VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 22748

Last change on this file since 22748 was 22748, checked in by vboxsync, 15 years ago

PGM pool updates

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 187.4 KB
Line 
1/* $Id: PGMAllPool.cpp 22748 2009-09-03 13:32:31Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48RT_C_DECLS_BEGIN
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_CACHE
56static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
57#endif
58#ifdef PGMPOOL_WITH_MONITORING
59static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
60#endif
61#ifndef IN_RING3
62DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
63#endif
64#ifdef LOG_ENABLED
65static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
66#endif
67
68void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
69void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
70int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
71PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
72void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
73void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
74
75RT_C_DECLS_END
76
77
78/**
79 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
80 *
81 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
82 * @param enmKind The page kind.
83 */
84DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
85{
86 switch (enmKind)
87 {
88 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
89 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
90 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
91 return true;
92 default:
93 return false;
94 }
95}
96
97/** @def PGMPOOL_PAGE_2_LOCKED_PTR
98 * Maps a pool page pool into the current context and lock it (RC only).
99 *
100 * @returns VBox status code.
101 * @param pVM The VM handle.
102 * @param pPage The pool page.
103 *
104 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
105 * small page window employeed by that function. Be careful.
106 * @remark There is no need to assert on the result.
107 */
108#if defined(IN_RC)
109DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
110{
111 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
112
113 /* Make sure the dynamic mapping will not be reused. */
114 if (pv)
115 PGMDynLockHCPage(pVM, (uint8_t *)pv);
116
117 return pv;
118}
119#else
120# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
121#endif
122
123/** @def PGMPOOL_UNLOCK_PTR
124 * Unlock a previously locked dynamic caching (RC only).
125 *
126 * @returns VBox status code.
127 * @param pVM The VM handle.
128 * @param pPage The pool page.
129 *
130 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
131 * small page window employeed by that function. Be careful.
132 * @remark There is no need to assert on the result.
133 */
134#if defined(IN_RC)
135DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
136{
137 if (pvPage)
138 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
139}
140#else
141# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
142#endif
143
144
145#ifdef PGMPOOL_WITH_MONITORING
146/**
147 * Determin the size of a write instruction.
148 * @returns number of bytes written.
149 * @param pDis The disassembler state.
150 */
151static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
152{
153 /*
154 * This is very crude and possibly wrong for some opcodes,
155 * but since it's not really supposed to be called we can
156 * probably live with that.
157 */
158 return DISGetParamSize(pDis, &pDis->param1);
159}
160
161
162/**
163 * Flushes a chain of pages sharing the same access monitor.
164 *
165 * @returns VBox status code suitable for scheduling.
166 * @param pPool The pool.
167 * @param pPage A page in the chain.
168 */
169int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
170{
171 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
172
173 /*
174 * Find the list head.
175 */
176 uint16_t idx = pPage->idx;
177 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
178 {
179 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
180 {
181 idx = pPage->iMonitoredPrev;
182 Assert(idx != pPage->idx);
183 pPage = &pPool->aPages[idx];
184 }
185 }
186
187 /*
188 * Iterate the list flushing each shadow page.
189 */
190 int rc = VINF_SUCCESS;
191 for (;;)
192 {
193 idx = pPage->iMonitoredNext;
194 Assert(idx != pPage->idx);
195 if (pPage->idx >= PGMPOOL_IDX_FIRST)
196 {
197 int rc2 = pgmPoolFlushPage(pPool, pPage);
198 AssertRC(rc2);
199 }
200 /* next */
201 if (idx == NIL_PGMPOOL_IDX)
202 break;
203 pPage = &pPool->aPages[idx];
204 }
205 return rc;
206}
207
208
209/**
210 * Wrapper for getting the current context pointer to the entry being modified.
211 *
212 * @returns VBox status code suitable for scheduling.
213 * @param pVM VM Handle.
214 * @param pvDst Destination address
215 * @param pvSrc Source guest virtual address.
216 * @param GCPhysSrc The source guest physical address.
217 * @param cb Size of data to read
218 */
219DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
220{
221#if defined(IN_RING3)
222 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
223 return VINF_SUCCESS;
224#else
225 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
226 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
227#endif
228}
229
230/**
231 * Process shadow entries before they are changed by the guest.
232 *
233 * For PT entries we will clear them. For PD entries, we'll simply check
234 * for mapping conflicts and set the SyncCR3 FF if found.
235 *
236 * @param pVCpu VMCPU handle
237 * @param pPool The pool.
238 * @param pPage The head page.
239 * @param GCPhysFault The guest physical fault address.
240 * @param uAddress In R0 and GC this is the guest context fault address (flat).
241 * In R3 this is the host context 'fault' address.
242 * @param pDis The disassembler state for figuring out the write size.
243 * This need not be specified if the caller knows we won't do cross entry accesses.
244 */
245void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pDis)
246{
247 AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%#x (idx=%#x)\n", pPage->iMonitoredPrev, pPage->idx));
248 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
249 const unsigned cbWrite = pDis ? pgmPoolDisasWriteSize(pDis) : 0;
250 PVM pVM = pPool->CTX_SUFF(pVM);
251
252 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, cbWrite));
253
254 for (;;)
255 {
256 union
257 {
258 void *pv;
259 PX86PT pPT;
260 PX86PTPAE pPTPae;
261 PX86PD pPD;
262 PX86PDPAE pPDPae;
263 PX86PDPT pPDPT;
264 PX86PML4 pPML4;
265 } uShw;
266
267 LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s\n", pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pDis
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pDis
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pDis
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pDis
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pDis
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pDis
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pDis
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pDis
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setting up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pDis The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pDis->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pVCpu VMCPU Handle.
823 * @param pRegFrame Trap register frame.
824 * @param pDis The disassembly info for the faulting instruction.
825 * @param pvFault The fault address.
826 *
827 * @remark The REP prefix check is left to the caller because of STOSD/W.
828 */
829DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault)
830{
831#ifndef IN_RC
832 /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */
833 if ( HWACCMHasPendingIrq(pVM)
834 && (pRegFrame->rsp - pvFault) < 32)
835 {
836 /* Fault caused by stack writes while trying to inject an interrupt event. */
837 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
838 return true;
839 }
840#else
841 NOREF(pVM); NOREF(pvFault);
842#endif
843
844 LogFlow(("Reused instr %RGv %d at %RGv param1.flags=%x param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->opcode, pvFault, pDis->param1.flags, pDis->param1.base.reg_gen));
845
846 /* Non-supervisor mode write means it's used for something else. */
847 if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
848 return true;
849
850 switch (pDis->pCurInstr->opcode)
851 {
852 /* call implies the actual push of the return address faulted */
853 case OP_CALL:
854 Log4(("pgmPoolMonitorIsReused: CALL\n"));
855 return true;
856 case OP_PUSH:
857 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
858 return true;
859 case OP_PUSHF:
860 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
861 return true;
862 case OP_PUSHA:
863 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
864 return true;
865 case OP_FXSAVE:
866 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
867 return true;
868 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
869 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
870 return true;
871 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
872 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
873 return true;
874 case OP_MOVSWD:
875 case OP_STOSWD:
876 if ( pDis->prefix == (PREFIX_REP|PREFIX_REX)
877 && pRegFrame->rcx >= 0x40
878 )
879 {
880 Assert(pDis->mode == CPUMODE_64BIT);
881
882 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
883 return true;
884 }
885 return false;
886 }
887 if ( ( (pDis->param1.flags & USE_REG_GEN32)
888 || (pDis->param1.flags & USE_REG_GEN64))
889 && (pDis->param1.base.reg_gen == USE_REG_ESP))
890 {
891 Log4(("pgmPoolMonitorIsReused: ESP\n"));
892 return true;
893 }
894
895 return false;
896}
897
898
899/**
900 * Flushes the page being accessed.
901 *
902 * @returns VBox status code suitable for scheduling.
903 * @param pVM The VM handle.
904 * @param pVCpu The VMCPU handle.
905 * @param pPool The pool.
906 * @param pPage The pool page (head).
907 * @param pDis The disassembly of the write instruction.
908 * @param pRegFrame The trap register frame.
909 * @param GCPhysFault The fault address as guest physical address.
910 * @param pvFault The fault address.
911 */
912static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
913 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
914{
915 /*
916 * First, do the flushing.
917 */
918 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
919
920 /*
921 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
922 * @todo: why is this necessary? an instruction restart would be sufficient, wouldn't it?
923 */
924 uint32_t cbWritten;
925 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, &cbWritten);
926 if (RT_SUCCESS(rc2))
927 pRegFrame->rip += pDis->opsize;
928 else if (rc2 == VERR_EM_INTERPRETER)
929 {
930#ifdef IN_RC
931 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
932 {
933 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
934 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
935 rc = VINF_SUCCESS;
936 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
937 }
938 else
939#endif
940 {
941 rc = VINF_EM_RAW_EMULATE_INSTR;
942 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
943 }
944 }
945 else
946 rc = rc2;
947
948 /* See use in pgmPoolAccessHandlerSimple(). */
949 PGM_INVL_VCPU_TLBS(pVCpu);
950
951 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
952 return rc;
953
954}
955
956
957/**
958 * Handles the STOSD write accesses.
959 *
960 * @returns VBox status code suitable for scheduling.
961 * @param pVM The VM handle.
962 * @param pPool The pool.
963 * @param pPage The pool page (head).
964 * @param pDis The disassembly of the write instruction.
965 * @param pRegFrame The trap register frame.
966 * @param GCPhysFault The fault address as guest physical address.
967 * @param pvFault The fault address.
968 */
969DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
970 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
971{
972 unsigned uIncrement = pDis->param1.size;
973
974 Assert(pDis->mode == CPUMODE_32BIT || pDis->mode == CPUMODE_64BIT);
975 Assert(pRegFrame->rcx <= 0x20);
976
977#ifdef VBOX_STRICT
978 if (pDis->opmode == CPUMODE_32BIT)
979 Assert(uIncrement == 4);
980 else
981 Assert(uIncrement == 8);
982#endif
983
984 Log3(("pgmPoolAccessHandlerSTOSD\n"));
985
986 /*
987 * Increment the modification counter and insert it into the list
988 * of modified pages the first time.
989 */
990 if (!pPage->cModifications++)
991 pgmPoolMonitorModifiedInsert(pPool, pPage);
992
993 /*
994 * Execute REP STOSD.
995 *
996 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
997 * write situation, meaning that it's safe to write here.
998 */
999 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
1000 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
1001 while (pRegFrame->rcx)
1002 {
1003#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1004 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1005 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
1006 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1007#else
1008 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
1009#endif
1010#ifdef IN_RC
1011 *(uint32_t *)pu32 = pRegFrame->eax;
1012#else
1013 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement);
1014#endif
1015 pu32 += uIncrement;
1016 GCPhysFault += uIncrement;
1017 pRegFrame->rdi += uIncrement;
1018 pRegFrame->rcx--;
1019 }
1020 pRegFrame->rip += pDis->opsize;
1021
1022#ifdef IN_RC
1023 /* See use in pgmPoolAccessHandlerSimple(). */
1024 PGM_INVL_VCPU_TLBS(pVCpu);
1025#endif
1026
1027 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1028 return VINF_SUCCESS;
1029}
1030
1031
1032/**
1033 * Handles the simple write accesses.
1034 *
1035 * @returns VBox status code suitable for scheduling.
1036 * @param pVM The VM handle.
1037 * @param pVCpu The VMCPU handle.
1038 * @param pPool The pool.
1039 * @param pPage The pool page (head).
1040 * @param pDis The disassembly of the write instruction.
1041 * @param pRegFrame The trap register frame.
1042 * @param GCPhysFault The fault address as guest physical address.
1043 * @param pvFault The fault address.
1044 */
1045DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
1046 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1047{
1048 Log3(("pgmPoolAccessHandlerSimple\n"));
1049 /*
1050 * Increment the modification counter and insert it into the list
1051 * of modified pages the first time.
1052 */
1053 if (!pPage->cModifications++)
1054 pgmPoolMonitorModifiedInsert(pPool, pPage);
1055
1056 /*
1057 * Clear all the pages. ASSUMES that pvFault is readable.
1058 */
1059#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1060 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1061 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pDis);
1062 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1063#else
1064 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pDis);
1065#endif
1066
1067 /*
1068 * Interpret the instruction.
1069 */
1070 uint32_t cb;
1071 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, &cb);
1072 if (RT_SUCCESS(rc))
1073 pRegFrame->rip += pDis->opsize;
1074 else if (rc == VERR_EM_INTERPRETER)
1075 {
1076 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1077 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode));
1078 rc = VINF_EM_RAW_EMULATE_INSTR;
1079 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1080 }
1081
1082#ifdef IN_RC
1083 /*
1084 * Quick hack, with logging enabled we're getting stale
1085 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1086 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1087 * have to be fixed to support this. But that'll have to wait till next week.
1088 *
1089 * An alternative is to keep track of the changed PTEs together with the
1090 * GCPhys from the guest PT. This may proove expensive though.
1091 *
1092 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1093 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1094 */
1095 PGM_INVL_VCPU_TLBS(pVCpu);
1096#endif
1097
1098 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1099 return rc;
1100}
1101
1102/**
1103 * \#PF Handler callback for PT write accesses.
1104 *
1105 * @returns VBox status code (appropriate for GC return).
1106 * @param pVM VM Handle.
1107 * @param uErrorCode CPU Error code.
1108 * @param pRegFrame Trap register frame.
1109 * NULL on DMA and other non CPU access.
1110 * @param pvFault The fault address (cr2).
1111 * @param GCPhysFault The GC physical address corresponding to pvFault.
1112 * @param pvUser User argument.
1113 */
1114DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1115{
1116 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1117 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1118 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1119 PVMCPU pVCpu = VMMGetCpu(pVM);
1120 unsigned cMaxModifications;
1121 bool fForcedFlush = false;
1122
1123 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1124
1125 pgmLock(pVM);
1126 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
1127 {
1128 /* Pool page changed while we were waiting for the lock; ignore. */
1129 Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1130 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1131 pgmUnlock(pVM);
1132 return VINF_SUCCESS;
1133 }
1134
1135 /*
1136 * Disassemble the faulting instruction.
1137 */
1138 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
1139 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, NULL);
1140 AssertReturnStmt(rc == VINF_SUCCESS, pgmUnlock(pVM), rc);
1141
1142 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1143
1144 /*
1145 * We should ALWAYS have the list head as user parameter. This
1146 * is because we use that page to record the changes.
1147 */
1148 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1149#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1150 Assert(!pPage->fDirty);
1151#endif
1152
1153 /* Maximum nr of modifications depends on the guest mode. */
1154 if (pDis->mode == CPUMODE_32BIT)
1155 cMaxModifications = 48;
1156 else
1157 cMaxModifications = 24;
1158
1159 /*
1160 * Incremental page table updates should weight more than random ones.
1161 * (Only applies when started from offset 0)
1162 */
1163 pVCpu->pgm.s.cPoolAccessHandler++;
1164 if ( pPage->pvLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */
1165 && pPage->pvLastAccessHandlerRip < pRegFrame->rip + 0x40
1166 && pvFault == (pPage->pvLastAccessHandlerFault + pDis->param1.size)
1167 && pVCpu->pgm.s.cPoolAccessHandler == (pPage->cLastAccessHandlerCount + 1))
1168 {
1169 Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(&pVM->pgm.s, pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1170 pPage->cModifications = pPage->cModifications * 2;
1171 pPage->pvLastAccessHandlerFault = pvFault;
1172 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1173 if (pPage->cModifications >= cMaxModifications)
1174 {
1175 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushReinit));
1176 fForcedFlush = true;
1177 }
1178 }
1179
1180 if (pPage->cModifications >= cMaxModifications)
1181 Log(("Mod overflow %VGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(&pVM->pgm.s, pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1182
1183 /*
1184 * Check if it's worth dealing with.
1185 */
1186 bool fReused = false;
1187 bool fNotReusedNotForking = false;
1188 if ( ( pPage->cModifications < cMaxModifications /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1189 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1190 )
1191 && !(fReused = pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault))
1192 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1193 {
1194 /*
1195 * Simple instructions, no REP prefix.
1196 */
1197 if (!(pDis->prefix & (PREFIX_REP | PREFIX_REPNE)))
1198 {
1199 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1200
1201 /* A mov instruction to change the first page table entry will be remembered so we can detect
1202 * full page table changes early on. This will reduce the amount of unnecessary traps we'll take.
1203 */
1204 if ( rc == VINF_SUCCESS
1205 && pDis->pCurInstr->opcode == OP_MOV
1206 && (pvFault & PAGE_OFFSET_MASK) == 0)
1207 {
1208 pPage->pvLastAccessHandlerFault = pvFault;
1209 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1210 pPage->pvLastAccessHandlerRip = pRegFrame->rip;
1211 /* Make sure we don't kick out a page too quickly. */
1212 if (pPage->cModifications > 8)
1213 pPage->cModifications = 2;
1214 }
1215 else
1216 if (pPage->pvLastAccessHandlerFault == pvFault)
1217 {
1218 /* ignore the 2nd write to this page table entry. */
1219 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1220 }
1221 else
1222 {
1223 pPage->pvLastAccessHandlerFault = 0;
1224 pPage->pvLastAccessHandlerRip = 0;
1225 }
1226
1227 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1228 pgmUnlock(pVM);
1229 return rc;
1230 }
1231
1232 /*
1233 * Windows is frequently doing small memset() operations (netio test 4k+).
1234 * We have to deal with these or we'll kill the cache and performance.
1235 */
1236 if ( pDis->pCurInstr->opcode == OP_STOSWD
1237 && !pRegFrame->eflags.Bits.u1DF
1238 && pDis->opmode == pDis->mode
1239 && pDis->addrmode == pDis->mode)
1240 {
1241 bool fValidStosd = false;
1242
1243 if ( pDis->mode == CPUMODE_32BIT
1244 && pDis->prefix == PREFIX_REP
1245 && pRegFrame->ecx <= 0x20
1246 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1247 && !((uintptr_t)pvFault & 3)
1248 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1249 )
1250 {
1251 fValidStosd = true;
1252 pRegFrame->rcx &= 0xffffffff; /* paranoia */
1253 }
1254 else
1255 if ( pDis->mode == CPUMODE_64BIT
1256 && pDis->prefix == (PREFIX_REP | PREFIX_REX)
1257 && pRegFrame->rcx <= 0x20
1258 && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1259 && !((uintptr_t)pvFault & 7)
1260 && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */
1261 )
1262 {
1263 fValidStosd = true;
1264 }
1265
1266 if (fValidStosd)
1267 {
1268 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1269 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1270 pgmUnlock(pVM);
1271 return rc;
1272 }
1273 }
1274
1275 /* REP prefix, don't bother. */
1276 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1277 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1278 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode, pDis->prefix));
1279 fNotReusedNotForking = true;
1280 }
1281
1282#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1283 /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This
1284 * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring.
1285 */
1286 if ( pPage->cModifications >= cMaxModifications
1287 && !fForcedFlush
1288 && pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1289 && ( fNotReusedNotForking
1290 || ( !pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault)
1291 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1292 )
1293 )
1294 {
1295 Assert(!pgmPoolIsPageLocked(&pVM->pgm.s, pPage));
1296 Assert(pPage->fDirty == false);
1297
1298 /* Flush any monitored duplicates as we will disable write protection. */
1299 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1300 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1301 {
1302 PPGMPOOLPAGE pPageHead = pPage;
1303
1304 /* Find the monitor head. */
1305 while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX)
1306 pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev];
1307
1308 while (pPageHead)
1309 {
1310 unsigned idxNext = pPageHead->iMonitoredNext;
1311
1312 if (pPageHead != pPage)
1313 {
1314 STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush);
1315 Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind)));
1316 int rc2 = pgmPoolFlushPage(pPool, pPageHead);
1317 AssertRC(rc2);
1318 }
1319
1320 if (idxNext == NIL_PGMPOOL_IDX)
1321 break;
1322
1323 pPageHead = &pPool->aPages[idxNext];
1324 }
1325 }
1326
1327 /* The flushing above might fail for locked pages, so double check. */
1328 if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX
1329 && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1330 {
1331 /* Temporarily allow write access to the page table again. */
1332 rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys, pPage->GCPhys);
1333 if (rc == VINF_SUCCESS)
1334 {
1335 rc = PGMShwModifyPage(pVCpu, pvFault, 1, X86_PTE_RW, ~(uint64_t)X86_PTE_RW);
1336 AssertMsg(rc == VINF_SUCCESS
1337 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1338 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1339 || rc == VERR_PAGE_NOT_PRESENT,
1340 ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc));
1341
1342 pgmPoolAddDirtyPage(pVM, pPool, pPage);
1343 pPage->pvDirtyFault = pvFault;
1344
1345 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1346 pgmUnlock(pVM);
1347 return rc;
1348 }
1349 }
1350 }
1351#endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1352
1353 /*
1354 * Not worth it, so flush it.
1355 *
1356 * If we considered it to be reused, don't go back to ring-3
1357 * to emulate failed instructions since we usually cannot
1358 * interpret then. This may be a bit risky, in which case
1359 * the reuse detection must be fixed.
1360 */
1361 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1362 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1363 rc = VINF_SUCCESS;
1364 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1365 pgmUnlock(pVM);
1366 return rc;
1367}
1368
1369# endif /* !IN_RING3 */
1370
1371# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1372
1373# ifdef VBOX_STRICT
1374/**
1375 * Check references to guest physical memory in a PAE / PAE page table.
1376 *
1377 * @param pPool The pool.
1378 * @param pPage The page.
1379 * @param pShwPT The shadow page table (mapping of the page).
1380 * @param pGstPT The guest page table.
1381 */
1382DECLINLINE(void) pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
1383{
1384 unsigned cErrors = 0;
1385#ifdef VBOX_STRICT
1386 if (pPage->iFirstPresent != NIL_PGMPOOL_PRESENT_INDEX);
1387 for (unsigned i = 0; i < pPage->iFirstPresent; i++)
1388 AssertMsg(!pShwPT->a[i].n.u1Present, ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, pShwPT->a[i].u, pPage->iFirstPresent));
1389#endif
1390 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1391 {
1392 if (pShwPT->a[i].n.u1Present)
1393 {
1394 RTHCPHYS HCPhys = -1;
1395 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1396 if ( rc != VINF_SUCCESS
1397 || (pShwPT->a[i].u & X86_PTE_PAE_PG_MASK) != HCPhys)
1398 {
1399 RTHCPHYS HCPhysPT = -1;
1400 Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, pShwPT->a[i].u, HCPhys));
1401 cErrors++;
1402
1403 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
1404 AssertRC(rc);
1405
1406 for (unsigned i = 0; i < pPool->cCurPages; i++)
1407 {
1408 PPGMPOOLPAGE pTempPage = &pPool->aPages[i];
1409
1410 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1411 {
1412 PX86PTPAE pShwPT2 = (PX86PTPAE)PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pTempPage);
1413
1414 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1415 {
1416 if ( pShwPT2->a[j].n.u1Present
1417 && pShwPT2->a[j].n.u1Write
1418 && ((pShwPT2->a[j].u & X86_PTE_PAE_PG_MASK) == HCPhysPT))
1419 {
1420 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, pShwPT->a[j].u, pShwPT2->a[j].u));
1421 }
1422 }
1423 }
1424 }
1425 }
1426 }
1427 }
1428 Assert(!cErrors);
1429}
1430# endif /* VBOX_STRICT */
1431
1432/**
1433 * Clear references to guest physical memory in a PAE / PAE page table.
1434 *
1435 * @returns nr of changed PTEs
1436 * @param pPool The pool.
1437 * @param pPage The page.
1438 * @param pShwPT The shadow page table (mapping of the page).
1439 * @param pGstPT The guest page table.
1440 * @param pOldGstPT The old cached guest page table.
1441 */
1442DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT, PCX86PTPAE pOldGstPT)
1443{
1444 unsigned cChanged = 0;
1445
1446#ifdef VBOX_STRICT
1447 if (pPage->iFirstPresent != NIL_PGMPOOL_PRESENT_INDEX);
1448 for (unsigned i = 0; i < pPage->iFirstPresent; i++)
1449 AssertMsg(!pShwPT->a[i].n.u1Present, ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, pShwPT->a[i].u, pPage->iFirstPresent));
1450#endif
1451 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1452 {
1453 if (pShwPT->a[i].n.u1Present)
1454 {
1455 /* The the old cached PTE is identical, then there's no need to flush the shadow copy. */
1456 if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1457 {
1458#ifdef VBOX_STRICT
1459 RTHCPHYS HCPhys = -1;
1460 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1461 AssertMsg(rc == VINF_SUCCESS && (pShwPT->a[i].u & X86_PTE_PAE_PG_MASK) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, pShwPT->a[i].u, HCPhys));
1462#endif
1463 uint64_t uHostAttr = pShwPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1464 bool fHostRW = !!(pShwPT->a[i].u & X86_PTE_RW);
1465 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1466 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1467
1468 if ( uHostAttr == uGuestAttr
1469 && fHostRW <= fGuestRW)
1470 continue;
1471 }
1472 cChanged++;
1473 /* Something was changed, so flush it. */
1474 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n",
1475 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
1476 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
1477 ASMAtomicWriteSize(&pShwPT->a[i].u, 0);
1478 }
1479 }
1480 return cChanged;
1481}
1482
1483
1484/**
1485 * Flush a dirty page
1486 *
1487 * @param pVM VM Handle.
1488 * @param pPool The pool.
1489 * @param idxSlot Dirty array slot index
1490 * @param fForceRemoval Force removal from the dirty page list
1491 */
1492static void pgmPoolFlushDirtyPage(PVM pVM, PPGMPOOL pPool, unsigned idxSlot, bool fForceRemoval = false)
1493{
1494 PPGMPOOLPAGE pPage;
1495 unsigned idxPage;
1496
1497 Assert(idxSlot < RT_ELEMENTS(pPool->aIdxDirtyPages));
1498 if (pPool->aIdxDirtyPages[idxSlot] == NIL_PGMPOOL_IDX)
1499 return;
1500
1501 idxPage = pPool->aIdxDirtyPages[idxSlot];
1502 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
1503 pPage = &pPool->aPages[idxPage];
1504 Assert(pPage->idx == idxPage);
1505 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1506
1507 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot));
1508 Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1509
1510 /* Flush those PTEs that have changed. */
1511 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
1512 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
1513 void *pvGst;
1514 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1515 unsigned cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst, (PCX86PTPAE)&pPool->aDirtyPages[idxSlot][0]);
1516 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
1517
1518 /** Note: we might want to consider keeping the dirty page active in case there were many changes. */
1519
1520 /* Write protect the page again to catch all write accesses. */
1521 rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys);
1522 Assert(rc == VINF_SUCCESS);
1523 pPage->fDirty = false;
1524
1525#ifdef VBOX_STRICT
1526 uint64_t fFlags = 0;
1527 RTHCPHYS HCPhys;
1528 rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->pvDirtyFault, &fFlags, &HCPhys);
1529 AssertMsg( ( rc == VINF_SUCCESS
1530 && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key))
1531 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1532 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1533 || rc == VERR_PAGE_NOT_PRESENT,
1534 ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->pvDirtyFault, rc, fFlags));
1535#endif
1536
1537 /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */
1538 Assert(pPage->cModifications);
1539 if (cChanges < 4)
1540 pPage->cModifications = 1; /* must use > 0 here */
1541 else
1542 pPage->cModifications = RT_MAX(1, pPage->cModifications / 2);
1543
1544 STAM_COUNTER_INC(&pPool->StatResetDirtyPages);
1545 if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages))
1546 pPool->idxFreeDirtyPage = idxSlot;
1547
1548 pPool->cDirtyPages--;
1549 pPool->aIdxDirtyPages[idxSlot] = NIL_PGMPOOL_IDX;
1550 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages));
1551 Log(("Removed dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1552}
1553
1554# ifndef IN_RING3
1555/**
1556 * Add a new dirty page
1557 *
1558 * @param pVM VM Handle.
1559 * @param pPool The pool.
1560 * @param pPage The page.
1561 */
1562void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1563{
1564 unsigned idxFree;
1565
1566 Assert(PGMIsLocked(pVM));
1567 AssertCompile(RT_ELEMENTS(pPool->aIdxDirtyPages) == 8 || RT_ELEMENTS(pPool->aIdxDirtyPages) == 16);
1568 Assert(!pPage->fDirty);
1569
1570 idxFree = pPool->idxFreeDirtyPage;
1571 Assert(idxFree < RT_ELEMENTS(pPool->aIdxDirtyPages));
1572 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1573
1574 if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aIdxDirtyPages))
1575 pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* force removal */);
1576 Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aIdxDirtyPages));
1577 AssertMsg(pPool->aIdxDirtyPages[idxFree] == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages));
1578
1579 Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree));
1580
1581 /* Make a copy of the guest page table as we require valid GCPhys addresses when removing
1582 * references to physical pages. (the HCPhys linear lookup is *extremely* expensive!)
1583 */
1584 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
1585 void *pvGst;
1586 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1587 memcpy(&pPool->aDirtyPages[idxFree][0], pvGst, PAGE_SIZE);
1588#ifdef VBOX_STRICT
1589 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
1590#endif
1591
1592 STAM_COUNTER_INC(&pPool->StatDirtyPage);
1593 pPage->fDirty = true;
1594 pPage->idxDirty = idxFree;
1595 pPool->aIdxDirtyPages[idxFree] = pPage->idx;
1596 pPool->cDirtyPages++;
1597
1598 pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aIdxDirtyPages) - 1);
1599 if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aIdxDirtyPages)
1600 && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1601 {
1602 unsigned i;
1603 for (i = 1; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1604 {
1605 idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aIdxDirtyPages) - 1);
1606 if (pPool->aIdxDirtyPages[idxFree] == NIL_PGMPOOL_IDX)
1607 {
1608 pPool->idxFreeDirtyPage = idxFree;
1609 break;
1610 }
1611 }
1612 Assert(i != RT_ELEMENTS(pPool->aIdxDirtyPages));
1613 }
1614
1615 Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages) || pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX);
1616 return;
1617}
1618# endif /* !IN_RING3 */
1619
1620/**
1621 * Check if the specified page is dirty (not write monitored)
1622 *
1623 * @return dirty or not
1624 * @param pVM VM Handle.
1625 * @param GCPhys Guest physical address
1626 */
1627bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys)
1628{
1629 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1630 Assert(PGMIsLocked(pVM));
1631 if (!pPool->cDirtyPages)
1632 return false;
1633
1634 GCPhys = GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1635
1636 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1637 {
1638 if (pPool->aIdxDirtyPages[i] != NIL_PGMPOOL_IDX)
1639 {
1640 PPGMPOOLPAGE pPage;
1641 unsigned idxPage = pPool->aIdxDirtyPages[i];
1642
1643 pPage = &pPool->aPages[idxPage];
1644 if (pPage->GCPhys == GCPhys)
1645 return true;
1646 }
1647 }
1648 return false;
1649}
1650
1651/**
1652 * Reset all dirty pages by reinstating page monitoring.
1653 *
1654 * @param pVM VM Handle.
1655 * @param fForceRemoval Force removal of all dirty pages
1656 */
1657void pgmPoolResetDirtyPages(PVM pVM, bool fForceRemoval)
1658{
1659 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1660 Assert(PGMIsLocked(pVM));
1661 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages));
1662
1663 if (!pPool->cDirtyPages)
1664 return;
1665
1666 Log(("pgmPoolResetDirtyPages\n"));
1667 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1668 pgmPoolFlushDirtyPage(pVM, pPool, i, fForceRemoval);
1669
1670 pPool->idxFreeDirtyPage = 0;
1671 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aIdxDirtyPages)
1672 && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1673 {
1674 unsigned i;
1675 for (i = 1; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1676 {
1677 if (pPool->aIdxDirtyPages[i] == NIL_PGMPOOL_IDX)
1678 {
1679 pPool->idxFreeDirtyPage = i;
1680 break;
1681 }
1682 }
1683 AssertMsg(i != RT_ELEMENTS(pPool->aIdxDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1684 }
1685
1686 Assert(pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages));
1687 return;
1688}
1689# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1690#endif /* PGMPOOL_WITH_MONITORING */
1691
1692#ifdef PGMPOOL_WITH_CACHE
1693
1694/**
1695 * Inserts a page into the GCPhys hash table.
1696 *
1697 * @param pPool The pool.
1698 * @param pPage The page.
1699 */
1700DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1701{
1702 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1703 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1704 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1705 pPage->iNext = pPool->aiHash[iHash];
1706 pPool->aiHash[iHash] = pPage->idx;
1707}
1708
1709
1710/**
1711 * Removes a page from the GCPhys hash table.
1712 *
1713 * @param pPool The pool.
1714 * @param pPage The page.
1715 */
1716DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1717{
1718 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1719 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1720 if (pPool->aiHash[iHash] == pPage->idx)
1721 pPool->aiHash[iHash] = pPage->iNext;
1722 else
1723 {
1724 uint16_t iPrev = pPool->aiHash[iHash];
1725 for (;;)
1726 {
1727 const int16_t i = pPool->aPages[iPrev].iNext;
1728 if (i == pPage->idx)
1729 {
1730 pPool->aPages[iPrev].iNext = pPage->iNext;
1731 break;
1732 }
1733 if (i == NIL_PGMPOOL_IDX)
1734 {
1735 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1736 break;
1737 }
1738 iPrev = i;
1739 }
1740 }
1741 pPage->iNext = NIL_PGMPOOL_IDX;
1742}
1743
1744
1745/**
1746 * Frees up one cache page.
1747 *
1748 * @returns VBox status code.
1749 * @retval VINF_SUCCESS on success.
1750 * @param pPool The pool.
1751 * @param iUser The user index.
1752 */
1753static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1754{
1755#ifndef IN_RC
1756 const PVM pVM = pPool->CTX_SUFF(pVM);
1757#endif
1758 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1759 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1760
1761 /*
1762 * Select one page from the tail of the age list.
1763 */
1764 PPGMPOOLPAGE pPage;
1765 for (unsigned iLoop = 0; ; iLoop++)
1766 {
1767 uint16_t iToFree = pPool->iAgeTail;
1768 if (iToFree == iUser)
1769 iToFree = pPool->aPages[iToFree].iAgePrev;
1770/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1771 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1772 {
1773 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1774 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1775 {
1776 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1777 continue;
1778 iToFree = i;
1779 break;
1780 }
1781 }
1782*/
1783 Assert(iToFree != iUser);
1784 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1785 pPage = &pPool->aPages[iToFree];
1786
1787 /*
1788 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1789 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1790 */
1791 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1792 break;
1793 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1794 pgmPoolCacheUsed(pPool, pPage);
1795 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1796 }
1797
1798 /*
1799 * Found a usable page, flush it and return.
1800 */
1801 int rc = pgmPoolFlushPage(pPool, pPage);
1802 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
1803 if (rc == VINF_SUCCESS)
1804 PGM_INVL_ALL_VCPU_TLBS(pVM);
1805 return rc;
1806}
1807
1808
1809/**
1810 * Checks if a kind mismatch is really a page being reused
1811 * or if it's just normal remappings.
1812 *
1813 * @returns true if reused and the cached page (enmKind1) should be flushed
1814 * @returns false if not reused.
1815 * @param enmKind1 The kind of the cached page.
1816 * @param enmKind2 The kind of the requested page.
1817 */
1818static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1819{
1820 switch (enmKind1)
1821 {
1822 /*
1823 * Never reuse them. There is no remapping in non-paging mode.
1824 */
1825 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1826 case PGMPOOLKIND_32BIT_PD_PHYS:
1827 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1828 case PGMPOOLKIND_PAE_PD_PHYS:
1829 case PGMPOOLKIND_PAE_PDPT_PHYS:
1830 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1831 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1832 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1833 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1834 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1835 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1836 return false;
1837
1838 /*
1839 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1840 */
1841 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1842 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1843 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1844 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1845 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1846 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1847 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1848 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1849 case PGMPOOLKIND_32BIT_PD:
1850 case PGMPOOLKIND_PAE_PDPT:
1851 switch (enmKind2)
1852 {
1853 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1854 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1855 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1856 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1857 case PGMPOOLKIND_64BIT_PML4:
1858 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1859 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1860 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1861 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1862 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1863 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1864 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1865 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1866 return true;
1867 default:
1868 return false;
1869 }
1870
1871 /*
1872 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1873 */
1874 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1875 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1876 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1877 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1878 case PGMPOOLKIND_64BIT_PML4:
1879 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1880 switch (enmKind2)
1881 {
1882 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1883 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1884 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1885 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1886 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1887 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1888 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1889 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1890 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1891 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1892 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1893 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1894 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1895 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1896 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1897 return true;
1898 default:
1899 return false;
1900 }
1901
1902 /*
1903 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1904 */
1905 case PGMPOOLKIND_ROOT_NESTED:
1906 return false;
1907
1908 default:
1909 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1910 }
1911}
1912
1913
1914/**
1915 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1916 *
1917 * @returns VBox status code.
1918 * @retval VINF_PGM_CACHED_PAGE on success.
1919 * @retval VERR_FILE_NOT_FOUND if not found.
1920 * @param pPool The pool.
1921 * @param GCPhys The GC physical address of the page we're gonna shadow.
1922 * @param enmKind The kind of mapping.
1923 * @param enmAccess Access type for the mapping (only relevant for big pages)
1924 * @param iUser The shadow page pool index of the user table.
1925 * @param iUserTable The index into the user table (shadowed).
1926 * @param ppPage Where to store the pointer to the page.
1927 */
1928static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1929{
1930#ifndef IN_RC
1931 const PVM pVM = pPool->CTX_SUFF(pVM);
1932#endif
1933 /*
1934 * Look up the GCPhys in the hash.
1935 */
1936 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1937 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1938 if (i != NIL_PGMPOOL_IDX)
1939 {
1940 do
1941 {
1942 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1943 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1944 if (pPage->GCPhys == GCPhys)
1945 {
1946 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
1947 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess)
1948 {
1949 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1950 * doesn't flush it in case there are no more free use records.
1951 */
1952 pgmPoolCacheUsed(pPool, pPage);
1953
1954 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1955 if (RT_SUCCESS(rc))
1956 {
1957 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1958 *ppPage = pPage;
1959 if (pPage->cModifications)
1960 pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
1961 STAM_COUNTER_INC(&pPool->StatCacheHits);
1962 return VINF_PGM_CACHED_PAGE;
1963 }
1964 return rc;
1965 }
1966
1967 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
1968 {
1969 /*
1970 * The kind is different. In some cases we should now flush the page
1971 * as it has been reused, but in most cases this is normal remapping
1972 * of PDs as PT or big pages using the GCPhys field in a slightly
1973 * different way than the other kinds.
1974 */
1975 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1976 {
1977 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1978 pgmPoolFlushPage(pPool, pPage);
1979 PGM_INVL_VCPU_TLBS(VMMGetCpu(pVM)); /* see PT handler. */
1980 break;
1981 }
1982 }
1983 }
1984
1985 /* next */
1986 i = pPage->iNext;
1987 } while (i != NIL_PGMPOOL_IDX);
1988 }
1989
1990 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1991 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1992 return VERR_FILE_NOT_FOUND;
1993}
1994
1995
1996/**
1997 * Inserts a page into the cache.
1998 *
1999 * @param pPool The pool.
2000 * @param pPage The cached page.
2001 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
2002 */
2003static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
2004{
2005 /*
2006 * Insert into the GCPhys hash if the page is fit for that.
2007 */
2008 Assert(!pPage->fCached);
2009 if (fCanBeCached)
2010 {
2011 pPage->fCached = true;
2012 pgmPoolHashInsert(pPool, pPage);
2013 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2014 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2015 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
2016 }
2017 else
2018 {
2019 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2020 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2021 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
2022 }
2023
2024 /*
2025 * Insert at the head of the age list.
2026 */
2027 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2028 pPage->iAgeNext = pPool->iAgeHead;
2029 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
2030 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
2031 else
2032 pPool->iAgeTail = pPage->idx;
2033 pPool->iAgeHead = pPage->idx;
2034}
2035
2036
2037/**
2038 * Flushes a cached page.
2039 *
2040 * @param pPool The pool.
2041 * @param pPage The cached page.
2042 */
2043static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2044{
2045 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
2046
2047 /*
2048 * Remove the page from the hash.
2049 */
2050 if (pPage->fCached)
2051 {
2052 pPage->fCached = false;
2053 pgmPoolHashRemove(pPool, pPage);
2054 }
2055 else
2056 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
2057
2058 /*
2059 * Remove it from the age list.
2060 */
2061 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
2062 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
2063 else
2064 pPool->iAgeTail = pPage->iAgePrev;
2065 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
2066 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
2067 else
2068 pPool->iAgeHead = pPage->iAgeNext;
2069 pPage->iAgeNext = NIL_PGMPOOL_IDX;
2070 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2071}
2072
2073#endif /* PGMPOOL_WITH_CACHE */
2074#ifdef PGMPOOL_WITH_MONITORING
2075
2076/**
2077 * Looks for pages sharing the monitor.
2078 *
2079 * @returns Pointer to the head page.
2080 * @returns NULL if not found.
2081 * @param pPool The Pool
2082 * @param pNewPage The page which is going to be monitored.
2083 */
2084static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
2085{
2086#ifdef PGMPOOL_WITH_CACHE
2087 /*
2088 * Look up the GCPhys in the hash.
2089 */
2090 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
2091 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2092 if (i == NIL_PGMPOOL_IDX)
2093 return NULL;
2094 do
2095 {
2096 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2097 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
2098 && pPage != pNewPage)
2099 {
2100 switch (pPage->enmKind)
2101 {
2102 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2103 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2104 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2105 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2106 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2107 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2108 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2109 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2110 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2111 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2112 case PGMPOOLKIND_64BIT_PML4:
2113 case PGMPOOLKIND_32BIT_PD:
2114 case PGMPOOLKIND_PAE_PDPT:
2115 {
2116 /* find the head */
2117 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2118 {
2119 Assert(pPage->iMonitoredPrev != pPage->idx);
2120 pPage = &pPool->aPages[pPage->iMonitoredPrev];
2121 }
2122 return pPage;
2123 }
2124
2125 /* ignore, no monitoring. */
2126 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2127 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2128 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2129 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2130 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2131 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2132 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2133 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2134 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2135 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2136 case PGMPOOLKIND_ROOT_NESTED:
2137 case PGMPOOLKIND_PAE_PD_PHYS:
2138 case PGMPOOLKIND_PAE_PDPT_PHYS:
2139 case PGMPOOLKIND_32BIT_PD_PHYS:
2140 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2141 break;
2142 default:
2143 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
2144 }
2145 }
2146
2147 /* next */
2148 i = pPage->iNext;
2149 } while (i != NIL_PGMPOOL_IDX);
2150#endif
2151 return NULL;
2152}
2153
2154
2155/**
2156 * Enabled write monitoring of a guest page.
2157 *
2158 * @returns VBox status code.
2159 * @retval VINF_SUCCESS on success.
2160 * @param pPool The pool.
2161 * @param pPage The cached page.
2162 */
2163static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2164{
2165 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
2166
2167 /*
2168 * Filter out the relevant kinds.
2169 */
2170 switch (pPage->enmKind)
2171 {
2172 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2173 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2174 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2175 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2176 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2177 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2178 case PGMPOOLKIND_64BIT_PML4:
2179 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2180 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2181 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2182 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2183 case PGMPOOLKIND_32BIT_PD:
2184 case PGMPOOLKIND_PAE_PDPT:
2185 break;
2186
2187 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2188 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2189 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2190 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2191 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2192 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2193 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2194 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2195 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2196 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2197 case PGMPOOLKIND_ROOT_NESTED:
2198 /* Nothing to monitor here. */
2199 return VINF_SUCCESS;
2200
2201 case PGMPOOLKIND_32BIT_PD_PHYS:
2202 case PGMPOOLKIND_PAE_PDPT_PHYS:
2203 case PGMPOOLKIND_PAE_PD_PHYS:
2204 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2205 /* Nothing to monitor here. */
2206 return VINF_SUCCESS;
2207#ifdef PGMPOOL_WITH_MIXED_PT_CR3
2208 break;
2209#else
2210 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2211#endif
2212 default:
2213 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2214 }
2215
2216 /*
2217 * Install handler.
2218 */
2219 int rc;
2220 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
2221 if (pPageHead)
2222 {
2223 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
2224 Assert(pPageHead->iMonitoredPrev != pPage->idx);
2225
2226#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2227 if (pPageHead->fDirty)
2228 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirty, true /* force removal */);
2229#endif
2230
2231 pPage->iMonitoredPrev = pPageHead->idx;
2232 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
2233 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
2234 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
2235 pPageHead->iMonitoredNext = pPage->idx;
2236 rc = VINF_SUCCESS;
2237 }
2238 else
2239 {
2240 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
2241 PVM pVM = pPool->CTX_SUFF(pVM);
2242 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
2243 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2244 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
2245 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
2246 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
2247 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
2248 pPool->pszAccessHandler);
2249 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
2250 * the heap size should suffice. */
2251 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
2252 Assert(!(VMMGetCpu(pVM)->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
2253 }
2254 pPage->fMonitored = true;
2255 return rc;
2256}
2257
2258
2259/**
2260 * Disables write monitoring of a guest page.
2261 *
2262 * @returns VBox status code.
2263 * @retval VINF_SUCCESS on success.
2264 * @param pPool The pool.
2265 * @param pPage The cached page.
2266 */
2267static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2268{
2269 /*
2270 * Filter out the relevant kinds.
2271 */
2272 switch (pPage->enmKind)
2273 {
2274 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2275 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2276 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2277 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2278 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2279 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2280 case PGMPOOLKIND_64BIT_PML4:
2281 case PGMPOOLKIND_32BIT_PD:
2282 case PGMPOOLKIND_PAE_PDPT:
2283 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2284 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2285 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2286 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2287 break;
2288
2289 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2290 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2291 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2292 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2293 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2294 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2295 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2296 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2297 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2298 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2299 case PGMPOOLKIND_ROOT_NESTED:
2300 case PGMPOOLKIND_PAE_PD_PHYS:
2301 case PGMPOOLKIND_PAE_PDPT_PHYS:
2302 case PGMPOOLKIND_32BIT_PD_PHYS:
2303 /* Nothing to monitor here. */
2304 return VINF_SUCCESS;
2305
2306#ifdef PGMPOOL_WITH_MIXED_PT_CR3
2307 break;
2308#endif
2309 default:
2310 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2311 }
2312
2313 /*
2314 * Remove the page from the monitored list or uninstall it if last.
2315 */
2316 const PVM pVM = pPool->CTX_SUFF(pVM);
2317 int rc;
2318 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
2319 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2320 {
2321 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
2322 {
2323 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
2324 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
2325 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
2326 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
2327 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
2328 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
2329 pPool->pszAccessHandler);
2330 AssertFatalRCSuccess(rc);
2331 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2332 }
2333 else
2334 {
2335 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
2336 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
2337 {
2338 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
2339 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2340 }
2341 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
2342 rc = VINF_SUCCESS;
2343 }
2344 }
2345 else
2346 {
2347 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
2348 AssertFatalRC(rc);
2349#ifdef VBOX_STRICT
2350 PVMCPU pVCpu = VMMGetCpu(pVM);
2351#endif
2352 AssertMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
2353 ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
2354 }
2355 pPage->fMonitored = false;
2356
2357 /*
2358 * Remove it from the list of modified pages (if in it).
2359 */
2360 pgmPoolMonitorModifiedRemove(pPool, pPage);
2361
2362 return rc;
2363}
2364
2365
2366/**
2367 * Inserts the page into the list of modified pages.
2368 *
2369 * @param pPool The pool.
2370 * @param pPage The page.
2371 */
2372void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2373{
2374 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
2375 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
2376 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
2377 && pPool->iModifiedHead != pPage->idx,
2378 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
2379 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
2380 pPool->iModifiedHead, pPool->cModifiedPages));
2381
2382 pPage->iModifiedNext = pPool->iModifiedHead;
2383 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
2384 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
2385 pPool->iModifiedHead = pPage->idx;
2386 pPool->cModifiedPages++;
2387#ifdef VBOX_WITH_STATISTICS
2388 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
2389 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
2390#endif
2391}
2392
2393
2394/**
2395 * Removes the page from the list of modified pages and resets the
2396 * moficiation counter.
2397 *
2398 * @param pPool The pool.
2399 * @param pPage The page which is believed to be in the list of modified pages.
2400 */
2401static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2402{
2403 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
2404 if (pPool->iModifiedHead == pPage->idx)
2405 {
2406 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2407 pPool->iModifiedHead = pPage->iModifiedNext;
2408 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2409 {
2410 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
2411 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2412 }
2413 pPool->cModifiedPages--;
2414 }
2415 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
2416 {
2417 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
2418 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2419 {
2420 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
2421 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2422 }
2423 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2424 pPool->cModifiedPages--;
2425 }
2426 else
2427 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2428 pPage->cModifications = 0;
2429}
2430
2431
2432/**
2433 * Zaps the list of modified pages, resetting their modification counters in the process.
2434 *
2435 * @param pVM The VM handle.
2436 */
2437static void pgmPoolMonitorModifiedClearAll(PVM pVM)
2438{
2439 pgmLock(pVM);
2440 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2441 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
2442
2443 unsigned cPages = 0; NOREF(cPages);
2444
2445#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2446 pgmPoolResetDirtyPages(pVM, true /* force removal. */);
2447#endif
2448
2449 uint16_t idx = pPool->iModifiedHead;
2450 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2451 while (idx != NIL_PGMPOOL_IDX)
2452 {
2453 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
2454 idx = pPage->iModifiedNext;
2455 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2456 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2457 pPage->cModifications = 0;
2458 Assert(++cPages);
2459 }
2460 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
2461 pPool->cModifiedPages = 0;
2462 pgmUnlock(pVM);
2463}
2464
2465
2466#ifdef IN_RING3
2467/**
2468 * Callback to clear all shadow pages and clear all modification counters.
2469 *
2470 * @returns VBox status code.
2471 * @param pVM The VM handle.
2472 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
2473 * @param pvUser Unused parameter.
2474 *
2475 * @remark Should only be used when monitoring is available, thus placed in
2476 * the PGMPOOL_WITH_MONITORING \#ifdef.
2477 */
2478DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, PVMCPU pVCpu, void *pvUser)
2479{
2480 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2481 STAM_PROFILE_START(&pPool->StatClearAll, c);
2482 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
2483 NOREF(pvUser); NOREF(pVCpu);
2484
2485 pgmLock(pVM);
2486
2487#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2488 pgmPoolResetDirtyPages(pVM, true /* force removal. */);
2489#endif
2490
2491 /*
2492 * Iterate all the pages until we've encountered all that in use.
2493 * This is simple but not quite optimal solution.
2494 */
2495 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
2496 unsigned cLeft = pPool->cUsedPages;
2497 unsigned iPage = pPool->cCurPages;
2498 while (--iPage >= PGMPOOL_IDX_FIRST)
2499 {
2500 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2501 if (pPage->GCPhys != NIL_RTGCPHYS)
2502 {
2503 switch (pPage->enmKind)
2504 {
2505 /*
2506 * We only care about shadow page tables.
2507 */
2508 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2509 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2510 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2511 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2512 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2513 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2514 {
2515#ifdef PGMPOOL_WITH_USER_TRACKING
2516 if (pPage->cPresent)
2517#endif
2518 {
2519 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
2520 STAM_PROFILE_START(&pPool->StatZeroPage, z);
2521 ASMMemZeroPage(pvShw);
2522 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
2523#ifdef PGMPOOL_WITH_USER_TRACKING
2524 pPage->cPresent = 0;
2525 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
2526#endif
2527 }
2528#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2529 else
2530 Assert(!pPage->fDirty);
2531#endif
2532 }
2533 /* fall thru */
2534
2535 default:
2536#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2537 Assert(!pPage->fDirty);
2538#endif
2539 Assert(!pPage->cModifications || ++cModifiedPages);
2540 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2541 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2542 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2543 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2544 pPage->cModifications = 0;
2545 break;
2546
2547 }
2548 if (!--cLeft)
2549 break;
2550 }
2551 }
2552
2553 /* swipe the special pages too. */
2554 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2555 {
2556 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2557 if (pPage->GCPhys != NIL_RTGCPHYS)
2558 {
2559 Assert(!pPage->cModifications || ++cModifiedPages);
2560 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2561 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2562 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2563 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2564 pPage->cModifications = 0;
2565 }
2566 }
2567
2568#ifndef DEBUG_michael
2569 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2570#endif
2571 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2572 pPool->cModifiedPages = 0;
2573
2574#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2575 /*
2576 * Clear all the GCPhys links and rebuild the phys ext free list.
2577 */
2578 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2579 pRam;
2580 pRam = pRam->CTX_SUFF(pNext))
2581 {
2582 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2583 while (iPage-- > 0)
2584 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2585 }
2586
2587 pPool->iPhysExtFreeHead = 0;
2588 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2589 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2590 for (unsigned i = 0; i < cMaxPhysExts; i++)
2591 {
2592 paPhysExts[i].iNext = i + 1;
2593 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2594 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2595 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2596 }
2597 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2598#endif
2599
2600#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2601 /* Clear all dirty pages. */
2602 pPool->idxFreeDirtyPage = 0;
2603 pPool->cDirtyPages = 0;
2604 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
2605 pPool->aIdxDirtyPages[i] = NIL_PGMPOOL_IDX;
2606#endif
2607
2608 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
2609 for (unsigned idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
2610 {
2611 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2612
2613 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
2614 }
2615
2616 pPool->cPresent = 0;
2617 pgmUnlock(pVM);
2618 PGM_INVL_ALL_VCPU_TLBS(pVM);
2619 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2620 return VINF_SUCCESS;
2621}
2622#endif /* IN_RING3 */
2623
2624
2625/**
2626 * Handle SyncCR3 pool tasks
2627 *
2628 * @returns VBox status code.
2629 * @retval VINF_SUCCESS if successfully added.
2630 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2631 * @param pVCpu The VMCPU handle.
2632 * @remark Should only be used when monitoring is available, thus placed in
2633 * the PGMPOOL_WITH_MONITORING #ifdef.
2634 */
2635int pgmPoolSyncCR3(PVMCPU pVCpu)
2636{
2637 PVM pVM = pVCpu->CTX_SUFF(pVM);
2638 LogFlow(("pgmPoolSyncCR3\n"));
2639
2640 /*
2641 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2642 * Occasionally we will have to clear all the shadow page tables because we wanted
2643 * to monitor a page which was mapped by too many shadowed page tables. This operation
2644 * sometimes refered to as a 'lightweight flush'.
2645 */
2646# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2647 if (ASMBitTestAndClear(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_CLEAR_PGM_POOL_BIT))
2648 {
2649 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmPoolClearAll, NULL);
2650 AssertRC(rc);
2651 }
2652# else /* !IN_RING3 */
2653 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2654 {
2655 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2656 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2657 return VINF_PGM_SYNC_CR3;
2658 }
2659# endif /* !IN_RING3 */
2660 else
2661 pgmPoolMonitorModifiedClearAll(pVM);
2662
2663 return VINF_SUCCESS;
2664}
2665
2666#endif /* PGMPOOL_WITH_MONITORING */
2667#ifdef PGMPOOL_WITH_USER_TRACKING
2668
2669/**
2670 * Frees up at least one user entry.
2671 *
2672 * @returns VBox status code.
2673 * @retval VINF_SUCCESS if successfully added.
2674 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2675 * @param pPool The pool.
2676 * @param iUser The user index.
2677 */
2678static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2679{
2680 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2681#ifdef PGMPOOL_WITH_CACHE
2682 /*
2683 * Just free cached pages in a braindead fashion.
2684 */
2685 /** @todo walk the age list backwards and free the first with usage. */
2686 int rc = VINF_SUCCESS;
2687 do
2688 {
2689 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2690 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2691 rc = rc2;
2692 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2693 return rc;
2694#else
2695 /*
2696 * Lazy approach.
2697 */
2698 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2699 AssertCompileFailed();
2700 Assert(!CPUMIsGuestInLongMode(pVM));
2701 pgmPoolFlushAllInt(pPool);
2702 return VERR_PGM_POOL_FLUSHED;
2703#endif
2704}
2705
2706
2707/**
2708 * Inserts a page into the cache.
2709 *
2710 * This will create user node for the page, insert it into the GCPhys
2711 * hash, and insert it into the age list.
2712 *
2713 * @returns VBox status code.
2714 * @retval VINF_SUCCESS if successfully added.
2715 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2716 * @param pPool The pool.
2717 * @param pPage The cached page.
2718 * @param GCPhys The GC physical address of the page we're gonna shadow.
2719 * @param iUser The user index.
2720 * @param iUserTable The user table index.
2721 */
2722DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2723{
2724 int rc = VINF_SUCCESS;
2725 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2726
2727 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2728
2729#ifdef VBOX_STRICT
2730 /*
2731 * Check that the entry doesn't already exists.
2732 */
2733 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2734 {
2735 uint16_t i = pPage->iUserHead;
2736 do
2737 {
2738 Assert(i < pPool->cMaxUsers);
2739 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2740 i = paUsers[i].iNext;
2741 } while (i != NIL_PGMPOOL_USER_INDEX);
2742 }
2743#endif
2744
2745 /*
2746 * Find free a user node.
2747 */
2748 uint16_t i = pPool->iUserFreeHead;
2749 if (i == NIL_PGMPOOL_USER_INDEX)
2750 {
2751 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2752 if (RT_FAILURE(rc))
2753 return rc;
2754 i = pPool->iUserFreeHead;
2755 }
2756
2757 /*
2758 * Unlink the user node from the free list,
2759 * initialize and insert it into the user list.
2760 */
2761 pPool->iUserFreeHead = paUsers[i].iNext;
2762 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2763 paUsers[i].iUser = iUser;
2764 paUsers[i].iUserTable = iUserTable;
2765 pPage->iUserHead = i;
2766
2767 /*
2768 * Insert into cache and enable monitoring of the guest page if enabled.
2769 *
2770 * Until we implement caching of all levels, including the CR3 one, we'll
2771 * have to make sure we don't try monitor & cache any recursive reuse of
2772 * a monitored CR3 page. Because all windows versions are doing this we'll
2773 * have to be able to do combined access monitoring, CR3 + PT and
2774 * PD + PT (guest PAE).
2775 *
2776 * Update:
2777 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2778 */
2779#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2780# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2781 const bool fCanBeMonitored = true;
2782# else
2783 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2784 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2785 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2786# endif
2787# ifdef PGMPOOL_WITH_CACHE
2788 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2789# endif
2790 if (fCanBeMonitored)
2791 {
2792# ifdef PGMPOOL_WITH_MONITORING
2793 rc = pgmPoolMonitorInsert(pPool, pPage);
2794 AssertRC(rc);
2795 }
2796# endif
2797#endif /* PGMPOOL_WITH_MONITORING */
2798 return rc;
2799}
2800
2801
2802# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2803/**
2804 * Adds a user reference to a page.
2805 *
2806 * This will move the page to the head of the
2807 *
2808 * @returns VBox status code.
2809 * @retval VINF_SUCCESS if successfully added.
2810 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2811 * @param pPool The pool.
2812 * @param pPage The cached page.
2813 * @param iUser The user index.
2814 * @param iUserTable The user table.
2815 */
2816static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2817{
2818 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2819
2820 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2821
2822# ifdef VBOX_STRICT
2823 /*
2824 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2825 */
2826 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2827 {
2828 uint16_t i = pPage->iUserHead;
2829 do
2830 {
2831 Assert(i < pPool->cMaxUsers);
2832 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2833 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2834 i = paUsers[i].iNext;
2835 } while (i != NIL_PGMPOOL_USER_INDEX);
2836 }
2837# endif
2838
2839 /*
2840 * Allocate a user node.
2841 */
2842 uint16_t i = pPool->iUserFreeHead;
2843 if (i == NIL_PGMPOOL_USER_INDEX)
2844 {
2845 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2846 if (RT_FAILURE(rc))
2847 return rc;
2848 i = pPool->iUserFreeHead;
2849 }
2850 pPool->iUserFreeHead = paUsers[i].iNext;
2851
2852 /*
2853 * Initialize the user node and insert it.
2854 */
2855 paUsers[i].iNext = pPage->iUserHead;
2856 paUsers[i].iUser = iUser;
2857 paUsers[i].iUserTable = iUserTable;
2858 pPage->iUserHead = i;
2859
2860# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2861 if (pPage->fDirty)
2862 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirty, true /* force removal */);
2863# endif
2864
2865# ifdef PGMPOOL_WITH_CACHE
2866 /*
2867 * Tell the cache to update its replacement stats for this page.
2868 */
2869 pgmPoolCacheUsed(pPool, pPage);
2870# endif
2871 return VINF_SUCCESS;
2872}
2873# endif /* PGMPOOL_WITH_CACHE */
2874
2875
2876/**
2877 * Frees a user record associated with a page.
2878 *
2879 * This does not clear the entry in the user table, it simply replaces the
2880 * user record to the chain of free records.
2881 *
2882 * @param pPool The pool.
2883 * @param HCPhys The HC physical address of the shadow page.
2884 * @param iUser The shadow page pool index of the user table.
2885 * @param iUserTable The index into the user table (shadowed).
2886 */
2887static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2888{
2889 /*
2890 * Unlink and free the specified user entry.
2891 */
2892 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2893
2894 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2895 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2896 uint16_t i = pPage->iUserHead;
2897 if ( i != NIL_PGMPOOL_USER_INDEX
2898 && paUsers[i].iUser == iUser
2899 && paUsers[i].iUserTable == iUserTable)
2900 {
2901 pPage->iUserHead = paUsers[i].iNext;
2902
2903 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2904 paUsers[i].iNext = pPool->iUserFreeHead;
2905 pPool->iUserFreeHead = i;
2906 return;
2907 }
2908
2909 /* General: Linear search. */
2910 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2911 while (i != NIL_PGMPOOL_USER_INDEX)
2912 {
2913 if ( paUsers[i].iUser == iUser
2914 && paUsers[i].iUserTable == iUserTable)
2915 {
2916 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2917 paUsers[iPrev].iNext = paUsers[i].iNext;
2918 else
2919 pPage->iUserHead = paUsers[i].iNext;
2920
2921 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2922 paUsers[i].iNext = pPool->iUserFreeHead;
2923 pPool->iUserFreeHead = i;
2924 return;
2925 }
2926 iPrev = i;
2927 i = paUsers[i].iNext;
2928 }
2929
2930 /* Fatal: didn't find it */
2931 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2932 iUser, iUserTable, pPage->GCPhys));
2933}
2934
2935
2936/**
2937 * Gets the entry size of a shadow table.
2938 *
2939 * @param enmKind The kind of page.
2940 *
2941 * @returns The size of the entry in bytes. That is, 4 or 8.
2942 * @returns If the kind is not for a table, an assertion is raised and 0 is
2943 * returned.
2944 */
2945DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2946{
2947 switch (enmKind)
2948 {
2949 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2950 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2951 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2952 case PGMPOOLKIND_32BIT_PD:
2953 case PGMPOOLKIND_32BIT_PD_PHYS:
2954 return 4;
2955
2956 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2957 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2958 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2959 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2960 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2961 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2962 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2963 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2964 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2965 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2966 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2967 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2968 case PGMPOOLKIND_64BIT_PML4:
2969 case PGMPOOLKIND_PAE_PDPT:
2970 case PGMPOOLKIND_ROOT_NESTED:
2971 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2972 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2973 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2974 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2975 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2976 case PGMPOOLKIND_PAE_PD_PHYS:
2977 case PGMPOOLKIND_PAE_PDPT_PHYS:
2978 return 8;
2979
2980 default:
2981 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2982 }
2983}
2984
2985
2986/**
2987 * Gets the entry size of a guest table.
2988 *
2989 * @param enmKind The kind of page.
2990 *
2991 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2992 * @returns If the kind is not for a table, an assertion is raised and 0 is
2993 * returned.
2994 */
2995DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2996{
2997 switch (enmKind)
2998 {
2999 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3000 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3001 case PGMPOOLKIND_32BIT_PD:
3002 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3003 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3004 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3005 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3006 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3007 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3008 return 4;
3009
3010 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3011 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3012 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3013 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3014 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3015 case PGMPOOLKIND_64BIT_PML4:
3016 case PGMPOOLKIND_PAE_PDPT:
3017 return 8;
3018
3019 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3020 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3021 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3022 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3023 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3024 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3025 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3026 case PGMPOOLKIND_ROOT_NESTED:
3027 case PGMPOOLKIND_PAE_PD_PHYS:
3028 case PGMPOOLKIND_PAE_PDPT_PHYS:
3029 case PGMPOOLKIND_32BIT_PD_PHYS:
3030 /** @todo can we return 0? (nobody is calling this...) */
3031 AssertFailed();
3032 return 0;
3033
3034 default:
3035 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3036 }
3037}
3038
3039#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3040
3041/**
3042 * Scans one shadow page table for mappings of a physical page.
3043 *
3044 * @param pVM The VM handle.
3045 * @param pPhysPage The guest page in question.
3046 * @param iShw The shadow page table.
3047 * @param cRefs The number of references made in that PT.
3048 */
3049static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
3050{
3051 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
3052 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3053
3054 /*
3055 * Assert sanity.
3056 */
3057 Assert(cRefs == 1);
3058 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
3059 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
3060
3061 /*
3062 * Then, clear the actual mappings to the page in the shadow PT.
3063 */
3064 switch (pPage->enmKind)
3065 {
3066 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3067 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3068 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3069 {
3070 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3071 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3072 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3073 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3074 {
3075 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
3076 pPT->a[i].u = 0;
3077 cRefs--;
3078 if (!cRefs)
3079 return;
3080 }
3081#ifdef LOG_ENABLED
3082 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3083 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3084 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3085 {
3086 Log(("i=%d cRefs=%d\n", i, cRefs--));
3087 }
3088#endif
3089 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3090 break;
3091 }
3092
3093 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3094 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3095 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3096 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3097 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3098 {
3099 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3100 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3101 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3102 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3103 {
3104 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
3105 pPT->a[i].u = 0;
3106 cRefs--;
3107 if (!cRefs)
3108 return;
3109 }
3110#ifdef LOG_ENABLED
3111 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3112 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3113 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3114 {
3115 Log(("i=%d cRefs=%d\n", i, cRefs--));
3116 }
3117#endif
3118 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
3119 break;
3120 }
3121
3122 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3123 {
3124 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3125 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3126 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3127 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
3128 {
3129 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
3130 pPT->a[i].u = 0;
3131 cRefs--;
3132 if (!cRefs)
3133 return;
3134 }
3135#ifdef LOG_ENABLED
3136 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3137 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3138 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
3139 {
3140 Log(("i=%d cRefs=%d\n", i, cRefs--));
3141 }
3142#endif
3143 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3144 break;
3145 }
3146
3147 default:
3148 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
3149 }
3150}
3151
3152
3153/**
3154 * Scans one shadow page table for mappings of a physical page.
3155 *
3156 * @param pVM The VM handle.
3157 * @param pPhysPage The guest page in question.
3158 * @param iShw The shadow page table.
3159 * @param cRefs The number of references made in that PT.
3160 */
3161void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
3162{
3163 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3164 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
3165 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
3166 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
3167 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3168 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
3169}
3170
3171
3172/**
3173 * Flushes a list of shadow page tables mapping the same physical page.
3174 *
3175 * @param pVM The VM handle.
3176 * @param pPhysPage The guest page in question.
3177 * @param iPhysExt The physical cross reference extent list to flush.
3178 */
3179void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
3180{
3181 Assert(PGMIsLockOwner(pVM));
3182 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3183 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
3184 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
3185
3186 const uint16_t iPhysExtStart = iPhysExt;
3187 PPGMPOOLPHYSEXT pPhysExt;
3188 do
3189 {
3190 Assert(iPhysExt < pPool->cMaxPhysExts);
3191 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3192 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3193 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
3194 {
3195 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
3196 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3197 }
3198
3199 /* next */
3200 iPhysExt = pPhysExt->iNext;
3201 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3202
3203 /* insert the list into the free list and clear the ram range entry. */
3204 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3205 pPool->iPhysExtFreeHead = iPhysExtStart;
3206 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3207
3208 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
3209}
3210
3211#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3212
3213/**
3214 * Flushes all shadow page table mappings of the given guest page.
3215 *
3216 * This is typically called when the host page backing the guest one has been
3217 * replaced or when the page protection was changed due to an access handler.
3218 *
3219 * @returns VBox status code.
3220 * @retval VINF_SUCCESS if all references has been successfully cleared.
3221 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
3222 * pool cleaning. FF and sync flags are set.
3223 *
3224 * @param pVM The VM handle.
3225 * @param pPhysPage The guest page in question.
3226 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
3227 * flushed, it is NOT touched if this isn't necessary.
3228 * The caller MUST initialized this to @a false.
3229 */
3230int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
3231{
3232 PVMCPU pVCpu = VMMGetCpu(pVM);
3233 pgmLock(pVM);
3234 int rc = VINF_SUCCESS;
3235#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3236 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
3237 if (u16)
3238 {
3239 /*
3240 * The zero page is currently screwing up the tracking and we'll
3241 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3242 * is defined, zero pages won't normally be mapped. Some kind of solution
3243 * will be needed for this problem of course, but it will have to wait...
3244 */
3245 if (PGM_PAGE_IS_ZERO(pPhysPage))
3246 rc = VINF_PGM_GCPHYS_ALIASED;
3247 else
3248 {
3249# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3250 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
3251 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
3252 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3253# endif
3254
3255 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3256 pgmPoolTrackFlushGCPhysPT(pVM,
3257 pPhysPage,
3258 PGMPOOL_TD_GET_IDX(u16),
3259 PGMPOOL_TD_GET_CREFS(u16));
3260 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3261 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
3262 else
3263 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3264 *pfFlushTLBs = true;
3265
3266# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3267 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3268# endif
3269 }
3270 }
3271
3272#elif defined(PGMPOOL_WITH_CACHE)
3273 if (PGM_PAGE_IS_ZERO(pPhysPage))
3274 rc = VINF_PGM_GCPHYS_ALIASED;
3275 else
3276 {
3277# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3278 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kills the pool otherwise. */
3279 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3280# endif
3281 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3282 if (rc == VINF_SUCCESS)
3283 *pfFlushTLBs = true;
3284 }
3285
3286# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3287 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3288# endif
3289
3290#else
3291 rc = VINF_PGM_GCPHYS_ALIASED;
3292#endif
3293
3294 if (rc == VINF_PGM_GCPHYS_ALIASED)
3295 {
3296 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3297 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3298 rc = VINF_PGM_SYNC_CR3;
3299 }
3300 pgmUnlock(pVM);
3301 return rc;
3302}
3303
3304
3305/**
3306 * Scans all shadow page tables for mappings of a physical page.
3307 *
3308 * This may be slow, but it's most likely more efficient than cleaning
3309 * out the entire page pool / cache.
3310 *
3311 * @returns VBox status code.
3312 * @retval VINF_SUCCESS if all references has been successfully cleared.
3313 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
3314 * a page pool cleaning.
3315 *
3316 * @param pVM The VM handle.
3317 * @param pPhysPage The guest page in question.
3318 */
3319int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
3320{
3321 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3322 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3323 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
3324 pPool->cUsedPages, pPool->cPresent, pPhysPage));
3325
3326#if 1
3327 /*
3328 * There is a limit to what makes sense.
3329 */
3330 if (pPool->cPresent > 1024)
3331 {
3332 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3333 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3334 return VINF_PGM_GCPHYS_ALIASED;
3335 }
3336#endif
3337
3338 /*
3339 * Iterate all the pages until we've encountered all that in use.
3340 * This is simple but not quite optimal solution.
3341 */
3342 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3343 const uint32_t u32 = u64;
3344 unsigned cLeft = pPool->cUsedPages;
3345 unsigned iPage = pPool->cCurPages;
3346 while (--iPage >= PGMPOOL_IDX_FIRST)
3347 {
3348 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
3349 if (pPage->GCPhys != NIL_RTGCPHYS)
3350 {
3351 switch (pPage->enmKind)
3352 {
3353 /*
3354 * We only care about shadow page tables.
3355 */
3356 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3357 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3358 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3359 {
3360 unsigned cPresent = pPage->cPresent;
3361 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3362 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3363 if (pPT->a[i].n.u1Present)
3364 {
3365 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3366 {
3367 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
3368 pPT->a[i].u = 0;
3369 }
3370 if (!--cPresent)
3371 break;
3372 }
3373 break;
3374 }
3375
3376 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3377 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3378 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3379 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3380 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3381 {
3382 unsigned cPresent = pPage->cPresent;
3383 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3384 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3385 if (pPT->a[i].n.u1Present)
3386 {
3387 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3388 {
3389 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3390 pPT->a[i].u = 0;
3391 }
3392 if (!--cPresent)
3393 break;
3394 }
3395 break;
3396 }
3397 }
3398 if (!--cLeft)
3399 break;
3400 }
3401 }
3402
3403 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3404 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3405 return VINF_SUCCESS;
3406}
3407
3408
3409/**
3410 * Clears the user entry in a user table.
3411 *
3412 * This is used to remove all references to a page when flushing it.
3413 */
3414static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
3415{
3416 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
3417 Assert(pUser->iUser < pPool->cCurPages);
3418 uint32_t iUserTable = pUser->iUserTable;
3419
3420 /*
3421 * Map the user page.
3422 */
3423 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
3424 union
3425 {
3426 uint64_t *pau64;
3427 uint32_t *pau32;
3428 } u;
3429 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
3430
3431 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
3432
3433 /* Safety precaution in case we change the paging for other modes too in the future. */
3434 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
3435
3436#ifdef VBOX_STRICT
3437 /*
3438 * Some sanity checks.
3439 */
3440 switch (pUserPage->enmKind)
3441 {
3442 case PGMPOOLKIND_32BIT_PD:
3443 case PGMPOOLKIND_32BIT_PD_PHYS:
3444 Assert(iUserTable < X86_PG_ENTRIES);
3445 break;
3446 case PGMPOOLKIND_PAE_PDPT:
3447 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3448 case PGMPOOLKIND_PAE_PDPT_PHYS:
3449 Assert(iUserTable < 4);
3450 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3451 break;
3452 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3453 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3454 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3455 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3456 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3457 case PGMPOOLKIND_PAE_PD_PHYS:
3458 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3459 break;
3460 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3461 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3462 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
3463 break;
3464 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3465 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3466 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3467 break;
3468 case PGMPOOLKIND_64BIT_PML4:
3469 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3470 /* GCPhys >> PAGE_SHIFT is the index here */
3471 break;
3472 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3473 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3474 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3475 break;
3476
3477 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3478 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3479 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3480 break;
3481
3482 case PGMPOOLKIND_ROOT_NESTED:
3483 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3484 break;
3485
3486 default:
3487 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
3488 break;
3489 }
3490#endif /* VBOX_STRICT */
3491
3492 /*
3493 * Clear the entry in the user page.
3494 */
3495 switch (pUserPage->enmKind)
3496 {
3497 /* 32-bit entries */
3498 case PGMPOOLKIND_32BIT_PD:
3499 case PGMPOOLKIND_32BIT_PD_PHYS:
3500 u.pau32[iUserTable] = 0;
3501 break;
3502
3503 /* 64-bit entries */
3504 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3505 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3506 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3507 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3508 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3509#if defined(IN_RC)
3510 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
3511 * non-present PDPT will continue to cause page faults.
3512 */
3513 ASMReloadCR3();
3514#endif
3515 /* no break */
3516 case PGMPOOLKIND_PAE_PD_PHYS:
3517 case PGMPOOLKIND_PAE_PDPT_PHYS:
3518 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3519 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3520 case PGMPOOLKIND_64BIT_PML4:
3521 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3522 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3523 case PGMPOOLKIND_PAE_PDPT:
3524 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3525 case PGMPOOLKIND_ROOT_NESTED:
3526 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3527 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3528 u.pau64[iUserTable] = 0;
3529 break;
3530
3531 default:
3532 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
3533 }
3534}
3535
3536
3537/**
3538 * Clears all users of a page.
3539 */
3540static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3541{
3542 /*
3543 * Free all the user records.
3544 */
3545 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3546
3547 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3548 uint16_t i = pPage->iUserHead;
3549 while (i != NIL_PGMPOOL_USER_INDEX)
3550 {
3551 /* Clear enter in user table. */
3552 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3553
3554 /* Free it. */
3555 const uint16_t iNext = paUsers[i].iNext;
3556 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3557 paUsers[i].iNext = pPool->iUserFreeHead;
3558 pPool->iUserFreeHead = i;
3559
3560 /* Next. */
3561 i = iNext;
3562 }
3563 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3564}
3565
3566#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3567
3568/**
3569 * Allocates a new physical cross reference extent.
3570 *
3571 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3572 * @param pVM The VM handle.
3573 * @param piPhysExt Where to store the phys ext index.
3574 */
3575PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3576{
3577 Assert(PGMIsLockOwner(pVM));
3578 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3579 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3580 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3581 {
3582 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3583 return NULL;
3584 }
3585 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3586 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3587 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3588 *piPhysExt = iPhysExt;
3589 return pPhysExt;
3590}
3591
3592
3593/**
3594 * Frees a physical cross reference extent.
3595 *
3596 * @param pVM The VM handle.
3597 * @param iPhysExt The extent to free.
3598 */
3599void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3600{
3601 Assert(PGMIsLockOwner(pVM));
3602 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3603 Assert(iPhysExt < pPool->cMaxPhysExts);
3604 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3605 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3606 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3607 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3608 pPool->iPhysExtFreeHead = iPhysExt;
3609}
3610
3611
3612/**
3613 * Frees a physical cross reference extent.
3614 *
3615 * @param pVM The VM handle.
3616 * @param iPhysExt The extent to free.
3617 */
3618void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3619{
3620 Assert(PGMIsLockOwner(pVM));
3621 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3622
3623 const uint16_t iPhysExtStart = iPhysExt;
3624 PPGMPOOLPHYSEXT pPhysExt;
3625 do
3626 {
3627 Assert(iPhysExt < pPool->cMaxPhysExts);
3628 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3629 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3630 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3631
3632 /* next */
3633 iPhysExt = pPhysExt->iNext;
3634 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3635
3636 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3637 pPool->iPhysExtFreeHead = iPhysExtStart;
3638}
3639
3640
3641/**
3642 * Insert a reference into a list of physical cross reference extents.
3643 *
3644 * @returns The new tracking data for PGMPAGE.
3645 *
3646 * @param pVM The VM handle.
3647 * @param iPhysExt The physical extent index of the list head.
3648 * @param iShwPT The shadow page table index.
3649 *
3650 */
3651static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3652{
3653 Assert(PGMIsLockOwner(pVM));
3654 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3655 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3656
3657 /* special common case. */
3658 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3659 {
3660 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3661 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3662 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d}\n", iPhysExt, iShwPT));
3663 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3664 }
3665
3666 /* general treatment. */
3667 const uint16_t iPhysExtStart = iPhysExt;
3668 unsigned cMax = 15;
3669 for (;;)
3670 {
3671 Assert(iPhysExt < pPool->cMaxPhysExts);
3672 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3673 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3674 {
3675 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3676 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3677 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3678 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3679 }
3680 if (!--cMax)
3681 {
3682 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3683 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3684 LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
3685 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3686 }
3687 }
3688
3689 /* add another extent to the list. */
3690 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3691 if (!pNew)
3692 {
3693 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3694 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3695 LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
3696 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3697 }
3698 pNew->iNext = iPhysExtStart;
3699 pNew->aidx[0] = iShwPT;
3700 LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3701 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3702}
3703
3704
3705/**
3706 * Add a reference to guest physical page where extents are in use.
3707 *
3708 * @returns The new tracking data for PGMPAGE.
3709 *
3710 * @param pVM The VM handle.
3711 * @param u16 The ram range flags (top 16-bits).
3712 * @param iShwPT The shadow page table index.
3713 */
3714uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3715{
3716 pgmLock(pVM);
3717 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3718 {
3719 /*
3720 * Convert to extent list.
3721 */
3722 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3723 uint16_t iPhysExt;
3724 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3725 if (pPhysExt)
3726 {
3727 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3728 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3729 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3730 pPhysExt->aidx[1] = iShwPT;
3731 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3732 }
3733 else
3734 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3735 }
3736 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3737 {
3738 /*
3739 * Insert into the extent list.
3740 */
3741 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3742 }
3743 else
3744 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3745 pgmUnlock(pVM);
3746 return u16;
3747}
3748
3749
3750/**
3751 * Clear references to guest physical memory.
3752 *
3753 * @param pPool The pool.
3754 * @param pPage The page.
3755 * @param pPhysPage Pointer to the aPages entry in the ram range.
3756 */
3757void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3758{
3759 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3760 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3761
3762 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3763 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3764 {
3765 PVM pVM = pPool->CTX_SUFF(pVM);
3766 pgmLock(pVM);
3767
3768 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3769 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3770 do
3771 {
3772 Assert(iPhysExt < pPool->cMaxPhysExts);
3773
3774 /*
3775 * Look for the shadow page and check if it's all freed.
3776 */
3777 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3778 {
3779 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3780 {
3781 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3782
3783 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3784 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3785 {
3786 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3787 pgmUnlock(pVM);
3788 return;
3789 }
3790
3791 /* we can free the node. */
3792 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3793 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3794 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3795 {
3796 /* lonely node */
3797 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3798 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3799 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3800 }
3801 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3802 {
3803 /* head */
3804 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3805 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3806 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3807 }
3808 else
3809 {
3810 /* in list */
3811 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3812 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3813 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3814 }
3815 iPhysExt = iPhysExtNext;
3816 pgmUnlock(pVM);
3817 return;
3818 }
3819 }
3820
3821 /* next */
3822 iPhysExtPrev = iPhysExt;
3823 iPhysExt = paPhysExts[iPhysExt].iNext;
3824 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3825
3826 pgmUnlock(pVM);
3827 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3828 }
3829 else /* nothing to do */
3830 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3831}
3832
3833
3834/**
3835 * Clear references to guest physical memory.
3836 *
3837 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3838 * is assumed to be correct, so the linear search can be skipped and we can assert
3839 * at an earlier point.
3840 *
3841 * @param pPool The pool.
3842 * @param pPage The page.
3843 * @param HCPhys The host physical address corresponding to the guest page.
3844 * @param GCPhys The guest physical address corresponding to HCPhys.
3845 */
3846static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3847{
3848 /*
3849 * Walk range list.
3850 */
3851 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3852 while (pRam)
3853 {
3854 RTGCPHYS off = GCPhys - pRam->GCPhys;
3855 if (off < pRam->cb)
3856 {
3857 /* does it match? */
3858 const unsigned iPage = off >> PAGE_SHIFT;
3859 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3860#ifdef LOG_ENABLED
3861RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3862Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3863#endif
3864 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3865 {
3866 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3867 return;
3868 }
3869 break;
3870 }
3871 pRam = pRam->CTX_SUFF(pNext);
3872 }
3873 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3874}
3875
3876
3877/**
3878 * Clear references to guest physical memory.
3879 *
3880 * @param pPool The pool.
3881 * @param pPage The page.
3882 * @param HCPhys The host physical address corresponding to the guest page.
3883 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3884 */
3885void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3886{
3887 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3888
3889 /*
3890 * Walk range list.
3891 */
3892 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3893 while (pRam)
3894 {
3895 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3896 if (off < pRam->cb)
3897 {
3898 /* does it match? */
3899 const unsigned iPage = off >> PAGE_SHIFT;
3900 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3901 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3902 {
3903 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3904 return;
3905 }
3906 break;
3907 }
3908 pRam = pRam->CTX_SUFF(pNext);
3909 }
3910
3911 /*
3912 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3913 */
3914 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3915 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3916 while (pRam)
3917 {
3918 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3919 while (iPage-- > 0)
3920 {
3921 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3922 {
3923 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3924 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3925 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3926 return;
3927 }
3928 }
3929 pRam = pRam->CTX_SUFF(pNext);
3930 }
3931
3932 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3933}
3934
3935
3936/**
3937 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3938 *
3939 * @param pPool The pool.
3940 * @param pPage The page.
3941 * @param pShwPT The shadow page table (mapping of the page).
3942 * @param pGstPT The guest page table.
3943 */
3944DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3945{
3946 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3947 if (pShwPT->a[i].n.u1Present)
3948 {
3949 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3950 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3951 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3952 if (!--pPage->cPresent)
3953 break;
3954 }
3955}
3956
3957
3958/**
3959 * Clear references to guest physical memory in a PAE / 32-bit page table.
3960 *
3961 * @param pPool The pool.
3962 * @param pPage The page.
3963 * @param pShwPT The shadow page table (mapping of the page).
3964 * @param pGstPT The guest page table (just a half one).
3965 */
3966DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3967{
3968 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3969 if (pShwPT->a[i].n.u1Present)
3970 {
3971 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3972 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3973 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3974 }
3975}
3976
3977
3978/**
3979 * Clear references to guest physical memory in a PAE / PAE page table.
3980 *
3981 * @param pPool The pool.
3982 * @param pPage The page.
3983 * @param pShwPT The shadow page table (mapping of the page).
3984 * @param pGstPT The guest page table.
3985 */
3986DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3987{
3988 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3989 if (pShwPT->a[i].n.u1Present)
3990 {
3991 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3992 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3993 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3994 }
3995}
3996
3997
3998/**
3999 * Clear references to guest physical memory in a 32-bit / 4MB page table.
4000 *
4001 * @param pPool The pool.
4002 * @param pPage The page.
4003 * @param pShwPT The shadow page table (mapping of the page).
4004 */
4005DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
4006{
4007 RTGCPHYS GCPhys = pPage->GCPhys;
4008 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4009 if (pShwPT->a[i].n.u1Present)
4010 {
4011 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
4012 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
4013 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
4014 }
4015}
4016
4017
4018/**
4019 * Clear references to guest physical memory in a PAE / 2/4MB page table.
4020 *
4021 * @param pPool The pool.
4022 * @param pPage The page.
4023 * @param pShwPT The shadow page table (mapping of the page).
4024 */
4025DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
4026{
4027 RTGCPHYS GCPhys = pPage->GCPhys;
4028 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4029 if (pShwPT->a[i].n.u1Present)
4030 {
4031 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
4032 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
4033 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
4034 }
4035}
4036
4037#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
4038
4039
4040/**
4041 * Clear references to shadowed pages in a 32 bits page directory.
4042 *
4043 * @param pPool The pool.
4044 * @param pPage The page.
4045 * @param pShwPD The shadow page directory (mapping of the page).
4046 */
4047DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
4048{
4049 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4050 {
4051 if ( pShwPD->a[i].n.u1Present
4052 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
4053 )
4054 {
4055 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
4056 if (pSubPage)
4057 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4058 else
4059 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
4060 }
4061 }
4062}
4063
4064/**
4065 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
4066 *
4067 * @param pPool The pool.
4068 * @param pPage The page.
4069 * @param pShwPD The shadow page directory (mapping of the page).
4070 */
4071DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
4072{
4073 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4074 {
4075 if ( pShwPD->a[i].n.u1Present
4076 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
4077 )
4078 {
4079 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
4080 if (pSubPage)
4081 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4082 else
4083 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
4084 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4085 }
4086 }
4087}
4088
4089/**
4090 * Clear references to shadowed pages in a PAE page directory pointer table.
4091 *
4092 * @param pPool The pool.
4093 * @param pPage The page.
4094 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4095 */
4096DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4097{
4098 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4099 {
4100 if ( pShwPDPT->a[i].n.u1Present
4101 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
4102 )
4103 {
4104 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
4105 if (pSubPage)
4106 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4107 else
4108 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
4109 }
4110 }
4111}
4112
4113
4114/**
4115 * Clear references to shadowed pages in a 64-bit page directory pointer table.
4116 *
4117 * @param pPool The pool.
4118 * @param pPage The page.
4119 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4120 */
4121DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4122{
4123 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4124 {
4125 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
4126 if (pShwPDPT->a[i].n.u1Present)
4127 {
4128 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
4129 if (pSubPage)
4130 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4131 else
4132 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
4133 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4134 }
4135 }
4136}
4137
4138
4139/**
4140 * Clear references to shadowed pages in a 64-bit level 4 page table.
4141 *
4142 * @param pPool The pool.
4143 * @param pPage The page.
4144 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4145 */
4146DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
4147{
4148 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
4149 {
4150 if (pShwPML4->a[i].n.u1Present)
4151 {
4152 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
4153 if (pSubPage)
4154 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4155 else
4156 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
4157 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4158 }
4159 }
4160}
4161
4162
4163/**
4164 * Clear references to shadowed pages in an EPT page table.
4165 *
4166 * @param pPool The pool.
4167 * @param pPage The page.
4168 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4169 */
4170DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
4171{
4172 RTGCPHYS GCPhys = pPage->GCPhys;
4173 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4174 if (pShwPT->a[i].n.u1Present)
4175 {
4176 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
4177 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
4178 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
4179 }
4180}
4181
4182
4183/**
4184 * Clear references to shadowed pages in an EPT page directory.
4185 *
4186 * @param pPool The pool.
4187 * @param pPage The page.
4188 * @param pShwPD The shadow page directory (mapping of the page).
4189 */
4190DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
4191{
4192 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4193 {
4194 if (pShwPD->a[i].n.u1Present)
4195 {
4196 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
4197 if (pSubPage)
4198 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4199 else
4200 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
4201 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4202 }
4203 }
4204}
4205
4206
4207/**
4208 * Clear references to shadowed pages in an EPT page directory pointer table.
4209 *
4210 * @param pPool The pool.
4211 * @param pPage The page.
4212 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4213 */
4214DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
4215{
4216 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4217 {
4218 if (pShwPDPT->a[i].n.u1Present)
4219 {
4220 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
4221 if (pSubPage)
4222 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4223 else
4224 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
4225 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4226 }
4227 }
4228}
4229
4230
4231/**
4232 * Clears all references made by this page.
4233 *
4234 * This includes other shadow pages and GC physical addresses.
4235 *
4236 * @param pPool The pool.
4237 * @param pPage The page.
4238 */
4239static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4240{
4241 /*
4242 * Map the shadow page and take action according to the page kind.
4243 */
4244 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
4245 switch (pPage->enmKind)
4246 {
4247#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4248 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4249 {
4250 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4251 void *pvGst;
4252 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4253 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
4254 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4255 break;
4256 }
4257
4258 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4259 {
4260 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4261 void *pvGst;
4262 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4263 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
4264 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4265 break;
4266 }
4267
4268 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4269 {
4270 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4271 void *pvGst;
4272 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4273 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
4274 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4275 break;
4276 }
4277
4278 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
4279 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4280 {
4281 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4282 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
4283 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4284 break;
4285 }
4286
4287 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
4288 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4289 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4290 {
4291 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4292 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
4293 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4294 break;
4295 }
4296
4297#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
4298 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4299 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4300 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4301 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4302 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4303 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4304 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4305 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4306 break;
4307#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
4308
4309 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4310 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4311 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4312 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4313 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4314 case PGMPOOLKIND_PAE_PD_PHYS:
4315 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4316 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4317 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
4318 break;
4319
4320 case PGMPOOLKIND_32BIT_PD_PHYS:
4321 case PGMPOOLKIND_32BIT_PD:
4322 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
4323 break;
4324
4325 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4326 case PGMPOOLKIND_PAE_PDPT:
4327 case PGMPOOLKIND_PAE_PDPT_PHYS:
4328 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
4329 break;
4330
4331 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4332 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4333 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
4334 break;
4335
4336 case PGMPOOLKIND_64BIT_PML4:
4337 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
4338 break;
4339
4340 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4341 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
4342 break;
4343
4344 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4345 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
4346 break;
4347
4348 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4349 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
4350 break;
4351
4352 default:
4353 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
4354 }
4355
4356 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
4357 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4358 ASMMemZeroPage(pvShw);
4359 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4360 pPage->fZeroed = true;
4361 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
4362}
4363#endif /* PGMPOOL_WITH_USER_TRACKING */
4364
4365/**
4366 * Flushes a pool page.
4367 *
4368 * This moves the page to the free list after removing all user references to it.
4369 *
4370 * @returns VBox status code.
4371 * @retval VINF_SUCCESS on success.
4372 * @param pPool The pool.
4373 * @param HCPhys The HC physical address of the shadow page.
4374 */
4375int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4376{
4377 PVM pVM = pPool->CTX_SUFF(pVM);
4378
4379 int rc = VINF_SUCCESS;
4380 STAM_PROFILE_START(&pPool->StatFlushPage, f);
4381 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
4382 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
4383
4384 /*
4385 * Quietly reject any attempts at flushing any of the special root pages.
4386 */
4387 if (pPage->idx < PGMPOOL_IDX_FIRST)
4388 {
4389 AssertFailed(); /* can no longer happen */
4390 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4391 return VINF_SUCCESS;
4392 }
4393
4394 pgmLock(pVM);
4395
4396 /*
4397 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4398 */
4399 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
4400 {
4401 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4402 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4403 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4404 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4405 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4406 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4407 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4408 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4409 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
4410 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
4411 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4412 pgmUnlock(pVM);
4413 return VINF_SUCCESS;
4414 }
4415
4416#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4417 /* Start a subset so we won't run out of mapping space. */
4418 PVMCPU pVCpu = VMMGetCpu(pVM);
4419 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
4420#endif
4421
4422 /*
4423 * Mark the page as being in need of an ASMMemZeroPage().
4424 */
4425 pPage->fZeroed = false;
4426
4427#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4428 if (pPage->fDirty)
4429 pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirty, true /* force removal */);
4430#endif
4431
4432#ifdef PGMPOOL_WITH_USER_TRACKING
4433 /*
4434 * Clear the page.
4435 */
4436 pgmPoolTrackClearPageUsers(pPool, pPage);
4437 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4438 pgmPoolTrackDeref(pPool, pPage);
4439 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4440#endif
4441
4442#ifdef PGMPOOL_WITH_CACHE
4443 /*
4444 * Flush it from the cache.
4445 */
4446 pgmPoolCacheFlushPage(pPool, pPage);
4447#endif /* PGMPOOL_WITH_CACHE */
4448
4449#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4450 /* Heavy stuff done. */
4451 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
4452#endif
4453
4454#ifdef PGMPOOL_WITH_MONITORING
4455 /*
4456 * Deregistering the monitoring.
4457 */
4458 if (pPage->fMonitored)
4459 rc = pgmPoolMonitorFlush(pPool, pPage);
4460#endif
4461
4462 /*
4463 * Free the page.
4464 */
4465 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4466 pPage->iNext = pPool->iFreeHead;
4467 pPool->iFreeHead = pPage->idx;
4468 pPage->enmKind = PGMPOOLKIND_FREE;
4469 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4470 pPage->GCPhys = NIL_RTGCPHYS;
4471 pPage->fReusedFlushPending = false;
4472
4473 pPool->cUsedPages--;
4474 pgmUnlock(pVM);
4475 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4476 return rc;
4477}
4478
4479
4480/**
4481 * Frees a usage of a pool page.
4482 *
4483 * The caller is responsible to updating the user table so that it no longer
4484 * references the shadow page.
4485 *
4486 * @param pPool The pool.
4487 * @param HCPhys The HC physical address of the shadow page.
4488 * @param iUser The shadow page pool index of the user table.
4489 * @param iUserTable The index into the user table (shadowed).
4490 */
4491void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4492{
4493 PVM pVM = pPool->CTX_SUFF(pVM);
4494
4495 STAM_PROFILE_START(&pPool->StatFree, a);
4496 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
4497 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4498 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
4499 pgmLock(pVM);
4500#ifdef PGMPOOL_WITH_USER_TRACKING
4501 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4502#endif
4503#ifdef PGMPOOL_WITH_CACHE
4504 if (!pPage->fCached)
4505#endif
4506 pgmPoolFlushPage(pPool, pPage);
4507 pgmUnlock(pVM);
4508 STAM_PROFILE_STOP(&pPool->StatFree, a);
4509}
4510
4511
4512/**
4513 * Makes one or more free page free.
4514 *
4515 * @returns VBox status code.
4516 * @retval VINF_SUCCESS on success.
4517 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4518 *
4519 * @param pPool The pool.
4520 * @param enmKind Page table kind
4521 * @param iUser The user of the page.
4522 */
4523static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4524{
4525 PVM pVM = pPool->CTX_SUFF(pVM);
4526
4527 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
4528
4529 /*
4530 * If the pool isn't full grown yet, expand it.
4531 */
4532 if ( pPool->cCurPages < pPool->cMaxPages
4533#if defined(IN_RC)
4534 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
4535 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4536 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
4537#endif
4538 )
4539 {
4540 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4541#ifdef IN_RING3
4542 int rc = PGMR3PoolGrow(pVM);
4543#else
4544 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0);
4545#endif
4546 if (RT_FAILURE(rc))
4547 return rc;
4548 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4549 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4550 return VINF_SUCCESS;
4551 }
4552
4553#ifdef PGMPOOL_WITH_CACHE
4554 /*
4555 * Free one cached page.
4556 */
4557 return pgmPoolCacheFreeOne(pPool, iUser);
4558#else
4559 /*
4560 * Flush the pool.
4561 *
4562 * If we have tracking enabled, it should be possible to come up with
4563 * a cheap replacement strategy...
4564 */
4565 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4566 AssertCompileFailed();
4567 Assert(!CPUMIsGuestInLongMode(pVM));
4568 pgmPoolFlushAllInt(pPool);
4569 return VERR_PGM_POOL_FLUSHED;
4570#endif
4571}
4572
4573/**
4574 * Allocates a page from the pool.
4575 *
4576 * This page may actually be a cached page and not in need of any processing
4577 * on the callers part.
4578 *
4579 * @returns VBox status code.
4580 * @retval VINF_SUCCESS if a NEW page was allocated.
4581 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4582 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4583 * @param pVM The VM handle.
4584 * @param GCPhys The GC physical address of the page we're gonna shadow.
4585 * For 4MB and 2MB PD entries, it's the first address the
4586 * shadow PT is covering.
4587 * @param enmKind The kind of mapping.
4588 * @param enmAccess Access type for the mapping (only relevant for big pages)
4589 * @param iUser The shadow page pool index of the user table.
4590 * @param iUserTable The index into the user table (shadowed).
4591 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4592 * @param fLockPage Lock the page
4593 */
4594int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage, bool fLockPage)
4595{
4596 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4597 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4598 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4599 *ppPage = NULL;
4600 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4601 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4602 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
4603
4604 pgmLock(pVM);
4605
4606#ifdef PGMPOOL_WITH_CACHE
4607 if (pPool->fCacheEnabled)
4608 {
4609 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, iUser, iUserTable, ppPage);
4610 if (RT_SUCCESS(rc2))
4611 {
4612 if (fLockPage)
4613 pgmPoolLockPage(pPool, *ppPage);
4614 pgmUnlock(pVM);
4615 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4616 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4617 return rc2;
4618 }
4619 }
4620#endif
4621
4622 /*
4623 * Allocate a new one.
4624 */
4625 int rc = VINF_SUCCESS;
4626 uint16_t iNew = pPool->iFreeHead;
4627 if (iNew == NIL_PGMPOOL_IDX)
4628 {
4629 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4630 if (RT_FAILURE(rc))
4631 {
4632 pgmUnlock(pVM);
4633 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4634 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4635 return rc;
4636 }
4637 iNew = pPool->iFreeHead;
4638 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4639 }
4640
4641 /* unlink the free head */
4642 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4643 pPool->iFreeHead = pPage->iNext;
4644 pPage->iNext = NIL_PGMPOOL_IDX;
4645
4646 /*
4647 * Initialize it.
4648 */
4649 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4650 pPage->enmKind = enmKind;
4651 pPage->enmAccess = enmAccess;
4652 pPage->GCPhys = GCPhys;
4653 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4654 pPage->fMonitored = false;
4655 pPage->fCached = false;
4656#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4657 pPage->fDirty = false;
4658#endif
4659 pPage->fReusedFlushPending = false;
4660#ifdef PGMPOOL_WITH_MONITORING
4661 pPage->cModifications = 0;
4662 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4663 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4664#else
4665 pPage->fCR3Mix = false;
4666#endif
4667#ifdef PGMPOOL_WITH_USER_TRACKING
4668 pPage->cPresent = 0;
4669 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
4670 pPage->pvLastAccessHandlerFault = 0;
4671 pPage->cLastAccessHandlerCount = 0;
4672 pPage->pvLastAccessHandlerRip = 0;
4673
4674 /*
4675 * Insert into the tracking and cache. If this fails, free the page.
4676 */
4677 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4678 if (RT_FAILURE(rc3))
4679 {
4680 pPool->cUsedPages--;
4681 pPage->enmKind = PGMPOOLKIND_FREE;
4682 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4683 pPage->GCPhys = NIL_RTGCPHYS;
4684 pPage->iNext = pPool->iFreeHead;
4685 pPool->iFreeHead = pPage->idx;
4686 pgmUnlock(pVM);
4687 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4688 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4689 return rc3;
4690 }
4691#endif /* PGMPOOL_WITH_USER_TRACKING */
4692
4693 /*
4694 * Commit the allocation, clear the page and return.
4695 */
4696#ifdef VBOX_WITH_STATISTICS
4697 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4698 pPool->cUsedPagesHigh = pPool->cUsedPages;
4699#endif
4700
4701 if (!pPage->fZeroed)
4702 {
4703 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4704 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4705 ASMMemZeroPage(pv);
4706 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4707 }
4708
4709 *ppPage = pPage;
4710 if (fLockPage)
4711 pgmPoolLockPage(pPool, pPage);
4712 pgmUnlock(pVM);
4713 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4714 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4715 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4716 return rc;
4717}
4718
4719
4720/**
4721 * Frees a usage of a pool page.
4722 *
4723 * @param pVM The VM handle.
4724 * @param HCPhys The HC physical address of the shadow page.
4725 * @param iUser The shadow page pool index of the user table.
4726 * @param iUserTable The index into the user table (shadowed).
4727 */
4728void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4729{
4730 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4731 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4732 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4733}
4734
4735/**
4736 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4737 *
4738 * @returns Pointer to the shadow page structure.
4739 * @param pPool The pool.
4740 * @param HCPhys The HC physical address of the shadow page.
4741 */
4742PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4743{
4744 PVM pVM = pPool->CTX_SUFF(pVM);
4745
4746 Assert(PGMIsLockOwner(pVM));
4747
4748 /*
4749 * Look up the page.
4750 */
4751 pgmLock(pVM);
4752 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4753 pgmUnlock(pVM);
4754
4755 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4756 return pPage;
4757}
4758
4759/**
4760 * Flush the specified page if present
4761 *
4762 * @param pVM The VM handle.
4763 * @param GCPhys Guest physical address of the page to flush
4764 */
4765VMMDECL(void) PGMPoolFlushPage(PVM pVM, RTGCPHYS GCPhys)
4766{
4767#ifdef PGMPOOL_WITH_CACHE
4768 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4769
4770 VM_ASSERT_EMT(pVM);
4771
4772 /*
4773 * Look up the GCPhys in the hash.
4774 */
4775 GCPhys = GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
4776 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
4777 if (i == NIL_PGMPOOL_IDX)
4778 return;
4779
4780 do
4781 {
4782 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4783 if (pPage->GCPhys - GCPhys < PAGE_SIZE)
4784 {
4785 switch (pPage->enmKind)
4786 {
4787 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4788 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4789 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4790 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4791 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4792 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4793 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4794 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4795 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4796 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4797 case PGMPOOLKIND_64BIT_PML4:
4798 case PGMPOOLKIND_32BIT_PD:
4799 case PGMPOOLKIND_PAE_PDPT:
4800 {
4801 Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys));
4802#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4803 if (pPage->fDirty)
4804 STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage);
4805 else
4806#endif
4807 STAM_COUNTER_INC(&pPool->StatForceFlushPage);
4808 Assert(!pgmPoolIsPageLocked(&pVM->pgm.s, pPage));
4809 pgmPoolMonitorChainFlush(pPool, pPage);
4810 return;
4811 }
4812
4813 /* ignore, no monitoring. */
4814 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4815 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4816 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4817 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4818 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4819 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4820 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4821 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4822 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4823 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4824 case PGMPOOLKIND_ROOT_NESTED:
4825 case PGMPOOLKIND_PAE_PD_PHYS:
4826 case PGMPOOLKIND_PAE_PDPT_PHYS:
4827 case PGMPOOLKIND_32BIT_PD_PHYS:
4828 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4829 break;
4830
4831 default:
4832 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
4833 }
4834 }
4835
4836 /* next */
4837 i = pPage->iNext;
4838 } while (i != NIL_PGMPOOL_IDX);
4839#endif
4840 return;
4841}
4842
4843#ifdef IN_RING3
4844/**
4845 * Flushes the entire cache.
4846 *
4847 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4848 * and execute this CR3 flush.
4849 *
4850 * @param pPool The pool.
4851 */
4852void pgmR3PoolReset(PVM pVM)
4853{
4854 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4855
4856 Assert(PGMIsLockOwner(pVM));
4857 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
4858 LogFlow(("pgmPoolFlushAllInt:\n"));
4859
4860 /*
4861 * If there are no pages in the pool, there is nothing to do.
4862 */
4863 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
4864 {
4865 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4866 return;
4867 }
4868
4869 /*
4870 * Exit the shadow mode since we're going to clear everything,
4871 * including the root page.
4872 */
4873 for (unsigned i=0;i<pVM->cCPUs;i++)
4874 {
4875 PVMCPU pVCpu = &pVM->aCpus[i];
4876 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
4877 }
4878
4879 /*
4880 * Nuke the free list and reinsert all pages into it.
4881 */
4882 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
4883 {
4884 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4885
4886 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
4887#ifdef PGMPOOL_WITH_MONITORING
4888 if (pPage->fMonitored)
4889 pgmPoolMonitorFlush(pPool, pPage);
4890 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4891 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4892 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4893 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4894 pPage->cModifications = 0;
4895#endif
4896 pPage->GCPhys = NIL_RTGCPHYS;
4897 pPage->enmKind = PGMPOOLKIND_FREE;
4898 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4899 Assert(pPage->idx == i);
4900 pPage->iNext = i + 1;
4901 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
4902 pPage->fSeenNonGlobal = false;
4903 pPage->fMonitored = false;
4904#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4905 pPage->fDirty = false;
4906#endif
4907 pPage->fCached = false;
4908 pPage->fReusedFlushPending = false;
4909#ifdef PGMPOOL_WITH_USER_TRACKING
4910 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
4911#else
4912 pPage->fCR3Mix = false;
4913#endif
4914#ifdef PGMPOOL_WITH_CACHE
4915 pPage->iAgeNext = NIL_PGMPOOL_IDX;
4916 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4917#endif
4918 pPage->cLocked = 0;
4919 }
4920 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
4921 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
4922 pPool->cUsedPages = 0;
4923
4924#ifdef PGMPOOL_WITH_USER_TRACKING
4925 /*
4926 * Zap and reinitialize the user records.
4927 */
4928 pPool->cPresent = 0;
4929 pPool->iUserFreeHead = 0;
4930 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
4931 const unsigned cMaxUsers = pPool->cMaxUsers;
4932 for (unsigned i = 0; i < cMaxUsers; i++)
4933 {
4934 paUsers[i].iNext = i + 1;
4935 paUsers[i].iUser = NIL_PGMPOOL_IDX;
4936 paUsers[i].iUserTable = 0xfffffffe;
4937 }
4938 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
4939#endif
4940
4941#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4942 /*
4943 * Clear all the GCPhys links and rebuild the phys ext free list.
4944 */
4945 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
4946 pRam;
4947 pRam = pRam->CTX_SUFF(pNext))
4948 {
4949 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4950 while (iPage-- > 0)
4951 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
4952 }
4953
4954 pPool->iPhysExtFreeHead = 0;
4955 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4956 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
4957 for (unsigned i = 0; i < cMaxPhysExts; i++)
4958 {
4959 paPhysExts[i].iNext = i + 1;
4960 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
4961 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
4962 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
4963 }
4964 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
4965#endif
4966
4967#ifdef PGMPOOL_WITH_MONITORING
4968 /*
4969 * Just zap the modified list.
4970 */
4971 pPool->cModifiedPages = 0;
4972 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
4973#endif
4974
4975#ifdef PGMPOOL_WITH_CACHE
4976 /*
4977 * Clear the GCPhys hash and the age list.
4978 */
4979 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
4980 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
4981 pPool->iAgeHead = NIL_PGMPOOL_IDX;
4982 pPool->iAgeTail = NIL_PGMPOOL_IDX;
4983#endif
4984
4985#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4986 /* Clear all dirty pages. */
4987 pPool->idxFreeDirtyPage = 0;
4988 pPool->cDirtyPages = 0;
4989 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
4990 pPool->aIdxDirtyPages[i] = NIL_PGMPOOL_IDX;
4991#endif
4992
4993 /*
4994 * Reinsert active pages into the hash and ensure monitoring chains are correct.
4995 */
4996 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
4997 {
4998 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4999 pPage->iNext = NIL_PGMPOOL_IDX;
5000#ifdef PGMPOOL_WITH_MONITORING
5001 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5002 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5003 pPage->cModifications = 0;
5004 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
5005 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
5006 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
5007 if (pPage->fMonitored)
5008 {
5009 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
5010 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
5011 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
5012 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
5013 pPool->pszAccessHandler);
5014 AssertFatalRCSuccess(rc);
5015# ifdef PGMPOOL_WITH_CACHE
5016 pgmPoolHashInsert(pPool, pPage);
5017# endif
5018 }
5019#endif
5020#ifdef PGMPOOL_WITH_USER_TRACKING
5021 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
5022#endif
5023#ifdef PGMPOOL_WITH_CACHE
5024 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
5025 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
5026#endif
5027 }
5028
5029 for (unsigned i=0;i<pVM->cCPUs;i++)
5030 {
5031 PVMCPU pVCpu = &pVM->aCpus[i];
5032 /*
5033 * Re-enter the shadowing mode and assert Sync CR3 FF.
5034 */
5035 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5036 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5037 }
5038
5039 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
5040}
5041#endif /* IN_RING3 */
5042
5043#ifdef LOG_ENABLED
5044static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
5045{
5046 switch(enmKind)
5047 {
5048 case PGMPOOLKIND_INVALID:
5049 return "PGMPOOLKIND_INVALID";
5050 case PGMPOOLKIND_FREE:
5051 return "PGMPOOLKIND_FREE";
5052 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5053 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
5054 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5055 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
5056 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5057 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
5058 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5059 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
5060 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5061 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
5062 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5063 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
5064 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5065 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
5066 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5067 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
5068 case PGMPOOLKIND_32BIT_PD:
5069 return "PGMPOOLKIND_32BIT_PD";
5070 case PGMPOOLKIND_32BIT_PD_PHYS:
5071 return "PGMPOOLKIND_32BIT_PD_PHYS";
5072 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5073 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
5074 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5075 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
5076 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5077 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
5078 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5079 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
5080 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5081 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
5082 case PGMPOOLKIND_PAE_PD_PHYS:
5083 return "PGMPOOLKIND_PAE_PD_PHYS";
5084 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5085 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
5086 case PGMPOOLKIND_PAE_PDPT:
5087 return "PGMPOOLKIND_PAE_PDPT";
5088 case PGMPOOLKIND_PAE_PDPT_PHYS:
5089 return "PGMPOOLKIND_PAE_PDPT_PHYS";
5090 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5091 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
5092 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5093 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
5094 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5095 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
5096 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5097 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
5098 case PGMPOOLKIND_64BIT_PML4:
5099 return "PGMPOOLKIND_64BIT_PML4";
5100 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5101 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
5102 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5103 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
5104 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5105 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
5106 case PGMPOOLKIND_ROOT_NESTED:
5107 return "PGMPOOLKIND_ROOT_NESTED";
5108 }
5109 return "Unknown kind!";
5110}
5111#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette