VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 19752

Last change on this file since 19752 was 19721, checked in by vboxsync, 16 years ago

Locking assertions

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 160.9 KB
Line 
1/* $Id: PGMAllPool.cpp 19721 2009-05-15 09:17:14Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48__BEGIN_DECLS
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
56static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
57#endif
58#ifdef PGMPOOL_WITH_CACHE
59static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
60#endif
61#ifdef PGMPOOL_WITH_MONITORING
62static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
63#endif
64#ifndef IN_RING3
65DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
66#endif
67#ifdef LOG_ENABLED
68static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
69#endif
70
71void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
72void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
73int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
74PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
75void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
76void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
77
78__END_DECLS
79
80
81/**
82 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
83 *
84 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
85 * @param enmKind The page kind.
86 */
87DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
88{
89 switch (enmKind)
90 {
91 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
92 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
93 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
94 return true;
95 default:
96 return false;
97 }
98}
99
100/** @def PGMPOOL_PAGE_2_LOCKED_PTR
101 * Maps a pool page pool into the current context and lock it (RC only).
102 *
103 * @returns VBox status code.
104 * @param pVM The VM handle.
105 * @param pPage The pool page.
106 *
107 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
108 * small page window employeed by that function. Be careful.
109 * @remark There is no need to assert on the result.
110 */
111#if defined(IN_RC)
112DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
113{
114 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
115
116 /* Make sure the dynamic mapping will not be reused. */
117 if (pv)
118 PGMDynLockHCPage(pVM, (uint8_t *)pv);
119
120 return pv;
121}
122#else
123# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
124#endif
125
126/** @def PGMPOOL_UNLOCK_PTR
127 * Unlock a previously locked dynamic caching (RC only).
128 *
129 * @returns VBox status code.
130 * @param pVM The VM handle.
131 * @param pPage The pool page.
132 *
133 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
134 * small page window employeed by that function. Be careful.
135 * @remark There is no need to assert on the result.
136 */
137#if defined(IN_RC)
138DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
139{
140 if (pvPage)
141 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
142}
143#else
144# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
145#endif
146
147
148#ifdef PGMPOOL_WITH_MONITORING
149/**
150 * Determin the size of a write instruction.
151 * @returns number of bytes written.
152 * @param pDis The disassembler state.
153 */
154static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
155{
156 /*
157 * This is very crude and possibly wrong for some opcodes,
158 * but since it's not really supposed to be called we can
159 * probably live with that.
160 */
161 return DISGetParamSize(pDis, &pDis->param1);
162}
163
164
165/**
166 * Flushes a chain of pages sharing the same access monitor.
167 *
168 * @returns VBox status code suitable for scheduling.
169 * @param pPool The pool.
170 * @param pPage A page in the chain.
171 */
172int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
173{
174 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
175
176 /*
177 * Find the list head.
178 */
179 uint16_t idx = pPage->idx;
180 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
181 {
182 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
183 {
184 idx = pPage->iMonitoredPrev;
185 Assert(idx != pPage->idx);
186 pPage = &pPool->aPages[idx];
187 }
188 }
189
190 /*
191 * Iterate the list flushing each shadow page.
192 */
193 int rc = VINF_SUCCESS;
194 for (;;)
195 {
196 idx = pPage->iMonitoredNext;
197 Assert(idx != pPage->idx);
198 if (pPage->idx >= PGMPOOL_IDX_FIRST)
199 {
200 int rc2 = pgmPoolFlushPage(pPool, pPage);
201 AssertRC(rc2);
202 }
203 /* next */
204 if (idx == NIL_PGMPOOL_IDX)
205 break;
206 pPage = &pPool->aPages[idx];
207 }
208 return rc;
209}
210
211
212/**
213 * Wrapper for getting the current context pointer to the entry being modified.
214 *
215 * @returns VBox status code suitable for scheduling.
216 * @param pVM VM Handle.
217 * @param pvDst Destination address
218 * @param pvSrc Source guest virtual address.
219 * @param GCPhysSrc The source guest physical address.
220 * @param cb Size of data to read
221 */
222DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
223{
224#if defined(IN_RING3)
225 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
226 return VINF_SUCCESS;
227#else
228 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
229 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
230#endif
231}
232
233/**
234 * Process shadow entries before they are changed by the guest.
235 *
236 * For PT entries we will clear them. For PD entries, we'll simply check
237 * for mapping conflicts and set the SyncCR3 FF if found.
238 *
239 * @param pVCpu VMCPU handle
240 * @param pPool The pool.
241 * @param pPage The head page.
242 * @param GCPhysFault The guest physical fault address.
243 * @param uAddress In R0 and GC this is the guest context fault address (flat).
244 * In R3 this is the host context 'fault' address.
245 * @param pCpu The disassembler state for figuring out the write size.
246 * This need not be specified if the caller knows we won't do cross entry accesses.
247 */
248void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu)
249{
250 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
251 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
252 const unsigned cbWrite = (pCpu) ? pgmPoolDisasWriteSize(pCpu) : 0;
253 PVM pVM = pPool->CTX_SUFF(pVM);
254
255 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp kind=%s cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
256 for (;;)
257 {
258 union
259 {
260 void *pv;
261 PX86PT pPT;
262 PX86PTPAE pPTPae;
263 PX86PD pPD;
264 PX86PDPAE pPDPae;
265 PX86PDPT pPDPT;
266 PX86PML4 pPML4;
267 } uShw;
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 uShw.pPT->a[iShw].u = 0;
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 uShw.pPTPae->a[iShw].u = 0;
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 uShw.pPDPae->a[iShw+i].u = 0;
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pCpu
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 uShw.pPDPae->a[iShw2].u = 0;
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 uShw.pPTPae->a[iShw].u = 0;
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pCpu
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 uShw.pPTPae->a[iShw2].u = 0;
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 uShw.pPD->a[iShw].u = 0;
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pCpu
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 uShw.pPD->a[iShw2].u = 0;
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 uShw.pPD->a[iShw].u = 0;
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 uShw.pPDPae->a[iShw].u = 0;
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pCpu
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 uShw.pPDPae->a[iShw2].u = 0;
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 uShw.pPDPT->a[iShw].u = 0;
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pCpu
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 uShw.pPDPT->a[iShw2].u = 0;
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 uShw.pPDPae->a[iShw].u = 0;
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pCpu
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 uShw.pPDPae->a[iShw2].u = 0;
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 uShw.pPDPT->a[iShw].u = 0;
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pCpu
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 uShw.pPDPT->a[iShw2].u = 0;
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 uShw.pPML4->a[iShw].u = 0;
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pCpu
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 uShw.pPML4->a[iShw2].u = 0;
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setuping up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pCpu The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pCpu->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pPage The page in question.
823 * @param pRegFrame Trap register frame.
824 * @param pCpu The disassembly info for the faulting instruction.
825 * @param pvFault The fault address.
826 *
827 * @remark The REP prefix check is left to the caller because of STOSD/W.
828 */
829DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PPGMPOOLPAGE pPage, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, RTGCPTR pvFault)
830{
831#ifndef IN_RC
832 /** @todo could make this general, faulting close to rsp should be safe reuse heuristic. */
833 if ( HWACCMHasPendingIrq(pVM)
834 && (pRegFrame->rsp - pvFault) < 32)
835 {
836 /* Fault caused by stack writes while trying to inject an interrupt event. */
837 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
838 return true;
839 }
840#else
841 NOREF(pVM); NOREF(pvFault);
842#endif
843
844 switch (pCpu->pCurInstr->opcode)
845 {
846 /* call implies the actual push of the return address faulted */
847 case OP_CALL:
848 Log4(("pgmPoolMonitorIsReused: CALL\n"));
849 return true;
850 case OP_PUSH:
851 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
852 return true;
853 case OP_PUSHF:
854 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
855 return true;
856 case OP_PUSHA:
857 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
858 return true;
859 case OP_FXSAVE:
860 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
861 return true;
862 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
863 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
864 return true;
865 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
866 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
867 return true;
868 case OP_MOVSWD:
869 case OP_STOSWD:
870 if ( pCpu->prefix == (PREFIX_REP|PREFIX_REX)
871 && pRegFrame->rcx >= 0x40
872 )
873 {
874 Assert(pCpu->mode == CPUMODE_64BIT);
875
876 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
877 return true;
878 }
879 return false;
880 }
881 if ( (pCpu->param1.flags & USE_REG_GEN32)
882 && (pCpu->param1.base.reg_gen == USE_REG_ESP))
883 {
884 Log4(("pgmPoolMonitorIsReused: ESP\n"));
885 return true;
886 }
887
888 //if (pPage->fCR3Mix)
889 // return false;
890 return false;
891}
892
893
894/**
895 * Flushes the page being accessed.
896 *
897 * @returns VBox status code suitable for scheduling.
898 * @param pVM The VM handle.
899 * @param pVCpu The VMCPU handle.
900 * @param pPool The pool.
901 * @param pPage The pool page (head).
902 * @param pCpu The disassembly of the write instruction.
903 * @param pRegFrame The trap register frame.
904 * @param GCPhysFault The fault address as guest physical address.
905 * @param pvFault The fault address.
906 */
907static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
908 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
909{
910 /*
911 * First, do the flushing.
912 */
913 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
914
915 /*
916 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
917 */
918 uint32_t cbWritten;
919 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cbWritten);
920 if (RT_SUCCESS(rc2))
921 pRegFrame->rip += pCpu->opsize;
922 else if (rc2 == VERR_EM_INTERPRETER)
923 {
924#ifdef IN_RC
925 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
926 {
927 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
928 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
929 rc = VINF_SUCCESS;
930 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
931 }
932 else
933#endif
934 {
935 rc = VINF_EM_RAW_EMULATE_INSTR;
936 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
937 }
938 }
939 else
940 rc = rc2;
941
942 /* See use in pgmPoolAccessHandlerSimple(). */
943 PGM_INVL_GUEST_TLBS();
944
945 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
946 return rc;
947
948}
949
950
951/**
952 * Handles the STOSD write accesses.
953 *
954 * @returns VBox status code suitable for scheduling.
955 * @param pVM The VM handle.
956 * @param pPool The pool.
957 * @param pPage The pool page (head).
958 * @param pCpu The disassembly of the write instruction.
959 * @param pRegFrame The trap register frame.
960 * @param GCPhysFault The fault address as guest physical address.
961 * @param pvFault The fault address.
962 */
963DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
964 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
965{
966 Assert(pCpu->mode == CPUMODE_32BIT);
967
968 Log3(("pgmPoolAccessHandlerSTOSD\n"));
969
970 /*
971 * Increment the modification counter and insert it into the list
972 * of modified pages the first time.
973 */
974 if (!pPage->cModifications++)
975 pgmPoolMonitorModifiedInsert(pPool, pPage);
976
977 /*
978 * Execute REP STOSD.
979 *
980 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
981 * write situation, meaning that it's safe to write here.
982 */
983 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
984 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
985 while (pRegFrame->ecx)
986 {
987#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
988 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
989 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
990 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
991#else
992 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
993#endif
994#ifdef IN_RC
995 *(uint32_t *)pu32 = pRegFrame->eax;
996#else
997 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
998#endif
999 pu32 += 4;
1000 GCPhysFault += 4;
1001 pRegFrame->edi += 4;
1002 pRegFrame->ecx--;
1003 }
1004 pRegFrame->rip += pCpu->opsize;
1005
1006#ifdef IN_RC
1007 /* See use in pgmPoolAccessHandlerSimple(). */
1008 PGM_INVL_GUEST_TLBS();
1009#endif
1010
1011 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1012 return VINF_SUCCESS;
1013}
1014
1015
1016/**
1017 * Handles the simple write accesses.
1018 *
1019 * @returns VBox status code suitable for scheduling.
1020 * @param pVM The VM handle.
1021 * @param pVCpu The VMCPU handle.
1022 * @param pPool The pool.
1023 * @param pPage The pool page (head).
1024 * @param pCpu The disassembly of the write instruction.
1025 * @param pRegFrame The trap register frame.
1026 * @param GCPhysFault The fault address as guest physical address.
1027 * @param pvFault The fault address.
1028 */
1029DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
1030 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1031{
1032 Log3(("pgmPoolAccessHandlerSimple\n"));
1033 /*
1034 * Increment the modification counter and insert it into the list
1035 * of modified pages the first time.
1036 */
1037 if (!pPage->cModifications++)
1038 pgmPoolMonitorModifiedInsert(pPool, pPage);
1039
1040 /*
1041 * Clear all the pages. ASSUMES that pvFault is readable.
1042 */
1043#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1044 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1045 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1046 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1047#else
1048 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1049#endif
1050
1051 /*
1052 * Interpret the instruction.
1053 */
1054 uint32_t cb;
1055 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cb);
1056 if (RT_SUCCESS(rc))
1057 pRegFrame->rip += pCpu->opsize;
1058 else if (rc == VERR_EM_INTERPRETER)
1059 {
1060 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1061 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pCpu->pCurInstr->opcode));
1062 rc = VINF_EM_RAW_EMULATE_INSTR;
1063 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1064 }
1065
1066#ifdef IN_RC
1067 /*
1068 * Quick hack, with logging enabled we're getting stale
1069 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1070 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1071 * have to be fixed to support this. But that'll have to wait till next week.
1072 *
1073 * An alternative is to keep track of the changed PTEs together with the
1074 * GCPhys from the guest PT. This may proove expensive though.
1075 *
1076 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1077 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1078 */
1079 PGM_INVL_GUEST_TLBS();
1080#endif
1081
1082 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1083 return rc;
1084}
1085
1086/**
1087 * \#PF Handler callback for PT write accesses.
1088 *
1089 * @returns VBox status code (appropriate for GC return).
1090 * @param pVM VM Handle.
1091 * @param uErrorCode CPU Error code.
1092 * @param pRegFrame Trap register frame.
1093 * NULL on DMA and other non CPU access.
1094 * @param pvFault The fault address (cr2).
1095 * @param GCPhysFault The GC physical address corresponding to pvFault.
1096 * @param pvUser User argument.
1097 */
1098DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1099{
1100 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1101 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1102 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1103 PVMCPU pVCpu = VMMGetCpu(pVM);
1104
1105 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1106
1107 /*
1108 * We should ALWAYS have the list head as user parameter. This
1109 * is because we use that page to record the changes.
1110 */
1111 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1112
1113 /*
1114 * Disassemble the faulting instruction.
1115 */
1116 DISCPUSTATE Cpu;
1117 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, &Cpu, NULL);
1118 AssertRCReturn(rc, rc);
1119
1120 pgmLock(pVM);
1121
1122 /*
1123 * Check if it's worth dealing with.
1124 */
1125 bool fReused = false;
1126 if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1127 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1128 )
1129 && !(fReused = pgmPoolMonitorIsReused(pVM, pPage, pRegFrame, &Cpu, pvFault))
1130 && !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK))
1131 {
1132 /*
1133 * Simple instructions, no REP prefix.
1134 */
1135 if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
1136 {
1137 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1138 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1139 pgmUnlock(pVM);
1140 return rc;
1141 }
1142
1143 /*
1144 * Windows is frequently doing small memset() operations (netio test 4k+).
1145 * We have to deal with these or we'll kill the cache and performance.
1146 */
1147 if ( Cpu.pCurInstr->opcode == OP_STOSWD
1148 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
1149 && pRegFrame->ecx <= 0x20
1150 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1151 && !((uintptr_t)pvFault & 3)
1152 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1153 && Cpu.mode == CPUMODE_32BIT
1154 && Cpu.opmode == CPUMODE_32BIT
1155 && Cpu.addrmode == CPUMODE_32BIT
1156 && Cpu.prefix == PREFIX_REP
1157 && !pRegFrame->eflags.Bits.u1DF
1158 )
1159 {
1160 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1161 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1162 pgmUnlock(pVM);
1163 return rc;
1164 }
1165
1166 /* REP prefix, don't bother. */
1167 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1168 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1169 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, Cpu.pCurInstr->opcode, Cpu.prefix));
1170 }
1171
1172 /*
1173 * Not worth it, so flush it.
1174 *
1175 * If we considered it to be reused, don't go back to ring-3
1176 * to emulate failed instructions since we usually cannot
1177 * interpret then. This may be a bit risky, in which case
1178 * the reuse detection must be fixed.
1179 */
1180 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1181 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1182 rc = VINF_SUCCESS;
1183 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1184 pgmUnlock(pVM);
1185 return rc;
1186}
1187
1188# endif /* !IN_RING3 */
1189#endif /* PGMPOOL_WITH_MONITORING */
1190
1191#ifdef PGMPOOL_WITH_CACHE
1192
1193/**
1194 * Inserts a page into the GCPhys hash table.
1195 *
1196 * @param pPool The pool.
1197 * @param pPage The page.
1198 */
1199DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1200{
1201 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1202 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1203 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1204 pPage->iNext = pPool->aiHash[iHash];
1205 pPool->aiHash[iHash] = pPage->idx;
1206}
1207
1208
1209/**
1210 * Removes a page from the GCPhys hash table.
1211 *
1212 * @param pPool The pool.
1213 * @param pPage The page.
1214 */
1215DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1216{
1217 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1218 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1219 if (pPool->aiHash[iHash] == pPage->idx)
1220 pPool->aiHash[iHash] = pPage->iNext;
1221 else
1222 {
1223 uint16_t iPrev = pPool->aiHash[iHash];
1224 for (;;)
1225 {
1226 const int16_t i = pPool->aPages[iPrev].iNext;
1227 if (i == pPage->idx)
1228 {
1229 pPool->aPages[iPrev].iNext = pPage->iNext;
1230 break;
1231 }
1232 if (i == NIL_PGMPOOL_IDX)
1233 {
1234 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1235 break;
1236 }
1237 iPrev = i;
1238 }
1239 }
1240 pPage->iNext = NIL_PGMPOOL_IDX;
1241}
1242
1243
1244/**
1245 * Frees up one cache page.
1246 *
1247 * @returns VBox status code.
1248 * @retval VINF_SUCCESS on success.
1249 * @param pPool The pool.
1250 * @param iUser The user index.
1251 */
1252static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1253{
1254#ifndef IN_RC
1255 const PVM pVM = pPool->CTX_SUFF(pVM);
1256#endif
1257 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1258 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1259
1260 /*
1261 * Select one page from the tail of the age list.
1262 */
1263 PPGMPOOLPAGE pPage;
1264 for (unsigned iLoop = 0; ; iLoop++)
1265 {
1266 uint16_t iToFree = pPool->iAgeTail;
1267 if (iToFree == iUser)
1268 iToFree = pPool->aPages[iToFree].iAgePrev;
1269/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1270 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1271 {
1272 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1273 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1274 {
1275 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1276 continue;
1277 iToFree = i;
1278 break;
1279 }
1280 }
1281*/
1282 Assert(iToFree != iUser);
1283 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1284 pPage = &pPool->aPages[iToFree];
1285
1286 /*
1287 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1288 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1289 */
1290 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1291 break;
1292 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1293 pgmPoolCacheUsed(pPool, pPage);
1294 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1295 }
1296
1297 /*
1298 * Found a usable page, flush it and return.
1299 */
1300 int rc = pgmPoolFlushPage(pPool, pPage);
1301 if (rc == VINF_SUCCESS)
1302 PGM_INVL_GUEST_TLBS(); /* see PT handler. */
1303 return rc;
1304}
1305
1306
1307/**
1308 * Checks if a kind mismatch is really a page being reused
1309 * or if it's just normal remappings.
1310 *
1311 * @returns true if reused and the cached page (enmKind1) should be flushed
1312 * @returns false if not reused.
1313 * @param enmKind1 The kind of the cached page.
1314 * @param enmKind2 The kind of the requested page.
1315 */
1316static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1317{
1318 switch (enmKind1)
1319 {
1320 /*
1321 * Never reuse them. There is no remapping in non-paging mode.
1322 */
1323 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1324 case PGMPOOLKIND_32BIT_PD_PHYS:
1325 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1326 case PGMPOOLKIND_PAE_PD_PHYS:
1327 case PGMPOOLKIND_PAE_PDPT_PHYS:
1328 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1329 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1330 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1331 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1332 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1333 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1334 return false;
1335
1336 /*
1337 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1338 */
1339 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1340 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1341 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1342 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1343 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1344 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1345 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1346 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1347 case PGMPOOLKIND_32BIT_PD:
1348 case PGMPOOLKIND_PAE_PDPT:
1349 switch (enmKind2)
1350 {
1351 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1352 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1353 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1354 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1355 case PGMPOOLKIND_64BIT_PML4:
1356 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1357 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1358 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1359 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1360 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1361 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1362 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1363 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1364 return true;
1365 default:
1366 return false;
1367 }
1368
1369 /*
1370 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1371 */
1372 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1373 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1374 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1375 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1376 case PGMPOOLKIND_64BIT_PML4:
1377 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1378 switch (enmKind2)
1379 {
1380 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1381 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1382 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1383 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1384 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1385 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1386 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1387 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1388 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1389 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1390 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1391 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1392 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1393 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1394 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1395 return true;
1396 default:
1397 return false;
1398 }
1399
1400 /*
1401 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1402 */
1403 case PGMPOOLKIND_ROOT_NESTED:
1404 return false;
1405
1406 default:
1407 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1408 }
1409}
1410
1411
1412/**
1413 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1414 *
1415 * @returns VBox status code.
1416 * @retval VINF_PGM_CACHED_PAGE on success.
1417 * @retval VERR_FILE_NOT_FOUND if not found.
1418 * @param pPool The pool.
1419 * @param GCPhys The GC physical address of the page we're gonna shadow.
1420 * @param enmKind The kind of mapping.
1421 * @param iUser The shadow page pool index of the user table.
1422 * @param iUserTable The index into the user table (shadowed).
1423 * @param ppPage Where to store the pointer to the page.
1424 */
1425static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1426{
1427#ifndef IN_RC
1428 const PVM pVM = pPool->CTX_SUFF(pVM);
1429#endif
1430 /*
1431 * Look up the GCPhys in the hash.
1432 */
1433 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1434 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1435 if (i != NIL_PGMPOOL_IDX)
1436 {
1437 do
1438 {
1439 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1440 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1441 if (pPage->GCPhys == GCPhys)
1442 {
1443 if ((PGMPOOLKIND)pPage->enmKind == enmKind)
1444 {
1445 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1446 * doesn't flush it in case there are no more free use records.
1447 */
1448 pgmPoolCacheUsed(pPool, pPage);
1449
1450 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1451 if (RT_SUCCESS(rc))
1452 {
1453 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1454 *ppPage = pPage;
1455 STAM_COUNTER_INC(&pPool->StatCacheHits);
1456 return VINF_PGM_CACHED_PAGE;
1457 }
1458 return rc;
1459 }
1460
1461 /*
1462 * The kind is different. In some cases we should now flush the page
1463 * as it has been reused, but in most cases this is normal remapping
1464 * of PDs as PT or big pages using the GCPhys field in a slightly
1465 * different way than the other kinds.
1466 */
1467 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1468 {
1469 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1470 pgmPoolFlushPage(pPool, pPage);
1471 PGM_INVL_GUEST_TLBS(); /* see PT handler. */
1472 break;
1473 }
1474 }
1475
1476 /* next */
1477 i = pPage->iNext;
1478 } while (i != NIL_PGMPOOL_IDX);
1479 }
1480
1481 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1482 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1483 return VERR_FILE_NOT_FOUND;
1484}
1485
1486
1487/**
1488 * Inserts a page into the cache.
1489 *
1490 * @param pPool The pool.
1491 * @param pPage The cached page.
1492 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
1493 */
1494static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
1495{
1496 /*
1497 * Insert into the GCPhys hash if the page is fit for that.
1498 */
1499 Assert(!pPage->fCached);
1500 if (fCanBeCached)
1501 {
1502 pPage->fCached = true;
1503 pgmPoolHashInsert(pPool, pPage);
1504 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1505 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1506 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
1507 }
1508 else
1509 {
1510 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1511 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1512 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
1513 }
1514
1515 /*
1516 * Insert at the head of the age list.
1517 */
1518 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1519 pPage->iAgeNext = pPool->iAgeHead;
1520 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
1521 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
1522 else
1523 pPool->iAgeTail = pPage->idx;
1524 pPool->iAgeHead = pPage->idx;
1525}
1526
1527
1528/**
1529 * Flushes a cached page.
1530 *
1531 * @param pPool The pool.
1532 * @param pPage The cached page.
1533 */
1534static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1535{
1536 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
1537
1538 /*
1539 * Remove the page from the hash.
1540 */
1541 if (pPage->fCached)
1542 {
1543 pPage->fCached = false;
1544 pgmPoolHashRemove(pPool, pPage);
1545 }
1546 else
1547 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1548
1549 /*
1550 * Remove it from the age list.
1551 */
1552 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
1553 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
1554 else
1555 pPool->iAgeTail = pPage->iAgePrev;
1556 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
1557 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
1558 else
1559 pPool->iAgeHead = pPage->iAgeNext;
1560 pPage->iAgeNext = NIL_PGMPOOL_IDX;
1561 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1562}
1563
1564#endif /* PGMPOOL_WITH_CACHE */
1565#ifdef PGMPOOL_WITH_MONITORING
1566
1567/**
1568 * Looks for pages sharing the monitor.
1569 *
1570 * @returns Pointer to the head page.
1571 * @returns NULL if not found.
1572 * @param pPool The Pool
1573 * @param pNewPage The page which is going to be monitored.
1574 */
1575static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
1576{
1577#ifdef PGMPOOL_WITH_CACHE
1578 /*
1579 * Look up the GCPhys in the hash.
1580 */
1581 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1582 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1583 if (i == NIL_PGMPOOL_IDX)
1584 return NULL;
1585 do
1586 {
1587 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1588 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
1589 && pPage != pNewPage)
1590 {
1591 switch (pPage->enmKind)
1592 {
1593 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1594 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1595 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1596 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1597 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1598 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1599 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1600 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1601 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1602 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1603 case PGMPOOLKIND_64BIT_PML4:
1604 case PGMPOOLKIND_32BIT_PD:
1605 case PGMPOOLKIND_PAE_PDPT:
1606 {
1607 /* find the head */
1608 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1609 {
1610 Assert(pPage->iMonitoredPrev != pPage->idx);
1611 pPage = &pPool->aPages[pPage->iMonitoredPrev];
1612 }
1613 return pPage;
1614 }
1615
1616 /* ignore, no monitoring. */
1617 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1618 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1619 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1620 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1621 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1622 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1623 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1624 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1625 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1626 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1627 case PGMPOOLKIND_ROOT_NESTED:
1628 case PGMPOOLKIND_PAE_PD_PHYS:
1629 case PGMPOOLKIND_PAE_PDPT_PHYS:
1630 case PGMPOOLKIND_32BIT_PD_PHYS:
1631 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1632 break;
1633 default:
1634 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
1635 }
1636 }
1637
1638 /* next */
1639 i = pPage->iNext;
1640 } while (i != NIL_PGMPOOL_IDX);
1641#endif
1642 return NULL;
1643}
1644
1645
1646/**
1647 * Enabled write monitoring of a guest page.
1648 *
1649 * @returns VBox status code.
1650 * @retval VINF_SUCCESS on success.
1651 * @param pPool The pool.
1652 * @param pPage The cached page.
1653 */
1654static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1655{
1656 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
1657
1658 /*
1659 * Filter out the relevant kinds.
1660 */
1661 switch (pPage->enmKind)
1662 {
1663 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1664 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1665 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1666 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1667 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1668 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1669 case PGMPOOLKIND_64BIT_PML4:
1670 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1671 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1672 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1673 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1674 case PGMPOOLKIND_32BIT_PD:
1675 case PGMPOOLKIND_PAE_PDPT:
1676 break;
1677
1678 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1679 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1680 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1681 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1682 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1683 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1684 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1685 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1686 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1687 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1688 case PGMPOOLKIND_ROOT_NESTED:
1689 /* Nothing to monitor here. */
1690 return VINF_SUCCESS;
1691
1692 case PGMPOOLKIND_32BIT_PD_PHYS:
1693 case PGMPOOLKIND_PAE_PDPT_PHYS:
1694 case PGMPOOLKIND_PAE_PD_PHYS:
1695 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1696 /* Nothing to monitor here. */
1697 return VINF_SUCCESS;
1698#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1699 break;
1700#else
1701 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1702#endif
1703 default:
1704 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1705 }
1706
1707 /*
1708 * Install handler.
1709 */
1710 int rc;
1711 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
1712 if (pPageHead)
1713 {
1714 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
1715 Assert(pPageHead->iMonitoredPrev != pPage->idx);
1716 pPage->iMonitoredPrev = pPageHead->idx;
1717 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
1718 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
1719 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
1720 pPageHead->iMonitoredNext = pPage->idx;
1721 rc = VINF_SUCCESS;
1722 }
1723 else
1724 {
1725 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1726 PVM pVM = pPool->CTX_SUFF(pVM);
1727 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1728 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
1729 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
1730 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
1731 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
1732 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
1733 pPool->pszAccessHandler);
1734 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
1735 * the heap size should suffice. */
1736 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
1737 Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
1738 }
1739 pPage->fMonitored = true;
1740 return rc;
1741}
1742
1743
1744/**
1745 * Disables write monitoring of a guest page.
1746 *
1747 * @returns VBox status code.
1748 * @retval VINF_SUCCESS on success.
1749 * @param pPool The pool.
1750 * @param pPage The cached page.
1751 */
1752static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1753{
1754 /*
1755 * Filter out the relevant kinds.
1756 */
1757 switch (pPage->enmKind)
1758 {
1759 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1760 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1761 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1762 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1763 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1764 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1765 case PGMPOOLKIND_64BIT_PML4:
1766 case PGMPOOLKIND_32BIT_PD:
1767 case PGMPOOLKIND_PAE_PDPT:
1768 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1769 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1770 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1771 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1772 break;
1773
1774 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1775 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1776 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1777 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1778 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1779 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1780 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1781 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1782 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1783 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1784 case PGMPOOLKIND_ROOT_NESTED:
1785 case PGMPOOLKIND_PAE_PD_PHYS:
1786 case PGMPOOLKIND_PAE_PDPT_PHYS:
1787 case PGMPOOLKIND_32BIT_PD_PHYS:
1788 /* Nothing to monitor here. */
1789 return VINF_SUCCESS;
1790
1791#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1792 break;
1793#endif
1794 default:
1795 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1796 }
1797
1798 /*
1799 * Remove the page from the monitored list or uninstall it if last.
1800 */
1801 const PVM pVM = pPool->CTX_SUFF(pVM);
1802 int rc;
1803 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1804 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1805 {
1806 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1807 {
1808 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
1809 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
1810 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
1811 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
1812 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
1813 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
1814 pPool->pszAccessHandler);
1815 AssertFatalRCSuccess(rc);
1816 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1817 }
1818 else
1819 {
1820 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
1821 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
1822 {
1823 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
1824 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1825 }
1826 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
1827 rc = VINF_SUCCESS;
1828 }
1829 }
1830 else
1831 {
1832 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
1833 AssertFatalRC(rc);
1834 AssertMsg(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3),
1835 ("%#x %#x\n", pVM->pgm.s.fGlobalSyncFlags, pVM->fGlobalForcedActions));
1836 }
1837 pPage->fMonitored = false;
1838
1839 /*
1840 * Remove it from the list of modified pages (if in it).
1841 */
1842 pgmPoolMonitorModifiedRemove(pPool, pPage);
1843
1844 return rc;
1845}
1846
1847
1848/**
1849 * Inserts the page into the list of modified pages.
1850 *
1851 * @param pPool The pool.
1852 * @param pPage The page.
1853 */
1854void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1855{
1856 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
1857 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
1858 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
1859 && pPool->iModifiedHead != pPage->idx,
1860 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
1861 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
1862 pPool->iModifiedHead, pPool->cModifiedPages));
1863
1864 pPage->iModifiedNext = pPool->iModifiedHead;
1865 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
1866 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
1867 pPool->iModifiedHead = pPage->idx;
1868 pPool->cModifiedPages++;
1869#ifdef VBOX_WITH_STATISTICS
1870 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
1871 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
1872#endif
1873}
1874
1875
1876/**
1877 * Removes the page from the list of modified pages and resets the
1878 * moficiation counter.
1879 *
1880 * @param pPool The pool.
1881 * @param pPage The page which is believed to be in the list of modified pages.
1882 */
1883static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1884{
1885 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
1886 if (pPool->iModifiedHead == pPage->idx)
1887 {
1888 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1889 pPool->iModifiedHead = pPage->iModifiedNext;
1890 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1891 {
1892 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
1893 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1894 }
1895 pPool->cModifiedPages--;
1896 }
1897 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
1898 {
1899 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
1900 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1901 {
1902 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
1903 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1904 }
1905 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1906 pPool->cModifiedPages--;
1907 }
1908 else
1909 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1910 pPage->cModifications = 0;
1911}
1912
1913
1914/**
1915 * Zaps the list of modified pages, resetting their modification counters in the process.
1916 *
1917 * @param pVM The VM handle.
1918 */
1919void pgmPoolMonitorModifiedClearAll(PVM pVM)
1920{
1921 pgmLock(pVM);
1922 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1923 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
1924
1925 unsigned cPages = 0; NOREF(cPages);
1926 uint16_t idx = pPool->iModifiedHead;
1927 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
1928 while (idx != NIL_PGMPOOL_IDX)
1929 {
1930 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
1931 idx = pPage->iModifiedNext;
1932 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1933 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1934 pPage->cModifications = 0;
1935 Assert(++cPages);
1936 }
1937 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
1938 pPool->cModifiedPages = 0;
1939 pgmUnlock(pVM);
1940}
1941
1942
1943#ifdef IN_RING3
1944/**
1945 * Callback to clear all shadow pages and clear all modification counters.
1946 *
1947 * @returns VBox status code.
1948 * @param pVM The VM handle.
1949 * @param pvUser Unused parameter
1950 * @remark Should only be used when monitoring is available, thus placed in
1951 * the PGMPOOL_WITH_MONITORING #ifdef.
1952 */
1953DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, void *pvUser)
1954{
1955 NOREF(pvUser);
1956 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1957 STAM_PROFILE_START(&pPool->StatClearAll, c);
1958 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
1959
1960 pgmLock(pVM);
1961
1962 /*
1963 * Iterate all the pages until we've encountered all that in use.
1964 * This is simple but not quite optimal solution.
1965 */
1966 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
1967 unsigned cLeft = pPool->cUsedPages;
1968 unsigned iPage = pPool->cCurPages;
1969 while (--iPage >= PGMPOOL_IDX_FIRST)
1970 {
1971 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1972 if (pPage->GCPhys != NIL_RTGCPHYS)
1973 {
1974 switch (pPage->enmKind)
1975 {
1976 /*
1977 * We only care about shadow page tables.
1978 */
1979 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1980 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1981 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1982 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1983 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1984 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1985 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1986 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1987 {
1988#ifdef PGMPOOL_WITH_USER_TRACKING
1989 if (pPage->cPresent)
1990#endif
1991 {
1992 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1993 STAM_PROFILE_START(&pPool->StatZeroPage, z);
1994 ASMMemZeroPage(pvShw);
1995 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
1996#ifdef PGMPOOL_WITH_USER_TRACKING
1997 pPage->cPresent = 0;
1998 pPage->iFirstPresent = ~0;
1999#endif
2000 }
2001 }
2002 /* fall thru */
2003
2004 default:
2005 Assert(!pPage->cModifications || ++cModifiedPages);
2006 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2007 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2008 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2009 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2010 pPage->cModifications = 0;
2011 break;
2012
2013 }
2014 if (!--cLeft)
2015 break;
2016 }
2017 }
2018
2019 /* swipe the special pages too. */
2020 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2021 {
2022 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2023 if (pPage->GCPhys != NIL_RTGCPHYS)
2024 {
2025 Assert(!pPage->cModifications || ++cModifiedPages);
2026 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2027 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2028 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2029 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2030 pPage->cModifications = 0;
2031 }
2032 }
2033
2034#ifndef DEBUG_michael
2035 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2036#endif
2037 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2038 pPool->cModifiedPages = 0;
2039
2040#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2041 /*
2042 * Clear all the GCPhys links and rebuild the phys ext free list.
2043 */
2044 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2045 pRam;
2046 pRam = pRam->CTX_SUFF(pNext))
2047 {
2048 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2049 while (iPage-- > 0)
2050 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2051 }
2052
2053 pPool->iPhysExtFreeHead = 0;
2054 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2055 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2056 for (unsigned i = 0; i < cMaxPhysExts; i++)
2057 {
2058 paPhysExts[i].iNext = i + 1;
2059 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2060 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2061 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2062 }
2063 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2064#endif
2065
2066 pPool->cPresent = 0;
2067 pgmUnlock(pVM);
2068 PGM_INVL_GUEST_TLBS();
2069 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2070 return VINF_SUCCESS;
2071}
2072#endif /* IN_RING3 */
2073
2074
2075/**
2076 * Handle SyncCR3 pool tasks
2077 *
2078 * @returns VBox status code.
2079 * @retval VINF_SUCCESS if successfully added.
2080 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2081 * @param pVM The VM handle.
2082 * @remark Should only be used when monitoring is available, thus placed in
2083 * the PGMPOOL_WITH_MONITORING #ifdef.
2084 */
2085int pgmPoolSyncCR3(PVM pVM)
2086{
2087 LogFlow(("pgmPoolSyncCR3\n"));
2088 /*
2089 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2090 * Occasionally we will have to clear all the shadow page tables because we wanted
2091 * to monitor a page which was mapped by too many shadowed page tables. This operation
2092 * sometimes refered to as a 'lightweight flush'.
2093 */
2094# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2095 if (ASMBitTestAndClear(&pVM->pgm.s.fGlobalSyncFlags, PGM_GLOBAL_SYNC_CLEAR_PGM_POOL_BIT))
2096 {
2097 VMMR3AtomicExecuteHandler(pVM, pgmPoolClearAll, NULL);
2098# else /* !IN_RING3 */
2099 if (pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)
2100 {
2101 LogFlow(("SyncCR3: PGM_GLOBAL_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2102 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2103 return VINF_PGM_SYNC_CR3;
2104# endif /* !IN_RING3 */
2105 }
2106 else
2107 pgmPoolMonitorModifiedClearAll(pVM);
2108
2109 return VINF_SUCCESS;
2110}
2111
2112#endif /* PGMPOOL_WITH_MONITORING */
2113#ifdef PGMPOOL_WITH_USER_TRACKING
2114
2115/**
2116 * Frees up at least one user entry.
2117 *
2118 * @returns VBox status code.
2119 * @retval VINF_SUCCESS if successfully added.
2120 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2121 * @param pPool The pool.
2122 * @param iUser The user index.
2123 */
2124static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2125{
2126 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2127#ifdef PGMPOOL_WITH_CACHE
2128 /*
2129 * Just free cached pages in a braindead fashion.
2130 */
2131 /** @todo walk the age list backwards and free the first with usage. */
2132 int rc = VINF_SUCCESS;
2133 do
2134 {
2135 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2136 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2137 rc = rc2;
2138 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2139 return rc;
2140#else
2141 /*
2142 * Lazy approach.
2143 */
2144 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2145 AssertCompileFailed();
2146 Assert(!CPUMIsGuestInLongMode(pVM));
2147 pgmPoolFlushAllInt(pPool);
2148 return VERR_PGM_POOL_FLUSHED;
2149#endif
2150}
2151
2152
2153/**
2154 * Inserts a page into the cache.
2155 *
2156 * This will create user node for the page, insert it into the GCPhys
2157 * hash, and insert it into the age list.
2158 *
2159 * @returns VBox status code.
2160 * @retval VINF_SUCCESS if successfully added.
2161 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2162 * @param pPool The pool.
2163 * @param pPage The cached page.
2164 * @param GCPhys The GC physical address of the page we're gonna shadow.
2165 * @param iUser The user index.
2166 * @param iUserTable The user table index.
2167 */
2168DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2169{
2170 int rc = VINF_SUCCESS;
2171 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2172
2173 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2174
2175#ifdef VBOX_STRICT
2176 /*
2177 * Check that the entry doesn't already exists.
2178 */
2179 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2180 {
2181 uint16_t i = pPage->iUserHead;
2182 do
2183 {
2184 Assert(i < pPool->cMaxUsers);
2185 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2186 i = paUsers[i].iNext;
2187 } while (i != NIL_PGMPOOL_USER_INDEX);
2188 }
2189#endif
2190
2191 /*
2192 * Find free a user node.
2193 */
2194 uint16_t i = pPool->iUserFreeHead;
2195 if (i == NIL_PGMPOOL_USER_INDEX)
2196 {
2197 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2198 if (RT_FAILURE(rc))
2199 return rc;
2200 i = pPool->iUserFreeHead;
2201 }
2202
2203 /*
2204 * Unlink the user node from the free list,
2205 * initialize and insert it into the user list.
2206 */
2207 pPool->iUserFreeHead = paUsers[i].iNext;
2208 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2209 paUsers[i].iUser = iUser;
2210 paUsers[i].iUserTable = iUserTable;
2211 pPage->iUserHead = i;
2212
2213 /*
2214 * Insert into cache and enable monitoring of the guest page if enabled.
2215 *
2216 * Until we implement caching of all levels, including the CR3 one, we'll
2217 * have to make sure we don't try monitor & cache any recursive reuse of
2218 * a monitored CR3 page. Because all windows versions are doing this we'll
2219 * have to be able to do combined access monitoring, CR3 + PT and
2220 * PD + PT (guest PAE).
2221 *
2222 * Update:
2223 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2224 */
2225#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2226# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2227 const bool fCanBeMonitored = true;
2228# else
2229 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2230 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2231 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2232# endif
2233# ifdef PGMPOOL_WITH_CACHE
2234 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2235# endif
2236 if (fCanBeMonitored)
2237 {
2238# ifdef PGMPOOL_WITH_MONITORING
2239 rc = pgmPoolMonitorInsert(pPool, pPage);
2240 AssertRC(rc);
2241 }
2242# endif
2243#endif /* PGMPOOL_WITH_MONITORING */
2244 return rc;
2245}
2246
2247
2248# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2249/**
2250 * Adds a user reference to a page.
2251 *
2252 * This will move the page to the head of the
2253 *
2254 * @returns VBox status code.
2255 * @retval VINF_SUCCESS if successfully added.
2256 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2257 * @param pPool The pool.
2258 * @param pPage The cached page.
2259 * @param iUser The user index.
2260 * @param iUserTable The user table.
2261 */
2262static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2263{
2264 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2265
2266 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2267
2268# ifdef VBOX_STRICT
2269 /*
2270 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2271 */
2272 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2273 {
2274 uint16_t i = pPage->iUserHead;
2275 do
2276 {
2277 Assert(i < pPool->cMaxUsers);
2278 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2279 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2280 i = paUsers[i].iNext;
2281 } while (i != NIL_PGMPOOL_USER_INDEX);
2282 }
2283# endif
2284
2285 /*
2286 * Allocate a user node.
2287 */
2288 uint16_t i = pPool->iUserFreeHead;
2289 if (i == NIL_PGMPOOL_USER_INDEX)
2290 {
2291 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2292 if (RT_FAILURE(rc))
2293 return rc;
2294 i = pPool->iUserFreeHead;
2295 }
2296 pPool->iUserFreeHead = paUsers[i].iNext;
2297
2298 /*
2299 * Initialize the user node and insert it.
2300 */
2301 paUsers[i].iNext = pPage->iUserHead;
2302 paUsers[i].iUser = iUser;
2303 paUsers[i].iUserTable = iUserTable;
2304 pPage->iUserHead = i;
2305
2306# ifdef PGMPOOL_WITH_CACHE
2307 /*
2308 * Tell the cache to update its replacement stats for this page.
2309 */
2310 pgmPoolCacheUsed(pPool, pPage);
2311# endif
2312 return VINF_SUCCESS;
2313}
2314# endif /* PGMPOOL_WITH_CACHE */
2315
2316
2317/**
2318 * Frees a user record associated with a page.
2319 *
2320 * This does not clear the entry in the user table, it simply replaces the
2321 * user record to the chain of free records.
2322 *
2323 * @param pPool The pool.
2324 * @param HCPhys The HC physical address of the shadow page.
2325 * @param iUser The shadow page pool index of the user table.
2326 * @param iUserTable The index into the user table (shadowed).
2327 */
2328static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2329{
2330 /*
2331 * Unlink and free the specified user entry.
2332 */
2333 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2334
2335 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2336 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2337 uint16_t i = pPage->iUserHead;
2338 if ( i != NIL_PGMPOOL_USER_INDEX
2339 && paUsers[i].iUser == iUser
2340 && paUsers[i].iUserTable == iUserTable)
2341 {
2342 pPage->iUserHead = paUsers[i].iNext;
2343
2344 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2345 paUsers[i].iNext = pPool->iUserFreeHead;
2346 pPool->iUserFreeHead = i;
2347 return;
2348 }
2349
2350 /* General: Linear search. */
2351 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2352 while (i != NIL_PGMPOOL_USER_INDEX)
2353 {
2354 if ( paUsers[i].iUser == iUser
2355 && paUsers[i].iUserTable == iUserTable)
2356 {
2357 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2358 paUsers[iPrev].iNext = paUsers[i].iNext;
2359 else
2360 pPage->iUserHead = paUsers[i].iNext;
2361
2362 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2363 paUsers[i].iNext = pPool->iUserFreeHead;
2364 pPool->iUserFreeHead = i;
2365 return;
2366 }
2367 iPrev = i;
2368 i = paUsers[i].iNext;
2369 }
2370
2371 /* Fatal: didn't find it */
2372 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2373 iUser, iUserTable, pPage->GCPhys));
2374}
2375
2376
2377/**
2378 * Gets the entry size of a shadow table.
2379 *
2380 * @param enmKind The kind of page.
2381 *
2382 * @returns The size of the entry in bytes. That is, 4 or 8.
2383 * @returns If the kind is not for a table, an assertion is raised and 0 is
2384 * returned.
2385 */
2386DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2387{
2388 switch (enmKind)
2389 {
2390 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2391 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2392 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2393 case PGMPOOLKIND_32BIT_PD:
2394 case PGMPOOLKIND_32BIT_PD_PHYS:
2395 return 4;
2396
2397 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2398 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2399 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2400 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2401 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2402 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2403 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2404 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2405 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2406 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2407 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2408 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2409 case PGMPOOLKIND_64BIT_PML4:
2410 case PGMPOOLKIND_PAE_PDPT:
2411 case PGMPOOLKIND_ROOT_NESTED:
2412 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2413 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2414 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2415 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2416 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2417 case PGMPOOLKIND_PAE_PD_PHYS:
2418 case PGMPOOLKIND_PAE_PDPT_PHYS:
2419 return 8;
2420
2421 default:
2422 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2423 }
2424}
2425
2426
2427/**
2428 * Gets the entry size of a guest table.
2429 *
2430 * @param enmKind The kind of page.
2431 *
2432 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2433 * @returns If the kind is not for a table, an assertion is raised and 0 is
2434 * returned.
2435 */
2436DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2437{
2438 switch (enmKind)
2439 {
2440 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2441 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2442 case PGMPOOLKIND_32BIT_PD:
2443 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2444 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2445 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2446 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2447 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2448 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2449 return 4;
2450
2451 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2452 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2453 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2454 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2455 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2456 case PGMPOOLKIND_64BIT_PML4:
2457 case PGMPOOLKIND_PAE_PDPT:
2458 return 8;
2459
2460 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2461 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2462 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2463 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2464 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2465 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2466 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2467 case PGMPOOLKIND_ROOT_NESTED:
2468 case PGMPOOLKIND_PAE_PD_PHYS:
2469 case PGMPOOLKIND_PAE_PDPT_PHYS:
2470 case PGMPOOLKIND_32BIT_PD_PHYS:
2471 /** @todo can we return 0? (nobody is calling this...) */
2472 AssertFailed();
2473 return 0;
2474
2475 default:
2476 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2477 }
2478}
2479
2480#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2481
2482/**
2483 * Scans one shadow page table for mappings of a physical page.
2484 *
2485 * @param pVM The VM handle.
2486 * @param pPhysPage The guest page in question.
2487 * @param iShw The shadow page table.
2488 * @param cRefs The number of references made in that PT.
2489 */
2490static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2491{
2492 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2493 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2494
2495 /*
2496 * Assert sanity.
2497 */
2498 Assert(cRefs == 1);
2499 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2500 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2501
2502 /*
2503 * Then, clear the actual mappings to the page in the shadow PT.
2504 */
2505 switch (pPage->enmKind)
2506 {
2507 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2508 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2509 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2510 {
2511 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2512 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2513 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2514 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2515 {
2516 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
2517 pPT->a[i].u = 0;
2518 cRefs--;
2519 if (!cRefs)
2520 return;
2521 }
2522#ifdef LOG_ENABLED
2523 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2524 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2525 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2526 {
2527 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2528 pPT->a[i].u = 0;
2529 }
2530#endif
2531 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2532 break;
2533 }
2534
2535 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2536 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2537 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2538 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2539 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2540 {
2541 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2542 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2543 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2544 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2545 {
2546 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2547 pPT->a[i].u = 0;
2548 cRefs--;
2549 if (!cRefs)
2550 return;
2551 }
2552#ifdef LOG_ENABLED
2553 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2554 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2555 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2556 {
2557 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2558 pPT->a[i].u = 0;
2559 }
2560#endif
2561 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
2562 break;
2563 }
2564
2565 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2566 {
2567 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2568 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2569 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2570 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2571 {
2572 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2573 pPT->a[i].u = 0;
2574 cRefs--;
2575 if (!cRefs)
2576 return;
2577 }
2578#ifdef LOG_ENABLED
2579 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2580 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2581 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2582 {
2583 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2584 pPT->a[i].u = 0;
2585 }
2586#endif
2587 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2588 break;
2589 }
2590
2591 default:
2592 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
2593 }
2594}
2595
2596
2597/**
2598 * Scans one shadow page table for mappings of a physical page.
2599 *
2600 * @param pVM The VM handle.
2601 * @param pPhysPage The guest page in question.
2602 * @param iShw The shadow page table.
2603 * @param cRefs The number of references made in that PT.
2604 */
2605void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2606{
2607 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2608 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2609 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
2610 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
2611 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2612 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
2613}
2614
2615
2616/**
2617 * Flushes a list of shadow page tables mapping the same physical page.
2618 *
2619 * @param pVM The VM handle.
2620 * @param pPhysPage The guest page in question.
2621 * @param iPhysExt The physical cross reference extent list to flush.
2622 */
2623void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
2624{
2625 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2626 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
2627 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
2628
2629 const uint16_t iPhysExtStart = iPhysExt;
2630 PPGMPOOLPHYSEXT pPhysExt;
2631 do
2632 {
2633 Assert(iPhysExt < pPool->cMaxPhysExts);
2634 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2635 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
2636 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
2637 {
2638 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
2639 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
2640 }
2641
2642 /* next */
2643 iPhysExt = pPhysExt->iNext;
2644 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
2645
2646 /* insert the list into the free list and clear the ram range entry. */
2647 pPhysExt->iNext = pPool->iPhysExtFreeHead;
2648 pPool->iPhysExtFreeHead = iPhysExtStart;
2649 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2650
2651 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
2652}
2653
2654#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
2655
2656/**
2657 * Flushes all shadow page table mappings of the given guest page.
2658 *
2659 * This is typically called when the host page backing the guest one has been
2660 * replaced or when the page protection was changed due to an access handler.
2661 *
2662 * @returns VBox status code.
2663 * @retval VINF_SUCCESS if all references has been successfully cleared.
2664 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
2665 * pool cleaning. FF and sync flags are set.
2666 *
2667 * @param pVM The VM handle.
2668 * @param pPhysPage The guest page in question.
2669 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
2670 * flushed, it is NOT touched if this isn't necessary.
2671 * The caller MUST initialized this to @a false.
2672 */
2673int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
2674{
2675 pgmLock(pVM);
2676 int rc = VINF_SUCCESS;
2677#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2678 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
2679 if (u16)
2680 {
2681 /*
2682 * The zero page is currently screwing up the tracking and we'll
2683 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2684 * is defined, zero pages won't normally be mapped. Some kind of solution
2685 * will be needed for this problem of course, but it will have to wait...
2686 */
2687 if (PGM_PAGE_IS_ZERO(pPhysPage))
2688 rc = VINF_PGM_GCPHYS_ALIASED;
2689 else
2690 {
2691# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2692 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
2693 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
2694 PVMCPU pVCpu = VMMGetCpu(pVM);
2695 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2696# endif
2697
2698 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
2699 pgmPoolTrackFlushGCPhysPT(pVM,
2700 pPhysPage,
2701 PGMPOOL_TD_GET_IDX(u16),
2702 PGMPOOL_TD_GET_CREFS(u16));
2703 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
2704 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
2705 else
2706 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2707 *pfFlushTLBs = true;
2708
2709# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2710 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2711# endif
2712 }
2713 }
2714
2715#elif defined(PGMPOOL_WITH_CACHE)
2716 if (PGM_PAGE_IS_ZERO(pPhysPage))
2717 rc = VINF_PGM_GCPHYS_ALIASED;
2718 else
2719 {
2720# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2721 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kill the pool otherwise. */
2722 PVMCPU pVCpu = VMMGetCpu(pVM);
2723 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2724# endif
2725 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2726 if (rc == VINF_SUCCESS)
2727 *pfFlushTLBs = true;
2728 }
2729
2730# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2731 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2732# endif
2733
2734#else
2735 rc = VINF_PGM_GCPHYS_ALIASED;
2736#endif
2737
2738 if (rc == VINF_PGM_GCPHYS_ALIASED)
2739 {
2740 pVM->pgm.s.fGlobalSyncFlags |= PGM_GLOBAL_SYNC_CLEAR_PGM_POOL;
2741 for (unsigned i=0;i<pVM->cCPUs;i++)
2742 {
2743 PVMCPU pVCpu = &pVM->aCpus[i];
2744 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2745 }
2746 rc = VINF_PGM_SYNC_CR3;
2747 }
2748 pgmUnlock(pVM);
2749 return rc;
2750}
2751
2752
2753/**
2754 * Scans all shadow page tables for mappings of a physical page.
2755 *
2756 * This may be slow, but it's most likely more efficient than cleaning
2757 * out the entire page pool / cache.
2758 *
2759 * @returns VBox status code.
2760 * @retval VINF_SUCCESS if all references has been successfully cleared.
2761 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2762 * a page pool cleaning.
2763 *
2764 * @param pVM The VM handle.
2765 * @param pPhysPage The guest page in question.
2766 */
2767int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
2768{
2769 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2770 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2771 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
2772 pPool->cUsedPages, pPool->cPresent, pPhysPage));
2773
2774#if 1
2775 /*
2776 * There is a limit to what makes sense.
2777 */
2778 if (pPool->cPresent > 1024)
2779 {
2780 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
2781 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2782 return VINF_PGM_GCPHYS_ALIASED;
2783 }
2784#endif
2785
2786 /*
2787 * Iterate all the pages until we've encountered all that in use.
2788 * This is simple but not quite optimal solution.
2789 */
2790 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2791 const uint32_t u32 = u64;
2792 unsigned cLeft = pPool->cUsedPages;
2793 unsigned iPage = pPool->cCurPages;
2794 while (--iPage >= PGMPOOL_IDX_FIRST)
2795 {
2796 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2797 if (pPage->GCPhys != NIL_RTGCPHYS)
2798 {
2799 switch (pPage->enmKind)
2800 {
2801 /*
2802 * We only care about shadow page tables.
2803 */
2804 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2805 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2806 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2807 {
2808 unsigned cPresent = pPage->cPresent;
2809 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2810 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2811 if (pPT->a[i].n.u1Present)
2812 {
2813 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2814 {
2815 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
2816 pPT->a[i].u = 0;
2817 }
2818 if (!--cPresent)
2819 break;
2820 }
2821 break;
2822 }
2823
2824 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2825 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2826 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2827 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2828 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2829 {
2830 unsigned cPresent = pPage->cPresent;
2831 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2832 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2833 if (pPT->a[i].n.u1Present)
2834 {
2835 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2836 {
2837 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
2838 pPT->a[i].u = 0;
2839 }
2840 if (!--cPresent)
2841 break;
2842 }
2843 break;
2844 }
2845 }
2846 if (!--cLeft)
2847 break;
2848 }
2849 }
2850
2851 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2852 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2853 return VINF_SUCCESS;
2854}
2855
2856
2857/**
2858 * Clears the user entry in a user table.
2859 *
2860 * This is used to remove all references to a page when flushing it.
2861 */
2862static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
2863{
2864 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
2865 Assert(pUser->iUser < pPool->cCurPages);
2866 uint32_t iUserTable = pUser->iUserTable;
2867
2868 /*
2869 * Map the user page.
2870 */
2871 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
2872 union
2873 {
2874 uint64_t *pau64;
2875 uint32_t *pau32;
2876 } u;
2877 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
2878
2879 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
2880
2881 /* Safety precaution in case we change the paging for other modes too in the future. */
2882 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
2883
2884#ifdef VBOX_STRICT
2885 /*
2886 * Some sanity checks.
2887 */
2888 switch (pUserPage->enmKind)
2889 {
2890 case PGMPOOLKIND_32BIT_PD:
2891 case PGMPOOLKIND_32BIT_PD_PHYS:
2892 Assert(iUserTable < X86_PG_ENTRIES);
2893 break;
2894 case PGMPOOLKIND_PAE_PDPT:
2895 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2896 case PGMPOOLKIND_PAE_PDPT_PHYS:
2897 Assert(iUserTable < 4);
2898 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2899 break;
2900 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2901 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2902 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2903 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2904 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2905 case PGMPOOLKIND_PAE_PD_PHYS:
2906 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2907 break;
2908 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2909 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2910 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
2911 break;
2912 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2913 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2914 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2915 break;
2916 case PGMPOOLKIND_64BIT_PML4:
2917 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2918 /* GCPhys >> PAGE_SHIFT is the index here */
2919 break;
2920 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2921 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2922 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2923 break;
2924
2925 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2926 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2927 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2928 break;
2929
2930 case PGMPOOLKIND_ROOT_NESTED:
2931 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2932 break;
2933
2934 default:
2935 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
2936 break;
2937 }
2938#endif /* VBOX_STRICT */
2939
2940 /*
2941 * Clear the entry in the user page.
2942 */
2943 switch (pUserPage->enmKind)
2944 {
2945 /* 32-bit entries */
2946 case PGMPOOLKIND_32BIT_PD:
2947 case PGMPOOLKIND_32BIT_PD_PHYS:
2948 u.pau32[iUserTable] = 0;
2949 break;
2950
2951 /* 64-bit entries */
2952 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2953 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2954 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2955 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2956 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2957#if defined(IN_RC)
2958 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
2959 * non-present PDPT will continue to cause page faults.
2960 */
2961 ASMReloadCR3();
2962#endif
2963 /* no break */
2964 case PGMPOOLKIND_PAE_PD_PHYS:
2965 case PGMPOOLKIND_PAE_PDPT_PHYS:
2966 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2967 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2968 case PGMPOOLKIND_64BIT_PML4:
2969 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2970 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2971 case PGMPOOLKIND_PAE_PDPT:
2972 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2973 case PGMPOOLKIND_ROOT_NESTED:
2974 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2975 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2976 u.pau64[iUserTable] = 0;
2977 break;
2978
2979 default:
2980 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
2981 }
2982}
2983
2984
2985/**
2986 * Clears all users of a page.
2987 */
2988static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2989{
2990 /*
2991 * Free all the user records.
2992 */
2993 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
2994
2995 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2996 uint16_t i = pPage->iUserHead;
2997 while (i != NIL_PGMPOOL_USER_INDEX)
2998 {
2999 /* Clear enter in user table. */
3000 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3001
3002 /* Free it. */
3003 const uint16_t iNext = paUsers[i].iNext;
3004 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3005 paUsers[i].iNext = pPool->iUserFreeHead;
3006 pPool->iUserFreeHead = i;
3007
3008 /* Next. */
3009 i = iNext;
3010 }
3011 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3012}
3013
3014#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3015
3016/**
3017 * Allocates a new physical cross reference extent.
3018 *
3019 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3020 * @param pVM The VM handle.
3021 * @param piPhysExt Where to store the phys ext index.
3022 */
3023PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3024{
3025 Assert(PGMIsLockOwner(pVM));
3026 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3027 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3028 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3029 {
3030 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3031 return NULL;
3032 }
3033 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3034 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3035 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3036 *piPhysExt = iPhysExt;
3037 return pPhysExt;
3038}
3039
3040
3041/**
3042 * Frees a physical cross reference extent.
3043 *
3044 * @param pVM The VM handle.
3045 * @param iPhysExt The extent to free.
3046 */
3047void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3048{
3049 Assert(PGMIsLockOwner(pVM));
3050 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3051 Assert(iPhysExt < pPool->cMaxPhysExts);
3052 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3053 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3054 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3055 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3056 pPool->iPhysExtFreeHead = iPhysExt;
3057}
3058
3059
3060/**
3061 * Frees a physical cross reference extent.
3062 *
3063 * @param pVM The VM handle.
3064 * @param iPhysExt The extent to free.
3065 */
3066void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3067{
3068 Assert(PGMIsLockOwner(pVM));
3069 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3070
3071 const uint16_t iPhysExtStart = iPhysExt;
3072 PPGMPOOLPHYSEXT pPhysExt;
3073 do
3074 {
3075 Assert(iPhysExt < pPool->cMaxPhysExts);
3076 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3077 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3078 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3079
3080 /* next */
3081 iPhysExt = pPhysExt->iNext;
3082 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3083
3084 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3085 pPool->iPhysExtFreeHead = iPhysExtStart;
3086}
3087
3088
3089/**
3090 * Insert a reference into a list of physical cross reference extents.
3091 *
3092 * @returns The new tracking data for PGMPAGE.
3093 *
3094 * @param pVM The VM handle.
3095 * @param iPhysExt The physical extent index of the list head.
3096 * @param iShwPT The shadow page table index.
3097 *
3098 */
3099static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3100{
3101 Assert(PGMIsLockOwner(pVM));
3102 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3103 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3104
3105 /* special common case. */
3106 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3107 {
3108 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3109 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3110 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT));
3111 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3112 }
3113
3114 /* general treatment. */
3115 const uint16_t iPhysExtStart = iPhysExt;
3116 unsigned cMax = 15;
3117 for (;;)
3118 {
3119 Assert(iPhysExt < pPool->cMaxPhysExts);
3120 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3121 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3122 {
3123 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3124 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3125 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3126 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3127 }
3128 if (!--cMax)
3129 {
3130 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3131 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3132 LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT));
3133 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3134 }
3135 }
3136
3137 /* add another extent to the list. */
3138 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3139 if (!pNew)
3140 {
3141 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3142 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3143 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3144 }
3145 pNew->iNext = iPhysExtStart;
3146 pNew->aidx[0] = iShwPT;
3147 LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3148 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3149}
3150
3151
3152/**
3153 * Add a reference to guest physical page where extents are in use.
3154 *
3155 * @returns The new tracking data for PGMPAGE.
3156 *
3157 * @param pVM The VM handle.
3158 * @param u16 The ram range flags (top 16-bits).
3159 * @param iShwPT The shadow page table index.
3160 */
3161uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3162{
3163 pgmLock(pVM);
3164 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3165 {
3166 /*
3167 * Convert to extent list.
3168 */
3169 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3170 uint16_t iPhysExt;
3171 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3172 if (pPhysExt)
3173 {
3174 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3175 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3176 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3177 pPhysExt->aidx[1] = iShwPT;
3178 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3179 }
3180 else
3181 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3182 }
3183 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3184 {
3185 /*
3186 * Insert into the extent list.
3187 */
3188 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3189 }
3190 else
3191 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3192 pgmUnlock(pVM);
3193 return u16;
3194}
3195
3196
3197/**
3198 * Clear references to guest physical memory.
3199 *
3200 * @param pPool The pool.
3201 * @param pPage The page.
3202 * @param pPhysPage Pointer to the aPages entry in the ram range.
3203 */
3204void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3205{
3206 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3207 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3208
3209 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3210 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3211 {
3212 PVM pVM = pPool->CTX_SUFF(pVM);
3213 pgmLock(pVM);
3214
3215 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3216 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3217 do
3218 {
3219 Assert(iPhysExt < pPool->cMaxPhysExts);
3220
3221 /*
3222 * Look for the shadow page and check if it's all freed.
3223 */
3224 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3225 {
3226 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3227 {
3228 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3229
3230 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3231 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3232 {
3233 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3234 pgmUnlock(pVM);
3235 return;
3236 }
3237
3238 /* we can free the node. */
3239 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3240 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3241 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3242 {
3243 /* lonely node */
3244 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3245 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3246 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3247 }
3248 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3249 {
3250 /* head */
3251 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3252 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3253 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3254 }
3255 else
3256 {
3257 /* in list */
3258 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3259 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3260 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3261 }
3262 iPhysExt = iPhysExtNext;
3263 pgmUnlock(pVM);
3264 return;
3265 }
3266 }
3267
3268 /* next */
3269 iPhysExtPrev = iPhysExt;
3270 iPhysExt = paPhysExts[iPhysExt].iNext;
3271 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3272
3273 pgmUnlock(pVM);
3274 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3275 }
3276 else /* nothing to do */
3277 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3278}
3279
3280
3281/**
3282 * Clear references to guest physical memory.
3283 *
3284 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3285 * is assumed to be correct, so the linear search can be skipped and we can assert
3286 * at an earlier point.
3287 *
3288 * @param pPool The pool.
3289 * @param pPage The page.
3290 * @param HCPhys The host physical address corresponding to the guest page.
3291 * @param GCPhys The guest physical address corresponding to HCPhys.
3292 */
3293static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3294{
3295 /*
3296 * Walk range list.
3297 */
3298 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3299 while (pRam)
3300 {
3301 RTGCPHYS off = GCPhys - pRam->GCPhys;
3302 if (off < pRam->cb)
3303 {
3304 /* does it match? */
3305 const unsigned iPage = off >> PAGE_SHIFT;
3306 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3307#ifdef LOG_ENABLED
3308RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3309Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3310#endif
3311 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3312 {
3313 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3314 return;
3315 }
3316 break;
3317 }
3318 pRam = pRam->CTX_SUFF(pNext);
3319 }
3320 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3321}
3322
3323
3324/**
3325 * Clear references to guest physical memory.
3326 *
3327 * @param pPool The pool.
3328 * @param pPage The page.
3329 * @param HCPhys The host physical address corresponding to the guest page.
3330 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3331 */
3332static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3333{
3334 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3335
3336 /*
3337 * Walk range list.
3338 */
3339 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3340 while (pRam)
3341 {
3342 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3343 if (off < pRam->cb)
3344 {
3345 /* does it match? */
3346 const unsigned iPage = off >> PAGE_SHIFT;
3347 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3348 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3349 {
3350 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3351 return;
3352 }
3353 break;
3354 }
3355 pRam = pRam->CTX_SUFF(pNext);
3356 }
3357
3358 /*
3359 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3360 */
3361 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3362 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3363 while (pRam)
3364 {
3365 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3366 while (iPage-- > 0)
3367 {
3368 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3369 {
3370 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3371 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3372 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3373 return;
3374 }
3375 }
3376 pRam = pRam->CTX_SUFF(pNext);
3377 }
3378
3379 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3380}
3381
3382
3383/**
3384 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3385 *
3386 * @param pPool The pool.
3387 * @param pPage The page.
3388 * @param pShwPT The shadow page table (mapping of the page).
3389 * @param pGstPT The guest page table.
3390 */
3391DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3392{
3393 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3394 if (pShwPT->a[i].n.u1Present)
3395 {
3396 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3397 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3398 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3399 if (!--pPage->cPresent)
3400 break;
3401 }
3402}
3403
3404
3405/**
3406 * Clear references to guest physical memory in a PAE / 32-bit page table.
3407 *
3408 * @param pPool The pool.
3409 * @param pPage The page.
3410 * @param pShwPT The shadow page table (mapping of the page).
3411 * @param pGstPT The guest page table (just a half one).
3412 */
3413DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3414{
3415 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3416 if (pShwPT->a[i].n.u1Present)
3417 {
3418 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3419 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3420 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3421 }
3422}
3423
3424
3425/**
3426 * Clear references to guest physical memory in a PAE / PAE page table.
3427 *
3428 * @param pPool The pool.
3429 * @param pPage The page.
3430 * @param pShwPT The shadow page table (mapping of the page).
3431 * @param pGstPT The guest page table.
3432 */
3433DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3434{
3435 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3436 if (pShwPT->a[i].n.u1Present)
3437 {
3438 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3439 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3440 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3441 }
3442}
3443
3444
3445/**
3446 * Clear references to guest physical memory in a 32-bit / 4MB page table.
3447 *
3448 * @param pPool The pool.
3449 * @param pPage The page.
3450 * @param pShwPT The shadow page table (mapping of the page).
3451 */
3452DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
3453{
3454 RTGCPHYS GCPhys = pPage->GCPhys;
3455 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3456 if (pShwPT->a[i].n.u1Present)
3457 {
3458 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
3459 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
3460 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
3461 }
3462}
3463
3464
3465/**
3466 * Clear references to guest physical memory in a PAE / 2/4MB page table.
3467 *
3468 * @param pPool The pool.
3469 * @param pPage The page.
3470 * @param pShwPT The shadow page table (mapping of the page).
3471 */
3472DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
3473{
3474 RTGCPHYS GCPhys = pPage->GCPhys;
3475 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3476 if (pShwPT->a[i].n.u1Present)
3477 {
3478 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
3479 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
3480 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
3481 }
3482}
3483
3484#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3485
3486
3487/**
3488 * Clear references to shadowed pages in a 32 bits page directory.
3489 *
3490 * @param pPool The pool.
3491 * @param pPage The page.
3492 * @param pShwPD The shadow page directory (mapping of the page).
3493 */
3494DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
3495{
3496 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3497 {
3498 if ( pShwPD->a[i].n.u1Present
3499 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3500 )
3501 {
3502 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
3503 if (pSubPage)
3504 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3505 else
3506 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
3507 }
3508 }
3509}
3510
3511/**
3512 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
3513 *
3514 * @param pPool The pool.
3515 * @param pPage The page.
3516 * @param pShwPD The shadow page directory (mapping of the page).
3517 */
3518DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
3519{
3520 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3521 {
3522 if ( pShwPD->a[i].n.u1Present
3523 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3524 )
3525 {
3526 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
3527 if (pSubPage)
3528 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3529 else
3530 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
3531 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3532 }
3533 }
3534}
3535
3536/**
3537 * Clear references to shadowed pages in a PAE page directory pointer table.
3538 *
3539 * @param pPool The pool.
3540 * @param pPage The page.
3541 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3542 */
3543DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3544{
3545 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
3546 {
3547 if ( pShwPDPT->a[i].n.u1Present
3548 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
3549 )
3550 {
3551 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3552 if (pSubPage)
3553 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3554 else
3555 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3556 }
3557 }
3558}
3559
3560
3561/**
3562 * Clear references to shadowed pages in a 64-bit page directory pointer table.
3563 *
3564 * @param pPool The pool.
3565 * @param pPage The page.
3566 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3567 */
3568DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3569{
3570 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3571 {
3572 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
3573 if (pShwPDPT->a[i].n.u1Present)
3574 {
3575 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3576 if (pSubPage)
3577 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3578 else
3579 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3580 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3581 }
3582 }
3583}
3584
3585
3586/**
3587 * Clear references to shadowed pages in a 64-bit level 4 page table.
3588 *
3589 * @param pPool The pool.
3590 * @param pPage The page.
3591 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3592 */
3593DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
3594{
3595 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
3596 {
3597 if (pShwPML4->a[i].n.u1Present)
3598 {
3599 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
3600 if (pSubPage)
3601 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3602 else
3603 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
3604 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3605 }
3606 }
3607}
3608
3609
3610/**
3611 * Clear references to shadowed pages in an EPT page table.
3612 *
3613 * @param pPool The pool.
3614 * @param pPage The page.
3615 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3616 */
3617DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
3618{
3619 RTGCPHYS GCPhys = pPage->GCPhys;
3620 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3621 if (pShwPT->a[i].n.u1Present)
3622 {
3623 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
3624 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
3625 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
3626 }
3627}
3628
3629
3630/**
3631 * Clear references to shadowed pages in an EPT page directory.
3632 *
3633 * @param pPool The pool.
3634 * @param pPage The page.
3635 * @param pShwPD The shadow page directory (mapping of the page).
3636 */
3637DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
3638{
3639 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3640 {
3641 if (pShwPD->a[i].n.u1Present)
3642 {
3643 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
3644 if (pSubPage)
3645 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3646 else
3647 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
3648 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3649 }
3650 }
3651}
3652
3653
3654/**
3655 * Clear references to shadowed pages in an EPT page directory pointer table.
3656 *
3657 * @param pPool The pool.
3658 * @param pPage The page.
3659 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3660 */
3661DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
3662{
3663 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3664 {
3665 if (pShwPDPT->a[i].n.u1Present)
3666 {
3667 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
3668 if (pSubPage)
3669 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3670 else
3671 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
3672 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3673 }
3674 }
3675}
3676
3677
3678/**
3679 * Clears all references made by this page.
3680 *
3681 * This includes other shadow pages and GC physical addresses.
3682 *
3683 * @param pPool The pool.
3684 * @param pPage The page.
3685 */
3686static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3687{
3688 /*
3689 * Map the shadow page and take action according to the page kind.
3690 */
3691 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
3692 switch (pPage->enmKind)
3693 {
3694#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3695 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3696 {
3697 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3698 void *pvGst;
3699 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3700 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
3701 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3702 break;
3703 }
3704
3705 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3706 {
3707 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3708 void *pvGst;
3709 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3710 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
3711 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3712 break;
3713 }
3714
3715 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3716 {
3717 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3718 void *pvGst;
3719 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3720 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
3721 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3722 break;
3723 }
3724
3725 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
3726 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3727 {
3728 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3729 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
3730 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3731 break;
3732 }
3733
3734 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
3735 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3736 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3737 {
3738 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3739 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
3740 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3741 break;
3742 }
3743
3744#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3745 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3746 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3747 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3748 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3749 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3750 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3751 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3752 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3753 break;
3754#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3755
3756 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3757 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3758 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3759 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3760 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3761 case PGMPOOLKIND_PAE_PD_PHYS:
3762 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3763 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3764 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
3765 break;
3766
3767 case PGMPOOLKIND_32BIT_PD_PHYS:
3768 case PGMPOOLKIND_32BIT_PD:
3769 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
3770 break;
3771
3772 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3773 case PGMPOOLKIND_PAE_PDPT:
3774 case PGMPOOLKIND_PAE_PDPT_PHYS:
3775 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
3776 break;
3777
3778 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3779 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3780 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
3781 break;
3782
3783 case PGMPOOLKIND_64BIT_PML4:
3784 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
3785 break;
3786
3787 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3788 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
3789 break;
3790
3791 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3792 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
3793 break;
3794
3795 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3796 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
3797 break;
3798
3799 default:
3800 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
3801 }
3802
3803 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
3804 STAM_PROFILE_START(&pPool->StatZeroPage, z);
3805 ASMMemZeroPage(pvShw);
3806 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
3807 pPage->fZeroed = true;
3808 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
3809}
3810
3811#endif /* PGMPOOL_WITH_USER_TRACKING */
3812#ifdef IN_RING3
3813/**
3814 * Flushes the entire cache.
3815 *
3816 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
3817 * and execute this CR3 flush.
3818 *
3819 * @param pPool The pool.
3820 *
3821 * @remark Only used during reset now, we might want to rename and/or move it.
3822 */
3823static void pgmPoolFlushAllInt(PPGMPOOL pPool)
3824{
3825 PVM pVM = pPool->CTX_SUFF(pVM);
3826
3827 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
3828 LogFlow(("pgmPoolFlushAllInt:\n"));
3829
3830 /*
3831 * If there are no pages in the pool, there is nothing to do.
3832 */
3833 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
3834 {
3835 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
3836 return;
3837 }
3838
3839 /*
3840 * Exit the shadow mode since we're going to clear everything,
3841 * including the root page.
3842 */
3843 /** @todo Need to synchronize this across all VCPUs! */
3844 Assert(pVM->cCPUs == 1);
3845 for (unsigned i=0;i<pVM->cCPUs;i++)
3846 {
3847 PVMCPU pVCpu = &pVM->aCpus[i];
3848 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
3849 }
3850
3851 /*
3852 * Nuke the free list and reinsert all pages into it.
3853 */
3854 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
3855 {
3856 PPGMPOOLPAGE pPage = &pPool->aPages[i];
3857
3858 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
3859#ifdef PGMPOOL_WITH_MONITORING
3860 if (pPage->fMonitored)
3861 pgmPoolMonitorFlush(pPool, pPage);
3862 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
3863 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
3864 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
3865 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
3866 pPage->cModifications = 0;
3867#endif
3868 pPage->GCPhys = NIL_RTGCPHYS;
3869 pPage->enmKind = PGMPOOLKIND_FREE;
3870 Assert(pPage->idx == i);
3871 pPage->iNext = i + 1;
3872 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
3873 pPage->fSeenNonGlobal = false;
3874 pPage->fMonitored= false;
3875 pPage->fCached = false;
3876 pPage->fReusedFlushPending = false;
3877#ifdef PGMPOOL_WITH_USER_TRACKING
3878 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3879#else
3880 pPage->fCR3Mix = false;
3881#endif
3882#ifdef PGMPOOL_WITH_CACHE
3883 pPage->iAgeNext = NIL_PGMPOOL_IDX;
3884 pPage->iAgePrev = NIL_PGMPOOL_IDX;
3885#endif
3886 pPage->cLocked = 0;
3887 }
3888 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
3889 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
3890 pPool->cUsedPages = 0;
3891
3892#ifdef PGMPOOL_WITH_USER_TRACKING
3893 /*
3894 * Zap and reinitialize the user records.
3895 */
3896 pPool->cPresent = 0;
3897 pPool->iUserFreeHead = 0;
3898 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3899 const unsigned cMaxUsers = pPool->cMaxUsers;
3900 for (unsigned i = 0; i < cMaxUsers; i++)
3901 {
3902 paUsers[i].iNext = i + 1;
3903 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3904 paUsers[i].iUserTable = 0xfffffffe;
3905 }
3906 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
3907#endif
3908
3909#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3910 /*
3911 * Clear all the GCPhys links and rebuild the phys ext free list.
3912 */
3913 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
3914 pRam;
3915 pRam = pRam->CTX_SUFF(pNext))
3916 {
3917 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3918 while (iPage-- > 0)
3919 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
3920 }
3921
3922 pPool->iPhysExtFreeHead = 0;
3923 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3924 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
3925 for (unsigned i = 0; i < cMaxPhysExts; i++)
3926 {
3927 paPhysExts[i].iNext = i + 1;
3928 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
3929 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
3930 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
3931 }
3932 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3933#endif
3934
3935#ifdef PGMPOOL_WITH_MONITORING
3936 /*
3937 * Just zap the modified list.
3938 */
3939 pPool->cModifiedPages = 0;
3940 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
3941#endif
3942
3943#ifdef PGMPOOL_WITH_CACHE
3944 /*
3945 * Clear the GCPhys hash and the age list.
3946 */
3947 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
3948 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
3949 pPool->iAgeHead = NIL_PGMPOOL_IDX;
3950 pPool->iAgeTail = NIL_PGMPOOL_IDX;
3951#endif
3952
3953 /*
3954 * Reinsert active pages into the hash and ensure monitoring chains are correct.
3955 */
3956 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
3957 {
3958 PPGMPOOLPAGE pPage = &pPool->aPages[i];
3959 pPage->iNext = NIL_PGMPOOL_IDX;
3960#ifdef PGMPOOL_WITH_MONITORING
3961 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
3962 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
3963 pPage->cModifications = 0;
3964 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
3965 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
3966 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
3967 if (pPage->fMonitored)
3968 {
3969 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
3970 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
3971 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
3972 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
3973 pPool->pszAccessHandler);
3974 AssertFatalRCSuccess(rc);
3975# ifdef PGMPOOL_WITH_CACHE
3976 pgmPoolHashInsert(pPool, pPage);
3977# endif
3978 }
3979#endif
3980#ifdef PGMPOOL_WITH_USER_TRACKING
3981 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
3982#endif
3983#ifdef PGMPOOL_WITH_CACHE
3984 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
3985 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
3986#endif
3987 }
3988
3989 for (unsigned i=0;i<pVM->cCPUs;i++)
3990 {
3991 PVMCPU pVCpu = &pVM->aCpus[i];
3992 /*
3993 * Re-enter the shadowing mode and assert Sync CR3 FF.
3994 */
3995 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
3996 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3997 }
3998
3999 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4000}
4001
4002#endif /* IN_RING3 */
4003
4004/**
4005 * Flushes a pool page.
4006 *
4007 * This moves the page to the free list after removing all user references to it.
4008 * In GC this will cause a CR3 reload if the page is traced back to an active root page.
4009 *
4010 * @returns VBox status code.
4011 * @retval VINF_SUCCESS on success.
4012 * @param pPool The pool.
4013 * @param HCPhys The HC physical address of the shadow page.
4014 */
4015int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4016{
4017 PVM pVM = pPool->CTX_SUFF(pVM);
4018
4019 int rc = VINF_SUCCESS;
4020 STAM_PROFILE_START(&pPool->StatFlushPage, f);
4021 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
4022 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
4023
4024 /*
4025 * Quietly reject any attempts at flushing any of the special root pages.
4026 */
4027 if (pPage->idx < PGMPOOL_IDX_FIRST)
4028 {
4029 AssertFailed(); /* can no longer happen */
4030 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4031 return VINF_SUCCESS;
4032 }
4033
4034 pgmLock(pVM);
4035
4036 /*
4037 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4038 */
4039 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
4040 {
4041 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4042 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4043 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4044 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4045 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4046 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4047 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4048 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4049 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
4050 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
4051 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4052 pgmUnlock(pVM);
4053 return VINF_SUCCESS;
4054 }
4055
4056#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4057 /* Start a subset so we won't run out of mapping space. */
4058 PVMCPU pVCpu = VMMGetCpu(pVM);
4059 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
4060#endif
4061
4062 /*
4063 * Mark the page as being in need of a ASMMemZeroPage().
4064 */
4065 pPage->fZeroed = false;
4066
4067#ifdef PGMPOOL_WITH_USER_TRACKING
4068 /*
4069 * Clear the page.
4070 */
4071 pgmPoolTrackClearPageUsers(pPool, pPage);
4072 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4073 pgmPoolTrackDeref(pPool, pPage);
4074 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4075#endif
4076
4077#ifdef PGMPOOL_WITH_CACHE
4078 /*
4079 * Flush it from the cache.
4080 */
4081 pgmPoolCacheFlushPage(pPool, pPage);
4082#endif /* PGMPOOL_WITH_CACHE */
4083
4084#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4085 /* Heavy stuff done. */
4086 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
4087#endif
4088
4089#ifdef PGMPOOL_WITH_MONITORING
4090 /*
4091 * Deregistering the monitoring.
4092 */
4093 if (pPage->fMonitored)
4094 rc = pgmPoolMonitorFlush(pPool, pPage);
4095#endif
4096
4097 /*
4098 * Free the page.
4099 */
4100 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4101 pPage->iNext = pPool->iFreeHead;
4102 pPool->iFreeHead = pPage->idx;
4103 pPage->enmKind = PGMPOOLKIND_FREE;
4104 pPage->GCPhys = NIL_RTGCPHYS;
4105 pPage->fReusedFlushPending = false;
4106
4107 pPool->cUsedPages--;
4108 pgmUnlock(pVM);
4109 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4110 return rc;
4111}
4112
4113
4114/**
4115 * Frees a usage of a pool page.
4116 *
4117 * The caller is responsible to updating the user table so that it no longer
4118 * references the shadow page.
4119 *
4120 * @param pPool The pool.
4121 * @param HCPhys The HC physical address of the shadow page.
4122 * @param iUser The shadow page pool index of the user table.
4123 * @param iUserTable The index into the user table (shadowed).
4124 */
4125void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4126{
4127 PVM pVM = pPool->CTX_SUFF(pVM);
4128
4129 STAM_PROFILE_START(&pPool->StatFree, a);
4130 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
4131 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4132 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
4133 pgmLock(pVM);
4134#ifdef PGMPOOL_WITH_USER_TRACKING
4135 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4136#endif
4137#ifdef PGMPOOL_WITH_CACHE
4138 if (!pPage->fCached)
4139#endif
4140 pgmPoolFlushPage(pPool, pPage);
4141 pgmUnlock(pVM);
4142 STAM_PROFILE_STOP(&pPool->StatFree, a);
4143}
4144
4145
4146/**
4147 * Makes one or more free page free.
4148 *
4149 * @returns VBox status code.
4150 * @retval VINF_SUCCESS on success.
4151 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4152 *
4153 * @param pPool The pool.
4154 * @param enmKind Page table kind
4155 * @param iUser The user of the page.
4156 */
4157static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4158{
4159 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
4160
4161 /*
4162 * If the pool isn't full grown yet, expand it.
4163 */
4164 if ( pPool->cCurPages < pPool->cMaxPages
4165#if defined(IN_RC)
4166 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
4167 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4168 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
4169#endif
4170 )
4171 {
4172 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4173#ifdef IN_RING3
4174 int rc = PGMR3PoolGrow(pPool->pVMR3);
4175#else
4176 int rc = CTXALLMID(VMM, CallHost)(pPool->CTX_SUFF(pVM), VMMCALLHOST_PGM_POOL_GROW, 0);
4177#endif
4178 if (RT_FAILURE(rc))
4179 return rc;
4180 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4181 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4182 return VINF_SUCCESS;
4183 }
4184
4185#ifdef PGMPOOL_WITH_CACHE
4186 /*
4187 * Free one cached page.
4188 */
4189 return pgmPoolCacheFreeOne(pPool, iUser);
4190#else
4191 /*
4192 * Flush the pool.
4193 *
4194 * If we have tracking enabled, it should be possible to come up with
4195 * a cheap replacement strategy...
4196 */
4197 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4198 AssertCompileFailed();
4199 Assert(!CPUMIsGuestInLongMode(pVM));
4200 pgmPoolFlushAllInt(pPool);
4201 return VERR_PGM_POOL_FLUSHED;
4202#endif
4203}
4204
4205
4206/**
4207 * Allocates a page from the pool.
4208 *
4209 * This page may actually be a cached page and not in need of any processing
4210 * on the callers part.
4211 *
4212 * @returns VBox status code.
4213 * @retval VINF_SUCCESS if a NEW page was allocated.
4214 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4215 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4216 * @param pVM The VM handle.
4217 * @param GCPhys The GC physical address of the page we're gonna shadow.
4218 * For 4MB and 2MB PD entries, it's the first address the
4219 * shadow PT is covering.
4220 * @param enmKind The kind of mapping.
4221 * @param iUser The shadow page pool index of the user table.
4222 * @param iUserTable The index into the user table (shadowed).
4223 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4224 */
4225int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
4226{
4227 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4228 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4229 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4230 *ppPage = NULL;
4231 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4232 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4233 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)); */
4234
4235 pgmLock(pVM);
4236
4237#ifdef PGMPOOL_WITH_CACHE
4238 if (pPool->fCacheEnabled)
4239 {
4240 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, iUser, iUserTable, ppPage);
4241 if (RT_SUCCESS(rc2))
4242 {
4243 pgmUnlock(pVM);
4244 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4245 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4246 return rc2;
4247 }
4248 }
4249#endif
4250
4251 /*
4252 * Allocate a new one.
4253 */
4254 int rc = VINF_SUCCESS;
4255 uint16_t iNew = pPool->iFreeHead;
4256 if (iNew == NIL_PGMPOOL_IDX)
4257 {
4258 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4259 if (RT_FAILURE(rc))
4260 {
4261 pgmUnlock(pVM);
4262 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4263 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4264 return rc;
4265 }
4266 iNew = pPool->iFreeHead;
4267 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4268 }
4269
4270 /* unlink the free head */
4271 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4272 pPool->iFreeHead = pPage->iNext;
4273 pPage->iNext = NIL_PGMPOOL_IDX;
4274
4275 /*
4276 * Initialize it.
4277 */
4278 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4279 pPage->enmKind = enmKind;
4280 pPage->GCPhys = GCPhys;
4281 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4282 pPage->fMonitored = false;
4283 pPage->fCached = false;
4284 pPage->fReusedFlushPending = false;
4285#ifdef PGMPOOL_WITH_MONITORING
4286 pPage->cModifications = 0;
4287 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4288 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4289#else
4290 pPage->fCR3Mix = false;
4291#endif
4292#ifdef PGMPOOL_WITH_USER_TRACKING
4293 pPage->cPresent = 0;
4294 pPage->iFirstPresent = ~0;
4295
4296 /*
4297 * Insert into the tracking and cache. If this fails, free the page.
4298 */
4299 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4300 if (RT_FAILURE(rc3))
4301 {
4302 pPool->cUsedPages--;
4303 pPage->enmKind = PGMPOOLKIND_FREE;
4304 pPage->GCPhys = NIL_RTGCPHYS;
4305 pPage->iNext = pPool->iFreeHead;
4306 pPool->iFreeHead = pPage->idx;
4307 pgmUnlock(pVM);
4308 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4309 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4310 return rc3;
4311 }
4312#endif /* PGMPOOL_WITH_USER_TRACKING */
4313
4314 /*
4315 * Commit the allocation, clear the page and return.
4316 */
4317#ifdef VBOX_WITH_STATISTICS
4318 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4319 pPool->cUsedPagesHigh = pPool->cUsedPages;
4320#endif
4321
4322 if (!pPage->fZeroed)
4323 {
4324 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4325 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4326 ASMMemZeroPage(pv);
4327 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4328 }
4329
4330 *ppPage = pPage;
4331 pgmUnlock(pVM);
4332 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4333 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4334 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4335 return rc;
4336}
4337
4338
4339/**
4340 * Frees a usage of a pool page.
4341 *
4342 * @param pVM The VM handle.
4343 * @param HCPhys The HC physical address of the shadow page.
4344 * @param iUser The shadow page pool index of the user table.
4345 * @param iUserTable The index into the user table (shadowed).
4346 */
4347void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4348{
4349 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4350 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4351 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4352}
4353
4354/**
4355 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4356 *
4357 * @returns Pointer to the shadow page structure.
4358 * @param pPool The pool.
4359 * @param HCPhys The HC physical address of the shadow page.
4360 */
4361PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4362{
4363 PVM pVM = pPool->CTX_SUFF(pVM);
4364
4365 /*
4366 * Look up the page.
4367 */
4368 pgmLock(pVM);
4369 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4370 pgmUnlock(pVM);
4371
4372 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4373 return pPage;
4374}
4375
4376
4377#ifdef IN_RING3
4378/**
4379 * Flushes the entire cache.
4380 *
4381 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4382 * and execute this CR3 flush.
4383 *
4384 * @param pPool The pool.
4385 */
4386void pgmPoolFlushAll(PVM pVM)
4387{
4388 LogFlow(("pgmPoolFlushAll:\n"));
4389 pgmPoolFlushAllInt(pVM->pgm.s.CTX_SUFF(pPool));
4390}
4391#endif /* IN_RING3 */
4392
4393#ifdef LOG_ENABLED
4394static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
4395{
4396 switch(enmKind)
4397 {
4398 case PGMPOOLKIND_INVALID:
4399 return "PGMPOOLKIND_INVALID";
4400 case PGMPOOLKIND_FREE:
4401 return "PGMPOOLKIND_FREE";
4402 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4403 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
4404 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4405 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
4406 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4407 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
4408 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4409 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
4410 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4411 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
4412 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4413 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
4414 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4415 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
4416 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4417 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
4418 case PGMPOOLKIND_32BIT_PD:
4419 return "PGMPOOLKIND_32BIT_PD";
4420 case PGMPOOLKIND_32BIT_PD_PHYS:
4421 return "PGMPOOLKIND_32BIT_PD_PHYS";
4422 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4423 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
4424 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4425 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
4426 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4427 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
4428 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4429 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
4430 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4431 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
4432 case PGMPOOLKIND_PAE_PD_PHYS:
4433 return "PGMPOOLKIND_PAE_PD_PHYS";
4434 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4435 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
4436 case PGMPOOLKIND_PAE_PDPT:
4437 return "PGMPOOLKIND_PAE_PDPT";
4438 case PGMPOOLKIND_PAE_PDPT_PHYS:
4439 return "PGMPOOLKIND_PAE_PDPT_PHYS";
4440 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4441 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
4442 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4443 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
4444 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4445 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
4446 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4447 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
4448 case PGMPOOLKIND_64BIT_PML4:
4449 return "PGMPOOLKIND_64BIT_PML4";
4450 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4451 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
4452 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4453 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
4454 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4455 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
4456 case PGMPOOLKIND_ROOT_NESTED:
4457 return "PGMPOOLKIND_ROOT_NESTED";
4458 }
4459 return "Unknown kind!";
4460}
4461#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette