VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 21258

Last change on this file since 21258 was 20874, checked in by vboxsync, 16 years ago

VMMR0CallHost -> VMMRZCallRing3[NoCpu]; VMMCALLHOST -> VMMCALLRING3.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 162.6 KB
Line 
1/* $Id: PGMAllPool.cpp 20874 2009-06-24 02:19:29Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48RT_C_DECLS_BEGIN
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
56static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
57#endif
58#ifdef PGMPOOL_WITH_CACHE
59static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
60#endif
61#ifdef PGMPOOL_WITH_MONITORING
62static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
63#endif
64#ifndef IN_RING3
65DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
66#endif
67#ifdef LOG_ENABLED
68static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
69#endif
70
71void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
72void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
73int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
74PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
75void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
76void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
77
78RT_C_DECLS_END
79
80
81/**
82 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
83 *
84 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
85 * @param enmKind The page kind.
86 */
87DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
88{
89 switch (enmKind)
90 {
91 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
92 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
93 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
94 return true;
95 default:
96 return false;
97 }
98}
99
100/** @def PGMPOOL_PAGE_2_LOCKED_PTR
101 * Maps a pool page pool into the current context and lock it (RC only).
102 *
103 * @returns VBox status code.
104 * @param pVM The VM handle.
105 * @param pPage The pool page.
106 *
107 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
108 * small page window employeed by that function. Be careful.
109 * @remark There is no need to assert on the result.
110 */
111#if defined(IN_RC)
112DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
113{
114 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
115
116 /* Make sure the dynamic mapping will not be reused. */
117 if (pv)
118 PGMDynLockHCPage(pVM, (uint8_t *)pv);
119
120 return pv;
121}
122#else
123# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
124#endif
125
126/** @def PGMPOOL_UNLOCK_PTR
127 * Unlock a previously locked dynamic caching (RC only).
128 *
129 * @returns VBox status code.
130 * @param pVM The VM handle.
131 * @param pPage The pool page.
132 *
133 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
134 * small page window employeed by that function. Be careful.
135 * @remark There is no need to assert on the result.
136 */
137#if defined(IN_RC)
138DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
139{
140 if (pvPage)
141 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
142}
143#else
144# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
145#endif
146
147
148#ifdef PGMPOOL_WITH_MONITORING
149/**
150 * Determin the size of a write instruction.
151 * @returns number of bytes written.
152 * @param pDis The disassembler state.
153 */
154static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
155{
156 /*
157 * This is very crude and possibly wrong for some opcodes,
158 * but since it's not really supposed to be called we can
159 * probably live with that.
160 */
161 return DISGetParamSize(pDis, &pDis->param1);
162}
163
164
165/**
166 * Flushes a chain of pages sharing the same access monitor.
167 *
168 * @returns VBox status code suitable for scheduling.
169 * @param pPool The pool.
170 * @param pPage A page in the chain.
171 */
172int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
173{
174 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
175
176 /*
177 * Find the list head.
178 */
179 uint16_t idx = pPage->idx;
180 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
181 {
182 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
183 {
184 idx = pPage->iMonitoredPrev;
185 Assert(idx != pPage->idx);
186 pPage = &pPool->aPages[idx];
187 }
188 }
189
190 /*
191 * Iterate the list flushing each shadow page.
192 */
193 int rc = VINF_SUCCESS;
194 for (;;)
195 {
196 idx = pPage->iMonitoredNext;
197 Assert(idx != pPage->idx);
198 if (pPage->idx >= PGMPOOL_IDX_FIRST)
199 {
200 int rc2 = pgmPoolFlushPage(pPool, pPage);
201 AssertRC(rc2);
202 }
203 /* next */
204 if (idx == NIL_PGMPOOL_IDX)
205 break;
206 pPage = &pPool->aPages[idx];
207 }
208 return rc;
209}
210
211
212/**
213 * Wrapper for getting the current context pointer to the entry being modified.
214 *
215 * @returns VBox status code suitable for scheduling.
216 * @param pVM VM Handle.
217 * @param pvDst Destination address
218 * @param pvSrc Source guest virtual address.
219 * @param GCPhysSrc The source guest physical address.
220 * @param cb Size of data to read
221 */
222DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
223{
224#if defined(IN_RING3)
225 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
226 return VINF_SUCCESS;
227#else
228 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
229 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
230#endif
231}
232
233/**
234 * Process shadow entries before they are changed by the guest.
235 *
236 * For PT entries we will clear them. For PD entries, we'll simply check
237 * for mapping conflicts and set the SyncCR3 FF if found.
238 *
239 * @param pVCpu VMCPU handle
240 * @param pPool The pool.
241 * @param pPage The head page.
242 * @param GCPhysFault The guest physical fault address.
243 * @param uAddress In R0 and GC this is the guest context fault address (flat).
244 * In R3 this is the host context 'fault' address.
245 * @param pDis The disassembler state for figuring out the write size.
246 * This need not be specified if the caller knows we won't do cross entry accesses.
247 */
248void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pDis)
249{
250 AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%#x (idx=%#x)\n", pPage->iMonitoredPrev, pPage->idx));
251 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
252 const unsigned cbWrite = pDis ? pgmPoolDisasWriteSize(pDis) : 0;
253 PVM pVM = pPool->CTX_SUFF(pVM);
254
255 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp kind=%s cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
256 for (;;)
257 {
258 union
259 {
260 void *pv;
261 PX86PT pPT;
262 PX86PTPAE pPTPae;
263 PX86PD pPD;
264 PX86PDPAE pPDPae;
265 PX86PDPT pPDPT;
266 PX86PML4 pPML4;
267 } uShw;
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pDis
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pDis
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pDis
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pDis
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pDis
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pDis
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pDis
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pDis
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setuping up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pDis The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pDis->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pRegFrame Trap register frame.
823 * @param pDis The disassembly info for the faulting instruction.
824 * @param pvFault The fault address.
825 *
826 * @remark The REP prefix check is left to the caller because of STOSD/W.
827 */
828DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault)
829{
830#ifndef IN_RC
831 /** @todo could make this general, faulting close to rsp should be safe reuse heuristic. */
832 if ( HWACCMHasPendingIrq(pVM)
833 && (pRegFrame->rsp - pvFault) < 32)
834 {
835 /* Fault caused by stack writes while trying to inject an interrupt event. */
836 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
837 return true;
838 }
839#else
840 NOREF(pVM); NOREF(pvFault);
841#endif
842
843 switch (pDis->pCurInstr->opcode)
844 {
845 /* call implies the actual push of the return address faulted */
846 case OP_CALL:
847 Log4(("pgmPoolMonitorIsReused: CALL\n"));
848 return true;
849 case OP_PUSH:
850 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
851 return true;
852 case OP_PUSHF:
853 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
854 return true;
855 case OP_PUSHA:
856 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
857 return true;
858 case OP_FXSAVE:
859 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
860 return true;
861 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
862 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
863 return true;
864 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
865 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
866 return true;
867 case OP_MOVSWD:
868 case OP_STOSWD:
869 if ( pDis->prefix == (PREFIX_REP|PREFIX_REX)
870 && pRegFrame->rcx >= 0x40
871 )
872 {
873 Assert(pDis->mode == CPUMODE_64BIT);
874
875 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
876 return true;
877 }
878 return false;
879 }
880 if ( (pDis->param1.flags & USE_REG_GEN32)
881 && (pDis->param1.base.reg_gen == USE_REG_ESP))
882 {
883 Log4(("pgmPoolMonitorIsReused: ESP\n"));
884 return true;
885 }
886
887 return false;
888}
889
890
891/**
892 * Flushes the page being accessed.
893 *
894 * @returns VBox status code suitable for scheduling.
895 * @param pVM The VM handle.
896 * @param pVCpu The VMCPU handle.
897 * @param pPool The pool.
898 * @param pPage The pool page (head).
899 * @param pDis The disassembly of the write instruction.
900 * @param pRegFrame The trap register frame.
901 * @param GCPhysFault The fault address as guest physical address.
902 * @param pvFault The fault address.
903 */
904static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
905 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
906{
907 /*
908 * First, do the flushing.
909 */
910 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
911
912 /*
913 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
914 */
915 uint32_t cbWritten;
916 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, &cbWritten);
917 if (RT_SUCCESS(rc2))
918 pRegFrame->rip += pDis->opsize;
919 else if (rc2 == VERR_EM_INTERPRETER)
920 {
921#ifdef IN_RC
922 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
923 {
924 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
925 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
926 rc = VINF_SUCCESS;
927 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
928 }
929 else
930#endif
931 {
932 rc = VINF_EM_RAW_EMULATE_INSTR;
933 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
934 }
935 }
936 else
937 rc = rc2;
938
939 /* See use in pgmPoolAccessHandlerSimple(). */
940 PGM_INVL_VCPU_TLBS(pVCpu);
941
942 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
943 return rc;
944
945}
946
947
948/**
949 * Handles the STOSD write accesses.
950 *
951 * @returns VBox status code suitable for scheduling.
952 * @param pVM The VM handle.
953 * @param pPool The pool.
954 * @param pPage The pool page (head).
955 * @param pDis The disassembly of the write instruction.
956 * @param pRegFrame The trap register frame.
957 * @param GCPhysFault The fault address as guest physical address.
958 * @param pvFault The fault address.
959 */
960DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
961 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
962{
963 Assert(pDis->mode == CPUMODE_32BIT);
964
965 Log3(("pgmPoolAccessHandlerSTOSD\n"));
966
967 /*
968 * Increment the modification counter and insert it into the list
969 * of modified pages the first time.
970 */
971 if (!pPage->cModifications++)
972 pgmPoolMonitorModifiedInsert(pPool, pPage);
973
974 /*
975 * Execute REP STOSD.
976 *
977 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
978 * write situation, meaning that it's safe to write here.
979 */
980 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
981 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
982 while (pRegFrame->ecx)
983 {
984#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
986 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
987 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
988#else
989 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
990#endif
991#ifdef IN_RC
992 *(uint32_t *)pu32 = pRegFrame->eax;
993#else
994 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
995#endif
996 pu32 += 4;
997 GCPhysFault += 4;
998 pRegFrame->edi += 4;
999 pRegFrame->ecx--;
1000 }
1001 pRegFrame->rip += pDis->opsize;
1002
1003#ifdef IN_RC
1004 /* See use in pgmPoolAccessHandlerSimple(). */
1005 PGM_INVL_VCPU_TLBS(pVCpu);
1006#endif
1007
1008 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * Handles the simple write accesses.
1015 *
1016 * @returns VBox status code suitable for scheduling.
1017 * @param pVM The VM handle.
1018 * @param pVCpu The VMCPU handle.
1019 * @param pPool The pool.
1020 * @param pPage The pool page (head).
1021 * @param pDis The disassembly of the write instruction.
1022 * @param pRegFrame The trap register frame.
1023 * @param GCPhysFault The fault address as guest physical address.
1024 * @param pvFault The fault address.
1025 */
1026DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
1027 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1028{
1029 Log3(("pgmPoolAccessHandlerSimple\n"));
1030 /*
1031 * Increment the modification counter and insert it into the list
1032 * of modified pages the first time.
1033 */
1034 if (!pPage->cModifications++)
1035 pgmPoolMonitorModifiedInsert(pPool, pPage);
1036
1037 /*
1038 * Clear all the pages. ASSUMES that pvFault is readable.
1039 */
1040#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1041 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1042 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pDis);
1043 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1044#else
1045 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pDis);
1046#endif
1047
1048 /*
1049 * Interpret the instruction.
1050 */
1051 uint32_t cb;
1052 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, &cb);
1053 if (RT_SUCCESS(rc))
1054 pRegFrame->rip += pDis->opsize;
1055 else if (rc == VERR_EM_INTERPRETER)
1056 {
1057 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1058 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode));
1059 rc = VINF_EM_RAW_EMULATE_INSTR;
1060 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1061 }
1062
1063#ifdef IN_RC
1064 /*
1065 * Quick hack, with logging enabled we're getting stale
1066 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1067 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1068 * have to be fixed to support this. But that'll have to wait till next week.
1069 *
1070 * An alternative is to keep track of the changed PTEs together with the
1071 * GCPhys from the guest PT. This may proove expensive though.
1072 *
1073 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1074 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1075 */
1076 PGM_INVL_VCPU_TLBS(pVCpu);
1077#endif
1078
1079 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1080 return rc;
1081}
1082
1083/**
1084 * \#PF Handler callback for PT write accesses.
1085 *
1086 * @returns VBox status code (appropriate for GC return).
1087 * @param pVM VM Handle.
1088 * @param uErrorCode CPU Error code.
1089 * @param pRegFrame Trap register frame.
1090 * NULL on DMA and other non CPU access.
1091 * @param pvFault The fault address (cr2).
1092 * @param GCPhysFault The GC physical address corresponding to pvFault.
1093 * @param pvUser User argument.
1094 */
1095DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1096{
1097 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1098 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1099 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1100 PVMCPU pVCpu = VMMGetCpu(pVM);
1101
1102 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1103
1104 pgmLock(pVM);
1105
1106 /*
1107 * Disassemble the faulting instruction.
1108 */
1109 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
1110 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, NULL);
1111 AssertReturnStmt(rc == VINF_SUCCESS, pgmUnlock(pVM), rc);
1112
1113 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
1114 {
1115 /* Pool page changed while we were waiting for the lock; ignore. */
1116 Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1117 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1118 pgmUnlock(pVM);
1119 return VINF_SUCCESS;
1120 }
1121
1122 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1123
1124 /*
1125 * We should ALWAYS have the list head as user parameter. This
1126 * is because we use that page to record the changes.
1127 */
1128 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1129
1130 /*
1131 * Check if it's worth dealing with.
1132 */
1133 bool fReused = false;
1134 if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1135 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1136 )
1137 && !(fReused = pgmPoolMonitorIsReused(pVM, pRegFrame, pDis, pvFault))
1138 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1139 {
1140 /*
1141 * Simple instructions, no REP prefix.
1142 */
1143 if (!(pDis->prefix & (PREFIX_REP | PREFIX_REPNE)))
1144 {
1145 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1146 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1147 pgmUnlock(pVM);
1148 return rc;
1149 }
1150
1151 /*
1152 * Windows is frequently doing small memset() operations (netio test 4k+).
1153 * We have to deal with these or we'll kill the cache and performance.
1154 */
1155 if ( pDis->pCurInstr->opcode == OP_STOSWD
1156 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
1157 && pRegFrame->ecx <= 0x20
1158 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1159 && !((uintptr_t)pvFault & 3)
1160 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1161 && pDis->mode == CPUMODE_32BIT
1162 && pDis->opmode == CPUMODE_32BIT
1163 && pDis->addrmode == CPUMODE_32BIT
1164 && pDis->prefix == PREFIX_REP
1165 && !pRegFrame->eflags.Bits.u1DF
1166 )
1167 {
1168 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1169 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1170 pgmUnlock(pVM);
1171 return rc;
1172 }
1173
1174 /* REP prefix, don't bother. */
1175 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1176 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1177 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode, pDis->prefix));
1178 }
1179
1180 /*
1181 * Not worth it, so flush it.
1182 *
1183 * If we considered it to be reused, don't go back to ring-3
1184 * to emulate failed instructions since we usually cannot
1185 * interpret then. This may be a bit risky, in which case
1186 * the reuse detection must be fixed.
1187 */
1188 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1189 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1190 rc = VINF_SUCCESS;
1191 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1192 pgmUnlock(pVM);
1193 return rc;
1194}
1195
1196# endif /* !IN_RING3 */
1197#endif /* PGMPOOL_WITH_MONITORING */
1198
1199#ifdef PGMPOOL_WITH_CACHE
1200
1201/**
1202 * Inserts a page into the GCPhys hash table.
1203 *
1204 * @param pPool The pool.
1205 * @param pPage The page.
1206 */
1207DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1208{
1209 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1210 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1211 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1212 pPage->iNext = pPool->aiHash[iHash];
1213 pPool->aiHash[iHash] = pPage->idx;
1214}
1215
1216
1217/**
1218 * Removes a page from the GCPhys hash table.
1219 *
1220 * @param pPool The pool.
1221 * @param pPage The page.
1222 */
1223DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1224{
1225 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1226 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1227 if (pPool->aiHash[iHash] == pPage->idx)
1228 pPool->aiHash[iHash] = pPage->iNext;
1229 else
1230 {
1231 uint16_t iPrev = pPool->aiHash[iHash];
1232 for (;;)
1233 {
1234 const int16_t i = pPool->aPages[iPrev].iNext;
1235 if (i == pPage->idx)
1236 {
1237 pPool->aPages[iPrev].iNext = pPage->iNext;
1238 break;
1239 }
1240 if (i == NIL_PGMPOOL_IDX)
1241 {
1242 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1243 break;
1244 }
1245 iPrev = i;
1246 }
1247 }
1248 pPage->iNext = NIL_PGMPOOL_IDX;
1249}
1250
1251
1252/**
1253 * Frees up one cache page.
1254 *
1255 * @returns VBox status code.
1256 * @retval VINF_SUCCESS on success.
1257 * @param pPool The pool.
1258 * @param iUser The user index.
1259 */
1260static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1261{
1262#ifndef IN_RC
1263 const PVM pVM = pPool->CTX_SUFF(pVM);
1264#endif
1265 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1266 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1267
1268 /*
1269 * Select one page from the tail of the age list.
1270 */
1271 PPGMPOOLPAGE pPage;
1272 for (unsigned iLoop = 0; ; iLoop++)
1273 {
1274 uint16_t iToFree = pPool->iAgeTail;
1275 if (iToFree == iUser)
1276 iToFree = pPool->aPages[iToFree].iAgePrev;
1277/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1278 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1279 {
1280 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1281 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1282 {
1283 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1284 continue;
1285 iToFree = i;
1286 break;
1287 }
1288 }
1289*/
1290 Assert(iToFree != iUser);
1291 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1292 pPage = &pPool->aPages[iToFree];
1293
1294 /*
1295 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1296 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1297 */
1298 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1299 break;
1300 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1301 pgmPoolCacheUsed(pPool, pPage);
1302 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1303 }
1304
1305 /*
1306 * Found a usable page, flush it and return.
1307 */
1308 int rc = pgmPoolFlushPage(pPool, pPage);
1309 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
1310 if (rc == VINF_SUCCESS)
1311 PGM_INVL_ALL_VCPU_TLBS(pVM);
1312 return rc;
1313}
1314
1315
1316/**
1317 * Checks if a kind mismatch is really a page being reused
1318 * or if it's just normal remappings.
1319 *
1320 * @returns true if reused and the cached page (enmKind1) should be flushed
1321 * @returns false if not reused.
1322 * @param enmKind1 The kind of the cached page.
1323 * @param enmKind2 The kind of the requested page.
1324 */
1325static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1326{
1327 switch (enmKind1)
1328 {
1329 /*
1330 * Never reuse them. There is no remapping in non-paging mode.
1331 */
1332 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1333 case PGMPOOLKIND_32BIT_PD_PHYS:
1334 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1335 case PGMPOOLKIND_PAE_PD_PHYS:
1336 case PGMPOOLKIND_PAE_PDPT_PHYS:
1337 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1338 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1339 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1340 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1341 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1342 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1343 return false;
1344
1345 /*
1346 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1347 */
1348 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1349 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1350 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1351 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1352 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1353 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1354 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1355 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1356 case PGMPOOLKIND_32BIT_PD:
1357 case PGMPOOLKIND_PAE_PDPT:
1358 switch (enmKind2)
1359 {
1360 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1361 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1362 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1363 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1364 case PGMPOOLKIND_64BIT_PML4:
1365 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1366 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1367 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1368 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1369 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1370 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1371 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1372 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1373 return true;
1374 default:
1375 return false;
1376 }
1377
1378 /*
1379 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1380 */
1381 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1382 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1383 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1384 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1385 case PGMPOOLKIND_64BIT_PML4:
1386 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1387 switch (enmKind2)
1388 {
1389 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1390 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1391 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1392 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1393 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1394 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1395 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1396 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1397 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1398 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1399 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1400 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1401 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1402 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1403 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1404 return true;
1405 default:
1406 return false;
1407 }
1408
1409 /*
1410 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1411 */
1412 case PGMPOOLKIND_ROOT_NESTED:
1413 return false;
1414
1415 default:
1416 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1417 }
1418}
1419
1420
1421/**
1422 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1423 *
1424 * @returns VBox status code.
1425 * @retval VINF_PGM_CACHED_PAGE on success.
1426 * @retval VERR_FILE_NOT_FOUND if not found.
1427 * @param pPool The pool.
1428 * @param GCPhys The GC physical address of the page we're gonna shadow.
1429 * @param enmKind The kind of mapping.
1430 * @param enmAccess Access type for the mapping (only relevant for big pages)
1431 * @param iUser The shadow page pool index of the user table.
1432 * @param iUserTable The index into the user table (shadowed).
1433 * @param ppPage Where to store the pointer to the page.
1434 */
1435static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1436{
1437#ifndef IN_RC
1438 const PVM pVM = pPool->CTX_SUFF(pVM);
1439#endif
1440 /*
1441 * Look up the GCPhys in the hash.
1442 */
1443 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1444 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1445 if (i != NIL_PGMPOOL_IDX)
1446 {
1447 do
1448 {
1449 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1450 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1451 if (pPage->GCPhys == GCPhys)
1452 {
1453 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
1454 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess)
1455 {
1456 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1457 * doesn't flush it in case there are no more free use records.
1458 */
1459 pgmPoolCacheUsed(pPool, pPage);
1460
1461 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1462 if (RT_SUCCESS(rc))
1463 {
1464 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1465 *ppPage = pPage;
1466 STAM_COUNTER_INC(&pPool->StatCacheHits);
1467 return VINF_PGM_CACHED_PAGE;
1468 }
1469 return rc;
1470 }
1471
1472 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
1473 {
1474 /*
1475 * The kind is different. In some cases we should now flush the page
1476 * as it has been reused, but in most cases this is normal remapping
1477 * of PDs as PT or big pages using the GCPhys field in a slightly
1478 * different way than the other kinds.
1479 */
1480 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1481 {
1482 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1483 pgmPoolFlushPage(pPool, pPage);
1484 PGM_INVL_VCPU_TLBS(VMMGetCpu(pVM)); /* see PT handler. */
1485 break;
1486 }
1487 }
1488 }
1489
1490 /* next */
1491 i = pPage->iNext;
1492 } while (i != NIL_PGMPOOL_IDX);
1493 }
1494
1495 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1496 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1497 return VERR_FILE_NOT_FOUND;
1498}
1499
1500
1501/**
1502 * Inserts a page into the cache.
1503 *
1504 * @param pPool The pool.
1505 * @param pPage The cached page.
1506 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
1507 */
1508static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
1509{
1510 /*
1511 * Insert into the GCPhys hash if the page is fit for that.
1512 */
1513 Assert(!pPage->fCached);
1514 if (fCanBeCached)
1515 {
1516 pPage->fCached = true;
1517 pgmPoolHashInsert(pPool, pPage);
1518 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1519 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1520 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
1521 }
1522 else
1523 {
1524 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1525 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1526 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
1527 }
1528
1529 /*
1530 * Insert at the head of the age list.
1531 */
1532 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1533 pPage->iAgeNext = pPool->iAgeHead;
1534 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
1535 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
1536 else
1537 pPool->iAgeTail = pPage->idx;
1538 pPool->iAgeHead = pPage->idx;
1539}
1540
1541
1542/**
1543 * Flushes a cached page.
1544 *
1545 * @param pPool The pool.
1546 * @param pPage The cached page.
1547 */
1548static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1549{
1550 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
1551
1552 /*
1553 * Remove the page from the hash.
1554 */
1555 if (pPage->fCached)
1556 {
1557 pPage->fCached = false;
1558 pgmPoolHashRemove(pPool, pPage);
1559 }
1560 else
1561 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1562
1563 /*
1564 * Remove it from the age list.
1565 */
1566 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
1567 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
1568 else
1569 pPool->iAgeTail = pPage->iAgePrev;
1570 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
1571 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
1572 else
1573 pPool->iAgeHead = pPage->iAgeNext;
1574 pPage->iAgeNext = NIL_PGMPOOL_IDX;
1575 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1576}
1577
1578#endif /* PGMPOOL_WITH_CACHE */
1579#ifdef PGMPOOL_WITH_MONITORING
1580
1581/**
1582 * Looks for pages sharing the monitor.
1583 *
1584 * @returns Pointer to the head page.
1585 * @returns NULL if not found.
1586 * @param pPool The Pool
1587 * @param pNewPage The page which is going to be monitored.
1588 */
1589static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
1590{
1591#ifdef PGMPOOL_WITH_CACHE
1592 /*
1593 * Look up the GCPhys in the hash.
1594 */
1595 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1596 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1597 if (i == NIL_PGMPOOL_IDX)
1598 return NULL;
1599 do
1600 {
1601 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1602 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
1603 && pPage != pNewPage)
1604 {
1605 switch (pPage->enmKind)
1606 {
1607 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1608 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1609 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1610 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1611 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1612 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1613 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1614 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1615 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1616 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1617 case PGMPOOLKIND_64BIT_PML4:
1618 case PGMPOOLKIND_32BIT_PD:
1619 case PGMPOOLKIND_PAE_PDPT:
1620 {
1621 /* find the head */
1622 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1623 {
1624 Assert(pPage->iMonitoredPrev != pPage->idx);
1625 pPage = &pPool->aPages[pPage->iMonitoredPrev];
1626 }
1627 return pPage;
1628 }
1629
1630 /* ignore, no monitoring. */
1631 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1632 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1633 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1634 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1635 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1636 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1637 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1638 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1639 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1640 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1641 case PGMPOOLKIND_ROOT_NESTED:
1642 case PGMPOOLKIND_PAE_PD_PHYS:
1643 case PGMPOOLKIND_PAE_PDPT_PHYS:
1644 case PGMPOOLKIND_32BIT_PD_PHYS:
1645 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1646 break;
1647 default:
1648 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
1649 }
1650 }
1651
1652 /* next */
1653 i = pPage->iNext;
1654 } while (i != NIL_PGMPOOL_IDX);
1655#endif
1656 return NULL;
1657}
1658
1659
1660/**
1661 * Enabled write monitoring of a guest page.
1662 *
1663 * @returns VBox status code.
1664 * @retval VINF_SUCCESS on success.
1665 * @param pPool The pool.
1666 * @param pPage The cached page.
1667 */
1668static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1669{
1670 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
1671
1672 /*
1673 * Filter out the relevant kinds.
1674 */
1675 switch (pPage->enmKind)
1676 {
1677 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1678 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1679 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1680 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1681 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1682 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1683 case PGMPOOLKIND_64BIT_PML4:
1684 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1685 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1686 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1687 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1688 case PGMPOOLKIND_32BIT_PD:
1689 case PGMPOOLKIND_PAE_PDPT:
1690 break;
1691
1692 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1693 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1694 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1695 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1696 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1697 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1698 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1699 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1700 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1701 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1702 case PGMPOOLKIND_ROOT_NESTED:
1703 /* Nothing to monitor here. */
1704 return VINF_SUCCESS;
1705
1706 case PGMPOOLKIND_32BIT_PD_PHYS:
1707 case PGMPOOLKIND_PAE_PDPT_PHYS:
1708 case PGMPOOLKIND_PAE_PD_PHYS:
1709 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1710 /* Nothing to monitor here. */
1711 return VINF_SUCCESS;
1712#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1713 break;
1714#else
1715 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1716#endif
1717 default:
1718 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1719 }
1720
1721 /*
1722 * Install handler.
1723 */
1724 int rc;
1725 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
1726 if (pPageHead)
1727 {
1728 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
1729 Assert(pPageHead->iMonitoredPrev != pPage->idx);
1730 pPage->iMonitoredPrev = pPageHead->idx;
1731 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
1732 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
1733 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
1734 pPageHead->iMonitoredNext = pPage->idx;
1735 rc = VINF_SUCCESS;
1736 }
1737 else
1738 {
1739 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1740 PVM pVM = pPool->CTX_SUFF(pVM);
1741 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1742 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
1743 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
1744 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
1745 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
1746 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
1747 pPool->pszAccessHandler);
1748 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
1749 * the heap size should suffice. */
1750 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
1751 Assert(!(VMMGetCpu(pVM)->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
1752 }
1753 pPage->fMonitored = true;
1754 return rc;
1755}
1756
1757
1758/**
1759 * Disables write monitoring of a guest page.
1760 *
1761 * @returns VBox status code.
1762 * @retval VINF_SUCCESS on success.
1763 * @param pPool The pool.
1764 * @param pPage The cached page.
1765 */
1766static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1767{
1768 /*
1769 * Filter out the relevant kinds.
1770 */
1771 switch (pPage->enmKind)
1772 {
1773 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1774 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1775 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1776 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1777 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1778 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1779 case PGMPOOLKIND_64BIT_PML4:
1780 case PGMPOOLKIND_32BIT_PD:
1781 case PGMPOOLKIND_PAE_PDPT:
1782 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1783 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1784 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1785 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1786 break;
1787
1788 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1789 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1790 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1791 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1792 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1793 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1794 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1795 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1796 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1797 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1798 case PGMPOOLKIND_ROOT_NESTED:
1799 case PGMPOOLKIND_PAE_PD_PHYS:
1800 case PGMPOOLKIND_PAE_PDPT_PHYS:
1801 case PGMPOOLKIND_32BIT_PD_PHYS:
1802 /* Nothing to monitor here. */
1803 return VINF_SUCCESS;
1804
1805#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1806 break;
1807#endif
1808 default:
1809 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1810 }
1811
1812 /*
1813 * Remove the page from the monitored list or uninstall it if last.
1814 */
1815 const PVM pVM = pPool->CTX_SUFF(pVM);
1816 int rc;
1817 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1818 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1819 {
1820 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1821 {
1822 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
1823 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
1824 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
1825 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
1826 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
1827 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
1828 pPool->pszAccessHandler);
1829 AssertFatalRCSuccess(rc);
1830 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1831 }
1832 else
1833 {
1834 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
1835 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
1836 {
1837 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
1838 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1839 }
1840 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
1841 rc = VINF_SUCCESS;
1842 }
1843 }
1844 else
1845 {
1846 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
1847 AssertFatalRC(rc);
1848#ifdef VBOX_STRICT
1849 PVMCPU pVCpu = VMMGetCpu(pVM);
1850#endif
1851 AssertMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
1852 ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
1853 }
1854 pPage->fMonitored = false;
1855
1856 /*
1857 * Remove it from the list of modified pages (if in it).
1858 */
1859 pgmPoolMonitorModifiedRemove(pPool, pPage);
1860
1861 return rc;
1862}
1863
1864
1865/**
1866 * Inserts the page into the list of modified pages.
1867 *
1868 * @param pPool The pool.
1869 * @param pPage The page.
1870 */
1871void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1872{
1873 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
1874 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
1875 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
1876 && pPool->iModifiedHead != pPage->idx,
1877 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
1878 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
1879 pPool->iModifiedHead, pPool->cModifiedPages));
1880
1881 pPage->iModifiedNext = pPool->iModifiedHead;
1882 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
1883 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
1884 pPool->iModifiedHead = pPage->idx;
1885 pPool->cModifiedPages++;
1886#ifdef VBOX_WITH_STATISTICS
1887 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
1888 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
1889#endif
1890}
1891
1892
1893/**
1894 * Removes the page from the list of modified pages and resets the
1895 * moficiation counter.
1896 *
1897 * @param pPool The pool.
1898 * @param pPage The page which is believed to be in the list of modified pages.
1899 */
1900static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1901{
1902 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
1903 if (pPool->iModifiedHead == pPage->idx)
1904 {
1905 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1906 pPool->iModifiedHead = pPage->iModifiedNext;
1907 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1908 {
1909 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
1910 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1911 }
1912 pPool->cModifiedPages--;
1913 }
1914 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
1915 {
1916 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
1917 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1918 {
1919 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
1920 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1921 }
1922 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1923 pPool->cModifiedPages--;
1924 }
1925 else
1926 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1927 pPage->cModifications = 0;
1928}
1929
1930
1931/**
1932 * Zaps the list of modified pages, resetting their modification counters in the process.
1933 *
1934 * @param pVM The VM handle.
1935 */
1936void pgmPoolMonitorModifiedClearAll(PVM pVM)
1937{
1938 pgmLock(pVM);
1939 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1940 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
1941
1942 unsigned cPages = 0; NOREF(cPages);
1943 uint16_t idx = pPool->iModifiedHead;
1944 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
1945 while (idx != NIL_PGMPOOL_IDX)
1946 {
1947 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
1948 idx = pPage->iModifiedNext;
1949 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1950 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1951 pPage->cModifications = 0;
1952 Assert(++cPages);
1953 }
1954 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
1955 pPool->cModifiedPages = 0;
1956 pgmUnlock(pVM);
1957}
1958
1959
1960#ifdef IN_RING3
1961/**
1962 * Callback to clear all shadow pages and clear all modification counters.
1963 *
1964 * @returns VBox status code.
1965 * @param pVM The VM handle.
1966 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
1967 * @param pvUser Unused parameter.
1968 *
1969 * @remark Should only be used when monitoring is available, thus placed in
1970 * the PGMPOOL_WITH_MONITORING \#ifdef.
1971 */
1972DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, PVMCPU pVCpu, void *pvUser)
1973{
1974 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1975 STAM_PROFILE_START(&pPool->StatClearAll, c);
1976 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
1977 NOREF(pvUser); NOREF(pVCpu);
1978
1979 pgmLock(pVM);
1980
1981 /*
1982 * Iterate all the pages until we've encountered all that in use.
1983 * This is simple but not quite optimal solution.
1984 */
1985 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
1986 unsigned cLeft = pPool->cUsedPages;
1987 unsigned iPage = pPool->cCurPages;
1988 while (--iPage >= PGMPOOL_IDX_FIRST)
1989 {
1990 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1991 if (pPage->GCPhys != NIL_RTGCPHYS)
1992 {
1993 switch (pPage->enmKind)
1994 {
1995 /*
1996 * We only care about shadow page tables.
1997 */
1998 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1999 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2000 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2001 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2002 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2003 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2004 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2005 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2006 {
2007#ifdef PGMPOOL_WITH_USER_TRACKING
2008 if (pPage->cPresent)
2009#endif
2010 {
2011 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
2012 STAM_PROFILE_START(&pPool->StatZeroPage, z);
2013 ASMMemZeroPage(pvShw);
2014 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
2015#ifdef PGMPOOL_WITH_USER_TRACKING
2016 pPage->cPresent = 0;
2017 pPage->iFirstPresent = ~0;
2018#endif
2019 }
2020 }
2021 /* fall thru */
2022
2023 default:
2024 Assert(!pPage->cModifications || ++cModifiedPages);
2025 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2026 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2027 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2028 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2029 pPage->cModifications = 0;
2030 break;
2031
2032 }
2033 if (!--cLeft)
2034 break;
2035 }
2036 }
2037
2038 /* swipe the special pages too. */
2039 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2040 {
2041 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2042 if (pPage->GCPhys != NIL_RTGCPHYS)
2043 {
2044 Assert(!pPage->cModifications || ++cModifiedPages);
2045 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2046 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2047 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2048 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2049 pPage->cModifications = 0;
2050 }
2051 }
2052
2053#ifndef DEBUG_michael
2054 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2055#endif
2056 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2057 pPool->cModifiedPages = 0;
2058
2059#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2060 /*
2061 * Clear all the GCPhys links and rebuild the phys ext free list.
2062 */
2063 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2064 pRam;
2065 pRam = pRam->CTX_SUFF(pNext))
2066 {
2067 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2068 while (iPage-- > 0)
2069 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2070 }
2071
2072 pPool->iPhysExtFreeHead = 0;
2073 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2074 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2075 for (unsigned i = 0; i < cMaxPhysExts; i++)
2076 {
2077 paPhysExts[i].iNext = i + 1;
2078 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2079 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2080 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2081 }
2082 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2083#endif
2084
2085 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
2086 for (unsigned idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
2087 {
2088 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2089
2090 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
2091 }
2092
2093 pPool->cPresent = 0;
2094 pgmUnlock(pVM);
2095 PGM_INVL_ALL_VCPU_TLBS(pVM);
2096 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2097 return VINF_SUCCESS;
2098}
2099#endif /* IN_RING3 */
2100
2101
2102/**
2103 * Handle SyncCR3 pool tasks
2104 *
2105 * @returns VBox status code.
2106 * @retval VINF_SUCCESS if successfully added.
2107 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2108 * @param pVCpu The VMCPU handle.
2109 * @remark Should only be used when monitoring is available, thus placed in
2110 * the PGMPOOL_WITH_MONITORING #ifdef.
2111 */
2112int pgmPoolSyncCR3(PVMCPU pVCpu)
2113{
2114 PVM pVM = pVCpu->CTX_SUFF(pVM);
2115 LogFlow(("pgmPoolSyncCR3\n"));
2116
2117 /*
2118 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2119 * Occasionally we will have to clear all the shadow page tables because we wanted
2120 * to monitor a page which was mapped by too many shadowed page tables. This operation
2121 * sometimes refered to as a 'lightweight flush'.
2122 */
2123# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2124 if (ASMBitTestAndClear(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_CLEAR_PGM_POOL_BIT))
2125 {
2126 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmPoolClearAll, NULL);
2127 AssertRC(rc);
2128 }
2129# else /* !IN_RING3 */
2130 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2131 {
2132 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2133 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2134 return VINF_PGM_SYNC_CR3;
2135 }
2136# endif /* !IN_RING3 */
2137 else
2138 pgmPoolMonitorModifiedClearAll(pVM);
2139
2140 return VINF_SUCCESS;
2141}
2142
2143#endif /* PGMPOOL_WITH_MONITORING */
2144#ifdef PGMPOOL_WITH_USER_TRACKING
2145
2146/**
2147 * Frees up at least one user entry.
2148 *
2149 * @returns VBox status code.
2150 * @retval VINF_SUCCESS if successfully added.
2151 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2152 * @param pPool The pool.
2153 * @param iUser The user index.
2154 */
2155static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2156{
2157 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2158#ifdef PGMPOOL_WITH_CACHE
2159 /*
2160 * Just free cached pages in a braindead fashion.
2161 */
2162 /** @todo walk the age list backwards and free the first with usage. */
2163 int rc = VINF_SUCCESS;
2164 do
2165 {
2166 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2167 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2168 rc = rc2;
2169 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2170 return rc;
2171#else
2172 /*
2173 * Lazy approach.
2174 */
2175 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2176 AssertCompileFailed();
2177 Assert(!CPUMIsGuestInLongMode(pVM));
2178 pgmPoolFlushAllInt(pPool);
2179 return VERR_PGM_POOL_FLUSHED;
2180#endif
2181}
2182
2183
2184/**
2185 * Inserts a page into the cache.
2186 *
2187 * This will create user node for the page, insert it into the GCPhys
2188 * hash, and insert it into the age list.
2189 *
2190 * @returns VBox status code.
2191 * @retval VINF_SUCCESS if successfully added.
2192 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2193 * @param pPool The pool.
2194 * @param pPage The cached page.
2195 * @param GCPhys The GC physical address of the page we're gonna shadow.
2196 * @param iUser The user index.
2197 * @param iUserTable The user table index.
2198 */
2199DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2200{
2201 int rc = VINF_SUCCESS;
2202 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2203
2204 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2205
2206#ifdef VBOX_STRICT
2207 /*
2208 * Check that the entry doesn't already exists.
2209 */
2210 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2211 {
2212 uint16_t i = pPage->iUserHead;
2213 do
2214 {
2215 Assert(i < pPool->cMaxUsers);
2216 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2217 i = paUsers[i].iNext;
2218 } while (i != NIL_PGMPOOL_USER_INDEX);
2219 }
2220#endif
2221
2222 /*
2223 * Find free a user node.
2224 */
2225 uint16_t i = pPool->iUserFreeHead;
2226 if (i == NIL_PGMPOOL_USER_INDEX)
2227 {
2228 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2229 if (RT_FAILURE(rc))
2230 return rc;
2231 i = pPool->iUserFreeHead;
2232 }
2233
2234 /*
2235 * Unlink the user node from the free list,
2236 * initialize and insert it into the user list.
2237 */
2238 pPool->iUserFreeHead = paUsers[i].iNext;
2239 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2240 paUsers[i].iUser = iUser;
2241 paUsers[i].iUserTable = iUserTable;
2242 pPage->iUserHead = i;
2243
2244 /*
2245 * Insert into cache and enable monitoring of the guest page if enabled.
2246 *
2247 * Until we implement caching of all levels, including the CR3 one, we'll
2248 * have to make sure we don't try monitor & cache any recursive reuse of
2249 * a monitored CR3 page. Because all windows versions are doing this we'll
2250 * have to be able to do combined access monitoring, CR3 + PT and
2251 * PD + PT (guest PAE).
2252 *
2253 * Update:
2254 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2255 */
2256#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2257# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2258 const bool fCanBeMonitored = true;
2259# else
2260 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2261 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2262 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2263# endif
2264# ifdef PGMPOOL_WITH_CACHE
2265 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2266# endif
2267 if (fCanBeMonitored)
2268 {
2269# ifdef PGMPOOL_WITH_MONITORING
2270 rc = pgmPoolMonitorInsert(pPool, pPage);
2271 AssertRC(rc);
2272 }
2273# endif
2274#endif /* PGMPOOL_WITH_MONITORING */
2275 return rc;
2276}
2277
2278
2279# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2280/**
2281 * Adds a user reference to a page.
2282 *
2283 * This will move the page to the head of the
2284 *
2285 * @returns VBox status code.
2286 * @retval VINF_SUCCESS if successfully added.
2287 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2288 * @param pPool The pool.
2289 * @param pPage The cached page.
2290 * @param iUser The user index.
2291 * @param iUserTable The user table.
2292 */
2293static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2294{
2295 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2296
2297 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2298
2299# ifdef VBOX_STRICT
2300 /*
2301 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2302 */
2303 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2304 {
2305 uint16_t i = pPage->iUserHead;
2306 do
2307 {
2308 Assert(i < pPool->cMaxUsers);
2309 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2310 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2311 i = paUsers[i].iNext;
2312 } while (i != NIL_PGMPOOL_USER_INDEX);
2313 }
2314# endif
2315
2316 /*
2317 * Allocate a user node.
2318 */
2319 uint16_t i = pPool->iUserFreeHead;
2320 if (i == NIL_PGMPOOL_USER_INDEX)
2321 {
2322 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2323 if (RT_FAILURE(rc))
2324 return rc;
2325 i = pPool->iUserFreeHead;
2326 }
2327 pPool->iUserFreeHead = paUsers[i].iNext;
2328
2329 /*
2330 * Initialize the user node and insert it.
2331 */
2332 paUsers[i].iNext = pPage->iUserHead;
2333 paUsers[i].iUser = iUser;
2334 paUsers[i].iUserTable = iUserTable;
2335 pPage->iUserHead = i;
2336
2337# ifdef PGMPOOL_WITH_CACHE
2338 /*
2339 * Tell the cache to update its replacement stats for this page.
2340 */
2341 pgmPoolCacheUsed(pPool, pPage);
2342# endif
2343 return VINF_SUCCESS;
2344}
2345# endif /* PGMPOOL_WITH_CACHE */
2346
2347
2348/**
2349 * Frees a user record associated with a page.
2350 *
2351 * This does not clear the entry in the user table, it simply replaces the
2352 * user record to the chain of free records.
2353 *
2354 * @param pPool The pool.
2355 * @param HCPhys The HC physical address of the shadow page.
2356 * @param iUser The shadow page pool index of the user table.
2357 * @param iUserTable The index into the user table (shadowed).
2358 */
2359static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2360{
2361 /*
2362 * Unlink and free the specified user entry.
2363 */
2364 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2365
2366 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2367 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2368 uint16_t i = pPage->iUserHead;
2369 if ( i != NIL_PGMPOOL_USER_INDEX
2370 && paUsers[i].iUser == iUser
2371 && paUsers[i].iUserTable == iUserTable)
2372 {
2373 pPage->iUserHead = paUsers[i].iNext;
2374
2375 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2376 paUsers[i].iNext = pPool->iUserFreeHead;
2377 pPool->iUserFreeHead = i;
2378 return;
2379 }
2380
2381 /* General: Linear search. */
2382 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2383 while (i != NIL_PGMPOOL_USER_INDEX)
2384 {
2385 if ( paUsers[i].iUser == iUser
2386 && paUsers[i].iUserTable == iUserTable)
2387 {
2388 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2389 paUsers[iPrev].iNext = paUsers[i].iNext;
2390 else
2391 pPage->iUserHead = paUsers[i].iNext;
2392
2393 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2394 paUsers[i].iNext = pPool->iUserFreeHead;
2395 pPool->iUserFreeHead = i;
2396 return;
2397 }
2398 iPrev = i;
2399 i = paUsers[i].iNext;
2400 }
2401
2402 /* Fatal: didn't find it */
2403 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2404 iUser, iUserTable, pPage->GCPhys));
2405}
2406
2407
2408/**
2409 * Gets the entry size of a shadow table.
2410 *
2411 * @param enmKind The kind of page.
2412 *
2413 * @returns The size of the entry in bytes. That is, 4 or 8.
2414 * @returns If the kind is not for a table, an assertion is raised and 0 is
2415 * returned.
2416 */
2417DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2418{
2419 switch (enmKind)
2420 {
2421 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2422 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2423 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2424 case PGMPOOLKIND_32BIT_PD:
2425 case PGMPOOLKIND_32BIT_PD_PHYS:
2426 return 4;
2427
2428 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2429 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2430 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2431 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2432 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2433 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2434 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2435 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2436 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2437 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2438 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2439 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2440 case PGMPOOLKIND_64BIT_PML4:
2441 case PGMPOOLKIND_PAE_PDPT:
2442 case PGMPOOLKIND_ROOT_NESTED:
2443 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2444 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2445 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2446 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2447 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2448 case PGMPOOLKIND_PAE_PD_PHYS:
2449 case PGMPOOLKIND_PAE_PDPT_PHYS:
2450 return 8;
2451
2452 default:
2453 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2454 }
2455}
2456
2457
2458/**
2459 * Gets the entry size of a guest table.
2460 *
2461 * @param enmKind The kind of page.
2462 *
2463 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2464 * @returns If the kind is not for a table, an assertion is raised and 0 is
2465 * returned.
2466 */
2467DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2468{
2469 switch (enmKind)
2470 {
2471 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2472 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2473 case PGMPOOLKIND_32BIT_PD:
2474 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2475 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2476 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2477 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2478 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2479 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2480 return 4;
2481
2482 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2483 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2484 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2485 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2486 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2487 case PGMPOOLKIND_64BIT_PML4:
2488 case PGMPOOLKIND_PAE_PDPT:
2489 return 8;
2490
2491 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2492 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2493 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2494 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2495 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2496 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2497 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2498 case PGMPOOLKIND_ROOT_NESTED:
2499 case PGMPOOLKIND_PAE_PD_PHYS:
2500 case PGMPOOLKIND_PAE_PDPT_PHYS:
2501 case PGMPOOLKIND_32BIT_PD_PHYS:
2502 /** @todo can we return 0? (nobody is calling this...) */
2503 AssertFailed();
2504 return 0;
2505
2506 default:
2507 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2508 }
2509}
2510
2511#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2512
2513/**
2514 * Scans one shadow page table for mappings of a physical page.
2515 *
2516 * @param pVM The VM handle.
2517 * @param pPhysPage The guest page in question.
2518 * @param iShw The shadow page table.
2519 * @param cRefs The number of references made in that PT.
2520 */
2521static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2522{
2523 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2524 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2525
2526 /*
2527 * Assert sanity.
2528 */
2529 Assert(cRefs == 1);
2530 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2531 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2532
2533 /*
2534 * Then, clear the actual mappings to the page in the shadow PT.
2535 */
2536 switch (pPage->enmKind)
2537 {
2538 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2539 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2540 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2541 {
2542 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2543 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2544 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2545 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2546 {
2547 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
2548 pPT->a[i].u = 0;
2549 cRefs--;
2550 if (!cRefs)
2551 return;
2552 }
2553#ifdef LOG_ENABLED
2554 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2555 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2556 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2557 {
2558 Log(("i=%d cRefs=%d\n", i, cRefs--));
2559 }
2560#endif
2561 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2562 break;
2563 }
2564
2565 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2566 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2567 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2568 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2569 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2570 {
2571 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2572 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2573 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2574 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2575 {
2576 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2577 pPT->a[i].u = 0;
2578 cRefs--;
2579 if (!cRefs)
2580 return;
2581 }
2582#ifdef LOG_ENABLED
2583 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2584 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2585 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2586 {
2587 Log(("i=%d cRefs=%d\n", i, cRefs--));
2588 }
2589#endif
2590 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
2591 break;
2592 }
2593
2594 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2595 {
2596 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2597 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2598 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2599 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2600 {
2601 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2602 pPT->a[i].u = 0;
2603 cRefs--;
2604 if (!cRefs)
2605 return;
2606 }
2607#ifdef LOG_ENABLED
2608 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2609 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2610 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2611 {
2612 Log(("i=%d cRefs=%d\n", i, cRefs--));
2613 }
2614#endif
2615 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2616 break;
2617 }
2618
2619 default:
2620 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
2621 }
2622}
2623
2624
2625/**
2626 * Scans one shadow page table for mappings of a physical page.
2627 *
2628 * @param pVM The VM handle.
2629 * @param pPhysPage The guest page in question.
2630 * @param iShw The shadow page table.
2631 * @param cRefs The number of references made in that PT.
2632 */
2633void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2634{
2635 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2636 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2637 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
2638 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
2639 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2640 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
2641}
2642
2643
2644/**
2645 * Flushes a list of shadow page tables mapping the same physical page.
2646 *
2647 * @param pVM The VM handle.
2648 * @param pPhysPage The guest page in question.
2649 * @param iPhysExt The physical cross reference extent list to flush.
2650 */
2651void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
2652{
2653 Assert(PGMIsLockOwner(pVM));
2654 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2655 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
2656 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
2657
2658 const uint16_t iPhysExtStart = iPhysExt;
2659 PPGMPOOLPHYSEXT pPhysExt;
2660 do
2661 {
2662 Assert(iPhysExt < pPool->cMaxPhysExts);
2663 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2664 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
2665 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
2666 {
2667 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
2668 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
2669 }
2670
2671 /* next */
2672 iPhysExt = pPhysExt->iNext;
2673 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
2674
2675 /* insert the list into the free list and clear the ram range entry. */
2676 pPhysExt->iNext = pPool->iPhysExtFreeHead;
2677 pPool->iPhysExtFreeHead = iPhysExtStart;
2678 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2679
2680 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
2681}
2682
2683#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
2684
2685/**
2686 * Flushes all shadow page table mappings of the given guest page.
2687 *
2688 * This is typically called when the host page backing the guest one has been
2689 * replaced or when the page protection was changed due to an access handler.
2690 *
2691 * @returns VBox status code.
2692 * @retval VINF_SUCCESS if all references has been successfully cleared.
2693 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
2694 * pool cleaning. FF and sync flags are set.
2695 *
2696 * @param pVM The VM handle.
2697 * @param pPhysPage The guest page in question.
2698 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
2699 * flushed, it is NOT touched if this isn't necessary.
2700 * The caller MUST initialized this to @a false.
2701 */
2702int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
2703{
2704 PVMCPU pVCpu = VMMGetCpu(pVM);
2705 pgmLock(pVM);
2706 int rc = VINF_SUCCESS;
2707#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2708 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
2709 if (u16)
2710 {
2711 /*
2712 * The zero page is currently screwing up the tracking and we'll
2713 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2714 * is defined, zero pages won't normally be mapped. Some kind of solution
2715 * will be needed for this problem of course, but it will have to wait...
2716 */
2717 if (PGM_PAGE_IS_ZERO(pPhysPage))
2718 rc = VINF_PGM_GCPHYS_ALIASED;
2719 else
2720 {
2721# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2722 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
2723 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
2724 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2725# endif
2726
2727 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
2728 pgmPoolTrackFlushGCPhysPT(pVM,
2729 pPhysPage,
2730 PGMPOOL_TD_GET_IDX(u16),
2731 PGMPOOL_TD_GET_CREFS(u16));
2732 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
2733 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
2734 else
2735 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2736 *pfFlushTLBs = true;
2737
2738# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2739 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2740# endif
2741 }
2742 }
2743
2744#elif defined(PGMPOOL_WITH_CACHE)
2745 if (PGM_PAGE_IS_ZERO(pPhysPage))
2746 rc = VINF_PGM_GCPHYS_ALIASED;
2747 else
2748 {
2749# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2750 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kill the pool otherwise. */
2751 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2752# endif
2753 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2754 if (rc == VINF_SUCCESS)
2755 *pfFlushTLBs = true;
2756 }
2757
2758# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2759 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2760# endif
2761
2762#else
2763 rc = VINF_PGM_GCPHYS_ALIASED;
2764#endif
2765
2766 if (rc == VINF_PGM_GCPHYS_ALIASED)
2767 {
2768 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2769 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2770 rc = VINF_PGM_SYNC_CR3;
2771 }
2772 pgmUnlock(pVM);
2773 return rc;
2774}
2775
2776
2777/**
2778 * Scans all shadow page tables for mappings of a physical page.
2779 *
2780 * This may be slow, but it's most likely more efficient than cleaning
2781 * out the entire page pool / cache.
2782 *
2783 * @returns VBox status code.
2784 * @retval VINF_SUCCESS if all references has been successfully cleared.
2785 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2786 * a page pool cleaning.
2787 *
2788 * @param pVM The VM handle.
2789 * @param pPhysPage The guest page in question.
2790 */
2791int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
2792{
2793 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2794 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2795 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
2796 pPool->cUsedPages, pPool->cPresent, pPhysPage));
2797
2798#if 1
2799 /*
2800 * There is a limit to what makes sense.
2801 */
2802 if (pPool->cPresent > 1024)
2803 {
2804 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
2805 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2806 return VINF_PGM_GCPHYS_ALIASED;
2807 }
2808#endif
2809
2810 /*
2811 * Iterate all the pages until we've encountered all that in use.
2812 * This is simple but not quite optimal solution.
2813 */
2814 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2815 const uint32_t u32 = u64;
2816 unsigned cLeft = pPool->cUsedPages;
2817 unsigned iPage = pPool->cCurPages;
2818 while (--iPage >= PGMPOOL_IDX_FIRST)
2819 {
2820 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2821 if (pPage->GCPhys != NIL_RTGCPHYS)
2822 {
2823 switch (pPage->enmKind)
2824 {
2825 /*
2826 * We only care about shadow page tables.
2827 */
2828 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2829 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2830 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2831 {
2832 unsigned cPresent = pPage->cPresent;
2833 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2834 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2835 if (pPT->a[i].n.u1Present)
2836 {
2837 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2838 {
2839 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
2840 pPT->a[i].u = 0;
2841 }
2842 if (!--cPresent)
2843 break;
2844 }
2845 break;
2846 }
2847
2848 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2849 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2850 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2851 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2852 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2853 {
2854 unsigned cPresent = pPage->cPresent;
2855 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2856 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2857 if (pPT->a[i].n.u1Present)
2858 {
2859 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2860 {
2861 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
2862 pPT->a[i].u = 0;
2863 }
2864 if (!--cPresent)
2865 break;
2866 }
2867 break;
2868 }
2869 }
2870 if (!--cLeft)
2871 break;
2872 }
2873 }
2874
2875 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2876 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2877 return VINF_SUCCESS;
2878}
2879
2880
2881/**
2882 * Clears the user entry in a user table.
2883 *
2884 * This is used to remove all references to a page when flushing it.
2885 */
2886static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
2887{
2888 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
2889 Assert(pUser->iUser < pPool->cCurPages);
2890 uint32_t iUserTable = pUser->iUserTable;
2891
2892 /*
2893 * Map the user page.
2894 */
2895 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
2896 union
2897 {
2898 uint64_t *pau64;
2899 uint32_t *pau32;
2900 } u;
2901 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
2902
2903 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
2904
2905 /* Safety precaution in case we change the paging for other modes too in the future. */
2906 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
2907
2908#ifdef VBOX_STRICT
2909 /*
2910 * Some sanity checks.
2911 */
2912 switch (pUserPage->enmKind)
2913 {
2914 case PGMPOOLKIND_32BIT_PD:
2915 case PGMPOOLKIND_32BIT_PD_PHYS:
2916 Assert(iUserTable < X86_PG_ENTRIES);
2917 break;
2918 case PGMPOOLKIND_PAE_PDPT:
2919 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2920 case PGMPOOLKIND_PAE_PDPT_PHYS:
2921 Assert(iUserTable < 4);
2922 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2923 break;
2924 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2925 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2926 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2927 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2928 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2929 case PGMPOOLKIND_PAE_PD_PHYS:
2930 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2931 break;
2932 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2933 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2934 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
2935 break;
2936 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2937 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2938 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2939 break;
2940 case PGMPOOLKIND_64BIT_PML4:
2941 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2942 /* GCPhys >> PAGE_SHIFT is the index here */
2943 break;
2944 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2945 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2946 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2947 break;
2948
2949 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2950 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2951 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2952 break;
2953
2954 case PGMPOOLKIND_ROOT_NESTED:
2955 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2956 break;
2957
2958 default:
2959 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
2960 break;
2961 }
2962#endif /* VBOX_STRICT */
2963
2964 /*
2965 * Clear the entry in the user page.
2966 */
2967 switch (pUserPage->enmKind)
2968 {
2969 /* 32-bit entries */
2970 case PGMPOOLKIND_32BIT_PD:
2971 case PGMPOOLKIND_32BIT_PD_PHYS:
2972 u.pau32[iUserTable] = 0;
2973 break;
2974
2975 /* 64-bit entries */
2976 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2977 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2978 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2979 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2980 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2981#if defined(IN_RC)
2982 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
2983 * non-present PDPT will continue to cause page faults.
2984 */
2985 ASMReloadCR3();
2986#endif
2987 /* no break */
2988 case PGMPOOLKIND_PAE_PD_PHYS:
2989 case PGMPOOLKIND_PAE_PDPT_PHYS:
2990 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2991 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2992 case PGMPOOLKIND_64BIT_PML4:
2993 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2994 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2995 case PGMPOOLKIND_PAE_PDPT:
2996 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2997 case PGMPOOLKIND_ROOT_NESTED:
2998 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2999 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3000 u.pau64[iUserTable] = 0;
3001 break;
3002
3003 default:
3004 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
3005 }
3006}
3007
3008
3009/**
3010 * Clears all users of a page.
3011 */
3012static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3013{
3014 /*
3015 * Free all the user records.
3016 */
3017 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3018
3019 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3020 uint16_t i = pPage->iUserHead;
3021 while (i != NIL_PGMPOOL_USER_INDEX)
3022 {
3023 /* Clear enter in user table. */
3024 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3025
3026 /* Free it. */
3027 const uint16_t iNext = paUsers[i].iNext;
3028 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3029 paUsers[i].iNext = pPool->iUserFreeHead;
3030 pPool->iUserFreeHead = i;
3031
3032 /* Next. */
3033 i = iNext;
3034 }
3035 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3036}
3037
3038#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3039
3040/**
3041 * Allocates a new physical cross reference extent.
3042 *
3043 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3044 * @param pVM The VM handle.
3045 * @param piPhysExt Where to store the phys ext index.
3046 */
3047PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3048{
3049 Assert(PGMIsLockOwner(pVM));
3050 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3051 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3052 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3053 {
3054 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3055 return NULL;
3056 }
3057 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3058 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3059 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3060 *piPhysExt = iPhysExt;
3061 return pPhysExt;
3062}
3063
3064
3065/**
3066 * Frees a physical cross reference extent.
3067 *
3068 * @param pVM The VM handle.
3069 * @param iPhysExt The extent to free.
3070 */
3071void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3072{
3073 Assert(PGMIsLockOwner(pVM));
3074 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3075 Assert(iPhysExt < pPool->cMaxPhysExts);
3076 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3077 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3078 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3079 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3080 pPool->iPhysExtFreeHead = iPhysExt;
3081}
3082
3083
3084/**
3085 * Frees a physical cross reference extent.
3086 *
3087 * @param pVM The VM handle.
3088 * @param iPhysExt The extent to free.
3089 */
3090void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3091{
3092 Assert(PGMIsLockOwner(pVM));
3093 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3094
3095 const uint16_t iPhysExtStart = iPhysExt;
3096 PPGMPOOLPHYSEXT pPhysExt;
3097 do
3098 {
3099 Assert(iPhysExt < pPool->cMaxPhysExts);
3100 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3101 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3102 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3103
3104 /* next */
3105 iPhysExt = pPhysExt->iNext;
3106 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3107
3108 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3109 pPool->iPhysExtFreeHead = iPhysExtStart;
3110}
3111
3112
3113/**
3114 * Insert a reference into a list of physical cross reference extents.
3115 *
3116 * @returns The new tracking data for PGMPAGE.
3117 *
3118 * @param pVM The VM handle.
3119 * @param iPhysExt The physical extent index of the list head.
3120 * @param iShwPT The shadow page table index.
3121 *
3122 */
3123static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3124{
3125 Assert(PGMIsLockOwner(pVM));
3126 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3127 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3128
3129 /* special common case. */
3130 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3131 {
3132 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3133 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3134 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d}\n", iPhysExt, iShwPT));
3135 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3136 }
3137
3138 /* general treatment. */
3139 const uint16_t iPhysExtStart = iPhysExt;
3140 unsigned cMax = 15;
3141 for (;;)
3142 {
3143 Assert(iPhysExt < pPool->cMaxPhysExts);
3144 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3145 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3146 {
3147 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3148 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3149 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3150 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3151 }
3152 if (!--cMax)
3153 {
3154 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3155 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3156 LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
3157 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3158 }
3159 }
3160
3161 /* add another extent to the list. */
3162 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3163 if (!pNew)
3164 {
3165 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3166 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3167 LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
3168 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3169 }
3170 pNew->iNext = iPhysExtStart;
3171 pNew->aidx[0] = iShwPT;
3172 LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3173 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3174}
3175
3176
3177/**
3178 * Add a reference to guest physical page where extents are in use.
3179 *
3180 * @returns The new tracking data for PGMPAGE.
3181 *
3182 * @param pVM The VM handle.
3183 * @param u16 The ram range flags (top 16-bits).
3184 * @param iShwPT The shadow page table index.
3185 */
3186uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3187{
3188 pgmLock(pVM);
3189 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3190 {
3191 /*
3192 * Convert to extent list.
3193 */
3194 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3195 uint16_t iPhysExt;
3196 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3197 if (pPhysExt)
3198 {
3199 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3200 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3201 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3202 pPhysExt->aidx[1] = iShwPT;
3203 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3204 }
3205 else
3206 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3207 }
3208 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3209 {
3210 /*
3211 * Insert into the extent list.
3212 */
3213 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3214 }
3215 else
3216 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3217 pgmUnlock(pVM);
3218 return u16;
3219}
3220
3221
3222/**
3223 * Clear references to guest physical memory.
3224 *
3225 * @param pPool The pool.
3226 * @param pPage The page.
3227 * @param pPhysPage Pointer to the aPages entry in the ram range.
3228 */
3229void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3230{
3231 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3232 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3233
3234 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3235 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3236 {
3237 PVM pVM = pPool->CTX_SUFF(pVM);
3238 pgmLock(pVM);
3239
3240 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3241 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3242 do
3243 {
3244 Assert(iPhysExt < pPool->cMaxPhysExts);
3245
3246 /*
3247 * Look for the shadow page and check if it's all freed.
3248 */
3249 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3250 {
3251 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3252 {
3253 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3254
3255 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3256 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3257 {
3258 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3259 pgmUnlock(pVM);
3260 return;
3261 }
3262
3263 /* we can free the node. */
3264 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3265 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3266 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3267 {
3268 /* lonely node */
3269 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3270 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3271 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3272 }
3273 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3274 {
3275 /* head */
3276 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3277 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3278 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3279 }
3280 else
3281 {
3282 /* in list */
3283 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3284 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3285 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3286 }
3287 iPhysExt = iPhysExtNext;
3288 pgmUnlock(pVM);
3289 return;
3290 }
3291 }
3292
3293 /* next */
3294 iPhysExtPrev = iPhysExt;
3295 iPhysExt = paPhysExts[iPhysExt].iNext;
3296 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3297
3298 pgmUnlock(pVM);
3299 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3300 }
3301 else /* nothing to do */
3302 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3303}
3304
3305
3306/**
3307 * Clear references to guest physical memory.
3308 *
3309 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3310 * is assumed to be correct, so the linear search can be skipped and we can assert
3311 * at an earlier point.
3312 *
3313 * @param pPool The pool.
3314 * @param pPage The page.
3315 * @param HCPhys The host physical address corresponding to the guest page.
3316 * @param GCPhys The guest physical address corresponding to HCPhys.
3317 */
3318static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3319{
3320 /*
3321 * Walk range list.
3322 */
3323 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3324 while (pRam)
3325 {
3326 RTGCPHYS off = GCPhys - pRam->GCPhys;
3327 if (off < pRam->cb)
3328 {
3329 /* does it match? */
3330 const unsigned iPage = off >> PAGE_SHIFT;
3331 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3332#ifdef LOG_ENABLED
3333RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3334Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3335#endif
3336 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3337 {
3338 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3339 return;
3340 }
3341 break;
3342 }
3343 pRam = pRam->CTX_SUFF(pNext);
3344 }
3345 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3346}
3347
3348
3349/**
3350 * Clear references to guest physical memory.
3351 *
3352 * @param pPool The pool.
3353 * @param pPage The page.
3354 * @param HCPhys The host physical address corresponding to the guest page.
3355 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3356 */
3357static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3358{
3359 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3360
3361 /*
3362 * Walk range list.
3363 */
3364 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3365 while (pRam)
3366 {
3367 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3368 if (off < pRam->cb)
3369 {
3370 /* does it match? */
3371 const unsigned iPage = off >> PAGE_SHIFT;
3372 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3373 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3374 {
3375 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3376 return;
3377 }
3378 break;
3379 }
3380 pRam = pRam->CTX_SUFF(pNext);
3381 }
3382
3383 /*
3384 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3385 */
3386 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3387 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3388 while (pRam)
3389 {
3390 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3391 while (iPage-- > 0)
3392 {
3393 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3394 {
3395 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3396 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3397 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3398 return;
3399 }
3400 }
3401 pRam = pRam->CTX_SUFF(pNext);
3402 }
3403
3404 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3405}
3406
3407
3408/**
3409 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3410 *
3411 * @param pPool The pool.
3412 * @param pPage The page.
3413 * @param pShwPT The shadow page table (mapping of the page).
3414 * @param pGstPT The guest page table.
3415 */
3416DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3417{
3418 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3419 if (pShwPT->a[i].n.u1Present)
3420 {
3421 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3422 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3423 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3424 if (!--pPage->cPresent)
3425 break;
3426 }
3427}
3428
3429
3430/**
3431 * Clear references to guest physical memory in a PAE / 32-bit page table.
3432 *
3433 * @param pPool The pool.
3434 * @param pPage The page.
3435 * @param pShwPT The shadow page table (mapping of the page).
3436 * @param pGstPT The guest page table (just a half one).
3437 */
3438DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3439{
3440 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3441 if (pShwPT->a[i].n.u1Present)
3442 {
3443 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3444 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3445 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3446 }
3447}
3448
3449
3450/**
3451 * Clear references to guest physical memory in a PAE / PAE page table.
3452 *
3453 * @param pPool The pool.
3454 * @param pPage The page.
3455 * @param pShwPT The shadow page table (mapping of the page).
3456 * @param pGstPT The guest page table.
3457 */
3458DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3459{
3460 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3461 if (pShwPT->a[i].n.u1Present)
3462 {
3463 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3464 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3465 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3466 }
3467}
3468
3469
3470/**
3471 * Clear references to guest physical memory in a 32-bit / 4MB page table.
3472 *
3473 * @param pPool The pool.
3474 * @param pPage The page.
3475 * @param pShwPT The shadow page table (mapping of the page).
3476 */
3477DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
3478{
3479 RTGCPHYS GCPhys = pPage->GCPhys;
3480 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3481 if (pShwPT->a[i].n.u1Present)
3482 {
3483 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
3484 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
3485 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
3486 }
3487}
3488
3489
3490/**
3491 * Clear references to guest physical memory in a PAE / 2/4MB page table.
3492 *
3493 * @param pPool The pool.
3494 * @param pPage The page.
3495 * @param pShwPT The shadow page table (mapping of the page).
3496 */
3497DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
3498{
3499 RTGCPHYS GCPhys = pPage->GCPhys;
3500 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3501 if (pShwPT->a[i].n.u1Present)
3502 {
3503 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
3504 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
3505 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
3506 }
3507}
3508
3509#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3510
3511
3512/**
3513 * Clear references to shadowed pages in a 32 bits page directory.
3514 *
3515 * @param pPool The pool.
3516 * @param pPage The page.
3517 * @param pShwPD The shadow page directory (mapping of the page).
3518 */
3519DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
3520{
3521 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3522 {
3523 if ( pShwPD->a[i].n.u1Present
3524 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3525 )
3526 {
3527 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
3528 if (pSubPage)
3529 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3530 else
3531 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
3532 }
3533 }
3534}
3535
3536/**
3537 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
3538 *
3539 * @param pPool The pool.
3540 * @param pPage The page.
3541 * @param pShwPD The shadow page directory (mapping of the page).
3542 */
3543DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
3544{
3545 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3546 {
3547 if ( pShwPD->a[i].n.u1Present
3548 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3549 )
3550 {
3551 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
3552 if (pSubPage)
3553 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3554 else
3555 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
3556 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3557 }
3558 }
3559}
3560
3561/**
3562 * Clear references to shadowed pages in a PAE page directory pointer table.
3563 *
3564 * @param pPool The pool.
3565 * @param pPage The page.
3566 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3567 */
3568DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3569{
3570 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
3571 {
3572 if ( pShwPDPT->a[i].n.u1Present
3573 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
3574 )
3575 {
3576 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3577 if (pSubPage)
3578 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3579 else
3580 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3581 }
3582 }
3583}
3584
3585
3586/**
3587 * Clear references to shadowed pages in a 64-bit page directory pointer table.
3588 *
3589 * @param pPool The pool.
3590 * @param pPage The page.
3591 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3592 */
3593DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3594{
3595 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3596 {
3597 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
3598 if (pShwPDPT->a[i].n.u1Present)
3599 {
3600 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3601 if (pSubPage)
3602 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3603 else
3604 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3605 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3606 }
3607 }
3608}
3609
3610
3611/**
3612 * Clear references to shadowed pages in a 64-bit level 4 page table.
3613 *
3614 * @param pPool The pool.
3615 * @param pPage The page.
3616 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3617 */
3618DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
3619{
3620 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
3621 {
3622 if (pShwPML4->a[i].n.u1Present)
3623 {
3624 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
3625 if (pSubPage)
3626 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3627 else
3628 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
3629 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3630 }
3631 }
3632}
3633
3634
3635/**
3636 * Clear references to shadowed pages in an EPT page table.
3637 *
3638 * @param pPool The pool.
3639 * @param pPage The page.
3640 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3641 */
3642DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
3643{
3644 RTGCPHYS GCPhys = pPage->GCPhys;
3645 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3646 if (pShwPT->a[i].n.u1Present)
3647 {
3648 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
3649 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
3650 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
3651 }
3652}
3653
3654
3655/**
3656 * Clear references to shadowed pages in an EPT page directory.
3657 *
3658 * @param pPool The pool.
3659 * @param pPage The page.
3660 * @param pShwPD The shadow page directory (mapping of the page).
3661 */
3662DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
3663{
3664 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3665 {
3666 if (pShwPD->a[i].n.u1Present)
3667 {
3668 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
3669 if (pSubPage)
3670 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3671 else
3672 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
3673 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3674 }
3675 }
3676}
3677
3678
3679/**
3680 * Clear references to shadowed pages in an EPT page directory pointer table.
3681 *
3682 * @param pPool The pool.
3683 * @param pPage The page.
3684 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3685 */
3686DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
3687{
3688 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3689 {
3690 if (pShwPDPT->a[i].n.u1Present)
3691 {
3692 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
3693 if (pSubPage)
3694 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3695 else
3696 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
3697 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3698 }
3699 }
3700}
3701
3702
3703/**
3704 * Clears all references made by this page.
3705 *
3706 * This includes other shadow pages and GC physical addresses.
3707 *
3708 * @param pPool The pool.
3709 * @param pPage The page.
3710 */
3711static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3712{
3713 /*
3714 * Map the shadow page and take action according to the page kind.
3715 */
3716 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
3717 switch (pPage->enmKind)
3718 {
3719#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3720 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3721 {
3722 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3723 void *pvGst;
3724 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3725 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
3726 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3727 break;
3728 }
3729
3730 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3731 {
3732 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3733 void *pvGst;
3734 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3735 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
3736 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3737 break;
3738 }
3739
3740 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3741 {
3742 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3743 void *pvGst;
3744 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3745 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
3746 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3747 break;
3748 }
3749
3750 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
3751 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3752 {
3753 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3754 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
3755 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3756 break;
3757 }
3758
3759 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
3760 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3761 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3762 {
3763 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3764 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
3765 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3766 break;
3767 }
3768
3769#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3770 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3771 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3772 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3773 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3774 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3775 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3776 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3777 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3778 break;
3779#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3780
3781 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3782 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3783 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3784 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3785 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3786 case PGMPOOLKIND_PAE_PD_PHYS:
3787 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3788 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3789 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
3790 break;
3791
3792 case PGMPOOLKIND_32BIT_PD_PHYS:
3793 case PGMPOOLKIND_32BIT_PD:
3794 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
3795 break;
3796
3797 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3798 case PGMPOOLKIND_PAE_PDPT:
3799 case PGMPOOLKIND_PAE_PDPT_PHYS:
3800 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
3801 break;
3802
3803 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3804 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3805 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
3806 break;
3807
3808 case PGMPOOLKIND_64BIT_PML4:
3809 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
3810 break;
3811
3812 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3813 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
3814 break;
3815
3816 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3817 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
3818 break;
3819
3820 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3821 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
3822 break;
3823
3824 default:
3825 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
3826 }
3827
3828 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
3829 STAM_PROFILE_START(&pPool->StatZeroPage, z);
3830 ASMMemZeroPage(pvShw);
3831 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
3832 pPage->fZeroed = true;
3833 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
3834}
3835#endif /* PGMPOOL_WITH_USER_TRACKING */
3836
3837/**
3838 * Flushes a pool page.
3839 *
3840 * This moves the page to the free list after removing all user references to it.
3841 *
3842 * @returns VBox status code.
3843 * @retval VINF_SUCCESS on success.
3844 * @param pPool The pool.
3845 * @param HCPhys The HC physical address of the shadow page.
3846 */
3847int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3848{
3849 PVM pVM = pPool->CTX_SUFF(pVM);
3850
3851 int rc = VINF_SUCCESS;
3852 STAM_PROFILE_START(&pPool->StatFlushPage, f);
3853 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
3854 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
3855
3856 /*
3857 * Quietly reject any attempts at flushing any of the special root pages.
3858 */
3859 if (pPage->idx < PGMPOOL_IDX_FIRST)
3860 {
3861 AssertFailed(); /* can no longer happen */
3862 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3863 return VINF_SUCCESS;
3864 }
3865
3866 pgmLock(pVM);
3867
3868 /*
3869 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
3870 */
3871 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
3872 {
3873 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
3874 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
3875 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
3876 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
3877 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3878 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
3879 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
3880 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
3881 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
3882 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
3883 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3884 pgmUnlock(pVM);
3885 return VINF_SUCCESS;
3886 }
3887
3888#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3889 /* Start a subset so we won't run out of mapping space. */
3890 PVMCPU pVCpu = VMMGetCpu(pVM);
3891 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3892#endif
3893
3894 /*
3895 * Mark the page as being in need of a ASMMemZeroPage().
3896 */
3897 pPage->fZeroed = false;
3898
3899#ifdef PGMPOOL_WITH_USER_TRACKING
3900 /*
3901 * Clear the page.
3902 */
3903 pgmPoolTrackClearPageUsers(pPool, pPage);
3904 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
3905 pgmPoolTrackDeref(pPool, pPage);
3906 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
3907#endif
3908
3909#ifdef PGMPOOL_WITH_CACHE
3910 /*
3911 * Flush it from the cache.
3912 */
3913 pgmPoolCacheFlushPage(pPool, pPage);
3914#endif /* PGMPOOL_WITH_CACHE */
3915
3916#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3917 /* Heavy stuff done. */
3918 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3919#endif
3920
3921#ifdef PGMPOOL_WITH_MONITORING
3922 /*
3923 * Deregistering the monitoring.
3924 */
3925 if (pPage->fMonitored)
3926 rc = pgmPoolMonitorFlush(pPool, pPage);
3927#endif
3928
3929 /*
3930 * Free the page.
3931 */
3932 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
3933 pPage->iNext = pPool->iFreeHead;
3934 pPool->iFreeHead = pPage->idx;
3935 pPage->enmKind = PGMPOOLKIND_FREE;
3936 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
3937 pPage->GCPhys = NIL_RTGCPHYS;
3938 pPage->fReusedFlushPending = false;
3939
3940 pPool->cUsedPages--;
3941 pgmUnlock(pVM);
3942 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
3943 return rc;
3944}
3945
3946
3947/**
3948 * Frees a usage of a pool page.
3949 *
3950 * The caller is responsible to updating the user table so that it no longer
3951 * references the shadow page.
3952 *
3953 * @param pPool The pool.
3954 * @param HCPhys The HC physical address of the shadow page.
3955 * @param iUser The shadow page pool index of the user table.
3956 * @param iUserTable The index into the user table (shadowed).
3957 */
3958void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
3959{
3960 PVM pVM = pPool->CTX_SUFF(pVM);
3961
3962 STAM_PROFILE_START(&pPool->StatFree, a);
3963 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
3964 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
3965 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
3966 pgmLock(pVM);
3967#ifdef PGMPOOL_WITH_USER_TRACKING
3968 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
3969#endif
3970#ifdef PGMPOOL_WITH_CACHE
3971 if (!pPage->fCached)
3972#endif
3973 pgmPoolFlushPage(pPool, pPage);
3974 pgmUnlock(pVM);
3975 STAM_PROFILE_STOP(&pPool->StatFree, a);
3976}
3977
3978
3979/**
3980 * Makes one or more free page free.
3981 *
3982 * @returns VBox status code.
3983 * @retval VINF_SUCCESS on success.
3984 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
3985 *
3986 * @param pPool The pool.
3987 * @param enmKind Page table kind
3988 * @param iUser The user of the page.
3989 */
3990static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
3991{
3992 PVM pVM = pPool->CTX_SUFF(pVM);
3993
3994 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
3995
3996 /*
3997 * If the pool isn't full grown yet, expand it.
3998 */
3999 if ( pPool->cCurPages < pPool->cMaxPages
4000#if defined(IN_RC)
4001 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
4002 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4003 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
4004#endif
4005 )
4006 {
4007 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4008#ifdef IN_RING3
4009 int rc = PGMR3PoolGrow(pVM);
4010#else
4011 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0);
4012#endif
4013 if (RT_FAILURE(rc))
4014 return rc;
4015 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4016 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4017 return VINF_SUCCESS;
4018 }
4019
4020#ifdef PGMPOOL_WITH_CACHE
4021 /*
4022 * Free one cached page.
4023 */
4024 return pgmPoolCacheFreeOne(pPool, iUser);
4025#else
4026 /*
4027 * Flush the pool.
4028 *
4029 * If we have tracking enabled, it should be possible to come up with
4030 * a cheap replacement strategy...
4031 */
4032 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4033 AssertCompileFailed();
4034 Assert(!CPUMIsGuestInLongMode(pVM));
4035 pgmPoolFlushAllInt(pPool);
4036 return VERR_PGM_POOL_FLUSHED;
4037#endif
4038}
4039
4040/**
4041 * Allocates a page from the pool.
4042 *
4043 * This page may actually be a cached page and not in need of any processing
4044 * on the callers part.
4045 *
4046 * @returns VBox status code.
4047 * @retval VINF_SUCCESS if a NEW page was allocated.
4048 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4049 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4050 * @param pVM The VM handle.
4051 * @param GCPhys The GC physical address of the page we're gonna shadow.
4052 * For 4MB and 2MB PD entries, it's the first address the
4053 * shadow PT is covering.
4054 * @param enmKind The kind of mapping.
4055 * @param enmAccess Access type for the mapping (only relevant for big pages)
4056 * @param iUser The shadow page pool index of the user table.
4057 * @param iUserTable The index into the user table (shadowed).
4058 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4059 * @param fLockPage Lock the page
4060 */
4061int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage, bool fLockPage)
4062{
4063 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4064 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4065 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4066 *ppPage = NULL;
4067 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4068 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4069 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
4070
4071 pgmLock(pVM);
4072
4073#ifdef PGMPOOL_WITH_CACHE
4074 if (pPool->fCacheEnabled)
4075 {
4076 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, iUser, iUserTable, ppPage);
4077 if (RT_SUCCESS(rc2))
4078 {
4079 if (fLockPage)
4080 pgmPoolLockPage(pPool, *ppPage);
4081 pgmUnlock(pVM);
4082 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4083 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4084 return rc2;
4085 }
4086 }
4087#endif
4088
4089 /*
4090 * Allocate a new one.
4091 */
4092 int rc = VINF_SUCCESS;
4093 uint16_t iNew = pPool->iFreeHead;
4094 if (iNew == NIL_PGMPOOL_IDX)
4095 {
4096 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4097 if (RT_FAILURE(rc))
4098 {
4099 pgmUnlock(pVM);
4100 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4101 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4102 return rc;
4103 }
4104 iNew = pPool->iFreeHead;
4105 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4106 }
4107
4108 /* unlink the free head */
4109 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4110 pPool->iFreeHead = pPage->iNext;
4111 pPage->iNext = NIL_PGMPOOL_IDX;
4112
4113 /*
4114 * Initialize it.
4115 */
4116 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4117 pPage->enmKind = enmKind;
4118 pPage->enmAccess = enmAccess;
4119 pPage->GCPhys = GCPhys;
4120 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4121 pPage->fMonitored = false;
4122 pPage->fCached = false;
4123 pPage->fReusedFlushPending = false;
4124#ifdef PGMPOOL_WITH_MONITORING
4125 pPage->cModifications = 0;
4126 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4127 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4128#else
4129 pPage->fCR3Mix = false;
4130#endif
4131#ifdef PGMPOOL_WITH_USER_TRACKING
4132 pPage->cPresent = 0;
4133 pPage->iFirstPresent = ~0;
4134
4135 /*
4136 * Insert into the tracking and cache. If this fails, free the page.
4137 */
4138 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4139 if (RT_FAILURE(rc3))
4140 {
4141 pPool->cUsedPages--;
4142 pPage->enmKind = PGMPOOLKIND_FREE;
4143 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4144 pPage->GCPhys = NIL_RTGCPHYS;
4145 pPage->iNext = pPool->iFreeHead;
4146 pPool->iFreeHead = pPage->idx;
4147 pgmUnlock(pVM);
4148 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4149 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4150 return rc3;
4151 }
4152#endif /* PGMPOOL_WITH_USER_TRACKING */
4153
4154 /*
4155 * Commit the allocation, clear the page and return.
4156 */
4157#ifdef VBOX_WITH_STATISTICS
4158 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4159 pPool->cUsedPagesHigh = pPool->cUsedPages;
4160#endif
4161
4162 if (!pPage->fZeroed)
4163 {
4164 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4165 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4166 ASMMemZeroPage(pv);
4167 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4168 }
4169
4170 *ppPage = pPage;
4171 if (fLockPage)
4172 pgmPoolLockPage(pPool, pPage);
4173 pgmUnlock(pVM);
4174 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4175 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4176 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4177 return rc;
4178}
4179
4180
4181/**
4182 * Frees a usage of a pool page.
4183 *
4184 * @param pVM The VM handle.
4185 * @param HCPhys The HC physical address of the shadow page.
4186 * @param iUser The shadow page pool index of the user table.
4187 * @param iUserTable The index into the user table (shadowed).
4188 */
4189void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4190{
4191 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4192 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4193 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4194}
4195
4196/**
4197 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4198 *
4199 * @returns Pointer to the shadow page structure.
4200 * @param pPool The pool.
4201 * @param HCPhys The HC physical address of the shadow page.
4202 */
4203PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4204{
4205 PVM pVM = pPool->CTX_SUFF(pVM);
4206
4207 Assert(PGMIsLockOwner(pVM));
4208
4209 /*
4210 * Look up the page.
4211 */
4212 pgmLock(pVM);
4213 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4214 pgmUnlock(pVM);
4215
4216 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4217 return pPage;
4218}
4219
4220
4221#ifdef IN_RING3
4222/**
4223 * Flushes the entire cache.
4224 *
4225 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4226 * and execute this CR3 flush.
4227 *
4228 * @param pPool The pool.
4229 */
4230void pgmR3PoolReset(PVM pVM)
4231{
4232 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4233
4234 Assert(PGMIsLockOwner(pVM));
4235 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
4236 LogFlow(("pgmPoolFlushAllInt:\n"));
4237
4238 /*
4239 * If there are no pages in the pool, there is nothing to do.
4240 */
4241 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
4242 {
4243 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4244 return;
4245 }
4246
4247 /*
4248 * Exit the shadow mode since we're going to clear everything,
4249 * including the root page.
4250 */
4251 for (unsigned i=0;i<pVM->cCPUs;i++)
4252 {
4253 PVMCPU pVCpu = &pVM->aCpus[i];
4254 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
4255 }
4256
4257 /*
4258 * Nuke the free list and reinsert all pages into it.
4259 */
4260 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
4261 {
4262 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4263
4264 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
4265#ifdef PGMPOOL_WITH_MONITORING
4266 if (pPage->fMonitored)
4267 pgmPoolMonitorFlush(pPool, pPage);
4268 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4269 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4270 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4271 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4272 pPage->cModifications = 0;
4273#endif
4274 pPage->GCPhys = NIL_RTGCPHYS;
4275 pPage->enmKind = PGMPOOLKIND_FREE;
4276 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4277 Assert(pPage->idx == i);
4278 pPage->iNext = i + 1;
4279 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
4280 pPage->fSeenNonGlobal = false;
4281 pPage->fMonitored = false;
4282 pPage->fCached = false;
4283 pPage->fReusedFlushPending = false;
4284#ifdef PGMPOOL_WITH_USER_TRACKING
4285 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
4286#else
4287 pPage->fCR3Mix = false;
4288#endif
4289#ifdef PGMPOOL_WITH_CACHE
4290 pPage->iAgeNext = NIL_PGMPOOL_IDX;
4291 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4292#endif
4293 pPage->cLocked = 0;
4294 }
4295 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
4296 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
4297 pPool->cUsedPages = 0;
4298
4299#ifdef PGMPOOL_WITH_USER_TRACKING
4300 /*
4301 * Zap and reinitialize the user records.
4302 */
4303 pPool->cPresent = 0;
4304 pPool->iUserFreeHead = 0;
4305 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
4306 const unsigned cMaxUsers = pPool->cMaxUsers;
4307 for (unsigned i = 0; i < cMaxUsers; i++)
4308 {
4309 paUsers[i].iNext = i + 1;
4310 paUsers[i].iUser = NIL_PGMPOOL_IDX;
4311 paUsers[i].iUserTable = 0xfffffffe;
4312 }
4313 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
4314#endif
4315
4316#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4317 /*
4318 * Clear all the GCPhys links and rebuild the phys ext free list.
4319 */
4320 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
4321 pRam;
4322 pRam = pRam->CTX_SUFF(pNext))
4323 {
4324 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4325 while (iPage-- > 0)
4326 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
4327 }
4328
4329 pPool->iPhysExtFreeHead = 0;
4330 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4331 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
4332 for (unsigned i = 0; i < cMaxPhysExts; i++)
4333 {
4334 paPhysExts[i].iNext = i + 1;
4335 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
4336 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
4337 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
4338 }
4339 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
4340#endif
4341
4342#ifdef PGMPOOL_WITH_MONITORING
4343 /*
4344 * Just zap the modified list.
4345 */
4346 pPool->cModifiedPages = 0;
4347 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
4348#endif
4349
4350#ifdef PGMPOOL_WITH_CACHE
4351 /*
4352 * Clear the GCPhys hash and the age list.
4353 */
4354 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
4355 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
4356 pPool->iAgeHead = NIL_PGMPOOL_IDX;
4357 pPool->iAgeTail = NIL_PGMPOOL_IDX;
4358#endif
4359
4360 /*
4361 * Reinsert active pages into the hash and ensure monitoring chains are correct.
4362 */
4363 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
4364 {
4365 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4366 pPage->iNext = NIL_PGMPOOL_IDX;
4367#ifdef PGMPOOL_WITH_MONITORING
4368 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4369 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4370 pPage->cModifications = 0;
4371 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
4372 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4373 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4374 if (pPage->fMonitored)
4375 {
4376 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
4377 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
4378 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
4379 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
4380 pPool->pszAccessHandler);
4381 AssertFatalRCSuccess(rc);
4382# ifdef PGMPOOL_WITH_CACHE
4383 pgmPoolHashInsert(pPool, pPage);
4384# endif
4385 }
4386#endif
4387#ifdef PGMPOOL_WITH_USER_TRACKING
4388 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
4389#endif
4390#ifdef PGMPOOL_WITH_CACHE
4391 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
4392 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
4393#endif
4394 }
4395
4396 for (unsigned i=0;i<pVM->cCPUs;i++)
4397 {
4398 PVMCPU pVCpu = &pVM->aCpus[i];
4399 /*
4400 * Re-enter the shadowing mode and assert Sync CR3 FF.
4401 */
4402 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
4403 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4404 }
4405
4406 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4407}
4408#endif /* IN_RING3 */
4409
4410#ifdef LOG_ENABLED
4411static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
4412{
4413 switch(enmKind)
4414 {
4415 case PGMPOOLKIND_INVALID:
4416 return "PGMPOOLKIND_INVALID";
4417 case PGMPOOLKIND_FREE:
4418 return "PGMPOOLKIND_FREE";
4419 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4420 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
4421 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4422 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
4423 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4424 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
4425 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4426 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
4427 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4428 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
4429 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4430 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
4431 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4432 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
4433 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4434 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
4435 case PGMPOOLKIND_32BIT_PD:
4436 return "PGMPOOLKIND_32BIT_PD";
4437 case PGMPOOLKIND_32BIT_PD_PHYS:
4438 return "PGMPOOLKIND_32BIT_PD_PHYS";
4439 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4440 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
4441 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4442 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
4443 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4444 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
4445 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4446 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
4447 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4448 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
4449 case PGMPOOLKIND_PAE_PD_PHYS:
4450 return "PGMPOOLKIND_PAE_PD_PHYS";
4451 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4452 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
4453 case PGMPOOLKIND_PAE_PDPT:
4454 return "PGMPOOLKIND_PAE_PDPT";
4455 case PGMPOOLKIND_PAE_PDPT_PHYS:
4456 return "PGMPOOLKIND_PAE_PDPT_PHYS";
4457 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4458 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
4459 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4460 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
4461 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4462 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
4463 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4464 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
4465 case PGMPOOLKIND_64BIT_PML4:
4466 return "PGMPOOLKIND_64BIT_PML4";
4467 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4468 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
4469 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4470 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
4471 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4472 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
4473 case PGMPOOLKIND_ROOT_NESTED:
4474 return "PGMPOOLKIND_ROOT_NESTED";
4475 }
4476 return "Unknown kind!";
4477}
4478#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette