VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 89547

Last change on this file since 89547 was 87141, checked in by vboxsync, 4 years ago

VMM: Remove VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 and the code it encloses as it is unused since the removal of x86 darwin support

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 208.7 KB
Line 
1/* $Id: PGMAllPool.cpp 87141 2020-12-29 19:12:45Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_POOL
23#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/em.h>
27#include <VBox/vmm/cpum.h>
28#include "PGMInternal.h"
29#include <VBox/vmm/vmcc.h>
30#include "PGMInline.h"
31#include <VBox/disopcode.h>
32#include <VBox/vmm/hm_vmx.h>
33
34#include <VBox/log.h>
35#include <VBox/err.h>
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/string.h>
39
40
41/*********************************************************************************************************************************
42* Internal Functions *
43*********************************************************************************************************************************/
44RT_C_DECLS_BEGIN
45#if 0 /* unused */
46DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
47DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
48#endif /* unused */
49static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
50static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
51static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
52static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
53#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
54static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
55#endif
56#if 0 /*defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT)*/
57static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT);
58#endif
59
60int pgmPoolTrackFlushGCPhysPTsSlow(PVMCC pVM, PPGMPAGE pPhysPage);
61PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
62void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
63void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
64
65RT_C_DECLS_END
66
67
68#if 0 /* unused */
69/**
70 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
71 *
72 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
73 * @param enmKind The page kind.
74 */
75DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
76{
77 switch (enmKind)
78 {
79 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
80 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
81 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
82 return true;
83 default:
84 return false;
85 }
86}
87#endif /* unused */
88
89
90/**
91 * Flushes a chain of pages sharing the same access monitor.
92 *
93 * @param pPool The pool.
94 * @param pPage A page in the chain.
95 */
96void pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
97{
98 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
99
100 /*
101 * Find the list head.
102 */
103 uint16_t idx = pPage->idx;
104 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
105 {
106 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
107 {
108 idx = pPage->iMonitoredPrev;
109 Assert(idx != pPage->idx);
110 pPage = &pPool->aPages[idx];
111 }
112 }
113
114 /*
115 * Iterate the list flushing each shadow page.
116 */
117 for (;;)
118 {
119 idx = pPage->iMonitoredNext;
120 Assert(idx != pPage->idx);
121 if (pPage->idx >= PGMPOOL_IDX_FIRST)
122 {
123 int rc2 = pgmPoolFlushPage(pPool, pPage);
124 AssertRC(rc2);
125 }
126 /* next */
127 if (idx == NIL_PGMPOOL_IDX)
128 break;
129 pPage = &pPool->aPages[idx];
130 }
131}
132
133
134/**
135 * Wrapper for getting the current context pointer to the entry being modified.
136 *
137 * @returns VBox status code suitable for scheduling.
138 * @param pVM The cross context VM structure.
139 * @param pvDst Destination address
140 * @param pvSrc Pointer to the mapping of @a GCPhysSrc or NULL depending
141 * on the context (e.g. \#PF in R0 & RC).
142 * @param GCPhysSrc The source guest physical address.
143 * @param cb Size of data to read
144 */
145DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVMCC pVM, void *pvDst, void const *pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
146{
147#if defined(IN_RING3)
148 NOREF(pVM); NOREF(GCPhysSrc);
149 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
150 return VINF_SUCCESS;
151#else
152 /** @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
153 NOREF(pvSrc);
154 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
155#endif
156}
157
158
159/**
160 * Process shadow entries before they are changed by the guest.
161 *
162 * For PT entries we will clear them. For PD entries, we'll simply check
163 * for mapping conflicts and set the SyncCR3 FF if found.
164 *
165 * @param pVCpu The cross context virtual CPU structure.
166 * @param pPool The pool.
167 * @param pPage The head page.
168 * @param GCPhysFault The guest physical fault address.
169 * @param pvAddress Pointer to the mapping of @a GCPhysFault or NULL
170 * depending on the context (e.g. \#PF in R0 & RC).
171 * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries
172 */
173static void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault,
174 void const *pvAddress, unsigned cbWrite)
175{
176 AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%u (idx=%u)\n", pPage->iMonitoredPrev, pPage->idx));
177 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
178 PVMCC pVM = pPool->CTX_SUFF(pVM);
179 NOREF(pVCpu);
180
181 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n",
182 (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))(uintptr_t)pvAddress, GCPhysFault, cbWrite));
183
184 for (;;)
185 {
186 union
187 {
188 void *pv;
189 PX86PT pPT;
190 PPGMSHWPTPAE pPTPae;
191 PX86PD pPD;
192 PX86PDPAE pPDPae;
193 PX86PDPT pPDPT;
194 PX86PML4 pPML4;
195 } uShw;
196
197 LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s write=%#x\n",
198 pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
199
200 uShw.pv = NULL;
201 switch (pPage->enmKind)
202 {
203 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
204 {
205 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
206 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
207 const unsigned iShw = off / sizeof(X86PTE);
208 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
209 X86PGUINT const uPde = uShw.pPT->a[iShw].u;
210 if (uPde & X86_PTE_P)
211 {
212 X86PTE GstPte;
213 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
214 AssertRC(rc);
215 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uPde & X86_PTE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
216 pgmPoolTracDerefGCPhysHint(pPool, pPage, uPde & X86_PTE_PG_MASK, GstPte.u & X86_PTE_PG_MASK, iShw);
217 ASMAtomicWriteU32(&uShw.pPT->a[iShw].u, 0);
218 }
219 break;
220 }
221
222 /* page/2 sized */
223 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
224 {
225 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
226 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
227 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
228 {
229 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
230 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
231 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
232 {
233 X86PTE GstPte;
234 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
235 AssertRC(rc);
236
237 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
238 pgmPoolTracDerefGCPhysHint(pPool, pPage,
239 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
240 GstPte.u & X86_PTE_PG_MASK,
241 iShw);
242 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
243 }
244 }
245 break;
246 }
247
248 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
249 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
250 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
251 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
252 {
253 unsigned iGst = off / sizeof(X86PDE);
254 unsigned iShwPdpt = iGst / 256;
255 unsigned iShw = (iGst % 256) * 2;
256 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
257
258 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
259 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
260 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
261 {
262 for (unsigned i = 0; i < 2; i++)
263 {
264 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw + i].u;
265 if (uPde & X86_PDE_P)
266 {
267 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw + i, uPde));
268 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw + i);
269 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw + i].u, 0);
270 }
271
272 /* paranoia / a bit assumptive. */
273 if ( (off & 3)
274 && (off & 3) + cbWrite > 4)
275 {
276 const unsigned iShw2 = iShw + 2 + i;
277 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
278 {
279 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
280 if (uPde2 & X86_PDE_P)
281 {
282 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
283 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
284 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
285 }
286 }
287 }
288 }
289 }
290 break;
291 }
292
293 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
294 {
295 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
296 const unsigned iShw = off / sizeof(X86PTEPAE);
297 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
298 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
299 {
300 X86PTEPAE GstPte;
301 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
302 AssertRC(rc);
303
304 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PAE_PG_MASK));
305 pgmPoolTracDerefGCPhysHint(pPool, pPage,
306 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
307 GstPte.u & X86_PTE_PAE_PG_MASK,
308 iShw);
309 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
310 }
311
312 /* paranoia / a bit assumptive. */
313 if ( (off & 7)
314 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
315 {
316 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
317 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
318
319 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw2]))
320 {
321 X86PTEPAE GstPte;
322 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte,
323 pvAddress ? (uint8_t const *)pvAddress + sizeof(GstPte) : NULL,
324 GCPhysFault + sizeof(GstPte), sizeof(GstPte));
325 AssertRC(rc);
326 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), GstPte.u & X86_PTE_PAE_PG_MASK));
327 pgmPoolTracDerefGCPhysHint(pPool, pPage,
328 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]),
329 GstPte.u & X86_PTE_PAE_PG_MASK,
330 iShw2);
331 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw2], 0);
332 }
333 }
334 break;
335 }
336
337 case PGMPOOLKIND_32BIT_PD:
338 {
339 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
340 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
341
342 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
343 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
344 X86PGUINT const uPde = uShw.pPD->a[iShw].u;
345 if (uPde & X86_PDE_P)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
348 pgmPoolFree(pVM, uPde & X86_PDE_PG_MASK, pPage->idx, iShw);
349 ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
350 }
351
352 /* paranoia / a bit assumptive. */
353 if ( (off & 3)
354 && (off & 3) + cbWrite > sizeof(X86PTE))
355 {
356 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
357 if ( iShw2 != iShw
358 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
359 {
360 X86PGUINT const uPde2 = uShw.pPD->a[iShw2].u;
361 if (uPde2 & X86_PDE_P)
362 {
363 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
364 pgmPoolFree(pVM, uPde2 & X86_PDE_PG_MASK, pPage->idx, iShw2);
365 ASMAtomicWriteU32(&uShw.pPD->a[iShw2].u, 0);
366 }
367 }
368 }
369#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). - not working any longer... */
370 if ( uShw.pPD->a[iShw].n.u1Present
371 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
372 {
373 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
374 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
375 ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
376 }
377#endif
378 break;
379 }
380
381 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
382 {
383 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
384 const unsigned iShw = off / sizeof(X86PDEPAE);
385 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
386
387 /*
388 * Causes trouble when the guest uses a PDE to refer to the whole page table level
389 * structure. (Invalidate here; faults later on when it tries to change the page
390 * table entries -> recheck; probably only applies to the RC case.)
391 */
392 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw].u;
393 if (uPde & X86_PDE_P)
394 {
395 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
396 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw);
397 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
398 }
399
400 /* paranoia / a bit assumptive. */
401 if ( (off & 7)
402 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
403 {
404 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
405 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
406
407 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
408 if (uPde2 & X86_PDE_P)
409 {
410 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
411 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
412 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
413 }
414 }
415 break;
416 }
417
418 case PGMPOOLKIND_PAE_PDPT:
419 {
420 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
421 /*
422 * Hopefully this doesn't happen very often:
423 * - touching unused parts of the page
424 * - messing with the bits of pd pointers without changing the physical address
425 */
426 /* PDPT roots are not page aligned; 32 byte only! */
427 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
428
429 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
430 const unsigned iShw = offPdpt / sizeof(X86PDPE);
431 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
432 {
433 X86PGPAEUINT const uPdpe = uShw.pPDPT->a[iShw].u;
434 if (uPdpe & X86_PDPE_P)
435 {
436 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
437 pgmPoolFree(pVM, uPdpe & X86_PDPE_PG_MASK, pPage->idx, iShw);
438 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
439 }
440
441 /* paranoia / a bit assumptive. */
442 if ( (offPdpt & 7)
443 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
444 {
445 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
446 if ( iShw2 != iShw
447 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
448 {
449 X86PGPAEUINT const uPdpe2 = uShw.pPDPT->a[iShw2].u;
450 if (uPdpe2 & X86_PDPE_P)
451 {
452 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
453 pgmPoolFree(pVM, uPdpe2 & X86_PDPE_PG_MASK, pPage->idx, iShw2);
454 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
455 }
456 }
457 }
458 }
459 break;
460 }
461
462 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
463 {
464 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
465 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
466 const unsigned iShw = off / sizeof(X86PDEPAE);
467 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw].u;
468#ifndef PGM_WITHOUT_MAPPINGS
469 Assert(!(uPde & PGM_PDFLAGS_MAPPING));
470#endif
471 if (uPde & X86_PDE_P)
472 {
473 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
474 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw);
475 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
476 }
477
478 /* paranoia / a bit assumptive. */
479 if ( (off & 7)
480 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
481 {
482 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
483 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
484 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
485#ifndef PGM_WITHOUT_MAPPINGS
486 Assert(!(uPde2 & PGM_PDFLAGS_MAPPING));
487#endif
488 if (uPde2 & X86_PDE_P)
489 {
490 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
491 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
492 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
493 }
494 }
495 break;
496 }
497
498 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
499 {
500 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
501 /*
502 * Hopefully this doesn't happen very often:
503 * - messing with the bits of pd pointers without changing the physical address
504 */
505 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
506 const unsigned iShw = off / sizeof(X86PDPE);
507 X86PGPAEUINT const uPdpe = uShw.pPDPT->a[iShw].u;
508 if (uPdpe & X86_PDPE_P)
509 {
510 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uPdpe));
511 pgmPoolFree(pVM, uPdpe & X86_PDPE_PG_MASK, pPage->idx, iShw);
512 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
513 }
514 /* paranoia / a bit assumptive. */
515 if ( (off & 7)
516 && (off & 7) + cbWrite > sizeof(X86PDPE))
517 {
518 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
519 X86PGPAEUINT const uPdpe2 = uShw.pPDPT->a[iShw2].u;
520 if (uPdpe2 & X86_PDPE_P)
521 {
522 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPdpe2));
523 pgmPoolFree(pVM, uPdpe2 & X86_PDPE_PG_MASK, pPage->idx, iShw2);
524 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
525 }
526 }
527 break;
528 }
529
530 case PGMPOOLKIND_64BIT_PML4:
531 {
532 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4));
533 /*
534 * Hopefully this doesn't happen very often:
535 * - messing with the bits of pd pointers without changing the physical address
536 */
537 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
538 const unsigned iShw = off / sizeof(X86PDPE);
539 X86PGPAEUINT const uPml4e = uShw.pPML4->a[iShw].u;
540 if (uPml4e & X86_PML4E_P)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uPml4e));
543 pgmPoolFree(pVM, uPml4e & X86_PML4E_PG_MASK, pPage->idx, iShw);
544 ASMAtomicWriteU64(&uShw.pPML4->a[iShw].u, 0);
545 }
546 /* paranoia / a bit assumptive. */
547 if ( (off & 7)
548 && (off & 7) + cbWrite > sizeof(X86PDPE))
549 {
550 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
551 X86PGPAEUINT const uPml4e2 = uShw.pPML4->a[iShw2].u;
552 if (uPml4e2 & X86_PML4E_P)
553 {
554 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPml4e2));
555 pgmPoolFree(pVM, uPml4e2 & X86_PML4E_PG_MASK, pPage->idx, iShw2);
556 ASMAtomicWriteU64(&uShw.pPML4->a[iShw2].u, 0);
557 }
558 }
559 break;
560 }
561
562 default:
563 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
564 }
565 PGM_DYNMAP_UNUSED_HINT_VM(pVM, uShw.pv);
566
567 /* next */
568 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
569 return;
570 pPage = &pPool->aPages[pPage->iMonitoredNext];
571 }
572}
573
574#ifndef IN_RING3
575
576/**
577 * Checks if a access could be a fork operation in progress.
578 *
579 * Meaning, that the guest is setting up the parent process for Copy-On-Write.
580 *
581 * @returns true if it's likely that we're forking, otherwise false.
582 * @param pPool The pool.
583 * @param pDis The disassembled instruction.
584 * @param offFault The access offset.
585 */
586DECLINLINE(bool) pgmRZPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
587{
588 /*
589 * i386 linux is using btr to clear X86_PTE_RW.
590 * The functions involved are (2.6.16 source inspection):
591 * clear_bit
592 * ptep_set_wrprotect
593 * copy_one_pte
594 * copy_pte_range
595 * copy_pmd_range
596 * copy_pud_range
597 * copy_page_range
598 * dup_mmap
599 * dup_mm
600 * copy_mm
601 * copy_process
602 * do_fork
603 */
604 if ( pDis->pCurInstr->uOpcode == OP_BTR
605 && !(offFault & 4)
606 /** @todo Validate that the bit index is X86_PTE_RW. */
607 )
608 {
609 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,Fork)); RT_NOREF_PV(pPool);
610 return true;
611 }
612 return false;
613}
614
615
616/**
617 * Determine whether the page is likely to have been reused.
618 *
619 * @returns true if we consider the page as being reused for a different purpose.
620 * @returns false if we consider it to still be a paging page.
621 * @param pVM The cross context VM structure.
622 * @param pVCpu The cross context virtual CPU structure.
623 * @param pRegFrame Trap register frame.
624 * @param pDis The disassembly info for the faulting instruction.
625 * @param pvFault The fault address.
626 * @param pPage The pool page being accessed.
627 *
628 * @remark The REP prefix check is left to the caller because of STOSD/W.
629 */
630DECLINLINE(bool) pgmRZPoolMonitorIsReused(PVMCC pVM, PVMCPUCC pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault,
631 PPGMPOOLPAGE pPage)
632{
633 /* Locked (CR3, PDPTR*4) should not be reusable. Considering them as
634 such may cause loops booting tst-ubuntu-15_10-64-efi, ++. */
635 if (pPage->cLocked)
636 {
637 Log2(("pgmRZPoolMonitorIsReused: %RGv (%p) can't have been resued, because it's locked!\n", pvFault, pPage));
638 return false;
639 }
640
641 /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */
642 if ( HMHasPendingIrq(pVM)
643 && pRegFrame->rsp - pvFault < 32)
644 {
645 /* Fault caused by stack writes while trying to inject an interrupt event. */
646 Log(("pgmRZPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
647 return true;
648 }
649
650 LogFlow(("Reused instr %RGv %d at %RGv param1.fUse=%llx param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->uOpcode, pvFault, pDis->Param1.fUse, pDis->Param1.Base.idxGenReg));
651
652 /* Non-supervisor mode write means it's used for something else. */
653 if (CPUMGetGuestCPL(pVCpu) == 3)
654 return true;
655
656 switch (pDis->pCurInstr->uOpcode)
657 {
658 /* call implies the actual push of the return address faulted */
659 case OP_CALL:
660 Log4(("pgmRZPoolMonitorIsReused: CALL\n"));
661 return true;
662 case OP_PUSH:
663 Log4(("pgmRZPoolMonitorIsReused: PUSH\n"));
664 return true;
665 case OP_PUSHF:
666 Log4(("pgmRZPoolMonitorIsReused: PUSHF\n"));
667 return true;
668 case OP_PUSHA:
669 Log4(("pgmRZPoolMonitorIsReused: PUSHA\n"));
670 return true;
671 case OP_FXSAVE:
672 Log4(("pgmRZPoolMonitorIsReused: FXSAVE\n"));
673 return true;
674 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
675 Log4(("pgmRZPoolMonitorIsReused: MOVNTI\n"));
676 return true;
677 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
678 Log4(("pgmRZPoolMonitorIsReused: MOVNTDQ\n"));
679 return true;
680 case OP_MOVSWD:
681 case OP_STOSWD:
682 if ( pDis->fPrefix == (DISPREFIX_REP|DISPREFIX_REX)
683 && pRegFrame->rcx >= 0x40
684 )
685 {
686 Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
687
688 Log(("pgmRZPoolMonitorIsReused: OP_STOSQ\n"));
689 return true;
690 }
691 break;
692
693 default:
694 /*
695 * Anything having ESP on the left side means stack writes.
696 */
697 if ( ( (pDis->Param1.fUse & DISUSE_REG_GEN32)
698 || (pDis->Param1.fUse & DISUSE_REG_GEN64))
699 && (pDis->Param1.Base.idxGenReg == DISGREG_ESP))
700 {
701 Log4(("pgmRZPoolMonitorIsReused: ESP\n"));
702 return true;
703 }
704 break;
705 }
706
707 /*
708 * Page table updates are very very unlikely to be crossing page boundraries,
709 * and we don't want to deal with that in pgmPoolMonitorChainChanging and such.
710 */
711 uint32_t const cbWrite = DISGetParamSize(pDis, &pDis->Param1);
712 if ( (((uintptr_t)pvFault + cbWrite) >> X86_PAGE_SHIFT) != ((uintptr_t)pvFault >> X86_PAGE_SHIFT) )
713 {
714 Log4(("pgmRZPoolMonitorIsReused: cross page write\n"));
715 return true;
716 }
717
718 /*
719 * Nobody does an unaligned 8 byte write to a page table, right.
720 */
721 if (cbWrite >= 8 && ((uintptr_t)pvFault & 7) != 0)
722 {
723 Log4(("pgmRZPoolMonitorIsReused: Unaligned 8+ byte write\n"));
724 return true;
725 }
726
727 return false;
728}
729
730
731/**
732 * Flushes the page being accessed.
733 *
734 * @returns VBox status code suitable for scheduling.
735 * @param pVM The cross context VM structure.
736 * @param pVCpu The cross context virtual CPU structure.
737 * @param pPool The pool.
738 * @param pPage The pool page (head).
739 * @param pDis The disassembly of the write instruction.
740 * @param pRegFrame The trap register frame.
741 * @param GCPhysFault The fault address as guest physical address.
742 * @param pvFault The fault address.
743 * @todo VBOXSTRICTRC
744 */
745static int pgmRZPoolAccessPfHandlerFlush(PVMCC pVM, PVMCPUCC pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
746 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
747{
748 NOREF(pVM); NOREF(GCPhysFault);
749
750 /*
751 * First, do the flushing.
752 */
753 pgmPoolMonitorChainFlush(pPool, pPage);
754
755 /*
756 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
757 * Must do this in raw mode (!); XP boot will fail otherwise.
758 */
759 int rc = VINF_SUCCESS;
760 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
761 if (rc2 == VINF_SUCCESS)
762 { /* do nothing */ }
763 else if (rc2 == VINF_EM_RESCHEDULE)
764 {
765 rc = VBOXSTRICTRC_VAL(rc2);
766# ifndef IN_RING3
767 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
768# endif
769 }
770 else if (rc2 == VERR_EM_INTERPRETER)
771 {
772 rc = VINF_EM_RAW_EMULATE_INSTR;
773 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr));
774 }
775 else if (RT_FAILURE_NP(rc2))
776 rc = VBOXSTRICTRC_VAL(rc2);
777 else
778 AssertMsgFailed(("%Rrc\n", VBOXSTRICTRC_VAL(rc2))); /* ASSUMES no complicated stuff here. */
779
780 LogFlow(("pgmRZPoolAccessPfHandlerFlush: returns %Rrc (flushed)\n", rc));
781 return rc;
782}
783
784
785/**
786 * Handles the STOSD write accesses.
787 *
788 * @returns VBox status code suitable for scheduling.
789 * @param pVM The cross context VM structure.
790 * @param pPool The pool.
791 * @param pPage The pool page (head).
792 * @param pDis The disassembly of the write instruction.
793 * @param pRegFrame The trap register frame.
794 * @param GCPhysFault The fault address as guest physical address.
795 * @param pvFault The fault address.
796 */
797DECLINLINE(int) pgmRZPoolAccessPfHandlerSTOSD(PVMCC pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
798 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
799{
800 unsigned uIncrement = pDis->Param1.cb;
801 NOREF(pVM);
802
803 Assert(pDis->uCpuMode == DISCPUMODE_32BIT || pDis->uCpuMode == DISCPUMODE_64BIT);
804 Assert(pRegFrame->rcx <= 0x20);
805
806# ifdef VBOX_STRICT
807 if (pDis->uOpMode == DISCPUMODE_32BIT)
808 Assert(uIncrement == 4);
809 else
810 Assert(uIncrement == 8);
811# endif
812
813 Log3(("pgmRZPoolAccessPfHandlerSTOSD\n"));
814
815 /*
816 * Increment the modification counter and insert it into the list
817 * of modified pages the first time.
818 */
819 if (!pPage->cModifications++)
820 pgmPoolMonitorModifiedInsert(pPool, pPage);
821
822 /*
823 * Execute REP STOSD.
824 *
825 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
826 * write situation, meaning that it's safe to write here.
827 */
828 PVMCPUCC pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
829 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
830 while (pRegFrame->rcx)
831 {
832 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, uIncrement);
833 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement);
834 pu32 += uIncrement;
835 GCPhysFault += uIncrement;
836 pRegFrame->rdi += uIncrement;
837 pRegFrame->rcx--;
838 }
839 pRegFrame->rip += pDis->cbInstr;
840
841 LogFlow(("pgmRZPoolAccessPfHandlerSTOSD: returns\n"));
842 return VINF_SUCCESS;
843}
844
845
846/**
847 * Handles the simple write accesses.
848 *
849 * @returns VBox status code suitable for scheduling.
850 * @param pVM The cross context VM structure.
851 * @param pVCpu The cross context virtual CPU structure.
852 * @param pPool The pool.
853 * @param pPage The pool page (head).
854 * @param pDis The disassembly of the write instruction.
855 * @param pRegFrame The trap register frame.
856 * @param GCPhysFault The fault address as guest physical address.
857 * @param pvFault The fault address.
858 * @param pfReused Reused state (in/out)
859 */
860DECLINLINE(int) pgmRZPoolAccessPfHandlerSimple(PVMCC pVM, PVMCPUCC pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
861 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused)
862{
863 Log3(("pgmRZPoolAccessPfHandlerSimple\n"));
864 NOREF(pVM);
865 NOREF(pfReused); /* initialized by caller */
866
867 /*
868 * Increment the modification counter and insert it into the list
869 * of modified pages the first time.
870 */
871 if (!pPage->cModifications++)
872 pgmPoolMonitorModifiedInsert(pPool, pPage);
873
874 /*
875 * Clear all the pages. ASSUMES that pvFault is readable.
876 */
877 uint32_t cbWrite = DISGetParamSize(pDis, &pDis->Param1);
878 if (cbWrite <= 8)
879 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, cbWrite);
880 else if (cbWrite <= 16)
881 {
882 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, 8);
883 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + 8, NULL, cbWrite - 8);
884 }
885 else
886 {
887 Assert(cbWrite <= 32);
888 for (uint32_t off = 0; off < cbWrite; off += 8)
889 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + off, NULL, RT_MIN(8, cbWrite - off));
890 }
891
892 /*
893 * Interpret the instruction.
894 */
895 VBOXSTRICTRC rc = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
896 if (RT_SUCCESS(rc))
897 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); /* ASSUMES no complicated stuff here. */
898 else if (rc == VERR_EM_INTERPRETER)
899 {
900 LogFlow(("pgmRZPoolAccessPfHandlerSimple: Interpretation failed for %04x:%RGv - opcode=%d\n",
901 pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode));
902 rc = VINF_EM_RAW_EMULATE_INSTR;
903 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr));
904 }
905
906# if 0 /* experimental code */
907 if (rc == VINF_SUCCESS)
908 {
909 switch (pPage->enmKind)
910 {
911 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
912 {
913 X86PTEPAE GstPte;
914 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte));
915 AssertRC(rc);
916
917 /* Check the new value written by the guest. If present and with a bogus physical address, then
918 * it's fairly safe to assume the guest is reusing the PT.
919 */
920 if (GstPte.n.u1Present)
921 {
922 RTHCPHYS HCPhys = -1;
923 int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys);
924 if (rc != VINF_SUCCESS)
925 {
926 *pfReused = true;
927 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
928 }
929 }
930 break;
931 }
932 }
933 }
934# endif
935
936 LogFlow(("pgmRZPoolAccessPfHandlerSimple: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
937 return VBOXSTRICTRC_VAL(rc);
938}
939
940
941/**
942 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
943 * \#PF access handler callback for page table pages.}
944 *
945 * @remarks The @a pvUser argument points to the PGMPOOLPAGE.
946 */
947DECLEXPORT(VBOXSTRICTRC) pgmRZPoolAccessPfHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
948 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
949{
950 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorRZ, a);
951 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
952 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
953 unsigned cMaxModifications;
954 bool fForcedFlush = false;
955 NOREF(uErrorCode);
956
957 LogFlow(("pgmRZPoolAccessPfHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
958
959 pgmLock(pVM);
960 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
961 {
962 /* Pool page changed while we were waiting for the lock; ignore. */
963 Log(("CPU%d: pgmRZPoolAccessPfHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
964 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a);
965 pgmUnlock(pVM);
966 return VINF_SUCCESS;
967 }
968# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
969 if (pPage->fDirty)
970 {
971 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH));
972 pgmUnlock(pVM);
973 return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */
974 }
975# endif
976
977# if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */
978 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
979 {
980 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
981 void *pvGst;
982 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
983 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
984 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
985 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
986 }
987# endif
988
989 /*
990 * Disassemble the faulting instruction.
991 */
992 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
993 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
994 if (RT_UNLIKELY(rc != VINF_SUCCESS))
995 {
996 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc));
997 pgmUnlock(pVM);
998 return rc;
999 }
1000
1001 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1002
1003 /*
1004 * We should ALWAYS have the list head as user parameter. This
1005 * is because we use that page to record the changes.
1006 */
1007 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1008
1009# ifdef IN_RING0
1010 /* Maximum nr of modifications depends on the page type. */
1011 if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1012 || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1013 cMaxModifications = 4;
1014 else
1015 cMaxModifications = 24;
1016# else
1017 cMaxModifications = 48;
1018# endif
1019
1020 /*
1021 * Incremental page table updates should weigh more than random ones.
1022 * (Only applies when started from offset 0)
1023 */
1024 pVCpu->pgm.s.cPoolAccessHandler++;
1025 if ( pPage->GCPtrLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */
1026 && pPage->GCPtrLastAccessHandlerRip < pRegFrame->rip + 0x40
1027 && pvFault == (pPage->GCPtrLastAccessHandlerFault + pDis->Param1.cb)
1028 && pVCpu->pgm.s.cPoolAccessHandler == pPage->cLastAccessHandler + 1)
1029 {
1030 Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1031 Assert(pPage->cModifications < 32000);
1032 pPage->cModifications = pPage->cModifications * 2;
1033 pPage->GCPtrLastAccessHandlerFault = pvFault;
1034 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1035 if (pPage->cModifications >= cMaxModifications)
1036 {
1037 STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushReinit);
1038 fForcedFlush = true;
1039 }
1040 }
1041
1042 if (pPage->cModifications >= cMaxModifications)
1043 Log(("Mod overflow %RGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1044
1045 /*
1046 * Check if it's worth dealing with.
1047 */
1048 bool fReused = false;
1049 bool fNotReusedNotForking = false;
1050 if ( ( pPage->cModifications < cMaxModifications /** @todo \#define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1051 || pgmPoolIsPageLocked(pPage)
1052 )
1053 && !(fReused = pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage))
1054 && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1055 {
1056 /*
1057 * Simple instructions, no REP prefix.
1058 */
1059 if (!(pDis->fPrefix & (DISPREFIX_REP | DISPREFIX_REPNE)))
1060 {
1061 rc = pgmRZPoolAccessPfHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused);
1062 if (fReused)
1063 goto flushPage;
1064
1065 /* A mov instruction to change the first page table entry will be remembered so we can detect
1066 * full page table changes early on. This will reduce the amount of unnecessary traps we'll take.
1067 */
1068 if ( rc == VINF_SUCCESS
1069 && !pPage->cLocked /* only applies to unlocked pages as we can't free locked ones (e.g. cr3 root). */
1070 && pDis->pCurInstr->uOpcode == OP_MOV
1071 && (pvFault & PAGE_OFFSET_MASK) == 0)
1072 {
1073 pPage->GCPtrLastAccessHandlerFault = pvFault;
1074 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1075 pPage->GCPtrLastAccessHandlerRip = pRegFrame->rip;
1076 /* Make sure we don't kick out a page too quickly. */
1077 if (pPage->cModifications > 8)
1078 pPage->cModifications = 2;
1079 }
1080 else if (pPage->GCPtrLastAccessHandlerFault == pvFault)
1081 {
1082 /* ignore the 2nd write to this page table entry. */
1083 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1084 }
1085 else
1086 {
1087 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
1088 pPage->GCPtrLastAccessHandlerRip = 0;
1089 }
1090
1091 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a);
1092 pgmUnlock(pVM);
1093 return rc;
1094 }
1095
1096 /*
1097 * Windows is frequently doing small memset() operations (netio test 4k+).
1098 * We have to deal with these or we'll kill the cache and performance.
1099 */
1100 if ( pDis->pCurInstr->uOpcode == OP_STOSWD
1101 && !pRegFrame->eflags.Bits.u1DF
1102 && pDis->uOpMode == pDis->uCpuMode
1103 && pDis->uAddrMode == pDis->uCpuMode)
1104 {
1105 bool fValidStosd = false;
1106
1107 if ( pDis->uCpuMode == DISCPUMODE_32BIT
1108 && pDis->fPrefix == DISPREFIX_REP
1109 && pRegFrame->ecx <= 0x20
1110 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1111 && !((uintptr_t)pvFault & 3)
1112 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1113 )
1114 {
1115 fValidStosd = true;
1116 pRegFrame->rcx &= 0xffffffff; /* paranoia */
1117 }
1118 else
1119 if ( pDis->uCpuMode == DISCPUMODE_64BIT
1120 && pDis->fPrefix == (DISPREFIX_REP | DISPREFIX_REX)
1121 && pRegFrame->rcx <= 0x20
1122 && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1123 && !((uintptr_t)pvFault & 7)
1124 && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */
1125 )
1126 {
1127 fValidStosd = true;
1128 }
1129
1130 if (fValidStosd)
1131 {
1132 rc = pgmRZPoolAccessPfHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1133 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZRepStosd, a);
1134 pgmUnlock(pVM);
1135 return rc;
1136 }
1137 }
1138
1139 /* REP prefix, don't bother. */
1140 STAM_COUNTER_INC(&pPool->StatMonitorPfRZRepPrefix);
1141 Log4(("pgmRZPoolAccessPfHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1142 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode, pDis->fPrefix));
1143 fNotReusedNotForking = true;
1144 }
1145
1146# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0)
1147 /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This
1148 * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring.
1149 */
1150 if ( pPage->cModifications >= cMaxModifications
1151 && !fForcedFlush
1152 && (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1153 && ( fNotReusedNotForking
1154 || ( !pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage)
1155 && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1156 )
1157 )
1158 {
1159 Assert(!pgmPoolIsPageLocked(pPage));
1160 Assert(pPage->fDirty == false);
1161
1162 /* Flush any monitored duplicates as we will disable write protection. */
1163 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1164 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1165 {
1166 PPGMPOOLPAGE pPageHead = pPage;
1167
1168 /* Find the monitor head. */
1169 while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX)
1170 pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev];
1171
1172 while (pPageHead)
1173 {
1174 unsigned idxNext = pPageHead->iMonitoredNext;
1175
1176 if (pPageHead != pPage)
1177 {
1178 STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush);
1179 Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind)));
1180 int rc2 = pgmPoolFlushPage(pPool, pPageHead);
1181 AssertRC(rc2);
1182 }
1183
1184 if (idxNext == NIL_PGMPOOL_IDX)
1185 break;
1186
1187 pPageHead = &pPool->aPages[idxNext];
1188 }
1189 }
1190
1191 /* The flushing above might fail for locked pages, so double check. */
1192 if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX
1193 && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1194 {
1195 pgmPoolAddDirtyPage(pVM, pPool, pPage);
1196
1197 /* Temporarily allow write access to the page table again. */
1198 rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK, pPage->GCPhys & PAGE_BASE_GC_MASK);
1199 if (rc == VINF_SUCCESS)
1200 {
1201 rc = PGMShwMakePageWritable(pVCpu, pvFault, PGM_MK_PG_IS_WRITE_FAULT);
1202 AssertMsg(rc == VINF_SUCCESS
1203 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1204 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1205 || rc == VERR_PAGE_NOT_PRESENT,
1206 ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc));
1207# ifdef VBOX_STRICT
1208 pPage->GCPtrDirtyFault = pvFault;
1209# endif
1210
1211 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, a);
1212 pgmUnlock(pVM);
1213 return rc;
1214 }
1215 }
1216 }
1217# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT && IN_RING0 */
1218
1219 STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushModOverflow);
1220flushPage:
1221 /*
1222 * Not worth it, so flush it.
1223 *
1224 * If we considered it to be reused, don't go back to ring-3
1225 * to emulate failed instructions since we usually cannot
1226 * interpret then. This may be a bit risky, in which case
1227 * the reuse detection must be fixed.
1228 */
1229 rc = pgmRZPoolAccessPfHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1230 if ( rc == VINF_EM_RAW_EMULATE_INSTR
1231 && fReused)
1232 {
1233 /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */
1234 if (PGMShwGetPage(pVCpu, pRegFrame->rip, NULL, NULL) == VINF_SUCCESS)
1235 rc = VINF_SUCCESS; /* safe to restart the instruction. */
1236 }
1237 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZFlushPage, a);
1238 pgmUnlock(pVM);
1239 return rc;
1240}
1241
1242#endif /* !IN_RING3 */
1243
1244/**
1245 * @callback_method_impl{FNPGMPHYSHANDLER,
1246 * Access handler for shadowed page table pages.}
1247 *
1248 * @remarks Only uses the VINF_PGM_HANDLER_DO_DEFAULT status.
1249 */
1250PGM_ALL_CB2_DECL(VBOXSTRICTRC)
1251pgmPoolAccessHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
1252 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
1253{
1254 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1255 STAM_PROFILE_START(&pPool->CTX_SUFF_Z(StatMonitor), a);
1256 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1257 LogFlow(("PGM_ALL_CB_DECL: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
1258 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
1259
1260 NOREF(pvPhys); NOREF(pvBuf); NOREF(enmAccessType);
1261
1262 pgmLock(pVM);
1263
1264#ifdef VBOX_WITH_STATISTICS
1265 /*
1266 * Collect stats on the access.
1267 */
1268 AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Sizes)) == 19);
1269 if (cbBuf <= 16 && cbBuf > 0)
1270 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[cbBuf - 1]);
1271 else if (cbBuf >= 17 && cbBuf < 32)
1272 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[16]);
1273 else if (cbBuf >= 32 && cbBuf < 64)
1274 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[17]);
1275 else if (cbBuf >= 64)
1276 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[18]);
1277
1278 uint8_t cbAlign;
1279 switch (pPage->enmKind)
1280 {
1281 default:
1282 cbAlign = 7;
1283 break;
1284 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1285 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1286 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1287 case PGMPOOLKIND_32BIT_PD:
1288 case PGMPOOLKIND_32BIT_PD_PHYS:
1289 cbAlign = 3;
1290 break;
1291 }
1292 AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Misaligned)) == 7);
1293 if ((uint8_t)GCPhys & cbAlign)
1294 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Misaligned)[((uint8_t)GCPhys & cbAlign) - 1]);
1295#endif
1296
1297 /*
1298 * Make sure the pool page wasn't modified by a different CPU.
1299 */
1300 if (PHYS_PAGE_ADDRESS(GCPhys) == PHYS_PAGE_ADDRESS(pPage->GCPhys))
1301 {
1302 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1303
1304 /* The max modification count before flushing depends on the context and page type. */
1305#ifdef IN_RING3
1306 uint16_t const cMaxModifications = 96; /* it's cheaper here, right? */
1307#else
1308 uint16_t cMaxModifications;
1309 if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1310 || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1311 cMaxModifications = 4;
1312 else
1313 cMaxModifications = 24;
1314#endif
1315
1316 /*
1317 * We don't have to be very sophisticated about this since there are relativly few calls here.
1318 * However, we must try our best to detect any non-cpu accesses (disk / networking).
1319 */
1320 if ( ( pPage->cModifications < cMaxModifications
1321 || pgmPoolIsPageLocked(pPage) )
1322 && enmOrigin != PGMACCESSORIGIN_DEVICE
1323 && cbBuf <= 16)
1324 {
1325 /* Clear the shadow entry. */
1326 if (!pPage->cModifications++)
1327 pgmPoolMonitorModifiedInsert(pPool, pPage);
1328
1329 if (cbBuf <= 8)
1330 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, (uint32_t)cbBuf);
1331 else
1332 {
1333 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, 8);
1334 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys + 8, (uint8_t *)pvBuf + 8, (uint32_t)cbBuf - 8);
1335 }
1336 }
1337 else
1338 pgmPoolMonitorChainFlush(pPool, pPage);
1339
1340 STAM_PROFILE_STOP_EX(&pPool->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1341 }
1342 else
1343 Log(("CPU%d: PGM_ALL_CB_DECL pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1344 pgmUnlock(pVM);
1345 return VINF_PGM_HANDLER_DO_DEFAULT;
1346}
1347
1348
1349#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1350
1351# if defined(VBOX_STRICT) && !defined(IN_RING3)
1352
1353/**
1354 * Check references to guest physical memory in a PAE / PAE page table.
1355 *
1356 * @param pPool The pool.
1357 * @param pPage The page.
1358 * @param pShwPT The shadow page table (mapping of the page).
1359 * @param pGstPT The guest page table.
1360 */
1361static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
1362{
1363 unsigned cErrors = 0;
1364 int LastRc = -1; /* initialized to shut up gcc */
1365 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1366 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1367 PVMCC pVM = pPool->CTX_SUFF(pVM);
1368
1369# ifdef VBOX_STRICT
1370 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1371 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1372# endif
1373 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1374 {
1375 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1376 {
1377 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1378 int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1379 if ( rc != VINF_SUCCESS
1380 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
1381 {
1382 Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1383 LastPTE = i;
1384 LastRc = rc;
1385 LastHCPhys = HCPhys;
1386 cErrors++;
1387
1388 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1389 rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
1390 AssertRC(rc);
1391
1392 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1393 {
1394 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1395
1396 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1397 {
1398 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
1399
1400 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1401 {
1402 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
1403 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
1404 {
1405 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
1406 }
1407 }
1408
1409 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
1410 }
1411 }
1412 }
1413 }
1414 }
1415 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
1416}
1417
1418
1419/**
1420 * Check references to guest physical memory in a PAE / 32-bit page table.
1421 *
1422 * @param pPool The pool.
1423 * @param pPage The page.
1424 * @param pShwPT The shadow page table (mapping of the page).
1425 * @param pGstPT The guest page table.
1426 */
1427static void pgmPoolTrackCheckPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
1428{
1429 unsigned cErrors = 0;
1430 int LastRc = -1; /* initialized to shut up gcc */
1431 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1432 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1433 PVMCC pVM = pPool->CTX_SUFF(pVM);
1434
1435# ifdef VBOX_STRICT
1436 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1437 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1438# endif
1439 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1440 {
1441 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1442 {
1443 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1444 int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
1445 if ( rc != VINF_SUCCESS
1446 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
1447 {
1448 Log(("rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1449 LastPTE = i;
1450 LastRc = rc;
1451 LastHCPhys = HCPhys;
1452 cErrors++;
1453
1454 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1455 rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
1456 AssertRC(rc);
1457
1458 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1459 {
1460 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1461
1462 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1463 {
1464 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
1465
1466 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1467 {
1468 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
1469 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
1470 {
1471 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
1472 }
1473 }
1474
1475 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
1476 }
1477 }
1478 }
1479 }
1480 }
1481 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
1482}
1483
1484# endif /* VBOX_STRICT && !IN_RING3 */
1485
1486/**
1487 * Clear references to guest physical memory in a PAE / PAE page table.
1488 *
1489 * @returns nr of changed PTEs
1490 * @param pPool The pool.
1491 * @param pPage The page.
1492 * @param pShwPT The shadow page table (mapping of the page).
1493 * @param pGstPT The guest page table.
1494 * @param pOldGstPT The old cached guest page table.
1495 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1496 * @param pfFlush Flush reused page table (out)
1497 */
1498DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT,
1499 PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1500{
1501 unsigned cChanged = 0;
1502
1503# ifdef VBOX_STRICT
1504 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1505 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1506# endif
1507 *pfFlush = false;
1508
1509 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1510 {
1511 /* Check the new value written by the guest. If present and with a bogus physical address, then
1512 * it's fairly safe to assume the guest is reusing the PT.
1513 */
1514 if ( fAllowRemoval
1515 && (pGstPT->a[i].u & X86_PTE_P))
1516 {
1517 if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1518 {
1519 *pfFlush = true;
1520 return ++cChanged;
1521 }
1522 }
1523 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1524 {
1525 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1526 if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1527 {
1528# ifdef VBOX_STRICT
1529 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1530 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1531 AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1532# endif
1533 uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1534 bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
1535 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1536 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1537
1538 if ( uHostAttr == uGuestAttr
1539 && fHostRW <= fGuestRW)
1540 continue;
1541 }
1542 cChanged++;
1543 /* Something was changed, so flush it. */
1544 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n",
1545 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
1546 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK, i);
1547 PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
1548 }
1549 }
1550 return cChanged;
1551}
1552
1553
1554/**
1555 * Clear references to guest physical memory in a PAE / PAE page table.
1556 *
1557 * @returns nr of changed PTEs
1558 * @param pPool The pool.
1559 * @param pPage The page.
1560 * @param pShwPT The shadow page table (mapping of the page).
1561 * @param pGstPT The guest page table.
1562 * @param pOldGstPT The old cached guest page table.
1563 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1564 * @param pfFlush Flush reused page table (out)
1565 */
1566DECLINLINE(unsigned) pgmPoolTrackFlushPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT,
1567 PCX86PT pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1568{
1569 unsigned cChanged = 0;
1570
1571# ifdef VBOX_STRICT
1572 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1573 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1574# endif
1575 *pfFlush = false;
1576
1577 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1578 {
1579 /* Check the new value written by the guest. If present and with a bogus physical address, then
1580 * it's fairly safe to assume the guest is reusing the PT. */
1581 if (fAllowRemoval)
1582 {
1583 X86PGUINT const uPte = pGstPT->a[i].u;
1584 if ( (uPte & X86_PTE_P)
1585 && !PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), uPte & X86_PTE_PG_MASK))
1586 {
1587 *pfFlush = true;
1588 return ++cChanged;
1589 }
1590 }
1591 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1592 {
1593 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1594 if ((pGstPT->a[i].u & X86_PTE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PG_MASK))
1595 {
1596# ifdef VBOX_STRICT
1597 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1598 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
1599 AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %x old %x shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1600# endif
1601 uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
1602 bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
1603 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
1604 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1605
1606 if ( uHostAttr == uGuestAttr
1607 && fHostRW <= fGuestRW)
1608 continue;
1609 }
1610 cChanged++;
1611 /* Something was changed, so flush it. */
1612 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%x\n",
1613 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK));
1614 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK, i);
1615 PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
1616 }
1617 }
1618 return cChanged;
1619}
1620
1621
1622/**
1623 * Flush a dirty page
1624 *
1625 * @param pVM The cross context VM structure.
1626 * @param pPool The pool.
1627 * @param idxSlot Dirty array slot index
1628 * @param fAllowRemoval Allow a reused page table to be removed
1629 */
1630static void pgmPoolFlushDirtyPage(PVMCC pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false)
1631{
1632 AssertCompile(RT_ELEMENTS(pPool->aidxDirtyPages) == RT_ELEMENTS(pPool->aDirtyPages));
1633
1634 Assert(idxSlot < RT_ELEMENTS(pPool->aDirtyPages));
1635 unsigned idxPage = pPool->aidxDirtyPages[idxSlot];
1636 if (idxPage == NIL_PGMPOOL_IDX)
1637 return;
1638
1639 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1640 Assert(pPage->idx == idxPage);
1641 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1642
1643 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot));
1644 Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1645
1646 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
1647 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
1648 Assert(rc == VINF_SUCCESS);
1649 pPage->fDirty = false;
1650
1651# ifdef VBOX_STRICT
1652 uint64_t fFlags = 0;
1653 RTHCPHYS HCPhys;
1654 rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->GCPtrDirtyFault, &fFlags, &HCPhys);
1655 AssertMsg( ( rc == VINF_SUCCESS
1656 && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key))
1657 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1658 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1659 || rc == VERR_PAGE_NOT_PRESENT,
1660 ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->GCPtrDirtyFault, rc, fFlags));
1661# endif
1662
1663 /* Flush those PTEs that have changed. */
1664 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
1665 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
1666 void *pvGst;
1667 rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1668 bool fFlush;
1669 unsigned cChanges;
1670
1671 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1672 cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst,
1673 (PCX86PTPAE)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
1674 else
1675 cChanges = pgmPoolTrackFlushPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst,
1676 (PCX86PT)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
1677
1678 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1679 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1680 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
1681 /* Note: we might want to consider keeping the dirty page active in case there were many changes. */
1682
1683 /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */
1684 Assert(pPage->cModifications);
1685 if (cChanges < 4)
1686 pPage->cModifications = 1; /* must use > 0 here */
1687 else
1688 pPage->cModifications = RT_MAX(1, pPage->cModifications / 2);
1689
1690 STAM_COUNTER_INC(&pPool->StatResetDirtyPages);
1691 if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages))
1692 pPool->idxFreeDirtyPage = idxSlot;
1693
1694 pPool->cDirtyPages--;
1695 pPool->aidxDirtyPages[idxSlot] = NIL_PGMPOOL_IDX;
1696 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1697 if (fFlush)
1698 {
1699 Assert(fAllowRemoval);
1700 Log(("Flush reused page table!\n"));
1701 pgmPoolFlushPage(pPool, pPage);
1702 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
1703 }
1704 else
1705 Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges));
1706}
1707
1708
1709# ifndef IN_RING3
1710/**
1711 * Add a new dirty page
1712 *
1713 * @param pVM The cross context VM structure.
1714 * @param pPool The pool.
1715 * @param pPage The page.
1716 */
1717void pgmPoolAddDirtyPage(PVMCC pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1718{
1719 PGM_LOCK_ASSERT_OWNER(pVM);
1720 AssertCompile(RT_ELEMENTS(pPool->aDirtyPages) == 8 || RT_ELEMENTS(pPool->aDirtyPages) == 16);
1721 Assert(!pPage->fDirty);
1722
1723 unsigned idxFree = pPool->idxFreeDirtyPage;
1724 Assert(idxFree < RT_ELEMENTS(pPool->aDirtyPages));
1725 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1726
1727 if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aDirtyPages))
1728 {
1729 STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush);
1730 pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/);
1731 }
1732 Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages));
1733 AssertMsg(pPool->aidxDirtyPages[idxFree] == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages));
1734
1735 Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree));
1736
1737 /*
1738 * Make a copy of the guest page table as we require valid GCPhys addresses
1739 * when removing references to physical pages.
1740 * (The HCPhys linear lookup is *extremely* expensive!)
1741 */
1742 void *pvGst;
1743 int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1744 memcpy(&pPool->aDirtyPages[idxFree].aPage[0], pvGst, (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) ? PAGE_SIZE : PAGE_SIZE/2);
1745# ifdef VBOX_STRICT
1746 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
1747 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1748 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
1749 else
1750 pgmPoolTrackCheckPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
1751 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1752# endif
1753 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1754
1755 STAM_COUNTER_INC(&pPool->StatDirtyPage);
1756 pPage->fDirty = true;
1757 pPage->idxDirtyEntry = (uint8_t)idxFree; Assert(pPage->idxDirtyEntry == idxFree);
1758 pPool->aidxDirtyPages[idxFree] = pPage->idx;
1759 pPool->cDirtyPages++;
1760
1761 pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
1762 if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages)
1763 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1764 {
1765 unsigned i;
1766 for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1767 {
1768 idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
1769 if (pPool->aidxDirtyPages[idxFree] == NIL_PGMPOOL_IDX)
1770 {
1771 pPool->idxFreeDirtyPage = idxFree;
1772 break;
1773 }
1774 }
1775 Assert(i != RT_ELEMENTS(pPool->aDirtyPages));
1776 }
1777
1778 Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages) || pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX);
1779
1780 /*
1781 * Clear all references to this shadow table. See @bugref{7298}.
1782 */
1783 pgmPoolTrackClearPageUsers(pPool, pPage);
1784}
1785# endif /* !IN_RING3 */
1786
1787
1788/**
1789 * Check if the specified page is dirty (not write monitored)
1790 *
1791 * @return dirty or not
1792 * @param pVM The cross context VM structure.
1793 * @param GCPhys Guest physical address
1794 */
1795bool pgmPoolIsDirtyPageSlow(PVM pVM, RTGCPHYS GCPhys)
1796{
1797 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1798 PGM_LOCK_ASSERT_OWNER(pVM);
1799 if (!pPool->cDirtyPages)
1800 return false;
1801
1802 GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
1803
1804 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1805 {
1806 unsigned idxPage = pPool->aidxDirtyPages[i];
1807 if (idxPage != NIL_PGMPOOL_IDX)
1808 {
1809 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1810 if (pPage->GCPhys == GCPhys)
1811 return true;
1812 }
1813 }
1814 return false;
1815}
1816
1817
1818/**
1819 * Reset all dirty pages by reinstating page monitoring.
1820 *
1821 * @param pVM The cross context VM structure.
1822 */
1823void pgmPoolResetDirtyPages(PVMCC pVM)
1824{
1825 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1826 PGM_LOCK_ASSERT_OWNER(pVM);
1827 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1828
1829 if (!pPool->cDirtyPages)
1830 return;
1831
1832 Log(("pgmPoolResetDirtyPages\n"));
1833 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1834 pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/);
1835
1836 pPool->idxFreeDirtyPage = 0;
1837 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
1838 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1839 {
1840 unsigned i;
1841 for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1842 {
1843 if (pPool->aidxDirtyPages[i] == NIL_PGMPOOL_IDX)
1844 {
1845 pPool->idxFreeDirtyPage = i;
1846 break;
1847 }
1848 }
1849 AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1850 }
1851
1852 Assert(pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages));
1853 return;
1854}
1855
1856
1857/**
1858 * Invalidate the PT entry for the specified page
1859 *
1860 * @param pVM The cross context VM structure.
1861 * @param GCPtrPage Guest page to invalidate
1862 */
1863void pgmPoolResetDirtyPage(PVM pVM, RTGCPTR GCPtrPage)
1864{
1865 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1866 PGM_LOCK_ASSERT_OWNER(pVM);
1867 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1868
1869 if (!pPool->cDirtyPages)
1870 return;
1871
1872 Log(("pgmPoolResetDirtyPage %RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
1873 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1874 {
1875 /** @todo What was intended here??? This looks incomplete... */
1876 }
1877}
1878
1879
1880/**
1881 * Reset all dirty pages by reinstating page monitoring.
1882 *
1883 * @param pVM The cross context VM structure.
1884 * @param GCPhysPT Physical address of the page table
1885 */
1886void pgmPoolInvalidateDirtyPage(PVMCC pVM, RTGCPHYS GCPhysPT)
1887{
1888 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1889 PGM_LOCK_ASSERT_OWNER(pVM);
1890 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1891 unsigned idxDirtyPage = RT_ELEMENTS(pPool->aDirtyPages);
1892
1893 if (!pPool->cDirtyPages)
1894 return;
1895
1896 GCPhysPT = GCPhysPT & ~(RTGCPHYS)PAGE_OFFSET_MASK;
1897
1898 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1899 {
1900 unsigned idxPage = pPool->aidxDirtyPages[i];
1901 if (idxPage != NIL_PGMPOOL_IDX)
1902 {
1903 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1904 if (pPage->GCPhys == GCPhysPT)
1905 {
1906 idxDirtyPage = i;
1907 break;
1908 }
1909 }
1910 }
1911
1912 if (idxDirtyPage != RT_ELEMENTS(pPool->aDirtyPages))
1913 {
1914 pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/);
1915 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
1916 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1917 {
1918 unsigned i;
1919 for (i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1920 {
1921 if (pPool->aidxDirtyPages[i] == NIL_PGMPOOL_IDX)
1922 {
1923 pPool->idxFreeDirtyPage = i;
1924 break;
1925 }
1926 }
1927 AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1928 }
1929 }
1930}
1931
1932#endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1933
1934/**
1935 * Inserts a page into the GCPhys hash table.
1936 *
1937 * @param pPool The pool.
1938 * @param pPage The page.
1939 */
1940DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1941{
1942 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1943 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1944 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1945 pPage->iNext = pPool->aiHash[iHash];
1946 pPool->aiHash[iHash] = pPage->idx;
1947}
1948
1949
1950/**
1951 * Removes a page from the GCPhys hash table.
1952 *
1953 * @param pPool The pool.
1954 * @param pPage The page.
1955 */
1956DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1957{
1958 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1959 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1960 if (pPool->aiHash[iHash] == pPage->idx)
1961 pPool->aiHash[iHash] = pPage->iNext;
1962 else
1963 {
1964 uint16_t iPrev = pPool->aiHash[iHash];
1965 for (;;)
1966 {
1967 const int16_t i = pPool->aPages[iPrev].iNext;
1968 if (i == pPage->idx)
1969 {
1970 pPool->aPages[iPrev].iNext = pPage->iNext;
1971 break;
1972 }
1973 if (i == NIL_PGMPOOL_IDX)
1974 {
1975 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%d\n", pPage->GCPhys, pPage->idx));
1976 break;
1977 }
1978 iPrev = i;
1979 }
1980 }
1981 pPage->iNext = NIL_PGMPOOL_IDX;
1982}
1983
1984
1985/**
1986 * Frees up one cache page.
1987 *
1988 * @returns VBox status code.
1989 * @retval VINF_SUCCESS on success.
1990 * @param pPool The pool.
1991 * @param iUser The user index.
1992 */
1993static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1994{
1995 const PVMCC pVM = pPool->CTX_SUFF(pVM);
1996 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1997 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1998
1999 /*
2000 * Select one page from the tail of the age list.
2001 */
2002 PPGMPOOLPAGE pPage;
2003 for (unsigned iLoop = 0; ; iLoop++)
2004 {
2005 uint16_t iToFree = pPool->iAgeTail;
2006 if (iToFree == iUser && iUser != NIL_PGMPOOL_IDX)
2007 iToFree = pPool->aPages[iToFree].iAgePrev;
2008/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
2009 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
2010 {
2011 uint16_t i = pPool->aPages[iToFree].iAgePrev;
2012 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
2013 {
2014 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
2015 continue;
2016 iToFree = i;
2017 break;
2018 }
2019 }
2020*/
2021 Assert(iToFree != iUser);
2022 AssertReleaseMsg(iToFree != NIL_PGMPOOL_IDX,
2023 ("iToFree=%#x (iAgeTail=%#x) iUser=%#x iLoop=%u - pPool=%p LB %#zx\n",
2024 iToFree, pPool->iAgeTail, iUser, iLoop, pPool,
2025 RT_UOFFSETOF_DYN(PGMPOOL, aPages[pPool->cMaxPages])
2026 + pPool->cMaxUsers * sizeof(PGMPOOLUSER)
2027 + pPool->cMaxPhysExts * sizeof(PGMPOOLPHYSEXT) ));
2028
2029 pPage = &pPool->aPages[iToFree];
2030
2031 /*
2032 * Reject any attempts at flushing the currently active shadow CR3 mapping.
2033 * Call pgmPoolCacheUsed to move the page to the head of the age list.
2034 */
2035 if ( !pgmPoolIsPageLocked(pPage)
2036 && pPage->idx >= PGMPOOL_IDX_FIRST /* paranoia (#6349) */)
2037 break;
2038 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
2039 pgmPoolCacheUsed(pPool, pPage);
2040 AssertLogRelReturn(iLoop < 8192, VERR_PGM_POOL_TOO_MANY_LOOPS);
2041 }
2042
2043 /*
2044 * Found a usable page, flush it and return.
2045 */
2046 int rc = pgmPoolFlushPage(pPool, pPage);
2047 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
2048 /** @todo find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */
2049 if (rc == VINF_SUCCESS)
2050 PGM_INVL_ALL_VCPU_TLBS(pVM);
2051 return rc;
2052}
2053
2054
2055/**
2056 * Checks if a kind mismatch is really a page being reused
2057 * or if it's just normal remappings.
2058 *
2059 * @returns true if reused and the cached page (enmKind1) should be flushed
2060 * @returns false if not reused.
2061 * @param enmKind1 The kind of the cached page.
2062 * @param enmKind2 The kind of the requested page.
2063 */
2064static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
2065{
2066 switch (enmKind1)
2067 {
2068 /*
2069 * Never reuse them. There is no remapping in non-paging mode.
2070 */
2071 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2072 case PGMPOOLKIND_32BIT_PD_PHYS:
2073 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2074 case PGMPOOLKIND_PAE_PD_PHYS:
2075 case PGMPOOLKIND_PAE_PDPT_PHYS:
2076 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2077 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2078 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2079 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2080 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2081 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
2082 return false;
2083
2084 /*
2085 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
2086 */
2087 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2088 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2089 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2090 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2091 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2092 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2093 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2094 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2095 case PGMPOOLKIND_32BIT_PD:
2096 case PGMPOOLKIND_PAE_PDPT:
2097 switch (enmKind2)
2098 {
2099 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2100 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2101 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2102 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2103 case PGMPOOLKIND_64BIT_PML4:
2104 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2105 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2106 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2107 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2108 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2109 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2110 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2111 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2112 return true;
2113 default:
2114 return false;
2115 }
2116
2117 /*
2118 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
2119 */
2120 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2121 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2122 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2123 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2124 case PGMPOOLKIND_64BIT_PML4:
2125 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2126 switch (enmKind2)
2127 {
2128 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2129 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2130 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2131 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2132 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2133 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2134 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2135 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2136 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2137 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2138 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2139 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2140 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2141 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2142 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2143 return true;
2144 default:
2145 return false;
2146 }
2147
2148 /*
2149 * These cannot be flushed, and it's common to reuse the PDs as PTs.
2150 */
2151 case PGMPOOLKIND_ROOT_NESTED:
2152 return false;
2153
2154 default:
2155 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
2156 }
2157}
2158
2159
2160/**
2161 * Attempts to satisfy a pgmPoolAlloc request from the cache.
2162 *
2163 * @returns VBox status code.
2164 * @retval VINF_PGM_CACHED_PAGE on success.
2165 * @retval VERR_FILE_NOT_FOUND if not found.
2166 * @param pPool The pool.
2167 * @param GCPhys The GC physical address of the page we're gonna shadow.
2168 * @param enmKind The kind of mapping.
2169 * @param enmAccess Access type for the mapping (only relevant for big pages)
2170 * @param fA20Enabled Whether the CPU has the A20 gate enabled.
2171 * @param iUser The shadow page pool index of the user table. This is
2172 * NIL_PGMPOOL_IDX for root pages.
2173 * @param iUserTable The index into the user table (shadowed). Ignored if
2174 * root page
2175 * @param ppPage Where to store the pointer to the page.
2176 */
2177static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
2178 uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
2179{
2180 /*
2181 * Look up the GCPhys in the hash.
2182 */
2183 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2184 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%d iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
2185 if (i != NIL_PGMPOOL_IDX)
2186 {
2187 do
2188 {
2189 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2190 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
2191 if (pPage->GCPhys == GCPhys)
2192 {
2193 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
2194 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess
2195 && pPage->fA20Enabled == fA20Enabled)
2196 {
2197 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
2198 * doesn't flush it in case there are no more free use records.
2199 */
2200 pgmPoolCacheUsed(pPool, pPage);
2201
2202 int rc = VINF_SUCCESS;
2203 if (iUser != NIL_PGMPOOL_IDX)
2204 rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
2205 if (RT_SUCCESS(rc))
2206 {
2207 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
2208 *ppPage = pPage;
2209 if (pPage->cModifications)
2210 pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
2211 STAM_COUNTER_INC(&pPool->StatCacheHits);
2212 return VINF_PGM_CACHED_PAGE;
2213 }
2214 return rc;
2215 }
2216
2217 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
2218 {
2219 /*
2220 * The kind is different. In some cases we should now flush the page
2221 * as it has been reused, but in most cases this is normal remapping
2222 * of PDs as PT or big pages using the GCPhys field in a slightly
2223 * different way than the other kinds.
2224 */
2225 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
2226 {
2227 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
2228 pgmPoolFlushPage(pPool, pPage);
2229 break;
2230 }
2231 }
2232 }
2233
2234 /* next */
2235 i = pPage->iNext;
2236 } while (i != NIL_PGMPOOL_IDX);
2237 }
2238
2239 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
2240 STAM_COUNTER_INC(&pPool->StatCacheMisses);
2241 return VERR_FILE_NOT_FOUND;
2242}
2243
2244
2245/**
2246 * Inserts a page into the cache.
2247 *
2248 * @param pPool The pool.
2249 * @param pPage The cached page.
2250 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
2251 */
2252static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
2253{
2254 /*
2255 * Insert into the GCPhys hash if the page is fit for that.
2256 */
2257 Assert(!pPage->fCached);
2258 if (fCanBeCached)
2259 {
2260 pPage->fCached = true;
2261 pgmPoolHashInsert(pPool, pPage);
2262 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2263 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2264 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
2265 }
2266 else
2267 {
2268 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2269 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2270 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
2271 }
2272
2273 /*
2274 * Insert at the head of the age list.
2275 */
2276 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2277 pPage->iAgeNext = pPool->iAgeHead;
2278 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
2279 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
2280 else
2281 pPool->iAgeTail = pPage->idx;
2282 pPool->iAgeHead = pPage->idx;
2283}
2284
2285
2286/**
2287 * Flushes a cached page.
2288 *
2289 * @param pPool The pool.
2290 * @param pPage The cached page.
2291 */
2292static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2293{
2294 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
2295
2296 /*
2297 * Remove the page from the hash.
2298 */
2299 if (pPage->fCached)
2300 {
2301 pPage->fCached = false;
2302 pgmPoolHashRemove(pPool, pPage);
2303 }
2304 else
2305 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
2306
2307 /*
2308 * Remove it from the age list.
2309 */
2310 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
2311 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
2312 else
2313 pPool->iAgeTail = pPage->iAgePrev;
2314 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
2315 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
2316 else
2317 pPool->iAgeHead = pPage->iAgeNext;
2318 pPage->iAgeNext = NIL_PGMPOOL_IDX;
2319 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2320}
2321
2322
2323/**
2324 * Looks for pages sharing the monitor.
2325 *
2326 * @returns Pointer to the head page.
2327 * @returns NULL if not found.
2328 * @param pPool The Pool
2329 * @param pNewPage The page which is going to be monitored.
2330 */
2331static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
2332{
2333 /*
2334 * Look up the GCPhys in the hash.
2335 */
2336 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
2337 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2338 if (i == NIL_PGMPOOL_IDX)
2339 return NULL;
2340 do
2341 {
2342 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2343 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
2344 && pPage != pNewPage)
2345 {
2346 switch (pPage->enmKind)
2347 {
2348 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2349 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2350 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2351 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2352 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2353 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2354 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2355 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2356 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2357 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2358 case PGMPOOLKIND_64BIT_PML4:
2359 case PGMPOOLKIND_32BIT_PD:
2360 case PGMPOOLKIND_PAE_PDPT:
2361 {
2362 /* find the head */
2363 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2364 {
2365 Assert(pPage->iMonitoredPrev != pPage->idx);
2366 pPage = &pPool->aPages[pPage->iMonitoredPrev];
2367 }
2368 return pPage;
2369 }
2370
2371 /* ignore, no monitoring. */
2372 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2373 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2374 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2375 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2376 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2377 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2378 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2379 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2380 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2381 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2382 case PGMPOOLKIND_ROOT_NESTED:
2383 case PGMPOOLKIND_PAE_PD_PHYS:
2384 case PGMPOOLKIND_PAE_PDPT_PHYS:
2385 case PGMPOOLKIND_32BIT_PD_PHYS:
2386 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2387 break;
2388 default:
2389 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
2390 }
2391 }
2392
2393 /* next */
2394 i = pPage->iNext;
2395 } while (i != NIL_PGMPOOL_IDX);
2396 return NULL;
2397}
2398
2399
2400/**
2401 * Enabled write monitoring of a guest page.
2402 *
2403 * @returns VBox status code.
2404 * @retval VINF_SUCCESS on success.
2405 * @param pPool The pool.
2406 * @param pPage The cached page.
2407 */
2408static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2409{
2410 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK));
2411
2412 /*
2413 * Filter out the relevant kinds.
2414 */
2415 switch (pPage->enmKind)
2416 {
2417 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2418 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2419 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2420 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2421 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2422 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2423 case PGMPOOLKIND_64BIT_PML4:
2424 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2425 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2426 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2427 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2428 case PGMPOOLKIND_32BIT_PD:
2429 case PGMPOOLKIND_PAE_PDPT:
2430 break;
2431
2432 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2433 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2434 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2435 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2436 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2437 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2438 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2439 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2440 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2441 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2442 case PGMPOOLKIND_ROOT_NESTED:
2443 /* Nothing to monitor here. */
2444 return VINF_SUCCESS;
2445
2446 case PGMPOOLKIND_32BIT_PD_PHYS:
2447 case PGMPOOLKIND_PAE_PDPT_PHYS:
2448 case PGMPOOLKIND_PAE_PD_PHYS:
2449 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2450 /* Nothing to monitor here. */
2451 return VINF_SUCCESS;
2452 default:
2453 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2454 }
2455
2456 /*
2457 * Install handler.
2458 */
2459 int rc;
2460 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
2461 if (pPageHead)
2462 {
2463 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
2464 Assert(pPageHead->iMonitoredPrev != pPage->idx);
2465
2466#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2467 if (pPageHead->fDirty)
2468 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirtyEntry, false /* do not remove */);
2469#endif
2470
2471 pPage->iMonitoredPrev = pPageHead->idx;
2472 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
2473 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
2474 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
2475 pPageHead->iMonitoredNext = pPage->idx;
2476 rc = VINF_SUCCESS;
2477 }
2478 else
2479 {
2480 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
2481 PVMCC pVM = pPool->CTX_SUFF(pVM);
2482 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
2483 rc = PGMHandlerPhysicalRegister(pVM, GCPhysPage, GCPhysPage + PAGE_OFFSET_MASK, pPool->hAccessHandlerType,
2484 MMHyperCCToR3(pVM, pPage), MMHyperCCToR0(pVM, pPage), MMHyperCCToRC(pVM, pPage),
2485 NIL_RTR3PTR /*pszDesc*/);
2486 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
2487 * the heap size should suffice. */
2488 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
2489 PVMCPU pVCpu = VMMGetCpu(pVM);
2490 AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("fSyncFlags=%x syncff=%d\n", pVCpu->pgm.s.fSyncFlags, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
2491 }
2492 pPage->fMonitored = true;
2493 return rc;
2494}
2495
2496
2497/**
2498 * Disables write monitoring of a guest page.
2499 *
2500 * @returns VBox status code.
2501 * @retval VINF_SUCCESS on success.
2502 * @param pPool The pool.
2503 * @param pPage The cached page.
2504 */
2505static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2506{
2507 /*
2508 * Filter out the relevant kinds.
2509 */
2510 switch (pPage->enmKind)
2511 {
2512 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2513 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2514 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2515 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2516 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2517 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2518 case PGMPOOLKIND_64BIT_PML4:
2519 case PGMPOOLKIND_32BIT_PD:
2520 case PGMPOOLKIND_PAE_PDPT:
2521 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2522 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2523 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2524 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2525 break;
2526
2527 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2528 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2529 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2530 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2531 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2532 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2533 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2534 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2535 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2536 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2537 case PGMPOOLKIND_ROOT_NESTED:
2538 case PGMPOOLKIND_PAE_PD_PHYS:
2539 case PGMPOOLKIND_PAE_PDPT_PHYS:
2540 case PGMPOOLKIND_32BIT_PD_PHYS:
2541 /* Nothing to monitor here. */
2542 Assert(!pPage->fMonitored);
2543 return VINF_SUCCESS;
2544
2545 default:
2546 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2547 }
2548 Assert(pPage->fMonitored);
2549
2550 /*
2551 * Remove the page from the monitored list or uninstall it if last.
2552 */
2553 const PVMCC pVM = pPool->CTX_SUFF(pVM);
2554 int rc;
2555 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
2556 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2557 {
2558 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
2559 {
2560 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
2561 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
2562 rc = PGMHandlerPhysicalChangeUserArgs(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK,
2563 MMHyperCCToR3(pVM, pNewHead), MMHyperCCToR0(pVM, pNewHead));
2564
2565 AssertFatalRCSuccess(rc);
2566 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2567 }
2568 else
2569 {
2570 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
2571 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
2572 {
2573 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
2574 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2575 }
2576 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
2577 rc = VINF_SUCCESS;
2578 }
2579 }
2580 else
2581 {
2582 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
2583 AssertFatalRC(rc);
2584 PVMCPU pVCpu = VMMGetCpu(pVM);
2585 AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
2586 ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
2587 }
2588 pPage->fMonitored = false;
2589
2590 /*
2591 * Remove it from the list of modified pages (if in it).
2592 */
2593 pgmPoolMonitorModifiedRemove(pPool, pPage);
2594
2595 return rc;
2596}
2597
2598
2599/**
2600 * Inserts the page into the list of modified pages.
2601 *
2602 * @param pPool The pool.
2603 * @param pPage The page.
2604 */
2605void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2606{
2607 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
2608 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
2609 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
2610 && pPool->iModifiedHead != pPage->idx,
2611 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
2612 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
2613 pPool->iModifiedHead, pPool->cModifiedPages));
2614
2615 pPage->iModifiedNext = pPool->iModifiedHead;
2616 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
2617 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
2618 pPool->iModifiedHead = pPage->idx;
2619 pPool->cModifiedPages++;
2620#ifdef VBOX_WITH_STATISTICS
2621 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
2622 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
2623#endif
2624}
2625
2626
2627/**
2628 * Removes the page from the list of modified pages and resets the
2629 * modification counter.
2630 *
2631 * @param pPool The pool.
2632 * @param pPage The page which is believed to be in the list of modified pages.
2633 */
2634static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2635{
2636 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
2637 if (pPool->iModifiedHead == pPage->idx)
2638 {
2639 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2640 pPool->iModifiedHead = pPage->iModifiedNext;
2641 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2642 {
2643 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
2644 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2645 }
2646 pPool->cModifiedPages--;
2647 }
2648 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
2649 {
2650 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
2651 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2652 {
2653 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
2654 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2655 }
2656 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2657 pPool->cModifiedPages--;
2658 }
2659 else
2660 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2661 pPage->cModifications = 0;
2662}
2663
2664
2665/**
2666 * Zaps the list of modified pages, resetting their modification counters in the process.
2667 *
2668 * @param pVM The cross context VM structure.
2669 */
2670static void pgmPoolMonitorModifiedClearAll(PVMCC pVM)
2671{
2672 pgmLock(pVM);
2673 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2674 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
2675
2676 unsigned cPages = 0; NOREF(cPages);
2677
2678#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2679 pgmPoolResetDirtyPages(pVM);
2680#endif
2681
2682 uint16_t idx = pPool->iModifiedHead;
2683 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2684 while (idx != NIL_PGMPOOL_IDX)
2685 {
2686 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
2687 idx = pPage->iModifiedNext;
2688 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2689 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2690 pPage->cModifications = 0;
2691 Assert(++cPages);
2692 }
2693 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
2694 pPool->cModifiedPages = 0;
2695 pgmUnlock(pVM);
2696}
2697
2698
2699/**
2700 * Handle SyncCR3 pool tasks
2701 *
2702 * @returns VBox status code.
2703 * @retval VINF_SUCCESS if successfully added.
2704 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2705 * @param pVCpu The cross context virtual CPU structure.
2706 * @remark Should only be used when monitoring is available, thus placed in
2707 * the PGMPOOL_WITH_MONITORING \#ifdef.
2708 */
2709int pgmPoolSyncCR3(PVMCPUCC pVCpu)
2710{
2711 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2712 LogFlow(("pgmPoolSyncCR3 fSyncFlags=%x\n", pVCpu->pgm.s.fSyncFlags));
2713
2714 /*
2715 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2716 * Occasionally we will have to clear all the shadow page tables because we wanted
2717 * to monitor a page which was mapped by too many shadowed page tables. This operation
2718 * sometimes referred to as a 'lightweight flush'.
2719 */
2720# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2721 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2722 pgmR3PoolClearAll(pVM, false /*fFlushRemTlb*/);
2723# else /* !IN_RING3 */
2724 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2725 {
2726 Log(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2727 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2728
2729 /* Make sure all other VCPUs return to ring 3. */
2730 if (pVM->cCpus > 1)
2731 {
2732 VM_FF_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
2733 PGM_INVL_ALL_VCPU_TLBS(pVM);
2734 }
2735 return VINF_PGM_SYNC_CR3;
2736 }
2737# endif /* !IN_RING3 */
2738 else
2739 {
2740 pgmPoolMonitorModifiedClearAll(pVM);
2741
2742 /* pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this! */
2743 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2744 {
2745 Log(("pgmPoolMonitorModifiedClearAll caused a pgm flush -> call pgmPoolSyncCR3 again!\n"));
2746 return pgmPoolSyncCR3(pVCpu);
2747 }
2748 }
2749 return VINF_SUCCESS;
2750}
2751
2752
2753/**
2754 * Frees up at least one user entry.
2755 *
2756 * @returns VBox status code.
2757 * @retval VINF_SUCCESS if successfully added.
2758 *
2759 * @param pPool The pool.
2760 * @param iUser The user index.
2761 */
2762static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2763{
2764 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2765 /*
2766 * Just free cached pages in a braindead fashion.
2767 */
2768 /** @todo walk the age list backwards and free the first with usage. */
2769 int rc = VINF_SUCCESS;
2770 do
2771 {
2772 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2773 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2774 rc = rc2;
2775 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2776 return rc;
2777}
2778
2779
2780/**
2781 * Inserts a page into the cache.
2782 *
2783 * This will create user node for the page, insert it into the GCPhys
2784 * hash, and insert it into the age list.
2785 *
2786 * @returns VBox status code.
2787 * @retval VINF_SUCCESS if successfully added.
2788 *
2789 * @param pPool The pool.
2790 * @param pPage The cached page.
2791 * @param GCPhys The GC physical address of the page we're gonna shadow.
2792 * @param iUser The user index.
2793 * @param iUserTable The user table index.
2794 */
2795DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2796{
2797 int rc = VINF_SUCCESS;
2798 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2799
2800 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser=%d iUserTable=%x\n", GCPhys, iUser, iUserTable)); RT_NOREF_PV(GCPhys);
2801
2802 if (iUser != NIL_PGMPOOL_IDX)
2803 {
2804#ifdef VBOX_STRICT
2805 /*
2806 * Check that the entry doesn't already exists.
2807 */
2808 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2809 {
2810 uint16_t i = pPage->iUserHead;
2811 do
2812 {
2813 Assert(i < pPool->cMaxUsers);
2814 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2815 i = paUsers[i].iNext;
2816 } while (i != NIL_PGMPOOL_USER_INDEX);
2817 }
2818#endif
2819
2820 /*
2821 * Find free a user node.
2822 */
2823 uint16_t i = pPool->iUserFreeHead;
2824 if (i == NIL_PGMPOOL_USER_INDEX)
2825 {
2826 rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2827 if (RT_FAILURE(rc))
2828 return rc;
2829 i = pPool->iUserFreeHead;
2830 }
2831
2832 /*
2833 * Unlink the user node from the free list,
2834 * initialize and insert it into the user list.
2835 */
2836 pPool->iUserFreeHead = paUsers[i].iNext;
2837 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2838 paUsers[i].iUser = iUser;
2839 paUsers[i].iUserTable = iUserTable;
2840 pPage->iUserHead = i;
2841 }
2842 else
2843 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
2844
2845
2846 /*
2847 * Insert into cache and enable monitoring of the guest page if enabled.
2848 *
2849 * Until we implement caching of all levels, including the CR3 one, we'll
2850 * have to make sure we don't try monitor & cache any recursive reuse of
2851 * a monitored CR3 page. Because all windows versions are doing this we'll
2852 * have to be able to do combined access monitoring, CR3 + PT and
2853 * PD + PT (guest PAE).
2854 *
2855 * Update:
2856 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2857 */
2858 const bool fCanBeMonitored = true;
2859 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2860 if (fCanBeMonitored)
2861 {
2862 rc = pgmPoolMonitorInsert(pPool, pPage);
2863 AssertRC(rc);
2864 }
2865 return rc;
2866}
2867
2868
2869/**
2870 * Adds a user reference to a page.
2871 *
2872 * This will move the page to the head of the
2873 *
2874 * @returns VBox status code.
2875 * @retval VINF_SUCCESS if successfully added.
2876 *
2877 * @param pPool The pool.
2878 * @param pPage The cached page.
2879 * @param iUser The user index.
2880 * @param iUserTable The user table.
2881 */
2882static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2883{
2884 Log3(("pgmPoolTrackAddUser: GCPhys=%RGp iUser=%x iUserTable=%x\n", pPage->GCPhys, iUser, iUserTable));
2885 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2886 Assert(iUser != NIL_PGMPOOL_IDX);
2887
2888# ifdef VBOX_STRICT
2889 /*
2890 * Check that the entry doesn't already exists. We only allow multiple
2891 * users of top-level paging structures (SHW_POOL_ROOT_IDX).
2892 */
2893 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2894 {
2895 uint16_t i = pPage->iUserHead;
2896 do
2897 {
2898 Assert(i < pPool->cMaxUsers);
2899 /** @todo this assertion looks odd... Shouldn't it be && here? */
2900 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2901 i = paUsers[i].iNext;
2902 } while (i != NIL_PGMPOOL_USER_INDEX);
2903 }
2904# endif
2905
2906 /*
2907 * Allocate a user node.
2908 */
2909 uint16_t i = pPool->iUserFreeHead;
2910 if (i == NIL_PGMPOOL_USER_INDEX)
2911 {
2912 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2913 if (RT_FAILURE(rc))
2914 return rc;
2915 i = pPool->iUserFreeHead;
2916 }
2917 pPool->iUserFreeHead = paUsers[i].iNext;
2918
2919 /*
2920 * Initialize the user node and insert it.
2921 */
2922 paUsers[i].iNext = pPage->iUserHead;
2923 paUsers[i].iUser = iUser;
2924 paUsers[i].iUserTable = iUserTable;
2925 pPage->iUserHead = i;
2926
2927# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2928 if (pPage->fDirty)
2929 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirtyEntry, false /* do not remove */);
2930# endif
2931
2932 /*
2933 * Tell the cache to update its replacement stats for this page.
2934 */
2935 pgmPoolCacheUsed(pPool, pPage);
2936 return VINF_SUCCESS;
2937}
2938
2939
2940/**
2941 * Frees a user record associated with a page.
2942 *
2943 * This does not clear the entry in the user table, it simply replaces the
2944 * user record to the chain of free records.
2945 *
2946 * @param pPool The pool.
2947 * @param pPage The shadow page.
2948 * @param iUser The shadow page pool index of the user table.
2949 * @param iUserTable The index into the user table (shadowed).
2950 *
2951 * @remarks Don't call this for root pages.
2952 */
2953static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2954{
2955 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2956 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2957 Assert(iUser != NIL_PGMPOOL_IDX);
2958
2959 /*
2960 * Unlink and free the specified user entry.
2961 */
2962
2963 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2964 uint16_t i = pPage->iUserHead;
2965 if ( i != NIL_PGMPOOL_USER_INDEX
2966 && paUsers[i].iUser == iUser
2967 && paUsers[i].iUserTable == iUserTable)
2968 {
2969 pPage->iUserHead = paUsers[i].iNext;
2970
2971 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2972 paUsers[i].iNext = pPool->iUserFreeHead;
2973 pPool->iUserFreeHead = i;
2974 return;
2975 }
2976
2977 /* General: Linear search. */
2978 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2979 while (i != NIL_PGMPOOL_USER_INDEX)
2980 {
2981 if ( paUsers[i].iUser == iUser
2982 && paUsers[i].iUserTable == iUserTable)
2983 {
2984 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2985 paUsers[iPrev].iNext = paUsers[i].iNext;
2986 else
2987 pPage->iUserHead = paUsers[i].iNext;
2988
2989 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2990 paUsers[i].iNext = pPool->iUserFreeHead;
2991 pPool->iUserFreeHead = i;
2992 return;
2993 }
2994 iPrev = i;
2995 i = paUsers[i].iNext;
2996 }
2997
2998 /* Fatal: didn't find it */
2999 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%d iUserTable=%#x GCPhys=%RGp\n",
3000 iUser, iUserTable, pPage->GCPhys));
3001}
3002
3003
3004#if 0 /* unused */
3005/**
3006 * Gets the entry size of a shadow table.
3007 *
3008 * @param enmKind The kind of page.
3009 *
3010 * @returns The size of the entry in bytes. That is, 4 or 8.
3011 * @returns If the kind is not for a table, an assertion is raised and 0 is
3012 * returned.
3013 */
3014DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
3015{
3016 switch (enmKind)
3017 {
3018 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3019 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3020 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3021 case PGMPOOLKIND_32BIT_PD:
3022 case PGMPOOLKIND_32BIT_PD_PHYS:
3023 return 4;
3024
3025 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3026 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3027 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3028 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3029 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3030 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3031 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3032 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3033 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3034 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3035 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3036 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3037 case PGMPOOLKIND_64BIT_PML4:
3038 case PGMPOOLKIND_PAE_PDPT:
3039 case PGMPOOLKIND_ROOT_NESTED:
3040 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3041 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3042 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3043 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3044 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3045 case PGMPOOLKIND_PAE_PD_PHYS:
3046 case PGMPOOLKIND_PAE_PDPT_PHYS:
3047 return 8;
3048
3049 default:
3050 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3051 }
3052}
3053#endif /* unused */
3054
3055#if 0 /* unused */
3056/**
3057 * Gets the entry size of a guest table.
3058 *
3059 * @param enmKind The kind of page.
3060 *
3061 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
3062 * @returns If the kind is not for a table, an assertion is raised and 0 is
3063 * returned.
3064 */
3065DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
3066{
3067 switch (enmKind)
3068 {
3069 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3070 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3071 case PGMPOOLKIND_32BIT_PD:
3072 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3073 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3074 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3075 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3076 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3077 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3078 return 4;
3079
3080 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3081 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3082 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3083 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3084 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3085 case PGMPOOLKIND_64BIT_PML4:
3086 case PGMPOOLKIND_PAE_PDPT:
3087 return 8;
3088
3089 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3090 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3091 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3092 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3093 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3094 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3095 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3096 case PGMPOOLKIND_ROOT_NESTED:
3097 case PGMPOOLKIND_PAE_PD_PHYS:
3098 case PGMPOOLKIND_PAE_PDPT_PHYS:
3099 case PGMPOOLKIND_32BIT_PD_PHYS:
3100 /** @todo can we return 0? (nobody is calling this...) */
3101 AssertFailed();
3102 return 0;
3103
3104 default:
3105 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3106 }
3107}
3108#endif /* unused */
3109
3110
3111/**
3112 * Checks one shadow page table entry for a mapping of a physical page.
3113 *
3114 * @returns true / false indicating removal of all relevant PTEs
3115 *
3116 * @param pVM The cross context VM structure.
3117 * @param pPhysPage The guest page in question.
3118 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3119 * @param iShw The shadow page table.
3120 * @param iPte Page table entry or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown
3121 */
3122static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t iPte)
3123{
3124 LogFlow(("pgmPoolTrackFlushGCPhysPTInt: pPhysPage=%RHp iShw=%d iPte=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, iPte));
3125 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3126 bool fRet = false;
3127
3128 /*
3129 * Assert sanity.
3130 */
3131 Assert(iPte != NIL_PGMPOOL_PHYSEXT_IDX_PTE);
3132 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
3133 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
3134
3135 /*
3136 * Then, clear the actual mappings to the page in the shadow PT.
3137 */
3138 switch (pPage->enmKind)
3139 {
3140 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3141 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3142 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3143 {
3144 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3145 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3146 uint32_t u32AndMask = 0;
3147 uint32_t u32OrMask = 0;
3148
3149 if (!fFlushPTEs)
3150 {
3151 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3152 {
3153 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
3154 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
3155 u32OrMask = X86_PTE_RW;
3156 u32AndMask = UINT32_MAX;
3157 fRet = true;
3158 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3159 break;
3160
3161 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
3162 u32OrMask = 0;
3163 u32AndMask = ~X86_PTE_RW;
3164 fRet = true;
3165 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3166 break;
3167 default:
3168 /* (shouldn't be here, will assert below) */
3169 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3170 break;
3171 }
3172 }
3173 else
3174 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3175
3176 /* Update the counter if we're removing references. */
3177 if (!u32AndMask)
3178 {
3179 Assert(pPage->cPresent);
3180 Assert(pPool->cPresent);
3181 pPage->cPresent--;
3182 pPool->cPresent--;
3183 }
3184
3185 if ((pPT->a[iPte].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3186 {
3187 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32\n", iPte, pPT->a[iPte]));
3188 X86PTE Pte;
3189 Pte.u = (pPT->a[iPte].u & u32AndMask) | u32OrMask;
3190 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3191 Pte.u &= ~(X86PGUINT)X86_PTE_RW; /* need to disallow writes when dirty bit tracking is still active. */
3192 ASMAtomicWriteU32(&pPT->a[iPte].u, Pte.u);
3193 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3194 return fRet;
3195 }
3196#ifdef LOG_ENABLED
3197 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3198 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
3199 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3200 {
3201 Log(("i=%d cFound=%d\n", i, ++cFound));
3202 }
3203#endif
3204 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u32=%RX32 poolkind=%x\n", pPage->iFirstPresent, pPage->cPresent, u32, pPage->enmKind));
3205 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
3206 break;
3207 }
3208
3209 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3210 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3211 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3212 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3213 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3214 case PGMPOOLKIND_EPT_PT_FOR_PHYS: /* physical mask the same as PAE; RW bit as well; be careful! */
3215 {
3216 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3217 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3218 uint64_t u64OrMask = 0;
3219 uint64_t u64AndMask = 0;
3220
3221 if (!fFlushPTEs)
3222 {
3223 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3224 {
3225 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
3226 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
3227 u64OrMask = X86_PTE_RW;
3228 u64AndMask = UINT64_MAX;
3229 fRet = true;
3230 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3231 break;
3232
3233 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
3234 u64OrMask = 0;
3235 u64AndMask = ~(uint64_t)X86_PTE_RW;
3236 fRet = true;
3237 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3238 break;
3239
3240 default:
3241 /* (shouldn't be here, will assert below) */
3242 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3243 break;
3244 }
3245 }
3246 else
3247 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3248
3249 /* Update the counter if we're removing references. */
3250 if (!u64AndMask)
3251 {
3252 Assert(pPage->cPresent);
3253 Assert(pPool->cPresent);
3254 pPage->cPresent--;
3255 pPool->cPresent--;
3256 }
3257
3258 if ((PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
3259 {
3260 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64\n", iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
3261 X86PTEPAE Pte;
3262 Pte.u = (PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & u64AndMask) | u64OrMask;
3263 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3264 Pte.u &= ~(X86PGPAEUINT)X86_PTE_RW; /* need to disallow writes when dirty bit tracking is still active. */
3265
3266 PGMSHWPTEPAE_ATOMIC_SET(pPT->a[iPte], Pte.u);
3267 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3268 return fRet;
3269 }
3270#ifdef LOG_ENABLED
3271 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3272 Log(("Found %RX64 expected %RX64\n", PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX), u64));
3273 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
3274 if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
3275 Log(("i=%d cFound=%d\n", i, ++cFound));
3276#endif
3277 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u64=%RX64 poolkind=%x iPte=%d PT=%RX64\n", pPage->iFirstPresent, pPage->cPresent, u64, pPage->enmKind, iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
3278 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
3279 break;
3280 }
3281
3282#ifdef PGM_WITH_LARGE_PAGES
3283 /* Large page case only. */
3284 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3285 {
3286 Assert(pVM->pgm.s.fNestedPaging);
3287
3288 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3289 PEPTPD pPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3290
3291 if ((pPD->a[iPte].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3292 {
3293 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
3294 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3295 pPD->a[iPte].u = 0;
3296 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
3297
3298 /* Update the counter as we're removing references. */
3299 Assert(pPage->cPresent);
3300 Assert(pPool->cPresent);
3301 pPage->cPresent--;
3302 pPool->cPresent--;
3303
3304 return fRet;
3305 }
3306# ifdef LOG_ENABLED
3307 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3308 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
3309 if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3310 Log(("i=%d cFound=%d\n", i, ++cFound));
3311# endif
3312 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3313 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
3314 break;
3315 }
3316
3317 /* AMD-V nested paging */ /** @todo merge with EPT as we only check the parts that are identical. */
3318 case PGMPOOLKIND_PAE_PD_PHYS:
3319 {
3320 Assert(pVM->pgm.s.fNestedPaging);
3321
3322 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3323 PX86PDPAE pPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3324
3325 if ((pPD->a[iPte].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3326 {
3327 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
3328 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3329 pPD->a[iPte].u = 0;
3330 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
3331
3332 /* Update the counter as we're removing references. */
3333 Assert(pPage->cPresent);
3334 Assert(pPool->cPresent);
3335 pPage->cPresent--;
3336 pPool->cPresent--;
3337 return fRet;
3338 }
3339# ifdef LOG_ENABLED
3340 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3341 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
3342 if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3343 Log(("i=%d cFound=%d\n", i, ++cFound));
3344# endif
3345 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3346 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
3347 break;
3348 }
3349#endif /* PGM_WITH_LARGE_PAGES */
3350
3351 default:
3352 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
3353 }
3354
3355 /* not reached. */
3356#ifndef _MSC_VER
3357 return fRet;
3358#endif
3359}
3360
3361
3362/**
3363 * Scans one shadow page table for mappings of a physical page.
3364 *
3365 * @param pVM The cross context VM structure.
3366 * @param pPhysPage The guest page in question.
3367 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3368 * @param iShw The shadow page table.
3369 */
3370static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw)
3371{
3372 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3373
3374 /* We should only come here with when there's only one reference to this physical page. */
3375 Assert(PGMPOOL_TD_GET_CREFS(PGM_PAGE_GET_TRACKING(pPhysPage)) == 1);
3376
3377 Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw));
3378 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
3379 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, PGM_PAGE_GET_PTE_INDEX(pPhysPage));
3380 if (!fKeptPTEs)
3381 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3382 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
3383}
3384
3385
3386/**
3387 * Flushes a list of shadow page tables mapping the same physical page.
3388 *
3389 * @param pVM The cross context VM structure.
3390 * @param pPhysPage The guest page in question.
3391 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3392 * @param iPhysExt The physical cross reference extent list to flush.
3393 */
3394static void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt)
3395{
3396 PGM_LOCK_ASSERT_OWNER(pVM);
3397 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3398 bool fKeepList = false;
3399
3400 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
3401 Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt=%u\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt));
3402
3403 const uint16_t iPhysExtStart = iPhysExt;
3404 PPGMPOOLPHYSEXT pPhysExt;
3405 do
3406 {
3407 Assert(iPhysExt < pPool->cMaxPhysExts);
3408 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3409 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3410 {
3411 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
3412 {
3413 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], pPhysExt->apte[i]);
3414 if (!fKeptPTEs)
3415 {
3416 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3417 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3418 }
3419 else
3420 fKeepList = true;
3421 }
3422 }
3423 /* next */
3424 iPhysExt = pPhysExt->iNext;
3425 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3426
3427 if (!fKeepList)
3428 {
3429 /* insert the list into the free list and clear the ram range entry. */
3430 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3431 pPool->iPhysExtFreeHead = iPhysExtStart;
3432 /* Invalidate the tracking data. */
3433 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3434 }
3435
3436 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
3437}
3438
3439
3440/**
3441 * Flushes all shadow page table mappings of the given guest page.
3442 *
3443 * This is typically called when the host page backing the guest one has been
3444 * replaced or when the page protection was changed due to a guest access
3445 * caught by the monitoring.
3446 *
3447 * @returns VBox status code.
3448 * @retval VINF_SUCCESS if all references has been successfully cleared.
3449 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
3450 * pool cleaning. FF and sync flags are set.
3451 *
3452 * @param pVM The cross context VM structure.
3453 * @param GCPhysPage GC physical address of the page in question
3454 * @param pPhysPage The guest page in question.
3455 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3456 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
3457 * flushed, it is NOT touched if this isn't necessary.
3458 * The caller MUST initialized this to @a false.
3459 */
3460int pgmPoolTrackUpdateGCPhys(PVMCC pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs)
3461{
3462 PVMCPUCC pVCpu = VMMGetCpu(pVM);
3463 pgmLock(pVM);
3464 int rc = VINF_SUCCESS;
3465
3466#ifdef PGM_WITH_LARGE_PAGES
3467 /* Is this page part of a large page? */
3468 if (PGM_PAGE_GET_PDE_TYPE(pPhysPage) == PGM_PAGE_PDE_TYPE_PDE)
3469 {
3470 RTGCPHYS GCPhysBase = GCPhysPage & X86_PDE2M_PAE_PG_MASK;
3471 GCPhysPage &= X86_PDE_PAE_PG_MASK;
3472
3473 /* Fetch the large page base. */
3474 PPGMPAGE pLargePage;
3475 if (GCPhysBase != GCPhysPage)
3476 {
3477 pLargePage = pgmPhysGetPage(pVM, GCPhysBase);
3478 AssertFatal(pLargePage);
3479 }
3480 else
3481 pLargePage = pPhysPage;
3482
3483 Log(("pgmPoolTrackUpdateGCPhys: update large page PDE for %RGp (%RGp)\n", GCPhysBase, GCPhysPage));
3484
3485 if (PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE)
3486 {
3487 /* Mark the large page as disabled as we need to break it up to change a single page in the 2 MB range. */
3488 PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3489 pVM->pgm.s.cLargePagesDisabled++;
3490
3491 /* Update the base as that *only* that one has a reference and there's only one PDE to clear. */
3492 rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysBase, pLargePage, fFlushPTEs, pfFlushTLBs);
3493
3494 *pfFlushTLBs = true;
3495 pgmUnlock(pVM);
3496 return rc;
3497 }
3498 }
3499#else
3500 NOREF(GCPhysPage);
3501#endif /* PGM_WITH_LARGE_PAGES */
3502
3503 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
3504 if (u16)
3505 {
3506 /*
3507 * The zero page is currently screwing up the tracking and we'll
3508 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3509 * is defined, zero pages won't normally be mapped. Some kind of solution
3510 * will be needed for this problem of course, but it will have to wait...
3511 */
3512 if ( PGM_PAGE_IS_ZERO(pPhysPage)
3513 || PGM_PAGE_IS_BALLOONED(pPhysPage))
3514 rc = VINF_PGM_GCPHYS_ALIASED;
3515 else
3516 {
3517 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3518 {
3519 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3520 pgmPoolTrackFlushGCPhysPT(pVM,
3521 pPhysPage,
3522 fFlushPTEs,
3523 PGMPOOL_TD_GET_IDX(u16));
3524 }
3525 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3526 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16));
3527 else
3528 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3529 *pfFlushTLBs = true;
3530 }
3531 }
3532
3533 if (rc == VINF_PGM_GCPHYS_ALIASED)
3534 {
3535 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3536 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3537 rc = VINF_PGM_SYNC_CR3;
3538 }
3539 pgmUnlock(pVM);
3540 return rc;
3541}
3542
3543
3544/**
3545 * Scans all shadow page tables for mappings of a physical page.
3546 *
3547 * This may be slow, but it's most likely more efficient than cleaning
3548 * out the entire page pool / cache.
3549 *
3550 * @returns VBox status code.
3551 * @retval VINF_SUCCESS if all references has been successfully cleared.
3552 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
3553 * a page pool cleaning.
3554 *
3555 * @param pVM The cross context VM structure.
3556 * @param pPhysPage The guest page in question.
3557 */
3558int pgmPoolTrackFlushGCPhysPTsSlow(PVMCC pVM, PPGMPAGE pPhysPage)
3559{
3560 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3561 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3562 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
3563 pPool->cUsedPages, pPool->cPresent, pPhysPage));
3564
3565 /*
3566 * There is a limit to what makes sense.
3567 */
3568 if ( pPool->cPresent > 1024
3569 && pVM->cCpus == 1)
3570 {
3571 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3572 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3573 return VINF_PGM_GCPHYS_ALIASED;
3574 }
3575
3576 /*
3577 * Iterate all the pages until we've encountered all that in use.
3578 * This is simple but not quite optimal solution.
3579 */
3580 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage);
3581 unsigned cLeft = pPool->cUsedPages;
3582 unsigned iPage = pPool->cCurPages;
3583 while (--iPage >= PGMPOOL_IDX_FIRST)
3584 {
3585 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
3586 if ( pPage->GCPhys != NIL_RTGCPHYS
3587 && pPage->cPresent)
3588 {
3589 switch (pPage->enmKind)
3590 {
3591 /*
3592 * We only care about shadow page tables.
3593 */
3594 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3595 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3596 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3597 {
3598 const uint32_t u32 = (uint32_t)u64;
3599 unsigned cPresent = pPage->cPresent;
3600 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3601 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3602 {
3603 const X86PGUINT uPte = pPT->a[i].u;
3604 if (uPte & X86_PTE_P)
3605 {
3606 if ((uPte & X86_PTE_PG_MASK) == u32)
3607 {
3608 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
3609 ASMAtomicWriteU32(&pPT->a[i].u, 0);
3610
3611 /* Update the counter as we're removing references. */
3612 Assert(pPage->cPresent);
3613 Assert(pPool->cPresent);
3614 pPage->cPresent--;
3615 pPool->cPresent--;
3616 }
3617 if (!--cPresent)
3618 break;
3619 }
3620 }
3621 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3622 break;
3623 }
3624
3625 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3626 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3627 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3628 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3629 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3630 {
3631 unsigned cPresent = pPage->cPresent;
3632 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3633 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3634 if (PGMSHWPTEPAE_IS_P(pPT->a[i]))
3635 {
3636 if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & X86_PTE_PAE_PG_MASK) == u64)
3637 {
3638 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3639 PGMSHWPTEPAE_ATOMIC_SET(pPT->a[i], 0); /// @todo why not atomic?
3640
3641 /* Update the counter as we're removing references. */
3642 Assert(pPage->cPresent);
3643 Assert(pPool->cPresent);
3644 pPage->cPresent--;
3645 pPool->cPresent--;
3646 }
3647 if (!--cPresent)
3648 break;
3649 }
3650 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3651 break;
3652 }
3653
3654 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3655 {
3656 unsigned cPresent = pPage->cPresent;
3657 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3658 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3659 {
3660 X86PGPAEUINT const uPte = pPT->a[i].u;
3661 if (uPte & EPT_E_READ)
3662 {
3663 if ((uPte & EPT_PTE_PG_MASK) == u64)
3664 {
3665 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3666 ASMAtomicWriteU64(&pPT->a[i].u, 0);
3667
3668 /* Update the counter as we're removing references. */
3669 Assert(pPage->cPresent);
3670 Assert(pPool->cPresent);
3671 pPage->cPresent--;
3672 pPool->cPresent--;
3673 }
3674 if (!--cPresent)
3675 break;
3676 }
3677 }
3678 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3679 break;
3680 }
3681 }
3682
3683 if (!--cLeft)
3684 break;
3685 }
3686 }
3687
3688 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3689 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3690
3691 /*
3692 * There is a limit to what makes sense. The above search is very expensive, so force a pgm pool flush.
3693 */
3694 if (pPool->cPresent > 1024)
3695 {
3696 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3697 return VINF_PGM_GCPHYS_ALIASED;
3698 }
3699
3700 return VINF_SUCCESS;
3701}
3702
3703
3704/**
3705 * Clears the user entry in a user table.
3706 *
3707 * This is used to remove all references to a page when flushing it.
3708 */
3709static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
3710{
3711 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
3712 Assert(pUser->iUser < pPool->cCurPages);
3713 uint32_t iUserTable = pUser->iUserTable;
3714
3715 /*
3716 * Map the user page. Ignore references made by fictitious pages.
3717 */
3718 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
3719 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
3720 union
3721 {
3722 uint64_t *pau64;
3723 uint32_t *pau32;
3724 } u;
3725 if (pUserPage->idx < PGMPOOL_IDX_FIRST)
3726 {
3727 Assert(!pUserPage->pvPageR3);
3728 return;
3729 }
3730 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
3731
3732
3733 /* Safety precaution in case we change the paging for other modes too in the future. */
3734 Assert(!pgmPoolIsPageLocked(pPage)); RT_NOREF_PV(pPage);
3735
3736#ifdef VBOX_STRICT
3737 /*
3738 * Some sanity checks.
3739 */
3740 switch (pUserPage->enmKind)
3741 {
3742 case PGMPOOLKIND_32BIT_PD:
3743 case PGMPOOLKIND_32BIT_PD_PHYS:
3744 Assert(iUserTable < X86_PG_ENTRIES);
3745 break;
3746 case PGMPOOLKIND_PAE_PDPT:
3747 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3748 case PGMPOOLKIND_PAE_PDPT_PHYS:
3749 Assert(iUserTable < 4);
3750 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3751 break;
3752 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3753 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3754 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3755 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3756 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3757 case PGMPOOLKIND_PAE_PD_PHYS:
3758 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3759 break;
3760 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3761 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3762#ifndef PGM_WITHOUT_MAPPINGS
3763 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
3764#endif
3765 break;
3766 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3767 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3768 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3769 break;
3770 case PGMPOOLKIND_64BIT_PML4:
3771 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3772 /* GCPhys >> PAGE_SHIFT is the index here */
3773 break;
3774 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3775 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3776 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3777 break;
3778
3779 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3780 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3781 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3782 break;
3783
3784 case PGMPOOLKIND_ROOT_NESTED:
3785 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3786 break;
3787
3788 default:
3789 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
3790 break;
3791 }
3792#endif /* VBOX_STRICT */
3793
3794 /*
3795 * Clear the entry in the user page.
3796 */
3797 switch (pUserPage->enmKind)
3798 {
3799 /* 32-bit entries */
3800 case PGMPOOLKIND_32BIT_PD:
3801 case PGMPOOLKIND_32BIT_PD_PHYS:
3802 ASMAtomicWriteU32(&u.pau32[iUserTable], 0);
3803 break;
3804
3805 /* 64-bit entries */
3806 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3807 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3808 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3809 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3810 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3811 case PGMPOOLKIND_PAE_PD_PHYS:
3812 case PGMPOOLKIND_PAE_PDPT_PHYS:
3813 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3814 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3815 case PGMPOOLKIND_64BIT_PML4:
3816 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3817 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3818 case PGMPOOLKIND_PAE_PDPT:
3819 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3820 case PGMPOOLKIND_ROOT_NESTED:
3821 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3822 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3823 ASMAtomicWriteU64(&u.pau64[iUserTable], 0);
3824 break;
3825
3826 default:
3827 AssertFatalMsgFailed(("enmKind=%d iUser=%d iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
3828 }
3829 PGM_DYNMAP_UNUSED_HINT_VM(pPool->CTX_SUFF(pVM), u.pau64);
3830}
3831
3832
3833/**
3834 * Clears all users of a page.
3835 */
3836static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3837{
3838 /*
3839 * Free all the user records.
3840 */
3841 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3842
3843 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3844 uint16_t i = pPage->iUserHead;
3845 while (i != NIL_PGMPOOL_USER_INDEX)
3846 {
3847 /* Clear enter in user table. */
3848 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3849
3850 /* Free it. */
3851 const uint16_t iNext = paUsers[i].iNext;
3852 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3853 paUsers[i].iNext = pPool->iUserFreeHead;
3854 pPool->iUserFreeHead = i;
3855
3856 /* Next. */
3857 i = iNext;
3858 }
3859 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3860}
3861
3862
3863/**
3864 * Allocates a new physical cross reference extent.
3865 *
3866 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3867 * @param pVM The cross context VM structure.
3868 * @param piPhysExt Where to store the phys ext index.
3869 */
3870PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3871{
3872 PGM_LOCK_ASSERT_OWNER(pVM);
3873 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3874 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3875 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3876 {
3877 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3878 return NULL;
3879 }
3880 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3881 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3882 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3883 *piPhysExt = iPhysExt;
3884 return pPhysExt;
3885}
3886
3887
3888/**
3889 * Frees a physical cross reference extent.
3890 *
3891 * @param pVM The cross context VM structure.
3892 * @param iPhysExt The extent to free.
3893 */
3894void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3895{
3896 PGM_LOCK_ASSERT_OWNER(pVM);
3897 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3898 Assert(iPhysExt < pPool->cMaxPhysExts);
3899 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3900 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3901 {
3902 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3903 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3904 }
3905 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3906 pPool->iPhysExtFreeHead = iPhysExt;
3907}
3908
3909
3910/**
3911 * Frees a physical cross reference extent.
3912 *
3913 * @param pVM The cross context VM structure.
3914 * @param iPhysExt The extent to free.
3915 */
3916void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3917{
3918 PGM_LOCK_ASSERT_OWNER(pVM);
3919 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3920
3921 const uint16_t iPhysExtStart = iPhysExt;
3922 PPGMPOOLPHYSEXT pPhysExt;
3923 do
3924 {
3925 Assert(iPhysExt < pPool->cMaxPhysExts);
3926 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3927 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3928 {
3929 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3930 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3931 }
3932
3933 /* next */
3934 iPhysExt = pPhysExt->iNext;
3935 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3936
3937 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3938 pPool->iPhysExtFreeHead = iPhysExtStart;
3939}
3940
3941
3942/**
3943 * Insert a reference into a list of physical cross reference extents.
3944 *
3945 * @returns The new tracking data for PGMPAGE.
3946 *
3947 * @param pVM The cross context VM structure.
3948 * @param iPhysExt The physical extent index of the list head.
3949 * @param iShwPT The shadow page table index.
3950 * @param iPte Page table entry
3951 *
3952 */
3953static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT, uint16_t iPte)
3954{
3955 PGM_LOCK_ASSERT_OWNER(pVM);
3956 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3957 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3958
3959 /*
3960 * Special common cases.
3961 */
3962 if (paPhysExts[iPhysExt].aidx[1] == NIL_PGMPOOL_IDX)
3963 {
3964 paPhysExts[iPhysExt].aidx[1] = iShwPT;
3965 paPhysExts[iPhysExt].apte[1] = iPte;
3966 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
3967 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,%d pte %d,}\n", iPhysExt, iShwPT, iPte));
3968 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3969 }
3970 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3971 {
3972 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3973 paPhysExts[iPhysExt].apte[2] = iPte;
3974 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
3975 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d pte %d}\n", iPhysExt, iShwPT, iPte));
3976 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3977 }
3978 AssertCompile(RT_ELEMENTS(paPhysExts[iPhysExt].aidx) == 3);
3979
3980 /*
3981 * General treatment.
3982 */
3983 const uint16_t iPhysExtStart = iPhysExt;
3984 unsigned cMax = 15;
3985 for (;;)
3986 {
3987 Assert(iPhysExt < pPool->cMaxPhysExts);
3988 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3989 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3990 {
3991 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3992 paPhysExts[iPhysExt].apte[i] = iPte;
3993 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
3994 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d pte %d} i=%d cMax=%d\n", iPhysExt, iShwPT, iPte, i, cMax));
3995 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3996 }
3997 if (!--cMax)
3998 {
3999 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackOverflows);
4000 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
4001 LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
4002 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4003 }
4004
4005 /* advance */
4006 iPhysExt = paPhysExts[iPhysExt].iNext;
4007 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
4008 break;
4009 }
4010
4011 /*
4012 * Add another extent to the list.
4013 */
4014 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
4015 if (!pNew)
4016 {
4017 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackNoExtentsLeft);
4018 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
4019 LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
4020 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4021 }
4022 pNew->iNext = iPhysExtStart;
4023 pNew->aidx[0] = iShwPT;
4024 pNew->apte[0] = iPte;
4025 LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d pte %d}->%d\n", iPhysExt, iShwPT, iPte, iPhysExtStart));
4026 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4027}
4028
4029
4030/**
4031 * Add a reference to guest physical page where extents are in use.
4032 *
4033 * @returns The new tracking data for PGMPAGE.
4034 *
4035 * @param pVM The cross context VM structure.
4036 * @param pPhysPage Pointer to the aPages entry in the ram range.
4037 * @param u16 The ram range flags (top 16-bits).
4038 * @param iShwPT The shadow page table index.
4039 * @param iPte Page table entry
4040 */
4041uint16_t pgmPoolTrackPhysExtAddref(PVMCC pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte)
4042{
4043 pgmLock(pVM);
4044 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
4045 {
4046 /*
4047 * Convert to extent list.
4048 */
4049 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
4050 uint16_t iPhysExt;
4051 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
4052 if (pPhysExt)
4053 {
4054 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
4055 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliased);
4056 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
4057 pPhysExt->apte[0] = PGM_PAGE_GET_PTE_INDEX(pPhysPage);
4058 pPhysExt->aidx[1] = iShwPT;
4059 pPhysExt->apte[1] = iPte;
4060 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4061 }
4062 else
4063 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4064 }
4065 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
4066 {
4067 /*
4068 * Insert into the extent list.
4069 */
4070 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT, iPte);
4071 }
4072 else
4073 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedLots);
4074 pgmUnlock(pVM);
4075 return u16;
4076}
4077
4078
4079/**
4080 * Clear references to guest physical memory.
4081 *
4082 * @param pPool The pool.
4083 * @param pPage The page.
4084 * @param pPhysPage Pointer to the aPages entry in the ram range.
4085 * @param iPte Shadow PTE index
4086 */
4087void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage, uint16_t iPte)
4088{
4089 PVMCC pVM = pPool->CTX_SUFF(pVM);
4090 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
4091 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
4092
4093 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
4094 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
4095 {
4096 pgmLock(pVM);
4097
4098 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
4099 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4100 do
4101 {
4102 Assert(iPhysExt < pPool->cMaxPhysExts);
4103
4104 /*
4105 * Look for the shadow page and check if it's all freed.
4106 */
4107 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4108 {
4109 if ( paPhysExts[iPhysExt].aidx[i] == pPage->idx
4110 && paPhysExts[iPhysExt].apte[i] == iPte)
4111 {
4112 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
4113 paPhysExts[iPhysExt].apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
4114
4115 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4116 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
4117 {
4118 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
4119 pgmUnlock(pVM);
4120 return;
4121 }
4122
4123 /* we can free the node. */
4124 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
4125 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
4126 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
4127 {
4128 /* lonely node */
4129 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4130 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
4131 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
4132 }
4133 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
4134 {
4135 /* head */
4136 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
4137 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
4138 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4139 }
4140 else
4141 {
4142 /* in list */
4143 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d in list\n", pPhysPage, pPage->idx));
4144 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
4145 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4146 }
4147 iPhysExt = iPhysExtNext;
4148 pgmUnlock(pVM);
4149 return;
4150 }
4151 }
4152
4153 /* next */
4154 iPhysExtPrev = iPhysExt;
4155 iPhysExt = paPhysExts[iPhysExt].iNext;
4156 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
4157
4158 pgmUnlock(pVM);
4159 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
4160 }
4161 else /* nothing to do */
4162 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
4163}
4164
4165/**
4166 * Clear references to guest physical memory.
4167 *
4168 * This is the same as pgmPoolTracDerefGCPhysHint except that the guest
4169 * physical address is assumed to be correct, so the linear search can be
4170 * skipped and we can assert at an earlier point.
4171 *
4172 * @param pPool The pool.
4173 * @param pPage The page.
4174 * @param HCPhys The host physical address corresponding to the guest page.
4175 * @param GCPhys The guest physical address corresponding to HCPhys.
4176 * @param iPte Shadow PTE index
4177 */
4178static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys, uint16_t iPte)
4179{
4180 /*
4181 * Lookup the page and check if it checks out before derefing it.
4182 */
4183 PVMCC pVM = pPool->CTX_SUFF(pVM);
4184 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhys);
4185 if (pPhysPage)
4186 {
4187 Assert(PGM_PAGE_GET_HCPHYS(pPhysPage));
4188#ifdef LOG_ENABLED
4189 RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(pPhysPage);
4190 Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
4191#endif
4192 if (PGM_PAGE_GET_HCPHYS(pPhysPage) == HCPhys)
4193 {
4194 Assert(pPage->cPresent);
4195 Assert(pPool->cPresent);
4196 pPage->cPresent--;
4197 pPool->cPresent--;
4198 pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
4199 return;
4200 }
4201
4202 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp; found page has HCPhys=%RHp\n",
4203 HCPhys, GCPhys, PGM_PAGE_GET_HCPHYS(pPhysPage)));
4204 }
4205 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
4206}
4207
4208
4209/**
4210 * Clear references to guest physical memory.
4211 *
4212 * @param pPool The pool.
4213 * @param pPage The page.
4214 * @param HCPhys The host physical address corresponding to the guest page.
4215 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
4216 * @param iPte Shadow pte index
4217 */
4218void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte)
4219{
4220 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
4221
4222 /*
4223 * Try the hint first.
4224 */
4225 RTHCPHYS HCPhysHinted;
4226 PVMCC pVM = pPool->CTX_SUFF(pVM);
4227 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysHint);
4228 if (pPhysPage)
4229 {
4230 HCPhysHinted = PGM_PAGE_GET_HCPHYS(pPhysPage);
4231 Assert(HCPhysHinted);
4232 if (HCPhysHinted == HCPhys)
4233 {
4234 Assert(pPage->cPresent);
4235 Assert(pPool->cPresent);
4236 pPage->cPresent--;
4237 pPool->cPresent--;
4238 pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
4239 return;
4240 }
4241 }
4242 else
4243 HCPhysHinted = UINT64_C(0xdeadbeefdeadbeef);
4244
4245 /*
4246 * Damn, the hint didn't work. We'll have to do an expensive linear search.
4247 */
4248 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
4249 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
4250 while (pRam)
4251 {
4252 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4253 while (iPage-- > 0)
4254 {
4255 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
4256 {
4257 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
4258 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
4259 Assert(pPage->cPresent);
4260 Assert(pPool->cPresent);
4261 pPage->cPresent--;
4262 pPool->cPresent--;
4263 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage], iPte);
4264 return;
4265 }
4266 }
4267 pRam = pRam->CTX_SUFF(pNext);
4268 }
4269
4270 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp (Hinted page has HCPhys = %RHp)\n", HCPhys, GCPhysHint, HCPhysHinted));
4271}
4272
4273
4274/**
4275 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
4276 *
4277 * @param pPool The pool.
4278 * @param pPage The page.
4279 * @param pShwPT The shadow page table (mapping of the page).
4280 * @param pGstPT The guest page table.
4281 */
4282DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
4283{
4284 RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
4285 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4286 {
4287 const X86PGUINT uPte = pShwPT->a[i].u;
4288 Assert(!(uPte & RT_BIT_32(10)));
4289 if (uPte & X86_PTE_P)
4290 {
4291 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
4292 i, uPte & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
4293 pgmPoolTracDerefGCPhysHint(pPool, pPage, uPte & X86_PTE_PG_MASK, pGstPT->a[i].u & fPgMask, i);
4294 if (!pPage->cPresent)
4295 break;
4296 }
4297 }
4298}
4299
4300
4301/**
4302 * Clear references to guest physical memory in a PAE / 32-bit page table.
4303 *
4304 * @param pPool The pool.
4305 * @param pPage The page.
4306 * @param pShwPT The shadow page table (mapping of the page).
4307 * @param pGstPT The guest page table (just a half one).
4308 */
4309DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
4310{
4311 RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
4312 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4313 {
4314 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4315 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4316 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4317 {
4318 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
4319 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PG_MASK));
4320 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
4321 if (!pPage->cPresent)
4322 break;
4323 }
4324 }
4325}
4326
4327
4328/**
4329 * Clear references to guest physical memory in a PAE / PAE page table.
4330 *
4331 * @param pPool The pool.
4332 * @param pPage The page.
4333 * @param pShwPT The shadow page table (mapping of the page).
4334 * @param pGstPT The guest page table.
4335 */
4336DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
4337{
4338 RTGCPHYS const fPgMask = pPage->fA20Enabled ? X86_PTE_PAE_PG_MASK : X86_PTE_PAE_PG_MASK & ~RT_BIT_64(20);
4339 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4340 {
4341 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4342 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4343 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4344 {
4345 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
4346 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
4347 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
4348 if (!pPage->cPresent)
4349 break;
4350 }
4351 }
4352}
4353
4354
4355/**
4356 * Clear references to guest physical memory in a 32-bit / 4MB page table.
4357 *
4358 * @param pPool The pool.
4359 * @param pPage The page.
4360 * @param pShwPT The shadow page table (mapping of the page).
4361 */
4362DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
4363{
4364 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4365 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4366 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4367 {
4368 const X86PGUINT uPte = pShwPT->a[i].u;
4369 Assert(!(uPte & RT_BIT_32(10)));
4370 if (uPte & X86_PTE_P)
4371 {
4372 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
4373 i, uPte & X86_PTE_PG_MASK, GCPhys));
4374 pgmPoolTracDerefGCPhys(pPool, pPage, uPte & X86_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
4375 if (!pPage->cPresent)
4376 break;
4377 }
4378 }
4379}
4380
4381
4382/**
4383 * Clear references to guest physical memory in a PAE / 2/4MB page table.
4384 *
4385 * @param pPool The pool.
4386 * @param pPage The page.
4387 * @param pShwPT The shadow page table (mapping of the page).
4388 */
4389DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT)
4390{
4391 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4392 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4393 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4394 {
4395 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4396 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4397 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4398 {
4399 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
4400 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys));
4401 pgmPoolTracDerefGCPhys(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys & GCPhysA20Mask, i);
4402 if (!pPage->cPresent)
4403 break;
4404 }
4405 }
4406}
4407
4408
4409/**
4410 * Clear references to shadowed pages in an EPT page table.
4411 *
4412 * @param pPool The pool.
4413 * @param pPage The page.
4414 * @param pShwPT The shadow page directory pointer table (mapping of the
4415 * page).
4416 */
4417DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
4418{
4419 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4420 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4421 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4422 {
4423 X86PGPAEUINT const uPte = pShwPT->a[i].u;
4424 Assert((uPte & UINT64_C(0xfff0000000000f80)) == 0);
4425 if (uPte & EPT_E_READ)
4426 {
4427 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
4428 i, uPte & EPT_PTE_PG_MASK, pPage->GCPhys));
4429 pgmPoolTracDerefGCPhys(pPool, pPage, uPte & EPT_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
4430 if (!pPage->cPresent)
4431 break;
4432 }
4433 }
4434}
4435
4436
4437/**
4438 * Clear references to shadowed pages in a 32 bits page directory.
4439 *
4440 * @param pPool The pool.
4441 * @param pPage The page.
4442 * @param pShwPD The shadow page directory (mapping of the page).
4443 */
4444DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
4445{
4446 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4447 {
4448 X86PGUINT const uPde = pShwPD->a[i].u;
4449#ifndef PGM_WITHOUT_MAPPINGS
4450 if ((uPde & (X86_PDE_P | PGM_PDFLAGS_MAPPING)) == X86_PDE_P)
4451#else
4452 if (uPde & X86_PDE_P)
4453#endif
4454 {
4455 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
4456 if (pSubPage)
4457 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4458 else
4459 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
4460 }
4461 }
4462}
4463
4464
4465/**
4466 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
4467 *
4468 * @param pPool The pool.
4469 * @param pPage The page.
4470 * @param pShwPD The shadow page directory (mapping of the page).
4471 */
4472DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
4473{
4474 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4475 {
4476 X86PGPAEUINT const uPde = pShwPD->a[i].u;
4477#ifndef PGM_WITHOUT_MAPPINGS
4478 if ((uPde & (X86_PDE_P | PGM_PDFLAGS_MAPPING)) == X86_PDE_P)
4479#else
4480 if (uPde & X86_PDE_P)
4481#endif
4482 {
4483#ifdef PGM_WITH_LARGE_PAGES
4484 if (uPde & X86_PDE_PS)
4485 {
4486 Log4(("pgmPoolTrackDerefPDPae: i=%d pde=%RX64 GCPhys=%RX64\n",
4487 i, uPde & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
4488 pgmPoolTracDerefGCPhys(pPool, pPage, uPde & X86_PDE2M_PAE_PG_MASK,
4489 pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
4490 i);
4491 }
4492 else
4493#endif
4494 {
4495 Assert((uPde & (X86_PDE_PAE_MBZ_MASK_NX | UINT64_C(0x7ff0000000000000))) == 0);
4496 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & X86_PDE_PAE_PG_MASK);
4497 if (pSubPage)
4498 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4499 else
4500 AssertFatalMsgFailed(("%RX64\n", uPde & X86_PDE_PAE_PG_MASK));
4501 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4502 }
4503 }
4504 }
4505}
4506
4507
4508/**
4509 * Clear references to shadowed pages in a PAE page directory pointer table.
4510 *
4511 * @param pPool The pool.
4512 * @param pPage The page.
4513 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4514 */
4515DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4516{
4517 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4518 {
4519 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4520 Assert((uPdpe & (X86_PDPE_PAE_MBZ_MASK | UINT64_C(0x7ff0000000000200))) == 0);
4521 if ( uPdpe & X86_PDPE_P
4522#ifndef PGM_WITHOUT_MAPPINGS
4523 && !(uPdpe & PGM_PLXFLAGS_MAPPING)
4524#endif
4525 )
4526 {
4527 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & X86_PDPE_PG_MASK);
4528 if (pSubPage)
4529 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4530 else
4531 AssertFatalMsgFailed(("%RX64\n", uPdpe & X86_PDPE_PG_MASK));
4532 }
4533 }
4534}
4535
4536
4537/**
4538 * Clear references to shadowed pages in a 64-bit page directory pointer table.
4539 *
4540 * @param pPool The pool.
4541 * @param pPage The page.
4542 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4543 */
4544DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4545{
4546 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4547 {
4548 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4549 Assert((uPdpe & (X86_PDPE_LM_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4550 if (uPdpe & X86_PDPE_P)
4551 {
4552 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & X86_PDPE_PG_MASK);
4553 if (pSubPage)
4554 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4555 else
4556 AssertFatalMsgFailed(("%RX64\n", uPdpe & X86_PDPE_PG_MASK));
4557 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4558 }
4559 }
4560}
4561
4562
4563/**
4564 * Clear references to shadowed pages in a 64-bit level 4 page table.
4565 *
4566 * @param pPool The pool.
4567 * @param pPage The page.
4568 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4569 */
4570DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
4571{
4572 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
4573 {
4574 X86PGPAEUINT const uPml4e = pShwPML4->a[i].u;
4575 Assert((uPml4e & (X86_PML4E_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4576 if (uPml4e & X86_PML4E_P)
4577 {
4578 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPml4e & X86_PDPE_PG_MASK);
4579 if (pSubPage)
4580 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4581 else
4582 AssertFatalMsgFailed(("%RX64\n", uPml4e & X86_PML4E_PG_MASK));
4583 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4584 }
4585 }
4586}
4587
4588
4589/**
4590 * Clear references to shadowed pages in an EPT page directory.
4591 *
4592 * @param pPool The pool.
4593 * @param pPage The page.
4594 * @param pShwPD The shadow page directory (mapping of the page).
4595 */
4596DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
4597{
4598 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4599 {
4600 X86PGPAEUINT const uPde = pShwPD->a[i].u;
4601 Assert((uPde & UINT64_C(0xfff0000000000f80)) == 0);
4602 if (uPde & EPT_E_READ)
4603 {
4604#ifdef PGM_WITH_LARGE_PAGES
4605 if (uPde & EPT_E_LEAF)
4606 {
4607 Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n",
4608 i, uPde & EPT_PDE2M_PG_MASK, pPage->GCPhys));
4609 pgmPoolTracDerefGCPhys(pPool, pPage, uPde & EPT_PDE2M_PG_MASK,
4610 pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
4611 i);
4612 }
4613 else
4614#endif
4615 {
4616 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & EPT_PDE_PG_MASK);
4617 if (pSubPage)
4618 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4619 else
4620 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
4621 }
4622 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4623 }
4624 }
4625}
4626
4627
4628/**
4629 * Clear references to shadowed pages in an EPT page directory pointer table.
4630 *
4631 * @param pPool The pool.
4632 * @param pPage The page.
4633 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4634 */
4635DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
4636{
4637 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4638 {
4639 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4640 Assert((uPdpe & UINT64_C(0xfff0000000000f80)) == 0);
4641 if (uPdpe & EPT_E_READ)
4642 {
4643 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & EPT_PDPTE_PG_MASK);
4644 if (pSubPage)
4645 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4646 else
4647 AssertFatalMsgFailed(("%RX64\n", uPdpe & EPT_PDPTE_PG_MASK));
4648 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4649 }
4650 }
4651}
4652
4653
4654/**
4655 * Clears all references made by this page.
4656 *
4657 * This includes other shadow pages and GC physical addresses.
4658 *
4659 * @param pPool The pool.
4660 * @param pPage The page.
4661 */
4662static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4663{
4664 /*
4665 * Map the shadow page and take action according to the page kind.
4666 */
4667 PVMCC pVM = pPool->CTX_SUFF(pVM);
4668 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4669 switch (pPage->enmKind)
4670 {
4671 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4672 {
4673 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4674 void *pvGst;
4675 int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4676 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
4677 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4678 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4679 break;
4680 }
4681
4682 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4683 {
4684 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4685 void *pvGst;
4686 int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4687 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
4688 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4689 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4690 break;
4691 }
4692
4693 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4694 {
4695 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4696 void *pvGst;
4697 int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4698 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
4699 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4700 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4701 break;
4702 }
4703
4704 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
4705 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4706 {
4707 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4708 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
4709 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4710 break;
4711 }
4712
4713 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
4714 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4715 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4716 {
4717 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4718 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PPGMSHWPTPAE)pvShw);
4719 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4720 break;
4721 }
4722
4723 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4724 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4725 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4726 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4727 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4728 case PGMPOOLKIND_PAE_PD_PHYS:
4729 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4730 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4731 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
4732 break;
4733
4734 case PGMPOOLKIND_32BIT_PD_PHYS:
4735 case PGMPOOLKIND_32BIT_PD:
4736 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
4737 break;
4738
4739 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4740 case PGMPOOLKIND_PAE_PDPT:
4741 case PGMPOOLKIND_PAE_PDPT_PHYS:
4742 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
4743 break;
4744
4745 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4746 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4747 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
4748 break;
4749
4750 case PGMPOOLKIND_64BIT_PML4:
4751 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
4752 break;
4753
4754 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4755 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
4756 break;
4757
4758 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4759 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
4760 break;
4761
4762 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4763 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
4764 break;
4765
4766 default:
4767 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
4768 }
4769
4770 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
4771 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4772 ASMMemZeroPage(pvShw);
4773 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4774 pPage->fZeroed = true;
4775 Assert(!pPage->cPresent);
4776 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
4777}
4778
4779
4780/**
4781 * Flushes a pool page.
4782 *
4783 * This moves the page to the free list after removing all user references to it.
4784 *
4785 * @returns VBox status code.
4786 * @retval VINF_SUCCESS on success.
4787 * @param pPool The pool.
4788 * @param pPage The shadow page.
4789 * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!)
4790 */
4791int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush)
4792{
4793 PVMCC pVM = pPool->CTX_SUFF(pVM);
4794 bool fFlushRequired = false;
4795
4796 int rc = VINF_SUCCESS;
4797 STAM_PROFILE_START(&pPool->StatFlushPage, f);
4798 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
4799 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
4800
4801 /*
4802 * Reject any attempts at flushing any of the special root pages (shall
4803 * not happen).
4804 */
4805 AssertMsgReturn(pPage->idx >= PGMPOOL_IDX_FIRST,
4806 ("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n",
4807 pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx),
4808 VINF_SUCCESS);
4809
4810 pgmLock(pVM);
4811
4812 /*
4813 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4814 */
4815 if (pgmPoolIsPageLocked(pPage))
4816 {
4817 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4818 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4819 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4820 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4821 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4822 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4823 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4824 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4825 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD
4826 || pPage->enmKind == PGMPOOLKIND_ROOT_NESTED,
4827 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
4828 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4829 pgmUnlock(pVM);
4830 return VINF_SUCCESS;
4831 }
4832
4833 /*
4834 * Mark the page as being in need of an ASMMemZeroPage().
4835 */
4836 pPage->fZeroed = false;
4837
4838#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4839 if (pPage->fDirty)
4840 pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirtyEntry, false /* do not remove */);
4841#endif
4842
4843 /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */
4844 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
4845 fFlushRequired = true;
4846
4847 /*
4848 * Clear the page.
4849 */
4850 pgmPoolTrackClearPageUsers(pPool, pPage);
4851 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4852 pgmPoolTrackDeref(pPool, pPage);
4853 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4854
4855 /*
4856 * Flush it from the cache.
4857 */
4858 pgmPoolCacheFlushPage(pPool, pPage);
4859
4860 /*
4861 * Deregistering the monitoring.
4862 */
4863 if (pPage->fMonitored)
4864 rc = pgmPoolMonitorFlush(pPool, pPage);
4865
4866 /*
4867 * Free the page.
4868 */
4869 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4870 pPage->iNext = pPool->iFreeHead;
4871 pPool->iFreeHead = pPage->idx;
4872 pPage->enmKind = PGMPOOLKIND_FREE;
4873 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4874 pPage->GCPhys = NIL_RTGCPHYS;
4875 pPage->fReusedFlushPending = false;
4876
4877 pPool->cUsedPages--;
4878
4879 /* Flush the TLBs of all VCPUs if required. */
4880 if ( fFlushRequired
4881 && fFlush)
4882 {
4883 PGM_INVL_ALL_VCPU_TLBS(pVM);
4884 }
4885
4886 pgmUnlock(pVM);
4887 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4888 return rc;
4889}
4890
4891
4892/**
4893 * Frees a usage of a pool page.
4894 *
4895 * The caller is responsible to updating the user table so that it no longer
4896 * references the shadow page.
4897 *
4898 * @param pPool The pool.
4899 * @param pPage The shadow page.
4900 * @param iUser The shadow page pool index of the user table.
4901 * NIL_PGMPOOL_IDX for root pages.
4902 * @param iUserTable The index into the user table (shadowed). Ignored if
4903 * root page.
4904 */
4905void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4906{
4907 PVMCC pVM = pPool->CTX_SUFF(pVM);
4908
4909 STAM_PROFILE_START(&pPool->StatFree, a);
4910 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%d iUserTable=%#x\n",
4911 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4912 AssertReturnVoid(pPage->idx >= PGMPOOL_IDX_FIRST); /* paranoia (#6349) */
4913
4914 pgmLock(pVM);
4915 if (iUser != NIL_PGMPOOL_IDX)
4916 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4917 if (!pPage->fCached)
4918 pgmPoolFlushPage(pPool, pPage);
4919 pgmUnlock(pVM);
4920 STAM_PROFILE_STOP(&pPool->StatFree, a);
4921}
4922
4923
4924/**
4925 * Makes one or more free page free.
4926 *
4927 * @returns VBox status code.
4928 * @retval VINF_SUCCESS on success.
4929 *
4930 * @param pPool The pool.
4931 * @param enmKind Page table kind
4932 * @param iUser The user of the page.
4933 */
4934static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4935{
4936 PVMCC pVM = pPool->CTX_SUFF(pVM);
4937 LogFlow(("pgmPoolMakeMoreFreePages: enmKind=%d iUser=%d\n", enmKind, iUser));
4938 NOREF(enmKind);
4939
4940 /*
4941 * If the pool isn't full grown yet, expand it.
4942 */
4943 if (pPool->cCurPages < pPool->cMaxPages)
4944 {
4945 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4946#ifdef IN_RING3
4947 int rc = PGMR3PoolGrow(pVM, VMMGetCpu(pVM));
4948#else
4949 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0);
4950#endif
4951 if (RT_FAILURE(rc))
4952 return rc;
4953 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4954 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4955 return VINF_SUCCESS;
4956 }
4957
4958 /*
4959 * Free one cached page.
4960 */
4961 return pgmPoolCacheFreeOne(pPool, iUser);
4962}
4963
4964
4965/**
4966 * Allocates a page from the pool.
4967 *
4968 * This page may actually be a cached page and not in need of any processing
4969 * on the callers part.
4970 *
4971 * @returns VBox status code.
4972 * @retval VINF_SUCCESS if a NEW page was allocated.
4973 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4974 *
4975 * @param pVM The cross context VM structure.
4976 * @param GCPhys The GC physical address of the page we're gonna shadow.
4977 * For 4MB and 2MB PD entries, it's the first address the
4978 * shadow PT is covering.
4979 * @param enmKind The kind of mapping.
4980 * @param enmAccess Access type for the mapping (only relevant for big pages)
4981 * @param fA20Enabled Whether the A20 gate is enabled or not.
4982 * @param iUser The shadow page pool index of the user table. Root
4983 * pages should pass NIL_PGMPOOL_IDX.
4984 * @param iUserTable The index into the user table (shadowed). Ignored for
4985 * root pages (iUser == NIL_PGMPOOL_IDX).
4986 * @param fLockPage Lock the page
4987 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4988 */
4989int pgmPoolAlloc(PVMCC pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
4990 uint16_t iUser, uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage)
4991{
4992 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4993 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4994 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%d iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4995 *ppPage = NULL;
4996 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4997 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4998 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
4999
5000 pgmLock(pVM);
5001
5002 if (pPool->fCacheEnabled)
5003 {
5004 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, fA20Enabled, iUser, iUserTable, ppPage);
5005 if (RT_SUCCESS(rc2))
5006 {
5007 if (fLockPage)
5008 pgmPoolLockPage(pPool, *ppPage);
5009 pgmUnlock(pVM);
5010 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5011 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
5012 return rc2;
5013 }
5014 }
5015
5016 /*
5017 * Allocate a new one.
5018 */
5019 int rc = VINF_SUCCESS;
5020 uint16_t iNew = pPool->iFreeHead;
5021 if (iNew == NIL_PGMPOOL_IDX)
5022 {
5023 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
5024 if (RT_FAILURE(rc))
5025 {
5026 pgmUnlock(pVM);
5027 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
5028 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5029 return rc;
5030 }
5031 iNew = pPool->iFreeHead;
5032 AssertReleaseMsgReturn(iNew != NIL_PGMPOOL_IDX, ("iNew=%#x\n", iNew), VERR_PGM_POOL_IPE);
5033 }
5034
5035 /* unlink the free head */
5036 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
5037 pPool->iFreeHead = pPage->iNext;
5038 pPage->iNext = NIL_PGMPOOL_IDX;
5039
5040 /*
5041 * Initialize it.
5042 */
5043 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
5044 pPage->enmKind = enmKind;
5045 pPage->enmAccess = enmAccess;
5046 pPage->GCPhys = GCPhys;
5047 pPage->fA20Enabled = fA20Enabled;
5048 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
5049 pPage->fMonitored = false;
5050 pPage->fCached = false;
5051 pPage->fDirty = false;
5052 pPage->fReusedFlushPending = false;
5053 pPage->cModifications = 0;
5054 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5055 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5056 pPage->cPresent = 0;
5057 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
5058 pPage->idxDirtyEntry = 0;
5059 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
5060 pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
5061 pPage->cLastAccessHandler = 0;
5062 pPage->cLocked = 0;
5063# ifdef VBOX_STRICT
5064 pPage->GCPtrDirtyFault = NIL_RTGCPTR;
5065# endif
5066
5067 /*
5068 * Insert into the tracking and cache. If this fails, free the page.
5069 */
5070 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
5071 if (RT_FAILURE(rc3))
5072 {
5073 pPool->cUsedPages--;
5074 pPage->enmKind = PGMPOOLKIND_FREE;
5075 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5076 pPage->GCPhys = NIL_RTGCPHYS;
5077 pPage->iNext = pPool->iFreeHead;
5078 pPool->iFreeHead = pPage->idx;
5079 pgmUnlock(pVM);
5080 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5081 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
5082 return rc3;
5083 }
5084
5085 /*
5086 * Commit the allocation, clear the page and return.
5087 */
5088#ifdef VBOX_WITH_STATISTICS
5089 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
5090 pPool->cUsedPagesHigh = pPool->cUsedPages;
5091#endif
5092
5093 if (!pPage->fZeroed)
5094 {
5095 STAM_PROFILE_START(&pPool->StatZeroPage, z);
5096 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
5097 ASMMemZeroPage(pv);
5098 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
5099 }
5100
5101 *ppPage = pPage;
5102 if (fLockPage)
5103 pgmPoolLockPage(pPool, pPage);
5104 pgmUnlock(pVM);
5105 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
5106 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
5107 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5108 return rc;
5109}
5110
5111
5112/**
5113 * Frees a usage of a pool page.
5114 *
5115 * @param pVM The cross context VM structure.
5116 * @param HCPhys The HC physical address of the shadow page.
5117 * @param iUser The shadow page pool index of the user table.
5118 * NIL_PGMPOOL_IDX if root page.
5119 * @param iUserTable The index into the user table (shadowed). Ignored if
5120 * root page.
5121 */
5122void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
5123{
5124 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%d iUserTable=%#x\n", HCPhys, iUser, iUserTable));
5125 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5126 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
5127}
5128
5129
5130/**
5131 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
5132 *
5133 * @returns Pointer to the shadow page structure.
5134 * @param pPool The pool.
5135 * @param HCPhys The HC physical address of the shadow page.
5136 */
5137PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
5138{
5139 PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
5140
5141 /*
5142 * Look up the page.
5143 */
5144 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5145
5146 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
5147 return pPage;
5148}
5149
5150
5151/**
5152 * Internal worker for finding a page for debugging purposes, no assertions.
5153 *
5154 * @returns Pointer to the shadow page structure. NULL on if not found.
5155 * @param pPool The pool.
5156 * @param HCPhys The HC physical address of the shadow page.
5157 */
5158PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys)
5159{
5160 PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
5161 return (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5162}
5163
5164
5165/**
5166 * Internal worker for PGM_HCPHYS_2_PTR.
5167 *
5168 * @returns VBox status code.
5169 * @param pVM The cross context VM structure.
5170 * @param HCPhys The HC physical address of the shadow page.
5171 * @param ppv Where to return the address.
5172 */
5173int pgmPoolHCPhys2Ptr(PVM pVM, RTHCPHYS HCPhys, void **ppv)
5174{
5175 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pVM->pgm.s.CTX_SUFF(pPool)->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5176 AssertMsgReturn(pPage && pPage->enmKind != PGMPOOLKIND_FREE,
5177 ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0),
5178 VERR_PGM_POOL_GET_PAGE_FAILED);
5179 *ppv = (uint8_t *)pPage->CTX_SUFF(pvPage) + (HCPhys & PAGE_OFFSET_MASK);
5180 return VINF_SUCCESS;
5181}
5182
5183#ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */
5184
5185/**
5186 * Flush the specified page if present
5187 *
5188 * @param pVM The cross context VM structure.
5189 * @param GCPhys Guest physical address of the page to flush
5190 */
5191void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys)
5192{
5193 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5194
5195 VM_ASSERT_EMT(pVM);
5196
5197 /*
5198 * Look up the GCPhys in the hash.
5199 */
5200 GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
5201 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
5202 if (i == NIL_PGMPOOL_IDX)
5203 return;
5204
5205 do
5206 {
5207 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5208 if (pPage->GCPhys - GCPhys < PAGE_SIZE)
5209 {
5210 switch (pPage->enmKind)
5211 {
5212 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5213 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5214 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5215 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5216 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5217 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5218 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5219 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5220 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5221 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5222 case PGMPOOLKIND_64BIT_PML4:
5223 case PGMPOOLKIND_32BIT_PD:
5224 case PGMPOOLKIND_PAE_PDPT:
5225 {
5226 Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys));
5227# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5228 if (pPage->fDirty)
5229 STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage);
5230 else
5231# endif
5232 STAM_COUNTER_INC(&pPool->StatForceFlushPage);
5233 Assert(!pgmPoolIsPageLocked(pPage));
5234 pgmPoolMonitorChainFlush(pPool, pPage);
5235 return;
5236 }
5237
5238 /* ignore, no monitoring. */
5239 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5240 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5241 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5242 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5243 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5244 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5245 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5246 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5247 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5248 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5249 case PGMPOOLKIND_ROOT_NESTED:
5250 case PGMPOOLKIND_PAE_PD_PHYS:
5251 case PGMPOOLKIND_PAE_PDPT_PHYS:
5252 case PGMPOOLKIND_32BIT_PD_PHYS:
5253 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5254 break;
5255
5256 default:
5257 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
5258 }
5259 }
5260
5261 /* next */
5262 i = pPage->iNext;
5263 } while (i != NIL_PGMPOOL_IDX);
5264 return;
5265}
5266
5267
5268/**
5269 * Reset CPU on hot plugging.
5270 *
5271 * @param pVM The cross context VM structure.
5272 * @param pVCpu The cross context virtual CPU structure.
5273 */
5274void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
5275{
5276 pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
5277
5278 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5279 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5280 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5281}
5282
5283
5284/**
5285 * Flushes the entire cache.
5286 *
5287 * It will assert a global CR3 flush (FF) and assumes the caller is aware of
5288 * this and execute this CR3 flush.
5289 *
5290 * @param pVM The cross context VM structure.
5291 */
5292void pgmR3PoolReset(PVM pVM)
5293{
5294 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5295
5296 PGM_LOCK_ASSERT_OWNER(pVM);
5297 STAM_PROFILE_START(&pPool->StatR3Reset, a);
5298 LogFlow(("pgmR3PoolReset:\n"));
5299
5300 /*
5301 * If there are no pages in the pool, there is nothing to do.
5302 */
5303 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
5304 {
5305 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5306 return;
5307 }
5308
5309 /*
5310 * Exit the shadow mode since we're going to clear everything,
5311 * including the root page.
5312 */
5313 VMCC_FOR_EACH_VMCPU(pVM)
5314 pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
5315 VMCC_FOR_EACH_VMCPU_END(pVM);
5316
5317
5318 /*
5319 * Nuke the free list and reinsert all pages into it.
5320 */
5321 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
5322 {
5323 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5324
5325 if (pPage->fMonitored)
5326 pgmPoolMonitorFlush(pPool, pPage);
5327 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5328 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5329 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
5330 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
5331 pPage->GCPhys = NIL_RTGCPHYS;
5332 pPage->enmKind = PGMPOOLKIND_FREE;
5333 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5334 Assert(pPage->idx == i);
5335 pPage->iNext = i + 1;
5336 pPage->fA20Enabled = true;
5337 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
5338 pPage->fSeenNonGlobal = false;
5339 pPage->fMonitored = false;
5340 pPage->fDirty = false;
5341 pPage->fCached = false;
5342 pPage->fReusedFlushPending = false;
5343 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
5344 pPage->cPresent = 0;
5345 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
5346 pPage->cModifications = 0;
5347 pPage->iAgeNext = NIL_PGMPOOL_IDX;
5348 pPage->iAgePrev = NIL_PGMPOOL_IDX;
5349 pPage->idxDirtyEntry = 0;
5350 pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
5351 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
5352 pPage->cLastAccessHandler = 0;
5353 pPage->cLocked = 0;
5354# ifdef VBOX_STRICT
5355 pPage->GCPtrDirtyFault = NIL_RTGCPTR;
5356# endif
5357 }
5358 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
5359 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
5360 pPool->cUsedPages = 0;
5361
5362 /*
5363 * Zap and reinitialize the user records.
5364 */
5365 pPool->cPresent = 0;
5366 pPool->iUserFreeHead = 0;
5367 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
5368 const unsigned cMaxUsers = pPool->cMaxUsers;
5369 for (unsigned i = 0; i < cMaxUsers; i++)
5370 {
5371 paUsers[i].iNext = i + 1;
5372 paUsers[i].iUser = NIL_PGMPOOL_IDX;
5373 paUsers[i].iUserTable = 0xfffffffe;
5374 }
5375 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
5376
5377 /*
5378 * Clear all the GCPhys links and rebuild the phys ext free list.
5379 */
5380 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
5381 pRam;
5382 pRam = pRam->CTX_SUFF(pNext))
5383 {
5384 unsigned iPage = pRam->cb >> PAGE_SHIFT;
5385 while (iPage-- > 0)
5386 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
5387 }
5388
5389 pPool->iPhysExtFreeHead = 0;
5390 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
5391 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
5392 for (unsigned i = 0; i < cMaxPhysExts; i++)
5393 {
5394 paPhysExts[i].iNext = i + 1;
5395 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
5396 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5397 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
5398 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5399 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
5400 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5401 }
5402 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
5403
5404 /*
5405 * Just zap the modified list.
5406 */
5407 pPool->cModifiedPages = 0;
5408 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
5409
5410 /*
5411 * Clear the GCPhys hash and the age list.
5412 */
5413 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
5414 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
5415 pPool->iAgeHead = NIL_PGMPOOL_IDX;
5416 pPool->iAgeTail = NIL_PGMPOOL_IDX;
5417
5418# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5419 /* Clear all dirty pages. */
5420 pPool->idxFreeDirtyPage = 0;
5421 pPool->cDirtyPages = 0;
5422 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aidxDirtyPages); i++)
5423 pPool->aidxDirtyPages[i] = NIL_PGMPOOL_IDX;
5424# endif
5425
5426 /*
5427 * Reinsert active pages into the hash and ensure monitoring chains are correct.
5428 */
5429 VMCC_FOR_EACH_VMCPU(pVM)
5430 {
5431 /*
5432 * Re-enter the shadowing mode and assert Sync CR3 FF.
5433 */
5434 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5435 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5436 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5437 }
5438 VMCC_FOR_EACH_VMCPU_END(pVM);
5439
5440 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5441}
5442
5443#endif /* IN_RING3 */
5444
5445#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
5446/**
5447 * Stringifies a PGMPOOLKIND value.
5448 */
5449static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
5450{
5451 switch ((PGMPOOLKIND)enmKind)
5452 {
5453 case PGMPOOLKIND_INVALID:
5454 return "PGMPOOLKIND_INVALID";
5455 case PGMPOOLKIND_FREE:
5456 return "PGMPOOLKIND_FREE";
5457 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5458 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
5459 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5460 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
5461 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5462 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
5463 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5464 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
5465 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5466 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
5467 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5468 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
5469 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5470 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
5471 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5472 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
5473 case PGMPOOLKIND_32BIT_PD:
5474 return "PGMPOOLKIND_32BIT_PD";
5475 case PGMPOOLKIND_32BIT_PD_PHYS:
5476 return "PGMPOOLKIND_32BIT_PD_PHYS";
5477 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5478 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
5479 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5480 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
5481 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5482 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
5483 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5484 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
5485 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5486 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
5487 case PGMPOOLKIND_PAE_PD_PHYS:
5488 return "PGMPOOLKIND_PAE_PD_PHYS";
5489 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5490 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
5491 case PGMPOOLKIND_PAE_PDPT:
5492 return "PGMPOOLKIND_PAE_PDPT";
5493 case PGMPOOLKIND_PAE_PDPT_PHYS:
5494 return "PGMPOOLKIND_PAE_PDPT_PHYS";
5495 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5496 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
5497 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5498 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
5499 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5500 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
5501 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5502 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
5503 case PGMPOOLKIND_64BIT_PML4:
5504 return "PGMPOOLKIND_64BIT_PML4";
5505 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5506 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
5507 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5508 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
5509 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5510 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
5511 case PGMPOOLKIND_ROOT_NESTED:
5512 return "PGMPOOLKIND_ROOT_NESTED";
5513 }
5514 return "Unknown kind!";
5515}
5516#endif /* LOG_ENABLED || VBOX_STRICT */
5517
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette