VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 27378

Last change on this file since 27378 was 27378, checked in by vboxsync, 15 years ago

pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this!

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 196.8 KB
Line 
1/* $Id: PGMAllPool.cpp 27378 2010-03-15 16:54:03Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "../PGMInternal.h"
35#include <VBox/vm.h>
36#include "../PGMInline.h"
37#include <VBox/disopcode.h>
38#include <VBox/hwacc_vmx.h>
39
40#include <VBox/log.h>
41#include <VBox/err.h>
42#include <iprt/asm.h>
43#include <iprt/string.h>
44
45
46/*******************************************************************************
47* Internal Functions *
48*******************************************************************************/
49RT_C_DECLS_BEGIN
50static void pgmPoolFlushAllInt(PPGMPOOL pPool);
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
55static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
56#ifndef IN_RING3
57DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
58#endif
59#ifdef LOG_ENABLED
60static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
61#endif
62#if defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT)
63static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT);
64#endif
65
66int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
67PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
68void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
69void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
70
71RT_C_DECLS_END
72
73
74/**
75 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
76 *
77 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
78 * @param enmKind The page kind.
79 */
80DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
81{
82 switch (enmKind)
83 {
84 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
85 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
86 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
87 return true;
88 default:
89 return false;
90 }
91}
92
93/** @def PGMPOOL_PAGE_2_LOCKED_PTR
94 * Maps a pool page pool into the current context and lock it (RC only).
95 *
96 * @returns VBox status code.
97 * @param pVM The VM handle.
98 * @param pPage The pool page.
99 *
100 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
101 * small page window employeed by that function. Be careful.
102 * @remark There is no need to assert on the result.
103 */
104#if defined(IN_RC)
105DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
106{
107 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
108
109 /* Make sure the dynamic mapping will not be reused. */
110 if (pv)
111 PGMDynLockHCPage(pVM, (uint8_t *)pv);
112
113 return pv;
114}
115#else
116# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
117#endif
118
119/** @def PGMPOOL_UNLOCK_PTR
120 * Unlock a previously locked dynamic caching (RC only).
121 *
122 * @returns VBox status code.
123 * @param pVM The VM handle.
124 * @param pPage The pool page.
125 *
126 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
127 * small page window employeed by that function. Be careful.
128 * @remark There is no need to assert on the result.
129 */
130#if defined(IN_RC)
131DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
132{
133 if (pvPage)
134 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
135}
136#else
137# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
138#endif
139
140
141/**
142 * Flushes a chain of pages sharing the same access monitor.
143 *
144 * @returns VBox status code suitable for scheduling.
145 * @param pPool The pool.
146 * @param pPage A page in the chain.
147 */
148int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
149{
150 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
151
152 /*
153 * Find the list head.
154 */
155 uint16_t idx = pPage->idx;
156 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
157 {
158 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
159 {
160 idx = pPage->iMonitoredPrev;
161 Assert(idx != pPage->idx);
162 pPage = &pPool->aPages[idx];
163 }
164 }
165
166 /*
167 * Iterate the list flushing each shadow page.
168 */
169 int rc = VINF_SUCCESS;
170 for (;;)
171 {
172 idx = pPage->iMonitoredNext;
173 Assert(idx != pPage->idx);
174 if (pPage->idx >= PGMPOOL_IDX_FIRST)
175 {
176 int rc2 = pgmPoolFlushPage(pPool, pPage);
177 AssertRC(rc2);
178 }
179 /* next */
180 if (idx == NIL_PGMPOOL_IDX)
181 break;
182 pPage = &pPool->aPages[idx];
183 }
184 return rc;
185}
186
187
188/**
189 * Wrapper for getting the current context pointer to the entry being modified.
190 *
191 * @returns VBox status code suitable for scheduling.
192 * @param pVM VM Handle.
193 * @param pvDst Destination address
194 * @param pvSrc Source guest virtual address.
195 * @param GCPhysSrc The source guest physical address.
196 * @param cb Size of data to read
197 */
198DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
199{
200#if defined(IN_RING3)
201 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
202 return VINF_SUCCESS;
203#else
204 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
205 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
206#endif
207}
208
209/**
210 * Process shadow entries before they are changed by the guest.
211 *
212 * For PT entries we will clear them. For PD entries, we'll simply check
213 * for mapping conflicts and set the SyncCR3 FF if found.
214 *
215 * @param pVCpu VMCPU handle
216 * @param pPool The pool.
217 * @param pPage The head page.
218 * @param GCPhysFault The guest physical fault address.
219 * @param uAddress In R0 and GC this is the guest context fault address (flat).
220 * In R3 this is the host context 'fault' address.
221 * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries
222 */
223void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, unsigned cbWrite)
224{
225 AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%#x (idx=%#x)\n", pPage->iMonitoredPrev, pPage->idx));
226 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
227 PVM pVM = pPool->CTX_SUFF(pVM);
228
229 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n", (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))pvAddress, GCPhysFault, cbWrite));
230
231 for (;;)
232 {
233 union
234 {
235 void *pv;
236 PX86PT pPT;
237 PX86PTPAE pPTPae;
238 PX86PD pPD;
239 PX86PDPAE pPDPae;
240 PX86PDPT pPDPT;
241 PX86PML4 pPML4;
242 } uShw;
243
244 LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s\n", pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
245
246 uShw.pv = NULL;
247 switch (pPage->enmKind)
248 {
249 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
250 {
251 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
252 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
253 const unsigned iShw = off / sizeof(X86PTE);
254 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
255 if (uShw.pPT->a[iShw].n.u1Present)
256 {
257 X86PTE GstPte;
258
259 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
260 AssertRC(rc);
261 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
262 pgmPoolTracDerefGCPhysHint(pPool, pPage,
263 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
264 GstPte.u & X86_PTE_PG_MASK);
265 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
266 }
267 break;
268 }
269
270 /* page/2 sized */
271 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
272 {
273 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
276 {
277 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
278 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
279 if (uShw.pPTPae->a[iShw].n.u1Present)
280 {
281 X86PTE GstPte;
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284
285 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
286 pgmPoolTracDerefGCPhysHint(pPool, pPage,
287 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
288 GstPte.u & X86_PTE_PG_MASK);
289 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
290 }
291 }
292 break;
293 }
294
295 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
296 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
297 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
298 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
299 {
300 unsigned iGst = off / sizeof(X86PDE);
301 unsigned iShwPdpt = iGst / 256;
302 unsigned iShw = (iGst % 256) * 2;
303 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
304
305 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
306 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
307 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
308 {
309 for (unsigned i = 0; i < 2; i++)
310 {
311# ifndef IN_RING0
312 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
313 {
314 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
315 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
316 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
317 break;
318 }
319 else
320# endif /* !IN_RING0 */
321 if (uShw.pPDPae->a[iShw+i].n.u1Present)
322 {
323 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
324 pgmPoolFree(pVM,
325 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
326 pPage->idx,
327 iShw + i);
328 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
329 }
330
331 /* paranoia / a bit assumptive. */
332 if ( (off & 3)
333 && (off & 3) + cbWrite > 4)
334 {
335 const unsigned iShw2 = iShw + 2 + i;
336 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
337 {
338# ifndef IN_RING0
339 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
340 {
341 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
342 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
343 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
344 break;
345 }
346 else
347# endif /* !IN_RING0 */
348 if (uShw.pPDPae->a[iShw2].n.u1Present)
349 {
350 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
351 pgmPoolFree(pVM,
352 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
353 pPage->idx,
354 iShw2);
355 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
356 }
357 }
358 }
359 }
360 }
361 break;
362 }
363
364 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
365 {
366 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
367 const unsigned iShw = off / sizeof(X86PTEPAE);
368 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
369 if (uShw.pPTPae->a[iShw].n.u1Present)
370 {
371 X86PTEPAE GstPte;
372 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
373 AssertRC(rc);
374
375 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
376 pgmPoolTracDerefGCPhysHint(pPool, pPage,
377 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
378 GstPte.u & X86_PTE_PAE_PG_MASK);
379 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
380 }
381
382 /* paranoia / a bit assumptive. */
383 if ( (off & 7)
384 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
385 {
386 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
387 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
388
389 if (uShw.pPTPae->a[iShw2].n.u1Present)
390 {
391 X86PTEPAE GstPte;
392# ifdef IN_RING3
393 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
394# else
395 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
396# endif
397 AssertRC(rc);
398 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
399 pgmPoolTracDerefGCPhysHint(pPool, pPage,
400 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
401 GstPte.u & X86_PTE_PAE_PG_MASK);
402 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
403 }
404 }
405 break;
406 }
407
408 case PGMPOOLKIND_32BIT_PD:
409 {
410 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
411 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
412
413 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
414 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
415# ifndef IN_RING0
416 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
417 {
418 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
419 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
420 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
421 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
422 break;
423 }
424# endif /* !IN_RING0 */
425# ifndef IN_RING0
426 else
427# endif /* !IN_RING0 */
428 {
429 if (uShw.pPD->a[iShw].n.u1Present)
430 {
431 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
432 pgmPoolFree(pVM,
433 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
434 pPage->idx,
435 iShw);
436 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
437 }
438 }
439 /* paranoia / a bit assumptive. */
440 if ( (off & 3)
441 && (off & 3) + cbWrite > sizeof(X86PTE))
442 {
443 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
444 if ( iShw2 != iShw
445 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
446 {
447# ifndef IN_RING0
448 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
449 {
450 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
451 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
452 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
453 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
454 break;
455 }
456# endif /* !IN_RING0 */
457# ifndef IN_RING0
458 else
459# endif /* !IN_RING0 */
460 {
461 if (uShw.pPD->a[iShw2].n.u1Present)
462 {
463 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
464 pgmPoolFree(pVM,
465 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
466 pPage->idx,
467 iShw2);
468 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
469 }
470 }
471 }
472 }
473#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
474 if ( uShw.pPD->a[iShw].n.u1Present
475 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
476 {
477 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
478# ifdef IN_RC /* TLB load - we're pushing things a bit... */
479 ASMProbeReadByte(pvAddress);
480# endif
481 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
482 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
483 }
484#endif
485 break;
486 }
487
488 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
489 {
490 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
491 const unsigned iShw = off / sizeof(X86PDEPAE);
492 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
493#ifndef IN_RING0
494 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
495 {
496 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
497 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
498 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
499 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
500 break;
501 }
502#endif /* !IN_RING0 */
503 /*
504 * Causes trouble when the guest uses a PDE to refer to the whole page table level
505 * structure. (Invalidate here; faults later on when it tries to change the page
506 * table entries -> recheck; probably only applies to the RC case.)
507 */
508# ifndef IN_RING0
509 else
510# endif /* !IN_RING0 */
511 {
512 if (uShw.pPDPae->a[iShw].n.u1Present)
513 {
514 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
515 pgmPoolFree(pVM,
516 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
517 pPage->idx,
518 iShw);
519 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
520 }
521 }
522 /* paranoia / a bit assumptive. */
523 if ( (off & 7)
524 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
525 {
526 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
527 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
528
529#ifndef IN_RING0
530 if ( iShw2 != iShw
531 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
532 {
533 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
534 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
535 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
536 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
537 break;
538 }
539#endif /* !IN_RING0 */
540# ifndef IN_RING0
541 else
542# endif /* !IN_RING0 */
543 if (uShw.pPDPae->a[iShw2].n.u1Present)
544 {
545 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
546 pgmPoolFree(pVM,
547 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
548 pPage->idx,
549 iShw2);
550 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
551 }
552 }
553 break;
554 }
555
556 case PGMPOOLKIND_PAE_PDPT:
557 {
558 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
559 /*
560 * Hopefully this doesn't happen very often:
561 * - touching unused parts of the page
562 * - messing with the bits of pd pointers without changing the physical address
563 */
564 /* PDPT roots are not page aligned; 32 byte only! */
565 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
566
567 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
568 const unsigned iShw = offPdpt / sizeof(X86PDPE);
569 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
570 {
571# ifndef IN_RING0
572 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
573 {
574 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
575 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
576 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
577 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
578 break;
579 }
580# endif /* !IN_RING0 */
581# ifndef IN_RING0
582 else
583# endif /* !IN_RING0 */
584 if (uShw.pPDPT->a[iShw].n.u1Present)
585 {
586 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
587 pgmPoolFree(pVM,
588 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
589 pPage->idx,
590 iShw);
591 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
592 }
593
594 /* paranoia / a bit assumptive. */
595 if ( (offPdpt & 7)
596 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
597 {
598 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
599 if ( iShw2 != iShw
600 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
601 {
602# ifndef IN_RING0
603 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
604 {
605 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
606 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
607 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
608 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
609 break;
610 }
611# endif /* !IN_RING0 */
612# ifndef IN_RING0
613 else
614# endif /* !IN_RING0 */
615 if (uShw.pPDPT->a[iShw2].n.u1Present)
616 {
617 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
618 pgmPoolFree(pVM,
619 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
620 pPage->idx,
621 iShw2);
622 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
623 }
624 }
625 }
626 }
627 break;
628 }
629
630#ifndef IN_RC
631 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
632 {
633 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
634 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
635 const unsigned iShw = off / sizeof(X86PDEPAE);
636 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
637 if (uShw.pPDPae->a[iShw].n.u1Present)
638 {
639 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
640 pgmPoolFree(pVM,
641 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
642 pPage->idx,
643 iShw);
644 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
645 }
646 /* paranoia / a bit assumptive. */
647 if ( (off & 7)
648 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
649 {
650 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
651 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
652
653 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
654 if (uShw.pPDPae->a[iShw2].n.u1Present)
655 {
656 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
657 pgmPoolFree(pVM,
658 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
659 pPage->idx,
660 iShw2);
661 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
662 }
663 }
664 break;
665 }
666
667 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
668 {
669 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
670 /*
671 * Hopefully this doesn't happen very often:
672 * - messing with the bits of pd pointers without changing the physical address
673 */
674 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
675 const unsigned iShw = off / sizeof(X86PDPE);
676 if (uShw.pPDPT->a[iShw].n.u1Present)
677 {
678 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
679 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
680 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
681 }
682 /* paranoia / a bit assumptive. */
683 if ( (off & 7)
684 && (off & 7) + cbWrite > sizeof(X86PDPE))
685 {
686 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
687 if (uShw.pPDPT->a[iShw2].n.u1Present)
688 {
689 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
690 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
691 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
692 }
693 }
694 break;
695 }
696
697 case PGMPOOLKIND_64BIT_PML4:
698 {
699 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4));
700 /*
701 * Hopefully this doesn't happen very often:
702 * - messing with the bits of pd pointers without changing the physical address
703 */
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPML4->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( (off & 7)
714 && (off & 7) + cbWrite > sizeof(X86PDPE))
715 {
716 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
717 if (uShw.pPML4->a[iShw2].n.u1Present)
718 {
719 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
720 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
721 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
722 }
723 }
724 break;
725 }
726#endif /* IN_RING0 */
727
728 default:
729 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
730 }
731 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
732
733 /* next */
734 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
735 return;
736 pPage = &pPool->aPages[pPage->iMonitoredNext];
737 }
738}
739
740# ifndef IN_RING3
741/**
742 * Checks if a access could be a fork operation in progress.
743 *
744 * Meaning, that the guest is setting up the parent process for Copy-On-Write.
745 *
746 * @returns true if it's likly that we're forking, otherwise false.
747 * @param pPool The pool.
748 * @param pDis The disassembled instruction.
749 * @param offFault The access offset.
750 */
751DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
752{
753 /*
754 * i386 linux is using btr to clear X86_PTE_RW.
755 * The functions involved are (2.6.16 source inspection):
756 * clear_bit
757 * ptep_set_wrprotect
758 * copy_one_pte
759 * copy_pte_range
760 * copy_pmd_range
761 * copy_pud_range
762 * copy_page_range
763 * dup_mmap
764 * dup_mm
765 * copy_mm
766 * copy_process
767 * do_fork
768 */
769 if ( pDis->pCurInstr->opcode == OP_BTR
770 && !(offFault & 4)
771 /** @todo Validate that the bit index is X86_PTE_RW. */
772 )
773 {
774 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
775 return true;
776 }
777 return false;
778}
779
780
781/**
782 * Determine whether the page is likely to have been reused.
783 *
784 * @returns true if we consider the page as being reused for a different purpose.
785 * @returns false if we consider it to still be a paging page.
786 * @param pVM VM Handle.
787 * @param pVCpu VMCPU Handle.
788 * @param pRegFrame Trap register frame.
789 * @param pDis The disassembly info for the faulting instruction.
790 * @param pvFault The fault address.
791 *
792 * @remark The REP prefix check is left to the caller because of STOSD/W.
793 */
794DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault)
795{
796#ifndef IN_RC
797 /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */
798 if ( HWACCMHasPendingIrq(pVM)
799 && (pRegFrame->rsp - pvFault) < 32)
800 {
801 /* Fault caused by stack writes while trying to inject an interrupt event. */
802 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
803 return true;
804 }
805#else
806 NOREF(pVM); NOREF(pvFault);
807#endif
808
809 LogFlow(("Reused instr %RGv %d at %RGv param1.flags=%x param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->opcode, pvFault, pDis->param1.flags, pDis->param1.base.reg_gen));
810
811 /* Non-supervisor mode write means it's used for something else. */
812 if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
813 return true;
814
815 switch (pDis->pCurInstr->opcode)
816 {
817 /* call implies the actual push of the return address faulted */
818 case OP_CALL:
819 Log4(("pgmPoolMonitorIsReused: CALL\n"));
820 return true;
821 case OP_PUSH:
822 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
823 return true;
824 case OP_PUSHF:
825 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
826 return true;
827 case OP_PUSHA:
828 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
829 return true;
830 case OP_FXSAVE:
831 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
832 return true;
833 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
834 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
835 return true;
836 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
837 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
838 return true;
839 case OP_MOVSWD:
840 case OP_STOSWD:
841 if ( pDis->prefix == (PREFIX_REP|PREFIX_REX)
842 && pRegFrame->rcx >= 0x40
843 )
844 {
845 Assert(pDis->mode == CPUMODE_64BIT);
846
847 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
848 return true;
849 }
850 return false;
851 }
852 if ( ( (pDis->param1.flags & USE_REG_GEN32)
853 || (pDis->param1.flags & USE_REG_GEN64))
854 && (pDis->param1.base.reg_gen == USE_REG_ESP))
855 {
856 Log4(("pgmPoolMonitorIsReused: ESP\n"));
857 return true;
858 }
859
860 return false;
861}
862
863/**
864 * Flushes the page being accessed.
865 *
866 * @returns VBox status code suitable for scheduling.
867 * @param pVM The VM handle.
868 * @param pVCpu The VMCPU handle.
869 * @param pPool The pool.
870 * @param pPage The pool page (head).
871 * @param pDis The disassembly of the write instruction.
872 * @param pRegFrame The trap register frame.
873 * @param GCPhysFault The fault address as guest physical address.
874 * @param pvFault The fault address.
875 */
876static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
877 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
878{
879 /*
880 * First, do the flushing.
881 */
882 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
883
884 /*
885 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection). Must do this in raw mode (!); XP boot will fail otherwise
886 */
887 uint32_t cbWritten;
888 int rc2 = EMInterpretInstructionCPUEx(pVM, pVCpu, pDis, pRegFrame, pvFault, &cbWritten, EMCODETYPE_ALL);
889 if (RT_SUCCESS(rc2))
890 pRegFrame->rip += pDis->opsize;
891 else if (rc2 == VERR_EM_INTERPRETER)
892 {
893#ifdef IN_RC
894 if (PATMIsPatchGCAddr(pVM, pRegFrame->eip))
895 {
896 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
897 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
898 rc = VINF_SUCCESS;
899 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
900 }
901 else
902#endif
903 {
904 rc = VINF_EM_RAW_EMULATE_INSTR;
905 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
906 }
907 }
908 else
909 rc = rc2;
910
911 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
912 return rc;
913}
914
915/**
916 * Handles the STOSD write accesses.
917 *
918 * @returns VBox status code suitable for scheduling.
919 * @param pVM The VM handle.
920 * @param pPool The pool.
921 * @param pPage The pool page (head).
922 * @param pDis The disassembly of the write instruction.
923 * @param pRegFrame The trap register frame.
924 * @param GCPhysFault The fault address as guest physical address.
925 * @param pvFault The fault address.
926 */
927DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
928 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
929{
930 unsigned uIncrement = pDis->param1.size;
931
932 Assert(pDis->mode == CPUMODE_32BIT || pDis->mode == CPUMODE_64BIT);
933 Assert(pRegFrame->rcx <= 0x20);
934
935#ifdef VBOX_STRICT
936 if (pDis->opmode == CPUMODE_32BIT)
937 Assert(uIncrement == 4);
938 else
939 Assert(uIncrement == 8);
940#endif
941
942 Log3(("pgmPoolAccessHandlerSTOSD\n"));
943
944 /*
945 * Increment the modification counter and insert it into the list
946 * of modified pages the first time.
947 */
948 if (!pPage->cModifications++)
949 pgmPoolMonitorModifiedInsert(pPool, pPage);
950
951 /*
952 * Execute REP STOSD.
953 *
954 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
955 * write situation, meaning that it's safe to write here.
956 */
957 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
958 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
959 while (pRegFrame->rcx)
960 {
961#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
962 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
963 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, uIncrement);
964 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
965#else
966 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, uIncrement);
967#endif
968#ifdef IN_RC
969 *(uint32_t *)(uintptr_t)pu32 = pRegFrame->eax;
970#else
971 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement);
972#endif
973 pu32 += uIncrement;
974 GCPhysFault += uIncrement;
975 pRegFrame->rdi += uIncrement;
976 pRegFrame->rcx--;
977 }
978 pRegFrame->rip += pDis->opsize;
979
980 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
981 return VINF_SUCCESS;
982}
983
984
985/**
986 * Handles the simple write accesses.
987 *
988 * @returns VBox status code suitable for scheduling.
989 * @param pVM The VM handle.
990 * @param pVCpu The VMCPU handle.
991 * @param pPool The pool.
992 * @param pPage The pool page (head).
993 * @param pDis The disassembly of the write instruction.
994 * @param pRegFrame The trap register frame.
995 * @param GCPhysFault The fault address as guest physical address.
996 * @param pvFault The fault address.
997 * @param pfReused Reused state (out)
998 */
999DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
1000 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused)
1001{
1002 Log3(("pgmPoolAccessHandlerSimple\n"));
1003 /*
1004 * Increment the modification counter and insert it into the list
1005 * of modified pages the first time.
1006 */
1007 if (!pPage->cModifications++)
1008 pgmPoolMonitorModifiedInsert(pPool, pPage);
1009
1010 /*
1011 * Clear all the pages. ASSUMES that pvFault is readable.
1012 */
1013#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1014 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1015 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, DISGetParamSize(pDis, &pDis->param1));
1016 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1017#else
1018 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, DISGetParamSize(pDis, &pDis->param1));
1019#endif
1020
1021 /*
1022 * Interpret the instruction.
1023 */
1024 uint32_t cb;
1025 int rc = EMInterpretInstructionCPUEx(pVM, pVCpu, pDis, pRegFrame, pvFault, &cb, EMCODETYPE_ALL);
1026 if (RT_SUCCESS(rc))
1027 pRegFrame->rip += pDis->opsize;
1028 else if (rc == VERR_EM_INTERPRETER)
1029 {
1030 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1031 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode));
1032 rc = VINF_EM_RAW_EMULATE_INSTR;
1033 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1034 }
1035
1036#if 0 /* experimental code */
1037 if (rc == VINF_SUCCESS)
1038 {
1039 switch (pPage->enmKind)
1040 {
1041 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1042 {
1043 X86PTEPAE GstPte;
1044 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte));
1045 AssertRC(rc);
1046
1047 /* Check the new value written by the guest. If present and with a bogus physical address, then
1048 * it's fairly safe to assume the guest is reusing the PT.
1049 */
1050 if (GstPte.n.u1Present)
1051 {
1052 RTHCPHYS HCPhys = -1;
1053 int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys);
1054 if (rc != VINF_SUCCESS)
1055 {
1056 *pfReused = true;
1057 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
1058 }
1059 }
1060 break;
1061 }
1062 }
1063 }
1064#endif
1065
1066 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1067 return rc;
1068}
1069
1070/**
1071 * \#PF Handler callback for PT write accesses.
1072 *
1073 * @returns VBox status code (appropriate for GC return).
1074 * @param pVM VM Handle.
1075 * @param uErrorCode CPU Error code.
1076 * @param pRegFrame Trap register frame.
1077 * NULL on DMA and other non CPU access.
1078 * @param pvFault The fault address (cr2).
1079 * @param GCPhysFault The GC physical address corresponding to pvFault.
1080 * @param pvUser User argument.
1081 */
1082DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1083{
1084 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1085 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1086 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1087 PVMCPU pVCpu = VMMGetCpu(pVM);
1088 unsigned cMaxModifications;
1089 bool fForcedFlush = false;
1090
1091 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1092
1093 pgmLock(pVM);
1094 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
1095 {
1096 /* Pool page changed while we were waiting for the lock; ignore. */
1097 Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1098 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1099 pgmUnlock(pVM);
1100 return VINF_SUCCESS;
1101 }
1102#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1103 if (pPage->fDirty)
1104 {
1105 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH));
1106 pgmUnlock(pVM);
1107 return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */
1108 }
1109#endif
1110
1111#if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */
1112 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1113 {
1114 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
1115 void *pvGst;
1116 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1117 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
1118 }
1119#endif
1120
1121 /*
1122 * Disassemble the faulting instruction.
1123 */
1124 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
1125 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, NULL);
1126 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1127 {
1128 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc));
1129 pgmUnlock(pVM);
1130 return rc;
1131 }
1132
1133 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1134
1135 /*
1136 * We should ALWAYS have the list head as user parameter. This
1137 * is because we use that page to record the changes.
1138 */
1139 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1140
1141#ifdef IN_RING0
1142 /* Maximum nr of modifications depends on the page type. */
1143 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1144 cMaxModifications = 4;
1145 else
1146 cMaxModifications = 24;
1147#else
1148 cMaxModifications = 48;
1149#endif
1150
1151 /*
1152 * Incremental page table updates should weight more than random ones.
1153 * (Only applies when started from offset 0)
1154 */
1155 pVCpu->pgm.s.cPoolAccessHandler++;
1156 if ( pPage->pvLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */
1157 && pPage->pvLastAccessHandlerRip < pRegFrame->rip + 0x40
1158 && pvFault == (pPage->pvLastAccessHandlerFault + pDis->param1.size)
1159 && pVCpu->pgm.s.cPoolAccessHandler == (pPage->cLastAccessHandlerCount + 1))
1160 {
1161 Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(&pVM->pgm.s, pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1162 pPage->cModifications = pPage->cModifications * 2;
1163 pPage->pvLastAccessHandlerFault = pvFault;
1164 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1165 if (pPage->cModifications >= cMaxModifications)
1166 {
1167 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushReinit));
1168 fForcedFlush = true;
1169 }
1170 }
1171
1172 if (pPage->cModifications >= cMaxModifications)
1173 Log(("Mod overflow %RGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(&pVM->pgm.s, pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1174
1175 /*
1176 * Check if it's worth dealing with.
1177 */
1178 bool fReused = false;
1179 bool fNotReusedNotForking = false;
1180 if ( ( pPage->cModifications < cMaxModifications /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1181 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1182 )
1183 && !(fReused = pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault))
1184 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1185 {
1186 /*
1187 * Simple instructions, no REP prefix.
1188 */
1189 if (!(pDis->prefix & (PREFIX_REP | PREFIX_REPNE)))
1190 {
1191 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused);
1192 if (fReused)
1193 goto flushPage;
1194
1195 /* A mov instruction to change the first page table entry will be remembered so we can detect
1196 * full page table changes early on. This will reduce the amount of unnecessary traps we'll take.
1197 */
1198 if ( rc == VINF_SUCCESS
1199 && pDis->pCurInstr->opcode == OP_MOV
1200 && (pvFault & PAGE_OFFSET_MASK) == 0)
1201 {
1202 pPage->pvLastAccessHandlerFault = pvFault;
1203 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1204 pPage->pvLastAccessHandlerRip = pRegFrame->rip;
1205 /* Make sure we don't kick out a page too quickly. */
1206 if (pPage->cModifications > 8)
1207 pPage->cModifications = 2;
1208 }
1209 else
1210 if (pPage->pvLastAccessHandlerFault == pvFault)
1211 {
1212 /* ignore the 2nd write to this page table entry. */
1213 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1214 }
1215 else
1216 {
1217 pPage->pvLastAccessHandlerFault = 0;
1218 pPage->pvLastAccessHandlerRip = 0;
1219 }
1220
1221 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1222 pgmUnlock(pVM);
1223 return rc;
1224 }
1225
1226 /*
1227 * Windows is frequently doing small memset() operations (netio test 4k+).
1228 * We have to deal with these or we'll kill the cache and performance.
1229 */
1230 if ( pDis->pCurInstr->opcode == OP_STOSWD
1231 && !pRegFrame->eflags.Bits.u1DF
1232 && pDis->opmode == pDis->mode
1233 && pDis->addrmode == pDis->mode)
1234 {
1235 bool fValidStosd = false;
1236
1237 if ( pDis->mode == CPUMODE_32BIT
1238 && pDis->prefix == PREFIX_REP
1239 && pRegFrame->ecx <= 0x20
1240 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1241 && !((uintptr_t)pvFault & 3)
1242 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1243 )
1244 {
1245 fValidStosd = true;
1246 pRegFrame->rcx &= 0xffffffff; /* paranoia */
1247 }
1248 else
1249 if ( pDis->mode == CPUMODE_64BIT
1250 && pDis->prefix == (PREFIX_REP | PREFIX_REX)
1251 && pRegFrame->rcx <= 0x20
1252 && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1253 && !((uintptr_t)pvFault & 7)
1254 && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */
1255 )
1256 {
1257 fValidStosd = true;
1258 }
1259
1260 if (fValidStosd)
1261 {
1262 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1263 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1264 pgmUnlock(pVM);
1265 return rc;
1266 }
1267 }
1268
1269 /* REP prefix, don't bother. */
1270 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1271 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1272 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode, pDis->prefix));
1273 fNotReusedNotForking = true;
1274 }
1275
1276#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0)
1277 /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This
1278 * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring.
1279 */
1280 if ( pPage->cModifications >= cMaxModifications
1281 && !fForcedFlush
1282 && pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1283 && ( fNotReusedNotForking
1284 || ( !pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault)
1285 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1286 )
1287 )
1288 {
1289 Assert(!pgmPoolIsPageLocked(&pVM->pgm.s, pPage));
1290 Assert(pPage->fDirty == false);
1291
1292 /* Flush any monitored duplicates as we will disable write protection. */
1293 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1294 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1295 {
1296 PPGMPOOLPAGE pPageHead = pPage;
1297
1298 /* Find the monitor head. */
1299 while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX)
1300 pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev];
1301
1302 while (pPageHead)
1303 {
1304 unsigned idxNext = pPageHead->iMonitoredNext;
1305
1306 if (pPageHead != pPage)
1307 {
1308 STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush);
1309 Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind)));
1310 int rc2 = pgmPoolFlushPage(pPool, pPageHead);
1311 AssertRC(rc2);
1312 }
1313
1314 if (idxNext == NIL_PGMPOOL_IDX)
1315 break;
1316
1317 pPageHead = &pPool->aPages[idxNext];
1318 }
1319 }
1320
1321 /* The flushing above might fail for locked pages, so double check. */
1322 if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX
1323 && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1324 {
1325 pgmPoolAddDirtyPage(pVM, pPool, pPage);
1326
1327 /* Temporarily allow write access to the page table again. */
1328 rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys, pPage->GCPhys);
1329 if (rc == VINF_SUCCESS)
1330 {
1331 rc = PGMShwModifyPage(pVCpu, pvFault, 1, X86_PTE_RW, ~(uint64_t)X86_PTE_RW);
1332 AssertMsg(rc == VINF_SUCCESS
1333 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1334 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1335 || rc == VERR_PAGE_NOT_PRESENT,
1336 ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc));
1337
1338 pPage->pvDirtyFault = pvFault;
1339
1340 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1341 pgmUnlock(pVM);
1342 return rc;
1343 }
1344 }
1345 }
1346#endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1347
1348 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushModOverflow));
1349flushPage:
1350 /*
1351 * Not worth it, so flush it.
1352 *
1353 * If we considered it to be reused, don't go back to ring-3
1354 * to emulate failed instructions since we usually cannot
1355 * interpret then. This may be a bit risky, in which case
1356 * the reuse detection must be fixed.
1357 */
1358 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1359 if ( rc == VINF_EM_RAW_EMULATE_INSTR
1360 && fReused)
1361 {
1362 /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */
1363 if (PGMShwGetPage(pVCpu, pRegFrame->rip, NULL, NULL) == VINF_SUCCESS)
1364 rc = VINF_SUCCESS; /* safe to restart the instruction. */
1365 }
1366 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1367 pgmUnlock(pVM);
1368 return rc;
1369}
1370
1371# endif /* !IN_RING3 */
1372
1373# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1374
1375# ifdef VBOX_STRICT
1376/**
1377 * Check references to guest physical memory in a PAE / PAE page table.
1378 *
1379 * @param pPool The pool.
1380 * @param pPage The page.
1381 * @param pShwPT The shadow page table (mapping of the page).
1382 * @param pGstPT The guest page table.
1383 */
1384static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
1385{
1386 unsigned cErrors = 0;
1387 int LastRc = -1; /* initialized to shut up gcc */
1388 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1389 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1390
1391#ifdef VBOX_STRICT
1392 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1393 AssertMsg(!pShwPT->a[i].n.u1Present, ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, pShwPT->a[i].u, pPage->iFirstPresent));
1394#endif
1395 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1396 {
1397 if (pShwPT->a[i].n.u1Present)
1398 {
1399 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1400 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1401 if ( rc != VINF_SUCCESS
1402 || (pShwPT->a[i].u & X86_PTE_PAE_PG_MASK) != HCPhys)
1403 {
1404 Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, pShwPT->a[i].u, HCPhys));
1405 LastPTE = i;
1406 LastRc = rc;
1407 LastHCPhys = HCPhys;
1408 cErrors++;
1409
1410 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1411 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
1412 AssertRC(rc);
1413
1414 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1415 {
1416 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1417
1418 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1419 {
1420 PX86PTPAE pShwPT2 = (PX86PTPAE)PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pTempPage);
1421
1422 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1423 {
1424 if ( pShwPT2->a[j].n.u1Present
1425 && pShwPT2->a[j].n.u1Write
1426 && ((pShwPT2->a[j].u & X86_PTE_PAE_PG_MASK) == HCPhysPT))
1427 {
1428 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, pShwPT->a[j].u, pShwPT2->a[j].u));
1429 }
1430 }
1431 }
1432 }
1433 }
1434 }
1435 }
1436 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, pShwPT->a[LastPTE].u, LastHCPhys));
1437}
1438# endif /* VBOX_STRICT */
1439
1440/**
1441 * Clear references to guest physical memory in a PAE / PAE page table.
1442 *
1443 * @returns nr of changed PTEs
1444 * @param pPool The pool.
1445 * @param pPage The page.
1446 * @param pShwPT The shadow page table (mapping of the page).
1447 * @param pGstPT The guest page table.
1448 * @param pOldGstPT The old cached guest page table.
1449 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1450 * @param pfFlush Flush reused page table (out)
1451 */
1452DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT, PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1453{
1454 unsigned cChanged = 0;
1455
1456#ifdef VBOX_STRICT
1457 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1458 AssertMsg(!pShwPT->a[i].n.u1Present, ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, pShwPT->a[i].u, pPage->iFirstPresent));
1459#endif
1460 *pfFlush = false;
1461
1462 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1463 {
1464 /* Check the new value written by the guest. If present and with a bogus physical address, then
1465 * it's fairly safe to assume the guest is reusing the PT.
1466 */
1467 if ( fAllowRemoval
1468 && pGstPT->a[i].n.u1Present)
1469 {
1470 if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1471 {
1472 *pfFlush = true;
1473 return ++cChanged;
1474 }
1475 }
1476 if (pShwPT->a[i].n.u1Present)
1477 {
1478 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1479 if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1480 {
1481#ifdef VBOX_STRICT
1482 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1483 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1484 AssertMsg(rc == VINF_SUCCESS && (pShwPT->a[i].u & X86_PTE_PAE_PG_MASK) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, pShwPT->a[i].u, HCPhys));
1485#endif
1486 uint64_t uHostAttr = pShwPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1487 bool fHostRW = !!(pShwPT->a[i].u & X86_PTE_RW);
1488 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1489 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1490
1491 if ( uHostAttr == uGuestAttr
1492 && fHostRW <= fGuestRW)
1493 continue;
1494 }
1495 cChanged++;
1496 /* Something was changed, so flush it. */
1497 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n",
1498 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
1499 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
1500 ASMAtomicWriteSize(&pShwPT->a[i].u, 0);
1501 }
1502 }
1503 return cChanged;
1504}
1505
1506
1507/**
1508 * Flush a dirty page
1509 *
1510 * @param pVM VM Handle.
1511 * @param pPool The pool.
1512 * @param idxSlot Dirty array slot index
1513 * @param fAllowRemoval Allow a reused page table to be removed
1514 */
1515static void pgmPoolFlushDirtyPage(PVM pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false)
1516{
1517 PPGMPOOLPAGE pPage;
1518 unsigned idxPage;
1519
1520 Assert(idxSlot < RT_ELEMENTS(pPool->aIdxDirtyPages));
1521 if (pPool->aIdxDirtyPages[idxSlot] == NIL_PGMPOOL_IDX)
1522 return;
1523
1524 idxPage = pPool->aIdxDirtyPages[idxSlot];
1525 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
1526 pPage = &pPool->aPages[idxPage];
1527 Assert(pPage->idx == idxPage);
1528 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1529
1530 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot));
1531 Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1532
1533 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
1534 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys);
1535 Assert(rc == VINF_SUCCESS);
1536 pPage->fDirty = false;
1537
1538#ifdef VBOX_STRICT
1539 uint64_t fFlags = 0;
1540 RTHCPHYS HCPhys;
1541 rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->pvDirtyFault, &fFlags, &HCPhys);
1542 AssertMsg( ( rc == VINF_SUCCESS
1543 && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key))
1544 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1545 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1546 || rc == VERR_PAGE_NOT_PRESENT,
1547 ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->pvDirtyFault, rc, fFlags));
1548#endif
1549
1550 /* Flush those PTEs that have changed. */
1551 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
1552 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
1553 void *pvGst;
1554 bool fFlush;
1555 rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1556 unsigned cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst, (PCX86PTPAE)&pPool->aDirtyPages[idxSlot][0], fAllowRemoval, &fFlush);
1557 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
1558 /** Note: we might want to consider keeping the dirty page active in case there were many changes. */
1559
1560 /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */
1561 Assert(pPage->cModifications);
1562 if (cChanges < 4)
1563 pPage->cModifications = 1; /* must use > 0 here */
1564 else
1565 pPage->cModifications = RT_MAX(1, pPage->cModifications / 2);
1566
1567 STAM_COUNTER_INC(&pPool->StatResetDirtyPages);
1568 if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages))
1569 pPool->idxFreeDirtyPage = idxSlot;
1570
1571 pPool->cDirtyPages--;
1572 pPool->aIdxDirtyPages[idxSlot] = NIL_PGMPOOL_IDX;
1573 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages));
1574 if (fFlush)
1575 {
1576 Assert(fAllowRemoval);
1577 Log(("Flush reused page table!\n"));
1578 pgmPoolFlushPage(pPool, pPage);
1579 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
1580 }
1581 else
1582 Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges));
1583}
1584
1585# ifndef IN_RING3
1586/**
1587 * Add a new dirty page
1588 *
1589 * @param pVM VM Handle.
1590 * @param pPool The pool.
1591 * @param pPage The page.
1592 */
1593void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1594{
1595 unsigned idxFree;
1596
1597 Assert(PGMIsLocked(pVM));
1598 AssertCompile(RT_ELEMENTS(pPool->aIdxDirtyPages) == 8 || RT_ELEMENTS(pPool->aIdxDirtyPages) == 16);
1599 Assert(!pPage->fDirty);
1600
1601 idxFree = pPool->idxFreeDirtyPage;
1602 Assert(idxFree < RT_ELEMENTS(pPool->aIdxDirtyPages));
1603 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1604
1605 if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aIdxDirtyPages))
1606 {
1607 STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush);
1608 pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/);
1609 }
1610 Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aIdxDirtyPages));
1611 AssertMsg(pPool->aIdxDirtyPages[idxFree] == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages));
1612
1613 Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree));
1614
1615 /* Make a copy of the guest page table as we require valid GCPhys addresses when removing
1616 * references to physical pages. (the HCPhys linear lookup is *extremely* expensive!)
1617 */
1618 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
1619 void *pvGst;
1620 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1621 memcpy(&pPool->aDirtyPages[idxFree][0], pvGst, PAGE_SIZE);
1622#ifdef VBOX_STRICT
1623 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
1624#endif
1625
1626 STAM_COUNTER_INC(&pPool->StatDirtyPage);
1627 pPage->fDirty = true;
1628 pPage->idxDirty = idxFree;
1629 pPool->aIdxDirtyPages[idxFree] = pPage->idx;
1630 pPool->cDirtyPages++;
1631
1632 pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aIdxDirtyPages) - 1);
1633 if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aIdxDirtyPages)
1634 && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1635 {
1636 unsigned i;
1637 for (i = 1; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1638 {
1639 idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aIdxDirtyPages) - 1);
1640 if (pPool->aIdxDirtyPages[idxFree] == NIL_PGMPOOL_IDX)
1641 {
1642 pPool->idxFreeDirtyPage = idxFree;
1643 break;
1644 }
1645 }
1646 Assert(i != RT_ELEMENTS(pPool->aIdxDirtyPages));
1647 }
1648
1649 Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages) || pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX);
1650 return;
1651}
1652# endif /* !IN_RING3 */
1653
1654/**
1655 * Check if the specified page is dirty (not write monitored)
1656 *
1657 * @return dirty or not
1658 * @param pVM VM Handle.
1659 * @param GCPhys Guest physical address
1660 */
1661bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys)
1662{
1663 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1664 Assert(PGMIsLocked(pVM));
1665 if (!pPool->cDirtyPages)
1666 return false;
1667
1668 GCPhys = GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1669
1670 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1671 {
1672 if (pPool->aIdxDirtyPages[i] != NIL_PGMPOOL_IDX)
1673 {
1674 PPGMPOOLPAGE pPage;
1675 unsigned idxPage = pPool->aIdxDirtyPages[i];
1676
1677 pPage = &pPool->aPages[idxPage];
1678 if (pPage->GCPhys == GCPhys)
1679 return true;
1680 }
1681 }
1682 return false;
1683}
1684
1685/**
1686 * Reset all dirty pages by reinstating page monitoring.
1687 *
1688 * @param pVM VM Handle.
1689 */
1690void pgmPoolResetDirtyPages(PVM pVM)
1691{
1692 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1693 Assert(PGMIsLocked(pVM));
1694 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages));
1695
1696 if (!pPool->cDirtyPages)
1697 return;
1698
1699 Log(("pgmPoolResetDirtyPages\n"));
1700 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1701 pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/);
1702
1703 pPool->idxFreeDirtyPage = 0;
1704 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aIdxDirtyPages)
1705 && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1706 {
1707 unsigned i;
1708 for (i = 1; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1709 {
1710 if (pPool->aIdxDirtyPages[i] == NIL_PGMPOOL_IDX)
1711 {
1712 pPool->idxFreeDirtyPage = i;
1713 break;
1714 }
1715 }
1716 AssertMsg(i != RT_ELEMENTS(pPool->aIdxDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1717 }
1718
1719 Assert(pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages));
1720 return;
1721}
1722
1723/**
1724 * Reset all dirty pages by reinstating page monitoring.
1725 *
1726 * @param pVM VM Handle.
1727 * @param GCPhysPT Physical address of the page table
1728 */
1729void pgmPoolInvalidateDirtyPage(PVM pVM, RTGCPHYS GCPhysPT)
1730{
1731 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1732 Assert(PGMIsLocked(pVM));
1733 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages));
1734 unsigned idxDirtyPage = RT_ELEMENTS(pPool->aIdxDirtyPages);
1735
1736 if (!pPool->cDirtyPages)
1737 return;
1738
1739 GCPhysPT = GCPhysPT & ~(RTGCPHYS)(PAGE_SIZE - 1);
1740
1741 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1742 {
1743 if (pPool->aIdxDirtyPages[i] != NIL_PGMPOOL_IDX)
1744 {
1745 unsigned idxPage = pPool->aIdxDirtyPages[i];
1746
1747 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1748 if (pPage->GCPhys == GCPhysPT)
1749 {
1750 idxDirtyPage = i;
1751 break;
1752 }
1753 }
1754 }
1755
1756 if (idxDirtyPage != RT_ELEMENTS(pPool->aIdxDirtyPages))
1757 {
1758 pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/);
1759 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aIdxDirtyPages)
1760 && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1761 {
1762 unsigned i;
1763 for (i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1764 {
1765 if (pPool->aIdxDirtyPages[i] == NIL_PGMPOOL_IDX)
1766 {
1767 pPool->idxFreeDirtyPage = i;
1768 break;
1769 }
1770 }
1771 AssertMsg(i != RT_ELEMENTS(pPool->aIdxDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1772 }
1773 }
1774}
1775
1776# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1777
1778/**
1779 * Inserts a page into the GCPhys hash table.
1780 *
1781 * @param pPool The pool.
1782 * @param pPage The page.
1783 */
1784DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1785{
1786 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1787 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1788 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1789 pPage->iNext = pPool->aiHash[iHash];
1790 pPool->aiHash[iHash] = pPage->idx;
1791}
1792
1793
1794/**
1795 * Removes a page from the GCPhys hash table.
1796 *
1797 * @param pPool The pool.
1798 * @param pPage The page.
1799 */
1800DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1801{
1802 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1803 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1804 if (pPool->aiHash[iHash] == pPage->idx)
1805 pPool->aiHash[iHash] = pPage->iNext;
1806 else
1807 {
1808 uint16_t iPrev = pPool->aiHash[iHash];
1809 for (;;)
1810 {
1811 const int16_t i = pPool->aPages[iPrev].iNext;
1812 if (i == pPage->idx)
1813 {
1814 pPool->aPages[iPrev].iNext = pPage->iNext;
1815 break;
1816 }
1817 if (i == NIL_PGMPOOL_IDX)
1818 {
1819 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1820 break;
1821 }
1822 iPrev = i;
1823 }
1824 }
1825 pPage->iNext = NIL_PGMPOOL_IDX;
1826}
1827
1828
1829/**
1830 * Frees up one cache page.
1831 *
1832 * @returns VBox status code.
1833 * @retval VINF_SUCCESS on success.
1834 * @param pPool The pool.
1835 * @param iUser The user index.
1836 */
1837static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1838{
1839#ifndef IN_RC
1840 const PVM pVM = pPool->CTX_SUFF(pVM);
1841#endif
1842 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1843 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1844
1845 /*
1846 * Select one page from the tail of the age list.
1847 */
1848 PPGMPOOLPAGE pPage;
1849 for (unsigned iLoop = 0; ; iLoop++)
1850 {
1851 uint16_t iToFree = pPool->iAgeTail;
1852 if (iToFree == iUser)
1853 iToFree = pPool->aPages[iToFree].iAgePrev;
1854/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1855 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1856 {
1857 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1858 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1859 {
1860 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1861 continue;
1862 iToFree = i;
1863 break;
1864 }
1865 }
1866*/
1867 Assert(iToFree != iUser);
1868 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1869 pPage = &pPool->aPages[iToFree];
1870
1871 /*
1872 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1873 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1874 */
1875 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1876 break;
1877 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1878 pgmPoolCacheUsed(pPool, pPage);
1879 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1880 }
1881
1882 /*
1883 * Found a usable page, flush it and return.
1884 */
1885 int rc = pgmPoolFlushPage(pPool, pPage);
1886 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
1887 /* todo: find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */
1888 if (rc == VINF_SUCCESS)
1889 PGM_INVL_ALL_VCPU_TLBS(pVM);
1890 return rc;
1891}
1892
1893
1894/**
1895 * Checks if a kind mismatch is really a page being reused
1896 * or if it's just normal remappings.
1897 *
1898 * @returns true if reused and the cached page (enmKind1) should be flushed
1899 * @returns false if not reused.
1900 * @param enmKind1 The kind of the cached page.
1901 * @param enmKind2 The kind of the requested page.
1902 */
1903static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1904{
1905 switch (enmKind1)
1906 {
1907 /*
1908 * Never reuse them. There is no remapping in non-paging mode.
1909 */
1910 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1911 case PGMPOOLKIND_32BIT_PD_PHYS:
1912 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1913 case PGMPOOLKIND_PAE_PD_PHYS:
1914 case PGMPOOLKIND_PAE_PDPT_PHYS:
1915 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1916 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1917 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1918 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1919 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1920 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1921 return false;
1922
1923 /*
1924 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1925 */
1926 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1927 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1928 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1929 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1930 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1931 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1932 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1933 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1934 case PGMPOOLKIND_32BIT_PD:
1935 case PGMPOOLKIND_PAE_PDPT:
1936 switch (enmKind2)
1937 {
1938 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1939 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1940 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1941 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1942 case PGMPOOLKIND_64BIT_PML4:
1943 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1944 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1945 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1946 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1947 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1948 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1949 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1950 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1951 return true;
1952 default:
1953 return false;
1954 }
1955
1956 /*
1957 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1958 */
1959 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1960 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1961 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1962 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1963 case PGMPOOLKIND_64BIT_PML4:
1964 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1965 switch (enmKind2)
1966 {
1967 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1968 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1969 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1970 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1971 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1972 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1973 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1974 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1975 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1976 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1977 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1978 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1979 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1980 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1981 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1982 return true;
1983 default:
1984 return false;
1985 }
1986
1987 /*
1988 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1989 */
1990 case PGMPOOLKIND_ROOT_NESTED:
1991 return false;
1992
1993 default:
1994 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1995 }
1996}
1997
1998
1999/**
2000 * Attempts to satisfy a pgmPoolAlloc request from the cache.
2001 *
2002 * @returns VBox status code.
2003 * @retval VINF_PGM_CACHED_PAGE on success.
2004 * @retval VERR_FILE_NOT_FOUND if not found.
2005 * @param pPool The pool.
2006 * @param GCPhys The GC physical address of the page we're gonna shadow.
2007 * @param enmKind The kind of mapping.
2008 * @param enmAccess Access type for the mapping (only relevant for big pages)
2009 * @param iUser The shadow page pool index of the user table.
2010 * @param iUserTable The index into the user table (shadowed).
2011 * @param ppPage Where to store the pointer to the page.
2012 */
2013static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
2014{
2015#ifndef IN_RC
2016 const PVM pVM = pPool->CTX_SUFF(pVM);
2017#endif
2018 /*
2019 * Look up the GCPhys in the hash.
2020 */
2021 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2022 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
2023 if (i != NIL_PGMPOOL_IDX)
2024 {
2025 do
2026 {
2027 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2028 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
2029 if (pPage->GCPhys == GCPhys)
2030 {
2031 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
2032 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess)
2033 {
2034 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
2035 * doesn't flush it in case there are no more free use records.
2036 */
2037 pgmPoolCacheUsed(pPool, pPage);
2038
2039 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
2040 if (RT_SUCCESS(rc))
2041 {
2042 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
2043 *ppPage = pPage;
2044 if (pPage->cModifications)
2045 pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
2046 STAM_COUNTER_INC(&pPool->StatCacheHits);
2047 return VINF_PGM_CACHED_PAGE;
2048 }
2049 return rc;
2050 }
2051
2052 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
2053 {
2054 /*
2055 * The kind is different. In some cases we should now flush the page
2056 * as it has been reused, but in most cases this is normal remapping
2057 * of PDs as PT or big pages using the GCPhys field in a slightly
2058 * different way than the other kinds.
2059 */
2060 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
2061 {
2062 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
2063 pgmPoolFlushPage(pPool, pPage);
2064 break;
2065 }
2066 }
2067 }
2068
2069 /* next */
2070 i = pPage->iNext;
2071 } while (i != NIL_PGMPOOL_IDX);
2072 }
2073
2074 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
2075 STAM_COUNTER_INC(&pPool->StatCacheMisses);
2076 return VERR_FILE_NOT_FOUND;
2077}
2078
2079
2080/**
2081 * Inserts a page into the cache.
2082 *
2083 * @param pPool The pool.
2084 * @param pPage The cached page.
2085 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
2086 */
2087static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
2088{
2089 /*
2090 * Insert into the GCPhys hash if the page is fit for that.
2091 */
2092 Assert(!pPage->fCached);
2093 if (fCanBeCached)
2094 {
2095 pPage->fCached = true;
2096 pgmPoolHashInsert(pPool, pPage);
2097 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2098 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2099 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
2100 }
2101 else
2102 {
2103 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2104 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2105 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
2106 }
2107
2108 /*
2109 * Insert at the head of the age list.
2110 */
2111 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2112 pPage->iAgeNext = pPool->iAgeHead;
2113 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
2114 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
2115 else
2116 pPool->iAgeTail = pPage->idx;
2117 pPool->iAgeHead = pPage->idx;
2118}
2119
2120
2121/**
2122 * Flushes a cached page.
2123 *
2124 * @param pPool The pool.
2125 * @param pPage The cached page.
2126 */
2127static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2128{
2129 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
2130
2131 /*
2132 * Remove the page from the hash.
2133 */
2134 if (pPage->fCached)
2135 {
2136 pPage->fCached = false;
2137 pgmPoolHashRemove(pPool, pPage);
2138 }
2139 else
2140 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
2141
2142 /*
2143 * Remove it from the age list.
2144 */
2145 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
2146 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
2147 else
2148 pPool->iAgeTail = pPage->iAgePrev;
2149 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
2150 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
2151 else
2152 pPool->iAgeHead = pPage->iAgeNext;
2153 pPage->iAgeNext = NIL_PGMPOOL_IDX;
2154 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2155}
2156
2157
2158/**
2159 * Looks for pages sharing the monitor.
2160 *
2161 * @returns Pointer to the head page.
2162 * @returns NULL if not found.
2163 * @param pPool The Pool
2164 * @param pNewPage The page which is going to be monitored.
2165 */
2166static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
2167{
2168 /*
2169 * Look up the GCPhys in the hash.
2170 */
2171 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
2172 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2173 if (i == NIL_PGMPOOL_IDX)
2174 return NULL;
2175 do
2176 {
2177 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2178 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
2179 && pPage != pNewPage)
2180 {
2181 switch (pPage->enmKind)
2182 {
2183 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2184 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2185 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2186 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2187 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2188 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2189 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2190 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2191 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2192 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2193 case PGMPOOLKIND_64BIT_PML4:
2194 case PGMPOOLKIND_32BIT_PD:
2195 case PGMPOOLKIND_PAE_PDPT:
2196 {
2197 /* find the head */
2198 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2199 {
2200 Assert(pPage->iMonitoredPrev != pPage->idx);
2201 pPage = &pPool->aPages[pPage->iMonitoredPrev];
2202 }
2203 return pPage;
2204 }
2205
2206 /* ignore, no monitoring. */
2207 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2208 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2209 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2210 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2211 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2212 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2213 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2214 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2215 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2216 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2217 case PGMPOOLKIND_ROOT_NESTED:
2218 case PGMPOOLKIND_PAE_PD_PHYS:
2219 case PGMPOOLKIND_PAE_PDPT_PHYS:
2220 case PGMPOOLKIND_32BIT_PD_PHYS:
2221 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2222 break;
2223 default:
2224 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
2225 }
2226 }
2227
2228 /* next */
2229 i = pPage->iNext;
2230 } while (i != NIL_PGMPOOL_IDX);
2231 return NULL;
2232}
2233
2234
2235/**
2236 * Enabled write monitoring of a guest page.
2237 *
2238 * @returns VBox status code.
2239 * @retval VINF_SUCCESS on success.
2240 * @param pPool The pool.
2241 * @param pPage The cached page.
2242 */
2243static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2244{
2245 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
2246
2247 /*
2248 * Filter out the relevant kinds.
2249 */
2250 switch (pPage->enmKind)
2251 {
2252 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2253 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2254 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2255 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2256 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2257 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2258 case PGMPOOLKIND_64BIT_PML4:
2259 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2260 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2261 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2262 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2263 case PGMPOOLKIND_32BIT_PD:
2264 case PGMPOOLKIND_PAE_PDPT:
2265 break;
2266
2267 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2268 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2269 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2270 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2271 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2272 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2273 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2274 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2275 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2276 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2277 case PGMPOOLKIND_ROOT_NESTED:
2278 /* Nothing to monitor here. */
2279 return VINF_SUCCESS;
2280
2281 case PGMPOOLKIND_32BIT_PD_PHYS:
2282 case PGMPOOLKIND_PAE_PDPT_PHYS:
2283 case PGMPOOLKIND_PAE_PD_PHYS:
2284 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2285 /* Nothing to monitor here. */
2286 return VINF_SUCCESS;
2287 default:
2288 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2289 }
2290
2291 /*
2292 * Install handler.
2293 */
2294 int rc;
2295 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
2296 if (pPageHead)
2297 {
2298 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
2299 Assert(pPageHead->iMonitoredPrev != pPage->idx);
2300
2301#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2302 if (pPageHead->fDirty)
2303 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirty, false /* do not remove */);
2304#endif
2305
2306 pPage->iMonitoredPrev = pPageHead->idx;
2307 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
2308 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
2309 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
2310 pPageHead->iMonitoredNext = pPage->idx;
2311 rc = VINF_SUCCESS;
2312 }
2313 else
2314 {
2315 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
2316 PVM pVM = pPool->CTX_SUFF(pVM);
2317 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
2318 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2319 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
2320 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
2321 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
2322 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
2323 pPool->pszAccessHandler);
2324 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
2325 * the heap size should suffice. */
2326 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
2327 Assert(!(VMMGetCpu(pVM)->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
2328 }
2329 pPage->fMonitored = true;
2330 return rc;
2331}
2332
2333
2334/**
2335 * Disables write monitoring of a guest page.
2336 *
2337 * @returns VBox status code.
2338 * @retval VINF_SUCCESS on success.
2339 * @param pPool The pool.
2340 * @param pPage The cached page.
2341 */
2342static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2343{
2344 /*
2345 * Filter out the relevant kinds.
2346 */
2347 switch (pPage->enmKind)
2348 {
2349 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2350 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2351 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2352 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2353 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2354 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2355 case PGMPOOLKIND_64BIT_PML4:
2356 case PGMPOOLKIND_32BIT_PD:
2357 case PGMPOOLKIND_PAE_PDPT:
2358 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2359 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2360 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2361 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2362 break;
2363
2364 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2365 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2366 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2367 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2368 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2369 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2370 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2371 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2372 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2373 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2374 case PGMPOOLKIND_ROOT_NESTED:
2375 case PGMPOOLKIND_PAE_PD_PHYS:
2376 case PGMPOOLKIND_PAE_PDPT_PHYS:
2377 case PGMPOOLKIND_32BIT_PD_PHYS:
2378 /* Nothing to monitor here. */
2379 return VINF_SUCCESS;
2380
2381 default:
2382 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2383 }
2384
2385 /*
2386 * Remove the page from the monitored list or uninstall it if last.
2387 */
2388 const PVM pVM = pPool->CTX_SUFF(pVM);
2389 int rc;
2390 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
2391 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2392 {
2393 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
2394 {
2395 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
2396 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
2397 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
2398 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
2399 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
2400 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
2401 pPool->pszAccessHandler);
2402 AssertFatalRCSuccess(rc);
2403 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2404 }
2405 else
2406 {
2407 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
2408 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
2409 {
2410 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
2411 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2412 }
2413 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
2414 rc = VINF_SUCCESS;
2415 }
2416 }
2417 else
2418 {
2419 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
2420 AssertFatalRC(rc);
2421#ifdef VBOX_STRICT
2422 PVMCPU pVCpu = VMMGetCpu(pVM);
2423#endif
2424 AssertMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
2425 ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
2426 }
2427 pPage->fMonitored = false;
2428
2429 /*
2430 * Remove it from the list of modified pages (if in it).
2431 */
2432 pgmPoolMonitorModifiedRemove(pPool, pPage);
2433
2434 return rc;
2435}
2436
2437
2438/**
2439 * Inserts the page into the list of modified pages.
2440 *
2441 * @param pPool The pool.
2442 * @param pPage The page.
2443 */
2444void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2445{
2446 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
2447 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
2448 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
2449 && pPool->iModifiedHead != pPage->idx,
2450 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
2451 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
2452 pPool->iModifiedHead, pPool->cModifiedPages));
2453
2454 pPage->iModifiedNext = pPool->iModifiedHead;
2455 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
2456 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
2457 pPool->iModifiedHead = pPage->idx;
2458 pPool->cModifiedPages++;
2459#ifdef VBOX_WITH_STATISTICS
2460 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
2461 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
2462#endif
2463}
2464
2465
2466/**
2467 * Removes the page from the list of modified pages and resets the
2468 * moficiation counter.
2469 *
2470 * @param pPool The pool.
2471 * @param pPage The page which is believed to be in the list of modified pages.
2472 */
2473static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2474{
2475 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
2476 if (pPool->iModifiedHead == pPage->idx)
2477 {
2478 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2479 pPool->iModifiedHead = pPage->iModifiedNext;
2480 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2481 {
2482 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
2483 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2484 }
2485 pPool->cModifiedPages--;
2486 }
2487 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
2488 {
2489 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
2490 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2491 {
2492 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
2493 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2494 }
2495 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2496 pPool->cModifiedPages--;
2497 }
2498 else
2499 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2500 pPage->cModifications = 0;
2501}
2502
2503
2504/**
2505 * Zaps the list of modified pages, resetting their modification counters in the process.
2506 *
2507 * @param pVM The VM handle.
2508 */
2509static void pgmPoolMonitorModifiedClearAll(PVM pVM)
2510{
2511 pgmLock(pVM);
2512 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2513 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
2514
2515 unsigned cPages = 0; NOREF(cPages);
2516
2517#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2518 pgmPoolResetDirtyPages(pVM);
2519#endif
2520
2521 uint16_t idx = pPool->iModifiedHead;
2522 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2523 while (idx != NIL_PGMPOOL_IDX)
2524 {
2525 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
2526 idx = pPage->iModifiedNext;
2527 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2528 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2529 pPage->cModifications = 0;
2530 Assert(++cPages);
2531 }
2532 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
2533 pPool->cModifiedPages = 0;
2534 pgmUnlock(pVM);
2535}
2536
2537
2538/**
2539 * Handle SyncCR3 pool tasks
2540 *
2541 * @returns VBox status code.
2542 * @retval VINF_SUCCESS if successfully added.
2543 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2544 * @param pVCpu The VMCPU handle.
2545 * @remark Should only be used when monitoring is available, thus placed in
2546 * the PGMPOOL_WITH_MONITORING #ifdef.
2547 */
2548int pgmPoolSyncCR3(PVMCPU pVCpu)
2549{
2550 PVM pVM = pVCpu->CTX_SUFF(pVM);
2551 LogFlow(("pgmPoolSyncCR3\n"));
2552
2553 /*
2554 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2555 * Occasionally we will have to clear all the shadow page tables because we wanted
2556 * to monitor a page which was mapped by too many shadowed page tables. This operation
2557 * sometimes refered to as a 'lightweight flush'.
2558 */
2559# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2560 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2561 pgmR3PoolClearAll(pVM);
2562# else /* !IN_RING3 */
2563 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2564 {
2565 Log(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2566 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2567
2568 /* Make sure all other VCPUs return to ring 3. */
2569 if (pVM->cCpus > 1)
2570 {
2571 VM_FF_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
2572 PGM_INVL_ALL_VCPU_TLBS(pVM);
2573 }
2574 return VINF_PGM_SYNC_CR3;
2575 }
2576# endif /* !IN_RING3 */
2577 else
2578 {
2579 pgmPoolMonitorModifiedClearAll(pVM);
2580
2581 /* pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this! */
2582 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2583 {
2584 Log(("pgmPoolMonitorModifiedClearAll caused a pgm flush -> call pgmPoolSyncCR3 again!\n"));
2585 return pgmPoolSyncCR3(pVCpu);
2586 }
2587 }
2588 return VINF_SUCCESS;
2589}
2590
2591
2592/**
2593 * Frees up at least one user entry.
2594 *
2595 * @returns VBox status code.
2596 * @retval VINF_SUCCESS if successfully added.
2597 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2598 * @param pPool The pool.
2599 * @param iUser The user index.
2600 */
2601static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2602{
2603 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2604 /*
2605 * Just free cached pages in a braindead fashion.
2606 */
2607 /** @todo walk the age list backwards and free the first with usage. */
2608 int rc = VINF_SUCCESS;
2609 do
2610 {
2611 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2612 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2613 rc = rc2;
2614 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2615 return rc;
2616}
2617
2618
2619/**
2620 * Inserts a page into the cache.
2621 *
2622 * This will create user node for the page, insert it into the GCPhys
2623 * hash, and insert it into the age list.
2624 *
2625 * @returns VBox status code.
2626 * @retval VINF_SUCCESS if successfully added.
2627 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2628 * @param pPool The pool.
2629 * @param pPage The cached page.
2630 * @param GCPhys The GC physical address of the page we're gonna shadow.
2631 * @param iUser The user index.
2632 * @param iUserTable The user table index.
2633 */
2634DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2635{
2636 int rc = VINF_SUCCESS;
2637 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2638
2639 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2640
2641#ifdef VBOX_STRICT
2642 /*
2643 * Check that the entry doesn't already exists.
2644 */
2645 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2646 {
2647 uint16_t i = pPage->iUserHead;
2648 do
2649 {
2650 Assert(i < pPool->cMaxUsers);
2651 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2652 i = paUsers[i].iNext;
2653 } while (i != NIL_PGMPOOL_USER_INDEX);
2654 }
2655#endif
2656
2657 /*
2658 * Find free a user node.
2659 */
2660 uint16_t i = pPool->iUserFreeHead;
2661 if (i == NIL_PGMPOOL_USER_INDEX)
2662 {
2663 rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2664 if (RT_FAILURE(rc))
2665 return rc;
2666 i = pPool->iUserFreeHead;
2667 }
2668
2669 /*
2670 * Unlink the user node from the free list,
2671 * initialize and insert it into the user list.
2672 */
2673 pPool->iUserFreeHead = paUsers[i].iNext;
2674 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2675 paUsers[i].iUser = iUser;
2676 paUsers[i].iUserTable = iUserTable;
2677 pPage->iUserHead = i;
2678
2679 /*
2680 * Insert into cache and enable monitoring of the guest page if enabled.
2681 *
2682 * Until we implement caching of all levels, including the CR3 one, we'll
2683 * have to make sure we don't try monitor & cache any recursive reuse of
2684 * a monitored CR3 page. Because all windows versions are doing this we'll
2685 * have to be able to do combined access monitoring, CR3 + PT and
2686 * PD + PT (guest PAE).
2687 *
2688 * Update:
2689 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2690 */
2691 const bool fCanBeMonitored = true;
2692 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2693 if (fCanBeMonitored)
2694 {
2695 rc = pgmPoolMonitorInsert(pPool, pPage);
2696 AssertRC(rc);
2697 }
2698 return rc;
2699}
2700
2701
2702/**
2703 * Adds a user reference to a page.
2704 *
2705 * This will move the page to the head of the
2706 *
2707 * @returns VBox status code.
2708 * @retval VINF_SUCCESS if successfully added.
2709 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2710 * @param pPool The pool.
2711 * @param pPage The cached page.
2712 * @param iUser The user index.
2713 * @param iUserTable The user table.
2714 */
2715static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2716{
2717 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2718
2719 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2720
2721# ifdef VBOX_STRICT
2722 /*
2723 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2724 */
2725 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2726 {
2727 uint16_t i = pPage->iUserHead;
2728 do
2729 {
2730 Assert(i < pPool->cMaxUsers);
2731 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2732 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2733 i = paUsers[i].iNext;
2734 } while (i != NIL_PGMPOOL_USER_INDEX);
2735 }
2736# endif
2737
2738 /*
2739 * Allocate a user node.
2740 */
2741 uint16_t i = pPool->iUserFreeHead;
2742 if (i == NIL_PGMPOOL_USER_INDEX)
2743 {
2744 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2745 if (RT_FAILURE(rc))
2746 return rc;
2747 i = pPool->iUserFreeHead;
2748 }
2749 pPool->iUserFreeHead = paUsers[i].iNext;
2750
2751 /*
2752 * Initialize the user node and insert it.
2753 */
2754 paUsers[i].iNext = pPage->iUserHead;
2755 paUsers[i].iUser = iUser;
2756 paUsers[i].iUserTable = iUserTable;
2757 pPage->iUserHead = i;
2758
2759# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2760 if (pPage->fDirty)
2761 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirty, false /* do not remove */);
2762# endif
2763
2764 /*
2765 * Tell the cache to update its replacement stats for this page.
2766 */
2767 pgmPoolCacheUsed(pPool, pPage);
2768 return VINF_SUCCESS;
2769}
2770
2771
2772/**
2773 * Frees a user record associated with a page.
2774 *
2775 * This does not clear the entry in the user table, it simply replaces the
2776 * user record to the chain of free records.
2777 *
2778 * @param pPool The pool.
2779 * @param HCPhys The HC physical address of the shadow page.
2780 * @param iUser The shadow page pool index of the user table.
2781 * @param iUserTable The index into the user table (shadowed).
2782 */
2783static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2784{
2785 /*
2786 * Unlink and free the specified user entry.
2787 */
2788 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2789
2790 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2791 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2792 uint16_t i = pPage->iUserHead;
2793 if ( i != NIL_PGMPOOL_USER_INDEX
2794 && paUsers[i].iUser == iUser
2795 && paUsers[i].iUserTable == iUserTable)
2796 {
2797 pPage->iUserHead = paUsers[i].iNext;
2798
2799 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2800 paUsers[i].iNext = pPool->iUserFreeHead;
2801 pPool->iUserFreeHead = i;
2802 return;
2803 }
2804
2805 /* General: Linear search. */
2806 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2807 while (i != NIL_PGMPOOL_USER_INDEX)
2808 {
2809 if ( paUsers[i].iUser == iUser
2810 && paUsers[i].iUserTable == iUserTable)
2811 {
2812 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2813 paUsers[iPrev].iNext = paUsers[i].iNext;
2814 else
2815 pPage->iUserHead = paUsers[i].iNext;
2816
2817 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2818 paUsers[i].iNext = pPool->iUserFreeHead;
2819 pPool->iUserFreeHead = i;
2820 return;
2821 }
2822 iPrev = i;
2823 i = paUsers[i].iNext;
2824 }
2825
2826 /* Fatal: didn't find it */
2827 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2828 iUser, iUserTable, pPage->GCPhys));
2829}
2830
2831
2832/**
2833 * Gets the entry size of a shadow table.
2834 *
2835 * @param enmKind The kind of page.
2836 *
2837 * @returns The size of the entry in bytes. That is, 4 or 8.
2838 * @returns If the kind is not for a table, an assertion is raised and 0 is
2839 * returned.
2840 */
2841DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2842{
2843 switch (enmKind)
2844 {
2845 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2846 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2847 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2848 case PGMPOOLKIND_32BIT_PD:
2849 case PGMPOOLKIND_32BIT_PD_PHYS:
2850 return 4;
2851
2852 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2853 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2854 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2855 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2856 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2857 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2858 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2859 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2860 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2861 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2862 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2863 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2864 case PGMPOOLKIND_64BIT_PML4:
2865 case PGMPOOLKIND_PAE_PDPT:
2866 case PGMPOOLKIND_ROOT_NESTED:
2867 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2868 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2869 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2870 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2871 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2872 case PGMPOOLKIND_PAE_PD_PHYS:
2873 case PGMPOOLKIND_PAE_PDPT_PHYS:
2874 return 8;
2875
2876 default:
2877 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2878 }
2879}
2880
2881
2882/**
2883 * Gets the entry size of a guest table.
2884 *
2885 * @param enmKind The kind of page.
2886 *
2887 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2888 * @returns If the kind is not for a table, an assertion is raised and 0 is
2889 * returned.
2890 */
2891DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2892{
2893 switch (enmKind)
2894 {
2895 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2896 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2897 case PGMPOOLKIND_32BIT_PD:
2898 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2899 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2900 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2901 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2902 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2903 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2904 return 4;
2905
2906 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2907 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2908 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2909 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2910 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2911 case PGMPOOLKIND_64BIT_PML4:
2912 case PGMPOOLKIND_PAE_PDPT:
2913 return 8;
2914
2915 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2916 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2917 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2918 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2919 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2920 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2921 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2922 case PGMPOOLKIND_ROOT_NESTED:
2923 case PGMPOOLKIND_PAE_PD_PHYS:
2924 case PGMPOOLKIND_PAE_PDPT_PHYS:
2925 case PGMPOOLKIND_32BIT_PD_PHYS:
2926 /** @todo can we return 0? (nobody is calling this...) */
2927 AssertFailed();
2928 return 0;
2929
2930 default:
2931 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2932 }
2933}
2934
2935
2936/**
2937 * Scans one shadow page table for mappings of a physical page.
2938 *
2939 * @returns true/false indicating removal of all relevant PTEs
2940 * @param pVM The VM handle.
2941 * @param pPhysPage The guest page in question.
2942 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
2943 * @param iShw The shadow page table.
2944 * @param cRefs The number of references made in that PT.
2945 */
2946static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t cRefs)
2947{
2948 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d cRefs=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, cRefs));
2949 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2950 bool bRet = false;
2951
2952 /*
2953 * Assert sanity.
2954 */
2955 Assert(cRefs == 1);
2956 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2957 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2958
2959 /*
2960 * Then, clear the actual mappings to the page in the shadow PT.
2961 */
2962 switch (pPage->enmKind)
2963 {
2964 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2965 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2966 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2967 {
2968 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2969 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2970 uint32_t u32AndMask, u32OrMask;
2971
2972 u32AndMask = 0;
2973 u32OrMask = 0;
2974
2975 if (!fFlushPTEs)
2976 {
2977 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
2978 {
2979 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /** No handler installed. */
2980 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /** Monitoring is temporarily disabled. */
2981 u32OrMask = X86_PTE_RW;
2982 u32AndMask = UINT32_MAX;
2983 bRet = true;
2984 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
2985 break;
2986
2987 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /** Write access is monitored. */
2988 u32OrMask = 0;
2989 u32AndMask = ~X86_PTE_RW;
2990 bRet = true;
2991 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
2992 break;
2993 default:
2994 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
2995 break;
2996 }
2997 }
2998 else
2999 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3000
3001 /* Update the counter if we're removing references. */
3002 if (!u32AndMask)
3003 {
3004 Assert(pPage->cPresent >= cRefs);
3005 Assert(pPool->cPresent >= cRefs);
3006 pPage->cPresent -= cRefs;
3007 pPool->cPresent -= cRefs;
3008 }
3009
3010 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3011 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3012 {
3013 X86PTE Pte;
3014
3015 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
3016 Pte.u = (pPT->a[i].u & u32AndMask) | u32OrMask;
3017 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3018 Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */
3019
3020 ASMAtomicWriteSize(&pPT->a[i].u, Pte.u);
3021 cRefs--;
3022 if (!cRefs)
3023 return bRet;
3024 }
3025#ifdef LOG_ENABLED
3026 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3027 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3028 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3029 {
3030 Log(("i=%d cRefs=%d\n", i, cRefs--));
3031 }
3032#endif
3033 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3034 break;
3035 }
3036
3037 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3038 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3039 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3040 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3041 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3042 {
3043 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3044 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3045 uint64_t u64AndMask, u64OrMask;
3046
3047 u64OrMask = 0;
3048 u64AndMask = 0;
3049 if (!fFlushPTEs)
3050 {
3051 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3052 {
3053 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /** No handler installed. */
3054 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /** Monitoring is temporarily disabled. */
3055 u64OrMask = X86_PTE_RW;
3056 u64AndMask = UINT64_MAX;
3057 bRet = true;
3058 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3059 break;
3060
3061 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /** Write access is monitored. */
3062 u64OrMask = 0;
3063 u64AndMask = ~((uint64_t)X86_PTE_RW);
3064 bRet = true;
3065 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3066 break;
3067
3068 default:
3069 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3070 break;
3071 }
3072 }
3073 else
3074 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3075
3076 /* Update the counter if we're removing references. */
3077 if (!u64AndMask)
3078 {
3079 Assert(pPage->cPresent >= cRefs);
3080 Assert(pPool->cPresent >= cRefs);
3081 pPage->cPresent -= cRefs;
3082 pPool->cPresent -= cRefs;
3083 }
3084
3085 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3086 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3087 {
3088 X86PTEPAE Pte;
3089
3090 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
3091 Pte.u = (pPT->a[i].u & u64AndMask) | u64OrMask;
3092 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3093 Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */
3094
3095 ASMAtomicWriteSize(&pPT->a[i].u, Pte.u);
3096 cRefs--;
3097 if (!cRefs)
3098 return bRet;
3099 }
3100#ifdef LOG_ENABLED
3101 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3102 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3103 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3104 {
3105 Log(("i=%d cRefs=%d\n", i, cRefs--));
3106 }
3107#endif
3108 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
3109 break;
3110 }
3111
3112 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3113 {
3114 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3115 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3116 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3117 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
3118 {
3119 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
3120 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3121 pPT->a[i].u = 0;
3122 cRefs--;
3123
3124 /* Update the counter as we're removing references. */
3125 Assert(pPage->cPresent);
3126 Assert(pPool->cPresent);
3127 pPage->cPresent--;
3128 pPool->cPresent--;
3129
3130 if (!cRefs)
3131 return bRet;
3132 }
3133#ifdef LOG_ENABLED
3134 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3135 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3136 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
3137 {
3138 Log(("i=%d cRefs=%d\n", i, cRefs--));
3139 }
3140#endif
3141 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3142 break;
3143 }
3144
3145#ifdef PGM_WITH_LARGE_PAGES
3146 /* Large page case only. */
3147 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3148 {
3149 Assert(HWACCMIsNestedPagingActive(pVM));
3150 Assert(cRefs == 1);
3151
3152 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3153 PEPTPD pPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3154 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPD->a); i++)
3155 if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3156 {
3157 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64 cRefs=%#x\n", i, pPD->a[i], cRefs));
3158 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3159 pPD->a[i].u = 0;
3160 cRefs--;
3161
3162 /* Update the counter as we're removing references. */
3163 Assert(pPage->cPresent);
3164 Assert(pPool->cPresent);
3165 pPage->cPresent--;
3166 pPool->cPresent--;
3167
3168 if (!cRefs)
3169 return bRet;
3170 }
3171# ifdef LOG_ENABLED
3172 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3173 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3174 if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3175 {
3176 Log(("i=%d cRefs=%d\n", i, cRefs--));
3177 }
3178# endif
3179 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3180 break;
3181 }
3182
3183 /* AMD-V nested paging - @todo merge with EPT as we only check the parts that are identical. */
3184 case PGMPOOLKIND_PAE_PD_PHYS:
3185 {
3186 Assert(HWACCMIsNestedPagingActive(pVM));
3187 Assert(cRefs == 1);
3188
3189 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3190 PX86PD pPD = (PX86PD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3191 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPD->a); i++)
3192 if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3193 {
3194 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64 cRefs=%#x\n", i, pPD->a[i], cRefs));
3195 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3196 pPD->a[i].u = 0;
3197 cRefs--;
3198
3199 /* Update the counter as we're removing references. */
3200 Assert(pPage->cPresent);
3201 Assert(pPool->cPresent);
3202 pPage->cPresent--;
3203 pPool->cPresent--;
3204
3205 if (!cRefs)
3206 return bRet;
3207 }
3208# ifdef LOG_ENABLED
3209 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3210 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3211 if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3212 {
3213 Log(("i=%d cRefs=%d\n", i, cRefs--));
3214 }
3215# endif
3216 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3217 break;
3218 }
3219#endif /* PGM_WITH_LARGE_PAGES */
3220
3221 default:
3222 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
3223 }
3224 return bRet;
3225}
3226
3227
3228/**
3229 * Scans one shadow page table for mappings of a physical page.
3230 *
3231 * @param pVM The VM handle.
3232 * @param pPhysPage The guest page in question.
3233 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3234 * @param iShw The shadow page table.
3235 * @param cRefs The number of references made in that PT.
3236 */
3237static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t cRefs)
3238{
3239 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3240
3241 /* We should only come here with when there's only one reference to this physical page. */
3242 Assert(PGMPOOL_TD_GET_CREFS(PGM_PAGE_GET_TRACKING(pPhysPage)) == 1);
3243 Assert(cRefs == 1);
3244
3245 Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d cRefs=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, cRefs));
3246 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
3247 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, cRefs);
3248 if (!fKeptPTEs)
3249 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3250 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
3251}
3252
3253
3254/**
3255 * Flushes a list of shadow page tables mapping the same physical page.
3256 *
3257 * @param pVM The VM handle.
3258 * @param pPhysPage The guest page in question.
3259 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3260 * @param iPhysExt The physical cross reference extent list to flush.
3261 */
3262static void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt)
3263{
3264 Assert(PGMIsLockOwner(pVM));
3265 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3266 bool fKeepList = false;
3267
3268 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
3269 Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt));
3270
3271 const uint16_t iPhysExtStart = iPhysExt;
3272 PPGMPOOLPHYSEXT pPhysExt;
3273 do
3274 {
3275 Assert(iPhysExt < pPool->cMaxPhysExts);
3276 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3277 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3278 {
3279 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
3280 {
3281 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], 1);
3282 if (!fKeptPTEs)
3283 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3284 else
3285 fKeepList = true;
3286 }
3287 }
3288 /* next */
3289 iPhysExt = pPhysExt->iNext;
3290 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3291
3292 if (!fKeepList)
3293 {
3294 /* insert the list into the free list and clear the ram range entry. */
3295 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3296 pPool->iPhysExtFreeHead = iPhysExtStart;
3297 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3298 }
3299
3300 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
3301}
3302
3303
3304/**
3305 * Flushes all shadow page table mappings of the given guest page.
3306 *
3307 * This is typically called when the host page backing the guest one has been
3308 * replaced or when the page protection was changed due to an access handler.
3309 *
3310 * @returns VBox status code.
3311 * @retval VINF_SUCCESS if all references has been successfully cleared.
3312 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
3313 * pool cleaning. FF and sync flags are set.
3314 *
3315 * @param pVM The VM handle.
3316 * @param GCPhysPage GC physical address of the page in question
3317 * @param pPhysPage The guest page in question.
3318 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3319 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
3320 * flushed, it is NOT touched if this isn't necessary.
3321 * The caller MUST initialized this to @a false.
3322 */
3323int pgmPoolTrackUpdateGCPhys(PVM pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs)
3324{
3325 PVMCPU pVCpu = VMMGetCpu(pVM);
3326 pgmLock(pVM);
3327 int rc = VINF_SUCCESS;
3328
3329#ifdef PGM_WITH_LARGE_PAGES
3330 /* Is this page part of a large page? */
3331 if (PGM_PAGE_GET_PDE_TYPE(pPhysPage) == PGM_PAGE_PDE_TYPE_PDE)
3332 {
3333 PPGMPAGE pPhysBase;
3334 RTGCPHYS GCPhysBase = GCPhysPage & X86_PDE2M_PAE_PG_MASK;
3335
3336 GCPhysPage &= X86_PDE_PAE_PG_MASK;
3337
3338 /* Fetch the large page base. */
3339 if (GCPhysBase != GCPhysPage)
3340 {
3341 pPhysBase = pgmPhysGetPage(&pVM->pgm.s, GCPhysBase);
3342 AssertFatal(pPhysBase);
3343 }
3344 else
3345 pPhysBase = pPhysPage;
3346
3347 Log(("pgmPoolTrackUpdateGCPhys: update large page PDE for %RGp (%RGp)\n", GCPhysBase, GCPhysPage));
3348
3349 if (PGM_PAGE_GET_PDE_TYPE(pPhysBase) == PGM_PAGE_PDE_TYPE_PDE)
3350 {
3351 /* Mark the large page as disabled as we need to break it up to change a single page in the 2 MB range. */
3352 PGM_PAGE_SET_PDE_TYPE(pPhysBase, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3353
3354 /* Update the base as that *only* that one has a reference and there's only one PDE to clear. */
3355 rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysBase, pPhysBase, fFlushPTEs, pfFlushTLBs);
3356
3357 *pfFlushTLBs = true;
3358 pgmUnlock(pVM);
3359 return rc;
3360 }
3361 }
3362#else
3363 NOREF(GCPhysPage);
3364#endif /* PGM_WITH_LARGE_PAGES */
3365
3366 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
3367 if (u16)
3368 {
3369 /*
3370 * The zero page is currently screwing up the tracking and we'll
3371 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3372 * is defined, zero pages won't normally be mapped. Some kind of solution
3373 * will be needed for this problem of course, but it will have to wait...
3374 */
3375 if (PGM_PAGE_IS_ZERO(pPhysPage))
3376 rc = VINF_PGM_GCPHYS_ALIASED;
3377 else
3378 {
3379# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3380 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
3381 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
3382 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3383# endif
3384
3385 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3386 pgmPoolTrackFlushGCPhysPT(pVM,
3387 pPhysPage,
3388 fFlushPTEs,
3389 PGMPOOL_TD_GET_IDX(u16),
3390 PGMPOOL_TD_GET_CREFS(u16));
3391 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3392 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16));
3393 else
3394 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3395 *pfFlushTLBs = true;
3396
3397# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3398 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3399# endif
3400 }
3401 }
3402
3403 if (rc == VINF_PGM_GCPHYS_ALIASED)
3404 {
3405 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3406 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3407 rc = VINF_PGM_SYNC_CR3;
3408 }
3409 pgmUnlock(pVM);
3410 return rc;
3411}
3412
3413
3414/**
3415 * Scans all shadow page tables for mappings of a physical page.
3416 *
3417 * This may be slow, but it's most likely more efficient than cleaning
3418 * out the entire page pool / cache.
3419 *
3420 * @returns VBox status code.
3421 * @retval VINF_SUCCESS if all references has been successfully cleared.
3422 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
3423 * a page pool cleaning.
3424 *
3425 * @param pVM The VM handle.
3426 * @param pPhysPage The guest page in question.
3427 */
3428int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
3429{
3430 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3431 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3432 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
3433 pPool->cUsedPages, pPool->cPresent, pPhysPage));
3434
3435#if 1
3436 /*
3437 * There is a limit to what makes sense.
3438 */
3439 if (pPool->cPresent > 1024)
3440 {
3441 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3442 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3443 return VINF_PGM_GCPHYS_ALIASED;
3444 }
3445#endif
3446
3447 /*
3448 * Iterate all the pages until we've encountered all that in use.
3449 * This is simple but not quite optimal solution.
3450 */
3451 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3452 const uint32_t u32 = u64;
3453 unsigned cLeft = pPool->cUsedPages;
3454 unsigned iPage = pPool->cCurPages;
3455 while (--iPage >= PGMPOOL_IDX_FIRST)
3456 {
3457 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
3458 if ( pPage->GCPhys != NIL_RTGCPHYS
3459 && pPage->cPresent)
3460 {
3461 switch (pPage->enmKind)
3462 {
3463 /*
3464 * We only care about shadow page tables.
3465 */
3466 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3467 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3468 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3469 {
3470 unsigned cPresent = pPage->cPresent;
3471 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3472 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3473 if (pPT->a[i].n.u1Present)
3474 {
3475 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3476 {
3477 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
3478 pPT->a[i].u = 0;
3479
3480 /* Update the counter as we're removing references. */
3481 Assert(pPage->cPresent);
3482 Assert(pPool->cPresent);
3483 pPage->cPresent--;
3484 pPool->cPresent--;
3485 }
3486 if (!--cPresent)
3487 break;
3488 }
3489 break;
3490 }
3491
3492 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3493 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3494 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3495 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3496 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3497 {
3498 unsigned cPresent = pPage->cPresent;
3499 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3500 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3501 if (pPT->a[i].n.u1Present)
3502 {
3503 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3504 {
3505 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3506 pPT->a[i].u = 0;
3507
3508 /* Update the counter as we're removing references. */
3509 Assert(pPage->cPresent);
3510 Assert(pPool->cPresent);
3511 pPage->cPresent--;
3512 pPool->cPresent--;
3513 }
3514 if (!--cPresent)
3515 break;
3516 }
3517 break;
3518 }
3519#ifndef IN_RC
3520 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3521 {
3522 unsigned cPresent = pPage->cPresent;
3523 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3524 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3525 if (pPT->a[i].n.u1Present)
3526 {
3527 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
3528 {
3529 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3530 pPT->a[i].u = 0;
3531
3532 /* Update the counter as we're removing references. */
3533 Assert(pPage->cPresent);
3534 Assert(pPool->cPresent);
3535 pPage->cPresent--;
3536 pPool->cPresent--;
3537 }
3538 if (!--cPresent)
3539 break;
3540 }
3541 break;
3542 }
3543#endif
3544 }
3545 if (!--cLeft)
3546 break;
3547 }
3548 }
3549
3550 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3551 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3552 return VINF_SUCCESS;
3553}
3554
3555
3556/**
3557 * Clears the user entry in a user table.
3558 *
3559 * This is used to remove all references to a page when flushing it.
3560 */
3561static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
3562{
3563 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
3564 Assert(pUser->iUser < pPool->cCurPages);
3565 uint32_t iUserTable = pUser->iUserTable;
3566
3567 /*
3568 * Map the user page.
3569 */
3570 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
3571 union
3572 {
3573 uint64_t *pau64;
3574 uint32_t *pau32;
3575 } u;
3576 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
3577
3578 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
3579
3580 /* Safety precaution in case we change the paging for other modes too in the future. */
3581 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
3582
3583#ifdef VBOX_STRICT
3584 /*
3585 * Some sanity checks.
3586 */
3587 switch (pUserPage->enmKind)
3588 {
3589 case PGMPOOLKIND_32BIT_PD:
3590 case PGMPOOLKIND_32BIT_PD_PHYS:
3591 Assert(iUserTable < X86_PG_ENTRIES);
3592 break;
3593 case PGMPOOLKIND_PAE_PDPT:
3594 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3595 case PGMPOOLKIND_PAE_PDPT_PHYS:
3596 Assert(iUserTable < 4);
3597 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3598 break;
3599 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3600 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3601 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3602 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3603 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3604 case PGMPOOLKIND_PAE_PD_PHYS:
3605 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3606 break;
3607 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3608 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3609 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
3610 break;
3611 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3612 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3613 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3614 break;
3615 case PGMPOOLKIND_64BIT_PML4:
3616 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3617 /* GCPhys >> PAGE_SHIFT is the index here */
3618 break;
3619 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3620 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3621 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3622 break;
3623
3624 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3625 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3626 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3627 break;
3628
3629 case PGMPOOLKIND_ROOT_NESTED:
3630 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3631 break;
3632
3633 default:
3634 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
3635 break;
3636 }
3637#endif /* VBOX_STRICT */
3638
3639 /*
3640 * Clear the entry in the user page.
3641 */
3642 switch (pUserPage->enmKind)
3643 {
3644 /* 32-bit entries */
3645 case PGMPOOLKIND_32BIT_PD:
3646 case PGMPOOLKIND_32BIT_PD_PHYS:
3647 ASMAtomicWriteSize(&u.pau32[iUserTable], 0);
3648 break;
3649
3650 /* 64-bit entries */
3651 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3652 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3653 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3654 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3655 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3656#if defined(IN_RC)
3657 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
3658 * non-present PDPT will continue to cause page faults.
3659 */
3660 ASMReloadCR3();
3661#endif
3662 /* no break */
3663 case PGMPOOLKIND_PAE_PD_PHYS:
3664 case PGMPOOLKIND_PAE_PDPT_PHYS:
3665 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3666 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3667 case PGMPOOLKIND_64BIT_PML4:
3668 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3669 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3670 case PGMPOOLKIND_PAE_PDPT:
3671 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3672 case PGMPOOLKIND_ROOT_NESTED:
3673 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3674 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3675 ASMAtomicWriteSize(&u.pau64[iUserTable], 0);
3676 break;
3677
3678 default:
3679 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
3680 }
3681}
3682
3683
3684/**
3685 * Clears all users of a page.
3686 */
3687static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3688{
3689 /*
3690 * Free all the user records.
3691 */
3692 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3693
3694 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3695 uint16_t i = pPage->iUserHead;
3696 while (i != NIL_PGMPOOL_USER_INDEX)
3697 {
3698 /* Clear enter in user table. */
3699 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3700
3701 /* Free it. */
3702 const uint16_t iNext = paUsers[i].iNext;
3703 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3704 paUsers[i].iNext = pPool->iUserFreeHead;
3705 pPool->iUserFreeHead = i;
3706
3707 /* Next. */
3708 i = iNext;
3709 }
3710 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3711}
3712
3713
3714/**
3715 * Allocates a new physical cross reference extent.
3716 *
3717 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3718 * @param pVM The VM handle.
3719 * @param piPhysExt Where to store the phys ext index.
3720 */
3721PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3722{
3723 Assert(PGMIsLockOwner(pVM));
3724 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3725 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3726 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3727 {
3728 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3729 return NULL;
3730 }
3731 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3732 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3733 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3734 *piPhysExt = iPhysExt;
3735 return pPhysExt;
3736}
3737
3738
3739/**
3740 * Frees a physical cross reference extent.
3741 *
3742 * @param pVM The VM handle.
3743 * @param iPhysExt The extent to free.
3744 */
3745void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3746{
3747 Assert(PGMIsLockOwner(pVM));
3748 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3749 Assert(iPhysExt < pPool->cMaxPhysExts);
3750 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3751 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3752 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3753 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3754 pPool->iPhysExtFreeHead = iPhysExt;
3755}
3756
3757
3758/**
3759 * Frees a physical cross reference extent.
3760 *
3761 * @param pVM The VM handle.
3762 * @param iPhysExt The extent to free.
3763 */
3764void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3765{
3766 Assert(PGMIsLockOwner(pVM));
3767 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3768
3769 const uint16_t iPhysExtStart = iPhysExt;
3770 PPGMPOOLPHYSEXT pPhysExt;
3771 do
3772 {
3773 Assert(iPhysExt < pPool->cMaxPhysExts);
3774 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3775 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3776 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3777
3778 /* next */
3779 iPhysExt = pPhysExt->iNext;
3780 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3781
3782 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3783 pPool->iPhysExtFreeHead = iPhysExtStart;
3784}
3785
3786
3787/**
3788 * Insert a reference into a list of physical cross reference extents.
3789 *
3790 * @returns The new tracking data for PGMPAGE.
3791 *
3792 * @param pVM The VM handle.
3793 * @param iPhysExt The physical extent index of the list head.
3794 * @param iShwPT The shadow page table index.
3795 *
3796 */
3797static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3798{
3799 Assert(PGMIsLockOwner(pVM));
3800 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3801 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3802
3803 /* special common case. */
3804 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3805 {
3806 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3807 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3808 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d}\n", iPhysExt, iShwPT));
3809 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3810 }
3811
3812 /* general treatment. */
3813 const uint16_t iPhysExtStart = iPhysExt;
3814 unsigned cMax = 15;
3815 for (;;)
3816 {
3817 Assert(iPhysExt < pPool->cMaxPhysExts);
3818 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3819 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3820 {
3821 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3822 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3823 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3824 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3825 }
3826 if (!--cMax)
3827 {
3828 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3829 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3830 LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
3831 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3832 }
3833 }
3834
3835 /* add another extent to the list. */
3836 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3837 if (!pNew)
3838 {
3839 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackNoExtentsLeft);
3840 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3841 LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
3842 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3843 }
3844 pNew->iNext = iPhysExtStart;
3845 pNew->aidx[0] = iShwPT;
3846 LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3847 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3848}
3849
3850
3851/**
3852 * Add a reference to guest physical page where extents are in use.
3853 *
3854 * @returns The new tracking data for PGMPAGE.
3855 *
3856 * @param pVM The VM handle.
3857 * @param u16 The ram range flags (top 16-bits).
3858 * @param iShwPT The shadow page table index.
3859 */
3860uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3861{
3862 pgmLock(pVM);
3863 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3864 {
3865 /*
3866 * Convert to extent list.
3867 */
3868 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3869 uint16_t iPhysExt;
3870 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3871 if (pPhysExt)
3872 {
3873 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3874 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3875 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3876 pPhysExt->aidx[1] = iShwPT;
3877 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3878 }
3879 else
3880 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3881 }
3882 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3883 {
3884 /*
3885 * Insert into the extent list.
3886 */
3887 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3888 }
3889 else
3890 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3891 pgmUnlock(pVM);
3892 return u16;
3893}
3894
3895
3896/**
3897 * Clear references to guest physical memory.
3898 *
3899 * @param pPool The pool.
3900 * @param pPage The page.
3901 * @param pPhysPage Pointer to the aPages entry in the ram range.
3902 */
3903void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3904{
3905 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3906 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3907
3908 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3909 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3910 {
3911 PVM pVM = pPool->CTX_SUFF(pVM);
3912 pgmLock(pVM);
3913
3914 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3915 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3916 do
3917 {
3918 Assert(iPhysExt < pPool->cMaxPhysExts);
3919
3920 /*
3921 * Look for the shadow page and check if it's all freed.
3922 */
3923 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3924 {
3925 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3926 {
3927 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3928
3929 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3930 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3931 {
3932 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3933 pgmUnlock(pVM);
3934 return;
3935 }
3936
3937 /* we can free the node. */
3938 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3939 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3940 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3941 {
3942 /* lonely node */
3943 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3944 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3945 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3946 }
3947 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3948 {
3949 /* head */
3950 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3951 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3952 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3953 }
3954 else
3955 {
3956 /* in list */
3957 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3958 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3959 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3960 }
3961 iPhysExt = iPhysExtNext;
3962 pgmUnlock(pVM);
3963 return;
3964 }
3965 }
3966
3967 /* next */
3968 iPhysExtPrev = iPhysExt;
3969 iPhysExt = paPhysExts[iPhysExt].iNext;
3970 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3971
3972 pgmUnlock(pVM);
3973 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3974 }
3975 else /* nothing to do */
3976 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3977}
3978
3979
3980/**
3981 * Clear references to guest physical memory.
3982 *
3983 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3984 * is assumed to be correct, so the linear search can be skipped and we can assert
3985 * at an earlier point.
3986 *
3987 * @param pPool The pool.
3988 * @param pPage The page.
3989 * @param HCPhys The host physical address corresponding to the guest page.
3990 * @param GCPhys The guest physical address corresponding to HCPhys.
3991 */
3992static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3993{
3994 /*
3995 * Walk range list.
3996 */
3997 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3998 while (pRam)
3999 {
4000 RTGCPHYS off = GCPhys - pRam->GCPhys;
4001 if (off < pRam->cb)
4002 {
4003 /* does it match? */
4004 const unsigned iPage = off >> PAGE_SHIFT;
4005 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
4006#ifdef LOG_ENABLED
4007 RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
4008 Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
4009#endif
4010 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
4011 {
4012 Assert(pPage->cPresent);
4013 Assert(pPool->cPresent);
4014 pPage->cPresent--;
4015 pPool->cPresent--;
4016 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
4017 return;
4018 }
4019 break;
4020 }
4021 pRam = pRam->CTX_SUFF(pNext);
4022 }
4023 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
4024}
4025
4026
4027/**
4028 * Clear references to guest physical memory.
4029 *
4030 * @param pPool The pool.
4031 * @param pPage The page.
4032 * @param HCPhys The host physical address corresponding to the guest page.
4033 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
4034 */
4035void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
4036{
4037 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
4038
4039 /*
4040 * Walk range list.
4041 */
4042 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
4043 while (pRam)
4044 {
4045 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
4046 if (off < pRam->cb)
4047 {
4048 /* does it match? */
4049 const unsigned iPage = off >> PAGE_SHIFT;
4050 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
4051 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
4052 {
4053 Assert(pPage->cPresent);
4054 Assert(pPool->cPresent);
4055 pPage->cPresent--;
4056 pPool->cPresent--;
4057 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
4058 return;
4059 }
4060 break;
4061 }
4062 pRam = pRam->CTX_SUFF(pNext);
4063 }
4064
4065 /*
4066 * Damn, the hint didn't work. We'll have to do an expensive linear search.
4067 */
4068 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
4069 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
4070 while (pRam)
4071 {
4072 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4073 while (iPage-- > 0)
4074 {
4075 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
4076 {
4077 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
4078 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
4079 Assert(pPage->cPresent);
4080 Assert(pPool->cPresent);
4081 pPage->cPresent--;
4082 pPool->cPresent--;
4083 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
4084 return;
4085 }
4086 }
4087 pRam = pRam->CTX_SUFF(pNext);
4088 }
4089
4090 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
4091}
4092
4093
4094/**
4095 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
4096 *
4097 * @param pPool The pool.
4098 * @param pPage The page.
4099 * @param pShwPT The shadow page table (mapping of the page).
4100 * @param pGstPT The guest page table.
4101 */
4102DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
4103{
4104 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4105 if (pShwPT->a[i].n.u1Present)
4106 {
4107 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
4108 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
4109 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
4110 if (!pPage->cPresent)
4111 break;
4112 }
4113}
4114
4115
4116/**
4117 * Clear references to guest physical memory in a PAE / 32-bit page table.
4118 *
4119 * @param pPool The pool.
4120 * @param pPage The page.
4121 * @param pShwPT The shadow page table (mapping of the page).
4122 * @param pGstPT The guest page table (just a half one).
4123 */
4124DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
4125{
4126 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4127 if (pShwPT->a[i].n.u1Present)
4128 {
4129 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
4130 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
4131 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
4132 if (!pPage->cPresent)
4133 break;
4134 }
4135}
4136
4137
4138/**
4139 * Clear references to guest physical memory in a PAE / PAE page table.
4140 *
4141 * @param pPool The pool.
4142 * @param pPage The page.
4143 * @param pShwPT The shadow page table (mapping of the page).
4144 * @param pGstPT The guest page table.
4145 */
4146DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
4147{
4148 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4149 if (pShwPT->a[i].n.u1Present)
4150 {
4151 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
4152 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
4153 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
4154 if (!pPage->cPresent)
4155 break;
4156 }
4157}
4158
4159
4160/**
4161 * Clear references to guest physical memory in a 32-bit / 4MB page table.
4162 *
4163 * @param pPool The pool.
4164 * @param pPage The page.
4165 * @param pShwPT The shadow page table (mapping of the page).
4166 */
4167DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
4168{
4169 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4170 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4171 if (pShwPT->a[i].n.u1Present)
4172 {
4173 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
4174 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
4175 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
4176 if (!pPage->cPresent)
4177 break;
4178 }
4179}
4180
4181
4182/**
4183 * Clear references to guest physical memory in a PAE / 2/4MB page table.
4184 *
4185 * @param pPool The pool.
4186 * @param pPage The page.
4187 * @param pShwPT The shadow page table (mapping of the page).
4188 */
4189DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
4190{
4191 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4192 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4193 if (pShwPT->a[i].n.u1Present)
4194 {
4195 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
4196 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
4197 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
4198 if (!pPage->cPresent)
4199 break;
4200 }
4201}
4202
4203
4204/**
4205 * Clear references to shadowed pages in an EPT page table.
4206 *
4207 * @param pPool The pool.
4208 * @param pPage The page.
4209 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4210 */
4211DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
4212{
4213 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4214 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4215 if (pShwPT->a[i].n.u1Present)
4216 {
4217 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
4218 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
4219 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
4220 if (!pPage->cPresent)
4221 break;
4222 }
4223}
4224
4225
4226
4227/**
4228 * Clear references to shadowed pages in a 32 bits page directory.
4229 *
4230 * @param pPool The pool.
4231 * @param pPage The page.
4232 * @param pShwPD The shadow page directory (mapping of the page).
4233 */
4234DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
4235{
4236 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4237 {
4238 if ( pShwPD->a[i].n.u1Present
4239 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
4240 )
4241 {
4242 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
4243 if (pSubPage)
4244 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4245 else
4246 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
4247 }
4248 }
4249}
4250
4251/**
4252 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
4253 *
4254 * @param pPool The pool.
4255 * @param pPage The page.
4256 * @param pShwPD The shadow page directory (mapping of the page).
4257 */
4258DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
4259{
4260 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4261 {
4262 if ( pShwPD->a[i].n.u1Present
4263 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
4264 )
4265 {
4266#ifdef PGM_WITH_LARGE_PAGES
4267 if (pShwPD->a[i].b.u1Size)
4268 {
4269 Log4(("pgmPoolTrackDerefPDPae: i=%d pde=%RX64 GCPhys=%RX64\n",
4270 i, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
4271 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys /* == base of 2 MB page */);
4272 }
4273 else
4274#endif
4275 {
4276 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
4277 if (pSubPage)
4278 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4279 else
4280 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
4281 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4282 }
4283 }
4284 }
4285}
4286
4287/**
4288 * Clear references to shadowed pages in a PAE page directory pointer table.
4289 *
4290 * @param pPool The pool.
4291 * @param pPage The page.
4292 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4293 */
4294DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4295{
4296 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4297 {
4298 if ( pShwPDPT->a[i].n.u1Present
4299 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
4300 )
4301 {
4302 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
4303 if (pSubPage)
4304 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4305 else
4306 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
4307 }
4308 }
4309}
4310
4311
4312/**
4313 * Clear references to shadowed pages in a 64-bit page directory pointer table.
4314 *
4315 * @param pPool The pool.
4316 * @param pPage The page.
4317 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4318 */
4319DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4320{
4321 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4322 {
4323 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
4324 if (pShwPDPT->a[i].n.u1Present)
4325 {
4326 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
4327 if (pSubPage)
4328 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4329 else
4330 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
4331 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4332 }
4333 }
4334}
4335
4336
4337/**
4338 * Clear references to shadowed pages in a 64-bit level 4 page table.
4339 *
4340 * @param pPool The pool.
4341 * @param pPage The page.
4342 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4343 */
4344DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
4345{
4346 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
4347 {
4348 if (pShwPML4->a[i].n.u1Present)
4349 {
4350 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
4351 if (pSubPage)
4352 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4353 else
4354 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
4355 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4356 }
4357 }
4358}
4359
4360
4361/**
4362 * Clear references to shadowed pages in an EPT page directory.
4363 *
4364 * @param pPool The pool.
4365 * @param pPage The page.
4366 * @param pShwPD The shadow page directory (mapping of the page).
4367 */
4368DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
4369{
4370 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4371 {
4372 if (pShwPD->a[i].n.u1Present)
4373 {
4374#ifdef PGM_WITH_LARGE_PAGES
4375 if (pShwPD->a[i].b.u1Size)
4376 {
4377 Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n",
4378 i, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
4379 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys /* == base of 2 MB page */);
4380 }
4381 else
4382#endif
4383 {
4384 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
4385 if (pSubPage)
4386 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4387 else
4388 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
4389 }
4390 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4391 }
4392 }
4393}
4394
4395
4396/**
4397 * Clear references to shadowed pages in an EPT page directory pointer table.
4398 *
4399 * @param pPool The pool.
4400 * @param pPage The page.
4401 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4402 */
4403DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
4404{
4405 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4406 {
4407 if (pShwPDPT->a[i].n.u1Present)
4408 {
4409 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
4410 if (pSubPage)
4411 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4412 else
4413 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
4414 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4415 }
4416 }
4417}
4418
4419
4420/**
4421 * Clears all references made by this page.
4422 *
4423 * This includes other shadow pages and GC physical addresses.
4424 *
4425 * @param pPool The pool.
4426 * @param pPage The page.
4427 */
4428static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4429{
4430 /*
4431 * Map the shadow page and take action according to the page kind.
4432 */
4433 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
4434 switch (pPage->enmKind)
4435 {
4436 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4437 {
4438 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4439 void *pvGst;
4440 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4441 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
4442 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4443 break;
4444 }
4445
4446 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4447 {
4448 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4449 void *pvGst;
4450 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4451 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
4452 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4453 break;
4454 }
4455
4456 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4457 {
4458 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4459 void *pvGst;
4460 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4461 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
4462 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4463 break;
4464 }
4465
4466 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
4467 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4468 {
4469 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4470 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
4471 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4472 break;
4473 }
4474
4475 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
4476 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4477 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4478 {
4479 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4480 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
4481 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4482 break;
4483 }
4484
4485 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4486 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4487 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4488 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4489 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4490 case PGMPOOLKIND_PAE_PD_PHYS:
4491 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4492 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4493 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
4494 break;
4495
4496 case PGMPOOLKIND_32BIT_PD_PHYS:
4497 case PGMPOOLKIND_32BIT_PD:
4498 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
4499 break;
4500
4501 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4502 case PGMPOOLKIND_PAE_PDPT:
4503 case PGMPOOLKIND_PAE_PDPT_PHYS:
4504 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
4505 break;
4506
4507 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4508 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4509 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
4510 break;
4511
4512 case PGMPOOLKIND_64BIT_PML4:
4513 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
4514 break;
4515
4516 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4517 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
4518 break;
4519
4520 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4521 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
4522 break;
4523
4524 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4525 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
4526 break;
4527
4528 default:
4529 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
4530 }
4531
4532 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
4533 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4534 ASMMemZeroPage(pvShw);
4535 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4536 pPage->fZeroed = true;
4537 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
4538 Assert(!pPage->cPresent);
4539}
4540
4541/**
4542 * Flushes a pool page.
4543 *
4544 * This moves the page to the free list after removing all user references to it.
4545 *
4546 * @returns VBox status code.
4547 * @retval VINF_SUCCESS on success.
4548 * @param pPool The pool.
4549 * @param HCPhys The HC physical address of the shadow page.
4550 * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!)
4551 */
4552int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush)
4553{
4554 PVM pVM = pPool->CTX_SUFF(pVM);
4555 bool fFlushRequired = false;
4556
4557 int rc = VINF_SUCCESS;
4558 STAM_PROFILE_START(&pPool->StatFlushPage, f);
4559 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
4560 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
4561
4562 /*
4563 * Quietly reject any attempts at flushing any of the special root pages.
4564 */
4565 if (pPage->idx < PGMPOOL_IDX_FIRST)
4566 {
4567 AssertFailed(); /* can no longer happen */
4568 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4569 return VINF_SUCCESS;
4570 }
4571
4572 pgmLock(pVM);
4573
4574 /*
4575 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4576 */
4577 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
4578 {
4579 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4580 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4581 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4582 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4583 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4584 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4585 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4586 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4587 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
4588 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
4589 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4590 pgmUnlock(pVM);
4591 return VINF_SUCCESS;
4592 }
4593
4594#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4595 /* Start a subset so we won't run out of mapping space. */
4596 PVMCPU pVCpu = VMMGetCpu(pVM);
4597 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
4598#endif
4599
4600 /*
4601 * Mark the page as being in need of an ASMMemZeroPage().
4602 */
4603 pPage->fZeroed = false;
4604
4605#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4606 if (pPage->fDirty)
4607 pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirty, false /* do not remove */);
4608#endif
4609
4610 /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */
4611 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
4612 fFlushRequired = true;
4613
4614 /*
4615 * Clear the page.
4616 */
4617 pgmPoolTrackClearPageUsers(pPool, pPage);
4618 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4619 pgmPoolTrackDeref(pPool, pPage);
4620 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4621
4622 /*
4623 * Flush it from the cache.
4624 */
4625 pgmPoolCacheFlushPage(pPool, pPage);
4626
4627#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4628 /* Heavy stuff done. */
4629 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
4630#endif
4631
4632 /*
4633 * Deregistering the monitoring.
4634 */
4635 if (pPage->fMonitored)
4636 rc = pgmPoolMonitorFlush(pPool, pPage);
4637
4638 /*
4639 * Free the page.
4640 */
4641 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4642 pPage->iNext = pPool->iFreeHead;
4643 pPool->iFreeHead = pPage->idx;
4644 pPage->enmKind = PGMPOOLKIND_FREE;
4645 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4646 pPage->GCPhys = NIL_RTGCPHYS;
4647 pPage->fReusedFlushPending = false;
4648
4649 pPool->cUsedPages--;
4650
4651 /* Flush the TLBs of all VCPUs if required. */
4652 if ( fFlushRequired
4653 && fFlush)
4654 {
4655 PGM_INVL_ALL_VCPU_TLBS(pVM);
4656 }
4657
4658 pgmUnlock(pVM);
4659 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4660 return rc;
4661}
4662
4663
4664/**
4665 * Frees a usage of a pool page.
4666 *
4667 * The caller is responsible to updating the user table so that it no longer
4668 * references the shadow page.
4669 *
4670 * @param pPool The pool.
4671 * @param HCPhys The HC physical address of the shadow page.
4672 * @param iUser The shadow page pool index of the user table.
4673 * @param iUserTable The index into the user table (shadowed).
4674 */
4675void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4676{
4677 PVM pVM = pPool->CTX_SUFF(pVM);
4678
4679 STAM_PROFILE_START(&pPool->StatFree, a);
4680 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
4681 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4682 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
4683 pgmLock(pVM);
4684 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4685 if (!pPage->fCached)
4686 pgmPoolFlushPage(pPool, pPage);
4687 pgmUnlock(pVM);
4688 STAM_PROFILE_STOP(&pPool->StatFree, a);
4689}
4690
4691
4692/**
4693 * Makes one or more free page free.
4694 *
4695 * @returns VBox status code.
4696 * @retval VINF_SUCCESS on success.
4697 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4698 *
4699 * @param pPool The pool.
4700 * @param enmKind Page table kind
4701 * @param iUser The user of the page.
4702 */
4703static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4704{
4705 PVM pVM = pPool->CTX_SUFF(pVM);
4706
4707 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
4708
4709 /*
4710 * If the pool isn't full grown yet, expand it.
4711 */
4712 if ( pPool->cCurPages < pPool->cMaxPages
4713#if defined(IN_RC)
4714 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
4715 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4716 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
4717#endif
4718 )
4719 {
4720 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4721#ifdef IN_RING3
4722 int rc = PGMR3PoolGrow(pVM);
4723#else
4724 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0);
4725#endif
4726 if (RT_FAILURE(rc))
4727 return rc;
4728 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4729 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4730 return VINF_SUCCESS;
4731 }
4732
4733 /*
4734 * Free one cached page.
4735 */
4736 return pgmPoolCacheFreeOne(pPool, iUser);
4737}
4738
4739/**
4740 * Allocates a page from the pool.
4741 *
4742 * This page may actually be a cached page and not in need of any processing
4743 * on the callers part.
4744 *
4745 * @returns VBox status code.
4746 * @retval VINF_SUCCESS if a NEW page was allocated.
4747 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4748 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4749 * @param pVM The VM handle.
4750 * @param GCPhys The GC physical address of the page we're gonna shadow.
4751 * For 4MB and 2MB PD entries, it's the first address the
4752 * shadow PT is covering.
4753 * @param enmKind The kind of mapping.
4754 * @param enmAccess Access type for the mapping (only relevant for big pages)
4755 * @param iUser The shadow page pool index of the user table.
4756 * @param iUserTable The index into the user table (shadowed).
4757 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4758 * @param fLockPage Lock the page
4759 */
4760int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage, bool fLockPage)
4761{
4762 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4763 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4764 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4765 *ppPage = NULL;
4766 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4767 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4768 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
4769
4770 pgmLock(pVM);
4771
4772 if (pPool->fCacheEnabled)
4773 {
4774 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, iUser, iUserTable, ppPage);
4775 if (RT_SUCCESS(rc2))
4776 {
4777 if (fLockPage)
4778 pgmPoolLockPage(pPool, *ppPage);
4779 pgmUnlock(pVM);
4780 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4781 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4782 return rc2;
4783 }
4784 }
4785
4786 /*
4787 * Allocate a new one.
4788 */
4789 int rc = VINF_SUCCESS;
4790 uint16_t iNew = pPool->iFreeHead;
4791 if (iNew == NIL_PGMPOOL_IDX)
4792 {
4793 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4794 if (RT_FAILURE(rc))
4795 {
4796 pgmUnlock(pVM);
4797 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4798 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4799 return rc;
4800 }
4801 iNew = pPool->iFreeHead;
4802 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4803 }
4804
4805 /* unlink the free head */
4806 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4807 pPool->iFreeHead = pPage->iNext;
4808 pPage->iNext = NIL_PGMPOOL_IDX;
4809
4810 /*
4811 * Initialize it.
4812 */
4813 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4814 pPage->enmKind = enmKind;
4815 pPage->enmAccess = enmAccess;
4816 pPage->GCPhys = GCPhys;
4817 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4818 pPage->fMonitored = false;
4819 pPage->fCached = false;
4820#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4821 pPage->fDirty = false;
4822#endif
4823 pPage->fReusedFlushPending = false;
4824 pPage->cModifications = 0;
4825 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4826 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4827 pPage->cPresent = 0;
4828 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
4829 pPage->pvLastAccessHandlerFault = 0;
4830 pPage->cLastAccessHandlerCount = 0;
4831 pPage->pvLastAccessHandlerRip = 0;
4832
4833 /*
4834 * Insert into the tracking and cache. If this fails, free the page.
4835 */
4836 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4837 if (RT_FAILURE(rc3))
4838 {
4839 pPool->cUsedPages--;
4840 pPage->enmKind = PGMPOOLKIND_FREE;
4841 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4842 pPage->GCPhys = NIL_RTGCPHYS;
4843 pPage->iNext = pPool->iFreeHead;
4844 pPool->iFreeHead = pPage->idx;
4845 pgmUnlock(pVM);
4846 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4847 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4848 return rc3;
4849 }
4850
4851 /*
4852 * Commit the allocation, clear the page and return.
4853 */
4854#ifdef VBOX_WITH_STATISTICS
4855 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4856 pPool->cUsedPagesHigh = pPool->cUsedPages;
4857#endif
4858
4859 if (!pPage->fZeroed)
4860 {
4861 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4862 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4863 ASMMemZeroPage(pv);
4864 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4865 }
4866
4867 *ppPage = pPage;
4868 if (fLockPage)
4869 pgmPoolLockPage(pPool, pPage);
4870 pgmUnlock(pVM);
4871 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4872 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4873 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4874 return rc;
4875}
4876
4877
4878/**
4879 * Frees a usage of a pool page.
4880 *
4881 * @param pVM The VM handle.
4882 * @param HCPhys The HC physical address of the shadow page.
4883 * @param iUser The shadow page pool index of the user table.
4884 * @param iUserTable The index into the user table (shadowed).
4885 */
4886void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4887{
4888 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4889 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4890 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4891}
4892
4893/**
4894 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4895 *
4896 * @returns Pointer to the shadow page structure.
4897 * @param pPool The pool.
4898 * @param HCPhys The HC physical address of the shadow page.
4899 */
4900PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4901{
4902 PVM pVM = pPool->CTX_SUFF(pVM);
4903
4904 Assert(PGMIsLockOwner(pVM));
4905
4906 /*
4907 * Look up the page.
4908 */
4909 pgmLock(pVM);
4910 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4911 pgmUnlock(pVM);
4912
4913 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4914 return pPage;
4915}
4916
4917#ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */
4918/**
4919 * Flush the specified page if present
4920 *
4921 * @param pVM The VM handle.
4922 * @param GCPhys Guest physical address of the page to flush
4923 */
4924void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys)
4925{
4926 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4927
4928 VM_ASSERT_EMT(pVM);
4929
4930 /*
4931 * Look up the GCPhys in the hash.
4932 */
4933 GCPhys = GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
4934 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
4935 if (i == NIL_PGMPOOL_IDX)
4936 return;
4937
4938 do
4939 {
4940 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4941 if (pPage->GCPhys - GCPhys < PAGE_SIZE)
4942 {
4943 switch (pPage->enmKind)
4944 {
4945 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4946 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4947 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4948 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4949 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4950 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4951 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4952 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4953 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4954 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4955 case PGMPOOLKIND_64BIT_PML4:
4956 case PGMPOOLKIND_32BIT_PD:
4957 case PGMPOOLKIND_PAE_PDPT:
4958 {
4959 Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys));
4960#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4961 if (pPage->fDirty)
4962 STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage);
4963 else
4964#endif
4965 STAM_COUNTER_INC(&pPool->StatForceFlushPage);
4966 Assert(!pgmPoolIsPageLocked(&pVM->pgm.s, pPage));
4967 pgmPoolMonitorChainFlush(pPool, pPage);
4968 return;
4969 }
4970
4971 /* ignore, no monitoring. */
4972 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4973 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4974 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4975 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4976 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4977 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4978 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4979 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4980 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4981 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4982 case PGMPOOLKIND_ROOT_NESTED:
4983 case PGMPOOLKIND_PAE_PD_PHYS:
4984 case PGMPOOLKIND_PAE_PDPT_PHYS:
4985 case PGMPOOLKIND_32BIT_PD_PHYS:
4986 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4987 break;
4988
4989 default:
4990 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
4991 }
4992 }
4993
4994 /* next */
4995 i = pPage->iNext;
4996 } while (i != NIL_PGMPOOL_IDX);
4997 return;
4998}
4999#endif /* IN_RING3 */
5000
5001#ifdef IN_RING3
5002
5003
5004/**
5005 * Reset CPU on hot plugging.
5006 *
5007 * @param pVM The VM handle.
5008 * @param pVCpu The virtual CPU.
5009 */
5010void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
5011{
5012 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
5013
5014 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5015 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5016 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5017}
5018
5019
5020/**
5021 * Flushes the entire cache.
5022 *
5023 * It will assert a global CR3 flush (FF) and assumes the caller is aware of
5024 * this and execute this CR3 flush.
5025 *
5026 * @param pPool The pool.
5027 */
5028void pgmR3PoolReset(PVM pVM)
5029{
5030 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5031
5032 Assert(PGMIsLockOwner(pVM));
5033 STAM_PROFILE_START(&pPool->StatR3Reset, a);
5034 LogFlow(("pgmR3PoolReset:\n"));
5035
5036 /*
5037 * If there are no pages in the pool, there is nothing to do.
5038 */
5039 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
5040 {
5041 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5042 return;
5043 }
5044
5045 /*
5046 * Exit the shadow mode since we're going to clear everything,
5047 * including the root page.
5048 */
5049 for (VMCPUID i = 0; i < pVM->cCpus; i++)
5050 {
5051 PVMCPU pVCpu = &pVM->aCpus[i];
5052 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
5053 }
5054
5055 /*
5056 * Nuke the free list and reinsert all pages into it.
5057 */
5058 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
5059 {
5060 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5061
5062 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
5063 if (pPage->fMonitored)
5064 pgmPoolMonitorFlush(pPool, pPage);
5065 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5066 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5067 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
5068 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
5069 pPage->cModifications = 0;
5070 pPage->GCPhys = NIL_RTGCPHYS;
5071 pPage->enmKind = PGMPOOLKIND_FREE;
5072 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5073 Assert(pPage->idx == i);
5074 pPage->iNext = i + 1;
5075 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
5076 pPage->fSeenNonGlobal = false;
5077 pPage->fMonitored = false;
5078#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5079 pPage->fDirty = false;
5080#endif
5081 pPage->fCached = false;
5082 pPage->fReusedFlushPending = false;
5083 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
5084 pPage->iAgeNext = NIL_PGMPOOL_IDX;
5085 pPage->iAgePrev = NIL_PGMPOOL_IDX;
5086 pPage->cLocked = 0;
5087 }
5088 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
5089 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
5090 pPool->cUsedPages = 0;
5091
5092 /*
5093 * Zap and reinitialize the user records.
5094 */
5095 pPool->cPresent = 0;
5096 pPool->iUserFreeHead = 0;
5097 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
5098 const unsigned cMaxUsers = pPool->cMaxUsers;
5099 for (unsigned i = 0; i < cMaxUsers; i++)
5100 {
5101 paUsers[i].iNext = i + 1;
5102 paUsers[i].iUser = NIL_PGMPOOL_IDX;
5103 paUsers[i].iUserTable = 0xfffffffe;
5104 }
5105 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
5106
5107 /*
5108 * Clear all the GCPhys links and rebuild the phys ext free list.
5109 */
5110 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
5111 pRam;
5112 pRam = pRam->CTX_SUFF(pNext))
5113 {
5114 unsigned iPage = pRam->cb >> PAGE_SHIFT;
5115 while (iPage-- > 0)
5116 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
5117 }
5118
5119 pPool->iPhysExtFreeHead = 0;
5120 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
5121 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
5122 for (unsigned i = 0; i < cMaxPhysExts; i++)
5123 {
5124 paPhysExts[i].iNext = i + 1;
5125 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
5126 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
5127 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
5128 }
5129 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
5130
5131 /*
5132 * Just zap the modified list.
5133 */
5134 pPool->cModifiedPages = 0;
5135 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
5136
5137 /*
5138 * Clear the GCPhys hash and the age list.
5139 */
5140 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
5141 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
5142 pPool->iAgeHead = NIL_PGMPOOL_IDX;
5143 pPool->iAgeTail = NIL_PGMPOOL_IDX;
5144
5145#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5146 /* Clear all dirty pages. */
5147 pPool->idxFreeDirtyPage = 0;
5148 pPool->cDirtyPages = 0;
5149 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
5150 pPool->aIdxDirtyPages[i] = NIL_PGMPOOL_IDX;
5151#endif
5152
5153 /*
5154 * Reinsert active pages into the hash and ensure monitoring chains are correct.
5155 */
5156 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
5157 {
5158 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5159 pPage->iNext = NIL_PGMPOOL_IDX;
5160 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5161 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5162 pPage->cModifications = 0;
5163 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
5164 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
5165 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
5166 if (pPage->fMonitored)
5167 {
5168 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
5169 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
5170 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
5171 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
5172 pPool->pszAccessHandler);
5173 AssertFatalRCSuccess(rc);
5174 pgmPoolHashInsert(pPool, pPage);
5175 }
5176 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
5177 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
5178 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
5179 }
5180
5181 for (VMCPUID i = 0; i < pVM->cCpus; i++)
5182 {
5183 /*
5184 * Re-enter the shadowing mode and assert Sync CR3 FF.
5185 */
5186 PVMCPU pVCpu = &pVM->aCpus[i];
5187 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5188 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5189 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5190 }
5191
5192 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5193}
5194#endif /* IN_RING3 */
5195
5196#ifdef LOG_ENABLED
5197static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
5198{
5199 switch(enmKind)
5200 {
5201 case PGMPOOLKIND_INVALID:
5202 return "PGMPOOLKIND_INVALID";
5203 case PGMPOOLKIND_FREE:
5204 return "PGMPOOLKIND_FREE";
5205 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5206 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
5207 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5208 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
5209 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5210 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
5211 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5212 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
5213 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5214 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
5215 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5216 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
5217 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5218 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
5219 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5220 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
5221 case PGMPOOLKIND_32BIT_PD:
5222 return "PGMPOOLKIND_32BIT_PD";
5223 case PGMPOOLKIND_32BIT_PD_PHYS:
5224 return "PGMPOOLKIND_32BIT_PD_PHYS";
5225 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5226 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
5227 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5228 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
5229 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5230 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
5231 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5232 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
5233 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5234 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
5235 case PGMPOOLKIND_PAE_PD_PHYS:
5236 return "PGMPOOLKIND_PAE_PD_PHYS";
5237 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5238 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
5239 case PGMPOOLKIND_PAE_PDPT:
5240 return "PGMPOOLKIND_PAE_PDPT";
5241 case PGMPOOLKIND_PAE_PDPT_PHYS:
5242 return "PGMPOOLKIND_PAE_PDPT_PHYS";
5243 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5244 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
5245 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5246 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
5247 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5248 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
5249 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5250 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
5251 case PGMPOOLKIND_64BIT_PML4:
5252 return "PGMPOOLKIND_64BIT_PML4";
5253 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5254 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
5255 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5256 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
5257 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5258 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
5259 case PGMPOOLKIND_ROOT_NESTED:
5260 return "PGMPOOLKIND_ROOT_NESTED";
5261 }
5262 return "Unknown kind!";
5263}
5264#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette