VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 9657

Last change on this file since 9657 was 9649, checked in by vboxsync, 17 years ago

Added CPUMIsGuestInLongMode.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 81.7 KB
Line 
1/* $Id: PGMAllPhys.cpp 9649 2008-06-12 09:48:30Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @def PGM_IGNORE_RAM_FLAGS_RESERVED
23 * Don't respect the MM_RAM_FLAGS_RESERVED flag when converting to HC addresses.
24 *
25 * Since this flag is currently incorrectly kept set for ROM regions we will
26 * have to ignore it for now so we don't break stuff.
27 *
28 * @todo this has been fixed now I believe, remove this hack.
29 */
30#define PGM_IGNORE_RAM_FLAGS_RESERVED
31
32
33/*******************************************************************************
34* Header Files *
35*******************************************************************************/
36#define LOG_GROUP LOG_GROUP_PGM_PHYS
37#include <VBox/pgm.h>
38#include <VBox/trpm.h>
39#include <VBox/vmm.h>
40#include <VBox/iom.h>
41#include <VBox/em.h>
42#include <VBox/rem.h>
43#include "PGMInternal.h"
44#include <VBox/vm.h>
45#include <VBox/param.h>
46#include <VBox/err.h>
47#include <iprt/assert.h>
48#include <iprt/string.h>
49#include <iprt/asm.h>
50#include <VBox/log.h>
51#ifdef IN_RING3
52# include <iprt/thread.h>
53#endif
54
55
56
57#ifndef IN_RING3
58
59/**
60 * \#PF Handler callback for Guest ROM range write access.
61 * We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
62 *
63 * @returns VBox status code (appropritate for trap handling and GC return).
64 * @param pVM VM Handle.
65 * @param uErrorCode CPU Error code.
66 * @param pRegFrame Trap register frame.
67 * @param pvFault The fault address (cr2).
68 * @param GCPhysFault The GC physical address corresponding to pvFault.
69 * @param pvUser User argument. Pointer to the ROM range structure.
70 */
71PGMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser)
72{
73 int rc;
74#ifdef VBOX_WITH_NEW_PHYS_CODE
75 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
76 uint32_t iPage = GCPhysFault - pRom->GCPhys;
77 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
78 switch (pRom->aPages[iPage].enmProt)
79 {
80 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
81 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
82 {
83#endif
84 /*
85 * If it's a simple instruction which doesn't change the cpu state
86 * we will simply skip it. Otherwise we'll have to defer it to REM.
87 */
88 uint32_t cbOp;
89 DISCPUSTATE Cpu;
90 rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, &cbOp);
91 if ( RT_SUCCESS(rc)
92 && Cpu.mode == CPUMODE_32BIT
93 && !(Cpu.prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG)))
94 {
95 switch (Cpu.opcode)
96 {
97 /** @todo Find other instructions we can safely skip, possibly
98 * adding this kind of detection to DIS or EM. */
99 case OP_MOV:
100 pRegFrame->eip += cbOp;
101 STAM_COUNTER_INC(&pVM->pgm.s.StatGCGuestROMWriteHandled);
102 return VINF_SUCCESS;
103 }
104 }
105 else if (RT_UNLIKELY(rc == VERR_INTERNAL_ERROR))
106 return rc;
107#ifdef VBOX_WITH_NEW_PHYS_CODE
108 break;
109 }
110
111 case PGMROMPROT_READ_RAM_WRITE_RAM:
112 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
113 AssertRC(rc);
114 case PGMROMPROT_READ_ROM_WRITE_RAM:
115 /* Handle it in ring-3 because it's *way* easier there. */
116 break;
117
118 default:
119 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
120 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
121 VERR_INTERNAL_ERROR);
122 }
123#endif
124
125 STAM_COUNTER_INC(&pVM->pgm.s.StatGCGuestROMWriteUnhandled);
126 return VINF_EM_RAW_EMULATE_INSTR;
127}
128
129#endif /* IN_RING3 */
130
131/**
132 * Checks if Address Gate 20 is enabled or not.
133 *
134 * @returns true if enabled.
135 * @returns false if disabled.
136 * @param pVM VM handle.
137 */
138PGMDECL(bool) PGMPhysIsA20Enabled(PVM pVM)
139{
140 LogFlow(("PGMPhysIsA20Enabled %d\n", pVM->pgm.s.fA20Enabled));
141 return !!pVM->pgm.s.fA20Enabled ; /* stupid MS compiler doesn't trust me. */
142}
143
144
145/**
146 * Validates a GC physical address.
147 *
148 * @returns true if valid.
149 * @returns false if invalid.
150 * @param pVM The VM handle.
151 * @param GCPhys The physical address to validate.
152 */
153PGMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
154{
155 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
156 return pPage != NULL;
157}
158
159
160/**
161 * Checks if a GC physical address is a normal page,
162 * i.e. not ROM, MMIO or reserved.
163 *
164 * @returns true if normal.
165 * @returns false if invalid, ROM, MMIO or reserved page.
166 * @param pVM The VM handle.
167 * @param GCPhys The physical address to check.
168 */
169PGMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
170{
171 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
172 return pPage
173 && !(pPage->HCPhys & (MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2));
174}
175
176
177/**
178 * Converts a GC physical address to a HC physical address.
179 *
180 * @returns VINF_SUCCESS on success.
181 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
182 * page but has no physical backing.
183 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
184 * GC physical address.
185 *
186 * @param pVM The VM handle.
187 * @param GCPhys The GC physical address to convert.
188 * @param pHCPhys Where to store the HC physical address on success.
189 */
190PGMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
191{
192 PPGMPAGE pPage;
193 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
194 if (VBOX_FAILURE(rc))
195 return rc;
196
197#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
198 if (RT_UNLIKELY(pPage->HCPhys & MM_RAM_FLAGS_RESERVED)) /** @todo PAGE FLAGS */
199 return VERR_PGM_PHYS_PAGE_RESERVED;
200#endif
201
202 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
203 return VINF_SUCCESS;
204}
205
206
207/**
208 * Invalidates the GC page mapping TLB.
209 *
210 * @param pVM The VM handle.
211 */
212PDMDECL(void) PGMPhysInvalidatePageGCMapTLB(PVM pVM)
213{
214 /* later */
215 NOREF(pVM);
216}
217
218
219/**
220 * Invalidates the ring-0 page mapping TLB.
221 *
222 * @param pVM The VM handle.
223 */
224PDMDECL(void) PGMPhysInvalidatePageR0MapTLB(PVM pVM)
225{
226 PGMPhysInvalidatePageR3MapTLB(pVM);
227}
228
229
230/**
231 * Invalidates the ring-3 page mapping TLB.
232 *
233 * @param pVM The VM handle.
234 */
235PDMDECL(void) PGMPhysInvalidatePageR3MapTLB(PVM pVM)
236{
237 pgmLock(pVM);
238 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
239 {
240 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
241 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
242 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
243 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
244 }
245 pgmUnlock(pVM);
246}
247
248
249/**
250 * Frees the specified RAM page.
251 *
252 * This is used by ballooning and remapping MMIO2.
253 *
254 * @param pVM Pointer to the shared VM structure.
255 * @param pPage Pointer to the page structure.
256 * @param GCPhys The guest physical address of the page, if applicable.
257 */
258void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
259{
260 AssertFatal(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
261
262 /** @todo implement this... */
263 AssertFatalFailed();
264}
265
266
267
268/**
269 * Makes sure that there is at least one handy page ready for use.
270 *
271 * This will also take the appropriate actions when reaching water-marks.
272 *
273 * @returns The following VBox status codes.
274 * @retval VINF_SUCCESS on success.
275 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
276 *
277 * @param pVM The VM handle.
278 *
279 * @remarks Must be called from within the PGM critical section. It may
280 * nip back to ring-3/0 in some cases.
281 */
282static int pgmPhysEnsureHandyPage(PVM pVM)
283{
284 /** @remarks
285 * low-water mark logic for R0 & GC:
286 * - 75%: Set FF.
287 * - 50%: Force return to ring-3 ASAP.
288 *
289 * For ring-3 there is a little problem wrt to the recompiler, so:
290 * - 75%: Set FF.
291 * - 50%: Try allocate pages; on failure we'll force REM to quite ASAP.
292 *
293 * The basic idea is that we should be able to get out of any situation with
294 * only 50% of handy pages remaining.
295 *
296 * At the moment we'll not adjust the number of handy pages relative to the
297 * actual VM RAM committment, that's too much work for now.
298 */
299 Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
300 if ( !pVM->pgm.s.cHandyPages
301#ifdef IN_RING3
302 || pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2 /* 50% */
303#endif
304 )
305 {
306 Log(("PGM: cHandyPages=%u out of %u -> allocate more\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
307#ifdef IN_RING3
308 int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
309#elif defined(IN_RING0)
310 /** @todo call PGMR0PhysAllocateHandyPages directly - need to make sure we can call kernel code first and deal with the seeding fallback. */
311 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
312#else
313 int rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES, 0);
314#endif
315 if (RT_UNLIKELY(rc != VINF_SUCCESS))
316 {
317 Assert(rc == VINF_EM_NO_MEMORY);
318 if (!pVM->pgm.s.cHandyPages)
319 {
320 LogRel(("PGM: no more handy pages!\n"));
321 return VERR_EM_NO_MEMORY;
322 }
323 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
324#ifdef IN_RING3
325 REMR3NotifyFF(pVM);
326#else
327 VM_FF_SET(pVM, VM_FF_TO_R3);
328#endif
329 }
330 Assert(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages));
331 }
332 else if (pVM->pgm.s.cHandyPages - 1 <= (RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 4) * 3) /* 75% */
333 {
334 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
335#ifndef IN_RING3
336 if (pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages) / 2)
337 {
338 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages - 1 <= RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
339 VM_FF_SET(pVM, VM_FF_TO_R3);
340 }
341#endif
342 }
343
344 return VINF_SUCCESS;
345}
346
347
348/**
349 * Replace a zero or shared page with new page that we can write to.
350 *
351 * @returns The following VBox status codes.
352 * @retval VINF_SUCCESS on success, pPage is modified.
353 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
354 *
355 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
356 *
357 * @param pVM The VM address.
358 * @param pPage The physical page tracking structure. This will
359 * be modified on success.
360 * @param GCPhys The address of the page.
361 *
362 * @remarks Must be called from within the PGM critical section. It may
363 * nip back to ring-3/0 in some cases.
364 *
365 * @remarks This function shouldn't really fail, however if it does
366 * it probably means we've screwed up the size of the amount
367 * and/or the low-water mark of handy pages. Or, that some
368 * device I/O is causing a lot of pages to be allocated while
369 * while the host is in a low-memory condition.
370 */
371int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
372{
373 /*
374 * Ensure that we've got a page handy, take it and use it.
375 */
376 int rc = pgmPhysEnsureHandyPage(pVM);
377 if (VBOX_FAILURE(rc))
378 {
379 Assert(rc == VERR_EM_NO_MEMORY);
380 return rc;
381 }
382 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%d %RGp\n", PGM_PAGE_GET_STATE(pPage), GCPhys));
383 Assert(!PGM_PAGE_IS_RESERVED(pPage));
384 Assert(!PGM_PAGE_IS_MMIO(pPage));
385
386 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
387 Assert(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages));
388 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
389 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
390 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
391 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
392
393 /*
394 * There are one or two action to be taken the next time we allocate handy pages:
395 * - Tell the GMM (global memory manager) what the page is being used for.
396 * (Speeds up replacement operations - sharing and defragmenting.)
397 * - If the current backing is shared, it must be freed.
398 */
399 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
400 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys;
401
402 if (PGM_PAGE_IS_SHARED(pPage))
403 {
404 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
405 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
406 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
407
408 Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
409 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
410 STAM_COUNTER_INC(&pVM->pgm.s.StatPageReplaceShared);
411 pVM->pgm.s.cSharedPages--;
412/** @todo err.. what about copying the page content? */
413 }
414 else
415 {
416 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
417 STAM_COUNTER_INC(&pVM->pgm.s.StatPageReplaceZero);
418 pVM->pgm.s.cZeroPages--;
419/** @todo verify that the handy page is zero! */
420 }
421
422 /*
423 * Do the PGMPAGE modifications.
424 */
425 pVM->pgm.s.cPrivatePages++;
426 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
427 PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
428 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
429
430 return VINF_SUCCESS;
431}
432
433
434/**
435 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
436 *
437 * @returns VBox status code.
438 * @retval VINF_SUCCESS on success.
439 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
440 *
441 * @param pVM The VM address.
442 * @param pPage The physical page tracking structure.
443 * @param GCPhys The address of the page.
444 *
445 * @remarks Called from within the PGM critical section.
446 */
447int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
448{
449 switch (PGM_PAGE_GET_STATE(pPage))
450 {
451 case PGM_PAGE_STATE_WRITE_MONITORED:
452 PGM_PAGE_SET_WRITTEN_TO(pPage);
453 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
454 /* fall thru */
455 default: /* to shut up GCC */
456 case PGM_PAGE_STATE_ALLOCATED:
457 return VINF_SUCCESS;
458
459 /*
460 * Zero pages can be dummy pages for MMIO or reserved memory,
461 * so we need to check the flags before joining cause with
462 * shared page replacement.
463 */
464 case PGM_PAGE_STATE_ZERO:
465 if ( PGM_PAGE_IS_MMIO(pPage)
466 || PGM_PAGE_IS_RESERVED(pPage))
467 return VERR_PGM_PHYS_PAGE_RESERVED;
468 /* fall thru */
469 case PGM_PAGE_STATE_SHARED:
470 return pgmPhysAllocPage(pVM, pPage, GCPhys);
471 }
472}
473
474
475/**
476 * Maps a page into the current virtual address space so it can be accessed.
477 *
478 * @returns VBox status code.
479 * @retval VINF_SUCCESS on success.
480 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
481 *
482 * @param pVM The VM address.
483 * @param pPage The physical page tracking structure.
484 * @param GCPhys The address of the page.
485 * @param ppMap Where to store the address of the mapping tracking structure.
486 * @param ppv Where to store the mapping address of the page. The page
487 * offset is masked off!
488 *
489 * @remarks Called from within the PGM critical section.
490 */
491int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
492{
493#ifdef IN_GC
494 /*
495 * Just some sketchy GC code.
496 */
497 *ppMap = NULL;
498 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
499 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
500 return PGMGCDynMapHCPage(pVM, HCPhys, ppv);
501
502#else /* IN_RING3 || IN_RING0 */
503
504 /*
505 * Find/make Chunk TLB entry for the mapping chunk.
506 */
507 PPGMCHUNKR3MAP pMap;
508 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
509 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
510 if (pTlbe->idChunk == idChunk)
511 {
512 STAM_COUNTER_INC(&pVM->pgm.s.StatChunkR3MapTlbHits);
513 pMap = pTlbe->pChunk;
514 }
515 else if (idChunk != NIL_GMM_CHUNKID)
516 {
517 STAM_COUNTER_INC(&pVM->pgm.s.StatChunkR3MapTlbMisses);
518
519 /*
520 * Find the chunk, map it if necessary.
521 */
522 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
523 if (!pMap)
524 {
525#ifdef IN_RING0
526 int rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_MAP_CHUNK, idChunk);
527 AssertRCReturn(rc, rc);
528 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
529 Assert(pMap);
530#else
531 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
532 if (VBOX_FAILURE(rc))
533 return rc;
534#endif
535 }
536
537 /*
538 * Enter it into the Chunk TLB.
539 */
540 pTlbe->idChunk = idChunk;
541 pTlbe->pChunk = pMap;
542 pMap->iAge = 0;
543 }
544 else
545 {
546 Assert(PGM_PAGE_IS_ZERO(pPage));
547 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
548 *ppMap = NULL;
549 return VINF_SUCCESS;
550 }
551
552 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
553 *ppMap = pMap;
554 return VINF_SUCCESS;
555#endif /* IN_RING3 */
556}
557
558
559#ifndef IN_GC
560/**
561 * Load a guest page into the ring-3 physical TLB.
562 *
563 * @returns VBox status code.
564 * @retval VINF_SUCCESS on success
565 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
566 * @param pPGM The PGM instance pointer.
567 * @param GCPhys The guest physical address in question.
568 */
569int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys)
570{
571 STAM_COUNTER_INC(&pPGM->CTXMID(StatPage,MapTlbMisses));
572
573 /*
574 * Find the ram range.
575 * 99.8% of requests are expected to be in the first range.
576 */
577 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
578 RTGCPHYS off = GCPhys - pRam->GCPhys;
579 if (RT_UNLIKELY(off >= pRam->cb))
580 {
581 do
582 {
583 pRam = CTXALLSUFF(pRam->pNext);
584 if (!pRam)
585 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
586 off = GCPhys - pRam->GCPhys;
587 } while (off >= pRam->cb);
588 }
589
590 /*
591 * Map the page.
592 * Make a special case for the zero page as it is kind of special.
593 */
594 PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT];
595 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
596 if (!PGM_PAGE_IS_ZERO(pPage))
597 {
598 void *pv;
599 PPGMPAGEMAP pMap;
600 int rc = pgmPhysPageMap(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
601 if (VBOX_FAILURE(rc))
602 return rc;
603 pTlbe->pMap = pMap;
604 pTlbe->pv = pv;
605 }
606 else
607 {
608 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
609 pTlbe->pMap = NULL;
610 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
611 }
612 pTlbe->pPage = pPage;
613 return VINF_SUCCESS;
614}
615#endif /* !IN_GC */
616
617
618/**
619 * Requests the mapping of a guest page into the current context.
620 *
621 * This API should only be used for very short term, as it will consume
622 * scarse resources (R0 and GC) in the mapping cache. When you're done
623 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
624 *
625 * This API will assume your intention is to write to the page, and will
626 * therefore replace shared and zero pages. If you do not intend to modify
627 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
628 *
629 * @returns VBox status code.
630 * @retval VINF_SUCCESS on success.
631 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
632 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
633 *
634 * @param pVM The VM handle.
635 * @param GCPhys The guest physical address of the page that should be mapped.
636 * @param ppv Where to store the address corresponding to GCPhys.
637 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
638 *
639 * @remark Avoid calling this API from within critical sections (other than
640 * the PGM one) because of the deadlock risk.
641 * @thread Any thread.
642 */
643PGMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
644{
645#ifdef VBOX_WITH_NEW_PHYS_CODE
646#ifdef IN_GC
647 /* Until a physical TLB is implemented for GC, let PGMGCDynMapGCPageEx handle it. */
648 return PGMGCDynMapGCPageEx(pVM, GCPhys, ppv);
649#else
650 int rc = pgmLock(pVM);
651 AssertRCReturn(rc);
652
653 /*
654 * Query the Physical TLB entry for the page (may fail).
655 */
656 PGMPHYSTLBE pTlbe;
657 int rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
658 if (RT_SUCCESS(rc))
659 {
660 /*
661 * If the page is shared, the zero page, or being write monitored
662 * it must be converted to an page that's writable if possible.
663 */
664 PPGMPAGE pPage = pTlbe->pPage;
665 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
666 {
667 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
668 /** @todo stuff is missing here! */
669 }
670 if (RT_SUCCESS(rc))
671 {
672 /*
673 * Now, just perform the locking and calculate the return address.
674 */
675 PPGMPAGEMAP pMap = pTlbe->pMap;
676 pMap->cRefs++;
677 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
678 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
679 {
680 AssertMsgFailed(("%VGp is entering permanent locked state!\n", GCPhys));
681 pMap->cRefs++; /* Extra ref to prevent it from going away. */
682 }
683
684 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
685 pLock->pvPage = pPage;
686 pLock->pvMap = pMap;
687 }
688 }
689
690 pgmUnlock(pVM);
691 return rc;
692
693#endif /* IN_RING3 || IN_RING0 */
694
695#else
696 /*
697 * Temporary fallback code.
698 */
699# ifdef IN_GC
700 return PGMGCDynMapGCPageEx(pVM, GCPhys, ppv);
701# else
702 return PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1, ppv);
703# endif
704#endif
705}
706
707
708/**
709 * Requests the mapping of a guest page into the current context.
710 *
711 * This API should only be used for very short term, as it will consume
712 * scarse resources (R0 and GC) in the mapping cache. When you're done
713 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
714 *
715 * @returns VBox status code.
716 * @retval VINF_SUCCESS on success.
717 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
718 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
719 *
720 * @param pVM The VM handle.
721 * @param GCPhys The guest physical address of the page that should be mapped.
722 * @param ppv Where to store the address corresponding to GCPhys.
723 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
724 *
725 * @remark Avoid calling this API from within critical sections (other than
726 * the PGM one) because of the deadlock risk.
727 * @thread Any thread.
728 */
729PGMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
730{
731 /** @todo implement this */
732 return PGMPhysGCPhys2CCPtr(pVM, GCPhys, (void **)ppv, pLock);
733}
734
735
736/**
737 * Requests the mapping of a guest page given by virtual address into the current context.
738 *
739 * This API should only be used for very short term, as it will consume
740 * scarse resources (R0 and GC) in the mapping cache. When you're done
741 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
742 *
743 * This API will assume your intention is to write to the page, and will
744 * therefore replace shared and zero pages. If you do not intend to modify
745 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
746 *
747 * @returns VBox status code.
748 * @retval VINF_SUCCESS on success.
749 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
750 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
751 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
752 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
753 *
754 * @param pVM The VM handle.
755 * @param GCPhys The guest physical address of the page that should be mapped.
756 * @param ppv Where to store the address corresponding to GCPhys.
757 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
758 *
759 * @remark Avoid calling this API from within critical sections (other than
760 * the PGM one) because of the deadlock risk.
761 * @thread EMT
762 */
763PGMDECL(int) PGMPhysGCPtr2CCPtr(PVM pVM, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
764{
765 RTGCPHYS GCPhys;
766 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
767 if (VBOX_SUCCESS(rc))
768 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, pLock);
769 return rc;
770}
771
772
773/**
774 * Requests the mapping of a guest page given by virtual address into the current context.
775 *
776 * This API should only be used for very short term, as it will consume
777 * scarse resources (R0 and GC) in the mapping cache. When you're done
778 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
779 *
780 * @returns VBox status code.
781 * @retval VINF_SUCCESS on success.
782 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
783 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
784 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
785 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
786 *
787 * @param pVM The VM handle.
788 * @param GCPhys The guest physical address of the page that should be mapped.
789 * @param ppv Where to store the address corresponding to GCPhys.
790 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
791 *
792 * @remark Avoid calling this API from within critical sections (other than
793 * the PGM one) because of the deadlock risk.
794 * @thread EMT
795 */
796PGMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVM pVM, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
797{
798 RTGCPHYS GCPhys;
799 int rc = PGMPhysGCPtr2GCPhys(pVM, GCPtr, &GCPhys);
800 if (VBOX_SUCCESS(rc))
801 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, pLock);
802 return rc;
803}
804
805
806/**
807 * Release the mapping of a guest page.
808 *
809 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
810 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
811 *
812 * @param pVM The VM handle.
813 * @param pLock The lock structure initialized by the mapping function.
814 */
815PGMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
816{
817#ifdef VBOX_WITH_NEW_PHYS_CODE
818#ifdef IN_GC
819 /* currently nothing to do here. */
820/* --- postponed
821#elif defined(IN_RING0)
822*/
823
824#else /* IN_RING3 */
825 pgmLock(pVM);
826
827 PPGMPAGE pPage = (PPGMPAGE)pLock->pvPage;
828 Assert(pPage->cLocks >= 1);
829 if (pPage->cLocks != PGM_PAGE_MAX_LOCKS)
830 pPage->cLocks--;
831
832 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pLock->pvChunk;
833 Assert(pChunk->cRefs >= 1);
834 pChunk->cRefs--;
835 pChunk->iAge = 0;
836
837 pgmUnlock(pVM);
838#endif /* IN_RING3 */
839#else
840 NOREF(pVM);
841 NOREF(pLock);
842#endif
843}
844
845
846/**
847 * Converts a GC physical address to a HC pointer.
848 *
849 * @returns VINF_SUCCESS on success.
850 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
851 * page but has no physical backing.
852 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
853 * GC physical address.
854 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
855 * a dynamic ram chunk boundary
856 * @param pVM The VM handle.
857 * @param GCPhys The GC physical address to convert.
858 * @param cbRange Physical range
859 * @param pHCPtr Where to store the HC pointer on success.
860 */
861PGMDECL(int) PGMPhysGCPhys2HCPtr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTHCPTR pHCPtr)
862{
863#ifdef VBOX_WITH_NEW_PHYS_CODE
864 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
865#endif
866
867 if ((GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK) != ((GCPhys+cbRange-1) & PGM_DYNAMIC_CHUNK_BASE_MASK))
868 {
869 AssertMsgFailed(("%VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
870 LogRel(("PGMPhysGCPhys2HCPtr %VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys+cbRange));
871 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
872 }
873
874 PPGMRAMRANGE pRam;
875 PPGMPAGE pPage;
876 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
877 if (VBOX_FAILURE(rc))
878 return rc;
879
880#ifndef PGM_IGNORE_RAM_FLAGS_RESERVED
881 if (RT_UNLIKELY(PGM_PAGE_IS_RESERVED(pPage)))
882 return VERR_PGM_PHYS_PAGE_RESERVED;
883#endif
884
885 RTGCPHYS off = GCPhys - pRam->GCPhys;
886 if (RT_UNLIKELY(off + cbRange > pRam->cb))
887 {
888 AssertMsgFailed(("%VGp - %VGp crosses a chunk boundary!!\n", GCPhys, GCPhys + cbRange));
889 return VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY;
890 }
891
892 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
893 {
894 unsigned iChunk = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
895 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
896 }
897 else if (RT_LIKELY(pRam->pvHC))
898 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
899 else
900 return VERR_PGM_PHYS_PAGE_RESERVED;
901 return VINF_SUCCESS;
902}
903
904
905/**
906 * Converts a guest pointer to a GC physical address.
907 *
908 * This uses the current CR3/CR0/CR4 of the guest.
909 *
910 * @returns VBox status code.
911 * @param pVM The VM Handle
912 * @param GCPtr The guest pointer to convert.
913 * @param pGCPhys Where to store the GC physical address.
914 */
915PGMDECL(int) PGMPhysGCPtr2GCPhys(PVM pVM, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
916{
917 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
918 if (pGCPhys && VBOX_SUCCESS(rc))
919 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
920 return rc;
921}
922
923
924/**
925 * Converts a guest pointer to a HC physical address.
926 *
927 * This uses the current CR3/CR0/CR4 of the guest.
928 *
929 * @returns VBox status code.
930 * @param pVM The VM Handle
931 * @param GCPtr The guest pointer to convert.
932 * @param pHCPhys Where to store the HC physical address.
933 */
934PGMDECL(int) PGMPhysGCPtr2HCPhys(PVM pVM, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
935{
936 RTGCPHYS GCPhys;
937 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
938 if (VBOX_SUCCESS(rc))
939 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
940 return rc;
941}
942
943
944/**
945 * Converts a guest pointer to a HC pointer.
946 *
947 * This uses the current CR3/CR0/CR4 of the guest.
948 *
949 * @returns VBox status code.
950 * @param pVM The VM Handle
951 * @param GCPtr The guest pointer to convert.
952 * @param pHCPtr Where to store the HC virtual address.
953 */
954PGMDECL(int) PGMPhysGCPtr2HCPtr(PVM pVM, RTGCPTR GCPtr, PRTHCPTR pHCPtr)
955{
956#ifdef VBOX_WITH_NEW_PHYS_CODE
957 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
958#endif
959
960 RTGCPHYS GCPhys;
961 int rc = PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
962 if (VBOX_SUCCESS(rc))
963 rc = PGMPhysGCPhys2HCPtr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
964 return rc;
965}
966
967
968/**
969 * Converts a guest virtual address to a HC pointer by specfied CR3 and flags.
970 *
971 * @returns VBox status code.
972 * @param pVM The VM Handle
973 * @param GCPtr The guest pointer to convert.
974 * @param cr3 The guest CR3.
975 * @param fFlags Flags used for interpreting the PD correctly: X86_CR4_PSE and X86_CR4_PAE
976 * @param pHCPtr Where to store the HC pointer.
977 *
978 * @remark This function is used by the REM at a time where PGM could
979 * potentially not be in sync. It could also be used by a
980 * future DBGF API to cpu state independent conversions.
981 */
982PGMDECL(int) PGMPhysGCPtr2HCPtrByGstCR3(PVM pVM, RTGCPTR GCPtr, uint64_t cr3, unsigned fFlags, PRTHCPTR pHCPtr)
983{
984#ifdef VBOX_WITH_NEW_PHYS_CODE
985 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
986#endif
987 /*
988 * PAE or 32-bit?
989 */
990 Assert(!CPUMIsGuestInLongMode(pVM));
991
992 int rc;
993 if (!(fFlags & X86_CR4_PAE))
994 {
995 PX86PD pPD;
996 rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
997 if (VBOX_SUCCESS(rc))
998 {
999 X86PDE Pde = pPD->a[(RTGCUINTPTR)GCPtr >> X86_PD_SHIFT];
1000 if (Pde.n.u1Present)
1001 {
1002 if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
1003 { /* (big page) */
1004 rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE4M_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_4M_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1005 }
1006 else
1007 { /* (normal page) */
1008 PX86PT pPT;
1009 rc = PGM_GCPHYS_2_PTR(pVM, Pde.u & X86_PDE_PG_MASK, &pPT);
1010 if (VBOX_SUCCESS(rc))
1011 {
1012 X86PTE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_SHIFT) & X86_PT_MASK];
1013 if (Pte.n.u1Present)
1014 return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1015 rc = VERR_PAGE_NOT_PRESENT;
1016 }
1017 }
1018 }
1019 else
1020 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1021 }
1022 }
1023 else
1024 {
1025 /** @todo long mode! */
1026 Assert(PGMGetGuestMode(pVM) < PGMMODE_AMD64);
1027
1028 PX86PDPT pPdpt;
1029 rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, &pPdpt);
1030 if (VBOX_SUCCESS(rc))
1031 {
1032 X86PDPE Pdpe = pPdpt->a[((RTGCUINTPTR)GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
1033 if (Pdpe.n.u1Present)
1034 {
1035 PX86PDPAE pPD;
1036 rc = PGM_GCPHYS_2_PTR(pVM, Pdpe.u & X86_PDPE_PG_MASK, &pPD);
1037 if (VBOX_SUCCESS(rc))
1038 {
1039 X86PDEPAE Pde = pPD->a[((RTGCUINTPTR)GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK];
1040 if (Pde.n.u1Present)
1041 {
1042 if ((fFlags & X86_CR4_PSE) && Pde.b.u1Size)
1043 { /* (big page) */
1044 rc = PGMPhysGCPhys2HCPtr(pVM, (Pde.u & X86_PDE2M_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & X86_PAGE_2M_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1045 }
1046 else
1047 { /* (normal page) */
1048 PX86PTPAE pPT;
1049 rc = PGM_GCPHYS_2_PTR(pVM, (Pde.u & X86_PDE_PAE_PG_MASK), &pPT);
1050 if (VBOX_SUCCESS(rc))
1051 {
1052 X86PTEPAE Pte = pPT->a[((RTGCUINTPTR)GCPtr >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK];
1053 if (Pte.n.u1Present)
1054 return PGMPhysGCPhys2HCPtr(pVM, (Pte.u & X86_PTE_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pHCPtr);
1055 rc = VERR_PAGE_NOT_PRESENT;
1056 }
1057 }
1058 }
1059 else
1060 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1061 }
1062 }
1063 else
1064 rc = VERR_PAGE_TABLE_NOT_PRESENT;
1065 }
1066 }
1067 return rc;
1068}
1069
1070
1071#undef LOG_GROUP
1072#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
1073
1074
1075#ifdef IN_RING3
1076/**
1077 * Cache PGMPhys memory access
1078 *
1079 * @param pVM VM Handle.
1080 * @param pCache Cache structure pointer
1081 * @param GCPhys GC physical address
1082 * @param pbHC HC pointer corresponding to physical page
1083 *
1084 * @thread EMT.
1085 */
1086static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbHC)
1087{
1088 uint32_t iCacheIndex;
1089
1090 Assert(VM_IS_EMT(pVM));
1091
1092 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
1093 pbHC = (uint8_t *)PAGE_ADDRESS(pbHC);
1094
1095 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
1096
1097 ASMBitSet(&pCache->aEntries, iCacheIndex);
1098
1099 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
1100 pCache->Entry[iCacheIndex].pbHC = pbHC;
1101}
1102#endif
1103
1104/**
1105 * Read physical memory.
1106 *
1107 * This API respects access handlers and MMIO. Use PGMPhysReadGCPhys() if you
1108 * want to ignore those.
1109 *
1110 * @param pVM VM Handle.
1111 * @param GCPhys Physical address start reading from.
1112 * @param pvBuf Where to put the read bits.
1113 * @param cbRead How many bytes to read.
1114 */
1115PGMDECL(void) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
1116{
1117#ifdef IN_RING3
1118 bool fGrabbedLock = false;
1119#endif
1120
1121 AssertMsg(cbRead > 0, ("don't even think about reading zero bytes!\n"));
1122 if (cbRead == 0)
1123 return;
1124
1125 LogFlow(("PGMPhysRead: %VGp %d\n", GCPhys, cbRead));
1126
1127#ifdef IN_RING3
1128 if (!VM_IS_EMT(pVM))
1129 {
1130 pgmLock(pVM);
1131 fGrabbedLock = true;
1132 }
1133#endif
1134
1135 /*
1136 * Copy loop on ram ranges.
1137 */
1138 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1139 for (;;)
1140 {
1141 /* Find range. */
1142 while (pRam && GCPhys > pRam->GCPhysLast)
1143 pRam = CTXALLSUFF(pRam->pNext);
1144 /* Inside range or not? */
1145 if (pRam && GCPhys >= pRam->GCPhys)
1146 {
1147 /*
1148 * Must work our way thru this page by page.
1149 */
1150 RTGCPHYS off = GCPhys - pRam->GCPhys;
1151 while (off < pRam->cb)
1152 {
1153 unsigned iPage = off >> PAGE_SHIFT;
1154 PPGMPAGE pPage = &pRam->aPages[iPage];
1155 size_t cb;
1156
1157 /* Physical chunk in dynamically allocated range not present? */
1158 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1159 {
1160 /* Treat it as reserved; return zeros */
1161 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1162 if (cb >= cbRead)
1163 {
1164 memset(pvBuf, 0, cbRead);
1165 goto end;
1166 }
1167 memset(pvBuf, 0, cb);
1168 }
1169 /* temp hacks, will be reorganized. */
1170 /*
1171 * Physical handler.
1172 */
1173 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_ALL)
1174 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1175 {
1176 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1177 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1178
1179#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1180 /* find and call the handler */
1181 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
1182 if (pNode && pNode->pfnHandlerR3)
1183 {
1184 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1185 if (cbRange < cb)
1186 cb = cbRange;
1187 if (cb > cbRead)
1188 cb = cbRead;
1189
1190 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1191
1192 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1193 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pNode->pvUserR3);
1194 }
1195#endif /* IN_RING3 */
1196 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1197 {
1198#ifdef IN_GC
1199 void *pvSrc = NULL;
1200 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc);
1201 pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
1202#else
1203 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1204#endif
1205
1206 if (cb >= cbRead)
1207 {
1208 memcpy(pvBuf, pvSrc, cbRead);
1209 goto end;
1210 }
1211 memcpy(pvBuf, pvSrc, cb);
1212 }
1213 else if (cb >= cbRead)
1214 goto end;
1215 }
1216 /*
1217 * Virtual handlers.
1218 */
1219 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) >= PGM_PAGE_HNDL_VIRT_STATE_ALL)
1220 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1221 {
1222 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1223 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1224#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1225 /* Search the whole tree for matching physical addresses (rather expensive!) */
1226 PPGMVIRTHANDLER pNode;
1227 unsigned iPage;
1228 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1229 if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerHC)
1230 {
1231 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1232 if (cbRange < cb)
1233 cb = cbRange;
1234 if (cb > cbRead)
1235 cb = cbRead;
1236 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->GCPtr & PAGE_BASE_GC_MASK)
1237 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1238
1239 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1240
1241 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1242 rc = pNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, 0);
1243 }
1244#endif /* IN_RING3 */
1245 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1246 {
1247#ifdef IN_GC
1248 void *pvSrc = NULL;
1249 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc);
1250 pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
1251#else
1252 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1253#endif
1254 if (cb >= cbRead)
1255 {
1256 memcpy(pvBuf, pvSrc, cbRead);
1257 goto end;
1258 }
1259 memcpy(pvBuf, pvSrc, cb);
1260 }
1261 else if (cb >= cbRead)
1262 goto end;
1263 }
1264 else
1265 {
1266 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM)) /** @todo PAGE FLAGS */
1267 {
1268 /*
1269 * Normal memory or ROM.
1270 */
1271 case 0:
1272 case MM_RAM_FLAGS_ROM:
1273 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_RESERVED:
1274 //case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* = shadow */ - //MMIO2 isn't in the mask.
1275 case MM_RAM_FLAGS_MMIO2: // MMIO2 isn't in the mask.
1276 {
1277#ifdef IN_GC
1278 void *pvSrc = NULL;
1279 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvSrc);
1280 pvSrc = (char *)pvSrc + (off & PAGE_OFFSET_MASK);
1281#else
1282 void *pvSrc = PGMRAMRANGE_GETHCPTR(pRam, off)
1283#endif
1284 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1285 if (cb >= cbRead)
1286 {
1287#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1288 if (cbRead <= 4 && !fGrabbedLock /* i.e. EMT */)
1289 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphysreadcache, GCPhys, (uint8_t*)pvSrc);
1290#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1291 memcpy(pvBuf, pvSrc, cbRead);
1292 goto end;
1293 }
1294 memcpy(pvBuf, pvSrc, cb);
1295 break;
1296 }
1297
1298 /*
1299 * All reserved, nothing there.
1300 */
1301 case MM_RAM_FLAGS_RESERVED:
1302 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1303 if (cb >= cbRead)
1304 {
1305 memset(pvBuf, 0, cbRead);
1306 goto end;
1307 }
1308 memset(pvBuf, 0, cb);
1309 break;
1310
1311 /*
1312 * The rest needs to be taken more carefully.
1313 */
1314 default:
1315#if 1 /** @todo r=bird: Can you do this properly please. */
1316 /** @todo Try MMIO; quick hack */
1317 if (cbRead <= 4 && IOMMMIORead(pVM, GCPhys, (uint32_t *)pvBuf, cbRead) == VINF_SUCCESS)
1318 goto end;
1319#endif
1320
1321 /** @todo fix me later. */
1322 AssertReleaseMsgFailed(("Unknown read at %VGp size %d implement the complex physical reading case %x\n",
1323 GCPhys, cbRead,
1324 pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_ROM))); /** @todo PAGE FLAGS */
1325 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1326 break;
1327 }
1328 }
1329 cbRead -= cb;
1330 off += cb;
1331 pvBuf = (char *)pvBuf + cb;
1332 }
1333
1334 GCPhys = pRam->GCPhysLast + 1;
1335 }
1336 else
1337 {
1338 LogFlow(("PGMPhysRead: Unassigned %VGp size=%d\n", GCPhys, cbRead));
1339
1340 /*
1341 * Unassigned address space.
1342 */
1343 size_t cb;
1344 if ( !pRam
1345 || (cb = pRam->GCPhys - GCPhys) >= cbRead)
1346 {
1347 memset(pvBuf, 0, cbRead);
1348 goto end;
1349 }
1350
1351 memset(pvBuf, 0, cb);
1352 cbRead -= cb;
1353 pvBuf = (char *)pvBuf + cb;
1354 GCPhys += cb;
1355 }
1356 }
1357end:
1358#ifdef IN_RING3
1359 if (fGrabbedLock)
1360 pgmUnlock(pVM);
1361#endif
1362 return;
1363}
1364
1365/**
1366 * Write to physical memory.
1367 *
1368 * This API respects access handlers and MMIO. Use PGMPhysReadGCPhys() if you
1369 * want to ignore those.
1370 *
1371 * @param pVM VM Handle.
1372 * @param GCPhys Physical address to write to.
1373 * @param pvBuf What to write.
1374 * @param cbWrite How many bytes to write.
1375 */
1376PGMDECL(void) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
1377{
1378#ifdef IN_RING3
1379 bool fGrabbedLock = false;
1380#endif
1381
1382 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
1383 AssertMsg(cbWrite > 0, ("don't even think about writing zero bytes!\n"));
1384 if (cbWrite == 0)
1385 return;
1386
1387 LogFlow(("PGMPhysWrite: %VGp %d\n", GCPhys, cbWrite));
1388
1389#ifdef IN_RING3
1390 if (!VM_IS_EMT(pVM))
1391 {
1392 pgmLock(pVM);
1393 fGrabbedLock = true;
1394 }
1395#endif
1396 /*
1397 * Copy loop on ram ranges.
1398 */
1399 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1400 for (;;)
1401 {
1402 /* Find range. */
1403 while (pRam && GCPhys > pRam->GCPhysLast)
1404 pRam = CTXALLSUFF(pRam->pNext);
1405 /* Inside range or not? */
1406 if (pRam && GCPhys >= pRam->GCPhys)
1407 {
1408 /*
1409 * Must work our way thru this page by page.
1410 */
1411 unsigned off = GCPhys - pRam->GCPhys;
1412 while (off < pRam->cb)
1413 {
1414 unsigned iPage = off >> PAGE_SHIFT;
1415 PPGMPAGE pPage = &pRam->aPages[iPage];
1416
1417 /* Physical chunk in dynamically allocated range not present? */
1418 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
1419 {
1420 int rc;
1421#ifdef IN_RING3
1422 if (fGrabbedLock)
1423 {
1424 pgmUnlock(pVM);
1425 rc = pgmr3PhysGrowRange(pVM, GCPhys);
1426 if (rc == VINF_SUCCESS)
1427 PGMPhysWrite(pVM, GCPhys, pvBuf, cbWrite); /* try again; can't assume pRam is still valid (paranoia) */
1428 return;
1429 }
1430 rc = pgmr3PhysGrowRange(pVM, GCPhys);
1431#else
1432 rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
1433#endif
1434 if (rc != VINF_SUCCESS)
1435 goto end;
1436 }
1437
1438 size_t cb;
1439 /* temporary hack, will reogranize is later. */
1440 /*
1441 * Virtual handlers
1442 */
1443 if ( PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
1444 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1445 {
1446 if (PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
1447 {
1448 /*
1449 * Physical write handler + virtual write handler.
1450 * Consider this a quick workaround for the CSAM + shadow caching problem.
1451 *
1452 * We hand it to the shadow caching first since it requires the unchanged
1453 * data. CSAM will have to put up with it already being changed.
1454 */
1455 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1456 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1457#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1458 /* 1. The physical handler */
1459 PPGMPHYSHANDLER pPhysNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
1460 if (pPhysNode && pPhysNode->pfnHandlerR3)
1461 {
1462 size_t cbRange = pPhysNode->Core.KeyLast - GCPhys + 1;
1463 if (cbRange < cb)
1464 cb = cbRange;
1465 if (cb > cbWrite)
1466 cb = cbWrite;
1467
1468 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1469
1470 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1471 rc = pPhysNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pPhysNode->pvUserR3);
1472 }
1473
1474 /* 2. The virtual handler (will see incorrect data) */
1475 PPGMVIRTHANDLER pVirtNode;
1476 unsigned iPage;
1477 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirtNode, &iPage);
1478 if (VBOX_SUCCESS(rc2) && pVirtNode->pfnHandlerHC)
1479 {
1480 size_t cbRange = pVirtNode->Core.KeyLast - GCPhys + 1;
1481 if (cbRange < cb)
1482 cb = cbRange;
1483 if (cb > cbWrite)
1484 cb = cbWrite;
1485 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirtNode->GCPtr & PAGE_BASE_GC_MASK)
1486 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1487
1488 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1489
1490 /** @note Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1491 rc2 = pVirtNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
1492 if ( ( rc2 != VINF_PGM_HANDLER_DO_DEFAULT
1493 && rc == VINF_PGM_HANDLER_DO_DEFAULT)
1494 || ( VBOX_FAILURE(rc2)
1495 && VBOX_SUCCESS(rc)))
1496 rc = rc2;
1497 }
1498#endif /* IN_RING3 */
1499 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1500 {
1501#ifdef IN_GC
1502 void *pvDst = NULL;
1503 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst);
1504 pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
1505#else
1506 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1507#endif
1508 if (cb >= cbWrite)
1509 {
1510 memcpy(pvDst, pvBuf, cbWrite);
1511 goto end;
1512 }
1513 memcpy(pvDst, pvBuf, cb);
1514 }
1515 else if (cb >= cbWrite)
1516 goto end;
1517 }
1518 else
1519 {
1520 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1521 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1522#ifdef IN_RING3
1523/** @todo deal with this in GC and R0! */
1524 /* Search the whole tree for matching physical addresses (rather expensive!) */
1525 PPGMVIRTHANDLER pNode;
1526 unsigned iPage;
1527 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pNode, &iPage);
1528 if (VBOX_SUCCESS(rc2) && pNode->pfnHandlerHC)
1529 {
1530 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1531 if (cbRange < cb)
1532 cb = cbRange;
1533 if (cb > cbWrite)
1534 cb = cbWrite;
1535 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pNode->GCPtr & PAGE_BASE_GC_MASK)
1536 + (iPage << PAGE_SHIFT) + (off & PAGE_OFFSET_MASK);
1537
1538 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1539
1540 /** @tode Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1541 rc = pNode->pfnHandlerHC(pVM, (RTGCPTR)GCPtr, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, 0);
1542 }
1543#endif /* IN_RING3 */
1544 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1545 {
1546#ifdef IN_GC
1547 void *pvDst = NULL;
1548 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst);
1549 pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
1550#else
1551 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1552#endif
1553 if (cb >= cbWrite)
1554 {
1555 memcpy(pvDst, pvBuf, cbWrite);
1556 goto end;
1557 }
1558 memcpy(pvDst, pvBuf, cb);
1559 }
1560 else if (cb >= cbWrite)
1561 goto end;
1562 }
1563 }
1564 /*
1565 * Physical handler.
1566 */
1567 else if ( RT_UNLIKELY(PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE)
1568 && !(pPage->HCPhys & MM_RAM_FLAGS_MMIO)) /// @todo PAGE FLAGS
1569 {
1570 int rc = VINF_PGM_HANDLER_DO_DEFAULT;
1571 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1572#ifdef IN_RING3 /** @todo deal with this in GC and R0! */
1573 /* find and call the handler */
1574 PPGMPHYSHANDLER pNode = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.pTreesHC->PhysHandlers, GCPhys);
1575 if (pNode && pNode->pfnHandlerR3)
1576 {
1577 size_t cbRange = pNode->Core.KeyLast - GCPhys + 1;
1578 if (cbRange < cb)
1579 cb = cbRange;
1580 if (cb > cbWrite)
1581 cb = cbWrite;
1582
1583 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1584
1585 /** @todo Dangerous assumption that HC handlers don't do anything that really requires an EMT lock! */
1586 rc = pNode->pfnHandlerR3(pVM, GCPhys, pvDst, (void *)pvBuf, cb, PGMACCESSTYPE_WRITE, pNode->pvUserR3);
1587 }
1588#endif /* IN_RING3 */
1589 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1590 {
1591#ifdef IN_GC
1592 void *pvDst = NULL;
1593 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst);
1594 pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
1595#else
1596 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1597#endif
1598 if (cb >= cbWrite)
1599 {
1600 memcpy(pvDst, pvBuf, cbWrite);
1601 goto end;
1602 }
1603 memcpy(pvDst, pvBuf, cb);
1604 }
1605 else if (cb >= cbWrite)
1606 goto end;
1607 }
1608 else
1609 {
1610 /** @todo r=bird: missing MM_RAM_FLAGS_ROM here, we shall not allow anyone to overwrite the ROM! */
1611 switch (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */
1612 {
1613 /*
1614 * Normal memory, MMIO2 or writable shadow ROM.
1615 */
1616 case 0:
1617 case MM_RAM_FLAGS_MMIO2:
1618 case MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2: /* shadow rom */
1619 {
1620#ifdef IN_GC
1621 void *pvDst = NULL;
1622 PGMGCDynMapHCPage(pVM, PGM_PAGE_GET_HCPHYS(pPage), &pvDst);
1623 pvDst = (char *)pvDst + (off & PAGE_OFFSET_MASK);
1624#else
1625 void *pvDst = PGMRAMRANGE_GETHCPTR(pRam, off)
1626#endif
1627 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1628 if (cb >= cbWrite)
1629 {
1630#if defined(IN_RING3) && defined(PGM_PHYSMEMACCESS_CACHING)
1631 if (cbWrite <= 4 && !fGrabbedLock /* i.e. EMT */)
1632 pgmPhysCacheAdd(pVM, &pVM->pgm.s.pgmphyswritecache, GCPhys, (uint8_t*)pvDst);
1633#endif /* IN_RING3 && PGM_PHYSMEMACCESS_CACHING */
1634 memcpy(pvDst, pvBuf, cbWrite);
1635 goto end;
1636 }
1637 memcpy(pvDst, pvBuf, cb);
1638 break;
1639 }
1640
1641 /*
1642 * All reserved, nothing there.
1643 */
1644 case MM_RAM_FLAGS_RESERVED:
1645 case MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO2:
1646 cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1647 if (cb >= cbWrite)
1648 goto end;
1649 break;
1650
1651
1652 /*
1653 * The rest needs to be taken more carefully.
1654 */
1655 default:
1656#if 1 /** @todo r=bird: Can you do this properly please. */
1657 /** @todo Try MMIO; quick hack */
1658 if (cbWrite <= 4 && IOMMMIOWrite(pVM, GCPhys, *(uint32_t *)pvBuf, cbWrite) == VINF_SUCCESS)
1659 goto end;
1660#endif
1661
1662 /** @todo fix me later. */
1663 AssertReleaseMsgFailed(("Unknown write at %VGp size %d implement the complex physical writing case %x\n",
1664 GCPhys, cbWrite,
1665 (pPage->HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)))); /** @todo PAGE FLAGS */
1666 /* skip the write */
1667 cb = cbWrite;
1668 break;
1669 }
1670 }
1671
1672 cbWrite -= cb;
1673 off += cb;
1674 pvBuf = (const char *)pvBuf + cb;
1675 }
1676
1677 GCPhys = pRam->GCPhysLast + 1;
1678 }
1679 else
1680 {
1681 /*
1682 * Unassigned address space.
1683 */
1684 size_t cb;
1685 if ( !pRam
1686 || (cb = pRam->GCPhys - GCPhys) >= cbWrite)
1687 goto end;
1688
1689 cbWrite -= cb;
1690 pvBuf = (const char *)pvBuf + cb;
1691 GCPhys += cb;
1692 }
1693 }
1694end:
1695#ifdef IN_RING3
1696 if (fGrabbedLock)
1697 pgmUnlock(pVM);
1698#endif
1699 return;
1700}
1701
1702#ifndef IN_GC /* Ring 0 & 3 only */
1703
1704/**
1705 * Read from guest physical memory by GC physical address, bypassing
1706 * MMIO and access handlers.
1707 *
1708 * @returns VBox status.
1709 * @param pVM VM handle.
1710 * @param pvDst The destination address.
1711 * @param GCPhysSrc The source address (GC physical address).
1712 * @param cb The number of bytes to read.
1713 */
1714PGMDECL(int) PGMPhysReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
1715{
1716 /*
1717 * Anything to be done?
1718 */
1719 if (!cb)
1720 return VINF_SUCCESS;
1721
1722 /*
1723 * Loop ram ranges.
1724 */
1725 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1726 pRam;
1727 pRam = CTXALLSUFF(pRam->pNext))
1728 {
1729 RTGCPHYS off = GCPhysSrc - pRam->GCPhys;
1730 if (off < pRam->cb)
1731 {
1732 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
1733 {
1734 /* Copy page by page as we're not dealing with a linear HC range. */
1735 for (;;)
1736 {
1737 /* convert */
1738 void *pvSrc;
1739 int rc = pgmRamGCPhys2HCPtrWithRange(pVM, pRam, GCPhysSrc, &pvSrc);
1740 if (VBOX_FAILURE(rc))
1741 return rc;
1742
1743 /* copy */
1744 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPhysSrc & PAGE_OFFSET_MASK);
1745 if (cbRead >= cb)
1746 {
1747 memcpy(pvDst, pvSrc, cb);
1748 return VINF_SUCCESS;
1749 }
1750 memcpy(pvDst, pvSrc, cbRead);
1751
1752 /* next */
1753 cb -= cbRead;
1754 pvDst = (uint8_t *)pvDst + cbRead;
1755 GCPhysSrc += cbRead;
1756 }
1757 }
1758 else if (pRam->pvHC)
1759 {
1760 /* read */
1761 size_t cbRead = pRam->cb - off;
1762 if (cbRead >= cb)
1763 {
1764 memcpy(pvDst, (uint8_t *)pRam->pvHC + off, cb);
1765 return VINF_SUCCESS;
1766 }
1767 memcpy(pvDst, (uint8_t *)pRam->pvHC + off, cbRead);
1768
1769 /* next */
1770 cb -= cbRead;
1771 pvDst = (uint8_t *)pvDst + cbRead;
1772 GCPhysSrc += cbRead;
1773 }
1774 else
1775 return VERR_PGM_PHYS_PAGE_RESERVED;
1776 }
1777 else if (GCPhysSrc < pRam->GCPhysLast)
1778 break;
1779 }
1780 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1781}
1782
1783
1784/**
1785 * Write to guest physical memory referenced by GC pointer.
1786 * Write memory to GC physical address in guest physical memory.
1787 *
1788 * This will bypass MMIO and access handlers.
1789 *
1790 * @returns VBox status.
1791 * @param pVM VM handle.
1792 * @param GCPhysDst The GC physical address of the destination.
1793 * @param pvSrc The source buffer.
1794 * @param cb The number of bytes to write.
1795 */
1796PGMDECL(int) PGMPhysWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
1797{
1798 /*
1799 * Anything to be done?
1800 */
1801 if (!cb)
1802 return VINF_SUCCESS;
1803
1804 LogFlow(("PGMPhysWriteGCPhys: %VGp %d\n", GCPhysDst, cb));
1805
1806 /*
1807 * Loop ram ranges.
1808 */
1809 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1810 pRam;
1811 pRam = CTXALLSUFF(pRam->pNext))
1812 {
1813 RTGCPHYS off = GCPhysDst - pRam->GCPhys;
1814 if (off < pRam->cb)
1815 {
1816#ifdef VBOX_WITH_NEW_PHYS_CODE
1817/** @todo PGMRamGCPhys2HCPtrWithRange. */
1818#endif
1819 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
1820 {
1821 /* Copy page by page as we're not dealing with a linear HC range. */
1822 for (;;)
1823 {
1824 /* convert */
1825 void *pvDst;
1826 int rc = pgmRamGCPhys2HCPtrWithRange(pVM, pRam, GCPhysDst, &pvDst);
1827 if (VBOX_FAILURE(rc))
1828 return rc;
1829
1830 /* copy */
1831 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPhysDst & PAGE_OFFSET_MASK);
1832 if (cbWrite >= cb)
1833 {
1834 memcpy(pvDst, pvSrc, cb);
1835 return VINF_SUCCESS;
1836 }
1837 memcpy(pvDst, pvSrc, cbWrite);
1838
1839 /* next */
1840 cb -= cbWrite;
1841 pvSrc = (uint8_t *)pvSrc + cbWrite;
1842 GCPhysDst += cbWrite;
1843 }
1844 }
1845 else if (pRam->pvHC)
1846 {
1847 /* write */
1848 size_t cbWrite = pRam->cb - off;
1849 if (cbWrite >= cb)
1850 {
1851 memcpy((uint8_t *)pRam->pvHC + off, pvSrc, cb);
1852 return VINF_SUCCESS;
1853 }
1854 memcpy((uint8_t *)pRam->pvHC + off, pvSrc, cbWrite);
1855
1856 /* next */
1857 cb -= cbWrite;
1858 GCPhysDst += cbWrite;
1859 pvSrc = (uint8_t *)pvSrc + cbWrite;
1860 }
1861 else
1862 return VERR_PGM_PHYS_PAGE_RESERVED;
1863 }
1864 else if (GCPhysDst < pRam->GCPhysLast)
1865 break;
1866 }
1867 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1868}
1869
1870
1871/**
1872 * Read from guest physical memory referenced by GC pointer.
1873 *
1874 * This function uses the current CR3/CR0/CR4 of the guest and will
1875 * bypass access handlers and not set any accessed bits.
1876 *
1877 * @returns VBox status.
1878 * @param pVM VM handle.
1879 * @param pvDst The destination address.
1880 * @param GCPtrSrc The source address (GC pointer).
1881 * @param cb The number of bytes to read.
1882 */
1883PGMDECL(int) PGMPhysReadGCPtr(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
1884{
1885 /*
1886 * Anything to do?
1887 */
1888 if (!cb)
1889 return VINF_SUCCESS;
1890
1891 /*
1892 * Optimize reads within a single page.
1893 */
1894 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
1895 {
1896 void *pvSrc;
1897 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrSrc, &pvSrc);
1898 if (VBOX_FAILURE(rc))
1899 return rc;
1900 memcpy(pvDst, pvSrc, cb);
1901 return VINF_SUCCESS;
1902 }
1903
1904 /*
1905 * Page by page.
1906 */
1907 for (;;)
1908 {
1909 /* convert */
1910 void *pvSrc;
1911 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrSrc, &pvSrc);
1912 if (VBOX_FAILURE(rc))
1913 return rc;
1914
1915 /* copy */
1916 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
1917 if (cbRead >= cb)
1918 {
1919 memcpy(pvDst, pvSrc, cb);
1920 return VINF_SUCCESS;
1921 }
1922 memcpy(pvDst, pvSrc, cbRead);
1923
1924 /* next */
1925 cb -= cbRead;
1926 pvDst = (uint8_t *)pvDst + cbRead;
1927 GCPtrSrc += cbRead;
1928 }
1929}
1930
1931
1932/**
1933 * Write to guest physical memory referenced by GC pointer.
1934 *
1935 * This function uses the current CR3/CR0/CR4 of the guest and will
1936 * bypass access handlers and not set dirty or accessed bits.
1937 *
1938 * @returns VBox status.
1939 * @param pVM VM handle.
1940 * @param GCPtrDst The destination address (GC pointer).
1941 * @param pvSrc The source address.
1942 * @param cb The number of bytes to write.
1943 */
1944PGMDECL(int) PGMPhysWriteGCPtr(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
1945{
1946 /*
1947 * Anything to do?
1948 */
1949 if (!cb)
1950 return VINF_SUCCESS;
1951
1952 LogFlow(("PGMPhysWriteGCPtr: %VGv %d\n", GCPtrDst, cb));
1953
1954 /*
1955 * Optimize writes within a single page.
1956 */
1957 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
1958 {
1959 void *pvDst;
1960 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
1961 if (VBOX_FAILURE(rc))
1962 return rc;
1963 memcpy(pvDst, pvSrc, cb);
1964 return VINF_SUCCESS;
1965 }
1966
1967 /*
1968 * Page by page.
1969 */
1970 for (;;)
1971 {
1972 /* convert */
1973 void *pvDst;
1974 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
1975 if (VBOX_FAILURE(rc))
1976 return rc;
1977
1978 /* copy */
1979 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
1980 if (cbWrite >= cb)
1981 {
1982 memcpy(pvDst, pvSrc, cb);
1983 return VINF_SUCCESS;
1984 }
1985 memcpy(pvDst, pvSrc, cbWrite);
1986
1987 /* next */
1988 cb -= cbWrite;
1989 pvSrc = (uint8_t *)pvSrc + cbWrite;
1990 GCPtrDst += cbWrite;
1991 }
1992}
1993
1994/**
1995 * Read from guest physical memory referenced by GC pointer.
1996 *
1997 * This function uses the current CR3/CR0/CR4 of the guest and will
1998 * respect access handlers and set accessed bits.
1999 *
2000 * @returns VBox status.
2001 * @param pVM VM handle.
2002 * @param pvDst The destination address.
2003 * @param GCPtrSrc The source address (GC pointer).
2004 * @param cb The number of bytes to read.
2005 */
2006/** @todo use the PGMPhysReadGCPtr name and rename the unsafe one to something appropriate */
2007PGMDECL(int) PGMPhysReadGCPtrSafe(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2008{
2009 RTGCPHYS GCPhys;
2010 int rc;
2011
2012 /*
2013 * Anything to do?
2014 */
2015 if (!cb)
2016 return VINF_SUCCESS;
2017
2018 LogFlow(("PGMPhysReadGCPtrSafe: %VGv %d\n", GCPtrSrc, cb));
2019
2020 /*
2021 * Optimize reads within a single page.
2022 */
2023 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2024 {
2025 /* Convert virtual to physical address */
2026 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
2027 AssertRCReturn(rc, rc);
2028
2029 /* mark the guest page as accessed. */
2030 rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2031 AssertRC(rc);
2032
2033 PGMPhysRead(pVM, GCPhys, pvDst, cb);
2034 return VINF_SUCCESS;
2035 }
2036
2037 /*
2038 * Page by page.
2039 */
2040 for (;;)
2041 {
2042 /* Convert virtual to physical address */
2043 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
2044 AssertRCReturn(rc, rc);
2045
2046 /* mark the guest page as accessed. */
2047 int rc = PGMGstModifyPage(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2048 AssertRC(rc);
2049
2050 /* copy */
2051 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2052 if (cbRead >= cb)
2053 {
2054 PGMPhysRead(pVM, GCPhys, pvDst, cb);
2055 return VINF_SUCCESS;
2056 }
2057 PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
2058
2059 /* next */
2060 cb -= cbRead;
2061 pvDst = (uint8_t *)pvDst + cbRead;
2062 GCPtrSrc += cbRead;
2063 }
2064}
2065
2066
2067/**
2068 * Write to guest physical memory referenced by GC pointer.
2069 *
2070 * This function uses the current CR3/CR0/CR4 of the guest and will
2071 * respect access handlers and set dirty and accessed bits.
2072 *
2073 * @returns VBox status.
2074 * @param pVM VM handle.
2075 * @param GCPtrDst The destination address (GC pointer).
2076 * @param pvSrc The source address.
2077 * @param cb The number of bytes to write.
2078 */
2079/** @todo use the PGMPhysWriteGCPtr name and rename the unsafe one to something appropriate */
2080PGMDECL(int) PGMPhysWriteGCPtrSafe(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2081{
2082 RTGCPHYS GCPhys;
2083 int rc;
2084
2085 /*
2086 * Anything to do?
2087 */
2088 if (!cb)
2089 return VINF_SUCCESS;
2090
2091 LogFlow(("PGMPhysWriteGCPtrSafe: %VGv %d\n", GCPtrDst, cb));
2092
2093 /*
2094 * Optimize writes within a single page.
2095 */
2096 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2097 {
2098 /* Convert virtual to physical address */
2099 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
2100 AssertRCReturn(rc, rc);
2101
2102 /* mark the guest page as accessed and dirty. */
2103 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2104 AssertRC(rc);
2105
2106 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2107 return VINF_SUCCESS;
2108 }
2109
2110 /*
2111 * Page by page.
2112 */
2113 for (;;)
2114 {
2115 /* Convert virtual to physical address */
2116 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrDst, &GCPhys);
2117 AssertRCReturn(rc, rc);
2118
2119 /* mark the guest page as accessed and dirty. */
2120 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2121 AssertRC(rc);
2122
2123 /* copy */
2124 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2125 if (cbWrite >= cb)
2126 {
2127 PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2128 return VINF_SUCCESS;
2129 }
2130 PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
2131
2132 /* next */
2133 cb -= cbWrite;
2134 pvSrc = (uint8_t *)pvSrc + cbWrite;
2135 GCPtrDst += cbWrite;
2136 }
2137}
2138
2139/**
2140 * Write to guest physical memory referenced by GC pointer and update the PTE.
2141 *
2142 * This function uses the current CR3/CR0/CR4 of the guest and will
2143 * bypass access handlers and set any dirty and accessed bits in the PTE.
2144 *
2145 * If you don't want to set the dirty bit, use PGMPhysWriteGCPtr().
2146 *
2147 * @returns VBox status.
2148 * @param pVM VM handle.
2149 * @param GCPtrDst The destination address (GC pointer).
2150 * @param pvSrc The source address.
2151 * @param cb The number of bytes to write.
2152 */
2153PGMDECL(int) PGMPhysWriteGCPtrDirty(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2154{
2155 /*
2156 * Anything to do?
2157 */
2158 if (!cb)
2159 return VINF_SUCCESS;
2160
2161 /*
2162 * Optimize writes within a single page.
2163 */
2164 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2165 {
2166 void *pvDst;
2167 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
2168 if (VBOX_FAILURE(rc))
2169 return rc;
2170 memcpy(pvDst, pvSrc, cb);
2171 rc = PGMGstModifyPage(pVM, GCPtrDst, cb, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2172 AssertRC(rc);
2173 return VINF_SUCCESS;
2174 }
2175
2176 /*
2177 * Page by page.
2178 */
2179 for (;;)
2180 {
2181 /* convert */
2182 void *pvDst;
2183 int rc = PGMPhysGCPtr2HCPtr(pVM, GCPtrDst, &pvDst);
2184 if (VBOX_FAILURE(rc))
2185 return rc;
2186
2187 /* mark the guest page as accessed and dirty. */
2188 rc = PGMGstModifyPage(pVM, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2189 AssertRC(rc);
2190
2191 /* copy */
2192 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2193 if (cbWrite >= cb)
2194 {
2195 memcpy(pvDst, pvSrc, cb);
2196 return VINF_SUCCESS;
2197 }
2198 memcpy(pvDst, pvSrc, cbWrite);
2199
2200 /* next */
2201 cb -= cbWrite;
2202 GCPtrDst += cbWrite;
2203 pvSrc = (char *)pvSrc + cbWrite;
2204 }
2205}
2206
2207#endif /* !IN_GC */
2208
2209
2210
2211/**
2212 * Performs a read of guest virtual memory for instruction emulation.
2213 *
2214 * This will check permissions, raise exceptions and update the access bits.
2215 *
2216 * The current implementation will bypass all access handlers. It may later be
2217 * changed to at least respect MMIO.
2218 *
2219 *
2220 * @returns VBox status code suitable to scheduling.
2221 * @retval VINF_SUCCESS if the read was performed successfully.
2222 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
2223 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
2224 *
2225 * @param pVM The VM handle.
2226 * @param pCtxCore The context core.
2227 * @param pvDst Where to put the bytes we've read.
2228 * @param GCPtrSrc The source address.
2229 * @param cb The number of bytes to read. Not more than a page.
2230 *
2231 * @remark This function will dynamically map physical pages in GC. This may unmap
2232 * mappings done by the caller. Be careful!
2233 */
2234PGMDECL(int) PGMPhysInterpretedRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
2235{
2236 Assert(cb <= PAGE_SIZE);
2237
2238/** @todo r=bird: This isn't perfect!
2239 * -# It's not checking for reserved bits being 1.
2240 * -# It's not correctly dealing with the access bit.
2241 * -# It's not respecting MMIO memory or any other access handlers.
2242 */
2243 /*
2244 * 1. Translate virtual to physical. This may fault.
2245 * 2. Map the physical address.
2246 * 3. Do the read operation.
2247 * 4. Set access bits if required.
2248 */
2249 int rc;
2250 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
2251 if (cb <= cb1)
2252 {
2253 /*
2254 * Not crossing pages.
2255 */
2256 RTGCPHYS GCPhys;
2257 uint64_t fFlags;
2258 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags, &GCPhys);
2259 if (VBOX_SUCCESS(rc))
2260 {
2261 /** @todo we should check reserved bits ... */
2262 void *pvSrc;
2263 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
2264 switch (rc)
2265 {
2266 case VINF_SUCCESS:
2267 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
2268 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
2269 break;
2270 case VERR_PGM_PHYS_PAGE_RESERVED:
2271 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2272 memset(pvDst, 0, cb);
2273 break;
2274 default:
2275 return rc;
2276 }
2277
2278 /** @todo access bit emulation isn't 100% correct. */
2279 if (!(fFlags & X86_PTE_A))
2280 {
2281 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2282 AssertRC(rc);
2283 }
2284 return VINF_SUCCESS;
2285 }
2286 }
2287 else
2288 {
2289 /*
2290 * Crosses pages.
2291 */
2292 unsigned cb2 = cb - cb1;
2293 uint64_t fFlags1;
2294 RTGCPHYS GCPhys1;
2295 uint64_t fFlags2;
2296 RTGCPHYS GCPhys2;
2297 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc, &fFlags1, &GCPhys1);
2298 if (VBOX_SUCCESS(rc))
2299 rc = PGM_GST_PFN(GetPage,pVM)(pVM, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
2300 if (VBOX_SUCCESS(rc))
2301 {
2302 /** @todo we should check reserved bits ... */
2303 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%VGv\n", cb, cb1, cb2, GCPtrSrc));
2304 void *pvSrc1;
2305 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
2306 switch (rc)
2307 {
2308 case VINF_SUCCESS:
2309 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
2310 break;
2311 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2312 memset(pvDst, 0, cb1);
2313 break;
2314 default:
2315 return rc;
2316 }
2317
2318 void *pvSrc2;
2319 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
2320 switch (rc)
2321 {
2322 case VINF_SUCCESS:
2323 memcpy((uint8_t *)pvDst + cb2, pvSrc2, cb2);
2324 break;
2325 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2326 memset((uint8_t *)pvDst + cb2, 0, cb2);
2327 break;
2328 default:
2329 return rc;
2330 }
2331
2332 if (!(fFlags1 & X86_PTE_A))
2333 {
2334 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2335 AssertRC(rc);
2336 }
2337 if (!(fFlags2 & X86_PTE_A))
2338 {
2339 rc = PGM_GST_PFN(ModifyPage,pVM)(pVM, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2340 AssertRC(rc);
2341 }
2342 return VINF_SUCCESS;
2343 }
2344 }
2345
2346 /*
2347 * Raise a #PF.
2348 */
2349 uint32_t uErr;
2350
2351 /* Get the current privilege level. */
2352 uint32_t cpl = CPUMGetGuestCPL(pVM, pCtxCore);
2353 switch (rc)
2354 {
2355 case VINF_SUCCESS:
2356 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
2357 break;
2358
2359 case VERR_PAGE_NOT_PRESENT:
2360 case VERR_PAGE_TABLE_NOT_PRESENT:
2361 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
2362 break;
2363
2364 default:
2365 AssertMsgFailed(("rc=%Vrc GCPtrSrc=%VGv cb=%#x\n", rc, GCPtrSrc, cb));
2366 return rc;
2367 }
2368 Log(("PGMPhysInterpretedRead: GCPtrSrc=%VGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
2369 return TRPMRaiseXcptErrCR2(pVM, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
2370}
2371
2372/// @todo PGMDECL(int) PGMPhysInterpretedWrite(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2373
2374
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette