VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 9016

Last change on this file since 9016 was 8155, checked in by vboxsync, 17 years ago

The Big Sun Rebranding Header Change

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 81.6 KB
Line 
1/* $Id: PGMAllPhys.cpp 8155 2008-04-18 15:16:47Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @def PGM_IGNORE_RAM_FLAGS_RESERVED
23 * Don't respect the MM_RAM_FLAGS_RESERVED flag when converting to HC addresses.
24 *
25 * Since this flag is currently incorrectly kept set for ROM regions we will
26 * have to ignore it for now so we don't break stuff.
27 *
28 * @todo this has been fixed now I believe, remove this hack.
29 */
30#define PGM_IGNORE_RAM_FLAGS_RESERVED
31
32
33/*******************************************************************************
34* Header Files *
35*******************************************************************************/
36#define LOG_GROUP LOG_GROUP_PGM_PHYS
37#include <VBox/pgm.h>
38#include <VBox/trpm.h>
39#include <VBox/vmm.h>
40#include <VBox/iom.h>
41#include <VBox/em.h>
42#include <VBox/rem.h>
43#include "PGMInternal.h"
44#include <VBox/vm.h>
45#include <VBox/param.h>
46#include <VBox/err.h>
47#include <iprt/assert.h>
48#include <iprt/string.h>
49#include <iprt/asm.h>
50#include <VBox/log.h>
51#ifdef IN_RING3
52# include <iprt/thread.h>
53#endif
54
55
56
57#ifndef IN_RING3
58
59/**
60 * \#PF Handler callback for Guest ROM range write access.
61 * We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
62 *
63 * @returns VBox status code (appropritate for trap handling and GC return).
64 * @param pVM VM Handle.
65 * @param uErrorCode CPU Error code.
66 * @param pRegFrame Trap register frame.
67 * @param pvFault The fault address (cr2).
68 * @param GCPhysFault The GC physical address corresponding to pvFault.
69 * @param pvUser User argument. Pointer to the ROM range structure.
70 */
71PGMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser)
72{
73 int rc;
74#ifdef VBOX_WITH_NEW_PHYS_CODE
75 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
76 uint32_t iPage = GCPhysFault - pRom->GCPhys;
77 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
78 switch (pRom->aPages[iPage].enmProt)
79 {
80 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
81 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
82 {
83#endif
84 /*
85 * If it's a simple instruction which doesn't change the cpu state
86 * we will simply skip it. Otherwise we'll have to defer it to REM.
87 */
88 uint32_t cbOp;
89 DISCPUSTATE Cpu;
90 rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, &cbOp);
91 if ( RT_SUCCESS(rc)
92 && Cpu.mode == CPUMODE_32BIT
93 && !(Cpu.prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG)))
94 {
95 switch (Cpu.opcode)
96 {
97 /** @todo Find other instructions we can safely skip, possibly
98 * adding this kind of detection to DIS or EM. */
99 case OP_MOV:
100 pRegFrame->eip += cbOp;
101 STAM_COUNTER_INC(&pVM->pgm.s.StatGCGuestROMWriteHandled);
102 return VINF_SUCCESS;
103 }
104 }
105 else if (RT_UNLIKELY(rc == VERR_INTERNAL_ERROR))
106 return rc;
107#ifdef VBOX_WITH_NEW_PHYS_CODE
108 break;
109 }
110
111 case PGMROMPROT_READ_RAM_WRITE_RAM:
112 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
113 AssertRC(rc);
114 case PGMROMPROT_READ_ROM_WRITE_RAM:
115 /* Handle it in ring-3 because it's *way* easier there. */
116 break;
117
118 default:
119 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
120 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
121 VERR_INTERNAL_ERROR);
122 }
123#endif
124
125 STAM_COUNTER_INC(&pVM->pgm.s.StatGCGuestROMWriteUnhandled);
126 return VINF_EM_RAW_EMULATE_INSTR;
127}
128
129#endif /* IN_RING3 */
130
131/**
132 * Checks if Address Gate 20 is enabled or not.
133 *
134 * @returns true if enabled.
135 * @returns false if disabled.
136 * @param pVM VM handle.
137 */
138PGMDECL(bool) PGMPhysIsA20Enabled(PVM pVM)
139{
140 LogFlow(("PGMPhysIsA20Enabled %d\n", pVM->pgm.s.fA20Enabled));
141 return !!pVM->pgm.s.fA20Enabled ; /* stupid MS compiler doesn't trust me. */
142}
143
144
145/**
146 * Validates a GC physical address.
147 *
148 * @returns true if valid.
149 * @returns false if invalid.
150 * @param pVM The VM handle.
151 * @param GCPhys The physical address to validate.
152 */
153PGMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
154{
155 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
156 return pPage != NULL;
157}
158
159
160/**
161 * Checks if a GC physical address is a normal page,
162 * i.e. not ROM, MMIO or reserved.
163 *
164 * @returns true if normal.
165 * @returns false if invalid, ROM, MMIO or reserved page.
166 * @param pVM The VM handle.
167 * @param GCPhys The physical address to check.
168 */
169PGMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
170{
171 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
172 return pPage
173 && !(pPage->HCPhys & (MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2));
174}
175
176
177/**
178 * Converts a GC physical address to a HC physical address.
179 *
180 * @returns VINF_SUCCESS on success.
181 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
182 * page but has no physical backing.
183 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
184 * GC physical address.
185 *
186 * @param pVM The VM handle.
187 * @param GCPhys The GC physical address to convert.
188 * @param pHCPhys Where to store the HC physical address on success.
189 */
190PGMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
191{
192 PPGMPAGE pPage;
193 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
194 if (VBOX_FAILURE(rc))
195 return rc;
196
197#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
198 if (RT_UNLIKELY(pPage->HCPhys & MM_RAM_FLAGS_RESERVED)) /** @todo PAGE FLAGS */
199 return VERR_PGM_PHYS_PAGE_RESERVED;
200#endif
201
202 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
203 return VINF_SUCCESS;
204}
205
206
207/**
208 * Invalidates the GC page mapping TLB.
209 *
210 * @param pVM The VM handle.
211 */
212PDMDECL(void) PGMPhysInvalidatePageGCMapTLB(PVM pVM)
213{
214 /* later */
215 NOREF(pVM);
216}
217
218
219/**
220 * Invalidates the ring-0 page mapping TLB.
221 *
222 * @param pVM The VM handle.
223 */
224PDMDECL(void) PGMPhysInvalidatePageR0MapTLB(PVM pVM)
225{
226 PGMPhysInvalidatePageR3MapTLB(pVM);
227}
228
229
230/**
231 * Invalidates the ring-3 page mapping TLB.
232 *
233 * @param pVM The VM handle.
234 */
235PDMDECL(void) PGMPhysInvalidatePageR3MapTLB(PVM pVM)
236{
237 pgmLock(pVM);
238 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
239 {
240 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
241 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
242 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
243 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
244 }
245 pgmUnlock(pVM);
246}
247
248
249/**
250 * Frees the specified RAM page.
251 *
252 * This is used by ballooning and remapping MMIO2.
253 *
254 * @param pVM Pointer to the shared VM structure.
255 * @param pPage Pointer to the page structure.
256 * @param GCPhys The guest physical address of the page, if applicable.
257 */
258void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
259{
260 AssertFatal(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
261
262 /** @todo implement this... */
263 AssertFatalFailed();
264}
265
266
267
268/**
269 * Makes sure that there is at least one handy page ready for use.
270 *
271 * This will also take the appropriate actions when reaching water-marks.
272 *
273 * @returns The following VBox status codes.
274 * @retval VINF_SUCCESS on success.
275 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
276 *
277 * @param pVM The VM handle.
278 *
279 * @remarks Must be called from within the PGM critical section. It may
280 * nip back to ring-3/0 in some cases.
281 */
282static int pgmPhysEnsureHandyPage(PVM pVM)
283{
284 /** @remarks
285 * low-water mark logic for R0 & GC:
286 * - 75%: Set FF.
287 * - 50%: Force return to ring-3 ASAP.
288 *
289 * For ring-3 there is a little problem wrt to the recompiler, so:
290 * - 75%: Set FF.
291 * - 50%: Try allocate pages; on failure we'll force REM to quite ASAP.
292 *
293 * The basic idea is that we should be able to get out of any situation with
294 * only 50% of handy pages remaining.
295 *
296 * At the moment we'll not adjust the number of handy pages relative to the
297 * actual VM RAM committment, that's too much work for now.
298 */
299 Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
300 if ( !pVM->pgm.s.cHandyPages
301#ifdef IN_RING3
302 || pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2 /* 50% */
303#endif
304 )
305 {
306 Log(("PGM: cHandyPages=%u out of %u -> allocate more\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
307#ifdef IN_RING3
308 int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
309#elif defined(IN_RING0)
310 /** @todo call PGMR0PhysAllocateHandyPages directly - need to make sure we can call kernel code first and deal with the seeding fallback. */
311 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
312#else
313 int rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
314#endif
315 if (RT_UNLIKELY(rc != VINF_SUCCESS))
316 {
317 Assert(rc == VINF_EM_NO_MEMORY);
318 if (!pVM->pgm.s.cHandyPages)
319 {
320 LogRel(("PGM: no more handy pages!\n"));
321 return VERR_EM_NO_MEMORY;
322 }
323 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
324#ifdef IN_RING3
325 REMR3NotifyFF(pVM);
326#else
327 VM_FF_SET(pVM, VM_FF_TO_R3);
328#endif
329 }
330 Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
331 }
332 else if (pVM->pgm.s.cHandyPages - 1 <= (RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 4) * 3) /* 75% */
333 {
334 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
335#ifndef IN_RING3
336 if (pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2)
337 {
338 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
339 VM_FF_SET(pVM, VM_FF_TO_R3);
340 }
341#endif
342 }
343
344 return VINF_SUCCESS;
345}
346
347
348/**
349 * Replace a zero or shared page with new page that we can write to.
350 *
351 * @returns The following VBox status codes.
352 * @retval VINF_SUCCESS on success, pPage is modified.
353 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
354 *
355 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
356 *
357 * @param pVM The VM address.
358 * @param pPage The physical page tracking structure. This will
359 * be modified on success.
360 * @param GCPhys The address of the page.
361 *
362 * @remarks Must be called from within the PGM critical section. It may
363 * nip back to ring-3/0 in some cases.
364 *
365 * @remarks This function shouldn't really fail, however if it does
366 * it probably means we've screwed up the size of the amount
367 * and/or the low-water mark of handy pages. Or, that some
368 * device I/O is causing a lot of pages to be allocated while
369 * while the host is in a low-memory condition.
370 */
371int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
372{
373 /*
374 * Ensure that we've got a page handy, take it and use it.
375 */
376 int rc = pgmPhysEnsureHandyPage(pVM);
377 if (VBOX_FAILURE(rc))
378 {
379 Assert(rc == VERR_EM_NO_MEMORY);
380 return rc;
381 }
382 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%d %RGp\n", PGM_PAGE_GET_STATE(pPage), GCPhys));
383 Assert(!PGM_PAGE_IS_RESERVED(pPage));
384 Assert(!PGM_PAGE_IS_MMIO(pPage));
385
386 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
387 Assert(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages));
388 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
389 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
390 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
391 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
392
393 /*
394 * There are one or two action to be taken the next time we allocate handy pages:
395 * - Tell the GMM (global memory manager) what the page is being used for.
396 * (Speeds up replacement operations - sharing and defragmenting.)
397 * - If the current backing is shared, it must be freed.
398 */
399 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
400 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys;
401
402 if (PGM_PAGE_IS_SHARED(pPage))
403 {
404 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
405 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
406 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
407
408 Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
409 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
410 STAM_COUNTER_INC(&pVM->pgm.s.StatPageReplaceShared);
411 pVM->pgm.s.cSharedPages--;
412/** @todo err.. what about copying the page content? */
413 }
414 else
415 {
416 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
417 STAM_COUNTER_INC(&pVM->pgm.s.StatPageReplaceZero);
418 pVM->pgm.s.cZeroPages--;
419/** @todo verify that the handy page is zero! */
420 }
421
422 /*
423 * Do the PGMPAGE modifications.
424 */
425 pVM->pgm.s.cPrivatePages++;
426 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
427 PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
428 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
429
430 return VINF_SUCCESS;
431}
432
433
434/**
435 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
436 *
437 * @returns VBox status code.
438 * @retval VINF_SUCCESS on success.
439 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
440 *
441 * @param pVM The VM address.
442 * @param pPage The physical page tracking structure.
443 * @param GCPhys The address of the page.
444 *
445 * @remarks Called from within the PGM critical section.
446 */
447int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
448{
449 switch (PGM_PAGE_GET_STATE(pPage))
450 {
451 case PGM_PAGE_STATE_WRITE_MONITORED:
452 PGM_PAGE_SET_WRITTEN_TO(pPage);
453 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
454 /* fall thru */
455 default: /* to shut up GCC */
456 case PGM_PAGE_STATE_ALLOCATED:
457 return VINF_SUCCESS;
458
459 /*
460 * Zero pages can be dummy pages for MMIO or reserved memory,
461 * so we need to check the flags before joining cause with
462 * shared page replacement.
463 */
464 case PGM_PAGE_STATE_ZERO:
465 if ( PGM_PAGE_IS_MMIO(pPage)
466 || PGM_PAGE_IS_RESERVED(pPage))
467 return VERR_PGM_PHYS_PAGE_RESERVED;
468 /* fall thru */
469 case PGM_PAGE_STATE_SHARED:
470 return pgmPhysAllocPage(pVM, pPage, GCPhys);
471 }
472}
473
474
475/**
476 * Maps a page into the current virtual address space so it can be accessed.
477 *
478 * @returns VBox status code.
479 * @retval VINF_SUCCESS on success.
480 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
481 *
482 * @param pVM The VM address.
483 * @param pPage The physical page tracking structure.
484 * @param GCPhys The address of the page.
485 * @param ppMap Where to store the address of the mapping tracking structure.
486 * @param ppv Where to store the mapping address of the page. The page
487 * offset is masked off!
488 *
489 * @remarks Called from within the PGM critical section.
490 */
491int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
492{
493#ifdef IN_GC
494 /*
495 * Just some sketchy GC code.
496 */
497 *ppMap = NULL;
498 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
499 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
500 return PGMGCDynMapHCPage(pVM, HCPhys, ppv);
501
502#else /* IN_RING3 || IN_RING0 */
503
504 /*
505 * Find/make Chunk TLB entry for the mapping chunk.
506 */
507 PPGMCHUNKR3MAP pMap;
508 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
509 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
510 if (pTlbe->idChunk == idChunk)
511 {
512 STAM_COUNTER_INC(&pVM->pgm.s.StatChunkR3MapTlbHits);
513 pMap = pTlbe->pChunk;
514 }
515 else if (idChunk != NIL_GMM_CHUNKID)
516 {
517 STAM_COUNTER_INC(&pVM->pgm.s.StatChunkR3MapTlbMisses);
518
519 /*
520 * Find the chunk, map it if necessary.
521 */
522 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
523 if (!pMap)
524 {
525#ifdef IN_RING0
526 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk);
527 AssertRCReturn(rc, rc);
528 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
529 Assert(pMap);
530#else
531 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
532 if (VBOX_FAILURE(rc))
533 return rc;
534#endif
535 }
536
537 /*
538 * Enter it into the Chunk TLB.
539 */
540 pTlbe->idChunk = idChunk;
541 pTlbe->pChunk = pMap;
542 pMap->iAge = 0;
543 }
544 else
545 {
546 Assert(PGM_PAGE_IS_ZERO(pPage));
547 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
548 *ppMap = NULL;
549 return VINF_SUCCESS;
550 }
551
552 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
553 *ppMap = pMap;
554 return VINF_SUCCESS;
555#endif /* IN_RING3 */
556}
557
558
559#ifndef IN_GC
560/**
561 * Load a guest page into the ring-3 physical TLB.
562 *
563 * @returns VBox status code.
564 * @retval VINF_SUCCESS on success
565 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
566 * @param pPGM The PGM instance pointer.
567 * @param GCPhys The guest physical address in question.
568 */
569int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys)
570{
571 STAM_COUNTER_INC(&pPGM->CTXMID(StatPage,MapTlbMisses));
572
573 /*
574 * Find the ram range.
575 * 99.8% of requests are expected to be in the first range.
576 */
577 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
578 RTGCPHYS off = GCPhys - pRam->GCPhys;
579 if (RT_UNLIKELY(off >= pRam->cb))
580 {
581 do
582 {
583 pRam = CTXALLSUFF(pRam->pNext);
584 if (!pRam)
585 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
586 off = GCPhys - pRam->GCPhys;
587 } while (off >= pRam->cb);
588 }
589
590 /*
591 * Map the page.
592 * Make a special case for the zero page as it is kind of special.
593 */
594 PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT];
595 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
596 if (!PGM_PAGE_IS_ZERO(pPage))
597 {
598 void *pv;
599 PPGMPAGEMAP pMap;
600 int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
601 if (VBOX_FAILURE(rc))
602 return rc;
603 pTlbe->pMap = pMap;
604 pTlbe->pv = pv;
605 }
606 else
607 {
608 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
609 pTlbe->pMap = NULL;
610 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
611 }
612 pTlbe->pPage = pPage;
613 return VINF_SUCCESS;
614}
615#endif /* !IN_GC */
616
617
618/**
619 * Requests the mapping of a guest page into the current context.
620 *
621 * This API should only be used for very short term, as it will consume
622 * scarse resources (R0 and GC) in the mapping cache. When you're done
623 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
624 *
625 * This API will assume your intention is to write to the page, and will
626 * therefore replace shared and zero pages. If you do not intend to modify
627 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
628 *
629 * @returns VBox status code.
630 * @retval VINF_SUCCESS on success.
631 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
632 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
633 *
634 * @param pVM The VM handle.
635 * @param GCPhys The guest physical address of the page that should be mapped.
636 * @param ppv Where to store the address corresponding to GCPhys.
637 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
638 *
639 * @remark Avoid calling this API from within critical sections (other than
640 * the PGM one) because of the deadlock risk.
641 * @thread Any thread.
642 */
643PGMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
644{
645#ifdef VBOX_WITH_NEW_PHYS_CODE
646#ifdef IN_GC
647 /* Until a physical TLB is implemented for GC, let PGMGCDynMapGCPageEx handle it. */
648 return PGMGCDynMapGCPageEx(pVM, GCPhys, ppv);
649#else
650 int rc = pgmLock(pVM);
651 AssertRCReturn(rc);
652
653 /*
654 * Query the Physical TLB entry for the page (may fail).
655 */
656 PGMPHYSTLBE pTlbe;
657 int rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
658 if (RT_SUCCESS(rc))
659 {
660 /*
661 * If the page is shared, the zero page, or being write monitored
662 * it must be converted to an page that's writable if possible.
663 */
664 PPGMPAGE pPage = pTlbe->pPage;
665 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
666 {
667 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
668 /** @todo stuff is missing here! */
669 }
670 if (RT_SUCCESS(rc))
671 {
672 /*
673 * Now, just perform the locking and calculate the return address.
674 */
675 PPGMPAGEMAP pMap = pTlbe->pMap;
676 pMap->cRefs++;
677 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
678 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
679 {
680 AssertMsgFailed(("%VGp is entering permanent locked state!\n", GCPhys));
681 pMap->cRefs++; /* Extra ref to prevent it from going away. */
682 }
683
684 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
685 pLock->pvPage = pPage;
686 pLock->pvMap = pMap;
687 }
688 }
689
690 pgmUnlock(pVM);
691 return rc;
692
693#endif /* IN_RING3 || IN_RING0 */
694
695#else
696 /*
697 * Temporary fallback code.
698 */
699# ifdef IN_GC
700 return PGMGCDynMapGCPageEx(pVM, GCPhys, ppv);
701# else
702 return PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1, ppv);
703# endif
704#endif
705}
706
707
708/**
709 * Requests the mapping of a guest page into the current context.
710 *
711 * This API should only be used for very short term, as it will consume
712 * scarse resources (R0 and GC) in the mapping cache. When you're done
713 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
714 *
715 * @returns VBox status code.
716 * @retval VINF_SUCCESS on success.
717 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
718 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
719 *
720 * @param pVM The VM handle.
721 * @param GCPhys The guest physical address of the page that should be mapped.
722 * @param ppv Where to store the address corresponding to GCPhys.
723 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
724 *
725 * @remark Avoid calling this API from within critical sections (other than
726 * the PGM one) because of the deadlock risk.
727 * @thread Any thread.
728 */
729PGMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
730{
731 /** @todo implement this */
732 return PGMPhysGCPhys2CCPtr(pVM, GCPhys, (void **)ppv, pLock);
733}
734
735
736/**
737 * Requests the mapping of a guest page given by virtual address into the current context.
738 *
739 * This API should only be used for very short term, as it will consume
740 * scarse resources (R0 and GC) in the mapping cache. When you're done
741 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
742 *
743 * This API will assume your intention is to write to the page, and will
744 * therefore replace shared and zero pages. If you do not intend to modify
745 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
746 *
747 * @returns VBox status code.
748 * @retval VINF_SUCCESS on success.
749 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
750 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
751 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
752 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
753 *
754 * @param pVM The VM handle.
755 * @param GCPhys The guest physical address of the page that should be mapped.
756 * @param ppv Where to store the address corresponding to GCPhys.
757 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
758 *
759 * @remark Avoid calling this API from within critical sections (other than
760 * the PGM one) because of the deadlock risk.
761 * @thread EMT
762 */
763PGMDECL(int) PGMPhysGCPtr2CCPtr(PVM pVM, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
764{
765 RTGCPHYS GCPhys;
766 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
767 if (VBOX_SUCCESS(rc))
768 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, pLock);
769 return rc;
770}
771
772
773/**
774 * Requests the mapping of a guest page given by virtual address into the current context.
775 *
776 * This API should only be used for very short term, as it will consume
777 * scarse resources (R0 and GC) in the mapping cache. When you're done
778 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
779 *
780 * @returns VBox status code.
781 * @retval VINF_SUCCESS on success.
782 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
783 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
784 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
785 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
786 *
787 * @param pVM The VM handle.
788 * @param GCPhys The guest physical address of the page that should be mapped.
789 * @param ppv Where to store the address corresponding to GCPhys.
790 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
791 *
792 * @remark Avoid calling this API from within critical sections (other than
793 * the PGM one) because of the deadlock risk.
794 * @thread EMT
795 */
796PGMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVM pVM, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
797{
798 RTGCPHYS GCPhys;
799 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
800 if (VBOX_SUCCESS(rc))
801 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, pLock);
802 return rc;
803}
804
805
806/**
807 * Release the mapping of a guest page.
808 *
809 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
810 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
811 *
812 * @param pVM The VM handle.
813 * @param pLock The lock structure initialized by the mapping function.
814 */
815PGMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
816{
817#ifdef VBOX_WITH_NEW_PHYS_CODE
818#ifdef IN_GC
819 /* currently nothing to do here. */
820/* --- postponed
821#elif defined(IN_RING0)
822*/
823
824#else /* IN_RING3 */
825 pgmLock(pVM);
826
827 PPGMPAGE pPage = (PPGMPAGE)pLock->pvPage;
828 Assert(pPage->cLocks >= 1);
829 if (pPage->cLocks != PGM_PAGE_MAX_LOCKS)
830 pPage->cLocks--;
831
832 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pLock->pvChunk;
833 Assert(pChunk->cRefs >= 1);
834 pChunk->cRefs--;
835 pChunk->iAge = 0;
836
837 pgmUnlock(pVM);
838#endif /* IN_RING3 */
839#else
840 NOREF(pVM);
841 NOREF(pLock);
842#endif
843}
844
845
846/**
847 * Converts a GC physical address to a HC pointer.
848 *
849 * @returns VINF_SUCCESS on success.
850 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
851 * page but has no physical backing.
852 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
853 * GC physical address.
854 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
855 * a dynamic ram chunk boundary
856 * @param pVM The VM handle.
857 * @param GCPhys The GC physical address to convert.
858 * @param cbRange Physical range
859 * @param pHCPtr Where to store the HC pointer on success.
860 */
861PGMDECL(int) PGMPhysGCPhys2HCPtr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTHCPTR pHCPtr)
862{
863#ifdef VBOX_WITH_NEW_PHYS_CODE
864 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
865#endif
866
867 if ((GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK) != ((GCPhys+cbRange-1) & PGM_DYNAMIC_CHUNK_BASE_MASK))
868 {
869 AssertMsgFailed(("%VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
870 LogRel(("PGMPhysGCPhys2HCPtr %VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
871 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
872 }
873
874 PPGMRAMRANGE pRam;
875 PPGMPAGE pPage;
876 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
877 if (VBOX_FAILURE(rc))
878 return rc;
879
880#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
881 if (RT_UNLIKELY(PGM_PAGE_IS_RESERVED(pPage)))
882 return VERR_PGM_PHYS_PAGE_RESERVED;
883#endif
884
885 RTGCPHYS off = GCPhys - pRam->GCPhys;
886 if (RT_UNLIKELY(off + cbRange > pRam->cb))
887 {
888 AssertMsgFailed(("%VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys + cbRange));
889 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
890 }
891
892 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
893 {
894 unsigned iChunk = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
895 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
896 }
897 else if (RT_LIKELY(pRam->pvHC))
898 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
899 else
900 return VERR_PGM_PHYS_PAGE_RESERVED;
901 return VINF_SUCCESS;
902}
903
904
905/**
906 * Converts a guest pointer to a GC physical address.
907 *
908 * This uses the current CR3/CR0/CR4 of the guest.
909 *
910 * @returns VBox status code.
911 * @param pVM The VM Handle
912 * @param GCPtr The guest pointer to convert.
913 * @param pGCPhys Where to store the GC physical address.
914 */
915PGMDECL(int) PGMPhysGCPtr2GCPhys(PVM pVM, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
916{
917 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
918 if (pGCPhys && VBOX_SUCCESS(rc))
919 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
920 return rc;
921}
922
923
924/**
925 * Converts a guest pointer to a HC physical address.
926 *
927 * This uses the current CR3/CR0/CR4 of the guest.
928 *
929 * @returns VBox status code.
930 * @param pVM The VM Handle
931 * @param GCPtr The guest pointer to convert.
932 * @param pHCPhys Where to store the HC physical address.
933 */
934PGMDECL(int) PGMPhysGCPtr2HCPhys(PVM pVM, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
935{
936 RTGCPHYS GCPhys;
937 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
938 if (VBOX_SUCCESS(rc))
939 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
940 return rc;
941}
942
943
944/**
945 * Converts a guest pointer to a HC pointer.
946 *
947 * This uses the current CR3/CR0/CR4 of the guest.
948 *
949 * @returns VBox status code.
950 * @param pVM The VM Handle
951 * @param GCPtr The guest pointer to convert.
952 * @param pHCPtr Where to store the HC virtual address.
953 */
954PGMDECL(int) PGMPhysGCPtr2HCPtr(PVM pVM, RTGCPTR GCPtr, PRTHCPTR pHCPtr)
955{
956#ifdef VBOX_WITH_NEW_PHYS_CODE
957 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
958#endif
959
960 RTGCPHYS GCPhys;
961 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
962 if (VBOX_SUCCESS(rc))
963 rc = PGMPhysGCPhys2HCPtr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
964 return rc;
965}
966
967
968/**
969 * Converts a guest virtual address to a HC pointer by specfied CR3 and flags.
970 *
971 * @returns VBox status code.
972 * @param pVM The VM Handle
973 * @param GCPtr The guest pointer to convert.
974 * @param cr3 The guest CR3.
975 * @param fFlags Flags used for interpreting the PD correctly: X86_CR4_PSE and X86_CR4_PAE
976 * @param pHCPtr Where to store the HC pointer.
977 *
978 * @remark This function is used by the REM at a time where PGM could
979 * potentially not be in sync. It could also be used by a
980 * future DBGF API to cpu state independent conversions.
981 */
982PGMDECL(int) PGMPhysGCPtr2HCPtrByGstCR3(PVM pVM, RTGCPTR GCPtr, uint64_t cr3, unsigned fFlags, PRTHCPTR pHCPtr)
983{
984#ifdef VBOX_WITH_NEW_PHYS_CODE
985 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
986#endif
987 /*
988 * PAE or 32-bit?
989 */
990 int rc;
991 if (!(fFlags & X86_CR4_PAE))
992 {
993 PX86PD pPD;
994 rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
995 if (VBOX_SUCCESS(rc))
996 {
997 X86PDE Pde = pPD->a[(RTGCUINTPTR)GCPtr >> X86_PD_SHIFT];
998 if (Pde.n.u1Present)
999 {
1000 if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
1001 { /* (big page) */
1002 rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE4M_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_4M_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1003 }
1004 else
1005 { /* (normal page) */
1006 PX86PT pPT;
1007 rc = PGM_GCPHYS_2_PTR(pVM, Pde.u & X86_PDE_PG_MASK, &pPT);
1008 if (VBOX_SUCCESS(rc))
1009 {
1010 X86PTE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_SHIFT) & X86_PT_MASK];
1011 if (Pte.n.u1Present)
1012 return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1013 rc = VERR_PAGE_NOT_PRESENT;
1014 }
1015 }
1016 }
1017 else
1018 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1019 }
1020 }
1021 else
1022 {
1023 /** @todo long mode! */
1024 Assert(PGMGetGuestMode(pVM) < PGMMODE_AMD64);
1025
1026 PX86PDPT pPdpt;
1027 rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, &pPdpt);
1028 if (VBOX_SUCCESS(rc))
1029 {
1030 X86PDPE Pdpe = pPdpt->a[((RTGCUINTPTR)GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
1031 if (Pdpe.n.u1Present)
1032 {
1033 PX86PDPAE pPD;
1034 rc = PGM_GCPHYS_2_PTR(pVM, Pdpe.u & X86_PDPE_PG_MASK, &pPD);
1035 if (VBOX_SUCCESS(rc))
1036 {
1037 X86PDEPAE Pde = pPD->a[((RTGCUINTPTR)GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK];
1038 if (Pde.n.u1Present)
1039 {
1040 if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
1041 { /* (big page) */
1042 rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE2M_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_2M_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1043 }
1044 else
1045 { /* (normal page) */
1046 PX86PTPAE pPT;
1047 rc = PGM_GCPHYS_2_PTR(pVM, (Pde.u & X86_PDE_PAE_PG_MASK), &pPT);
1048 if (VBOX_SUCCESS(rc))
1049 {
1050 X86PTEPAE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK];
1051 if (Pte.n.u1Present)
1052 return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1053 rc = VERR_PAGE_NOT_PRESENT;
1054 }
1055 }
1056 }
1057 else
1058 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1059 }
1060 }
1061 else
1062 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1063 }
1064 }
1065 return rc;
1066}
1067
1068
1069#undef LOG_GROUP
1070#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
1071
1072
1073#ifdef IN_RING3
1074/**
1075 * Cache PGMPhys memory access
1076 *
1077 * @param pVM VM Handle.
1078 * @param pCache Cache structure pointer
1079 * @param GCPhys GC physical address
1080 * @param pbHC HC pointer corresponding to physical page
1081 *
1082 * @thread EMT.
1083 */
1084static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbHC)
1085{
1086 uint32_t iCacheIndex;
1087
1088 Assert(VM_IS_EMT(pVM));
1089
1090 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
1091 pbHC = (uint8_t *)PAGE_ADDRESS(pbHC);
1092
1093 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
1094
1095 ASMBitSet(&pCache->aEntries, iCacheIndex);
1096
1097 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
1098 pCache->Entry[iCacheIndex].pbHC = pbHC;
1099}
1100#endif
1101
1102/**
1103 * Read physical memory.
1104 *
1105 * This API respects access handlers and MMIO. Use PGMPhysReadGCPhys() if you
1106 * want to ignore those.
1107 *
1108 * @param pVM VM Handle.
1109 * @param GCPhys Physical address start reading from.
1110 * @param pvBuf Where to put the read bits.
1111 * @param cbRead How many bytes to read.
1112 */
1113PGMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
1114{
1115#ifdef IN_RING3
1116 bool fGrabbedLock = false;
1117#endif
1118
1119 AssertMsg(cbRead > 0, ("don't even think about reading zero bytes!\n"));
1120 if (cbRead == 0)
1121 return;
1122
1123 LogFlow(("PGMPhysRead: %VGp %d\n", GCPhys, cbRead));
1124
1125#ifdef IN_RING3
1126 if (!VM_IS_EMT(pVM))
1127 {
1128 pgmLock(pVM);
1129 fGrabbedLock = true;
1130 }
1131#endif
1132
1133 /*
1134 * Copy loop on ram ranges.
1135 */
1136 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1137 for (;;)
1138 {
1139 /* Find range. */
1140 while (pRam && GCPhys > pRam->GCPhysLast)
1141 pRam = CTXALLSUFF(pRam->pNext);
1142 /* Inside range or not? */
1143 if (pRam && GCPhys >= pRam->GCPhys)
1144 {
1145 /*
1146 * Must work our way thru this page by page.
1147 */
1148 RTGCPHYS off = GCPhys - pRam->GCPhys;
1149 while (off < pRam->cb)
1150 {
1151 unsigned iPage = off >> PAGE_SHIFT;
1152 PPGMPAGE pPage = &pRam->aPages[iPage];
1153 size_t cb;
1154
1155 /* Physical chunk in dynamically allocated range not present? */
1156 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1157 {
1158 /* Treat it as reserved; return zeros */
1159 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1160 if (cb >= cbRead)
1161 {
1162 memset(pvBuf, 0, cbRead);
1163 goto end;
1164 }
1165 memset(pvBuf, 0, cb);
1166 }
1167 /* temp hacks, will be reorganized. */
1168 /*
1169 * Physical handler.
1170 */
1171 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_ALL)
1172 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1173 {
1174 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1175 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1176
1177#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1178 /* find and call the handler */
1179 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
1180 if (pNode && pNode->pfnHandlerR3)
1181 {
1182 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1183 if (cbRange < cb)
1184 cb = cbRange;
1185 if (cb > cbRead)
1186 cb = cbRead;
1187
1188 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1189
1190 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1191 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pNode->pvUserR3);
1192 }
1193#endif /* IN_RING3 */
1194 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1195 {
1196#ifdef IN_GC
1197 void *pvSrc = NULL;
1198 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc);
1199 pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
1200#else
1201 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1202#endif
1203
1204 if (cb >= cbRead)
1205 {
1206 memcpy(pvBuf, pvSrc, cbRead);
1207 goto end;
1208 }
1209 memcpy(pvBuf, pvSrc, cb);
1210 }
1211 else if (cb >= cbRead)
1212 goto end;
1213 }
1214 /*
1215 * Virtual handlers.
1216 */
1217 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) >= PGM_PAGE_HNDL_VIRT_STATE_ALL)
1218 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1219 {
1220 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1221 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1222#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1223 /* Search the whole tree for matching physical addresses (rather expensive!) */
1224 PPGMVIRTHANDLER pNode;
1225 unsigned iPage;
1226 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1227 if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerHC)
1228 {
1229 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1230 if (cbRange < cb)
1231 cb = cbRange;
1232 if (cb > cbRead)
1233 cb = cbRead;
1234 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->GCPtr & PAGE_BASE_GC_MASK)
1235 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1236
1237 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1238
1239 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1240 rc = pNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, 0);
1241 }
1242#endif /* IN_RING3 */
1243 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1244 {
1245#ifdef IN_GC
1246 void *pvSrc = NULL;
1247 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc);
1248 pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
1249#else
1250 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1251#endif
1252 if (cb >= cbRead)
1253 {
1254 memcpy(pvBuf, pvSrc, cbRead);
1255 goto end;
1256 }
1257 memcpy(pvBuf, pvSrc, cb);
1258 }
1259 else if (cb >= cbRead)
1260 goto end;
1261 }
1262 else
1263 {
1264 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM)) /** @todo PAGE FLAGS */
1265 {
1266 /*
1267 * Normal memory or ROM.
1268 */
1269 case 0:
1270 case MM_RAM_FLAGS_ROM:
1271 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED:
1272 //case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* = shadow */ - //MMIO2 isn't in the mask.
1273 case MM_RAM_FLAGS_MMIO2: // MMIO2 isn't in the mask.
1274 {
1275#ifdef IN_GC
1276 void *pvSrc = NULL;
1277 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc);
1278 pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
1279#else
1280 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1281#endif
1282 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1283 if (cb >= cbRead)
1284 {
1285#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1286 if (cbRead <= 4 && !fGrabbedLock /* i.e. EMT */)
1287 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphysreadcache, GCPhys, (uint8_t*)pvSrc);
1288#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1289 memcpy(pvBuf, pvSrc, cbRead);
1290 goto end;
1291 }
1292 memcpy(pvBuf, pvSrc, cb);
1293 break;
1294 }
1295
1296 /*
1297 * All reserved, nothing there.
1298 */
1299 case MM_RAM_FLAGS_RESERVED:
1300 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1301 if (cb >= cbRead)
1302 {
1303 memset(pvBuf, 0, cbRead);
1304 goto end;
1305 }
1306 memset(pvBuf, 0, cb);
1307 break;
1308
1309 /*
1310 * The rest needs to be taken more carefully.
1311 */
1312 default:
1313#if 1 /** @todo r=bird: Can you do this properly please. */
1314 /** @todo Try MMIO; quick hack */
1315 if (cbRead <= 4 && IOMMMIORead(pVM, GCPhys, (uint32_t *)pvBuf, cbRead) == VINF_SUCCESS)
1316 goto end;
1317#endif
1318
1319 /** @todo fix me later. */
1320 AssertReleaseMsgFailed(("Unknown read at %VGp size %d implement the complex physical reading case %x\n",
1321 GCPhys, cbRead,
1322 pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM))); /** @todo PAGE FLAGS */
1323 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1324 break;
1325 }
1326 }
1327 cbRead -= cb;
1328 off += cb;
1329 pvBuf = (char *)pvBuf + cb;
1330 }
1331
1332 GCPhys = pRam->GCPhysLast + 1;
1333 }
1334 else
1335 {
1336 LogFlow(("PGMPhysRead: Unassigned %VGp size=%d\n", GCPhys, cbRead));
1337
1338 /*
1339 * Unassigned address space.
1340 */
1341 size_t cb;
1342 if ( !pRam
1343 || (cb = pRam->GCPhys - GCPhys) >= cbRead)
1344 {
1345 memset(pvBuf, 0, cbRead);
1346 goto end;
1347 }
1348
1349 memset(pvBuf, 0, cb);
1350 cbRead -= cb;
1351 pvBuf = (char *)pvBuf + cb;
1352 GCPhys += cb;
1353 }
1354 }
1355end:
1356#ifdef IN_RING3
1357 if (fGrabbedLock)
1358 pgmUnlock(pVM);
1359#endif
1360 return;
1361}
1362
1363/**
1364 * Write to physical memory.
1365 *
1366 * This API respects access handlers and MMIO. Use PGMPhysReadGCPhys() if you
1367 * want to ignore those.
1368 *
1369 * @param pVM VM Handle.
1370 * @param GCPhys Physical address to write to.
1371 * @param pvBuf What to write.
1372 * @param cbWrite How many bytes to write.
1373 */
1374PGMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
1375{
1376#ifdef IN_RING3
1377 bool fGrabbedLock = false;
1378#endif
1379
1380 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
1381 AssertMsg(cbWrite > 0, ("don't even think about writing zero bytes!\n"));
1382 if (cbWrite == 0)
1383 return;
1384
1385 LogFlow(("PGMPhysWrite: %VGp %d\n", GCPhys, cbWrite));
1386
1387#ifdef IN_RING3
1388 if (!VM_IS_EMT(pVM))
1389 {
1390 pgmLock(pVM);
1391 fGrabbedLock = true;
1392 }
1393#endif
1394 /*
1395 * Copy loop on ram ranges.
1396 */
1397 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1398 for (;;)
1399 {
1400 /* Find range. */
1401 while (pRam && GCPhys > pRam->GCPhysLast)
1402 pRam = CTXALLSUFF(pRam->pNext);
1403 /* Inside range or not? */
1404 if (pRam && GCPhys >= pRam->GCPhys)
1405 {
1406 /*
1407 * Must work our way thru this page by page.
1408 */
1409 unsigned off = GCPhys - pRam->GCPhys;
1410 while (off < pRam->cb)
1411 {
1412 unsigned iPage = off >> PAGE_SHIFT;
1413 PPGMPAGE pPage = &pRam->aPages[iPage];
1414
1415 /* Physical chunk in dynamically allocated range not present? */
1416 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1417 {
1418 int rc;
1419#ifdef IN_RING3
1420 if (fGrabbedLock)
1421 {
1422 pgmUnlock(pVM);
1423 rc = pgmr3PhysGrowRange(pVM, GCPhys);
1424 if (rc == VINF_SUCCESS)
1425 PGMPhysWrite(pVM, GCPhys, pvBuf, cbWrite); /* try again; can't assume pRam is still valid (paranoia) */
1426 return;
1427 }
1428 rc = pgmr3PhysGrowRange(pVM, GCPhys);
1429#else
1430 rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
1431#endif
1432 if (rc != VINF_SUCCESS)
1433 goto end;
1434 }
1435
1436 size_t cb;
1437 /* temporary hack, will reogranize is later. */
1438 /*
1439 * Virtual handlers
1440 */
1441 if ( PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
1442 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1443 {
1444 if (PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
1445 {
1446 /*
1447 * Physical write handler + virtual write handler.
1448 * Consider this a quick workaround for the CSAM + shadow caching problem.
1449 *
1450 * We hand it to the shadow caching first since it requires the unchanged
1451 * data. CSAM will have to put up with it already being changed.
1452 */
1453 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1454 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1455#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1456 /* 1. The physical handler */
1457 PPGMPHYSHANDLER pPhysNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
1458 if (pPhysNode && pPhysNode->pfnHandlerR3)
1459 {
1460 size_t cbRange = pPhysNode->Core.KeyLast - GCPhys + 1;
1461 if (cbRange < cb)
1462 cb = cbRange;
1463 if (cb > cbWrite)
1464 cb = cbWrite;
1465
1466 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1467
1468 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1469 rc = pPhysNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pPhysNode->pvUserR3);
1470 }
1471
1472 /* 2. The virtual handler (will see incorrect data) */
1473 PPGMVIRTHANDLER pVirtNode;
1474 unsigned iPage;
1475 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirtNode, &iPage);
1476 if (VBOX_SUCCESS(rc2) && pVirtNode->pfnHandlerHC)
1477 {
1478 size_t cbRange = pVirtNode->Core.KeyLast - GCPhys + 1;
1479 if (cbRange < cb)
1480 cb = cbRange;
1481 if (cb > cbWrite)
1482 cb = cbWrite;
1483 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirtNode->GCPtr & PAGE_BASE_GC_MASK)
1484 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1485
1486 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1487
1488 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1489 rc2 = pVirtNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
1490 if ( ( rc2 != VINF_PGM_HANDLER_DO_DEFAULT
1491 && rc == VINF_PGM_HANDLER_DO_DEFAULT)
1492 || ( VBOX_FAILURE(rc2)
1493 && VBOX_SUCCESS(rc)))
1494 rc = rc2;
1495 }
1496#endif /* IN_RING3 */
1497 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1498 {
1499#ifdef IN_GC
1500 void *pvDst = NULL;
1501 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst);
1502 pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
1503#else
1504 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1505#endif
1506 if (cb >= cbWrite)
1507 {
1508 memcpy(pvDst, pvBuf, cbWrite);
1509 goto end;
1510 }
1511 memcpy(pvDst, pvBuf, cb);
1512 }
1513 else if (cb >= cbWrite)
1514 goto end;
1515 }
1516 else
1517 {
1518 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1519 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1520#ifdef IN_RING3
1521/** @todo deal with this in GC and R0! */
1522 /* Search the whole tree for matching physical addresses (rather expensive!) */
1523 PPGMVIRTHANDLER pNode;
1524 unsigned iPage;
1525 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1526 if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerHC)
1527 {
1528 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1529 if (cbRange < cb)
1530 cb = cbRange;
1531 if (cb > cbWrite)
1532 cb = cbWrite;
1533 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->GCPtr & PAGE_BASE_GC_MASK)
1534 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1535
1536 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1537
1538 /** @tode Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1539 rc = pNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
1540 }
1541#endif /* IN_RING3 */
1542 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1543 {
1544#ifdef IN_GC
1545 void *pvDst = NULL;
1546 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst);
1547 pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
1548#else
1549 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1550#endif
1551 if (cb >= cbWrite)
1552 {
1553 memcpy(pvDst, pvBuf, cbWrite);
1554 goto end;
1555 }
1556 memcpy(pvDst, pvBuf, cb);
1557 }
1558 else if (cb >= cbWrite)
1559 goto end;
1560 }
1561 }
1562 /*
1563 * Physical handler.
1564 */
1565 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE)
1566 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1567 {
1568 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1569 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1570#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1571 /* find and call the handler */
1572 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
1573 if (pNode && pNode->pfnHandlerR3)
1574 {
1575 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1576 if (cbRange < cb)
1577 cb = cbRange;
1578 if (cb > cbWrite)
1579 cb = cbWrite;
1580
1581 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1582
1583 /** @todo Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1584 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pNode->pvUserR3);
1585 }
1586#endif /* IN_RING3 */
1587 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1588 {
1589#ifdef IN_GC
1590 void *pvDst = NULL;
1591 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst);
1592 pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
1593#else
1594 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1595#endif
1596 if (cb >= cbWrite)
1597 {
1598 memcpy(pvDst, pvBuf, cbWrite);
1599 goto end;
1600 }
1601 memcpy(pvDst, pvBuf, cb);
1602 }
1603 else if (cb >= cbWrite)
1604 goto end;
1605 }
1606 else
1607 {
1608 /** @todo r=bird: missing MM_RAM_FLAGS_ROM here, we shall not allow anyone to overwrite the ROM! */
1609 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */
1610 {
1611 /*
1612 * Normal memory, MMIO2 or writable shadow ROM.
1613 */
1614 case 0:
1615 case MM_RAM_FLAGS_MMIO2:
1616 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* shadow rom */
1617 {
1618#ifdef IN_GC
1619 void *pvDst = NULL;
1620 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst);
1621 pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
1622#else
1623 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1624#endif
1625 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1626 if (cb >= cbWrite)
1627 {
1628#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1629 if (cbWrite <= 4 && !fGrabbedLock /* i.e. EMT */)
1630 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphyswritecache, GCPhys, (uint8_t*)pvDst);
1631#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1632 memcpy(pvDst, pvBuf, cbWrite);
1633 goto end;
1634 }
1635 memcpy(pvDst, pvBuf, cb);
1636 break;
1637 }
1638
1639 /*
1640 * All reserved, nothing there.
1641 */
1642 case MM_RAM_FLAGS_RESERVED:
1643 case MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2:
1644 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1645 if (cb >= cbWrite)
1646 goto end;
1647 break;
1648
1649
1650 /*
1651 * The rest needs to be taken more carefully.
1652 */
1653 default:
1654#if 1 /** @todo r=bird: Can you do this properly please. */
1655 /** @todo Try MMIO; quick hack */
1656 if (cbWrite <= 4 && IOMMMIOWrite(pVM, GCPhys, *(uint32_t *)pvBuf, cbWrite) == VINF_SUCCESS)
1657 goto end;
1658#endif
1659
1660 /** @todo fix me later. */
1661 AssertReleaseMsgFailed(("Unknown write at %VGp size %d implement the complex physical writing case %x\n",
1662 GCPhys, cbWrite,
1663 (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)))); /** @todo PAGE FLAGS */
1664 /* skip the write */
1665 cb = cbWrite;
1666 break;
1667 }
1668 }
1669
1670 cbWrite -= cb;
1671 off += cb;
1672 pvBuf = (const char *)pvBuf + cb;
1673 }
1674
1675 GCPhys = pRam->GCPhysLast + 1;
1676 }
1677 else
1678 {
1679 /*
1680 * Unassigned address space.
1681 */
1682 size_t cb;
1683 if ( !pRam
1684 || (cb = pRam->GCPhys - GCPhys) >= cbWrite)
1685 goto end;
1686
1687 cbWrite -= cb;
1688 pvBuf = (const char *)pvBuf + cb;
1689 GCPhys += cb;
1690 }
1691 }
1692end:
1693#ifdef IN_RING3
1694 if (fGrabbedLock)
1695 pgmUnlock(pVM);
1696#endif
1697 return;
1698}
1699
1700#ifndef IN_GC /* Ring 0 & 3 only */
1701
1702/**
1703 * Read from guest physical memory by GC physical address, bypassing
1704 * MMIO and access handlers.
1705 *
1706 * @returns VBox status.
1707 * @param pVM VM handle.
1708 * @param pvDst The destination address.
1709 * @param GCPhysSrc The source address (GC physical address).
1710 * @param cb The number of bytes to read.
1711 */
1712PGMDECL(int) PGMPhysReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
1713{
1714 /*
1715 * Anything to be done?
1716 */
1717 if (!cb)
1718 return VINF_SUCCESS;
1719
1720 /*
1721 * Loop ram ranges.
1722 */
1723 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1724 pRam;
1725 pRam = CTXALLSUFF(pRam->pNext))
1726 {
1727 RTGCPHYS off = GCPhysSrc - pRam->GCPhys;
1728 if (off < pRam->cb)
1729 {
1730 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
1731 {
1732 /* Copy page by page as we're not dealing with a linear HC range. */
1733 for (;;)
1734 {
1735 /* convert */
1736 void *pvSrc;
1737 int rc = pgmRamGCPhys2HCPtrWithRange(pVM, pRam, GCPhysSrc, &pvSrc);
1738 if (VBOX_FAILURE(rc))
1739 return rc;
1740
1741 /* copy */
1742 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPhysSrc & PAGE_OFFSET_MASK);
1743 if (cbRead >= cb)
1744 {
1745 memcpy(pvDst, pvSrc, cb);
1746 return VINF_SUCCESS;
1747 }
1748 memcpy(pvDst, pvSrc, cbRead);
1749
1750 /* next */
1751 cb -= cbRead;
1752 pvDst = (uint8_t *)pvDst + cbRead;
1753 GCPhysSrc += cbRead;
1754 }
1755 }
1756 else if (pRam->pvHC)
1757 {
1758 /* read */
1759 size_t cbRead = pRam->cb - off;
1760 if (cbRead >= cb)
1761 {
1762 memcpy(pvDst, (uint8_t *)pRam->pvHC + off, cb);
1763 return VINF_SUCCESS;
1764 }
1765 memcpy(pvDst, (uint8_t *)pRam->pvHC + off, cbRead);
1766
1767 /* next */
1768 cb -= cbRead;
1769 pvDst = (uint8_t *)pvDst + cbRead;
1770 GCPhysSrc += cbRead;
1771 }
1772 else
1773 return VERR_PGM_PHYS_PAGE_RESERVED;
1774 }
1775 else if (GCPhysSrc < pRam->GCPhysLast)
1776 break;
1777 }
1778 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1779}
1780
1781
1782/**
1783 * Write to guest physical memory referenced by GC pointer.
1784 * Write memory to GC physical address in guest physical memory.
1785 *
1786 * This will bypass MMIO and access handlers.
1787 *
1788 * @returns VBox status.
1789 * @param pVM VM handle.
1790 * @param GCPhysDst The GC physical address of the destination.
1791 * @param pvSrc The source buffer.
1792 * @param cb The number of bytes to write.
1793 */
1794PGMDECL(int) PGMPhysWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
1795{
1796 /*
1797 * Anything to be done?
1798 */
1799 if (!cb)
1800 return VINF_SUCCESS;
1801
1802 LogFlow(("PGMPhysWriteGCPhys: %VGp %d\n", GCPhysDst, cb));
1803
1804 /*
1805 * Loop ram ranges.
1806 */
1807 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1808 pRam;
1809 pRam = CTXALLSUFF(pRam->pNext))
1810 {
1811 RTGCPHYS off = GCPhysDst - pRam->GCPhys;
1812 if (off < pRam->cb)
1813 {
1814#ifdef VBOX_WITH_NEW_PHYS_CODE
1815/** @todo PGMRamGCPhys2HCPtrWithRange. */
1816#endif
1817 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
1818 {
1819 /* Copy page by page as we're not dealing with a linear HC range. */
1820 for (;;)
1821 {
1822 /* convert */
1823 void *pvDst;
1824 int rc = pgmRamGCPhys2HCPtrWithRange(pVM, pRam, GCPhysDst, &pvDst);
1825 if (VBOX_FAILURE(rc))
1826 return rc;
1827
1828 /* copy */
1829 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPhysDst & PAGE_OFFSET_MASK);
1830 if (cbWrite >= cb)
1831 {
1832 memcpy(pvDst, pvSrc, cb);
1833 return VINF_SUCCESS;
1834 }
1835 memcpy(pvDst, pvSrc, cbWrite);
1836
1837 /* next */
1838 cb -= cbWrite;
1839 pvSrc = (uint8_t *)pvSrc + cbWrite;
1840 GCPhysDst += cbWrite;
1841 }
1842 }
1843 else if (pRam->pvHC)
1844 {
1845 /* write */
1846 size_t cbWrite = pRam->cb - off;
1847 if (cbWrite >= cb)
1848 {
1849 memcpy((uint8_t *)pRam->pvHC + off, pvSrc, cb);
1850 return VINF_SUCCESS;
1851 }
1852 memcpy((uint8_t *)pRam->pvHC + off, pvSrc, cbWrite);
1853
1854 /* next */
1855 cb -= cbWrite;
1856 GCPhysDst += cbWrite;
1857 pvSrc = (uint8_t *)pvSrc + cbWrite;
1858 }
1859 else
1860 return VERR_PGM_PHYS_PAGE_RESERVED;
1861 }
1862 else if (GCPhysDst < pRam->GCPhysLast)
1863 break;
1864 }
1865 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1866}
1867
1868
1869/**
1870 * Read from guest physical memory referenced by GC pointer.
1871 *
1872 * This function uses the current CR3/CR0/CR4 of the guest and will
1873 * bypass access handlers and not set any accessed bits.
1874 *
1875 * @returns VBox status.
1876 * @param pVM VM handle.
1877 * @param pvDst The destination address.
1878 * @param GCPtrSrc The source address (GC pointer).
1879 * @param cb The number of bytes to read.
1880 */
1881PGMDECL(int) PGMPhysReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
1882{
1883 /*
1884 * Anything to do?
1885 */
1886 if (!cb)
1887 return VINF_SUCCESS;
1888
1889 /*
1890 * Optimize reads within a single page.
1891 */
1892 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
1893 {
1894 void *pvSrc;
1895 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrSrc, &pvSrc);
1896 if (VBOX_FAILURE(rc))
1897 return rc;
1898 memcpy(pvDst, pvSrc, cb);
1899 return VINF_SUCCESS;
1900 }
1901
1902 /*
1903 * Page by page.
1904 */
1905 for (;;)
1906 {
1907 /* convert */
1908 void *pvSrc;
1909 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrSrc, &pvSrc);
1910 if (VBOX_FAILURE(rc))
1911 return rc;
1912
1913 /* copy */
1914 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
1915 if (cbRead >= cb)
1916 {
1917 memcpy(pvDst, pvSrc, cb);
1918 return VINF_SUCCESS;
1919 }
1920 memcpy(pvDst, pvSrc, cbRead);
1921
1922 /* next */
1923 cb -= cbRead;
1924 pvDst = (uint8_t *)pvDst + cbRead;
1925 GCPtrSrc += cbRead;
1926 }
1927}
1928
1929
1930/**
1931 * Write to guest physical memory referenced by GC pointer.
1932 *
1933 * This function uses the current CR3/CR0/CR4 of the guest and will
1934 * bypass access handlers and not set dirty or accessed bits.
1935 *
1936 * @returns VBox status.
1937 * @param pVM VM handle.
1938 * @param GCPtrDst The destination address (GC pointer).
1939 * @param pvSrc The source address.
1940 * @param cb The number of bytes to write.
1941 */
1942PGMDECL(int) PGMPhysWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
1943{
1944 /*
1945 * Anything to do?
1946 */
1947 if (!cb)
1948 return VINF_SUCCESS;
1949
1950 LogFlow(("PGMPhysWriteGCPtr: %VGv %d\n", GCPtrDst, cb));
1951
1952 /*
1953 * Optimize writes within a single page.
1954 */
1955 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
1956 {
1957 void *pvDst;
1958 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
1959 if (VBOX_FAILURE(rc))
1960 return rc;
1961 memcpy(pvDst, pvSrc, cb);
1962 return VINF_SUCCESS;
1963 }
1964
1965 /*
1966 * Page by page.
1967 */
1968 for (;;)
1969 {
1970 /* convert */
1971 void *pvDst;
1972 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
1973 if (VBOX_FAILURE(rc))
1974 return rc;
1975
1976 /* copy */
1977 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
1978 if (cbWrite >= cb)
1979 {
1980 memcpy(pvDst, pvSrc, cb);
1981 return VINF_SUCCESS;
1982 }
1983 memcpy(pvDst, pvSrc, cbWrite);
1984
1985 /* next */
1986 cb -= cbWrite;
1987 pvSrc = (uint8_t *)pvSrc + cbWrite;
1988 GCPtrDst += cbWrite;
1989 }
1990}
1991
1992/**
1993 * Read from guest physical memory referenced by GC pointer.
1994 *
1995 * This function uses the current CR3/CR0/CR4 of the guest and will
1996 * respect access handlers and set accessed bits.
1997 *
1998 * @returns VBox status.
1999 * @param pVM VM handle.
2000 * @param pvDst The destination address.
2001 * @param GCPtrSrc The source address (GC pointer).
2002 * @param cb The number of bytes to read.
2003 */
2004/** @todo use the PGMPhysReadGCPtr name and rename the unsafe one to something appropriate */
2005PGMDECL(int) PGMPhysReadGCPtrSafe(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2006{
2007 RTGCPHYS GCPhys;
2008 int rc;
2009
2010 /*
2011 * Anything to do?
2012 */
2013 if (!cb)
2014 return VINF_SUCCESS;
2015
2016 LogFlow(("PGMPhysReadGCPtrSafe: %VGv %d\n", GCPtrSrc, cb));
2017
2018 /*
2019 * Optimize reads within a single page.
2020 */
2021 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2022 {
2023 /* Convert virtual to physical address */
2024 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
2025 AssertRCReturn(rc, rc);
2026
2027 /* mark the guest page as accessed. */
2028 rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2029 AssertRC(rc);
2030
2031 PGMPhysRead(pVM, GCPhys, pvDst, cb);
2032 return VINF_SUCCESS;
2033 }
2034
2035 /*
2036 * Page by page.
2037 */
2038 for (;;)
2039 {
2040 /* Convert virtual to physical address */
2041 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
2042 AssertRCReturn(rc, rc);
2043
2044 /* mark the guest page as accessed. */
2045 int rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2046 AssertRC(rc);
2047
2048 /* copy */
2049 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2050 if (cbRead >= cb)
2051 {
2052 PGMPhysRead(pVM, GCPhys, pvDst, cb);
2053 return VINF_SUCCESS;
2054 }
2055 PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
2056
2057 /* next */
2058 cb -= cbRead;
2059 pvDst = (uint8_t *)pvDst + cbRead;
2060 GCPtrSrc += cbRead;
2061 }
2062}
2063
2064
2065/**
2066 * Write to guest physical memory referenced by GC pointer.
2067 *
2068 * This function uses the current CR3/CR0/CR4 of the guest and will
2069 * respect access handlers and set dirty and accessed bits.
2070 *
2071 * @returns VBox status.
2072 * @param pVM VM handle.
2073 * @param GCPtrDst The destination address (GC pointer).
2074 * @param pvSrc The source address.
2075 * @param cb The number of bytes to write.
2076 */
2077/** @todo use the PGMPhysWriteGCPtr name and rename the unsafe one to something appropriate */
2078PGMDECL(int) PGMPhysWriteGCPtrSafe(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2079{
2080 RTGCPHYS GCPhys;
2081 int rc;
2082
2083 /*
2084 * Anything to do?
2085 */
2086 if (!cb)
2087 return VINF_SUCCESS;
2088
2089 LogFlow(("PGMPhysWriteGCPtrSafe: %VGv %d\n", GCPtrDst, cb));
2090
2091 /*
2092 * Optimize writes within a single page.
2093 */
2094 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2095 {
2096 /* Convert virtual to physical address */
2097 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
2098 AssertRCReturn(rc, rc);
2099
2100 /* mark the guest page as accessed and dirty. */
2101 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2102 AssertRC(rc);
2103
2104 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2105 return VINF_SUCCESS;
2106 }
2107
2108 /*
2109 * Page by page.
2110 */
2111 for (;;)
2112 {
2113 /* Convert virtual to physical address */
2114 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
2115 AssertRCReturn(rc, rc);
2116
2117 /* mark the guest page as accessed and dirty. */
2118 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2119 AssertRC(rc);
2120
2121 /* copy */
2122 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2123 if (cbWrite >= cb)
2124 {
2125 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2126 return VINF_SUCCESS;
2127 }
2128 PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
2129
2130 /* next */
2131 cb -= cbWrite;
2132 pvSrc = (uint8_t *)pvSrc + cbWrite;
2133 GCPtrDst += cbWrite;
2134 }
2135}
2136
2137/**
2138 * Write to guest physical memory referenced by GC pointer and update the PTE.
2139 *
2140 * This function uses the current CR3/CR0/CR4 of the guest and will
2141 * bypass access handlers and set any dirty and accessed bits in the PTE.
2142 *
2143 * If you don't want to set the dirty bit, use PGMPhysWriteGCPtr().
2144 *
2145 * @returns VBox status.
2146 * @param pVM VM handle.
2147 * @param GCPtrDst The destination address (GC pointer).
2148 * @param pvSrc The source address.
2149 * @param cb The number of bytes to write.
2150 */
2151PGMDECL(int) PGMPhysWriteGCPtrDirty(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2152{
2153 /*
2154 * Anything to do?
2155 */
2156 if (!cb)
2157 return VINF_SUCCESS;
2158
2159 /*
2160 * Optimize writes within a single page.
2161 */
2162 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2163 {
2164 void *pvDst;
2165 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
2166 if (VBOX_FAILURE(rc))
2167 return rc;
2168 memcpy(pvDst, pvSrc, cb);
2169 rc = PGMGstModifyPage(pVM, GCPtrDst, cb, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2170 AssertRC(rc);
2171 return VINF_SUCCESS;
2172 }
2173
2174 /*
2175 * Page by page.
2176 */
2177 for (;;)
2178 {
2179 /* convert */
2180 void *pvDst;
2181 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
2182 if (VBOX_FAILURE(rc))
2183 return rc;
2184
2185 /* mark the guest page as accessed and dirty. */
2186 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2187 AssertRC(rc);
2188
2189 /* copy */
2190 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2191 if (cbWrite >= cb)
2192 {
2193 memcpy(pvDst, pvSrc, cb);
2194 return VINF_SUCCESS;
2195 }
2196 memcpy(pvDst, pvSrc, cbWrite);
2197
2198 /* next */
2199 cb -= cbWrite;
2200 GCPtrDst += cbWrite;
2201 pvSrc = (char *)pvSrc + cbWrite;
2202 }
2203}
2204
2205#endif /* !IN_GC */
2206
2207
2208
2209/**
2210 * Performs a read of guest virtual memory for instruction emulation.
2211 *
2212 * This will check permissions, raise exceptions and update the access bits.
2213 *
2214 * The current implementation will bypass all access handlers. It may later be
2215 * changed to at least respect MMIO.
2216 *
2217 *
2218 * @returns VBox status code suitable to scheduling.
2219 * @retval VINF_SUCCESS if the read was performed successfully.
2220 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
2221 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
2222 *
2223 * @param pVM The VM handle.
2224 * @param pCtxCore The context core.
2225 * @param pvDst Where to put the bytes we've read.
2226 * @param GCPtrSrc The source address.
2227 * @param cb The number of bytes to read. Not more than a page.
2228 *
2229 * @remark This function will dynamically map physical pages in GC. This may unmap
2230 * mappings done by the caller. Be careful!
2231 */
2232PGMDECL(int) PGMPhysInterpretedRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
2233{
2234 Assert(cb <= PAGE_SIZE);
2235
2236/** @todo r=bird: This isn't perfect!
2237 * -# It's not checking for reserved bits being 1.
2238 * -# It's not correctly dealing with the access bit.
2239 * -# It's not respecting MMIO memory or any other access handlers.
2240 */
2241 /*
2242 * 1. Translate virtual to physical. This may fault.
2243 * 2. Map the physical address.
2244 * 3. Do the read operation.
2245 * 4. Set access bits if required.
2246 */
2247 int rc;
2248 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
2249 if (cb <= cb1)
2250 {
2251 /*
2252 * Not crossing pages.
2253 */
2254 RTGCPHYS GCPhys;
2255 uint64_t fFlags;
2256 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys);
2257 if (VBOX_SUCCESS(rc))
2258 {
2259 /** @todo we should check reserved bits ... */
2260 void *pvSrc;
2261 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
2262 switch (rc)
2263 {
2264 case VINF_SUCCESS:
2265Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
2266 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
2267 break;
2268 case VERR_PGM_PHYS_PAGE_RESERVED:
2269 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2270 memset(pvDst, 0, cb);
2271 break;
2272 default:
2273 return rc;
2274 }
2275
2276 /** @todo access bit emulation isn't 100% correct. */
2277 if (!(fFlags & X86_PTE_A))
2278 {
2279 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2280 AssertRC(rc);
2281 }
2282 return VINF_SUCCESS;
2283 }
2284 }
2285 else
2286 {
2287 /*
2288 * Crosses pages.
2289 */
2290 unsigned cb2 = cb - cb1;
2291 uint64_t fFlags1;
2292 RTGCPHYS GCPhys1;
2293 uint64_t fFlags2;
2294 RTGCPHYS GCPhys2;
2295 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1);
2296 if (VBOX_SUCCESS(rc))
2297 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
2298 if (VBOX_SUCCESS(rc))
2299 {
2300 /** @todo we should check reserved bits ... */
2301AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%VGv\n", cb, cb1, cb2, GCPtrSrc));
2302 void *pvSrc1;
2303 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
2304 switch (rc)
2305 {
2306 case VINF_SUCCESS:
2307 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
2308 break;
2309 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2310 memset(pvDst, 0, cb1);
2311 break;
2312 default:
2313 return rc;
2314 }
2315
2316 void *pvSrc2;
2317 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
2318 switch (rc)
2319 {
2320 case VINF_SUCCESS:
2321 memcpy((uint8_t *)pvDst + cb2, pvSrc2, cb2);
2322 break;
2323 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2324 memset((uint8_t *)pvDst + cb2, 0, cb2);
2325 break;
2326 default:
2327 return rc;
2328 }
2329
2330 if (!(fFlags1 & X86_PTE_A))
2331 {
2332 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2333 AssertRC(rc);
2334 }
2335 if (!(fFlags2 & X86_PTE_A))
2336 {
2337 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2338 AssertRC(rc);
2339 }
2340 return VINF_SUCCESS;
2341 }
2342 }
2343
2344 /*
2345 * Raise a #PF.
2346 */
2347 uint32_t uErr;
2348
2349 /* Get the current privilege level. */
2350 uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore);
2351 switch (rc)
2352 {
2353 case VINF_SUCCESS:
2354 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
2355 break;
2356
2357 case VERR_PAGE_NOT_PRESENT:
2358 case VERR_PAGE_TABLE_NOT_PRESENT:
2359 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
2360 break;
2361
2362 default:
2363 AssertMsgFailed(("rc=%Vrc GCPtrSrc=%VGv cb=%#x\n", rc, GCPtrSrc, cb));
2364 return rc;
2365 }
2366 Log(("PGMPhysInterpretedRead: GCPtrSrc=%VGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
2367 return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
2368}
2369
2370/// @todo PGMDECL(int) PGMPhysInterpretedWrite(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2371
2372
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette