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
219 break;
220
221 default:
222 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
223 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
224 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
225 }
226
227 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteUnhandled);
228 return VINF_EM_RAW_EMULATE_INSTR;
229}
230
231#endif /* !IN_RING3 */
232
233
234/**
235 * @callback_method_impl{FNPGMPHYSHANDLER,
236 * Access handler callback for ROM write accesses.}
237 *
238 * @remarks The @a pvUser argument points to the PGMROMRANGE.
239 */
240PGM_ALL_CB2_DECL(VBOXSTRICTRC)
241pgmPhysRomWriteHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
242 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
243{
244 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
245 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
246 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
247 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
248 Log5(("pgmPhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
249 NOREF(pVCpu); NOREF(pvPhys); NOREF(enmOrigin);
250
251 if (enmAccessType == PGMACCESSTYPE_READ)
252 {
253 switch (pRomPage->enmProt)
254 {
255 /*
256 * Take the default action.
257 */
258 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
259 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
260 case PGMROMPROT_READ_ROM_WRITE_RAM:
261 case PGMROMPROT_READ_RAM_WRITE_RAM:
262 return VINF_PGM_HANDLER_DO_DEFAULT;
263
264 default:
265 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
266 pRom->aPages[iPage].enmProt, iPage, GCPhys),
267 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
268 }
269 }
270 else
271 {
272 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
273 switch (pRomPage->enmProt)
274 {
275 /*
276 * Ignore writes.
277 */
278 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
279 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
280 return VINF_SUCCESS;
281
282 /*
283 * Write to the RAM page.
284 */
285 case PGMROMPROT_READ_ROM_WRITE_RAM:
286 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
287 {
288 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
289 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
290
291 /*
292 * Take the lock, do lazy allocation, map the page and copy the data.
293 *
294 * Note that we have to bypass the mapping TLB since it works on
295 * guest physical addresses and entering the shadow page would
296 * kind of screw things up...
297 */
298 int rc = pgmLock(pVM);
299 AssertRC(rc);
300
301 PPGMPAGE pShadowPage = &pRomPage->Shadow;
302 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
303 {
304 pShadowPage = pgmPhysGetPage(pVM, GCPhys);
305 AssertLogRelReturn(pShadowPage, VERR_PGM_PHYS_PAGE_GET_IPE);
306 }
307
308 void *pvDstPage;
309 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
310 if (RT_SUCCESS(rc))
311 {
312 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
313 pRomPage->LiveSave.fWrittenTo = true;
314
315 AssertMsg( rc == VINF_SUCCESS
316 || ( rc == VINF_PGM_SYNC_CR3
317 && VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
318 , ("%Rrc\n", rc));
319 rc = VINF_SUCCESS;
320 }
321
322 pgmUnlock(pVM);
323 return rc;
324 }
325
326 default:
327 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
328 pRom->aPages[iPage].enmProt, iPage, GCPhys),
329 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
330 }
331 }
332}
333
334
335/**
336 * Invalidates the RAM range TLBs.
337 *
338 * @param pVM The cross context VM structure.
339 */
340void pgmPhysInvalidRamRangeTlbs(PVM pVM)
341{
342 pgmLock(pVM);
343 for (uint32_t i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
344 {
345 pVM->pgm.s.apRamRangesTlbR3[i] = NIL_RTR3PTR;
346 pVM->pgm.s.apRamRangesTlbR0[i] = NIL_RTR0PTR;
347 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
348 }
349 pgmUnlock(pVM);
350}
351
352
353/**
354 * Tests if a value of type RTGCPHYS is negative if the type had been signed
355 * instead of unsigned.
356 *
357 * @returns @c true if negative, @c false if positive or zero.
358 * @param a_GCPhys The value to test.
359 * @todo Move me to iprt/types.h.
360 */
361#define RTGCPHYS_IS_NEGATIVE(a_GCPhys) ((a_GCPhys) & ((RTGCPHYS)1 << (sizeof(RTGCPHYS)*8 - 1)))
362
363
364/**
365 * Slow worker for pgmPhysGetRange.
366 *
367 * @copydoc pgmPhysGetRange
368 */
369PPGMRAMRANGE pgmPhysGetRangeSlow(PVM pVM, RTGCPHYS GCPhys)
370{
371 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
372
373 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
374 while (pRam)
375 {
376 RTGCPHYS off = GCPhys - pRam->GCPhys;
377 if (off < pRam->cb)
378 {
379 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
380 return pRam;
381 }
382 if (RTGCPHYS_IS_NEGATIVE(off))
383 pRam = pRam->CTX_SUFF(pLeft);
384 else
385 pRam = pRam->CTX_SUFF(pRight);
386 }
387 return NULL;
388}
389
390
391/**
392 * Slow worker for pgmPhysGetRangeAtOrAbove.
393 *
394 * @copydoc pgmPhysGetRangeAtOrAbove
395 */
396PPGMRAMRANGE pgmPhysGetRangeAtOrAboveSlow(PVM pVM, RTGCPHYS GCPhys)
397{
398 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
399
400 PPGMRAMRANGE pLastLeft = NULL;
401 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
402 while (pRam)
403 {
404 RTGCPHYS off = GCPhys - pRam->GCPhys;
405 if (off < pRam->cb)
406 {
407 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
408 return pRam;
409 }
410 if (RTGCPHYS_IS_NEGATIVE(off))
411 {
412 pLastLeft = pRam;
413 pRam = pRam->CTX_SUFF(pLeft);
414 }
415 else
416 pRam = pRam->CTX_SUFF(pRight);
417 }
418 return pLastLeft;
419}
420
421
422/**
423 * Slow worker for pgmPhysGetPage.
424 *
425 * @copydoc pgmPhysGetPage
426 */
427PPGMPAGE pgmPhysGetPageSlow(PVM pVM, RTGCPHYS GCPhys)
428{
429 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
430
431 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
432 while (pRam)
433 {
434 RTGCPHYS off = GCPhys - pRam->GCPhys;
435 if (off < pRam->cb)
436 {
437 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
438 return &pRam->aPages[off >> PAGE_SHIFT];
439 }
440
441 if (RTGCPHYS_IS_NEGATIVE(off))
442 pRam = pRam->CTX_SUFF(pLeft);
443 else
444 pRam = pRam->CTX_SUFF(pRight);
445 }
446 return NULL;
447}
448
449
450/**
451 * Slow worker for pgmPhysGetPageEx.
452 *
453 * @copydoc pgmPhysGetPageEx
454 */
455int pgmPhysGetPageExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
456{
457 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
458
459 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
460 while (pRam)
461 {
462 RTGCPHYS off = GCPhys - pRam->GCPhys;
463 if (off < pRam->cb)
464 {
465 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
466 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
467 return VINF_SUCCESS;
468 }
469
470 if (RTGCPHYS_IS_NEGATIVE(off))
471 pRam = pRam->CTX_SUFF(pLeft);
472 else
473 pRam = pRam->CTX_SUFF(pRight);
474 }
475
476 *ppPage = NULL;
477 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
478}
479
480
481/**
482 * Slow worker for pgmPhysGetPageAndRangeEx.
483 *
484 * @copydoc pgmPhysGetPageAndRangeEx
485 */
486int pgmPhysGetPageAndRangeExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
487{
488 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
489
490 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
491 while (pRam)
492 {
493 RTGCPHYS off = GCPhys - pRam->GCPhys;
494 if (off < pRam->cb)
495 {
496 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
497 *ppRam = pRam;
498 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
499 return VINF_SUCCESS;
500 }
501
502 if (RTGCPHYS_IS_NEGATIVE(off))
503 pRam = pRam->CTX_SUFF(pLeft);
504 else
505 pRam = pRam->CTX_SUFF(pRight);
506 }
507
508 *ppRam = NULL;
509 *ppPage = NULL;
510 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
511}
512
513
514/**
515 * Checks if Address Gate 20 is enabled or not.
516 *
517 * @returns true if enabled.
518 * @returns false if disabled.
519 * @param pVCpu The cross context virtual CPU structure.
520 */
521VMMDECL(bool) PGMPhysIsA20Enabled(PVMCPU pVCpu)
522{
523 LogFlow(("PGMPhysIsA20Enabled %d\n", pVCpu->pgm.s.fA20Enabled));
524 return pVCpu->pgm.s.fA20Enabled;
525}
526
527
528/**
529 * Validates a GC physical address.
530 *
531 * @returns true if valid.
532 * @returns false if invalid.
533 * @param pVM The cross context VM structure.
534 * @param GCPhys The physical address to validate.
535 */
536VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
537{
538 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
539 return pPage != NULL;
540}
541
542
543/**
544 * Checks if a GC physical address is a normal page,
545 * i.e. not ROM, MMIO or reserved.
546 *
547 * @returns true if normal.
548 * @returns false if invalid, ROM, MMIO or reserved page.
549 * @param pVM The cross context VM structure.
550 * @param GCPhys The physical address to check.
551 */
552VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
553{
554 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
555 return pPage
556 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM;
557}
558
559
560/**
561 * Converts a GC physical address to a HC physical address.
562 *
563 * @returns VINF_SUCCESS on success.
564 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
565 * page but has no physical backing.
566 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
567 * GC physical address.
568 *
569 * @param pVM The cross context VM structure.
570 * @param GCPhys The GC physical address to convert.
571 * @param pHCPhys Where to store the HC physical address on success.
572 */
573VMM_INT_DECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
574{
575 pgmLock(pVM);
576 PPGMPAGE pPage;
577 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
578 if (RT_SUCCESS(rc))
579 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Invalidates all page mapping TLBs.
587 *
588 * @param pVM The cross context VM structure.
589 */
590void pgmPhysInvalidatePageMapTLB(PVM pVM)
591{
592 pgmLock(pVM);
593 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushes);
594
595 /* Clear the shared R0/R3 TLB completely. */
596 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
597 {
598 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
599 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
600 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
601 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
602 }
603
604 /** @todo clear the RC TLB whenever we add it. */
605
606 pgmUnlock(pVM);
607}
608
609
610/**
611 * Invalidates a page mapping TLB entry
612 *
613 * @param pVM The cross context VM structure.
614 * @param GCPhys GCPhys entry to flush
615 */
616void pgmPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys)
617{
618 PGM_LOCK_ASSERT_OWNER(pVM);
619
620 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushEntry);
621
622#ifdef IN_RC
623 unsigned idx = PGM_PAGER3MAPTLB_IDX(GCPhys);
624 pVM->pgm.s.PhysTlbHC.aEntries[idx].GCPhys = NIL_RTGCPHYS;
625 pVM->pgm.s.PhysTlbHC.aEntries[idx].pPage = 0;
626 pVM->pgm.s.PhysTlbHC.aEntries[idx].pMap = 0;
627 pVM->pgm.s.PhysTlbHC.aEntries[idx].pv = 0;
628#else
629 /* Clear the shared R0/R3 TLB entry. */
630 PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
631 pTlbe->GCPhys = NIL_RTGCPHYS;
632 pTlbe->pPage = 0;
633 pTlbe->pMap = 0;
634 pTlbe->pv = 0;
635#endif
636
637 /** @todo clear the RC TLB whenever we add it. */
638}
639
640
641/**
642 * Makes sure that there is at least one handy page ready for use.
643 *
644 * This will also take the appropriate actions when reaching water-marks.
645 *
646 * @returns VBox status code.
647 * @retval VINF_SUCCESS on success.
648 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
649 *
650 * @param pVM The cross context VM structure.
651 *
652 * @remarks Must be called from within the PGM critical section. It may
653 * nip back to ring-3/0 in some cases.
654 */
655static int pgmPhysEnsureHandyPage(PVM pVM)
656{
657 AssertMsg(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", pVM->pgm.s.cHandyPages));
658
659 /*
660 * Do we need to do anything special?
661 */
662#ifdef IN_RING3
663 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_R3_ALLOC))
664#else
665 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_RZ_TO_R3))
666#endif
667 {
668 /*
669 * Allocate pages only if we're out of them, or in ring-3, almost out.
670 */
671#ifdef IN_RING3
672 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_R3_ALLOC)
673#else
674 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_ALLOC)
675#endif
676 {
677 Log(("PGM: cHandyPages=%u out of %u -> allocate more; VM_FF_PGM_NO_MEMORY=%RTbool\n",
678 pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages), VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY) ));
679#ifdef IN_RING3
680 int rc = PGMR3PhysAllocateHandyPages(pVM);
681#else
682 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES, 0);
683#endif
684 if (RT_UNLIKELY(rc != VINF_SUCCESS))
685 {
686 if (RT_FAILURE(rc))
687 return rc;
688 AssertMsgReturn(rc == VINF_EM_NO_MEMORY, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
689 if (!pVM->pgm.s.cHandyPages)
690 {
691 LogRel(("PGM: no more handy pages!\n"));
692 return VERR_EM_NO_MEMORY;
693 }
694 Assert(VM_FF_IS_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
695 Assert(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY));
696#ifdef IN_RING3
697# ifdef VBOX_WITH_REM
698 REMR3NotifyFF(pVM);
699# endif
700#else
701 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); /* paranoia */
702#endif
703 }
704 AssertMsgReturn( pVM->pgm.s.cHandyPages > 0
705 && pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages),
706 ("%u\n", pVM->pgm.s.cHandyPages),
707 VERR_PGM_HANDY_PAGE_IPE);
708 }
709 else
710 {
711 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_SET_FF)
712 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
713#ifndef IN_RING3
714 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_TO_R3)
715 {
716 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
717 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
718 }
719#endif
720 }
721 }
722
723 return VINF_SUCCESS;
724}
725
726
727
728/**
729 * Replace a zero or shared page with new page that we can write to.
730 *
731 * @returns The following VBox status codes.
732 * @retval VINF_SUCCESS on success, pPage is modified.
733 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
734 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
735 *
736 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
737 *
738 * @param pVM The cross context VM structure.
739 * @param pPage The physical page tracking structure. This will
740 * be modified on success.
741 * @param GCPhys The address of the page.
742 *
743 * @remarks Must be called from within the PGM critical section. It may
744 * nip back to ring-3/0 in some cases.
745 *
746 * @remarks This function shouldn't really fail, however if it does
747 * it probably means we've screwed up the size of handy pages and/or
748 * the low-water mark. Or, that some device I/O is causing a lot of
749 * pages to be allocated while while the host is in a low-memory
750 * condition. This latter should be handled elsewhere and in a more
751 * controlled manner, it's on the @bugref{3170} todo list...
752 */
753int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
754{
755 LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys));
756
757 /*
758 * Prereqs.
759 */
760 PGM_LOCK_ASSERT_OWNER(pVM);
761 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
762 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage));
763
764# ifdef PGM_WITH_LARGE_PAGES
765 /*
766 * Try allocate a large page if applicable.
767 */
768 if ( PGMIsUsingLargePages(pVM)
769 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
770 && !VM_IS_NEM_ENABLED(pVM)) /** @todo NEM: Implement large pages support. */
771 {
772 RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
773 PPGMPAGE pBasePage;
774
775 int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pBasePage);
776 AssertRCReturn(rc, rc); /* paranoia; can't happen. */
777 if (PGM_PAGE_GET_PDE_TYPE(pBasePage) == PGM_PAGE_PDE_TYPE_DONTCARE)
778 {
779 rc = pgmPhysAllocLargePage(pVM, GCPhys);
780 if (rc == VINF_SUCCESS)
781 return rc;
782 }
783 /* Mark the base as type page table, so we don't check over and over again. */
784 PGM_PAGE_SET_PDE_TYPE(pVM, pBasePage, PGM_PAGE_PDE_TYPE_PT);
785
786 /* fall back to 4KB pages. */
787 }
788# endif
789
790 /*
791 * Flush any shadow page table mappings of the page.
792 * When VBOX_WITH_NEW_LAZY_PAGE_ALLOC isn't defined, there shouldn't be any.
793 */
794 bool fFlushTLBs = false;
795 int rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhys, pPage, true /*fFlushTLBs*/, &fFlushTLBs);
796 AssertMsgReturn(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc), RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_STATUS);
797
798 /*
799 * Ensure that we've got a page handy, take it and use it.
800 */
801 int rc2 = pgmPhysEnsureHandyPage(pVM);
802 if (RT_FAILURE(rc2))
803 {
804 if (fFlushTLBs)
805 PGM_INVL_ALL_VCPU_TLBS(pVM);
806 Assert(rc2 == VERR_EM_NO_MEMORY);
807 return rc2;
808 }
809 /* re-assert preconditions since pgmPhysEnsureHandyPage may do a context switch. */
810 PGM_LOCK_ASSERT_OWNER(pVM);
811 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
812 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage));
813
814 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
815 AssertMsg(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", iHandyPage));
816 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
817 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
818 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
819 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
820
821 /*
822 * There are one or two action to be taken the next time we allocate handy pages:
823 * - Tell the GMM (global memory manager) what the page is being used for.
824 * (Speeds up replacement operations - sharing and defragmenting.)
825 * - If the current backing is shared, it must be freed.
826 */
827 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
828 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
829
830 void const *pvSharedPage = NULL;
831 if (PGM_PAGE_IS_SHARED(pPage))
832 {
833 /* Mark this shared page for freeing/dereferencing. */
834 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
835 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
836
837 Log(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
838 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
839 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageReplaceShared));
840 pVM->pgm.s.cSharedPages--;
841
842 /* Grab the address of the page so we can make a copy later on. (safe) */
843 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvSharedPage);
844 AssertRC(rc);
845 }
846 else
847 {
848 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
849 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
850 pVM->pgm.s.cZeroPages--;
851 }
852
853 /*
854 * Do the PGMPAGE modifications.
855 */
856 pVM->pgm.s.cPrivatePages++;
857 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
858 PGM_PAGE_SET_PAGEID(pVM, pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
859 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
860 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PT);
861 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
862
863 /* Copy the shared page contents to the replacement page. */
864 if (pvSharedPage)
865 {
866 /* Get the virtual address of the new page. */
867 PGMPAGEMAPLOCK PgMpLck;
868 void *pvNewPage;
869 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvNewPage, &PgMpLck); AssertRC(rc);
870 if (RT_SUCCESS(rc))
871 {
872 memcpy(pvNewPage, pvSharedPage, PAGE_SIZE); /** @todo todo write ASMMemCopyPage */
873 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
874 }
875 }
876
877 if ( fFlushTLBs
878 && rc != VINF_PGM_GCPHYS_ALIASED)
879 PGM_INVL_ALL_VCPU_TLBS(pVM);
880
881#ifndef IN_RC
882 /*
883 * Notify NEM about the mapping change for this page.
884 *
885 * Note! Shadow ROM pages are complicated as they can definitely be
886 * allocated while not visible, so play safe.
887 */
888 if (VM_IS_NEM_ENABLED(pVM))
889 {
890 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
891 if ( enmType != PGMPAGETYPE_ROM_SHADOW
892 || pgmPhysGetPage(pVM, GCPhys) == pPage)
893 {
894 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
895 rc2 = NEMHCNotifyPhysPageAllocated(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, HCPhys,
896 pgmPhysPageCalcNemProtection(pPage, enmType), enmType, &u2State);
897 if (RT_SUCCESS(rc))
898 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
899 else
900 rc = rc2;
901 }
902 }
903#endif
904
905 return rc;
906}
907
908#ifdef PGM_WITH_LARGE_PAGES
909
910/**
911 * Replace a 2 MB range of zero pages with new pages that we can write to.
912 *
913 * @returns The following VBox status codes.
914 * @retval VINF_SUCCESS on success, pPage is modified.
915 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
916 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
917 *
918 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
919 *
920 * @param pVM The cross context VM structure.
921 * @param GCPhys The address of the page.
922 *
923 * @remarks Must be called from within the PGM critical section. It may
924 * nip back to ring-3/0 in some cases.
925 */
926int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys)
927{
928 RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
929 LogFlow(("pgmPhysAllocLargePage: %RGp base %RGp\n", GCPhys, GCPhysBase));
930 Assert(!VM_IS_NEM_ENABLED(pVM)); /** @todo NEM: Large page support. */
931
932 /*
933 * Prereqs.
934 */
935 PGM_LOCK_ASSERT_OWNER(pVM);
936 Assert(PGMIsUsingLargePages(pVM));
937
938 PPGMPAGE pFirstPage;
939 int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pFirstPage);
940 if ( RT_SUCCESS(rc)
941 && PGM_PAGE_GET_TYPE(pFirstPage) == PGMPAGETYPE_RAM)
942 {
943 unsigned uPDEType = PGM_PAGE_GET_PDE_TYPE(pFirstPage);
944
945 /* Don't call this function for already allocated pages. */
946 Assert(uPDEType != PGM_PAGE_PDE_TYPE_PDE);
947
948 if ( uPDEType == PGM_PAGE_PDE_TYPE_DONTCARE
949 && PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ZERO)
950 {
951 /* Lazy approach: check all pages in the 2 MB range.
952 * The whole range must be ram and unallocated. */
953 GCPhys = GCPhysBase;
954 unsigned iPage;
955 for (iPage = 0; iPage < _2M/PAGE_SIZE; iPage++)
956 {
957 PPGMPAGE pSubPage;
958 rc = pgmPhysGetPageEx(pVM, GCPhys, &pSubPage);
959 if ( RT_FAILURE(rc)
960 || PGM_PAGE_GET_TYPE(pSubPage) != PGMPAGETYPE_RAM /* Anything other than ram implies monitoring. */
961 || PGM_PAGE_GET_STATE(pSubPage) != PGM_PAGE_STATE_ZERO) /* Allocated, monitored or shared means we can't use a large page here */
962 {
963 LogFlow(("Found page %RGp with wrong attributes (type=%d; state=%d); cancel check. rc=%d\n", GCPhys, PGM_PAGE_GET_TYPE(pSubPage), PGM_PAGE_GET_STATE(pSubPage), rc));
964 break;
965 }
966 Assert(PGM_PAGE_GET_PDE_TYPE(pSubPage) == PGM_PAGE_PDE_TYPE_DONTCARE);
967 GCPhys += PAGE_SIZE;
968 }
969 if (iPage != _2M/PAGE_SIZE)
970 {
971 /* Failed. Mark as requiring a PT so we don't check the whole thing again in the future. */
972 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRefused);
973 PGM_PAGE_SET_PDE_TYPE(pVM, pFirstPage, PGM_PAGE_PDE_TYPE_PT);
974 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
975 }
976
977 /*
978 * Do the allocation.
979 */
980# ifdef IN_RING3
981 rc = PGMR3PhysAllocateLargeHandyPage(pVM, GCPhysBase);
982# else
983 rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE, GCPhysBase);
984# endif
985 if (RT_SUCCESS(rc))
986 {
987 Assert(PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ALLOCATED);
988 pVM->pgm.s.cLargePages++;
989 return VINF_SUCCESS;
990 }
991
992 /* If we fail once, it most likely means the host's memory is too
993 fragmented; don't bother trying again. */
994 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
995 PGMSetLargePageUsage(pVM, false);
996 return rc;
997 }
998 }
999 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
1000}
1001
1002
1003/**
1004 * Recheck the entire 2 MB range to see if we can use it again as a large page.
1005 *
1006 * @returns The following VBox status codes.
1007 * @retval VINF_SUCCESS on success, the large page can be used again
1008 * @retval VERR_PGM_INVALID_LARGE_PAGE_RANGE if it can't be reused
1009 *
1010 * @param pVM The cross context VM structure.
1011 * @param GCPhys The address of the page.
1012 * @param pLargePage Page structure of the base page
1013 */
1014int pgmPhysRecheckLargePage(PVM pVM, RTGCPHYS GCPhys, PPGMPAGE pLargePage)
1015{
1016 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRecheck);
1017
1018 Assert(!VM_IS_NEM_ENABLED(pVM)); /** @todo NEM: Large page support. */
1019
1020 GCPhys &= X86_PDE2M_PAE_PG_MASK;
1021
1022 /* Check the base page. */
1023 Assert(PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED);
1024 if ( PGM_PAGE_GET_STATE(pLargePage) != PGM_PAGE_STATE_ALLOCATED
1025 || PGM_PAGE_GET_TYPE(pLargePage) != PGMPAGETYPE_RAM
1026 || PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
1027 {
1028 LogFlow(("pgmPhysRecheckLargePage: checks failed for base page %x %x %x\n", PGM_PAGE_GET_STATE(pLargePage), PGM_PAGE_GET_TYPE(pLargePage), PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage)));
1029 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
1030 }
1031
1032 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a);
1033 /* Check all remaining pages in the 2 MB range. */
1034 unsigned i;
1035 GCPhys += PAGE_SIZE;
1036 for (i = 1; i < _2M/PAGE_SIZE; i++)
1037 {
1038 PPGMPAGE pPage;
1039 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1040 AssertRCBreak(rc);
1041
1042 if ( PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1043 || PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
1044 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
1045 || PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
1046 {
1047 LogFlow(("pgmPhysRecheckLargePage: checks failed for page %d; %x %x %x\n", i, PGM_PAGE_GET_STATE(pPage), PGM_PAGE_GET_TYPE(pPage), PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)));
1048 break;
1049 }
1050
1051 GCPhys += PAGE_SIZE;
1052 }
1053 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a);
1054
1055 if (i == _2M/PAGE_SIZE)
1056 {
1057 PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE);
1058 pVM->pgm.s.cLargePagesDisabled--;
1059 Log(("pgmPhysRecheckLargePage: page %RGp can be reused!\n", GCPhys - _2M));
1060 return VINF_SUCCESS;
1061 }
1062
1063 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
1064}
1065
1066#endif /* PGM_WITH_LARGE_PAGES */
1067
1068
1069/**
1070 * Deal with a write monitored page.
1071 *
1072 * @returns VBox strict status code.
1073 *
1074 * @param pVM The cross context VM structure.
1075 * @param pPage The physical page tracking structure.
1076 * @param GCPhys The guest physical address of the page.
1077 * PGMPhysReleasePageMappingLock() passes NIL_RTGCPHYS in a
1078 * very unlikely situation where it is okay that we let NEM
1079 * fix the page access in a lazy fasion.
1080 *
1081 * @remarks Called from within the PGM critical section.
1082 */
1083void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
1084{
1085 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED);
1086 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
1087 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
1088 Assert(pVM->pgm.s.cMonitoredPages > 0);
1089 pVM->pgm.s.cMonitoredPages--;
1090 pVM->pgm.s.cWrittenToPages++;
1091
1092#ifndef IN_RC
1093 /*
1094 * Notify NEM about the protection change so we won't spin forever.
1095 *
1096 * Note! NEM need to be handle to lazily correct page protection as we cannot
1097 * really get it 100% right here it seems. The page pool does this too.
1098 */
1099 if (VM_IS_NEM_ENABLED(pVM) && GCPhys != NIL_RTGCPHYS)
1100 {
1101 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
1102 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1103 NEMHCNotifyPhysPageProtChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pPage),
1104 pgmPhysPageCalcNemProtection(pPage, enmType), enmType, &u2State);
1105 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
1106 }
1107#else
1108 RT_NOREF(GCPhys);
1109#endif
1110}
1111
1112
1113/**
1114 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
1115 *
1116 * @returns VBox strict status code.
1117 * @retval VINF_SUCCESS on success.
1118 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
1119 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1120 *
1121 * @param pVM The cross context VM structure.
1122 * @param pPage The physical page tracking structure.
1123 * @param GCPhys The address of the page.
1124 *
1125 * @remarks Called from within the PGM critical section.
1126 */
1127int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
1128{
1129 PGM_LOCK_ASSERT_OWNER(pVM);
1130 switch (PGM_PAGE_GET_STATE(pPage))
1131 {
1132 case PGM_PAGE_STATE_WRITE_MONITORED:
1133 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
1134 RT_FALL_THRU();
1135 default: /* to shut up GCC */
1136 case PGM_PAGE_STATE_ALLOCATED:
1137 return VINF_SUCCESS;
1138
1139 /*
1140 * Zero pages can be dummy pages for MMIO or reserved memory,
1141 * so we need to check the flags before joining cause with
1142 * shared page replacement.
1143 */
1144 case PGM_PAGE_STATE_ZERO:
1145 if (PGM_PAGE_IS_MMIO(pPage))
1146 return VERR_PGM_PHYS_PAGE_RESERVED;
1147 RT_FALL_THRU();
1148 case PGM_PAGE_STATE_SHARED:
1149 return pgmPhysAllocPage(pVM, pPage, GCPhys);
1150
1151 /* Not allowed to write to ballooned pages. */
1152 case PGM_PAGE_STATE_BALLOONED:
1153 return VERR_PGM_PHYS_PAGE_BALLOONED;
1154 }
1155}
1156
1157
1158/**
1159 * Internal usage: Map the page specified by its GMM ID.
1160 *
1161 * This is similar to pgmPhysPageMap
1162 *
1163 * @returns VBox status code.
1164 *
1165 * @param pVM The cross context VM structure.
1166 * @param idPage The Page ID.
1167 * @param HCPhys The physical address (for RC).
1168 * @param ppv Where to store the mapping address.
1169 *
1170 * @remarks Called from within the PGM critical section. The mapping is only
1171 * valid while you are inside this section.
1172 */
1173int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv)
1174{
1175 /*
1176 * Validation.
1177 */
1178 PGM_LOCK_ASSERT_OWNER(pVM);
1179 AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1180 const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT;
1181 AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER);
1182
1183#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1184 /*
1185 * Map it by HCPhys.
1186 */
1187 return pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS);
1188
1189#else
1190 /*
1191 * Find/make Chunk TLB entry for the mapping chunk.
1192 */
1193 PPGMCHUNKR3MAP pMap;
1194 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
1195 if (pTlbe->idChunk == idChunk)
1196 {
1197 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits));
1198 pMap = pTlbe->pChunk;
1199 }
1200 else
1201 {
1202 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
1203
1204 /*
1205 * Find the chunk, map it if necessary.
1206 */
1207 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1208 if (pMap)
1209 pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
1210 else
1211 {
1212# ifdef IN_RING0
1213 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
1214 AssertRCReturn(rc, rc);
1215 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1216 Assert(pMap);
1217# else
1218 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
1219 if (RT_FAILURE(rc))
1220 return rc;
1221# endif
1222 }
1223
1224 /*
1225 * Enter it into the Chunk TLB.
1226 */
1227 pTlbe->idChunk = idChunk;
1228 pTlbe->pChunk = pMap;
1229 }
1230
1231 *ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
1232 return VINF_SUCCESS;
1233#endif
1234}
1235
1236
1237/**
1238 * Maps a page into the current virtual address space so it can be accessed.
1239 *
1240 * @returns VBox status code.
1241 * @retval VINF_SUCCESS on success.
1242 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1243 *
1244 * @param pVM The cross context VM structure.
1245 * @param pPage The physical page tracking structure.
1246 * @param GCPhys The address of the page.
1247 * @param ppMap Where to store the address of the mapping tracking structure.
1248 * @param ppv Where to store the mapping address of the page. The page
1249 * offset is masked off!
1250 *
1251 * @remarks Called from within the PGM critical section.
1252 */
1253static int pgmPhysPageMapCommon(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
1254{
1255 PGM_LOCK_ASSERT_OWNER(pVM);
1256 NOREF(GCPhys);
1257
1258#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1259 /*
1260 * Just some sketchy GC/R0-darwin code.
1261 */
1262 *ppMap = NULL;
1263 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
1264 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
1265 pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS);
1266 return VINF_SUCCESS;
1267
1268#else /* IN_RING3 || IN_RING0 */
1269
1270
1271 /*
1272 * Special cases: MMIO2, ZERO and specially aliased MMIO pages.
1273 */
1274 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2
1275 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
1276 {
1277 /* Decode the page id to a page in a MMIO2 ram range. */
1278 uint8_t idMmio2 = PGM_MMIO2_PAGEID_GET_MMIO2_ID(PGM_PAGE_GET_PAGEID(pPage));
1279 uint32_t iPage = PGM_MMIO2_PAGEID_GET_IDX(PGM_PAGE_GET_PAGEID(pPage));
1280 AssertLogRelMsgReturn((uint8_t)(idMmio2 - 1U) < RT_ELEMENTS(pVM->pgm.s.CTX_SUFF(apMmio2Ranges)),
1281 ("idMmio2=%u size=%u type=%u GCPHys=%#RGp Id=%u State=%u", idMmio2,
1282 RT_ELEMENTS(pVM->pgm.s.CTX_SUFF(apMmio2Ranges)), PGM_PAGE_GET_TYPE(pPage), GCPhys,
1283 pPage->s.idPage, pPage->s.uStateY),
1284 VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1285 PPGMREGMMIORANGE pMmio2Range = pVM->pgm.s.CTX_SUFF(apMmio2Ranges)[idMmio2 - 1];
1286 AssertLogRelReturn(pMmio2Range, VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1287 AssertLogRelReturn(pMmio2Range->idMmio2 == idMmio2, VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1288 AssertLogRelReturn(iPage < (pMmio2Range->RamRange.cb >> PAGE_SHIFT), VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1289 *ppv = (uint8_t *)pMmio2Range->RamRange.pvR3 + ((uintptr_t)iPage << PAGE_SHIFT);
1290 *ppMap = NULL;
1291 return VINF_SUCCESS;
1292 }
1293
1294 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
1295 if (idChunk == NIL_GMM_CHUNKID)
1296 {
1297 AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage),
1298 VERR_PGM_PHYS_PAGE_MAP_IPE_1);
1299 if (!PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1300 {
1301 AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage),
1302 VERR_PGM_PHYS_PAGE_MAP_IPE_3);
1303 AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage)== pVM->pgm.s.HCPhysZeroPg, ("pPage=%R[pgmpage]\n", pPage),
1304 VERR_PGM_PHYS_PAGE_MAP_IPE_4);
1305 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1306 }
1307 else
1308 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1309 *ppMap = NULL;
1310 return VINF_SUCCESS;
1311 }
1312
1313 /*
1314 * Find/make Chunk TLB entry for the mapping chunk.
1315 */
1316 PPGMCHUNKR3MAP pMap;
1317 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
1318 if (pTlbe->idChunk == idChunk)
1319 {
1320 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits));
1321 pMap = pTlbe->pChunk;
1322 AssertPtr(pMap->pv);
1323 }
1324 else
1325 {
1326 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
1327
1328 /*
1329 * Find the chunk, map it if necessary.
1330 */
1331 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1332 if (pMap)
1333 {
1334 AssertPtr(pMap->pv);
1335 pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
1336 }
1337 else
1338 {
1339#ifdef IN_RING0
1340 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
1341 AssertRCReturn(rc, rc);
1342 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1343 Assert(pMap);
1344#else
1345 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
1346 if (RT_FAILURE(rc))
1347 return rc;
1348#endif
1349 AssertPtr(pMap->pv);
1350 }
1351
1352 /*
1353 * Enter it into the Chunk TLB.
1354 */
1355 pTlbe->idChunk = idChunk;
1356 pTlbe->pChunk = pMap;
1357 }
1358
1359 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
1360 *ppMap = pMap;
1361 return VINF_SUCCESS;
1362#endif /* IN_RING3 */
1363}
1364
1365
1366/**
1367 * Combination of pgmPhysPageMakeWritable and pgmPhysPageMapWritable.
1368 *
1369 * This is typically used is paths where we cannot use the TLB methods (like ROM
1370 * pages) or where there is no point in using them since we won't get many hits.
1371 *
1372 * @returns VBox strict status code.
1373 * @retval VINF_SUCCESS on success.
1374 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
1375 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1376 *
1377 * @param pVM The cross context VM structure.
1378 * @param pPage The physical page tracking structure.
1379 * @param GCPhys The address of the page.
1380 * @param ppv Where to store the mapping address of the page. The page
1381 * offset is masked off!
1382 *
1383 * @remarks Called from within the PGM critical section. The mapping is only
1384 * valid while you are inside section.
1385 */
1386int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1387{
1388 int rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1389 if (RT_SUCCESS(rc))
1390 {
1391 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc));
1392 PPGMPAGEMAP pMapIgnore;
1393 int rc2 = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
1394 if (RT_FAILURE(rc2)) /* preserve rc */
1395 rc = rc2;
1396 }
1397 return rc;
1398}
1399
1400
1401/**
1402 * Maps a page into the current virtual address space so it can be accessed for
1403 * both writing and reading.
1404 *
1405 * This is typically used is paths where we cannot use the TLB methods (like ROM
1406 * pages) or where there is no point in using them since we won't get many hits.
1407 *
1408 * @returns VBox status code.
1409 * @retval VINF_SUCCESS on success.
1410 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1411 *
1412 * @param pVM The cross context VM structure.
1413 * @param pPage The physical page tracking structure. Must be in the
1414 * allocated state.
1415 * @param GCPhys The address of the page.
1416 * @param ppv Where to store the mapping address of the page. The page
1417 * offset is masked off!
1418 *
1419 * @remarks Called from within the PGM critical section. The mapping is only
1420 * valid while you are inside section.
1421 */
1422int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1423{
1424 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
1425 PPGMPAGEMAP pMapIgnore;
1426 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
1427}
1428
1429
1430/**
1431 * Maps a page into the current virtual address space so it can be accessed for
1432 * reading.
1433 *
1434 * This is typically used is paths where we cannot use the TLB methods (like ROM
1435 * pages) or where there is no point in using them since we won't get many hits.
1436 *
1437 * @returns VBox status code.
1438 * @retval VINF_SUCCESS on success.
1439 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1440 *
1441 * @param pVM The cross context VM structure.
1442 * @param pPage The physical page tracking structure.
1443 * @param GCPhys The address of the page.
1444 * @param ppv Where to store the mapping address of the page. The page
1445 * offset is masked off!
1446 *
1447 * @remarks Called from within the PGM critical section. The mapping is only
1448 * valid while you are inside this section.
1449 */
1450int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv)
1451{
1452 PPGMPAGEMAP pMapIgnore;
1453 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, (void **)ppv);
1454}
1455
1456#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1457
1458/**
1459 * Load a guest page into the ring-3 physical TLB.
1460 *
1461 * @returns VBox status code.
1462 * @retval VINF_SUCCESS on success
1463 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1464 * @param pPGM The PGM instance pointer.
1465 * @param GCPhys The guest physical address in question.
1466 */
1467int pgmPhysPageLoadIntoTlb(PVM pVM, RTGCPHYS GCPhys)
1468{
1469 PGM_LOCK_ASSERT_OWNER(pVM);
1470
1471 /*
1472 * Find the ram range and page and hand it over to the with-page function.
1473 * 99.8% of requests are expected to be in the first range.
1474 */
1475 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
1476 if (!pPage)
1477 {
1478 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses));
1479 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1480 }
1481
1482 return pgmPhysPageLoadIntoTlbWithPage(pVM, pPage, GCPhys);
1483}
1484
1485
1486/**
1487 * Load a guest page into the ring-3 physical TLB.
1488 *
1489 * @returns VBox status code.
1490 * @retval VINF_SUCCESS on success
1491 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1492 *
1493 * @param pVM The cross context VM structure.
1494 * @param pPage Pointer to the PGMPAGE structure corresponding to
1495 * GCPhys.
1496 * @param GCPhys The guest physical address in question.
1497 */
1498int pgmPhysPageLoadIntoTlbWithPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
1499{
1500 PGM_LOCK_ASSERT_OWNER(pVM);
1501 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses));
1502
1503 /*
1504 * Map the page.
1505 * Make a special case for the zero page as it is kind of special.
1506 */
1507 PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
1508 if ( !PGM_PAGE_IS_ZERO(pPage)
1509 && !PGM_PAGE_IS_BALLOONED(pPage))
1510 {
1511 void *pv;
1512 PPGMPAGEMAP pMap;
1513 int rc = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMap, &pv);
1514 if (RT_FAILURE(rc))
1515 return rc;
1516 pTlbe->pMap = pMap;
1517 pTlbe->pv = pv;
1518 Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK));
1519 }
1520 else
1521 {
1522 AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg, ("%RGp/%R[pgmpage]\n", GCPhys, pPage));
1523 pTlbe->pMap = NULL;
1524 pTlbe->pv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1525 }
1526#ifdef PGM_WITH_PHYS_TLB
1527 if ( PGM_PAGE_GET_TYPE(pPage) < PGMPAGETYPE_ROM_SHADOW
1528 || PGM_PAGE_GET_TYPE(pPage) > PGMPAGETYPE_ROM)
1529 pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK;
1530 else
1531 pTlbe->GCPhys = NIL_RTGCPHYS; /* ROM: Problematic because of the two pages. :-/ */
1532#else
1533 pTlbe->GCPhys = NIL_RTGCPHYS;
1534#endif
1535 pTlbe->pPage = pPage;
1536 return VINF_SUCCESS;
1537}
1538
1539#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1540
1541/**
1542 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
1543 * own the PGM lock and therefore not need to lock the mapped page.
1544 *
1545 * @returns VBox status code.
1546 * @retval VINF_SUCCESS on success.
1547 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1548 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1549 *
1550 * @param pVM The cross context VM structure.
1551 * @param GCPhys The guest physical address of the page that should be mapped.
1552 * @param pPage Pointer to the PGMPAGE structure for the page.
1553 * @param ppv Where to store the address corresponding to GCPhys.
1554 *
1555 * @internal
1556 * @deprecated Use pgmPhysGCPhys2CCPtrInternalEx.
1557 */
1558int pgmPhysGCPhys2CCPtrInternalDepr(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1559{
1560 int rc;
1561 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1562 PGM_LOCK_ASSERT_OWNER(pVM);
1563 pVM->pgm.s.cDeprecatedPageLocks++;
1564
1565 /*
1566 * Make sure the page is writable.
1567 */
1568 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1569 {
1570 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1571 if (RT_FAILURE(rc))
1572 return rc;
1573 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1574 }
1575 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1576
1577 /*
1578 * Get the mapping address.
1579 */
1580#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1581 void *pv;
1582 rc = pgmRZDynMapHCPageInlined(VMMGetCpu(pVM),
1583 PGM_PAGE_GET_HCPHYS(pPage),
1584 &pv
1585 RTLOG_COMMA_SRC_POS);
1586 if (RT_FAILURE(rc))
1587 return rc;
1588 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1589#else
1590 PPGMPAGEMAPTLBE pTlbe;
1591 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1592 if (RT_FAILURE(rc))
1593 return rc;
1594 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1595#endif
1596 return VINF_SUCCESS;
1597}
1598
1599#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1600
1601/**
1602 * Locks a page mapping for writing.
1603 *
1604 * @param pVM The cross context VM structure.
1605 * @param pPage The page.
1606 * @param pTlbe The mapping TLB entry for the page.
1607 * @param pLock The lock structure (output).
1608 */
1609DECLINLINE(void) pgmPhysPageMapLockForWriting(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock)
1610{
1611 PPGMPAGEMAP pMap = pTlbe->pMap;
1612 if (pMap)
1613 pMap->cRefs++;
1614
1615 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
1616 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1617 {
1618 if (cLocks == 0)
1619 pVM->pgm.s.cWriteLockedPages++;
1620 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1621 }
1622 else if (cLocks != PGM_PAGE_MAX_LOCKS)
1623 {
1624 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1625 AssertMsgFailed(("%R[pgmpage] is entering permanent write locked state!\n", pPage));
1626 if (pMap)
1627 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1628 }
1629
1630 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
1631 pLock->pvMap = pMap;
1632}
1633
1634/**
1635 * Locks a page mapping for reading.
1636 *
1637 * @param pVM The cross context VM structure.
1638 * @param pPage The page.
1639 * @param pTlbe The mapping TLB entry for the page.
1640 * @param pLock The lock structure (output).
1641 */
1642DECLINLINE(void) pgmPhysPageMapLockForReading(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock)
1643{
1644 PPGMPAGEMAP pMap = pTlbe->pMap;
1645 if (pMap)
1646 pMap->cRefs++;
1647
1648 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
1649 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1650 {
1651 if (cLocks == 0)
1652 pVM->pgm.s.cReadLockedPages++;
1653 PGM_PAGE_INC_READ_LOCKS(pPage);
1654 }
1655 else if (cLocks != PGM_PAGE_MAX_LOCKS)
1656 {
1657 PGM_PAGE_INC_READ_LOCKS(pPage);
1658 AssertMsgFailed(("%R[pgmpage] is entering permanent read locked state!\n", pPage));
1659 if (pMap)
1660 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1661 }
1662
1663 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
1664 pLock->pvMap = pMap;
1665}
1666
1667#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1668
1669
1670/**
1671 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
1672 * own the PGM lock and have access to the page structure.
1673 *
1674 * @returns VBox status code.
1675 * @retval VINF_SUCCESS on success.
1676 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1677 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1678 *
1679 * @param pVM The cross context VM structure.
1680 * @param GCPhys The guest physical address of the page that should be mapped.
1681 * @param pPage Pointer to the PGMPAGE structure for the page.
1682 * @param ppv Where to store the address corresponding to GCPhys.
1683 * @param pLock Where to store the lock information that
1684 * pgmPhysReleaseInternalPageMappingLock needs.
1685 *
1686 * @internal
1687 */
1688int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
1689{
1690 int rc;
1691 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1692 PGM_LOCK_ASSERT_OWNER(pVM);
1693
1694 /*
1695 * Make sure the page is writable.
1696 */
1697 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1698 {
1699 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1700 if (RT_FAILURE(rc))
1701 return rc;
1702 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1703 }
1704 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1705
1706 /*
1707 * Do the job.
1708 */
1709#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1710 void *pv;
1711 PVMCPU pVCpu = VMMGetCpu(pVM);
1712 rc = pgmRZDynMapHCPageInlined(pVCpu,
1713 PGM_PAGE_GET_HCPHYS(pPage),
1714 &pv
1715 RTLOG_COMMA_SRC_POS);
1716 if (RT_FAILURE(rc))
1717 return rc;
1718 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1719 pLock->pvPage = pv;
1720 pLock->pVCpu = pVCpu;
1721
1722#else
1723 PPGMPAGEMAPTLBE pTlbe;
1724 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1725 if (RT_FAILURE(rc))
1726 return rc;
1727 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
1728 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1729#endif
1730 return VINF_SUCCESS;
1731}
1732
1733
1734/**
1735 * Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to
1736 * own the PGM lock and have access to the page structure.
1737 *
1738 * @returns VBox status code.
1739 * @retval VINF_SUCCESS on success.
1740 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1741 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1742 *
1743 * @param pVM The cross context VM structure.
1744 * @param GCPhys The guest physical address of the page that should be mapped.
1745 * @param pPage Pointer to the PGMPAGE structure for the page.
1746 * @param ppv Where to store the address corresponding to GCPhys.
1747 * @param pLock Where to store the lock information that
1748 * pgmPhysReleaseInternalPageMappingLock needs.
1749 *
1750 * @internal
1751 */
1752int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv, PPGMPAGEMAPLOCK pLock)
1753{
1754 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1755 PGM_LOCK_ASSERT_OWNER(pVM);
1756 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1757
1758 /*
1759 * Do the job.
1760 */
1761#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1762 void *pv;
1763 PVMCPU pVCpu = VMMGetCpu(pVM);
1764 int rc = pgmRZDynMapHCPageInlined(pVCpu,
1765 PGM_PAGE_GET_HCPHYS(pPage),
1766 &pv
1767 RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */
1768 if (RT_FAILURE(rc))
1769 return rc;
1770 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1771 pLock->pvPage = pv;
1772 pLock->pVCpu = pVCpu;
1773
1774#else
1775 PPGMPAGEMAPTLBE pTlbe;
1776 int rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1777 if (RT_FAILURE(rc))
1778 return rc;
1779 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
1780 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1781#endif
1782 return VINF_SUCCESS;
1783}
1784
1785
1786/**
1787 * Requests the mapping of a guest page into the current context.
1788 *
1789 * This API should only be used for very short term, as it will consume scarse
1790 * resources (R0 and GC) in the mapping cache. When you're done with the page,
1791 * call PGMPhysReleasePageMappingLock() ASAP to release it.
1792 *
1793 * This API will assume your intention is to write to the page, and will
1794 * therefore replace shared and zero pages. If you do not intend to modify
1795 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
1796 *
1797 * @returns VBox status code.
1798 * @retval VINF_SUCCESS on success.
1799 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1800 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1801 *
1802 * @param pVM The cross context VM structure.
1803 * @param GCPhys The guest physical address of the page that should be
1804 * mapped.
1805 * @param ppv Where to store the address corresponding to GCPhys.
1806 * @param pLock Where to store the lock information that
1807 * PGMPhysReleasePageMappingLock needs.
1808 *
1809 * @remarks The caller is responsible for dealing with access handlers.
1810 * @todo Add an informational return code for pages with access handlers?
1811 *
1812 * @remark Avoid calling this API from within critical sections (other than
1813 * the PGM one) because of the deadlock risk. External threads may
1814 * need to delegate jobs to the EMTs.
1815 * @remarks Only one page is mapped! Make no assumption about what's after or
1816 * before the returned page!
1817 * @thread Any thread.
1818 */
1819VMM_INT_DECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
1820{
1821 int rc = pgmLock(pVM);
1822 AssertRCReturn(rc, rc);
1823
1824#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1825 /*
1826 * Find the page and make sure it's writable.
1827 */
1828 PPGMPAGE pPage;
1829 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1830 if (RT_SUCCESS(rc))
1831 {
1832 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1833 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1834 if (RT_SUCCESS(rc))
1835 {
1836 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1837
1838 PVMCPU pVCpu = VMMGetCpu(pVM);
1839 void *pv;
1840 rc = pgmRZDynMapHCPageInlined(pVCpu,
1841 PGM_PAGE_GET_HCPHYS(pPage),
1842 &pv
1843 RTLOG_COMMA_SRC_POS);
1844 if (RT_SUCCESS(rc))
1845 {
1846 AssertRCSuccess(rc);
1847
1848 pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1849 *ppv = pv;
1850 pLock->pvPage = pv;
1851 pLock->pVCpu = pVCpu;
1852 }
1853 }
1854 }
1855
1856#else /* IN_RING3 || IN_RING0 */
1857 /*
1858 * Query the Physical TLB entry for the page (may fail).
1859 */
1860 PPGMPAGEMAPTLBE pTlbe;
1861 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
1862 if (RT_SUCCESS(rc))
1863 {
1864 /*
1865 * If the page is shared, the zero page, or being write monitored
1866 * it must be converted to a page that's writable if possible.
1867 */
1868 PPGMPAGE pPage = pTlbe->pPage;
1869 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1870 {
1871 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1872 if (RT_SUCCESS(rc))
1873 {
1874 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1875 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1876 }
1877 }
1878 if (RT_SUCCESS(rc))
1879 {
1880 /*
1881 * Now, just perform the locking and calculate the return address.
1882 */
1883 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
1884 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1885 }
1886 }
1887
1888#endif /* IN_RING3 || IN_RING0 */
1889 pgmUnlock(pVM);
1890 return rc;
1891}
1892
1893
1894/**
1895 * Requests the mapping of a guest page into the current context.
1896 *
1897 * This API should only be used for very short term, as it will consume scarse
1898 * resources (R0 and GC) in the mapping cache. When you're done with the page,
1899 * call PGMPhysReleasePageMappingLock() ASAP to release it.
1900 *
1901 * @returns VBox status code.
1902 * @retval VINF_SUCCESS on success.
1903 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1904 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1905 *
1906 * @param pVM The cross context VM structure.
1907 * @param GCPhys The guest physical address of the page that should be
1908 * mapped.
1909 * @param ppv Where to store the address corresponding to GCPhys.
1910 * @param pLock Where to store the lock information that
1911 * PGMPhysReleasePageMappingLock needs.
1912 *
1913 * @remarks The caller is responsible for dealing with access handlers.
1914 * @todo Add an informational return code for pages with access handlers?
1915 *
1916 * @remarks Avoid calling this API from within critical sections (other than
1917 * the PGM one) because of the deadlock risk.
1918 * @remarks Only one page is mapped! Make no assumption about what's after or
1919 * before the returned page!
1920 * @thread Any thread.
1921 */
1922VMM_INT_DECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
1923{
1924 int rc = pgmLock(pVM);
1925 AssertRCReturn(rc, rc);
1926
1927#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1928 /*
1929 * Find the page and make sure it's readable.
1930 */
1931 PPGMPAGE pPage;
1932 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1933 if (RT_SUCCESS(rc))
1934 {
1935 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)))
1936 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1937 else
1938 {
1939 PVMCPU pVCpu = VMMGetCpu(pVM);
1940 void *pv;
1941 rc = pgmRZDynMapHCPageInlined(pVCpu,
1942 PGM_PAGE_GET_HCPHYS(pPage),
1943 &pv
1944 RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */
1945 if (RT_SUCCESS(rc))
1946 {
1947 AssertRCSuccess(rc);
1948
1949 pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1950 *ppv = pv;
1951 pLock->pvPage = pv;
1952 pLock->pVCpu = pVCpu;
1953 }
1954 }
1955 }
1956
1957#else /* IN_RING3 || IN_RING0 */
1958 /*
1959 * Query the Physical TLB entry for the page (may fail).
1960 */
1961 PPGMPAGEMAPTLBE pTlbe;
1962 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
1963 if (RT_SUCCESS(rc))
1964 {
1965 /* MMIO pages doesn't have any readable backing. */
1966 PPGMPAGE pPage = pTlbe->pPage;
1967 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)))
1968 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1969 else
1970 {
1971 /*
1972 * Now, just perform the locking and calculate the return address.
1973 */
1974 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
1975 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1976 }
1977 }
1978
1979#endif /* IN_RING3 || IN_RING0 */
1980 pgmUnlock(pVM);
1981 return rc;
1982}
1983
1984
1985/**
1986 * Requests the mapping of a guest page given by virtual address into the current context.
1987 *
1988 * This API should only be used for very short term, as it will consume
1989 * scarse resources (R0 and GC) in the mapping cache. When you're done
1990 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1991 *
1992 * This API will assume your intention is to write to the page, and will
1993 * therefore replace shared and zero pages. If you do not intend to modify
1994 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
1995 *
1996 * @returns VBox status code.
1997 * @retval VINF_SUCCESS on success.
1998 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1999 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
2000 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
2001 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
2002 *
2003 * @param pVCpu The cross context virtual CPU structure.
2004 * @param GCPtr The guest physical address of the page that should be
2005 * mapped.
2006 * @param ppv Where to store the address corresponding to GCPhys.
2007 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
2008 *
2009 * @remark Avoid calling this API from within critical sections (other than
2010 * the PGM one) because of the deadlock risk.
2011 * @thread EMT
2012 */
2013VMM_INT_DECL(int) PGMPhysGCPtr2CCPtr(PVMCPU pVCpu, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
2014{
2015 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
2016 RTGCPHYS GCPhys;
2017 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
2018 if (RT_SUCCESS(rc))
2019 rc = PGMPhysGCPhys2CCPtr(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
2020 return rc;
2021}
2022
2023
2024/**
2025 * Requests the mapping of a guest page given by virtual address into the current context.
2026 *
2027 * This API should only be used for very short term, as it will consume
2028 * scarse resources (R0 and GC) in the mapping cache. When you're done
2029 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
2030 *
2031 * @returns VBox status code.
2032 * @retval VINF_SUCCESS on success.
2033 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
2034 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
2035 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
2036 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
2037 *
2038 * @param pVCpu The cross context virtual CPU structure.
2039 * @param GCPtr The guest physical address of the page that should be
2040 * mapped.
2041 * @param ppv Where to store the address corresponding to GCPtr.
2042 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
2043 *
2044 * @remark Avoid calling this API from within critical sections (other than
2045 * the PGM one) because of the deadlock risk.
2046 * @thread EMT
2047 */
2048VMM_INT_DECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVMCPU pVCpu, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
2049{
2050 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
2051 RTGCPHYS GCPhys;
2052 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
2053 if (RT_SUCCESS(rc))
2054 rc = PGMPhysGCPhys2CCPtrReadOnly(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
2055 return rc;
2056}
2057
2058
2059/**
2060 * Release the mapping of a guest page.
2061 *
2062 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
2063 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
2064 *
2065 * @param pVM The cross context VM structure.
2066 * @param pLock The lock structure initialized by the mapping function.
2067 */
2068VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
2069{
2070#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2071 Assert(pLock->pvPage != NULL);
2072 Assert(pLock->pVCpu == VMMGetCpu(pVM)); RT_NOREF_PV(pVM);
2073 PGM_DYNMAP_UNUSED_HINT(pLock->pVCpu, pLock->pvPage);
2074 pLock->pVCpu = NULL;
2075 pLock->pvPage = NULL;
2076
2077#else
2078 PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap;
2079 PPGMPAGE pPage = (PPGMPAGE)(pLock->uPageAndType & ~PGMPAGEMAPLOCK_TYPE_MASK);
2080 bool fWriteLock = (pLock->uPageAndType & PGMPAGEMAPLOCK_TYPE_MASK) == PGMPAGEMAPLOCK_TYPE_WRITE;
2081
2082 pLock->uPageAndType = 0;
2083 pLock->pvMap = NULL;
2084
2085 pgmLock(pVM);
2086 if (fWriteLock)
2087 {
2088 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
2089 Assert(cLocks > 0);
2090 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
2091 {
2092 if (cLocks == 1)
2093 {
2094 Assert(pVM->pgm.s.cWriteLockedPages > 0);
2095 pVM->pgm.s.cWriteLockedPages--;
2096 }
2097 PGM_PAGE_DEC_WRITE_LOCKS(pPage);
2098 }
2099
2100 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED)
2101 { /* probably extremely likely */ }
2102 else
2103 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, NIL_RTGCPHYS);
2104 }
2105 else
2106 {
2107 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
2108 Assert(cLocks > 0);
2109 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
2110 {
2111 if (cLocks == 1)
2112 {
2113 Assert(pVM->pgm.s.cReadLockedPages > 0);
2114 pVM->pgm.s.cReadLockedPages--;
2115 }
2116 PGM_PAGE_DEC_READ_LOCKS(pPage);
2117 }
2118 }
2119
2120 if (pMap)
2121 {
2122 Assert(pMap->cRefs >= 1);
2123 pMap->cRefs--;
2124 }
2125 pgmUnlock(pVM);
2126#endif /* IN_RING3 */
2127}
2128
2129
2130/**
2131 * Release the internal mapping of a guest page.
2132 *
2133 * This is the counter part of pgmPhysGCPhys2CCPtrInternalEx and
2134 * pgmPhysGCPhys2CCPtrInternalReadOnly.
2135 *
2136 * @param pVM The cross context VM structure.
2137 * @param pLock The lock structure initialized by the mapping function.
2138 *
2139 * @remarks Caller must hold the PGM lock.
2140 */
2141void pgmPhysReleaseInternalPageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
2142{
2143 PGM_LOCK_ASSERT_OWNER(pVM);
2144 PGMPhysReleasePageMappingLock(pVM, pLock); /* lazy for now */
2145}
2146
2147
2148/**
2149 * Converts a GC physical address to a HC ring-3 pointer.
2150 *
2151 * @returns VINF_SUCCESS on success.
2152 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
2153 * page but has no physical backing.
2154 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
2155 * GC physical address.
2156 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
2157 * a dynamic ram chunk boundary
2158 *
2159 * @param pVM The cross context VM structure.
2160 * @param GCPhys The GC physical address to convert.
2161 * @param pR3Ptr Where to store the R3 pointer on success.
2162 *
2163 * @deprecated Avoid when possible!
2164 */
2165int pgmPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2166{
2167/** @todo this is kind of hacky and needs some more work. */
2168#ifndef DEBUG_sandervl
2169 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
2170#endif
2171
2172 Log(("pgmPhysGCPhys2R3Ptr(,%RGp,): dont use this API!\n", GCPhys)); /** @todo eliminate this API! */
2173#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2174 NOREF(pVM); NOREF(pR3Ptr); RT_NOREF_PV(GCPhys);
2175 AssertFailedReturn(VERR_NOT_IMPLEMENTED);
2176#else
2177 pgmLock(pVM);
2178
2179 PPGMRAMRANGE pRam;
2180 PPGMPAGE pPage;
2181 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
2182 if (RT_SUCCESS(rc))
2183 rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr);
2184
2185 pgmUnlock(pVM);
2186 Assert(rc <= VINF_SUCCESS);
2187 return rc;
2188#endif
2189}
2190
2191#if 0 /*defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)*/
2192
2193/**
2194 * Maps and locks a guest CR3 or PD (PAE) page.
2195 *
2196 * @returns VINF_SUCCESS on success.
2197 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
2198 * page but has no physical backing.
2199 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
2200 * GC physical address.
2201 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
2202 * a dynamic ram chunk boundary
2203 *
2204 * @param pVM The cross context VM structure.
2205 * @param GCPhys The GC physical address to convert.
2206 * @param pR3Ptr Where to store the R3 pointer on success. This may or
2207 * may not be valid in ring-0 depending on the
2208 * VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 build option.
2209 *
2210 * @remarks The caller must own the PGM lock.
2211 */
2212int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2213{
2214
2215 PPGMRAMRANGE pRam;
2216 PPGMPAGE pPage;
2217 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
2218 if (RT_SUCCESS(rc))
2219 rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr);
2220 Assert(rc <= VINF_SUCCESS);
2221 return rc;
2222}
2223
2224
2225int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2226{
2227
2228}
2229
2230#endif
2231
2232/**
2233 * Converts a guest pointer to a GC physical address.
2234 *
2235 * This uses the current CR3/CR0/CR4 of the guest.
2236 *
2237 * @returns VBox status code.
2238 * @param pVCpu The cross context virtual CPU structure.
2239 * @param GCPtr The guest pointer to convert.
2240 * @param pGCPhys Where to store the GC physical address.
2241 */
2242VMMDECL(int) PGMPhysGCPtr2GCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
2243{
2244 int rc = PGMGstGetPage(pVCpu, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
2245 if (pGCPhys && RT_SUCCESS(rc))
2246 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
2247 return rc;
2248}
2249
2250
2251/**
2252 * Converts a guest pointer to a HC physical address.
2253 *
2254 * This uses the current CR3/CR0/CR4 of the guest.
2255 *
2256 * @returns VBox status code.
2257 * @param pVCpu The cross context virtual CPU structure.
2258 * @param GCPtr The guest pointer to convert.
2259 * @param pHCPhys Where to store the HC physical address.
2260 */
2261VMM_INT_DECL(int) PGMPhysGCPtr2HCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
2262{
2263 PVM pVM = pVCpu->CTX_SUFF(pVM);
2264 RTGCPHYS GCPhys;
2265 int rc = PGMGstGetPage(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
2266 if (RT_SUCCESS(rc))
2267 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
2268 return rc;
2269}
2270
2271
2272
2273#undef LOG_GROUP
2274#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
2275
2276
2277#if defined(IN_RING3) && defined(SOME_UNUSED_FUNCTION)
2278/**
2279 * Cache PGMPhys memory access
2280 *
2281 * @param pVM The cross context VM structure.
2282 * @param pCache Cache structure pointer
2283 * @param GCPhys GC physical address
2284 * @param pbHC HC pointer corresponding to physical page
2285 *
2286 * @thread EMT.
2287 */
2288static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
2289{
2290 uint32_t iCacheIndex;
2291
2292 Assert(VM_IS_EMT(pVM));
2293
2294 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
2295 pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
2296
2297 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
2298
2299 ASMBitSet(&pCache->aEntries, iCacheIndex);
2300
2301 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
2302 pCache->Entry[iCacheIndex].pbR3 = pbR3;
2303}
2304#endif /* IN_RING3 */
2305
2306
2307/**
2308 * Deals with reading from a page with one or more ALL access handlers.
2309 *
2310 * @returns Strict VBox status code in ring-0 and raw-mode, ignorable in ring-3.
2311 * See PGM_HANDLER_PHYS_IS_VALID_STATUS and
2312 * PGM_HANDLER_VIRT_IS_VALID_STATUS for details.
2313 *
2314 * @param pVM The cross context VM structure.
2315 * @param pPage The page descriptor.
2316 * @param GCPhys The physical address to start reading at.
2317 * @param pvBuf Where to put the bits we read.
2318 * @param cb How much to read - less or equal to a page.
2319 * @param enmOrigin The origin of this call.
2320 */
2321static VBOXSTRICTRC pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb,
2322 PGMACCESSORIGIN enmOrigin)
2323{
2324 /*
2325 * The most frequent access here is MMIO and shadowed ROM.
2326 * The current code ASSUMES all these access handlers covers full pages!
2327 */
2328
2329 /*
2330 * Whatever we do we need the source page, map it first.
2331 */
2332 PGMPAGEMAPLOCK PgMpLck;
2333 const void *pvSrc = NULL;
2334 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc, &PgMpLck);
2335/** @todo Check how this can work for MMIO pages? */
2336 if (RT_FAILURE(rc))
2337 {
2338 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
2339 GCPhys, pPage, rc));
2340 memset(pvBuf, 0xff, cb);
2341 return VINF_SUCCESS;
2342 }
2343
2344 VBOXSTRICTRC rcStrict = VINF_PGM_HANDLER_DO_DEFAULT;
2345
2346 /*
2347 * Deal with any physical handlers.
2348 */
2349 PVMCPU pVCpu = VMMGetCpu(pVM);
2350 PPGMPHYSHANDLER pPhys = NULL;
2351 if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL
2352 || PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
2353 {
2354 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2355 AssertReleaseMsg(pPhys, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
2356 Assert(GCPhys >= pPhys->Core.Key && GCPhys <= pPhys->Core.KeyLast);
2357 Assert((pPhys->Core.Key & PAGE_OFFSET_MASK) == 0);
2358 Assert((pPhys->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
2359#ifndef IN_RING3
2360 if (enmOrigin != PGMACCESSORIGIN_IEM)
2361 {
2362 /* Cannot reliably handle informational status codes in this context */
2363 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2364 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2365 }
2366#endif
2367 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler); Assert(pfnHandler);
2368 void *pvUser = pPhys->CTX_SUFF(pvUser);
2369
2370 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cb, pPage, R3STRING(pPhys->pszDesc) ));
2371 STAM_PROFILE_START(&pPhys->Stat, h);
2372 PGM_LOCK_ASSERT_OWNER(pVM);
2373
2374 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2375 pgmUnlock(pVM);
2376 rcStrict = pfnHandler(pVM, pVCpu, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, enmOrigin, pvUser);
2377 pgmLock(pVM);
2378
2379#ifdef VBOX_WITH_STATISTICS
2380 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2381 if (pPhys)
2382 STAM_PROFILE_STOP(&pPhys->Stat, h);
2383#else
2384 pPhys = NULL; /* might not be valid anymore. */
2385#endif
2386 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict, false),
2387 ("rcStrict=%Rrc GCPhys=%RGp\n", VBOXSTRICTRC_VAL(rcStrict), GCPhys));
2388 if ( rcStrict != VINF_PGM_HANDLER_DO_DEFAULT
2389 && !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2390 {
2391 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2392 return rcStrict;
2393 }
2394 }
2395
2396#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2397 /*
2398 * Deal with any virtual handlers.
2399 */
2400 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL)
2401 {
2402 unsigned iPage;
2403 PPGMVIRTHANDLER pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iPage);
2404 AssertReleaseMsg(pVirt, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
2405 Assert((pVirt->Core.Key & PAGE_OFFSET_MASK) == 0);
2406 Assert((pVirt->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
2407 Assert(GCPhys >= pVirt->aPhysToVirt[iPage].Core.Key && GCPhys <= pVirt->aPhysToVirt[iPage].Core.KeyLast);
2408
2409# ifndef IN_RING3
2410 if (enmOrigin != PGMACCESSORIGIN_IEM)
2411 {
2412 /* Cannot reliably handle informational status codes in this context */
2413 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2414 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2415 }
2416# endif
2417 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2418 if (!pPhys)
2419 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
2420 else
2421 Log(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc), R3STRING(pPhys->pszDesc) ));
2422 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2423 + (iPage << PAGE_SHIFT)
2424 + (GCPhys & PAGE_OFFSET_MASK);
2425
2426 STAM_PROFILE_START(&pVirt->Stat, h);
2427 VBOXSTRICTRC rcStrict2 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, (void *)pvSrc, pvBuf, cb,
2428 PGMACCESSTYPE_READ, enmOrigin, pVirt->CTX_SUFF(pvUser));
2429 STAM_PROFILE_STOP(&pVirt->Stat, h);
2430
2431 /* Merge status codes. */
2432 if (rcStrict2 == VINF_SUCCESS)
2433 {
2434 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2435 rcStrict = VINF_SUCCESS;
2436 }
2437 else if (rcStrict2 != VINF_PGM_HANDLER_DO_DEFAULT)
2438 {
2439 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict2, false),
2440 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2441 VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pVirt->pszDesc));
2442 if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
2443 {
2444 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2445 return rcStrict2;
2446 }
2447 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2448 rcStrict = rcStrict2;
2449 else
2450 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
2451 }
2452 }
2453#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
2454
2455 /*
2456 * Take the default action.
2457 */
2458 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2459 {
2460 memcpy(pvBuf, pvSrc, cb);
2461 rcStrict = VINF_SUCCESS;
2462 }
2463 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2464 return rcStrict;
2465}
2466
2467
2468/**
2469 * Read physical memory.
2470 *
2471 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
2472 * want to ignore those.
2473 *
2474 * @returns Strict VBox status code in raw-mode and ring-0, normal VBox status
2475 * code in ring-3. Use PGM_PHYS_RW_IS_SUCCESS to check.
2476 * @retval VINF_SUCCESS in all context - read completed.
2477 *
2478 * @retval VINF_EM_OFF in RC and R0 - read completed.
2479 * @retval VINF_EM_SUSPEND in RC and R0 - read completed.
2480 * @retval VINF_EM_RESET in RC and R0 - read completed.
2481 * @retval VINF_EM_HALT in RC and R0 - read completed.
2482 * @retval VINF_SELM_SYNC_GDT in RC only - read completed.
2483 *
2484 * @retval VINF_EM_DBG_STOP in RC and R0 - read completed.
2485 * @retval VINF_EM_DBG_BREAKPOINT in RC and R0 - read completed.
2486 * @retval VINF_EM_RAW_EMULATE_INSTR in RC and R0 only.
2487 *
2488 * @retval VINF_IOM_R3_MMIO_READ in RC and R0.
2489 * @retval VINF_IOM_R3_MMIO_READ_WRITE in RC and R0.
2490 *
2491 * @retval VINF_PATM_CHECK_PATCH_PAGE in RC only.
2492 *
2493 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in RC and R0 for access origins that
2494 * haven't been cleared for strict status codes yet.
2495 *
2496 * @param pVM The cross context VM structure.
2497 * @param GCPhys Physical address start reading from.
2498 * @param pvBuf Where to put the read bits.
2499 * @param cbRead How many bytes to read.
2500 * @param enmOrigin The origin of this call.
2501 */
2502VMMDECL(VBOXSTRICTRC) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
2503{
2504 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
2505 LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
2506
2507 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysRead));
2508 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysReadBytes), cbRead);
2509
2510 pgmLock(pVM);
2511
2512 /*
2513 * Copy loop on ram ranges.
2514 */
2515 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2516 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2517 for (;;)
2518 {
2519 /* Inside range or not? */
2520 if (pRam && GCPhys >= pRam->GCPhys)
2521 {
2522 /*
2523 * Must work our way thru this page by page.
2524 */
2525 RTGCPHYS off = GCPhys - pRam->GCPhys;
2526 while (off < pRam->cb)
2527 {
2528 unsigned iPage = off >> PAGE_SHIFT;
2529 PPGMPAGE pPage = &pRam->aPages[iPage];
2530 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2531 if (cb > cbRead)
2532 cb = cbRead;
2533
2534 /*
2535 * Normal page? Get the pointer to it.
2536 */
2537 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
2538 && !PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
2539 {
2540 /*
2541 * Get the pointer to the page.
2542 */
2543 PGMPAGEMAPLOCK PgMpLck;
2544 const void *pvSrc;
2545 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
2546 if (RT_SUCCESS(rc))
2547 {
2548 memcpy(pvBuf, pvSrc, cb);
2549 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2550 }
2551 else
2552 {
2553 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
2554 pRam->GCPhys + off, pPage, rc));
2555 memset(pvBuf, 0xff, cb);
2556 }
2557 }
2558 /*
2559 * Have ALL/MMIO access handlers.
2560 */
2561 else
2562 {
2563 VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
2564 if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
2565 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
2566 else
2567 {
2568 memset(pvBuf, 0xff, cb);
2569 pgmUnlock(pVM);
2570 return rcStrict2;
2571 }
2572 }
2573
2574 /* next page */
2575 if (cb >= cbRead)
2576 {
2577 pgmUnlock(pVM);
2578 return rcStrict;
2579 }
2580 cbRead -= cb;
2581 off += cb;
2582 pvBuf = (char *)pvBuf + cb;
2583 } /* walk pages in ram range. */
2584
2585 GCPhys = pRam->GCPhysLast + 1;
2586 }
2587 else
2588 {
2589 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
2590
2591 /*
2592 * Unassigned address space.
2593 */
2594 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
2595 if (cb >= cbRead)
2596 {
2597 memset(pvBuf, 0xff, cbRead);
2598 break;
2599 }
2600 memset(pvBuf, 0xff, cb);
2601
2602 cbRead -= cb;
2603 pvBuf = (char *)pvBuf + cb;
2604 GCPhys += cb;
2605 }
2606
2607 /* Advance range if necessary. */
2608 while (pRam && GCPhys > pRam->GCPhysLast)
2609 pRam = pRam->CTX_SUFF(pNext);
2610 } /* Ram range walk */
2611
2612 pgmUnlock(pVM);
2613 return rcStrict;
2614}
2615
2616
2617/**
2618 * Deals with writing to a page with one or more WRITE or ALL access handlers.
2619 *
2620 * @returns Strict VBox status code in ring-0 and raw-mode, ignorable in ring-3.
2621 * See PGM_HANDLER_PHYS_IS_VALID_STATUS and
2622 * PGM_HANDLER_VIRT_IS_VALID_STATUS for details.
2623 *
2624 * @param pVM The cross context VM structure.
2625 * @param pPage The page descriptor.
2626 * @param GCPhys The physical address to start writing at.
2627 * @param pvBuf What to write.
2628 * @param cbWrite How much to write - less or equal to a page.
2629 * @param enmOrigin The origin of this call.
2630 */
2631static VBOXSTRICTRC pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite,
2632 PGMACCESSORIGIN enmOrigin)
2633{
2634 PGMPAGEMAPLOCK PgMpLck;
2635 void *pvDst = NULL;
2636 VBOXSTRICTRC rcStrict;
2637
2638 /*
2639 * Give priority to physical handlers (like #PF does).
2640 *
2641 * Hope for a lonely physical handler first that covers the whole
2642 * write area. This should be a pretty frequent case with MMIO and
2643 * the heavy usage of full page handlers in the page pool.
2644 */
2645 PVMCPU pVCpu = VMMGetCpu(pVM);
2646 if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
2647 || PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage) /* screw virtual handlers on MMIO pages */)
2648 {
2649 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
2650 if (pCur)
2651 {
2652 Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
2653#ifndef IN_RING3
2654 if (enmOrigin != PGMACCESSORIGIN_IEM)
2655 /* Cannot reliably handle informational status codes in this context */
2656 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2657#endif
2658 size_t cbRange = pCur->Core.KeyLast - GCPhys + 1;
2659 if (cbRange > cbWrite)
2660 cbRange = cbWrite;
2661
2662 Assert(PGMPHYSHANDLER_GET_TYPE(pVM, pCur)->CTX_SUFF(pfnHandler));
2663 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n",
2664 GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
2665 if (!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
2666 rcStrict = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2667 else
2668 rcStrict = VINF_SUCCESS;
2669 if (RT_SUCCESS(rcStrict))
2670 {
2671 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pCur)->CTX_SUFF(pfnHandler);
2672 void *pvUser = pCur->CTX_SUFF(pvUser);
2673 STAM_PROFILE_START(&pCur->Stat, h);
2674
2675 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2676 PGM_LOCK_ASSERT_OWNER(pVM);
2677 pgmUnlock(pVM);
2678 rcStrict = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2679 pgmLock(pVM);
2680
2681#ifdef VBOX_WITH_STATISTICS
2682 pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
2683 if (pCur)
2684 STAM_PROFILE_STOP(&pCur->Stat, h);
2685#else
2686 pCur = NULL; /* might not be valid anymore. */
2687#endif
2688 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2689 {
2690 if (pvDst)
2691 memcpy(pvDst, pvBuf, cbRange);
2692 rcStrict = VINF_SUCCESS;
2693 }
2694 else
2695 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict, true),
2696 ("rcStrict=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2697 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pCur ? R3STRING(pCur->pszDesc) : ""));
2698 }
2699 else
2700 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2701 GCPhys, pPage, VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
2702 if (RT_LIKELY(cbRange == cbWrite) || !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2703 {
2704 if (pvDst)
2705 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2706 return rcStrict;
2707 }
2708
2709 /* more fun to be had below */
2710 cbWrite -= cbRange;
2711 GCPhys += cbRange;
2712 pvBuf = (uint8_t *)pvBuf + cbRange;
2713 pvDst = (uint8_t *)pvDst + cbRange;
2714 }
2715 else /* The handler is somewhere else in the page, deal with it below. */
2716 rcStrict = VINF_SUCCESS;
2717 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)); /* MMIO handlers are all PAGE_SIZEed! */
2718 }
2719#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2720 /*
2721 * A virtual handler without any interfering physical handlers.
2722 * Hopefully it'll cover the whole write.
2723 */
2724 else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
2725 {
2726 unsigned iPage;
2727 PPGMVIRTHANDLER pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iPage);
2728 if (pVirt)
2729 {
2730# ifndef IN_RING3
2731 if (enmOrigin != PGMACCESSORIGIN_IEM)
2732 /* Cannot reliably handle informational status codes in this context */
2733 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2734# endif
2735 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2736 size_t cbRange = (PAGE_OFFSET_MASK & pVirt->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1;
2737 if (cbRange > cbWrite)
2738 cbRange = cbWrite;
2739
2740 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] virt %s\n",
2741 GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2742 rcStrict = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2743 if (RT_SUCCESS(rcStrict))
2744 {
2745 Assert(pVirtType->CTX_SUFF(pfnHandler));
2746 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2747 + (iPage << PAGE_SHIFT)
2748 + (GCPhys & PAGE_OFFSET_MASK);
2749
2750 STAM_PROFILE_START(&pVirt->Stat, h);
2751 rcStrict = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange,
2752 PGMACCESSTYPE_WRITE, enmOrigin, pVirt->CTX_SUFF(pvUser));
2753 STAM_PROFILE_STOP(&pVirt->Stat, h);
2754 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2755 {
2756 memcpy(pvDst, pvBuf, cbRange);
2757 rcStrict = VINF_SUCCESS;
2758 }
2759 else
2760 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict, true),
2761 ("rcStrict=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2762 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, R3STRING(pVirt->pszDesc)));
2763 }
2764 else
2765 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2766 GCPhys, pPage, VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
2767 if (RT_LIKELY(cbRange == cbWrite) || !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2768 {
2769 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2770 return rcStrict;
2771 }
2772
2773 /* more fun to be had below */
2774 cbWrite -= cbRange;
2775 GCPhys += cbRange;
2776 pvBuf = (uint8_t *)pvBuf + cbRange;
2777 pvDst = (uint8_t *)pvDst + cbRange;
2778 }
2779 else /* The handler is somewhere else in the page, deal with it below. */
2780 rcStrict = VINF_SUCCESS;
2781 }
2782#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
2783 else
2784 rcStrict = VINF_SUCCESS;
2785
2786
2787 /*
2788 * Deal with all the odd ends.
2789 */
2790 Assert(rcStrict != VINF_PGM_HANDLER_DO_DEFAULT);
2791
2792 /* We need a writable destination page. */
2793 if (!pvDst)
2794 {
2795 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2796 AssertLogRelMsgReturn(RT_SUCCESS(rc2),
2797 ("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", GCPhys, pPage, rc2),
2798 rc2);
2799 }
2800
2801 /* The loop state (big + ugly). */
2802#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2803 unsigned iVirtPage = 0;
2804 PPGMVIRTHANDLER pVirt = NULL;
2805 uint32_t offVirt = PAGE_SIZE;
2806 uint32_t offVirtLast = PAGE_SIZE;
2807 bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage);
2808#else
2809 uint32_t const offVirt = UINT32_MAX;
2810#endif
2811
2812 PPGMPHYSHANDLER pPhys = NULL;
2813 uint32_t offPhys = PAGE_SIZE;
2814 uint32_t offPhysLast = PAGE_SIZE;
2815 bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage);
2816
2817 /* The loop. */
2818 for (;;)
2819 {
2820#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2821 /*
2822 * Find the closest handler at or above GCPhys.
2823 */
2824 if (fMoreVirt && !pVirt)
2825 {
2826 pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iVirtPage);
2827 if (pVirt)
2828 {
2829 offVirt = 0;
2830 offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2831 }
2832 else
2833 {
2834 PPGMPHYS2VIRTHANDLER pVirtPhys;
2835 pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
2836 GCPhys, true /* fAbove */);
2837 if ( pVirtPhys
2838 && (pVirtPhys->Core.Key >> PAGE_SHIFT) == (GCPhys >> PAGE_SHIFT))
2839 {
2840 /* ASSUME that pVirtPhys only covers one page. */
2841 Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT));
2842 Assert(pVirtPhys->Core.Key > GCPhys);
2843
2844 pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler);
2845 iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0);
2846 offVirt = (pVirtPhys->Core.Key & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2847 offVirtLast = (pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2848 }
2849 else
2850 {
2851 pVirt = NULL;
2852 fMoreVirt = false;
2853 offVirt = offVirtLast = PAGE_SIZE;
2854 }
2855 }
2856 }
2857#endif
2858
2859 if (fMorePhys && !pPhys)
2860 {
2861 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2862 if (pPhys)
2863 {
2864 offPhys = 0;
2865 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2866 }
2867 else
2868 {
2869 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers,
2870 GCPhys, true /* fAbove */);
2871 if ( pPhys
2872 && pPhys->Core.Key <= GCPhys + (cbWrite - 1))
2873 {
2874 offPhys = pPhys->Core.Key - GCPhys;
2875 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2876 }
2877 else
2878 {
2879 pPhys = NULL;
2880 fMorePhys = false;
2881 offPhys = offPhysLast = PAGE_SIZE;
2882 }
2883 }
2884 }
2885
2886 /*
2887 * Handle access to space without handlers (that's easy).
2888 */
2889 VBOXSTRICTRC rcStrict2 = VINF_PGM_HANDLER_DO_DEFAULT;
2890 uint32_t cbRange = (uint32_t)cbWrite;
2891 if (offPhys != 0 && offVirt != 0)
2892 {
2893 if (cbRange > offPhys)
2894 cbRange = offPhys;
2895 if (cbRange > offVirt)
2896 cbRange = offVirt;
2897 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] miss\n", GCPhys, cbRange, pPage));
2898 }
2899 /*
2900 * Physical handler.
2901 */
2902 else if (!offPhys && offVirt)
2903 {
2904#ifndef IN_RING3
2905 if (enmOrigin != PGMACCESSORIGIN_IEM)
2906 /* Cannot reliably handle informational status codes in this context */
2907 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2908#endif
2909 if (cbRange > offPhysLast + 1)
2910 cbRange = offPhysLast + 1;
2911 if (cbRange > offVirt)
2912 cbRange = offVirt;
2913
2914 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler);
2915 void *pvUser = pPhys->CTX_SUFF(pvUser);
2916
2917 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc) ));
2918 STAM_PROFILE_START(&pPhys->Stat, h);
2919
2920 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2921 PGM_LOCK_ASSERT_OWNER(pVM);
2922 pgmUnlock(pVM);
2923 rcStrict2 = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2924 pgmLock(pVM);
2925
2926#ifdef VBOX_WITH_STATISTICS
2927 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2928 if (pPhys)
2929 STAM_PROFILE_STOP(&pPhys->Stat, h);
2930#else
2931 pPhys = NULL; /* might not be valid anymore. */
2932#endif
2933 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict2, true),
2934 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
2935 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
2936 }
2937#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2938 /*
2939 * Virtual handler.
2940 */
2941 else if (offPhys && !offVirt)
2942 {
2943# ifndef IN_RING3
2944 if (enmOrigin != PGMACCESSORIGIN_IEM)
2945 /* Cannot reliably handle informational status codes in this context */
2946 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2947# endif
2948 if (cbRange > offVirtLast + 1)
2949 cbRange = offVirtLast + 1;
2950 if (cbRange > offPhys)
2951 cbRange = offPhys;
2952
2953 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2954 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2955 Assert(pVirtType->CTX_SUFF(pfnHandler));
2956 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2957 + (iVirtPage << PAGE_SHIFT)
2958 + (GCPhys & PAGE_OFFSET_MASK);
2959 STAM_PROFILE_START(&pVirt->Stat, h);
2960 rcStrict2 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE,
2961 enmOrigin, pVirt->CTX_SUFF(pvUser));
2962 STAM_PROFILE_STOP(&pVirt->Stat, h);
2963 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict2, true),
2964 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
2965 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
2966 pVirt = NULL;
2967 }
2968 /*
2969 * Both... give the physical one priority.
2970 */
2971 else
2972 {
2973# ifndef IN_RING3
2974 if (enmOrigin != PGMACCESSORIGIN_IEM)
2975 /* Cannot reliably handle informational status codes in this context */
2976 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2977# endif
2978 Assert(!offPhys && !offVirt);
2979 if (cbRange > offVirtLast + 1)
2980 cbRange = offVirtLast + 1;
2981 if (cbRange > offPhysLast + 1)
2982 cbRange = offPhysLast + 1;
2983
2984 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2985 if (pVirtType->pfnHandlerR3)
2986 Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange));
2987 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc), R3STRING(pVirt->pszDesc) ));
2988
2989 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler);
2990 void *pvUser = pPhys->CTX_SUFF(pvUser);
2991 STAM_PROFILE_START(&pPhys->Stat, h);
2992
2993 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2994 PGM_LOCK_ASSERT_OWNER(pVM);
2995 pgmUnlock(pVM);
2996 rcStrict2 = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2997 pgmLock(pVM);
2998
2999# ifdef VBOX_WITH_STATISTICS
3000 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
3001 if (pPhys)
3002 STAM_PROFILE_STOP(&pPhys->Stat, h);
3003# else
3004 pPhys = NULL; /* might not be valid anymore. */
3005# endif
3006 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict2, true),
3007 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
3008 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
3009 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT || PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
3010 {
3011 Assert(pVirtType->CTX_SUFF(pfnHandler));
3012 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
3013 + (iVirtPage << PAGE_SHIFT)
3014 + (GCPhys & PAGE_OFFSET_MASK);
3015 pvUser = pVirt->CTX_SUFF(pvUser);
3016
3017 STAM_PROFILE_START(&pVirt->Stat, h2);
3018 VBOXSTRICTRC rcStrict3 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange,
3019 PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
3020 STAM_PROFILE_STOP(&pVirt->Stat, h2);
3021
3022 /* Merge the 3rd status into the 2nd. */
3023 if (rcStrict3 == VINF_SUCCESS)
3024 {
3025 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
3026 rcStrict2 = VINF_SUCCESS;
3027 }
3028 else if (rcStrict3 != VINF_PGM_HANDLER_DO_DEFAULT)
3029 {
3030 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict3, true),
3031 ("rcStrict3=%Rrc (rcStrict2=%Rrc) (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n",
3032 VBOXSTRICTRC_VAL(rcStrict3), VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict),
3033 GCPhys, pPage, R3STRING(pVirt->pszDesc) ));
3034 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
3035 rcStrict2 = rcStrict3;
3036 else if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict3))
3037 rcStrict2 = rcStrict3;
3038 else
3039 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict2, rcStrict3);
3040 }
3041 }
3042 pPhys = NULL;
3043 pVirt = NULL;
3044 }
3045#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
3046
3047
3048 /*
3049 * Execute the default action and merge the status codes.
3050 */
3051 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
3052 {
3053 memcpy(pvDst, pvBuf, cbRange);
3054 rcStrict2 = VINF_SUCCESS;
3055 }
3056 else if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
3057 {
3058 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3059 return rcStrict2;
3060 }
3061 else
3062 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
3063
3064 /*
3065 * Advance if we've got more stuff to do.
3066 */
3067 if (cbRange >= cbWrite)
3068 {
3069 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3070 return rcStrict;
3071 }
3072
3073
3074 cbWrite -= cbRange;
3075 GCPhys += cbRange;
3076 pvBuf = (uint8_t *)pvBuf + cbRange;
3077 pvDst = (uint8_t *)pvDst + cbRange;
3078
3079 offPhys -= cbRange;
3080 offPhysLast -= cbRange;
3081#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
3082 offVirt -= cbRange;
3083 offVirtLast -= cbRange;
3084#endif
3085 }
3086}
3087
3088
3089/**
3090 * Write to physical memory.
3091 *
3092 * This API respects access handlers and MMIO. Use PGMPhysSimpleWriteGCPhys() if you
3093 * want to ignore those.
3094 *
3095 * @returns Strict VBox status code in raw-mode and ring-0, normal VBox status
3096 * code in ring-3. Use PGM_PHYS_RW_IS_SUCCESS to check.
3097 * @retval VINF_SUCCESS in all context - write completed.
3098 *
3099 * @retval VINF_EM_OFF in RC and R0 - write completed.
3100 * @retval VINF_EM_SUSPEND in RC and R0 - write completed.
3101 * @retval VINF_EM_RESET in RC and R0 - write completed.
3102 * @retval VINF_EM_HALT in RC and R0 - write completed.
3103 * @retval VINF_SELM_SYNC_GDT in RC only - write completed.
3104 *
3105 * @retval VINF_EM_DBG_STOP in RC and R0 - write completed.
3106 * @retval VINF_EM_DBG_BREAKPOINT in RC and R0 - write completed.
3107 * @retval VINF_EM_RAW_EMULATE_INSTR in RC and R0 only.
3108 *
3109 * @retval VINF_IOM_R3_MMIO_WRITE in RC and R0.
3110 * @retval VINF_IOM_R3_MMIO_READ_WRITE in RC and R0.
3111 * @retval VINF_IOM_R3_MMIO_COMMIT_WRITE in RC and R0.
3112 *
3113 * @retval VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT in RC only - write completed.
3114 * @retval VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT in RC only.
3115 * @retval VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT in RC only.
3116 * @retval VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT in RC only.
3117 * @retval VINF_CSAM_PENDING_ACTION in RC only.
3118 * @retval VINF_PATM_CHECK_PATCH_PAGE in RC only.
3119 *
3120 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in RC and R0 for access origins that
3121 * haven't been cleared for strict status codes yet.
3122 *
3123 *
3124 * @param pVM The cross context VM structure.
3125 * @param GCPhys Physical address to write to.
3126 * @param pvBuf What to write.
3127 * @param cbWrite How many bytes to write.
3128 * @param enmOrigin Who is calling.
3129 */
3130VMMDECL(VBOXSTRICTRC) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
3131{
3132 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()! enmOrigin=%d\n", enmOrigin));
3133 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
3134 LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
3135
3136 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWrite));
3137 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWriteBytes), cbWrite);
3138
3139 pgmLock(pVM);
3140
3141 /*
3142 * Copy loop on ram ranges.
3143 */
3144 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3145 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
3146 for (;;)
3147 {
3148 /* Inside range or not? */
3149 if (pRam && GCPhys >= pRam->GCPhys)
3150 {
3151 /*
3152 * Must work our way thru this page by page.
3153 */
3154 RTGCPTR off = GCPhys - pRam->GCPhys;
3155 while (off < pRam->cb)
3156 {
3157 RTGCPTR iPage = off >> PAGE_SHIFT;
3158 PPGMPAGE pPage = &pRam->aPages[iPage];
3159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
3160 if (cb > cbWrite)
3161 cb = cbWrite;
3162
3163 /*
3164 * Normal page? Get the pointer to it.
3165 */
3166 if ( !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
3167 && !PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
3168 {
3169 PGMPAGEMAPLOCK PgMpLck;
3170 void *pvDst;
3171 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
3172 if (RT_SUCCESS(rc))
3173 {
3174 Assert(!PGM_PAGE_IS_BALLOONED(pPage));
3175 memcpy(pvDst, pvBuf, cb);
3176 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3177 }
3178 /* Ignore writes to ballooned pages. */
3179 else if (!PGM_PAGE_IS_BALLOONED(pPage))
3180 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
3181 pRam->GCPhys + off, pPage, rc));
3182 }
3183 /*
3184 * Active WRITE or ALL access handlers.
3185 */
3186 else
3187 {
3188 VBOXSTRICTRC rcStrict2 = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
3189 if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
3190 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
3191 else
3192 {
3193 pgmUnlock(pVM);
3194 return rcStrict2;
3195 }
3196 }
3197
3198 /* next page */
3199 if (cb >= cbWrite)
3200 {
3201 pgmUnlock(pVM);
3202 return rcStrict;
3203 }
3204
3205 cbWrite -= cb;
3206 off += cb;
3207 pvBuf = (const char *)pvBuf + cb;
3208 } /* walk pages in ram range */
3209
3210 GCPhys = pRam->GCPhysLast + 1;
3211 }
3212 else
3213 {
3214 /*
3215 * Unassigned address space, skip it.
3216 */
3217 if (!pRam)
3218 break;
3219 size_t cb = pRam->GCPhys - GCPhys;
3220 if (cb >= cbWrite)
3221 break;
3222 cbWrite -= cb;
3223 pvBuf = (const char *)pvBuf + cb;
3224 GCPhys += cb;
3225 }
3226
3227 /* Advance range if necessary. */
3228 while (pRam && GCPhys > pRam->GCPhysLast)
3229 pRam = pRam->CTX_SUFF(pNext);
3230 } /* Ram range walk */
3231
3232 pgmUnlock(pVM);
3233 return rcStrict;
3234}
3235
3236
3237/**
3238 * Read from guest physical memory by GC physical address, bypassing
3239 * MMIO and access handlers.
3240 *
3241 * @returns VBox status code.
3242 * @param pVM The cross context VM structure.
3243 * @param pvDst The destination address.
3244 * @param GCPhysSrc The source address (GC physical address).
3245 * @param cb The number of bytes to read.
3246 */
3247VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
3248{
3249 /*
3250 * Treat the first page as a special case.
3251 */
3252 if (!cb)
3253 return VINF_SUCCESS;
3254
3255 /* map the 1st page */
3256 void const *pvSrc;
3257 PGMPAGEMAPLOCK Lock;
3258 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
3259 if (RT_FAILURE(rc))
3260 return rc;
3261
3262 /* optimize for the case where access is completely within the first page. */
3263 size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
3264 if (RT_LIKELY(cb <= cbPage))
3265 {
3266 memcpy(pvDst, pvSrc, cb);
3267 PGMPhysReleasePageMappingLock(pVM, &Lock);
3268 return VINF_SUCCESS;
3269 }
3270
3271 /* copy to the end of the page. */
3272 memcpy(pvDst, pvSrc, cbPage);
3273 PGMPhysReleasePageMappingLock(pVM, &Lock);
3274 GCPhysSrc += cbPage;
3275 pvDst = (uint8_t *)pvDst + cbPage;
3276 cb -= cbPage;
3277
3278 /*
3279 * Page by page.
3280 */
3281 for (;;)
3282 {
3283 /* map the page */
3284 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
3285 if (RT_FAILURE(rc))
3286 return rc;
3287
3288 /* last page? */
3289 if (cb <= PAGE_SIZE)
3290 {
3291 memcpy(pvDst, pvSrc, cb);
3292 PGMPhysReleasePageMappingLock(pVM, &Lock);
3293 return VINF_SUCCESS;
3294 }
3295
3296 /* copy the entire page and advance */
3297 memcpy(pvDst, pvSrc, PAGE_SIZE);
3298 PGMPhysReleasePageMappingLock(pVM, &Lock);
3299 GCPhysSrc += PAGE_SIZE;
3300 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
3301 cb -= PAGE_SIZE;
3302 }
3303 /* won't ever get here. */
3304}
3305
3306
3307/**
3308 * Write to guest physical memory referenced by GC pointer.
3309 * Write memory to GC physical address in guest physical memory.
3310 *
3311 * This will bypass MMIO and access handlers.
3312 *
3313 * @returns VBox status code.
3314 * @param pVM The cross context VM structure.
3315 * @param GCPhysDst The GC physical address of the destination.
3316 * @param pvSrc The source buffer.
3317 * @param cb The number of bytes to write.
3318 */
3319VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
3320{
3321 LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
3322
3323 /*
3324 * Treat the first page as a special case.
3325 */
3326 if (!cb)
3327 return VINF_SUCCESS;
3328
3329 /* map the 1st page */
3330 void *pvDst;
3331 PGMPAGEMAPLOCK Lock;
3332 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
3333 if (RT_FAILURE(rc))
3334 return rc;
3335
3336 /* optimize for the case where access is completely within the first page. */
3337 size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
3338 if (RT_LIKELY(cb <= cbPage))
3339 {
3340 memcpy(pvDst, pvSrc, cb);
3341 PGMPhysReleasePageMappingLock(pVM, &Lock);
3342 return VINF_SUCCESS;
3343 }
3344
3345 /* copy to the end of the page. */
3346 memcpy(pvDst, pvSrc, cbPage);
3347 PGMPhysReleasePageMappingLock(pVM, &Lock);
3348 GCPhysDst += cbPage;
3349 pvSrc = (const uint8_t *)pvSrc + cbPage;
3350 cb -= cbPage;
3351
3352 /*
3353 * Page by page.
3354 */
3355 for (;;)
3356 {
3357 /* map the page */
3358 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
3359 if (RT_FAILURE(rc))
3360 return rc;
3361
3362 /* last page? */
3363 if (cb <= PAGE_SIZE)
3364 {
3365 memcpy(pvDst, pvSrc, cb);
3366 PGMPhysReleasePageMappingLock(pVM, &Lock);
3367 return VINF_SUCCESS;
3368 }
3369
3370 /* copy the entire page and advance */
3371 memcpy(pvDst, pvSrc, PAGE_SIZE);
3372 PGMPhysReleasePageMappingLock(pVM, &Lock);
3373 GCPhysDst += PAGE_SIZE;
3374 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3375 cb -= PAGE_SIZE;
3376 }
3377 /* won't ever get here. */
3378}
3379
3380
3381/**
3382 * Read from guest physical memory referenced by GC pointer.
3383 *
3384 * This function uses the current CR3/CR0/CR4 of the guest and will
3385 * bypass access handlers and not set any accessed bits.
3386 *
3387 * @returns VBox status code.
3388 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3389 * @param pvDst The destination address.
3390 * @param GCPtrSrc The source address (GC pointer).
3391 * @param cb The number of bytes to read.
3392 */
3393VMMDECL(int) PGMPhysSimpleReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
3394{
3395 PVM pVM = pVCpu->CTX_SUFF(pVM);
3396/** @todo fix the macro / state handling: VMCPU_ASSERT_EMT_OR_GURU(pVCpu); */
3397
3398 /*
3399 * Treat the first page as a special case.
3400 */
3401 if (!cb)
3402 return VINF_SUCCESS;
3403
3404 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleRead));
3405 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleReadBytes), cb);
3406
3407 /* Take the PGM lock here, because many called functions take the lock for a very short period. That's counter-productive
3408 * when many VCPUs are fighting for the lock.
3409 */
3410 pgmLock(pVM);
3411
3412 /* map the 1st page */
3413 void const *pvSrc;
3414 PGMPAGEMAPLOCK Lock;
3415 int rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
3416 if (RT_FAILURE(rc))
3417 {
3418 pgmUnlock(pVM);
3419 return rc;
3420 }
3421
3422 /* optimize for the case where access is completely within the first page. */
3423 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
3424 if (RT_LIKELY(cb <= cbPage))
3425 {
3426 memcpy(pvDst, pvSrc, cb);
3427 PGMPhysReleasePageMappingLock(pVM, &Lock);
3428 pgmUnlock(pVM);
3429 return VINF_SUCCESS;
3430 }
3431
3432 /* copy to the end of the page. */
3433 memcpy(pvDst, pvSrc, cbPage);
3434 PGMPhysReleasePageMappingLock(pVM, &Lock);
3435 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
3436 pvDst = (uint8_t *)pvDst + cbPage;
3437 cb -= cbPage;
3438
3439 /*
3440 * Page by page.
3441 */
3442 for (;;)
3443 {
3444 /* map the page */
3445 rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
3446 if (RT_FAILURE(rc))
3447 {
3448 pgmUnlock(pVM);
3449 return rc;
3450 }
3451
3452 /* last page? */
3453 if (cb <= PAGE_SIZE)
3454 {
3455 memcpy(pvDst, pvSrc, cb);
3456 PGMPhysReleasePageMappingLock(pVM, &Lock);
3457 pgmUnlock(pVM);
3458 return VINF_SUCCESS;
3459 }
3460
3461 /* copy the entire page and advance */
3462 memcpy(pvDst, pvSrc, PAGE_SIZE);
3463 PGMPhysReleasePageMappingLock(pVM, &Lock);
3464 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
3465 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
3466 cb -= PAGE_SIZE;
3467 }
3468 /* won't ever get here. */
3469}
3470
3471
3472/**
3473 * Write to guest physical memory referenced by GC pointer.
3474 *
3475 * This function uses the current CR3/CR0/CR4 of the guest and will
3476 * bypass access handlers and not set dirty or accessed bits.
3477 *
3478 * @returns VBox status code.
3479 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3480 * @param GCPtrDst The destination address (GC pointer).
3481 * @param pvSrc The source address.
3482 * @param cb The number of bytes to write.
3483 */
3484VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
3485{
3486 PVM pVM = pVCpu->CTX_SUFF(pVM);
3487 VMCPU_ASSERT_EMT(pVCpu);
3488
3489 /*
3490 * Treat the first page as a special case.
3491 */
3492 if (!cb)
3493 return VINF_SUCCESS;
3494
3495 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWrite));
3496 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWriteBytes), cb);
3497
3498 /* map the 1st page */
3499 void *pvDst;
3500 PGMPAGEMAPLOCK Lock;
3501 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3502 if (RT_FAILURE(rc))
3503 return rc;
3504
3505 /* optimize for the case where access is completely within the first page. */
3506 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3507 if (RT_LIKELY(cb <= cbPage))
3508 {
3509 memcpy(pvDst, pvSrc, cb);
3510 PGMPhysReleasePageMappingLock(pVM, &Lock);
3511 return VINF_SUCCESS;
3512 }
3513
3514 /* copy to the end of the page. */
3515 memcpy(pvDst, pvSrc, cbPage);
3516 PGMPhysReleasePageMappingLock(pVM, &Lock);
3517 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
3518 pvSrc = (const uint8_t *)pvSrc + cbPage;
3519 cb -= cbPage;
3520
3521 /*
3522 * Page by page.
3523 */
3524 for (;;)
3525 {
3526 /* map the page */
3527 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3528 if (RT_FAILURE(rc))
3529 return rc;
3530
3531 /* last page? */
3532 if (cb <= PAGE_SIZE)
3533 {
3534 memcpy(pvDst, pvSrc, cb);
3535 PGMPhysReleasePageMappingLock(pVM, &Lock);
3536 return VINF_SUCCESS;
3537 }
3538
3539 /* copy the entire page and advance */
3540 memcpy(pvDst, pvSrc, PAGE_SIZE);
3541 PGMPhysReleasePageMappingLock(pVM, &Lock);
3542 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
3543 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3544 cb -= PAGE_SIZE;
3545 }
3546 /* won't ever get here. */
3547}
3548
3549
3550/**
3551 * Write to guest physical memory referenced by GC pointer and update the PTE.
3552 *
3553 * This function uses the current CR3/CR0/CR4 of the guest and will
3554 * bypass access handlers but will set any dirty and accessed bits in the PTE.
3555 *
3556 * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
3557 *
3558 * @returns VBox status code.
3559 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3560 * @param GCPtrDst The destination address (GC pointer).
3561 * @param pvSrc The source address.
3562 * @param cb The number of bytes to write.
3563 */
3564VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
3565{
3566 PVM pVM = pVCpu->CTX_SUFF(pVM);
3567 VMCPU_ASSERT_EMT(pVCpu);
3568
3569 /*
3570 * Treat the first page as a special case.
3571 * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
3572 */
3573 if (!cb)
3574 return VINF_SUCCESS;
3575
3576 /* map the 1st page */
3577 void *pvDst;
3578 PGMPAGEMAPLOCK Lock;
3579 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3580 if (RT_FAILURE(rc))
3581 return rc;
3582
3583 /* optimize for the case where access is completely within the first page. */
3584 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3585 if (RT_LIKELY(cb <= cbPage))
3586 {
3587 memcpy(pvDst, pvSrc, cb);
3588 PGMPhysReleasePageMappingLock(pVM, &Lock);
3589 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3590 return VINF_SUCCESS;
3591 }
3592
3593 /* copy to the end of the page. */
3594 memcpy(pvDst, pvSrc, cbPage);
3595 PGMPhysReleasePageMappingLock(pVM, &Lock);
3596 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3597 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
3598 pvSrc = (const uint8_t *)pvSrc + cbPage;
3599 cb -= cbPage;
3600
3601 /*
3602 * Page by page.
3603 */
3604 for (;;)
3605 {
3606 /* map the page */
3607 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3608 if (RT_FAILURE(rc))
3609 return rc;
3610
3611 /* last page? */
3612 if (cb <= PAGE_SIZE)
3613 {
3614 memcpy(pvDst, pvSrc, cb);
3615 PGMPhysReleasePageMappingLock(pVM, &Lock);
3616 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3617 return VINF_SUCCESS;
3618 }
3619
3620 /* copy the entire page and advance */
3621 memcpy(pvDst, pvSrc, PAGE_SIZE);
3622 PGMPhysReleasePageMappingLock(pVM, &Lock);
3623 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3624 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
3625 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3626 cb -= PAGE_SIZE;
3627 }
3628 /* won't ever get here. */
3629}
3630
3631
3632/**
3633 * Read from guest physical memory referenced by GC pointer.
3634 *
3635 * This function uses the current CR3/CR0/CR4 of the guest and will
3636 * respect access handlers and set accessed bits.
3637 *
3638 * @returns Strict VBox status, see PGMPhysRead for details.
3639 * @retval VERR_PAGE_TABLE_NOT_PRESENT if there is no page mapped at the
3640 * specified virtual address.
3641 *
3642 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3643 * @param pvDst The destination address.
3644 * @param GCPtrSrc The source address (GC pointer).
3645 * @param cb The number of bytes to read.
3646 * @param enmOrigin Who is calling.
3647 * @thread EMT(pVCpu)
3648 */
3649VMMDECL(VBOXSTRICTRC) PGMPhysReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb, PGMACCESSORIGIN enmOrigin)
3650{
3651 RTGCPHYS GCPhys;
3652 uint64_t fFlags;
3653 int rc;
3654 PVM pVM = pVCpu->CTX_SUFF(pVM);
3655 VMCPU_ASSERT_EMT(pVCpu);
3656
3657 /*
3658 * Anything to do?
3659 */
3660 if (!cb)
3661 return VINF_SUCCESS;
3662
3663 LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
3664
3665 /*
3666 * Optimize reads within a single page.
3667 */
3668 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
3669 {
3670 /* Convert virtual to physical address + flags */
3671 rc = PGMGstGetPage(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
3672 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
3673 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
3674
3675 /* mark the guest page as accessed. */
3676 if (!(fFlags & X86_PTE_A))
3677 {
3678 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
3679 AssertRC(rc);
3680 }
3681
3682 return PGMPhysRead(pVM, GCPhys, pvDst, cb, enmOrigin);
3683 }
3684
3685 /*
3686 * Page by page.
3687 */
3688 for (;;)
3689 {
3690 /* Convert virtual to physical address + flags */
3691 rc = PGMGstGetPage(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
3692 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
3693 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
3694
3695 /* mark the guest page as accessed. */
3696 if (!(fFlags & X86_PTE_A))
3697 {
3698 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
3699 AssertRC(rc);
3700 }
3701
3702 /* copy */
3703 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
3704 if (cbRead < cb)
3705 {
3706 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, GCPhys, pvDst, cbRead, enmOrigin);
3707 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3708 { /* likely */ }
3709 else
3710 return rcStrict;
3711 }
3712 else /* Last page (cbRead is PAGE_SIZE, we only need cb!) */
3713 return PGMPhysRead(pVM, GCPhys, pvDst, cb, enmOrigin);
3714
3715 /* next */
3716 Assert(cb > cbRead);
3717 cb -= cbRead;
3718 pvDst = (uint8_t *)pvDst + cbRead;
3719 GCPtrSrc += cbRead;
3720 }
3721}
3722
3723
3724/**
3725 * Write to guest physical memory referenced by GC pointer.
3726 *
3727 * This function uses the current CR3/CR0/CR4 of the guest and will
3728 * respect access handlers and set dirty and accessed bits.
3729 *
3730 * @returns Strict VBox status, see PGMPhysWrite for details.
3731 * @retval VERR_PAGE_TABLE_NOT_PRESENT if there is no page mapped at the
3732 * specified virtual address.
3733 *
3734 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3735 * @param GCPtrDst The destination address (GC pointer).
3736 * @param pvSrc The source address.
3737 * @param cb The number of bytes to write.
3738 * @param enmOrigin Who is calling.
3739 */
3740VMMDECL(VBOXSTRICTRC) PGMPhysWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb, PGMACCESSORIGIN enmOrigin)
3741{
3742 RTGCPHYS GCPhys;
3743 uint64_t fFlags;
3744 int rc;
3745 PVM pVM = pVCpu->CTX_SUFF(pVM);
3746 VMCPU_ASSERT_EMT(pVCpu);
3747
3748 /*
3749 * Anything to do?
3750 */
3751 if (!cb)
3752 return VINF_SUCCESS;
3753
3754 LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
3755
3756 /*
3757 * Optimize writes within a single page.
3758 */
3759 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
3760 {
3761 /* Convert virtual to physical address + flags */
3762 rc = PGMGstGetPage(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
3763 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
3764 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
3765
3766 /* Mention when we ignore X86_PTE_RW... */
3767 if (!(fFlags & X86_PTE_RW))
3768 Log(("PGMPhysWriteGCPtr: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3769
3770 /* Mark the guest page as accessed and dirty if necessary. */
3771 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3772 {
3773 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3774 AssertRC(rc);
3775 }
3776
3777 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb, enmOrigin);
3778 }
3779
3780 /*
3781 * Page by page.
3782 */
3783 for (;;)
3784 {
3785 /* Convert virtual to physical address + flags */
3786 rc = PGMGstGetPage(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
3787 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
3788 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
3789
3790 /* Mention when we ignore X86_PTE_RW... */
3791 if (!(fFlags & X86_PTE_RW))
3792 Log(("PGMPhysWriteGCPtr: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3793
3794 /* Mark the guest page as accessed and dirty if necessary. */
3795 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3796 {
3797 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3798 AssertRC(rc);
3799 }
3800
3801 /* copy */
3802 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3803 if (cbWrite < cb)
3804 {
3805 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite, enmOrigin);
3806 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3807 { /* likely */ }
3808 else
3809 return rcStrict;
3810 }
3811 else /* Last page (cbWrite is PAGE_SIZE, we only need cb!) */
3812 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb, enmOrigin);
3813
3814 /* next */
3815 Assert(cb > cbWrite);
3816 cb -= cbWrite;
3817 pvSrc = (uint8_t *)pvSrc + cbWrite;
3818 GCPtrDst += cbWrite;
3819 }
3820}
3821
3822
3823/**
3824 * Performs a read of guest virtual memory for instruction emulation.
3825 *
3826 * This will check permissions, raise exceptions and update the access bits.
3827 *
3828 * The current implementation will bypass all access handlers. It may later be
3829 * changed to at least respect MMIO.
3830 *
3831 *
3832 * @returns VBox status code suitable to scheduling.
3833 * @retval VINF_SUCCESS if the read was performed successfully.
3834 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3835 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3836 *
3837 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3838 * @param pCtxCore The context core.
3839 * @param pvDst Where to put the bytes we've read.
3840 * @param GCPtrSrc The source address.
3841 * @param cb The number of bytes to read. Not more than a page.
3842 *
3843 * @remark This function will dynamically map physical pages in GC. This may unmap
3844 * mappings done by the caller. Be careful!
3845 */
3846VMMDECL(int) PGMPhysInterpretedRead(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
3847{
3848 PVM pVM = pVCpu->CTX_SUFF(pVM);
3849 Assert(cb <= PAGE_SIZE);
3850 VMCPU_ASSERT_EMT(pVCpu);
3851
3852/** @todo r=bird: This isn't perfect!
3853 * -# It's not checking for reserved bits being 1.
3854 * -# It's not correctly dealing with the access bit.
3855 * -# It's not respecting MMIO memory or any other access handlers.
3856 */
3857 /*
3858 * 1. Translate virtual to physical. This may fault.
3859 * 2. Map the physical address.
3860 * 3. Do the read operation.
3861 * 4. Set access bits if required.
3862 */
3863 int rc;
3864 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3865 if (cb <= cb1)
3866 {
3867 /*
3868 * Not crossing pages.
3869 */
3870 RTGCPHYS GCPhys;
3871 uint64_t fFlags;
3872 rc = PGMGstGetPage(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
3873 if (RT_SUCCESS(rc))
3874 {
3875 /** @todo we should check reserved bits ... */
3876 PGMPAGEMAPLOCK PgMpLck;
3877 void const *pvSrc;
3878 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &PgMpLck);
3879 switch (rc)
3880 {
3881 case VINF_SUCCESS:
3882 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
3883 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
3884 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3885 break;
3886 case VERR_PGM_PHYS_PAGE_RESERVED:
3887 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3888 memset(pvDst, 0xff, cb);
3889 break;
3890 default:
3891 Assert(RT_FAILURE_NP(rc));
3892 return rc;
3893 }
3894
3895 /** @todo access bit emulation isn't 100% correct. */
3896 if (!(fFlags & X86_PTE_A))
3897 {
3898 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3899 AssertRC(rc);
3900 }
3901 return VINF_SUCCESS;
3902 }
3903 }
3904 else
3905 {
3906 /*
3907 * Crosses pages.
3908 */
3909 size_t cb2 = cb - cb1;
3910 uint64_t fFlags1;
3911 RTGCPHYS GCPhys1;
3912 uint64_t fFlags2;
3913 RTGCPHYS GCPhys2;
3914 rc = PGMGstGetPage(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
3915 if (RT_SUCCESS(rc))
3916 {
3917 rc = PGMGstGetPage(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
3918 if (RT_SUCCESS(rc))
3919 {
3920 /** @todo we should check reserved bits ... */
3921 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
3922 PGMPAGEMAPLOCK PgMpLck;
3923 void const *pvSrc1;
3924 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc1, &PgMpLck);
3925 switch (rc)
3926 {
3927 case VINF_SUCCESS:
3928 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3929 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3930 break;
3931 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3932 memset(pvDst, 0xff, cb1);
3933 break;
3934 default:
3935 Assert(RT_FAILURE_NP(rc));
3936 return rc;
3937 }
3938
3939 void const *pvSrc2;
3940 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc2, &PgMpLck);
3941 switch (rc)
3942 {
3943 case VINF_SUCCESS:
3944 memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
3945 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3946 break;
3947 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3948 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
3949 break;
3950 default:
3951 Assert(RT_FAILURE_NP(rc));
3952 return rc;
3953 }
3954
3955 if (!(fFlags1 & X86_PTE_A))
3956 {
3957 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3958 AssertRC(rc);
3959 }
3960 if (!(fFlags2 & X86_PTE_A))
3961 {
3962 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3963 AssertRC(rc);
3964 }
3965 return VINF_SUCCESS;
3966 }
3967 }
3968 }
3969
3970 /*
3971 * Raise a #PF.
3972 */
3973 uint32_t uErr;
3974
3975 /* Get the current privilege level. */
3976 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
3977 switch (rc)
3978 {
3979 case VINF_SUCCESS:
3980 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3981 break;
3982
3983 case VERR_PAGE_NOT_PRESENT:
3984 case VERR_PAGE_TABLE_NOT_PRESENT:
3985 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3986 break;
3987
3988 default:
3989 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3990 return rc;
3991 }
3992 Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
3993 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3994}
3995
3996
3997/**
3998 * Performs a read of guest virtual memory for instruction emulation.
3999 *
4000 * This will check permissions, raise exceptions and update the access bits.
4001 *
4002 * The current implementation will bypass all access handlers. It may later be
4003 * changed to at least respect MMIO.
4004 *
4005 *
4006 * @returns VBox status code suitable to scheduling.
4007 * @retval VINF_SUCCESS if the read was performed successfully.
4008 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
4009 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
4010 *
4011 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4012 * @param pCtxCore The context core.
4013 * @param pvDst Where to put the bytes we've read.
4014 * @param GCPtrSrc The source address.
4015 * @param cb The number of bytes to read. Not more than a page.
4016 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
4017 * an appropriate error status will be returned (no
4018 * informational at all).
4019 *
4020 *
4021 * @remarks Takes the PGM lock.
4022 * @remarks A page fault on the 2nd page of the access will be raised without
4023 * writing the bits on the first page since we're ASSUMING that the
4024 * caller is emulating an instruction access.
4025 * @remarks This function will dynamically map physical pages in GC. This may
4026 * unmap mappings done by the caller. Be careful!
4027 */
4028VMMDECL(int) PGMPhysInterpretedReadNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb,
4029 bool fRaiseTrap)
4030{
4031 PVM pVM = pVCpu->CTX_SUFF(pVM);
4032 Assert(cb <= PAGE_SIZE);
4033 VMCPU_ASSERT_EMT(pVCpu);
4034
4035 /*
4036 * 1. Translate virtual to physical. This may fault.
4037 * 2. Map the physical address.
4038 * 3. Do the read operation.
4039 * 4. Set access bits if required.
4040 */
4041 int rc;
4042 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
4043 if (cb <= cb1)
4044 {
4045 /*
4046 * Not crossing pages.
4047 */
4048 RTGCPHYS GCPhys;
4049 uint64_t fFlags;
4050 rc = PGMGstGetPage(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
4051 if (RT_SUCCESS(rc))
4052 {
4053 if (1) /** @todo we should check reserved bits ... */
4054 {
4055 const void *pvSrc;
4056 PGMPAGEMAPLOCK Lock;
4057 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &Lock);
4058 switch (rc)
4059 {
4060 case VINF_SUCCESS:
4061 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d\n",
4062 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb));
4063 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
4064 PGMPhysReleasePageMappingLock(pVM, &Lock);
4065 break;
4066 case VERR_PGM_PHYS_PAGE_RESERVED:
4067 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4068 memset(pvDst, 0xff, cb);
4069 break;
4070 default:
4071 AssertMsgFailed(("%Rrc\n", rc));
4072 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4073 return rc;
4074 }
4075
4076 if (!(fFlags & X86_PTE_A))
4077 {
4078 /** @todo access bit emulation isn't 100% correct. */
4079 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4080 AssertRC(rc);
4081 }
4082 return VINF_SUCCESS;
4083 }
4084 }
4085 }
4086 else
4087 {
4088 /*
4089 * Crosses pages.
4090 */
4091 size_t cb2 = cb - cb1;
4092 uint64_t fFlags1;
4093 RTGCPHYS GCPhys1;
4094 uint64_t fFlags2;
4095 RTGCPHYS GCPhys2;
4096 rc = PGMGstGetPage(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
4097 if (RT_SUCCESS(rc))
4098 {
4099 rc = PGMGstGetPage(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
4100 if (RT_SUCCESS(rc))
4101 {
4102 if (1) /** @todo we should check reserved bits ... */
4103 {
4104 const void *pvSrc;
4105 PGMPAGEMAPLOCK Lock;
4106 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc, &Lock);
4107 switch (rc)
4108 {
4109 case VINF_SUCCESS:
4110 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d [2]\n",
4111 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb1));
4112 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
4113 PGMPhysReleasePageMappingLock(pVM, &Lock);
4114 break;
4115 case VERR_PGM_PHYS_PAGE_RESERVED:
4116 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4117 memset(pvDst, 0xff, cb1);
4118 break;
4119 default:
4120 AssertMsgFailed(("%Rrc\n", rc));
4121 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4122 return rc;
4123 }
4124
4125 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc, &Lock);
4126 switch (rc)
4127 {
4128 case VINF_SUCCESS:
4129 memcpy((uint8_t *)pvDst + cb1, pvSrc, cb2);
4130 PGMPhysReleasePageMappingLock(pVM, &Lock);
4131 break;
4132 case VERR_PGM_PHYS_PAGE_RESERVED:
4133 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4134 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
4135 break;
4136 default:
4137 AssertMsgFailed(("%Rrc\n", rc));
4138 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4139 return rc;
4140 }
4141
4142 if (!(fFlags1 & X86_PTE_A))
4143 {
4144 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4145 AssertRC(rc);
4146 }
4147 if (!(fFlags2 & X86_PTE_A))
4148 {
4149 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4150 AssertRC(rc);
4151 }
4152 return VINF_SUCCESS;
4153 }
4154 /* sort out which page */
4155 }
4156 else
4157 GCPtrSrc += cb1; /* fault on 2nd page */
4158 }
4159 }
4160
4161 /*
4162 * Raise a #PF if we're allowed to do that.
4163 */
4164 /* Calc the error bits. */
4165 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
4166 uint32_t uErr;
4167 switch (rc)
4168 {
4169 case VINF_SUCCESS:
4170 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
4171 rc = VERR_ACCESS_DENIED;
4172 break;
4173
4174 case VERR_PAGE_NOT_PRESENT:
4175 case VERR_PAGE_TABLE_NOT_PRESENT:
4176 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
4177 break;
4178
4179 default:
4180 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
4181 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4182 return rc;
4183 }
4184 if (fRaiseTrap)
4185 {
4186 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrSrc, cb, uErr));
4187 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
4188 }
4189 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrSrc, cb, uErr));
4190 return rc;
4191}
4192
4193
4194/**
4195 * Performs a write to guest virtual memory for instruction emulation.
4196 *
4197 * This will check permissions, raise exceptions and update the dirty and access
4198 * bits.
4199 *
4200 * @returns VBox status code suitable to scheduling.
4201 * @retval VINF_SUCCESS if the read was performed successfully.
4202 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
4203 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
4204 *
4205 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4206 * @param pCtxCore The context core.
4207 * @param GCPtrDst The destination address.
4208 * @param pvSrc What to write.
4209 * @param cb The number of bytes to write. Not more than a page.
4210 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
4211 * an appropriate error status will be returned (no
4212 * informational at all).
4213 *
4214 * @remarks Takes the PGM lock.
4215 * @remarks A page fault on the 2nd page of the access will be raised without
4216 * writing the bits on the first page since we're ASSUMING that the
4217 * caller is emulating an instruction access.
4218 * @remarks This function will dynamically map physical pages in GC. This may
4219 * unmap mappings done by the caller. Be careful!
4220 */
4221VMMDECL(int) PGMPhysInterpretedWriteNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc,
4222 size_t cb, bool fRaiseTrap)
4223{
4224 Assert(cb <= PAGE_SIZE);
4225 PVM pVM = pVCpu->CTX_SUFF(pVM);
4226 VMCPU_ASSERT_EMT(pVCpu);
4227
4228 /*
4229 * 1. Translate virtual to physical. This may fault.
4230 * 2. Map the physical address.
4231 * 3. Do the write operation.
4232 * 4. Set access bits if required.
4233 */
4234 /** @todo Since this method is frequently used by EMInterpret or IOM
4235 * upon a write fault to an write access monitored page, we can
4236 * reuse the guest page table walking from the \#PF code. */
4237 int rc;
4238 unsigned cb1 = PAGE_SIZE - (GCPtrDst & PAGE_OFFSET_MASK);
4239 if (cb <= cb1)
4240 {
4241 /*
4242 * Not crossing pages.
4243 */
4244 RTGCPHYS GCPhys;
4245 uint64_t fFlags;
4246 rc = PGMGstGetPage(pVCpu, GCPtrDst, &fFlags, &GCPhys);
4247 if (RT_SUCCESS(rc))
4248 {
4249 if ( (fFlags & X86_PTE_RW) /** @todo Also check reserved bits. */
4250 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
4251 && CPUMGetGuestCPL(pVCpu) <= 2) ) /** @todo it's 2, right? Check cpl check below as well. */
4252 {
4253 void *pvDst;
4254 PGMPAGEMAPLOCK Lock;
4255 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, &pvDst, &Lock);
4256 switch (rc)
4257 {
4258 case VINF_SUCCESS:
4259 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
4260 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb));
4261 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb);
4262 PGMPhysReleasePageMappingLock(pVM, &Lock);
4263 break;
4264 case VERR_PGM_PHYS_PAGE_RESERVED:
4265 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4266 /* bit bucket */
4267 break;
4268 default:
4269 AssertMsgFailed(("%Rrc\n", rc));
4270 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4271 return rc;
4272 }
4273
4274 if (!(fFlags & (X86_PTE_A | X86_PTE_D)))
4275 {
4276 /** @todo dirty & access bit emulation isn't 100% correct. */
4277 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
4278 AssertRC(rc);
4279 }
4280 return VINF_SUCCESS;
4281 }
4282 rc = VERR_ACCESS_DENIED;
4283 }
4284 }
4285 else
4286 {
4287 /*
4288 * Crosses pages.
4289 */
4290 size_t cb2 = cb - cb1;
4291 uint64_t fFlags1;
4292 RTGCPHYS GCPhys1;
4293 uint64_t fFlags2;
4294 RTGCPHYS GCPhys2;
4295 rc = PGMGstGetPage(pVCpu, GCPtrDst, &fFlags1, &GCPhys1);
4296 if (RT_SUCCESS(rc))
4297 {
4298 rc = PGMGstGetPage(pVCpu, GCPtrDst + cb1, &fFlags2, &GCPhys2);
4299 if (RT_SUCCESS(rc))
4300 {
4301 if ( ( (fFlags1 & X86_PTE_RW) /** @todo Also check reserved bits. */
4302 && (fFlags2 & X86_PTE_RW))
4303 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
4304 && CPUMGetGuestCPL(pVCpu) <= 2) )
4305 {
4306 void *pvDst;
4307 PGMPAGEMAPLOCK Lock;
4308 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys1, &pvDst, &Lock);
4309 switch (rc)
4310 {
4311 case VINF_SUCCESS:
4312 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
4313 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb1));
4314 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb1);
4315 PGMPhysReleasePageMappingLock(pVM, &Lock);
4316 break;
4317 case VERR_PGM_PHYS_PAGE_RESERVED:
4318 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4319 /* bit bucket */
4320 break;
4321 default:
4322 AssertMsgFailed(("%Rrc\n", rc));
4323 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4324 return rc;
4325 }
4326
4327 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys2, &pvDst, &Lock);
4328 switch (rc)
4329 {
4330 case VINF_SUCCESS:
4331 memcpy(pvDst, (const uint8_t *)pvSrc + cb1, cb2);
4332 PGMPhysReleasePageMappingLock(pVM, &Lock);
4333 break;
4334 case VERR_PGM_PHYS_PAGE_RESERVED:
4335 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4336 /* bit bucket */
4337 break;
4338 default:
4339 AssertMsgFailed(("%Rrc\n", rc));
4340 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4341 return rc;
4342 }
4343
4344 if (!(fFlags1 & (X86_PTE_A | X86_PTE_RW)))
4345 {
4346 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
4347 AssertRC(rc);
4348 }
4349 if (!(fFlags2 & (X86_PTE_A | X86_PTE_RW)))
4350 {
4351 rc = PGMGstModifyPage(pVCpu, GCPtrDst + cb1, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
4352 AssertRC(rc);
4353 }
4354 return VINF_SUCCESS;
4355 }
4356 if ((fFlags1 & (X86_PTE_RW)) == X86_PTE_RW)
4357 GCPtrDst += cb1; /* fault on the 2nd page. */
4358 rc = VERR_ACCESS_DENIED;
4359 }
4360 else
4361 GCPtrDst += cb1; /* fault on the 2nd page. */
4362 }
4363 }
4364
4365 /*
4366 * Raise a #PF if we're allowed to do that.
4367 */
4368 /* Calc the error bits. */
4369 uint32_t uErr;
4370 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
4371 switch (rc)
4372 {
4373 case VINF_SUCCESS:
4374 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
4375 rc = VERR_ACCESS_DENIED;
4376 break;
4377
4378 case VERR_ACCESS_DENIED:
4379 uErr = (cpl >= 2) ? X86_TRAP_PF_RW | X86_TRAP_PF_US : X86_TRAP_PF_RW;
4380 break;
4381
4382 case VERR_PAGE_NOT_PRESENT:
4383 case VERR_PAGE_TABLE_NOT_PRESENT:
4384 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
4385 break;
4386
4387 default:
4388 AssertMsgFailed(("rc=%Rrc GCPtrDst=%RGv cb=%#x\n", rc, GCPtrDst, cb));
4389 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4390 return rc;
4391 }
4392 if (fRaiseTrap)
4393 {
4394 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrDst, cb, uErr));
4395 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrDst);
4396 }
4397 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrDst, cb, uErr));
4398 return rc;
4399}
4400
4401
4402/**
4403 * Return the page type of the specified physical address.
4404 *
4405 * @returns The page type.
4406 * @param pVM The cross context VM structure.
4407 * @param GCPhys Guest physical address
4408 */
4409VMM_INT_DECL(PGMPAGETYPE) PGMPhysGetPageType(PVM pVM, RTGCPHYS GCPhys)
4410{
4411 pgmLock(pVM);
4412 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4413 PGMPAGETYPE enmPgType = pPage ? (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage) : PGMPAGETYPE_INVALID;
4414 pgmUnlock(pVM);
4415
4416 return enmPgType;
4417}
4418
4419
4420/**
4421 * Converts a GC physical address to a HC ring-3 pointer, with some
4422 * additional checks.
4423 *
4424 * @returns VBox status code (no informational statuses).
4425 *
4426 * @param pVM The cross context VM structure.
4427 * @param pVCpu The cross context virtual CPU structure of the
4428 * calling EMT.
4429 * @param GCPhys The GC physical address to convert. This API mask
4430 * the A20 line when necessary.
4431 * @param puTlbPhysRev Where to read the physical TLB revision. Needs to
4432 * be done while holding the PGM lock.
4433 * @param ppb Where to store the pointer corresponding to GCPhys
4434 * on success.
4435 * @param pfTlb The TLB flags and revision. We only add stuff.
4436 *
4437 * @remarks This is more or a less a copy of PGMR3PhysTlbGCPhys2Ptr and
4438 * PGMPhysIemGCPhys2Ptr.
4439 *
4440 * @thread EMT(pVCpu).
4441 */
4442VMM_INT_DECL(int) PGMPhysIemGCPhys2PtrNoLock(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint64_t const volatile *puTlbPhysRev,
4443#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4444 R3PTRTYPE(uint8_t *) *ppb,
4445#else
4446 R3R0PTRTYPE(uint8_t *) *ppb,
4447#endif
4448 uint64_t *pfTlb)
4449{
4450 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
4451 Assert(!(GCPhys & X86_PAGE_OFFSET_MASK));
4452
4453 pgmLock(pVM);
4454
4455 PPGMRAMRANGE pRam;
4456 PPGMPAGE pPage;
4457 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4458 if (RT_SUCCESS(rc))
4459 {
4460 if (!PGM_PAGE_IS_BALLOONED(pPage))
4461 {
4462 if (!PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
4463 {
4464 if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
4465 {
4466 /*
4467 * No access handler.
4468 */
4469 switch (PGM_PAGE_GET_STATE(pPage))
4470 {
4471 case PGM_PAGE_STATE_ALLOCATED:
4472 *pfTlb |= *puTlbPhysRev;
4473 break;
4474 case PGM_PAGE_STATE_BALLOONED:
4475 AssertFailed();
4476 RT_FALL_THRU();
4477 case PGM_PAGE_STATE_ZERO:
4478 case PGM_PAGE_STATE_SHARED:
4479 case PGM_PAGE_STATE_WRITE_MONITORED:
4480 *pfTlb |= *puTlbPhysRev | PGMIEMGCPHYS2PTR_F_NO_WRITE;
4481 break;
4482 }
4483#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4484 *pfTlb |= PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3;
4485 *ppb = NULL;
4486#else
4487 PPGMPAGER3MAPTLBE pTlbe;
4488 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
4489 AssertLogRelRCReturn(rc, rc);
4490 *ppb = (uint8_t *)pTlbe->pv;
4491#endif
4492 }
4493 else if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
4494 {
4495 /*
4496 * MMIO or similar all access handler: Catch all access.
4497 */
4498 *pfTlb |= *puTlbPhysRev
4499 | PGMIEMGCPHYS2PTR_F_NO_WRITE | PGMIEMGCPHYS2PTR_F_NO_READ | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3;
4500 *ppb = NULL;
4501 }
4502 else
4503 {
4504 /*
4505 * Write access handler: Catch write accesses if active.
4506 */
4507 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
4508 *pfTlb |= *puTlbPhysRev | PGMIEMGCPHYS2PTR_F_NO_WRITE;
4509 else
4510 switch (PGM_PAGE_GET_STATE(pPage))
4511 {
4512 case PGM_PAGE_STATE_ALLOCATED:
4513 *pfTlb |= *puTlbPhysRev;
4514 break;
4515 case PGM_PAGE_STATE_BALLOONED:
4516 AssertFailed();
4517 RT_FALL_THRU();
4518 case PGM_PAGE_STATE_ZERO:
4519 case PGM_PAGE_STATE_SHARED:
4520 case PGM_PAGE_STATE_WRITE_MONITORED:
4521 *pfTlb |= *puTlbPhysRev | PGMIEMGCPHYS2PTR_F_NO_WRITE;
4522 break;
4523 }
4524#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4525 *pfTlb |= PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3;
4526 *ppb = NULL;
4527#else
4528 PPGMPAGER3MAPTLBE pTlbe;
4529 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
4530 AssertLogRelRCReturn(rc, rc);
4531 *ppb = (uint8_t *)pTlbe->pv;
4532#endif
4533 }
4534 }
4535 else
4536 {
4537 /* Alias MMIO: For now, we catch all access. */
4538 *pfTlb |= *puTlbPhysRev
4539 | PGMIEMGCPHYS2PTR_F_NO_WRITE | PGMIEMGCPHYS2PTR_F_NO_READ | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3;
4540 *ppb = NULL;
4541 }
4542 }
4543 else
4544 {
4545 /* Ballooned: Shouldn't get here, but we read zero page via PGMPhysRead and writes goes to /dev/null. */
4546 *pfTlb |= *puTlbPhysRev | PGMIEMGCPHYS2PTR_F_NO_WRITE | PGMIEMGCPHYS2PTR_F_NO_READ | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3;
4547 *ppb = NULL;
4548 }
4549 Log6(("PGMPhysIemGCPhys2PtrNoLock: GCPhys=%RGp *ppb=%p *pfTlb=%#RX64 pPage=%R[pgmpage]\n", GCPhys, *ppb, *pfTlb, pPage));
4550 }
4551 else
4552 {
4553 *pfTlb |= *puTlbPhysRev | PGMIEMGCPHYS2PTR_F_NO_WRITE | PGMIEMGCPHYS2PTR_F_NO_READ | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3;
4554 *ppb = NULL;
4555 Log6(("PGMPhysIemGCPhys2PtrNoLock: GCPhys=%RGp *ppb=%p *pfTlb=%#RX64 (rc=%Rrc)\n", GCPhys, *ppb, *pfTlb, rc));
4556 }
4557
4558 pgmUnlock(pVM);
4559 return VINF_SUCCESS;
4560}
4561
4562
4563/**
4564 * Converts a GC physical address to a HC ring-3 pointer, with some
4565 * additional checks.
4566 *
4567 * @returns VBox status code (no informational statuses).
4568 * @retval VINF_SUCCESS on success.
4569 * @retval VERR_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4570 * access handler of some kind.
4571 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4572 * accesses or is odd in any way.
4573 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4574 *
4575 * @param pVM The cross context VM structure.
4576 * @param pVCpu The cross context virtual CPU structure of the
4577 * calling EMT.
4578 * @param GCPhys The GC physical address to convert. This API mask
4579 * the A20 line when necessary.
4580 * @param fWritable Whether write access is required.
4581 * @param fByPassHandlers Whether to bypass access handlers.
4582 * @param ppv Where to store the pointer corresponding to GCPhys
4583 * on success.
4584 * @param pLock
4585 *
4586 * @remarks This is more or a less a copy of PGMR3PhysTlbGCPhys2Ptr.
4587 * @thread EMT(pVCpu).
4588 */
4589VMM_INT_DECL(int) PGMPhysIemGCPhys2Ptr(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, bool fWritable, bool fByPassHandlers,
4590 void **ppv, PPGMPAGEMAPLOCK pLock)
4591{
4592 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
4593
4594 pgmLock(pVM);
4595
4596 PPGMRAMRANGE pRam;
4597 PPGMPAGE pPage;
4598 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4599 if (RT_SUCCESS(rc))
4600 {
4601 if (PGM_PAGE_IS_BALLOONED(pPage))
4602 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4603 else if (PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
4604 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4605 else if ( !PGM_PAGE_HAS_ANY_HANDLERS(pPage)
4606 || (fByPassHandlers && !PGM_PAGE_IS_MMIO(pPage)) )
4607 rc = VINF_SUCCESS;
4608 else
4609 {
4610 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4611 {
4612 Assert(!fByPassHandlers || PGM_PAGE_IS_MMIO(pPage));
4613 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4614 }
4615 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && fWritable)
4616 {
4617 Assert(!fByPassHandlers);
4618 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4619 }
4620 }
4621 if (RT_SUCCESS(rc))
4622 {
4623 int rc2;
4624
4625 /* Make sure what we return is writable. */
4626 if (fWritable)
4627 switch (PGM_PAGE_GET_STATE(pPage))
4628 {
4629 case PGM_PAGE_STATE_ALLOCATED:
4630 break;
4631 case PGM_PAGE_STATE_BALLOONED:
4632 AssertFailed();
4633 break;
4634 case PGM_PAGE_STATE_ZERO:
4635 case PGM_PAGE_STATE_SHARED:
4636 case PGM_PAGE_STATE_WRITE_MONITORED:
4637 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4638 AssertLogRelRCReturn(rc2, rc2);
4639 break;
4640 }
4641
4642#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4643 void *pv;
4644 rc = pgmRZDynMapHCPageInlined(pVCpu,
4645 PGM_PAGE_GET_HCPHYS(pPage),
4646 &pv
4647 RTLOG_COMMA_SRC_POS);
4648 if (RT_FAILURE(rc))
4649 return rc;
4650 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4651 pLock->pvPage = pv;
4652 pLock->pVCpu = pVCpu;
4653
4654#else
4655 /* Get a ring-3 mapping of the address. */
4656 PPGMPAGER3MAPTLBE pTlbe;
4657 rc2 = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
4658 AssertLogRelRCReturn(rc2, rc2);
4659
4660 /* Lock it and calculate the address. */
4661 if (fWritable)
4662 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
4663 else
4664 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
4665 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4666#endif
4667
4668 Log6(("PGMPhysIemGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4669 }
4670 else
4671 Log6(("PGMPhysIemGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4672
4673 /* else: handler catching all access, no pointer returned. */
4674 }
4675 else
4676 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4677
4678 pgmUnlock(pVM);
4679 return rc;
4680}
4681
4682
4683/**
4684 * Checks if the give GCPhys page requires special handling for the given access
4685 * because it's MMIO or otherwise monitored.
4686 *
4687 * @returns VBox status code (no informational statuses).
4688 * @retval VINF_SUCCESS on success.
4689 * @retval VERR_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4690 * access handler of some kind.
4691 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4692 * accesses or is odd in any way.
4693 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4694 *
4695 * @param pVM The cross context VM structure.
4696 * @param GCPhys The GC physical address to convert. Since this is
4697 * only used for filling the REM TLB, the A20 mask must
4698 * be applied before calling this API.
4699 * @param fWritable Whether write access is required.
4700 * @param fByPassHandlers Whether to bypass access handlers.
4701 *
4702 * @remarks This is a watered down version PGMPhysIemGCPhys2Ptr and really just
4703 * a stop gap thing that should be removed once there is a better TLB
4704 * for virtual address accesses.
4705 */
4706VMM_INT_DECL(int) PGMPhysIemQueryAccess(PVM pVM, RTGCPHYS GCPhys, bool fWritable, bool fByPassHandlers)
4707{
4708 pgmLock(pVM);
4709 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
4710
4711 PPGMRAMRANGE pRam;
4712 PPGMPAGE pPage;
4713 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4714 if (RT_SUCCESS(rc))
4715 {
4716 if (PGM_PAGE_IS_BALLOONED(pPage))
4717 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4718 else if (PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
4719 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4720 else if ( !PGM_PAGE_HAS_ANY_HANDLERS(pPage)
4721 || (fByPassHandlers && !PGM_PAGE_IS_MMIO(pPage)) )
4722 rc = VINF_SUCCESS;
4723 else
4724 {
4725 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4726 {
4727 Assert(!fByPassHandlers || PGM_PAGE_IS_MMIO(pPage));
4728 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4729 }
4730 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && fWritable)
4731 {
4732 Assert(!fByPassHandlers);
4733 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4734 }
4735 }
4736 }
4737
4738 pgmUnlock(pVM);
4739 return rc;
4740}
4741
4742#ifndef IN_RC
4743
4744/**
4745 * Interface used by NEM to check what to do on a memory access exit.
4746 *
4747 * @returns VBox status code.
4748 * @param pVM The cross context VM structure.
4749 * @param pVCpu The cross context per virtual CPU structure.
4750 * Optional.
4751 * @param GCPhys The guest physical address.
4752 * @param fMakeWritable Whether to try make the page writable or not. If it
4753 * cannot be made writable, NEM_PAGE_PROT_WRITE won't
4754 * be returned and the return code will be unaffected
4755 * @param pInfo Where to return the page information. This is
4756 * initialized even on failure.
4757 * @param pfnChecker Page in-sync checker callback. Optional.
4758 * @param pvUser User argument to pass to pfnChecker.
4759 */
4760VMM_INT_DECL(int) PGMPhysNemPageInfoChecker(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, bool fMakeWritable, PPGMPHYSNEMPAGEINFO pInfo,
4761 PFNPGMPHYSNEMCHECKPAGE pfnChecker, void *pvUser)
4762{
4763 pgmLock(pVM);
4764
4765 PPGMPAGE pPage;
4766 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
4767 if (RT_SUCCESS(rc))
4768 {
4769 /* Try make it writable if requested. */
4770 pInfo->u2OldNemState = PGM_PAGE_GET_NEM_STATE(pPage);
4771 if (fMakeWritable)
4772 switch (PGM_PAGE_GET_STATE(pPage))
4773 {
4774 case PGM_PAGE_STATE_SHARED:
4775 case PGM_PAGE_STATE_WRITE_MONITORED:
4776 case PGM_PAGE_STATE_ZERO:
4777 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
4778 if (rc == VERR_PGM_PHYS_PAGE_RESERVED)
4779 rc = VINF_SUCCESS;
4780 break;
4781 }
4782
4783 /* Fill in the info. */
4784 pInfo->HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4785 pInfo->u2NemState = PGM_PAGE_GET_NEM_STATE(pPage);
4786 pInfo->fHasHandlers = PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) ? 1 : 0;
4787 PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
4788 pInfo->enmType = enmType;
4789 pInfo->fNemProt = pgmPhysPageCalcNemProtection(pPage, enmType);
4790 switch (PGM_PAGE_GET_STATE(pPage))
4791 {
4792 case PGM_PAGE_STATE_ALLOCATED:
4793 pInfo->fZeroPage = 0;
4794 break;
4795
4796 case PGM_PAGE_STATE_ZERO:
4797 pInfo->fZeroPage = 1;
4798 break;
4799
4800 case PGM_PAGE_STATE_WRITE_MONITORED:
4801 pInfo->fZeroPage = 0;
4802 break;
4803
4804 case PGM_PAGE_STATE_SHARED:
4805 pInfo->fZeroPage = 0;
4806 break;
4807
4808 case PGM_PAGE_STATE_BALLOONED:
4809 pInfo->fZeroPage = 1;
4810 break;
4811
4812 default:
4813 pInfo->fZeroPage = 1;
4814 AssertFailedStmt(rc = VERR_PGM_PHYS_PAGE_GET_IPE);
4815 }
4816
4817 /* Call the checker and update NEM state. */
4818 if (pfnChecker)
4819 {
4820 rc = pfnChecker(pVM, pVCpu, GCPhys, pInfo, pvUser);
4821 PGM_PAGE_SET_NEM_STATE(pPage, pInfo->u2NemState);
4822 }
4823
4824 /* Done. */
4825 pgmUnlock(pVM);
4826 }
4827 else
4828 {
4829 pgmUnlock(pVM);
4830
4831 pInfo->HCPhys = NIL_RTHCPHYS;
4832 pInfo->fNemProt = NEM_PAGE_PROT_NONE;
4833 pInfo->u2NemState = 0;
4834 pInfo->fHasHandlers = 0;
4835 pInfo->fZeroPage = 0;
4836 pInfo->enmType = PGMPAGETYPE_INVALID;
4837 }
4838
4839 return rc;
4840}
4841
4842
4843/**
4844 * NEM helper that performs @a pfnCallback on pages with NEM state @a uMinState
4845 * or higher.
4846 *
4847 * @returns VBox status code from callback.
4848 * @param pVM The cross context VM structure.
4849 * @param pVCpu The cross context per CPU structure. This is
4850 * optional as its only for passing to callback.
4851 * @param uMinState The minimum NEM state value to call on.
4852 * @param pfnCallback The callback function.
4853 * @param pvUser User argument for the callback.
4854 */
4855VMM_INT_DECL(int) PGMPhysNemEnumPagesByState(PVM pVM, PVMCPU pVCpu, uint8_t uMinState,
4856 PFNPGMPHYSNEMENUMCALLBACK pfnCallback, void *pvUser)
4857{
4858 /*
4859 * Just brute force this problem.
4860 */
4861 pgmLock(pVM);
4862 int rc = VINF_SUCCESS;
4863 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX); pRam; pRam = pRam->CTX_SUFF(pNext))
4864 {
4865 uint32_t const cPages = pRam->cb >> X86_PAGE_SHIFT;
4866 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4867 {
4868 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(&pRam->aPages[iPage]);
4869 if (u2State < uMinState)
4870 { /* likely */ }
4871 else
4872 {
4873 rc = pfnCallback(pVM, pVCpu, pRam->GCPhys + ((RTGCPHYS)iPage << X86_PAGE_SHIFT), &u2State, pvUser);
4874 if (RT_SUCCESS(rc))
4875 PGM_PAGE_SET_NEM_STATE(&pRam->aPages[iPage], u2State);
4876 else
4877 break;
4878 }
4879 }
4880 }
4881 pgmUnlock(pVM);
4882
4883 return rc;
4884
4885}
4886
4887#endif /* !IN_RC */
4888
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette