VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 17693

Last change on this file since 17693 was 17667, checked in by vboxsync, 16 years ago

pgmPoolAlloc no longer fails with non-fatal errors.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 158.8 KB
Line 
1/* $Id: PGMAllPool.cpp 17667 2009-03-11 09:35:22Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48__BEGIN_DECLS
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
56static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
57#endif
58#ifdef PGMPOOL_WITH_CACHE
59static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
60#endif
61#ifdef PGMPOOL_WITH_MONITORING
62static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
63#endif
64#ifndef IN_RING3
65DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
66#endif
67#ifdef LOG_ENABLED
68static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
69#endif
70__END_DECLS
71
72
73/**
74 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
75 *
76 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
77 * @param enmKind The page kind.
78 */
79DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
80{
81 switch (enmKind)
82 {
83 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
84 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
85 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
86 return true;
87 default:
88 return false;
89 }
90}
91
92/** @def PGMPOOL_PAGE_2_LOCKED_PTR
93 * Maps a pool page pool into the current context and lock it (RC only).
94 *
95 * @returns VBox status code.
96 * @param pVM The VM handle.
97 * @param pPage The pool page.
98 *
99 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
100 * small page window employeed by that function. Be careful.
101 * @remark There is no need to assert on the result.
102 */
103#if defined(IN_RC)
104DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
105{
106 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
107
108 /* Make sure the dynamic mapping will not be reused. */
109 if (pv)
110 PGMDynLockHCPage(pVM, (uint8_t *)pv);
111
112 return pv;
113}
114#else
115# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
116#endif
117
118/** @def PGMPOOL_UNLOCK_PTR
119 * Unlock a previously locked dynamic caching (RC only).
120 *
121 * @returns VBox status code.
122 * @param pVM The VM handle.
123 * @param pPage The pool page.
124 *
125 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
126 * small page window employeed by that function. Be careful.
127 * @remark There is no need to assert on the result.
128 */
129#if defined(IN_RC)
130DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
131{
132 if (pvPage)
133 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
134}
135#else
136# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
137#endif
138
139
140#ifdef PGMPOOL_WITH_MONITORING
141/**
142 * Determin the size of a write instruction.
143 * @returns number of bytes written.
144 * @param pDis The disassembler state.
145 */
146static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
147{
148 /*
149 * This is very crude and possibly wrong for some opcodes,
150 * but since it's not really supposed to be called we can
151 * probably live with that.
152 */
153 return DISGetParamSize(pDis, &pDis->param1);
154}
155
156
157/**
158 * Flushes a chain of pages sharing the same access monitor.
159 *
160 * @returns VBox status code suitable for scheduling.
161 * @param pPool The pool.
162 * @param pPage A page in the chain.
163 */
164int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
165{
166 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
167
168 /*
169 * Find the list head.
170 */
171 uint16_t idx = pPage->idx;
172 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
173 {
174 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
175 {
176 idx = pPage->iMonitoredPrev;
177 Assert(idx != pPage->idx);
178 pPage = &pPool->aPages[idx];
179 }
180 }
181
182 /*
183 * Iterate the list flushing each shadow page.
184 */
185 int rc = VINF_SUCCESS;
186 for (;;)
187 {
188 idx = pPage->iMonitoredNext;
189 Assert(idx != pPage->idx);
190 if (pPage->idx >= PGMPOOL_IDX_FIRST)
191 {
192 int rc2 = pgmPoolFlushPage(pPool, pPage);
193 AssertRC(rc2);
194 }
195 /* next */
196 if (idx == NIL_PGMPOOL_IDX)
197 break;
198 pPage = &pPool->aPages[idx];
199 }
200 return rc;
201}
202
203
204/**
205 * Wrapper for getting the current context pointer to the entry being modified.
206 *
207 * @returns VBox status code suitable for scheduling.
208 * @param pVM VM Handle.
209 * @param pvDst Destination address
210 * @param pvSrc Source guest virtual address.
211 * @param GCPhysSrc The source guest physical address.
212 * @param cb Size of data to read
213 */
214DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
215{
216#if defined(IN_RING3)
217 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
218 return VINF_SUCCESS;
219#else
220 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
221 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
222#endif
223}
224
225/**
226 * Process shadow entries before they are changed by the guest.
227 *
228 * For PT entries we will clear them. For PD entries, we'll simply check
229 * for mapping conflicts and set the SyncCR3 FF if found.
230 *
231 * @param pPool The pool.
232 * @param pPage The head page.
233 * @param GCPhysFault The guest physical fault address.
234 * @param uAddress In R0 and GC this is the guest context fault address (flat).
235 * In R3 this is the host context 'fault' address.
236 * @param pCpu The disassembler state for figuring out the write size.
237 * This need not be specified if the caller knows we won't do cross entry accesses.
238 */
239void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu)
240{
241 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
242 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
243 const unsigned cbWrite = (pCpu) ? pgmPoolDisasWriteSize(pCpu) : 0;
244 PVM pVM = pPool->CTX_SUFF(pVM);
245
246 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp kind=%s cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
247 for (;;)
248 {
249 union
250 {
251 void *pv;
252 PX86PT pPT;
253 PX86PTPAE pPTPae;
254 PX86PD pPD;
255 PX86PDPAE pPDPae;
256 PX86PDPT pPDPT;
257 PX86PML4 pPML4;
258 } uShw;
259
260 uShw.pv = NULL;
261 switch (pPage->enmKind)
262 {
263 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
264 {
265 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
266 const unsigned iShw = off / sizeof(X86PTE);
267 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
268 if (uShw.pPT->a[iShw].n.u1Present)
269 {
270# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
271 X86PTE GstPte;
272
273 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
274 AssertRC(rc);
275 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
276 pgmPoolTracDerefGCPhysHint(pPool, pPage,
277 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
278 GstPte.u & X86_PTE_PG_MASK);
279# endif
280 uShw.pPT->a[iShw].u = 0;
281 }
282 break;
283 }
284
285 /* page/2 sized */
286 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
287 {
288 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
289 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
290 {
291 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
292 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
293 if (uShw.pPTPae->a[iShw].n.u1Present)
294 {
295# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
296 X86PTE GstPte;
297 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
298 AssertRC(rc);
299
300 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
301 pgmPoolTracDerefGCPhysHint(pPool, pPage,
302 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
303 GstPte.u & X86_PTE_PG_MASK);
304# endif
305 uShw.pPTPae->a[iShw].u = 0;
306 }
307 }
308 break;
309 }
310
311 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
312 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
313 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
314 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
315 {
316 unsigned iGst = off / sizeof(X86PDE);
317 unsigned iShwPdpt = iGst / 256;
318 unsigned iShw = (iGst % 256) * 2;
319 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
320
321 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
322 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
323 {
324 for (unsigned i = 0; i < 2; i++)
325 {
326# ifndef IN_RING0
327 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
328 {
329 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
330 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
331 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
332 break;
333 }
334 else
335# endif /* !IN_RING0 */
336 if (uShw.pPDPae->a[iShw+i].n.u1Present)
337 {
338 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
339 pgmPoolFree(pVM,
340 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
341 pPage->idx,
342 iShw + i);
343 uShw.pPDPae->a[iShw+i].u = 0;
344 }
345
346 /* paranoia / a bit assumptive. */
347 if ( pCpu
348 && (off & 3)
349 && (off & 3) + cbWrite > 4)
350 {
351 const unsigned iShw2 = iShw + 2 + i;
352 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
353 {
354# ifndef IN_RING0
355 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
356 {
357 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
358 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
359 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
360 break;
361 }
362 else
363# endif /* !IN_RING0 */
364 if (uShw.pPDPae->a[iShw2].n.u1Present)
365 {
366 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
367 pgmPoolFree(pVM,
368 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
369 pPage->idx,
370 iShw2);
371 uShw.pPDPae->a[iShw2].u = 0;
372 }
373 }
374 }
375 }
376 }
377 break;
378 }
379
380 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
381 {
382 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
383 const unsigned iShw = off / sizeof(X86PTEPAE);
384 if (uShw.pPTPae->a[iShw].n.u1Present)
385 {
386# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
387 X86PTEPAE GstPte;
388 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
389 AssertRC(rc);
390
391 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
392 pgmPoolTracDerefGCPhysHint(pPool, pPage,
393 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
394 GstPte.u & X86_PTE_PAE_PG_MASK);
395# endif
396 uShw.pPTPae->a[iShw].u = 0;
397 }
398
399 /* paranoia / a bit assumptive. */
400 if ( pCpu
401 && (off & 7)
402 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
403 {
404 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
405 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
406
407 if (uShw.pPTPae->a[iShw2].n.u1Present)
408 {
409# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
410 X86PTEPAE GstPte;
411# ifdef IN_RING3
412 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
413# else
414 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
415# endif
416 AssertRC(rc);
417 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
418 pgmPoolTracDerefGCPhysHint(pPool, pPage,
419 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
420 GstPte.u & X86_PTE_PAE_PG_MASK);
421# endif
422 uShw.pPTPae->a[iShw2].u = 0;
423 }
424 }
425 break;
426 }
427
428 case PGMPOOLKIND_32BIT_PD:
429 {
430 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
431 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
432
433 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
434# ifndef IN_RING0
435 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
436 {
437 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
438 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
439 STAM_COUNTER_INC(&(pVM->pgm.s.StatRZGuestCR3WriteConflict));
440 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
441 break;
442 }
443# endif /* !IN_RING0 */
444# ifndef IN_RING0
445 else
446# endif /* !IN_RING0 */
447 {
448 if (uShw.pPD->a[iShw].n.u1Present)
449 {
450 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
451 pgmPoolFree(pVM,
452 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
453 pPage->idx,
454 iShw);
455 uShw.pPD->a[iShw].u = 0;
456 }
457 }
458 /* paranoia / a bit assumptive. */
459 if ( pCpu
460 && (off & 3)
461 && (off & 3) + cbWrite > sizeof(X86PTE))
462 {
463 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
464 if ( iShw2 != iShw
465 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
466 {
467# ifndef IN_RING0
468 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
469 {
470 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
471 STAM_COUNTER_INC(&(pVM->pgm.s.StatRZGuestCR3WriteConflict));
472 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
473 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
474 break;
475 }
476# endif /* !IN_RING0 */
477# ifndef IN_RING0
478 else
479# endif /* !IN_RING0 */
480 {
481 if (uShw.pPD->a[iShw2].n.u1Present)
482 {
483 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
484 pgmPoolFree(pVM,
485 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
486 pPage->idx,
487 iShw2);
488 uShw.pPD->a[iShw2].u = 0;
489 }
490 }
491 }
492 }
493#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
494 if ( uShw.pPD->a[iShw].n.u1Present
495 && !VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
496 {
497 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
498# ifdef IN_RC /* TLB load - we're pushing things a bit... */
499 ASMProbeReadByte(pvAddress);
500# endif
501 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
502 uShw.pPD->a[iShw].u = 0;
503 }
504#endif
505 break;
506 }
507
508 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
509 {
510 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
511 const unsigned iShw = off / sizeof(X86PDEPAE);
512#ifndef IN_RING0
513 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
514 {
515 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
516 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
517 STAM_COUNTER_INC(&(pVM->pgm.s.StatRZGuestCR3WriteConflict));
518 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
519 break;
520 }
521#endif /* !IN_RING0 */
522 /*
523 * Causes trouble when the guest uses a PDE to refer to the whole page table level
524 * structure. (Invalidate here; faults later on when it tries to change the page
525 * table entries -> recheck; probably only applies to the RC case.)
526 */
527# ifndef IN_RING0
528 else
529# endif /* !IN_RING0 */
530 {
531 if (uShw.pPDPae->a[iShw].n.u1Present)
532 {
533 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
534 pgmPoolFree(pVM,
535 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
536 pPage->idx,
537 iShw);
538 uShw.pPDPae->a[iShw].u = 0;
539 }
540 }
541 /* paranoia / a bit assumptive. */
542 if ( pCpu
543 && (off & 7)
544 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
545 {
546 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
547 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
548
549#ifndef IN_RING0
550 if ( iShw2 != iShw
551 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
552 {
553 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
554 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
555 STAM_COUNTER_INC(&(pVM->pgm.s.StatRZGuestCR3WriteConflict));
556 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
557 break;
558 }
559#endif /* !IN_RING0 */
560# ifndef IN_RING0
561 else
562# endif /* !IN_RING0 */
563 if (uShw.pPDPae->a[iShw2].n.u1Present)
564 {
565 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
566 pgmPoolFree(pVM,
567 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
568 pPage->idx,
569 iShw2);
570 uShw.pPDPae->a[iShw2].u = 0;
571 }
572 }
573 break;
574 }
575
576 case PGMPOOLKIND_PAE_PDPT:
577 {
578 /*
579 * Hopefully this doesn't happen very often:
580 * - touching unused parts of the page
581 * - messing with the bits of pd pointers without changing the physical address
582 */
583 /* PDPT roots are not page aligned; 32 byte only! */
584 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
585
586 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
587 const unsigned iShw = offPdpt / sizeof(X86PDPE);
588 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
589 {
590# ifndef IN_RING0
591 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
592 {
593 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
594 STAM_COUNTER_INC(&(pVM->pgm.s.StatRZGuestCR3WriteConflict));
595 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
596 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
597 break;
598 }
599# endif /* !IN_RING0 */
600# ifndef IN_RING0
601 else
602# endif /* !IN_RING0 */
603 if (uShw.pPDPT->a[iShw].n.u1Present)
604 {
605 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
606 pgmPoolFree(pVM,
607 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
608 pPage->idx,
609 iShw);
610 uShw.pPDPT->a[iShw].u = 0;
611 }
612
613 /* paranoia / a bit assumptive. */
614 if ( pCpu
615 && (offPdpt & 7)
616 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
617 {
618 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
619 if ( iShw2 != iShw
620 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
621 {
622# ifndef IN_RING0
623 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
624 {
625 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
626 STAM_COUNTER_INC(&(pVM->pgm.s.StatRZGuestCR3WriteConflict));
627 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
628 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
629 break;
630 }
631# endif /* !IN_RING0 */
632# ifndef IN_RING0
633 else
634# endif /* !IN_RING0 */
635 if (uShw.pPDPT->a[iShw2].n.u1Present)
636 {
637 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
638 pgmPoolFree(pVM,
639 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
640 pPage->idx,
641 iShw2);
642 uShw.pPDPT->a[iShw2].u = 0;
643 }
644 }
645 }
646 }
647 break;
648 }
649
650#ifndef IN_RC
651 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
652 {
653 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
654 const unsigned iShw = off / sizeof(X86PDEPAE);
655 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
656 if (uShw.pPDPae->a[iShw].n.u1Present)
657 {
658 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
659 pgmPoolFree(pVM,
660 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
661 pPage->idx,
662 iShw);
663 uShw.pPDPae->a[iShw].u = 0;
664 }
665 /* paranoia / a bit assumptive. */
666 if ( pCpu
667 && (off & 7)
668 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
669 {
670 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
671 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
672
673 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
674 if (uShw.pPDPae->a[iShw2].n.u1Present)
675 {
676 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
677 pgmPoolFree(pVM,
678 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
679 pPage->idx,
680 iShw2);
681 uShw.pPDPae->a[iShw2].u = 0;
682 }
683 }
684 break;
685 }
686
687 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
688 {
689 /*
690 * Hopefully this doesn't happen very often:
691 * - messing with the bits of pd pointers without changing the physical address
692 */
693 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
694 {
695 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
696 const unsigned iShw = off / sizeof(X86PDPE);
697 if (uShw.pPDPT->a[iShw].n.u1Present)
698 {
699 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
700 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
701 uShw.pPDPT->a[iShw].u = 0;
702 }
703 /* paranoia / a bit assumptive. */
704 if ( pCpu
705 && (off & 7)
706 && (off & 7) + cbWrite > sizeof(X86PDPE))
707 {
708 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
709 if (uShw.pPDPT->a[iShw2].n.u1Present)
710 {
711 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
712 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
713 uShw.pPDPT->a[iShw2].u = 0;
714 }
715 }
716 }
717 break;
718 }
719
720 case PGMPOOLKIND_64BIT_PML4:
721 {
722 /*
723 * Hopefully this doesn't happen very often:
724 * - messing with the bits of pd pointers without changing the physical address
725 */
726 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
727 {
728 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
729 const unsigned iShw = off / sizeof(X86PDPE);
730 if (uShw.pPML4->a[iShw].n.u1Present)
731 {
732 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
733 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
734 uShw.pPML4->a[iShw].u = 0;
735 }
736 /* paranoia / a bit assumptive. */
737 if ( pCpu
738 && (off & 7)
739 && (off & 7) + cbWrite > sizeof(X86PDPE))
740 {
741 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
742 if (uShw.pPML4->a[iShw2].n.u1Present)
743 {
744 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
745 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
746 uShw.pPML4->a[iShw2].u = 0;
747 }
748 }
749 }
750 break;
751 }
752#endif /* IN_RING0 */
753
754 default:
755 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
756 }
757 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
758
759 /* next */
760 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
761 return;
762 pPage = &pPool->aPages[pPage->iMonitoredNext];
763 }
764}
765
766# ifndef IN_RING3
767/**
768 * Checks if a access could be a fork operation in progress.
769 *
770 * Meaning, that the guest is setuping up the parent process for Copy-On-Write.
771 *
772 * @returns true if it's likly that we're forking, otherwise false.
773 * @param pPool The pool.
774 * @param pCpu The disassembled instruction.
775 * @param offFault The access offset.
776 */
777DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault)
778{
779 /*
780 * i386 linux is using btr to clear X86_PTE_RW.
781 * The functions involved are (2.6.16 source inspection):
782 * clear_bit
783 * ptep_set_wrprotect
784 * copy_one_pte
785 * copy_pte_range
786 * copy_pmd_range
787 * copy_pud_range
788 * copy_page_range
789 * dup_mmap
790 * dup_mm
791 * copy_mm
792 * copy_process
793 * do_fork
794 */
795 if ( pCpu->pCurInstr->opcode == OP_BTR
796 && !(offFault & 4)
797 /** @todo Validate that the bit index is X86_PTE_RW. */
798 )
799 {
800 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
801 return true;
802 }
803 return false;
804}
805
806
807/**
808 * Determine whether the page is likely to have been reused.
809 *
810 * @returns true if we consider the page as being reused for a different purpose.
811 * @returns false if we consider it to still be a paging page.
812 * @param pVM VM Handle.
813 * @param pPage The page in question.
814 * @param pRegFrame Trap register frame.
815 * @param pCpu The disassembly info for the faulting instruction.
816 * @param pvFault The fault address.
817 *
818 * @remark The REP prefix check is left to the caller because of STOSD/W.
819 */
820DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PPGMPOOLPAGE pPage, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, RTGCPTR pvFault)
821{
822#ifndef IN_RC
823 /** @todo could make this general, faulting close to rsp should be safe reuse heuristic. */
824 if ( HWACCMHasPendingIrq(pVM)
825 && (pRegFrame->rsp - pvFault) < 32)
826 {
827 /* Fault caused by stack writes while trying to inject an interrupt event. */
828 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
829 return true;
830 }
831#else
832 NOREF(pVM); NOREF(pvFault);
833#endif
834
835 switch (pCpu->pCurInstr->opcode)
836 {
837 /* call implies the actual push of the return address faulted */
838 case OP_CALL:
839 Log4(("pgmPoolMonitorIsReused: CALL\n"));
840 return true;
841 case OP_PUSH:
842 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
843 return true;
844 case OP_PUSHF:
845 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
846 return true;
847 case OP_PUSHA:
848 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
849 return true;
850 case OP_FXSAVE:
851 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
852 return true;
853 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
854 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
855 return true;
856 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
857 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
858 return true;
859 case OP_MOVSWD:
860 case OP_STOSWD:
861 if ( pCpu->prefix == (PREFIX_REP|PREFIX_REX)
862 && pRegFrame->rcx >= 0x40
863 )
864 {
865 Assert(pCpu->mode == CPUMODE_64BIT);
866
867 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
868 return true;
869 }
870 return false;
871 }
872 if ( (pCpu->param1.flags & USE_REG_GEN32)
873 && (pCpu->param1.base.reg_gen == USE_REG_ESP))
874 {
875 Log4(("pgmPoolMonitorIsReused: ESP\n"));
876 return true;
877 }
878
879 //if (pPage->fCR3Mix)
880 // return false;
881 return false;
882}
883
884
885/**
886 * Flushes the page being accessed.
887 *
888 * @returns VBox status code suitable for scheduling.
889 * @param pVM The VM handle.
890 * @param pPool The pool.
891 * @param pPage The pool page (head).
892 * @param pCpu The disassembly of the write instruction.
893 * @param pRegFrame The trap register frame.
894 * @param GCPhysFault The fault address as guest physical address.
895 * @param pvFault The fault address.
896 */
897static int pgmPoolAccessHandlerFlush(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
898 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
899{
900 /*
901 * First, do the flushing.
902 */
903 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
904
905 /*
906 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
907 */
908 uint32_t cbWritten;
909 int rc2 = EMInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, &cbWritten);
910 if (RT_SUCCESS(rc2))
911 pRegFrame->rip += pCpu->opsize;
912 else if (rc2 == VERR_EM_INTERPRETER)
913 {
914#ifdef IN_RC
915 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
916 {
917 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
918 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
919 rc = VINF_SUCCESS;
920 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
921 }
922 else
923#endif
924 {
925 rc = VINF_EM_RAW_EMULATE_INSTR;
926 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
927 }
928 }
929 else
930 rc = rc2;
931
932 /* See use in pgmPoolAccessHandlerSimple(). */
933 PGM_INVL_GUEST_TLBS();
934
935 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
936 return rc;
937
938}
939
940
941/**
942 * Handles the STOSD write accesses.
943 *
944 * @returns VBox status code suitable for scheduling.
945 * @param pVM The VM handle.
946 * @param pPool The pool.
947 * @param pPage The pool page (head).
948 * @param pCpu The disassembly of the write instruction.
949 * @param pRegFrame The trap register frame.
950 * @param GCPhysFault The fault address as guest physical address.
951 * @param pvFault The fault address.
952 */
953DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
954 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
955{
956 Assert(pCpu->mode == CPUMODE_32BIT);
957
958 Log3(("pgmPoolAccessHandlerSTOSD\n"));
959
960 /*
961 * Increment the modification counter and insert it into the list
962 * of modified pages the first time.
963 */
964 if (!pPage->cModifications++)
965 pgmPoolMonitorModifiedInsert(pPool, pPage);
966
967 /*
968 * Execute REP STOSD.
969 *
970 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
971 * write situation, meaning that it's safe to write here.
972 */
973#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
974 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
975#endif
976 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
977 while (pRegFrame->ecx)
978 {
979#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
980 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
981 pgmPoolMonitorChainChanging(pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
982 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
983#else
984 pgmPoolMonitorChainChanging(pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
985#endif
986#ifdef IN_RC
987 *(uint32_t *)pu32 = pRegFrame->eax;
988#else
989 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
990#endif
991 pu32 += 4;
992 GCPhysFault += 4;
993 pRegFrame->edi += 4;
994 pRegFrame->ecx--;
995 }
996 pRegFrame->rip += pCpu->opsize;
997
998#ifdef IN_RC
999 /* See use in pgmPoolAccessHandlerSimple(). */
1000 PGM_INVL_GUEST_TLBS();
1001#endif
1002
1003 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1004 return VINF_SUCCESS;
1005}
1006
1007
1008/**
1009 * Handles the simple write accesses.
1010 *
1011 * @returns VBox status code suitable for scheduling.
1012 * @param pVM The VM handle.
1013 * @param pPool The pool.
1014 * @param pPage The pool page (head).
1015 * @param pCpu The disassembly of the write instruction.
1016 * @param pRegFrame The trap register frame.
1017 * @param GCPhysFault The fault address as guest physical address.
1018 * @param pvFault The fault address.
1019 */
1020DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
1021 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1022{
1023 Log3(("pgmPoolAccessHandlerSimple\n"));
1024 /*
1025 * Increment the modification counter and insert it into the list
1026 * of modified pages the first time.
1027 */
1028 if (!pPage->cModifications++)
1029 pgmPoolMonitorModifiedInsert(pPool, pPage);
1030
1031 /*
1032 * Clear all the pages. ASSUMES that pvFault is readable.
1033 */
1034#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1035 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
1036 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1037 pgmPoolMonitorChainChanging(pPool, pPage, GCPhysFault, pvFault, pCpu);
1038 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1039#else
1040 pgmPoolMonitorChainChanging(pPool, pPage, GCPhysFault, pvFault, pCpu);
1041#endif
1042
1043 /*
1044 * Interpret the instruction.
1045 */
1046 uint32_t cb;
1047 int rc = EMInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, &cb);
1048 if (RT_SUCCESS(rc))
1049 pRegFrame->rip += pCpu->opsize;
1050 else if (rc == VERR_EM_INTERPRETER)
1051 {
1052 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1053 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pCpu->pCurInstr->opcode));
1054 rc = VINF_EM_RAW_EMULATE_INSTR;
1055 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1056 }
1057
1058#ifdef IN_RC
1059 /*
1060 * Quick hack, with logging enabled we're getting stale
1061 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1062 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1063 * have to be fixed to support this. But that'll have to wait till next week.
1064 *
1065 * An alternative is to keep track of the changed PTEs together with the
1066 * GCPhys from the guest PT. This may proove expensive though.
1067 *
1068 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1069 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1070 */
1071 PGM_INVL_GUEST_TLBS();
1072#endif
1073
1074 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1075 return rc;
1076}
1077
1078/**
1079 * \#PF Handler callback for PT write accesses.
1080 *
1081 * @returns VBox status code (appropriate for GC return).
1082 * @param pVM VM Handle.
1083 * @param uErrorCode CPU Error code.
1084 * @param pRegFrame Trap register frame.
1085 * NULL on DMA and other non CPU access.
1086 * @param pvFault The fault address (cr2).
1087 * @param GCPhysFault The GC physical address corresponding to pvFault.
1088 * @param pvUser User argument.
1089 */
1090DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1091{
1092 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1093 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1094 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1095 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1096
1097 /*
1098 * We should ALWAYS have the list head as user parameter. This
1099 * is because we use that page to record the changes.
1100 */
1101 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1102
1103 /*
1104 * Disassemble the faulting instruction.
1105 */
1106 DISCPUSTATE Cpu;
1107 int rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, NULL);
1108 AssertRCReturn(rc, rc);
1109
1110 /*
1111 * Check if it's worth dealing with.
1112 */
1113 bool fReused = false;
1114 if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1115 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1116 )
1117 && !(fReused = pgmPoolMonitorIsReused(pVM, pPage, pRegFrame, &Cpu, pvFault))
1118 && !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK))
1119 {
1120 /*
1121 * Simple instructions, no REP prefix.
1122 */
1123 if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
1124 {
1125 rc = pgmPoolAccessHandlerSimple(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1126 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1127 return rc;
1128 }
1129
1130 /*
1131 * Windows is frequently doing small memset() operations (netio test 4k+).
1132 * We have to deal with these or we'll kill the cache and performance.
1133 */
1134 if ( Cpu.pCurInstr->opcode == OP_STOSWD
1135 && CPUMGetGuestCPL(pVM, pRegFrame) == 0
1136 && pRegFrame->ecx <= 0x20
1137 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1138 && !((uintptr_t)pvFault & 3)
1139 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1140 && Cpu.mode == CPUMODE_32BIT
1141 && Cpu.opmode == CPUMODE_32BIT
1142 && Cpu.addrmode == CPUMODE_32BIT
1143 && Cpu.prefix == PREFIX_REP
1144 && !pRegFrame->eflags.Bits.u1DF
1145 )
1146 {
1147 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1148 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1149 return rc;
1150 }
1151
1152 /* REP prefix, don't bother. */
1153 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1154 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1155 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, Cpu.pCurInstr->opcode, Cpu.prefix));
1156 }
1157
1158 /*
1159 * Not worth it, so flush it.
1160 *
1161 * If we considered it to be reused, don't to back to ring-3
1162 * to emulate failed instructions since we usually cannot
1163 * interpret then. This may be a bit risky, in which case
1164 * the reuse detection must be fixed.
1165 */
1166 rc = pgmPoolAccessHandlerFlush(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1167 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1168 rc = VINF_SUCCESS;
1169 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1170 return rc;
1171}
1172
1173# endif /* !IN_RING3 */
1174#endif /* PGMPOOL_WITH_MONITORING */
1175
1176#ifdef PGMPOOL_WITH_CACHE
1177
1178/**
1179 * Inserts a page into the GCPhys hash table.
1180 *
1181 * @param pPool The pool.
1182 * @param pPage The page.
1183 */
1184DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1185{
1186 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1187 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1188 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1189 pPage->iNext = pPool->aiHash[iHash];
1190 pPool->aiHash[iHash] = pPage->idx;
1191}
1192
1193
1194/**
1195 * Removes a page from the GCPhys hash table.
1196 *
1197 * @param pPool The pool.
1198 * @param pPage The page.
1199 */
1200DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1201{
1202 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1203 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1204 if (pPool->aiHash[iHash] == pPage->idx)
1205 pPool->aiHash[iHash] = pPage->iNext;
1206 else
1207 {
1208 uint16_t iPrev = pPool->aiHash[iHash];
1209 for (;;)
1210 {
1211 const int16_t i = pPool->aPages[iPrev].iNext;
1212 if (i == pPage->idx)
1213 {
1214 pPool->aPages[iPrev].iNext = pPage->iNext;
1215 break;
1216 }
1217 if (i == NIL_PGMPOOL_IDX)
1218 {
1219 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1220 break;
1221 }
1222 iPrev = i;
1223 }
1224 }
1225 pPage->iNext = NIL_PGMPOOL_IDX;
1226}
1227
1228
1229/**
1230 * Frees up one cache page.
1231 *
1232 * @returns VBox status code.
1233 * @retval VINF_SUCCESS on success.
1234 * @param pPool The pool.
1235 * @param iUser The user index.
1236 */
1237static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1238{
1239#ifndef IN_RC
1240 const PVM pVM = pPool->CTX_SUFF(pVM);
1241#endif
1242 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1243 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1244
1245 /*
1246 * Select one page from the tail of the age list.
1247 */
1248 uint16_t iToFree = pPool->iAgeTail;
1249 if (iToFree == iUser)
1250 iToFree = pPool->aPages[iToFree].iAgePrev;
1251/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1252 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1253 {
1254 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1255 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1256 {
1257 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1258 continue;
1259 iToFree = i;
1260 break;
1261 }
1262 }
1263*/
1264
1265 Assert(iToFree != iUser);
1266 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1267
1268 PPGMPOOLPAGE pPage = &pPool->aPages[iToFree];
1269
1270 /*
1271 * Reject any attempts at flushing the currently active shadow CR3 mapping
1272 */
1273 if (pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1274 {
1275 /* Refresh the cr3 mapping by putting it at the head of the age list. */
1276 LogFlow(("pgmPoolCacheFreeOne refuse CR3 mapping\n"));
1277 pgmPoolCacheUsed(pPool, pPage);
1278 return pgmPoolCacheFreeOne(pPool, iUser);
1279 }
1280
1281 int rc = pgmPoolFlushPage(pPool, pPage);
1282 if (rc == VINF_SUCCESS)
1283 PGM_INVL_GUEST_TLBS(); /* see PT handler. */
1284 return rc;
1285}
1286
1287
1288/**
1289 * Checks if a kind mismatch is really a page being reused
1290 * or if it's just normal remappings.
1291 *
1292 * @returns true if reused and the cached page (enmKind1) should be flushed
1293 * @returns false if not reused.
1294 * @param enmKind1 The kind of the cached page.
1295 * @param enmKind2 The kind of the requested page.
1296 */
1297static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1298{
1299 switch (enmKind1)
1300 {
1301 /*
1302 * Never reuse them. There is no remapping in non-paging mode.
1303 */
1304 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1305 case PGMPOOLKIND_32BIT_PD_PHYS:
1306 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1307 case PGMPOOLKIND_PAE_PD_PHYS:
1308 case PGMPOOLKIND_PAE_PDPT_PHYS:
1309 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1310 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1311 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1312 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1313 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1314 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1315 return false;
1316
1317 /*
1318 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1319 */
1320 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1321 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1322 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1323 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1324 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1325 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1326 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1327 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1328 case PGMPOOLKIND_32BIT_PD:
1329 case PGMPOOLKIND_PAE_PDPT:
1330 switch (enmKind2)
1331 {
1332 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1333 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1334 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1335 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1336 case PGMPOOLKIND_64BIT_PML4:
1337 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1338 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1339 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1340 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1341 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1342 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1343 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1344 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1345 return true;
1346 default:
1347 return false;
1348 }
1349
1350 /*
1351 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1352 */
1353 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1354 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1355 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1356 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1357 case PGMPOOLKIND_64BIT_PML4:
1358 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1359 switch (enmKind2)
1360 {
1361 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1362 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1363 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1364 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1365 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1366 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1367 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1368 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1369 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1370 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1371 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1372 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1373 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1374 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1375 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1376 return true;
1377 default:
1378 return false;
1379 }
1380
1381 /*
1382 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1383 */
1384 case PGMPOOLKIND_ROOT_NESTED:
1385 return false;
1386
1387 default:
1388 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1389 }
1390}
1391
1392
1393/**
1394 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1395 *
1396 * @returns VBox status code.
1397 * @retval VINF_PGM_CACHED_PAGE on success.
1398 * @retval VERR_FILE_NOT_FOUND if not found.
1399 * @param pPool The pool.
1400 * @param GCPhys The GC physical address of the page we're gonna shadow.
1401 * @param enmKind The kind of mapping.
1402 * @param iUser The shadow page pool index of the user table.
1403 * @param iUserTable The index into the user table (shadowed).
1404 * @param ppPage Where to store the pointer to the page.
1405 */
1406static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1407{
1408#ifndef IN_RC
1409 const PVM pVM = pPool->CTX_SUFF(pVM);
1410#endif
1411 /*
1412 * Look up the GCPhys in the hash.
1413 */
1414 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1415 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1416 if (i != NIL_PGMPOOL_IDX)
1417 {
1418 do
1419 {
1420 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1421 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1422 if (pPage->GCPhys == GCPhys)
1423 {
1424 if ((PGMPOOLKIND)pPage->enmKind == enmKind)
1425 {
1426 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1427 * doesn't flush it in case there are no more free use records.
1428 */
1429 pgmPoolCacheUsed(pPool, pPage);
1430
1431 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1432 if (RT_SUCCESS(rc))
1433 {
1434 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1435 *ppPage = pPage;
1436 STAM_COUNTER_INC(&pPool->StatCacheHits);
1437 return VINF_PGM_CACHED_PAGE;
1438 }
1439 return rc;
1440 }
1441
1442 /*
1443 * The kind is different. In some cases we should now flush the page
1444 * as it has been reused, but in most cases this is normal remapping
1445 * of PDs as PT or big pages using the GCPhys field in a slightly
1446 * different way than the other kinds.
1447 */
1448 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1449 {
1450 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1451 pgmPoolFlushPage(pPool, pPage);
1452 PGM_INVL_GUEST_TLBS(); /* see PT handler. */
1453 break;
1454 }
1455 }
1456
1457 /* next */
1458 i = pPage->iNext;
1459 } while (i != NIL_PGMPOOL_IDX);
1460 }
1461
1462 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1463 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1464 return VERR_FILE_NOT_FOUND;
1465}
1466
1467
1468/**
1469 * Inserts a page into the cache.
1470 *
1471 * @param pPool The pool.
1472 * @param pPage The cached page.
1473 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
1474 */
1475static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
1476{
1477 /*
1478 * Insert into the GCPhys hash if the page is fit for that.
1479 */
1480 Assert(!pPage->fCached);
1481 if (fCanBeCached)
1482 {
1483 pPage->fCached = true;
1484 pgmPoolHashInsert(pPool, pPage);
1485 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1486 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1487 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
1488 }
1489 else
1490 {
1491 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1492 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1493 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
1494 }
1495
1496 /*
1497 * Insert at the head of the age list.
1498 */
1499 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1500 pPage->iAgeNext = pPool->iAgeHead;
1501 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
1502 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
1503 else
1504 pPool->iAgeTail = pPage->idx;
1505 pPool->iAgeHead = pPage->idx;
1506}
1507
1508
1509/**
1510 * Flushes a cached page.
1511 *
1512 * @param pPool The pool.
1513 * @param pPage The cached page.
1514 */
1515static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1516{
1517 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
1518
1519 /*
1520 * Remove the page from the hash.
1521 */
1522 if (pPage->fCached)
1523 {
1524 pPage->fCached = false;
1525 pgmPoolHashRemove(pPool, pPage);
1526 }
1527 else
1528 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1529
1530 /*
1531 * Remove it from the age list.
1532 */
1533 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
1534 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
1535 else
1536 pPool->iAgeTail = pPage->iAgePrev;
1537 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
1538 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
1539 else
1540 pPool->iAgeHead = pPage->iAgeNext;
1541 pPage->iAgeNext = NIL_PGMPOOL_IDX;
1542 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1543}
1544
1545#endif /* PGMPOOL_WITH_CACHE */
1546#ifdef PGMPOOL_WITH_MONITORING
1547
1548/**
1549 * Looks for pages sharing the monitor.
1550 *
1551 * @returns Pointer to the head page.
1552 * @returns NULL if not found.
1553 * @param pPool The Pool
1554 * @param pNewPage The page which is going to be monitored.
1555 */
1556static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
1557{
1558#ifdef PGMPOOL_WITH_CACHE
1559 /*
1560 * Look up the GCPhys in the hash.
1561 */
1562 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1563 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1564 if (i == NIL_PGMPOOL_IDX)
1565 return NULL;
1566 do
1567 {
1568 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1569 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
1570 && pPage != pNewPage)
1571 {
1572 switch (pPage->enmKind)
1573 {
1574 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1575 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1576 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1577 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1578 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1579 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1580 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1581 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1582 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1583 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1584 case PGMPOOLKIND_64BIT_PML4:
1585 case PGMPOOLKIND_32BIT_PD:
1586 case PGMPOOLKIND_PAE_PDPT:
1587 {
1588 /* find the head */
1589 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1590 {
1591 Assert(pPage->iMonitoredPrev != pPage->idx);
1592 pPage = &pPool->aPages[pPage->iMonitoredPrev];
1593 }
1594 return pPage;
1595 }
1596
1597 /* ignore, no monitoring. */
1598 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1599 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1600 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1601 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1602 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1603 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1604 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1605 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1606 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1607 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1608 case PGMPOOLKIND_ROOT_NESTED:
1609 case PGMPOOLKIND_PAE_PD_PHYS:
1610 case PGMPOOLKIND_PAE_PDPT_PHYS:
1611 case PGMPOOLKIND_32BIT_PD_PHYS:
1612 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1613 break;
1614 default:
1615 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
1616 }
1617 }
1618
1619 /* next */
1620 i = pPage->iNext;
1621 } while (i != NIL_PGMPOOL_IDX);
1622#endif
1623 return NULL;
1624}
1625
1626
1627/**
1628 * Enabled write monitoring of a guest page.
1629 *
1630 * @returns VBox status code.
1631 * @retval VINF_SUCCESS on success.
1632 * @param pPool The pool.
1633 * @param pPage The cached page.
1634 */
1635static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1636{
1637 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
1638
1639 /*
1640 * Filter out the relevant kinds.
1641 */
1642 switch (pPage->enmKind)
1643 {
1644 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1645 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1646 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1647 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1648 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1649 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1650 case PGMPOOLKIND_64BIT_PML4:
1651 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1652 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1653 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1654 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1655 case PGMPOOLKIND_32BIT_PD:
1656 case PGMPOOLKIND_PAE_PDPT:
1657 break;
1658
1659 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1660 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1661 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1662 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1663 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1664 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1665 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1666 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1667 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1668 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1669 case PGMPOOLKIND_ROOT_NESTED:
1670 /* Nothing to monitor here. */
1671 return VINF_SUCCESS;
1672
1673 case PGMPOOLKIND_32BIT_PD_PHYS:
1674 case PGMPOOLKIND_PAE_PDPT_PHYS:
1675 case PGMPOOLKIND_PAE_PD_PHYS:
1676 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1677 /* Nothing to monitor here. */
1678 return VINF_SUCCESS;
1679#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1680 break;
1681#else
1682 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1683#endif
1684 default:
1685 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1686 }
1687
1688 /*
1689 * Install handler.
1690 */
1691 int rc;
1692 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
1693 if (pPageHead)
1694 {
1695 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
1696 Assert(pPageHead->iMonitoredPrev != pPage->idx);
1697 pPage->iMonitoredPrev = pPageHead->idx;
1698 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
1699 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
1700 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
1701 pPageHead->iMonitoredNext = pPage->idx;
1702 rc = VINF_SUCCESS;
1703 }
1704 else
1705 {
1706 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1707 PVM pVM = pPool->CTX_SUFF(pVM);
1708 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1709 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
1710 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
1711 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
1712 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
1713 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
1714 pPool->pszAccessHandler);
1715 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
1716 * the heap size should suffice. */
1717 AssertFatalRC(rc);
1718 Assert(!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
1719 }
1720 pPage->fMonitored = true;
1721 return rc;
1722}
1723
1724
1725/**
1726 * Disables write monitoring of a guest page.
1727 *
1728 * @returns VBox status code.
1729 * @retval VINF_SUCCESS on success.
1730 * @param pPool The pool.
1731 * @param pPage The cached page.
1732 */
1733static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1734{
1735 /*
1736 * Filter out the relevant kinds.
1737 */
1738 switch (pPage->enmKind)
1739 {
1740 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1741 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1742 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1743 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1744 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1745 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1746 case PGMPOOLKIND_64BIT_PML4:
1747 case PGMPOOLKIND_32BIT_PD:
1748 case PGMPOOLKIND_PAE_PDPT:
1749 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1750 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1751 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1752 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1753 break;
1754
1755 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1756 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1757 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1758 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1759 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1760 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1761 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1762 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1763 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1764 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1765 case PGMPOOLKIND_ROOT_NESTED:
1766 case PGMPOOLKIND_PAE_PD_PHYS:
1767 case PGMPOOLKIND_PAE_PDPT_PHYS:
1768 case PGMPOOLKIND_32BIT_PD_PHYS:
1769 /* Nothing to monitor here. */
1770 return VINF_SUCCESS;
1771
1772#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1773 break;
1774#endif
1775 default:
1776 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1777 }
1778
1779 /*
1780 * Remove the page from the monitored list or uninstall it if last.
1781 */
1782 const PVM pVM = pPool->CTX_SUFF(pVM);
1783 int rc;
1784 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1785 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1786 {
1787 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1788 {
1789 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
1790 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
1791 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
1792 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
1793 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
1794 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
1795 pPool->pszAccessHandler);
1796 AssertFatalRCSuccess(rc);
1797 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1798 }
1799 else
1800 {
1801 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
1802 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
1803 {
1804 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
1805 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1806 }
1807 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
1808 rc = VINF_SUCCESS;
1809 }
1810 }
1811 else
1812 {
1813 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
1814 AssertFatalRC(rc);
1815 Assert(!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
1816 }
1817 pPage->fMonitored = false;
1818
1819 /*
1820 * Remove it from the list of modified pages (if in it).
1821 */
1822 pgmPoolMonitorModifiedRemove(pPool, pPage);
1823
1824 return rc;
1825}
1826
1827
1828/**
1829 * Inserts the page into the list of modified pages.
1830 *
1831 * @param pPool The pool.
1832 * @param pPage The page.
1833 */
1834void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1835{
1836 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
1837 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
1838 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
1839 && pPool->iModifiedHead != pPage->idx,
1840 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
1841 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
1842 pPool->iModifiedHead, pPool->cModifiedPages));
1843
1844 pPage->iModifiedNext = pPool->iModifiedHead;
1845 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
1846 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
1847 pPool->iModifiedHead = pPage->idx;
1848 pPool->cModifiedPages++;
1849#ifdef VBOX_WITH_STATISTICS
1850 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
1851 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
1852#endif
1853}
1854
1855
1856/**
1857 * Removes the page from the list of modified pages and resets the
1858 * moficiation counter.
1859 *
1860 * @param pPool The pool.
1861 * @param pPage The page which is believed to be in the list of modified pages.
1862 */
1863static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1864{
1865 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
1866 if (pPool->iModifiedHead == pPage->idx)
1867 {
1868 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1869 pPool->iModifiedHead = pPage->iModifiedNext;
1870 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1871 {
1872 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
1873 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1874 }
1875 pPool->cModifiedPages--;
1876 }
1877 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
1878 {
1879 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
1880 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1881 {
1882 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
1883 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1884 }
1885 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1886 pPool->cModifiedPages--;
1887 }
1888 else
1889 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1890 pPage->cModifications = 0;
1891}
1892
1893
1894/**
1895 * Zaps the list of modified pages, resetting their modification counters in the process.
1896 *
1897 * @param pVM The VM handle.
1898 */
1899void pgmPoolMonitorModifiedClearAll(PVM pVM)
1900{
1901 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1902 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
1903
1904 unsigned cPages = 0; NOREF(cPages);
1905 uint16_t idx = pPool->iModifiedHead;
1906 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
1907 while (idx != NIL_PGMPOOL_IDX)
1908 {
1909 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
1910 idx = pPage->iModifiedNext;
1911 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1912 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1913 pPage->cModifications = 0;
1914 Assert(++cPages);
1915 }
1916 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
1917 pPool->cModifiedPages = 0;
1918}
1919
1920
1921#ifdef IN_RING3
1922/**
1923 * Clear all shadow pages and clear all modification counters.
1924 *
1925 * @param pVM The VM handle.
1926 * @remark Should only be used when monitoring is available, thus placed in
1927 * the PGMPOOL_WITH_MONITORING #ifdef.
1928 */
1929void pgmPoolClearAll(PVM pVM)
1930{
1931 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1932 STAM_PROFILE_START(&pPool->StatClearAll, c);
1933 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
1934
1935 /*
1936 * Iterate all the pages until we've encountered all that in use.
1937 * This is simple but not quite optimal solution.
1938 */
1939 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
1940 unsigned cLeft = pPool->cUsedPages;
1941 unsigned iPage = pPool->cCurPages;
1942 while (--iPage >= PGMPOOL_IDX_FIRST)
1943 {
1944 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1945 if (pPage->GCPhys != NIL_RTGCPHYS)
1946 {
1947 switch (pPage->enmKind)
1948 {
1949 /*
1950 * We only care about shadow page tables.
1951 */
1952 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1953 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1954 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1955 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1956 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1957 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1958 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1959 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1960 {
1961#ifdef PGMPOOL_WITH_USER_TRACKING
1962 if (pPage->cPresent)
1963#endif
1964 {
1965 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1966 STAM_PROFILE_START(&pPool->StatZeroPage, z);
1967 ASMMemZeroPage(pvShw);
1968 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
1969#ifdef PGMPOOL_WITH_USER_TRACKING
1970 pPage->cPresent = 0;
1971 pPage->iFirstPresent = ~0;
1972#endif
1973 }
1974 }
1975 /* fall thru */
1976
1977 default:
1978 Assert(!pPage->cModifications || ++cModifiedPages);
1979 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
1980 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
1981 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1982 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1983 pPage->cModifications = 0;
1984 break;
1985
1986 }
1987 if (!--cLeft)
1988 break;
1989 }
1990 }
1991
1992 /* swipe the special pages too. */
1993 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
1994 {
1995 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1996 if (pPage->GCPhys != NIL_RTGCPHYS)
1997 {
1998 Assert(!pPage->cModifications || ++cModifiedPages);
1999 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2000 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2001 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2002 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2003 pPage->cModifications = 0;
2004 }
2005 }
2006
2007#ifndef DEBUG_michael
2008 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2009#endif
2010 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2011 pPool->cModifiedPages = 0;
2012
2013#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2014 /*
2015 * Clear all the GCPhys links and rebuild the phys ext free list.
2016 */
2017 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2018 pRam;
2019 pRam = pRam->CTX_SUFF(pNext))
2020 {
2021 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2022 while (iPage-- > 0)
2023 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2024 }
2025
2026 pPool->iPhysExtFreeHead = 0;
2027 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2028 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2029 for (unsigned i = 0; i < cMaxPhysExts; i++)
2030 {
2031 paPhysExts[i].iNext = i + 1;
2032 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2033 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2034 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2035 }
2036 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2037#endif
2038
2039
2040 pPool->cPresent = 0;
2041 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2042}
2043#endif /* IN_RING3 */
2044
2045
2046/**
2047 * Handle SyncCR3 pool tasks
2048 *
2049 * @returns VBox status code.
2050 * @retval VINF_SUCCESS if successfully added.
2051 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2052 * @param pVM The VM handle.
2053 * @remark Should only be used when monitoring is available, thus placed in
2054 * the PGMPOOL_WITH_MONITORING #ifdef.
2055 */
2056int pgmPoolSyncCR3(PVM pVM)
2057{
2058 LogFlow(("pgmPoolSyncCR3\n"));
2059 /*
2060 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2061 * Occasionally we will have to clear all the shadow page tables because we wanted
2062 * to monitor a page which was mapped by too many shadowed page tables. This operation
2063 * sometimes refered to as a 'lightweight flush'.
2064 */
2065 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL))
2066 pgmPoolMonitorModifiedClearAll(pVM);
2067 else
2068 {
2069# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2070 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
2071 pgmPoolClearAll(pVM);
2072# else /* !IN_RING3 */
2073 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2074 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2075 return VINF_PGM_SYNC_CR3;
2076# endif /* !IN_RING3 */
2077 }
2078 return VINF_SUCCESS;
2079}
2080
2081#endif /* PGMPOOL_WITH_MONITORING */
2082#ifdef PGMPOOL_WITH_USER_TRACKING
2083
2084/**
2085 * Frees up at least one user entry.
2086 *
2087 * @returns VBox status code.
2088 * @retval VINF_SUCCESS if successfully added.
2089 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2090 * @param pPool The pool.
2091 * @param iUser The user index.
2092 */
2093static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2094{
2095 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2096#ifdef PGMPOOL_WITH_CACHE
2097 /*
2098 * Just free cached pages in a braindead fashion.
2099 */
2100 /** @todo walk the age list backwards and free the first with usage. */
2101 int rc = VINF_SUCCESS;
2102 do
2103 {
2104 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2105 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2106 rc = rc2;
2107 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2108 return rc;
2109#else
2110 /*
2111 * Lazy approach.
2112 */
2113 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2114 AssertCompileFailed();
2115 Assert(!CPUMIsGuestInLongMode(pVM));
2116 pgmPoolFlushAllInt(pPool);
2117 return VERR_PGM_POOL_FLUSHED;
2118#endif
2119}
2120
2121
2122/**
2123 * Inserts a page into the cache.
2124 *
2125 * This will create user node for the page, insert it into the GCPhys
2126 * hash, and insert it into the age list.
2127 *
2128 * @returns VBox status code.
2129 * @retval VINF_SUCCESS if successfully added.
2130 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2131 * @param pPool The pool.
2132 * @param pPage The cached page.
2133 * @param GCPhys The GC physical address of the page we're gonna shadow.
2134 * @param iUser The user index.
2135 * @param iUserTable The user table index.
2136 */
2137DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2138{
2139 int rc = VINF_SUCCESS;
2140 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2141
2142 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2143
2144#ifdef VBOX_STRICT
2145 /*
2146 * Check that the entry doesn't already exists.
2147 */
2148 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2149 {
2150 uint16_t i = pPage->iUserHead;
2151 do
2152 {
2153 Assert(i < pPool->cMaxUsers);
2154 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2155 i = paUsers[i].iNext;
2156 } while (i != NIL_PGMPOOL_USER_INDEX);
2157 }
2158#endif
2159
2160 /*
2161 * Find free a user node.
2162 */
2163 uint16_t i = pPool->iUserFreeHead;
2164 if (i == NIL_PGMPOOL_USER_INDEX)
2165 {
2166 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2167 if (RT_FAILURE(rc))
2168 return rc;
2169 i = pPool->iUserFreeHead;
2170 }
2171
2172 /*
2173 * Unlink the user node from the free list,
2174 * initialize and insert it into the user list.
2175 */
2176 pPool->iUserFreeHead = paUsers[i].iNext;
2177 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2178 paUsers[i].iUser = iUser;
2179 paUsers[i].iUserTable = iUserTable;
2180 pPage->iUserHead = i;
2181
2182 /*
2183 * Insert into cache and enable monitoring of the guest page if enabled.
2184 *
2185 * Until we implement caching of all levels, including the CR3 one, we'll
2186 * have to make sure we don't try monitor & cache any recursive reuse of
2187 * a monitored CR3 page. Because all windows versions are doing this we'll
2188 * have to be able to do combined access monitoring, CR3 + PT and
2189 * PD + PT (guest PAE).
2190 *
2191 * Update:
2192 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2193 */
2194#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2195# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2196 const bool fCanBeMonitored = true;
2197# else
2198 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2199 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2200 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2201# endif
2202# ifdef PGMPOOL_WITH_CACHE
2203 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2204# endif
2205 if (fCanBeMonitored)
2206 {
2207# ifdef PGMPOOL_WITH_MONITORING
2208 rc = pgmPoolMonitorInsert(pPool, pPage);
2209 AssertRC(rc);
2210 }
2211# endif
2212#endif /* PGMPOOL_WITH_MONITORING */
2213 return rc;
2214}
2215
2216
2217# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2218/**
2219 * Adds a user reference to a page.
2220 *
2221 * This will move the page to the head of the
2222 *
2223 * @returns VBox status code.
2224 * @retval VINF_SUCCESS if successfully added.
2225 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2226 * @param pPool The pool.
2227 * @param pPage The cached page.
2228 * @param iUser The user index.
2229 * @param iUserTable The user table.
2230 */
2231static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2232{
2233 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2234
2235 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2236# ifdef VBOX_STRICT
2237 /*
2238 * Check that the entry doesn't already exists.
2239 */
2240 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2241 {
2242 uint16_t i = pPage->iUserHead;
2243 do
2244 {
2245 Assert(i < pPool->cMaxUsers);
2246 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2247 i = paUsers[i].iNext;
2248 } while (i != NIL_PGMPOOL_USER_INDEX);
2249 }
2250# endif
2251
2252 /*
2253 * Allocate a user node.
2254 */
2255 uint16_t i = pPool->iUserFreeHead;
2256 if (i == NIL_PGMPOOL_USER_INDEX)
2257 {
2258 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2259 if (RT_FAILURE(rc))
2260 return rc;
2261 i = pPool->iUserFreeHead;
2262 }
2263 pPool->iUserFreeHead = paUsers[i].iNext;
2264
2265 /*
2266 * Initialize the user node and insert it.
2267 */
2268 paUsers[i].iNext = pPage->iUserHead;
2269 paUsers[i].iUser = iUser;
2270 paUsers[i].iUserTable = iUserTable;
2271 pPage->iUserHead = i;
2272
2273# ifdef PGMPOOL_WITH_CACHE
2274 /*
2275 * Tell the cache to update its replacement stats for this page.
2276 */
2277 pgmPoolCacheUsed(pPool, pPage);
2278# endif
2279 return VINF_SUCCESS;
2280}
2281# endif /* PGMPOOL_WITH_CACHE */
2282
2283
2284/**
2285 * Frees a user record associated with a page.
2286 *
2287 * This does not clear the entry in the user table, it simply replaces the
2288 * user record to the chain of free records.
2289 *
2290 * @param pPool The pool.
2291 * @param HCPhys The HC physical address of the shadow page.
2292 * @param iUser The shadow page pool index of the user table.
2293 * @param iUserTable The index into the user table (shadowed).
2294 */
2295static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2296{
2297 /*
2298 * Unlink and free the specified user entry.
2299 */
2300 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2301
2302 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2303 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2304 uint16_t i = pPage->iUserHead;
2305 if ( i != NIL_PGMPOOL_USER_INDEX
2306 && paUsers[i].iUser == iUser
2307 && paUsers[i].iUserTable == iUserTable)
2308 {
2309 pPage->iUserHead = paUsers[i].iNext;
2310
2311 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2312 paUsers[i].iNext = pPool->iUserFreeHead;
2313 pPool->iUserFreeHead = i;
2314 return;
2315 }
2316
2317 /* General: Linear search. */
2318 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2319 while (i != NIL_PGMPOOL_USER_INDEX)
2320 {
2321 if ( paUsers[i].iUser == iUser
2322 && paUsers[i].iUserTable == iUserTable)
2323 {
2324 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2325 paUsers[iPrev].iNext = paUsers[i].iNext;
2326 else
2327 pPage->iUserHead = paUsers[i].iNext;
2328
2329 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2330 paUsers[i].iNext = pPool->iUserFreeHead;
2331 pPool->iUserFreeHead = i;
2332 return;
2333 }
2334 iPrev = i;
2335 i = paUsers[i].iNext;
2336 }
2337
2338 /* Fatal: didn't find it */
2339 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2340 iUser, iUserTable, pPage->GCPhys));
2341}
2342
2343
2344/**
2345 * Gets the entry size of a shadow table.
2346 *
2347 * @param enmKind The kind of page.
2348 *
2349 * @returns The size of the entry in bytes. That is, 4 or 8.
2350 * @returns If the kind is not for a table, an assertion is raised and 0 is
2351 * returned.
2352 */
2353DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2354{
2355 switch (enmKind)
2356 {
2357 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2358 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2359 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2360 case PGMPOOLKIND_32BIT_PD:
2361 case PGMPOOLKIND_32BIT_PD_PHYS:
2362 return 4;
2363
2364 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2365 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2366 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2367 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2368 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2369 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2370 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2371 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2372 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2373 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2374 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2375 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2376 case PGMPOOLKIND_64BIT_PML4:
2377 case PGMPOOLKIND_PAE_PDPT:
2378 case PGMPOOLKIND_ROOT_NESTED:
2379 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2380 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2381 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2382 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2383 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2384 case PGMPOOLKIND_PAE_PD_PHYS:
2385 case PGMPOOLKIND_PAE_PDPT_PHYS:
2386 return 8;
2387
2388 default:
2389 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2390 }
2391}
2392
2393
2394/**
2395 * Gets the entry size of a guest table.
2396 *
2397 * @param enmKind The kind of page.
2398 *
2399 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2400 * @returns If the kind is not for a table, an assertion is raised and 0 is
2401 * returned.
2402 */
2403DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2404{
2405 switch (enmKind)
2406 {
2407 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2408 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2409 case PGMPOOLKIND_32BIT_PD:
2410 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2411 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2412 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2413 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2414 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2415 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2416 return 4;
2417
2418 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2419 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2420 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2421 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2422 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2423 case PGMPOOLKIND_64BIT_PML4:
2424 case PGMPOOLKIND_PAE_PDPT:
2425 return 8;
2426
2427 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2428 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2429 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2430 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2431 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2432 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2433 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2434 case PGMPOOLKIND_ROOT_NESTED:
2435 case PGMPOOLKIND_PAE_PD_PHYS:
2436 case PGMPOOLKIND_PAE_PDPT_PHYS:
2437 case PGMPOOLKIND_32BIT_PD_PHYS:
2438 /** @todo can we return 0? (nobody is calling this...) */
2439 AssertFailed();
2440 return 0;
2441
2442 default:
2443 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2444 }
2445}
2446
2447#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2448
2449/**
2450 * Scans one shadow page table for mappings of a physical page.
2451 *
2452 * @param pVM The VM handle.
2453 * @param pPhysPage The guest page in question.
2454 * @param iShw The shadow page table.
2455 * @param cRefs The number of references made in that PT.
2456 */
2457static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2458{
2459 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2460 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2461
2462 /*
2463 * Assert sanity.
2464 */
2465 Assert(cRefs == 1);
2466 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2467 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2468
2469 /*
2470 * Then, clear the actual mappings to the page in the shadow PT.
2471 */
2472 switch (pPage->enmKind)
2473 {
2474 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2475 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2476 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2477 {
2478 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2479 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2480 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2481 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2482 {
2483 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
2484 pPT->a[i].u = 0;
2485 cRefs--;
2486 if (!cRefs)
2487 return;
2488 }
2489#ifdef LOG_ENABLED
2490 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2491 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2492 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2493 {
2494 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2495 pPT->a[i].u = 0;
2496 }
2497#endif
2498 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2499 break;
2500 }
2501
2502 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2503 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2504 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2505 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2506 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2507 {
2508 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2509 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2510 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2511 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2512 {
2513 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2514 pPT->a[i].u = 0;
2515 cRefs--;
2516 if (!cRefs)
2517 return;
2518 }
2519#ifdef LOG_ENABLED
2520 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2521 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2522 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2523 {
2524 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2525 pPT->a[i].u = 0;
2526 }
2527#endif
2528 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
2529 break;
2530 }
2531
2532 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2533 {
2534 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2535 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2536 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2537 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2538 {
2539 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2540 pPT->a[i].u = 0;
2541 cRefs--;
2542 if (!cRefs)
2543 return;
2544 }
2545#ifdef LOG_ENABLED
2546 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2547 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2548 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2549 {
2550 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2551 pPT->a[i].u = 0;
2552 }
2553#endif
2554 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2555 break;
2556 }
2557
2558 default:
2559 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
2560 }
2561}
2562
2563
2564/**
2565 * Scans one shadow page table for mappings of a physical page.
2566 *
2567 * @param pVM The VM handle.
2568 * @param pPhysPage The guest page in question.
2569 * @param iShw The shadow page table.
2570 * @param cRefs The number of references made in that PT.
2571 */
2572void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2573{
2574 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2575 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2576 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
2577 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
2578 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2579 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
2580}
2581
2582
2583/**
2584 * Flushes a list of shadow page tables mapping the same physical page.
2585 *
2586 * @param pVM The VM handle.
2587 * @param pPhysPage The guest page in question.
2588 * @param iPhysExt The physical cross reference extent list to flush.
2589 */
2590void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
2591{
2592 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2593 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
2594 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
2595
2596 const uint16_t iPhysExtStart = iPhysExt;
2597 PPGMPOOLPHYSEXT pPhysExt;
2598 do
2599 {
2600 Assert(iPhysExt < pPool->cMaxPhysExts);
2601 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2602 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
2603 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
2604 {
2605 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
2606 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
2607 }
2608
2609 /* next */
2610 iPhysExt = pPhysExt->iNext;
2611 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
2612
2613 /* insert the list into the free list and clear the ram range entry. */
2614 pPhysExt->iNext = pPool->iPhysExtFreeHead;
2615 pPool->iPhysExtFreeHead = iPhysExtStart;
2616 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2617
2618 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
2619}
2620
2621#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
2622
2623/**
2624 * Flushes all shadow page table mappings of the given guest page.
2625 *
2626 * This is typically called when the host page backing the guest one has been
2627 * replaced or when the page protection was changed due to an access handler.
2628 *
2629 * @returns VBox status code.
2630 * @retval VINF_SUCCESS if all references has been successfully cleared.
2631 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2632 * a page pool cleaning.
2633 *
2634 * @param pVM The VM handle.
2635 * @param pPhysPage The guest page in question.
2636 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
2637 * flushed, it is NOT touched if this isn't necessary.
2638 * The caller MUST initialized this to @a false.
2639 */
2640int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
2641{
2642 int rc = VINF_SUCCESS;
2643#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2644 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
2645 if (u16)
2646 {
2647# ifdef VBOX_WITH_NEW_PHYS_CODE
2648 /*
2649 * The zero page is currently screwing up the tracking and we'll
2650 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2651 * is defined, zero pages won't normally be mapped. Some kind of solution
2652 * will be needed for this problem of course, but it will have to wait...
2653 */
2654 if (PGM_PAGE_IS_ZERO(pPhysPage))
2655 rc = VINF_PGM_GCPHYS_ALIASED;
2656 else
2657# endif
2658 {
2659# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2660 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
2661 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
2662 PVMCPU pVCpu = VMMGetCpu(pVM);
2663 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2664# endif
2665
2666 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
2667 pgmPoolTrackFlushGCPhysPT(pVM,
2668 pPhysPage,
2669 PGMPOOL_TD_GET_IDX(u16),
2670 PGMPOOL_TD_GET_CREFS(u16));
2671 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
2672 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
2673 else
2674 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2675 *pfFlushTLBs = true;
2676
2677# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2678 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2679# endif
2680 }
2681 }
2682
2683#elif defined(PGMPOOL_WITH_CACHE)
2684# ifdef VBOX_WITH_NEW_PHYS_CODE
2685 if (PGM_PAGE_IS_ZERO(pPhysPage))
2686 rc = VINF_PGM_GCPHYS_ALIASED;
2687 else
2688# endif
2689 {
2690# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2691 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kill the pool otherwise. */
2692 PVMCPU pVCpu = VMMGetCpu(pVM);
2693 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2694# endif
2695 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2696 if (rc == VINF_SUCCESS)
2697 *pfFlushTLBs = true;
2698 }
2699
2700# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2701 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2702# endif
2703
2704#else
2705 rc = VINF_PGM_GCPHYS_ALIASED;
2706#endif
2707
2708 return rc;
2709}
2710
2711
2712/**
2713 * Scans all shadow page tables for mappings of a physical page.
2714 *
2715 * This may be slow, but it's most likely more efficient than cleaning
2716 * out the entire page pool / cache.
2717 *
2718 * @returns VBox status code.
2719 * @retval VINF_SUCCESS if all references has been successfully cleared.
2720 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2721 * a page pool cleaning.
2722 *
2723 * @param pVM The VM handle.
2724 * @param pPhysPage The guest page in question.
2725 */
2726int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
2727{
2728 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2729 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2730 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
2731 pPool->cUsedPages, pPool->cPresent, pPhysPage));
2732
2733#if 1
2734 /*
2735 * There is a limit to what makes sense.
2736 */
2737 if (pPool->cPresent > 1024)
2738 {
2739 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
2740 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2741 return VINF_PGM_GCPHYS_ALIASED;
2742 }
2743#endif
2744
2745 /*
2746 * Iterate all the pages until we've encountered all that in use.
2747 * This is simple but not quite optimal solution.
2748 */
2749 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2750 const uint32_t u32 = u64;
2751 unsigned cLeft = pPool->cUsedPages;
2752 unsigned iPage = pPool->cCurPages;
2753 while (--iPage >= PGMPOOL_IDX_FIRST)
2754 {
2755 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2756 if (pPage->GCPhys != NIL_RTGCPHYS)
2757 {
2758 switch (pPage->enmKind)
2759 {
2760 /*
2761 * We only care about shadow page tables.
2762 */
2763 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2764 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2765 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2766 {
2767 unsigned cPresent = pPage->cPresent;
2768 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2769 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2770 if (pPT->a[i].n.u1Present)
2771 {
2772 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2773 {
2774 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
2775 pPT->a[i].u = 0;
2776 }
2777 if (!--cPresent)
2778 break;
2779 }
2780 break;
2781 }
2782
2783 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2784 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2785 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2786 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2787 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2788 {
2789 unsigned cPresent = pPage->cPresent;
2790 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2791 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2792 if (pPT->a[i].n.u1Present)
2793 {
2794 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2795 {
2796 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
2797 pPT->a[i].u = 0;
2798 }
2799 if (!--cPresent)
2800 break;
2801 }
2802 break;
2803 }
2804 }
2805 if (!--cLeft)
2806 break;
2807 }
2808 }
2809
2810 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2811 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2812 return VINF_SUCCESS;
2813}
2814
2815
2816/**
2817 * Clears the user entry in a user table.
2818 *
2819 * This is used to remove all references to a page when flushing it.
2820 */
2821static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
2822{
2823 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
2824 Assert(pUser->iUser < pPool->cCurPages);
2825 uint32_t iUserTable = pUser->iUserTable;
2826
2827 /*
2828 * Map the user page.
2829 */
2830 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
2831 union
2832 {
2833 uint64_t *pau64;
2834 uint32_t *pau32;
2835 } u;
2836 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
2837
2838 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
2839
2840 /* Safety precaution in case we change the paging for other modes too in the future. */
2841 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
2842
2843#ifdef VBOX_STRICT
2844 /*
2845 * Some sanity checks.
2846 */
2847 switch (pUserPage->enmKind)
2848 {
2849 case PGMPOOLKIND_32BIT_PD:
2850 case PGMPOOLKIND_32BIT_PD_PHYS:
2851 Assert(iUserTable < X86_PG_ENTRIES);
2852 break;
2853 case PGMPOOLKIND_PAE_PDPT:
2854 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2855 case PGMPOOLKIND_PAE_PDPT_PHYS:
2856 Assert(iUserTable < 4);
2857 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2858 break;
2859 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2860 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2861 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2862 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2863 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2864 case PGMPOOLKIND_PAE_PD_PHYS:
2865 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2866 break;
2867 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2868 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2869 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
2870 break;
2871 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2872 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2873 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2874 break;
2875 case PGMPOOLKIND_64BIT_PML4:
2876 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2877 /* GCPhys >> PAGE_SHIFT is the index here */
2878 break;
2879 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2880 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2881 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2882 break;
2883
2884 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2885 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2886 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2887 break;
2888
2889 case PGMPOOLKIND_ROOT_NESTED:
2890 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2891 break;
2892
2893 default:
2894 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
2895 break;
2896 }
2897#endif /* VBOX_STRICT */
2898
2899 /*
2900 * Clear the entry in the user page.
2901 */
2902 switch (pUserPage->enmKind)
2903 {
2904 /* 32-bit entries */
2905 case PGMPOOLKIND_32BIT_PD:
2906 case PGMPOOLKIND_32BIT_PD_PHYS:
2907 u.pau32[iUserTable] = 0;
2908 break;
2909
2910 /* 64-bit entries */
2911 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2912 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2913 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2914 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2915 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2916#if defined(IN_RC)
2917 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
2918 * non-present PDPT will continue to cause page faults.
2919 */
2920 ASMReloadCR3();
2921#endif
2922 /* no break */
2923 case PGMPOOLKIND_PAE_PD_PHYS:
2924 case PGMPOOLKIND_PAE_PDPT_PHYS:
2925 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2926 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2927 case PGMPOOLKIND_64BIT_PML4:
2928 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2929 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2930 case PGMPOOLKIND_PAE_PDPT:
2931 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2932 case PGMPOOLKIND_ROOT_NESTED:
2933 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2934 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2935 u.pau64[iUserTable] = 0;
2936 break;
2937
2938 default:
2939 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
2940 }
2941}
2942
2943
2944/**
2945 * Clears all users of a page.
2946 */
2947static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2948{
2949 /*
2950 * Free all the user records.
2951 */
2952 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
2953
2954 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2955 uint16_t i = pPage->iUserHead;
2956 while (i != NIL_PGMPOOL_USER_INDEX)
2957 {
2958 /* Clear enter in user table. */
2959 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
2960
2961 /* Free it. */
2962 const uint16_t iNext = paUsers[i].iNext;
2963 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2964 paUsers[i].iNext = pPool->iUserFreeHead;
2965 pPool->iUserFreeHead = i;
2966
2967 /* Next. */
2968 i = iNext;
2969 }
2970 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
2971}
2972
2973#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2974
2975/**
2976 * Allocates a new physical cross reference extent.
2977 *
2978 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
2979 * @param pVM The VM handle.
2980 * @param piPhysExt Where to store the phys ext index.
2981 */
2982PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
2983{
2984 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2985 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
2986 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
2987 {
2988 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
2989 return NULL;
2990 }
2991 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2992 pPool->iPhysExtFreeHead = pPhysExt->iNext;
2993 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2994 *piPhysExt = iPhysExt;
2995 return pPhysExt;
2996}
2997
2998
2999/**
3000 * Frees a physical cross reference extent.
3001 *
3002 * @param pVM The VM handle.
3003 * @param iPhysExt The extent to free.
3004 */
3005void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3006{
3007 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3008 Assert(iPhysExt < pPool->cMaxPhysExts);
3009 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3010 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3011 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3012 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3013 pPool->iPhysExtFreeHead = iPhysExt;
3014}
3015
3016
3017/**
3018 * Frees a physical cross reference extent.
3019 *
3020 * @param pVM The VM handle.
3021 * @param iPhysExt The extent to free.
3022 */
3023void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3024{
3025 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3026
3027 const uint16_t iPhysExtStart = iPhysExt;
3028 PPGMPOOLPHYSEXT pPhysExt;
3029 do
3030 {
3031 Assert(iPhysExt < pPool->cMaxPhysExts);
3032 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3033 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3034 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3035
3036 /* next */
3037 iPhysExt = pPhysExt->iNext;
3038 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3039
3040 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3041 pPool->iPhysExtFreeHead = iPhysExtStart;
3042}
3043
3044
3045/**
3046 * Insert a reference into a list of physical cross reference extents.
3047 *
3048 * @returns The new tracking data for PGMPAGE.
3049 *
3050 * @param pVM The VM handle.
3051 * @param iPhysExt The physical extent index of the list head.
3052 * @param iShwPT The shadow page table index.
3053 *
3054 */
3055static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3056{
3057 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3058 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3059
3060 /* special common case. */
3061 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3062 {
3063 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3064 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3065 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT));
3066 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3067 }
3068
3069 /* general treatment. */
3070 const uint16_t iPhysExtStart = iPhysExt;
3071 unsigned cMax = 15;
3072 for (;;)
3073 {
3074 Assert(iPhysExt < pPool->cMaxPhysExts);
3075 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3076 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3077 {
3078 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3079 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3080 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3081 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3082 }
3083 if (!--cMax)
3084 {
3085 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3086 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3087 LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT));
3088 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3089 }
3090 }
3091
3092 /* add another extent to the list. */
3093 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3094 if (!pNew)
3095 {
3096 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3097 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3098 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3099 }
3100 pNew->iNext = iPhysExtStart;
3101 pNew->aidx[0] = iShwPT;
3102 LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3103 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3104}
3105
3106
3107/**
3108 * Add a reference to guest physical page where extents are in use.
3109 *
3110 * @returns The new tracking data for PGMPAGE.
3111 *
3112 * @param pVM The VM handle.
3113 * @param u16 The ram range flags (top 16-bits).
3114 * @param iShwPT The shadow page table index.
3115 */
3116uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3117{
3118 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3119 {
3120 /*
3121 * Convert to extent list.
3122 */
3123 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3124 uint16_t iPhysExt;
3125 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3126 if (pPhysExt)
3127 {
3128 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3129 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3130 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3131 pPhysExt->aidx[1] = iShwPT;
3132 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3133 }
3134 else
3135 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3136 }
3137 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3138 {
3139 /*
3140 * Insert into the extent list.
3141 */
3142 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3143 }
3144 else
3145 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3146 return u16;
3147}
3148
3149
3150/**
3151 * Clear references to guest physical memory.
3152 *
3153 * @param pPool The pool.
3154 * @param pPage The page.
3155 * @param pPhysPage Pointer to the aPages entry in the ram range.
3156 */
3157void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3158{
3159 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3160 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3161
3162 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3163 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3164 {
3165 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3166 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3167 do
3168 {
3169 Assert(iPhysExt < pPool->cMaxPhysExts);
3170
3171 /*
3172 * Look for the shadow page and check if it's all freed.
3173 */
3174 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3175 {
3176 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3177 {
3178 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3179
3180 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3181 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3182 {
3183 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3184 return;
3185 }
3186
3187 /* we can free the node. */
3188 PVM pVM = pPool->CTX_SUFF(pVM);
3189 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3190 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3191 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3192 {
3193 /* lonely node */
3194 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3195 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3196 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3197 }
3198 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3199 {
3200 /* head */
3201 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3202 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3203 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3204 }
3205 else
3206 {
3207 /* in list */
3208 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3209 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3210 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3211 }
3212 iPhysExt = iPhysExtNext;
3213 return;
3214 }
3215 }
3216
3217 /* next */
3218 iPhysExtPrev = iPhysExt;
3219 iPhysExt = paPhysExts[iPhysExt].iNext;
3220 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3221
3222 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3223 }
3224 else /* nothing to do */
3225 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3226}
3227
3228
3229/**
3230 * Clear references to guest physical memory.
3231 *
3232 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3233 * is assumed to be correct, so the linear search can be skipped and we can assert
3234 * at an earlier point.
3235 *
3236 * @param pPool The pool.
3237 * @param pPage The page.
3238 * @param HCPhys The host physical address corresponding to the guest page.
3239 * @param GCPhys The guest physical address corresponding to HCPhys.
3240 */
3241static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3242{
3243 /*
3244 * Walk range list.
3245 */
3246 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3247 while (pRam)
3248 {
3249 RTGCPHYS off = GCPhys - pRam->GCPhys;
3250 if (off < pRam->cb)
3251 {
3252 /* does it match? */
3253 const unsigned iPage = off >> PAGE_SHIFT;
3254 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3255#ifdef LOG_ENABLED
3256RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3257Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3258#endif
3259 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3260 {
3261 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3262 return;
3263 }
3264 break;
3265 }
3266 pRam = pRam->CTX_SUFF(pNext);
3267 }
3268 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3269}
3270
3271
3272/**
3273 * Clear references to guest physical memory.
3274 *
3275 * @param pPool The pool.
3276 * @param pPage The page.
3277 * @param HCPhys The host physical address corresponding to the guest page.
3278 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3279 */
3280static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3281{
3282 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3283
3284 /*
3285 * Walk range list.
3286 */
3287 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3288 while (pRam)
3289 {
3290 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3291 if (off < pRam->cb)
3292 {
3293 /* does it match? */
3294 const unsigned iPage = off >> PAGE_SHIFT;
3295 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3296 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3297 {
3298 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3299 return;
3300 }
3301 break;
3302 }
3303 pRam = pRam->CTX_SUFF(pNext);
3304 }
3305
3306 /*
3307 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3308 */
3309 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3310 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3311 while (pRam)
3312 {
3313 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3314 while (iPage-- > 0)
3315 {
3316 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3317 {
3318 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3319 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3320 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3321 return;
3322 }
3323 }
3324 pRam = pRam->CTX_SUFF(pNext);
3325 }
3326
3327 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3328}
3329
3330
3331/**
3332 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3333 *
3334 * @param pPool The pool.
3335 * @param pPage The page.
3336 * @param pShwPT The shadow page table (mapping of the page).
3337 * @param pGstPT The guest page table.
3338 */
3339DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3340{
3341 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3342 if (pShwPT->a[i].n.u1Present)
3343 {
3344 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3345 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3346 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3347 if (!--pPage->cPresent)
3348 break;
3349 }
3350}
3351
3352
3353/**
3354 * Clear references to guest physical memory in a PAE / 32-bit page table.
3355 *
3356 * @param pPool The pool.
3357 * @param pPage The page.
3358 * @param pShwPT The shadow page table (mapping of the page).
3359 * @param pGstPT The guest page table (just a half one).
3360 */
3361DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3362{
3363 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3364 if (pShwPT->a[i].n.u1Present)
3365 {
3366 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3367 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3368 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3369 }
3370}
3371
3372
3373/**
3374 * Clear references to guest physical memory in a PAE / PAE page table.
3375 *
3376 * @param pPool The pool.
3377 * @param pPage The page.
3378 * @param pShwPT The shadow page table (mapping of the page).
3379 * @param pGstPT The guest page table.
3380 */
3381DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3382{
3383 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3384 if (pShwPT->a[i].n.u1Present)
3385 {
3386 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3387 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3388 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3389 }
3390}
3391
3392
3393/**
3394 * Clear references to guest physical memory in a 32-bit / 4MB page table.
3395 *
3396 * @param pPool The pool.
3397 * @param pPage The page.
3398 * @param pShwPT The shadow page table (mapping of the page).
3399 */
3400DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
3401{
3402 RTGCPHYS GCPhys = pPage->GCPhys;
3403 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3404 if (pShwPT->a[i].n.u1Present)
3405 {
3406 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
3407 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
3408 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
3409 }
3410}
3411
3412
3413/**
3414 * Clear references to guest physical memory in a PAE / 2/4MB page table.
3415 *
3416 * @param pPool The pool.
3417 * @param pPage The page.
3418 * @param pShwPT The shadow page table (mapping of the page).
3419 */
3420DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
3421{
3422 RTGCPHYS GCPhys = pPage->GCPhys;
3423 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3424 if (pShwPT->a[i].n.u1Present)
3425 {
3426 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
3427 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
3428 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
3429 }
3430}
3431
3432#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3433
3434
3435/**
3436 * Clear references to shadowed pages in a 32 bits page directory.
3437 *
3438 * @param pPool The pool.
3439 * @param pPage The page.
3440 * @param pShwPD The shadow page directory (mapping of the page).
3441 */
3442DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
3443{
3444 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3445 {
3446 if ( pShwPD->a[i].n.u1Present
3447 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3448 )
3449 {
3450 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
3451 if (pSubPage)
3452 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3453 else
3454 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
3455 }
3456 }
3457}
3458
3459/**
3460 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
3461 *
3462 * @param pPool The pool.
3463 * @param pPage The page.
3464 * @param pShwPD The shadow page directory (mapping of the page).
3465 */
3466DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
3467{
3468 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3469 {
3470 if ( pShwPD->a[i].n.u1Present
3471 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3472 )
3473 {
3474 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
3475 if (pSubPage)
3476 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3477 else
3478 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
3479 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3480 }
3481 }
3482}
3483
3484/**
3485 * Clear references to shadowed pages in a PAE page directory pointer table.
3486 *
3487 * @param pPool The pool.
3488 * @param pPage The page.
3489 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3490 */
3491DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3492{
3493 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
3494 {
3495 if ( pShwPDPT->a[i].n.u1Present
3496 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
3497 )
3498 {
3499 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3500 if (pSubPage)
3501 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3502 else
3503 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3504 }
3505 }
3506}
3507
3508
3509/**
3510 * Clear references to shadowed pages in a 64-bit page directory pointer table.
3511 *
3512 * @param pPool The pool.
3513 * @param pPage The page.
3514 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3515 */
3516DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3517{
3518 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3519 {
3520 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
3521 if (pShwPDPT->a[i].n.u1Present)
3522 {
3523 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3524 if (pSubPage)
3525 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3526 else
3527 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3528 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3529 }
3530 }
3531}
3532
3533
3534/**
3535 * Clear references to shadowed pages in a 64-bit level 4 page table.
3536 *
3537 * @param pPool The pool.
3538 * @param pPage The page.
3539 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3540 */
3541DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
3542{
3543 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
3544 {
3545 if (pShwPML4->a[i].n.u1Present)
3546 {
3547 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
3548 if (pSubPage)
3549 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3550 else
3551 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
3552 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3553 }
3554 }
3555}
3556
3557
3558/**
3559 * Clear references to shadowed pages in an EPT page table.
3560 *
3561 * @param pPool The pool.
3562 * @param pPage The page.
3563 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3564 */
3565DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
3566{
3567 RTGCPHYS GCPhys = pPage->GCPhys;
3568 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3569 if (pShwPT->a[i].n.u1Present)
3570 {
3571 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
3572 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
3573 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
3574 }
3575}
3576
3577
3578/**
3579 * Clear references to shadowed pages in an EPT page directory.
3580 *
3581 * @param pPool The pool.
3582 * @param pPage The page.
3583 * @param pShwPD The shadow page directory (mapping of the page).
3584 */
3585DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
3586{
3587 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3588 {
3589 if (pShwPD->a[i].n.u1Present)
3590 {
3591 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
3592 if (pSubPage)
3593 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3594 else
3595 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
3596 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3597 }
3598 }
3599}
3600
3601
3602/**
3603 * Clear references to shadowed pages in an EPT page directory pointer table.
3604 *
3605 * @param pPool The pool.
3606 * @param pPage The page.
3607 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3608 */
3609DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
3610{
3611 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3612 {
3613 if (pShwPDPT->a[i].n.u1Present)
3614 {
3615 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
3616 if (pSubPage)
3617 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3618 else
3619 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
3620 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3621 }
3622 }
3623}
3624
3625
3626/**
3627 * Clears all references made by this page.
3628 *
3629 * This includes other shadow pages and GC physical addresses.
3630 *
3631 * @param pPool The pool.
3632 * @param pPage The page.
3633 */
3634static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3635{
3636 /*
3637 * Map the shadow page and take action according to the page kind.
3638 */
3639 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
3640 switch (pPage->enmKind)
3641 {
3642#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3643 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3644 {
3645 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3646 void *pvGst;
3647 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3648 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
3649 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3650 break;
3651 }
3652
3653 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3654 {
3655 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3656 void *pvGst;
3657 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3658 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
3659 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3660 break;
3661 }
3662
3663 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3664 {
3665 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3666 void *pvGst;
3667 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3668 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
3669 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3670 break;
3671 }
3672
3673 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
3674 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3675 {
3676 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3677 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
3678 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3679 break;
3680 }
3681
3682 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
3683 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3684 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3685 {
3686 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3687 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
3688 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3689 break;
3690 }
3691
3692#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3693 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3694 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3695 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3696 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3697 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3698 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3699 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3700 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3701 break;
3702#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3703
3704 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3705 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3706 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3707 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3708 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3709 case PGMPOOLKIND_PAE_PD_PHYS:
3710 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3711 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3712 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
3713 break;
3714
3715 case PGMPOOLKIND_32BIT_PD_PHYS:
3716 case PGMPOOLKIND_32BIT_PD:
3717 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
3718 break;
3719
3720 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3721 case PGMPOOLKIND_PAE_PDPT:
3722 case PGMPOOLKIND_PAE_PDPT_PHYS:
3723 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
3724 break;
3725
3726 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3727 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3728 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
3729 break;
3730
3731 case PGMPOOLKIND_64BIT_PML4:
3732 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
3733 break;
3734
3735 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3736 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
3737 break;
3738
3739 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3740 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
3741 break;
3742
3743 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3744 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
3745 break;
3746
3747 default:
3748 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
3749 }
3750
3751 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
3752 STAM_PROFILE_START(&pPool->StatZeroPage, z);
3753 ASMMemZeroPage(pvShw);
3754 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
3755 pPage->fZeroed = true;
3756 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
3757}
3758
3759#endif /* PGMPOOL_WITH_USER_TRACKING */
3760#ifdef IN_RING3
3761
3762/**
3763 * Flushes all the special root pages as part of a pgmPoolFlushAllInt operation.
3764 *
3765 * @param pPool The pool.
3766 */
3767static void pgmPoolFlushAllSpecialRoots(PPGMPOOL pPool)
3768{
3769 /*
3770 * These special pages are all mapped into the indexes 1..PGMPOOL_IDX_FIRST.
3771 */
3772 Assert(NIL_PGMPOOL_IDX == 0);
3773
3774 /*
3775 * Paranoia (to be removed), flag a global CR3 sync.
3776 */
3777 VM_FF_SET(pPool->CTX_SUFF(pVM), VM_FF_PGM_SYNC_CR3);
3778}
3779
3780
3781/**
3782 * Flushes the entire cache.
3783 *
3784 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
3785 * and execute this CR3 flush.
3786 *
3787 * @param pPool The pool.
3788 */
3789static void pgmPoolFlushAllInt(PPGMPOOL pPool)
3790{
3791 PVM pVM = pPool->CTX_SUFF(pVM);
3792
3793 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
3794 LogFlow(("pgmPoolFlushAllInt:\n"));
3795
3796 /*
3797 * If there are no pages in the pool, there is nothing to do.
3798 */
3799 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
3800 {
3801 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
3802 return;
3803 }
3804
3805 /* Unmap the old CR3 value before flushing everything. */
3806 int rc = PGM_BTH_PFN(UnmapCR3, pVM)(pVM);
3807 AssertRC(rc);
3808
3809 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3810 rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3811 AssertRC(rc);
3812
3813 /*
3814 * Nuke the free list and reinsert all pages into it.
3815 */
3816 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
3817 {
3818 PPGMPOOLPAGE pPage = &pPool->aPages[i];
3819
3820#ifdef IN_RING3
3821 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
3822#endif
3823#ifdef PGMPOOL_WITH_MONITORING
3824 if (pPage->fMonitored)
3825 pgmPoolMonitorFlush(pPool, pPage);
3826 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
3827 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
3828 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
3829 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
3830 pPage->cModifications = 0;
3831#endif
3832 pPage->GCPhys = NIL_RTGCPHYS;
3833 pPage->enmKind = PGMPOOLKIND_FREE;
3834 Assert(pPage->idx == i);
3835 pPage->iNext = i + 1;
3836 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
3837 pPage->fSeenNonGlobal = false;
3838 pPage->fMonitored= false;
3839 pPage->fCached = false;
3840 pPage->fReusedFlushPending = false;
3841#ifdef PGMPOOL_WITH_USER_TRACKING
3842 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3843#else
3844 pPage->fCR3Mix = false;
3845#endif
3846#ifdef PGMPOOL_WITH_CACHE
3847 pPage->iAgeNext = NIL_PGMPOOL_IDX;
3848 pPage->iAgePrev = NIL_PGMPOOL_IDX;
3849#endif
3850 pPage->fLocked = false;
3851 }
3852 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
3853 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
3854 pPool->cUsedPages = 0;
3855
3856#ifdef PGMPOOL_WITH_USER_TRACKING
3857 /*
3858 * Zap and reinitialize the user records.
3859 */
3860 pPool->cPresent = 0;
3861 pPool->iUserFreeHead = 0;
3862 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3863 const unsigned cMaxUsers = pPool->cMaxUsers;
3864 for (unsigned i = 0; i < cMaxUsers; i++)
3865 {
3866 paUsers[i].iNext = i + 1;
3867 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3868 paUsers[i].iUserTable = 0xfffffffe;
3869 }
3870 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
3871#endif
3872
3873#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3874 /*
3875 * Clear all the GCPhys links and rebuild the phys ext free list.
3876 */
3877 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
3878 pRam;
3879 pRam = pRam->CTX_SUFF(pNext))
3880 {
3881 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3882 while (iPage-- > 0)
3883 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
3884 }
3885
3886 pPool->iPhysExtFreeHead = 0;
3887 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3888 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
3889 for (unsigned i = 0; i < cMaxPhysExts; i++)
3890 {
3891 paPhysExts[i].iNext = i + 1;
3892 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
3893 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
3894 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
3895 }
3896 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3897#endif
3898
3899#ifdef PGMPOOL_WITH_MONITORING
3900 /*
3901 * Just zap the modified list.
3902 */
3903 pPool->cModifiedPages = 0;
3904 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
3905#endif
3906
3907#ifdef PGMPOOL_WITH_CACHE
3908 /*
3909 * Clear the GCPhys hash and the age list.
3910 */
3911 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
3912 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
3913 pPool->iAgeHead = NIL_PGMPOOL_IDX;
3914 pPool->iAgeTail = NIL_PGMPOOL_IDX;
3915#endif
3916
3917 /*
3918 * Flush all the special root pages.
3919 * Reinsert active pages into the hash and ensure monitoring chains are correct.
3920 */
3921 pgmPoolFlushAllSpecialRoots(pPool);
3922 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
3923 {
3924 PPGMPOOLPAGE pPage = &pPool->aPages[i];
3925 pPage->iNext = NIL_PGMPOOL_IDX;
3926#ifdef PGMPOOL_WITH_MONITORING
3927 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
3928 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
3929 pPage->cModifications = 0;
3930 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
3931 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
3932 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
3933 if (pPage->fMonitored)
3934 {
3935 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
3936 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
3937 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
3938 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
3939 pPool->pszAccessHandler);
3940 AssertFatalRCSuccess(rc);
3941# ifdef PGMPOOL_WITH_CACHE
3942 pgmPoolHashInsert(pPool, pPage);
3943# endif
3944 }
3945#endif
3946#ifdef PGMPOOL_WITH_USER_TRACKING
3947 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
3948#endif
3949#ifdef PGMPOOL_WITH_CACHE
3950 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
3951 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
3952#endif
3953 }
3954
3955 /* Force a shadow mode reinit (necessary for nested paging and ept). */
3956 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3957
3958 /* Reinit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3959 rc = PGMR3ChangeMode(pVM, PGMGetGuestMode(pVM));
3960 AssertRC(rc);
3961
3962 /*
3963 * Finally, assert the FF.
3964 */
3965 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3966
3967 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
3968}
3969
3970#endif /* IN_RING3 */
3971
3972/**
3973 * Flushes a pool page.
3974 *
3975 * This moves the page to the free list after removing all user references to it.
3976 * In GC this will cause a CR3 reload if the page is traced back to an active root page.
3977 *
3978 * @returns VBox status code.
3979 * @retval VINF_SUCCESS on success.
3980 * @param pPool The pool.
3981 * @param HCPhys The HC physical address of the shadow page.
3982 */
3983int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3984{
3985 int rc = VINF_SUCCESS;
3986 STAM_PROFILE_START(&pPool->StatFlushPage, f);
3987 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
3988 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
3989
3990 /*
3991 * Quietly reject any attempts at flushing any of the special root pages.
3992 */
3993 if (pPage->idx < PGMPOOL_IDX_FIRST)
3994 {
3995 AssertFailed(); /* can no longer happen */
3996 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3997 return VINF_SUCCESS;
3998 }
3999
4000 /*
4001 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4002 */
4003 if (pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
4004 {
4005 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4006 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4007 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4008 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4009 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4010 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4011 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4012 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4013 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
4014 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(pPool->CTX_SUFF(pVM)), pPage->Core.Key, pPage->enmKind));
4015 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4016 return VINF_SUCCESS;
4017 }
4018
4019#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4020 /* Start a subset so we won't run out of mapping space. */
4021 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
4022 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
4023#endif
4024
4025 /*
4026 * Mark the page as being in need of a ASMMemZeroPage().
4027 */
4028 pPage->fZeroed = false;
4029
4030#ifdef PGMPOOL_WITH_USER_TRACKING
4031 /*
4032 * Clear the page.
4033 */
4034 pgmPoolTrackClearPageUsers(pPool, pPage);
4035 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4036 pgmPoolTrackDeref(pPool, pPage);
4037 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4038#endif
4039
4040#ifdef PGMPOOL_WITH_CACHE
4041 /*
4042 * Flush it from the cache.
4043 */
4044 pgmPoolCacheFlushPage(pPool, pPage);
4045#endif /* PGMPOOL_WITH_CACHE */
4046
4047#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4048 /* Heavy stuff done. */
4049 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
4050#endif
4051
4052#ifdef PGMPOOL_WITH_MONITORING
4053 /*
4054 * Deregistering the monitoring.
4055 */
4056 if (pPage->fMonitored)
4057 rc = pgmPoolMonitorFlush(pPool, pPage);
4058#endif
4059
4060 /*
4061 * Free the page.
4062 */
4063 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4064 pPage->iNext = pPool->iFreeHead;
4065 pPool->iFreeHead = pPage->idx;
4066 pPage->enmKind = PGMPOOLKIND_FREE;
4067 pPage->GCPhys = NIL_RTGCPHYS;
4068 pPage->fReusedFlushPending = false;
4069
4070 pPool->cUsedPages--;
4071 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4072 return rc;
4073}
4074
4075
4076/**
4077 * Frees a usage of a pool page.
4078 *
4079 * The caller is responsible to updating the user table so that it no longer
4080 * references the shadow page.
4081 *
4082 * @param pPool The pool.
4083 * @param HCPhys The HC physical address of the shadow page.
4084 * @param iUser The shadow page pool index of the user table.
4085 * @param iUserTable The index into the user table (shadowed).
4086 */
4087void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4088{
4089 STAM_PROFILE_START(&pPool->StatFree, a);
4090 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
4091 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4092 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
4093#ifdef PGMPOOL_WITH_USER_TRACKING
4094 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4095#endif
4096#ifdef PGMPOOL_WITH_CACHE
4097 if (!pPage->fCached)
4098#endif
4099 pgmPoolFlushPage(pPool, pPage);
4100 STAM_PROFILE_STOP(&pPool->StatFree, a);
4101}
4102
4103
4104/**
4105 * Makes one or more free page free.
4106 *
4107 * @returns VBox status code.
4108 * @retval VINF_SUCCESS on success.
4109 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4110 *
4111 * @param pPool The pool.
4112 * @param enmKind Page table kind
4113 * @param iUser The user of the page.
4114 */
4115static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4116{
4117 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
4118
4119 /*
4120 * If the pool isn't full grown yet, expand it.
4121 */
4122 if ( pPool->cCurPages < pPool->cMaxPages
4123#if defined(IN_RC)
4124 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
4125 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4126 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
4127#endif
4128 )
4129 {
4130 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4131#ifdef IN_RING3
4132 int rc = PGMR3PoolGrow(pPool->pVMR3);
4133#else
4134 int rc = CTXALLMID(VMM, CallHost)(pPool->CTX_SUFF(pVM), VMMCALLHOST_PGM_POOL_GROW, 0);
4135#endif
4136 if (RT_FAILURE(rc))
4137 return rc;
4138 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4139 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4140 return VINF_SUCCESS;
4141 }
4142
4143#ifdef PGMPOOL_WITH_CACHE
4144 /*
4145 * Free one cached page.
4146 */
4147 return pgmPoolCacheFreeOne(pPool, iUser);
4148#else
4149 /*
4150 * Flush the pool.
4151 *
4152 * If we have tracking enabled, it should be possible to come up with
4153 * a cheap replacement strategy...
4154 */
4155 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4156 AssertCompileFailed();
4157 Assert(!CPUMIsGuestInLongMode(pVM));
4158 pgmPoolFlushAllInt(pPool);
4159 return VERR_PGM_POOL_FLUSHED;
4160#endif
4161}
4162
4163
4164/**
4165 * Allocates a page from the pool.
4166 *
4167 * This page may actually be a cached page and not in need of any processing
4168 * on the callers part.
4169 *
4170 * @returns VBox status code.
4171 * @retval VINF_SUCCESS if a NEW page was allocated.
4172 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4173 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4174 * @param pVM The VM handle.
4175 * @param GCPhys The GC physical address of the page we're gonna shadow.
4176 * For 4MB and 2MB PD entries, it's the first address the
4177 * shadow PT is covering.
4178 * @param enmKind The kind of mapping.
4179 * @param iUser The shadow page pool index of the user table.
4180 * @param iUserTable The index into the user table (shadowed).
4181 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4182 */
4183int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
4184{
4185 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4186 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4187 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4188 *ppPage = NULL;
4189 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4190 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4191 * Assert(!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
4192
4193#ifdef PGMPOOL_WITH_CACHE
4194 if (pPool->fCacheEnabled)
4195 {
4196 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, iUser, iUserTable, ppPage);
4197 if (RT_SUCCESS(rc2))
4198 {
4199 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4200 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4201 return rc2;
4202 }
4203 }
4204#endif
4205
4206 /*
4207 * Allocate a new one.
4208 */
4209 int rc = VINF_SUCCESS;
4210 uint16_t iNew = pPool->iFreeHead;
4211 if (iNew == NIL_PGMPOOL_IDX)
4212 {
4213 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4214 if (RT_FAILURE(rc))
4215 {
4216 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4217 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4218 return rc;
4219 }
4220 iNew = pPool->iFreeHead;
4221 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4222 }
4223
4224 /* unlink the free head */
4225 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4226 pPool->iFreeHead = pPage->iNext;
4227 pPage->iNext = NIL_PGMPOOL_IDX;
4228
4229 /*
4230 * Initialize it.
4231 */
4232 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4233 pPage->enmKind = enmKind;
4234 pPage->GCPhys = GCPhys;
4235 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4236 pPage->fMonitored = false;
4237 pPage->fCached = false;
4238 pPage->fReusedFlushPending = false;
4239#ifdef PGMPOOL_WITH_MONITORING
4240 pPage->cModifications = 0;
4241 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4242 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4243#else
4244 pPage->fCR3Mix = false;
4245#endif
4246#ifdef PGMPOOL_WITH_USER_TRACKING
4247 pPage->cPresent = 0;
4248 pPage->iFirstPresent = ~0;
4249
4250 /*
4251 * Insert into the tracking and cache. If this fails, free the page.
4252 */
4253 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4254 if (RT_FAILURE(rc3))
4255 {
4256 pPool->cUsedPages--;
4257 pPage->enmKind = PGMPOOLKIND_FREE;
4258 pPage->GCPhys = NIL_RTGCPHYS;
4259 pPage->iNext = pPool->iFreeHead;
4260 pPool->iFreeHead = pPage->idx;
4261 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4262 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4263 return rc3;
4264 }
4265#endif /* PGMPOOL_WITH_USER_TRACKING */
4266
4267 /*
4268 * Commit the allocation, clear the page and return.
4269 */
4270#ifdef VBOX_WITH_STATISTICS
4271 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4272 pPool->cUsedPagesHigh = pPool->cUsedPages;
4273#endif
4274
4275 if (!pPage->fZeroed)
4276 {
4277 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4278 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4279 ASMMemZeroPage(pv);
4280 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4281 }
4282
4283 *ppPage = pPage;
4284 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4285 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4286 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4287 return rc;
4288}
4289
4290
4291/**
4292 * Frees a usage of a pool page.
4293 *
4294 * @param pVM The VM handle.
4295 * @param HCPhys The HC physical address of the shadow page.
4296 * @param iUser The shadow page pool index of the user table.
4297 * @param iUserTable The index into the user table (shadowed).
4298 */
4299void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4300{
4301 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4302 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4303 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4304}
4305
4306
4307/**
4308 * Gets a in-use page in the pool by it's physical address.
4309 *
4310 * @returns Pointer to the page.
4311 * @param pVM The VM handle.
4312 * @param HCPhys The HC physical address of the shadow page.
4313 * @remark This function will NEVER return NULL. It will assert if HCPhys is invalid.
4314 */
4315PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys)
4316{
4317 /** @todo profile this! */
4318 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4319 PPGMPOOLPAGE pPage = pgmPoolGetPage(pPool, HCPhys);
4320 Log4(("pgmPoolGetPageByHCPhys: HCPhys=%RHp -> %p:{.idx=%d .GCPhys=%RGp .enmKind=%s}\n",
4321 HCPhys, pPage, pPage->idx, pPage->GCPhys, pgmPoolPoolKindToStr(pPage->enmKind)));
4322 return pPage;
4323}
4324
4325#ifdef IN_RING3
4326/**
4327 * Flushes the entire cache.
4328 *
4329 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4330 * and execute this CR3 flush.
4331 *
4332 * @param pPool The pool.
4333 */
4334void pgmPoolFlushAll(PVM pVM)
4335{
4336 LogFlow(("pgmPoolFlushAll:\n"));
4337 pgmPoolFlushAllInt(pVM->pgm.s.CTX_SUFF(pPool));
4338}
4339#endif /* IN_RING3 */
4340
4341#ifdef LOG_ENABLED
4342static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
4343{
4344 switch(enmKind)
4345 {
4346 case PGMPOOLKIND_INVALID:
4347 return "PGMPOOLKIND_INVALID";
4348 case PGMPOOLKIND_FREE:
4349 return "PGMPOOLKIND_FREE";
4350 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4351 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
4352 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4353 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
4354 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4355 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
4356 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4357 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
4358 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4359 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
4360 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4361 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
4362 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4363 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
4364 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4365 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
4366 case PGMPOOLKIND_32BIT_PD:
4367 return "PGMPOOLKIND_32BIT_PD";
4368 case PGMPOOLKIND_32BIT_PD_PHYS:
4369 return "PGMPOOLKIND_32BIT_PD_PHYS";
4370 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4371 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
4372 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4373 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
4374 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4375 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
4376 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4377 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
4378 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4379 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
4380 case PGMPOOLKIND_PAE_PD_PHYS:
4381 return "PGMPOOLKIND_PAE_PD_PHYS";
4382 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4383 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
4384 case PGMPOOLKIND_PAE_PDPT:
4385 return "PGMPOOLKIND_PAE_PDPT";
4386 case PGMPOOLKIND_PAE_PDPT_PHYS:
4387 return "PGMPOOLKIND_PAE_PDPT_PHYS";
4388 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4389 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
4390 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4391 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
4392 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4393 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
4394 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4395 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
4396 case PGMPOOLKIND_64BIT_PML4:
4397 return "PGMPOOLKIND_64BIT_PML4";
4398 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4399 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
4400 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4401 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
4402 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4403 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
4404 case PGMPOOLKIND_ROOT_NESTED:
4405 return "PGMPOOLKIND_ROOT_NESTED";
4406 }
4407 return "Unknown kind!";
4408}
4409#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette