VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 92561

Last change on this file since 92561 was 91907, checked in by vboxsync, 3 years ago

VMM/MM: Eliminated MMHyperCCToRC and MMHyperR0ToRC. bugref:9517

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 208.0 KB
Line 
1/* $Id: PGMAllPool.cpp 91907 2021-10-20 19:00:05Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_POOL
23#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/em.h>
27#include <VBox/vmm/cpum.h>
28#include "PGMInternal.h"
29#include <VBox/vmm/vmcc.h>
30#include "PGMInline.h"
31#include <VBox/disopcode.h>
32#include <VBox/vmm/hm_vmx.h>
33
34#include <VBox/log.h>
35#include <VBox/err.h>
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/string.h>
39
40
41/*********************************************************************************************************************************
42* Internal Functions *
43*********************************************************************************************************************************/
44RT_C_DECLS_BEGIN
45#if 0 /* unused */
46DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
47DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
48#endif /* unused */
49static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
50static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
51static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
52static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
53#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
54static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
55#endif
56#if 0 /*defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT)*/
57static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT);
58#endif
59
60int pgmPoolTrackFlushGCPhysPTsSlow(PVMCC pVM, PPGMPAGE pPhysPage);
61PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVMCC pVM, uint16_t *piPhysExt);
62void pgmPoolTrackPhysExtFree(PVMCC pVM, uint16_t iPhysExt);
63void pgmPoolTrackPhysExtFreeList(PVMCC pVM, uint16_t iPhysExt);
64
65RT_C_DECLS_END
66
67
68#if 0 /* unused */
69/**
70 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
71 *
72 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
73 * @param enmKind The page kind.
74 */
75DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
76{
77 switch (enmKind)
78 {
79 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
80 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
81 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
82 return true;
83 default:
84 return false;
85 }
86}
87#endif /* unused */
88
89
90/**
91 * Flushes a chain of pages sharing the same access monitor.
92 *
93 * @param pPool The pool.
94 * @param pPage A page in the chain.
95 */
96void pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
97{
98 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
99
100 /*
101 * Find the list head.
102 */
103 uint16_t idx = pPage->idx;
104 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
105 {
106 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
107 {
108 idx = pPage->iMonitoredPrev;
109 Assert(idx != pPage->idx);
110 pPage = &pPool->aPages[idx];
111 }
112 }
113
114 /*
115 * Iterate the list flushing each shadow page.
116 */
117 for (;;)
118 {
119 idx = pPage->iMonitoredNext;
120 Assert(idx != pPage->idx);
121 if (pPage->idx >= PGMPOOL_IDX_FIRST)
122 {
123 int rc2 = pgmPoolFlushPage(pPool, pPage);
124 AssertRC(rc2);
125 }
126 /* next */
127 if (idx == NIL_PGMPOOL_IDX)
128 break;
129 pPage = &pPool->aPages[idx];
130 }
131}
132
133
134/**
135 * Wrapper for getting the current context pointer to the entry being modified.
136 *
137 * @returns VBox status code suitable for scheduling.
138 * @param pVM The cross context VM structure.
139 * @param pvDst Destination address
140 * @param pvSrc Pointer to the mapping of @a GCPhysSrc or NULL depending
141 * on the context (e.g. \#PF in R0 & RC).
142 * @param GCPhysSrc The source guest physical address.
143 * @param cb Size of data to read
144 */
145DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVMCC pVM, void *pvDst, void const *pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
146{
147#if defined(IN_RING3)
148 NOREF(pVM); NOREF(GCPhysSrc);
149 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
150 return VINF_SUCCESS;
151#else
152 /** @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
153 NOREF(pvSrc);
154 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
155#endif
156}
157
158
159/**
160 * Process shadow entries before they are changed by the guest.
161 *
162 * For PT entries we will clear them. For PD entries, we'll simply check
163 * for mapping conflicts and set the SyncCR3 FF if found.
164 *
165 * @param pVCpu The cross context virtual CPU structure.
166 * @param pPool The pool.
167 * @param pPage The head page.
168 * @param GCPhysFault The guest physical fault address.
169 * @param pvAddress Pointer to the mapping of @a GCPhysFault or NULL
170 * depending on the context (e.g. \#PF in R0 & RC).
171 * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries
172 */
173static void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault,
174 void const *pvAddress, unsigned cbWrite)
175{
176 AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%u (idx=%u)\n", pPage->iMonitoredPrev, pPage->idx));
177 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
178 PVMCC pVM = pPool->CTX_SUFF(pVM);
179 NOREF(pVCpu);
180
181 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n",
182 (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))(uintptr_t)pvAddress, GCPhysFault, cbWrite));
183
184 for (;;)
185 {
186 union
187 {
188 void *pv;
189 PX86PT pPT;
190 PPGMSHWPTPAE pPTPae;
191 PX86PD pPD;
192 PX86PDPAE pPDPae;
193 PX86PDPT pPDPT;
194 PX86PML4 pPML4;
195 } uShw;
196
197 LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s write=%#x\n",
198 pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
199
200 uShw.pv = NULL;
201 switch (pPage->enmKind)
202 {
203 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
204 {
205 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
206 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
207 const unsigned iShw = off / sizeof(X86PTE);
208 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
209 X86PGUINT const uPde = uShw.pPT->a[iShw].u;
210 if (uPde & X86_PTE_P)
211 {
212 X86PTE GstPte;
213 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
214 AssertRC(rc);
215 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uPde & X86_PTE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
216 pgmPoolTracDerefGCPhysHint(pPool, pPage, uPde & X86_PTE_PG_MASK, GstPte.u & X86_PTE_PG_MASK, iShw);
217 ASMAtomicWriteU32(&uShw.pPT->a[iShw].u, 0);
218 }
219 break;
220 }
221
222 /* page/2 sized */
223 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
224 {
225 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
226 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
227 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
228 {
229 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
230 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
231 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
232 {
233 X86PTE GstPte;
234 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
235 AssertRC(rc);
236
237 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
238 pgmPoolTracDerefGCPhysHint(pPool, pPage,
239 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
240 GstPte.u & X86_PTE_PG_MASK,
241 iShw);
242 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
243 }
244 }
245 break;
246 }
247
248 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
249 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
250 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
251 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
252 {
253 unsigned iGst = off / sizeof(X86PDE);
254 unsigned iShwPdpt = iGst / 256;
255 unsigned iShw = (iGst % 256) * 2;
256 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
257
258 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
259 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
260 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
261 {
262 for (unsigned i = 0; i < 2; i++)
263 {
264 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw + i].u;
265 if (uPde & X86_PDE_P)
266 {
267 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw + i, uPde));
268 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw + i);
269 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw + i].u, 0);
270 }
271
272 /* paranoia / a bit assumptive. */
273 if ( (off & 3)
274 && (off & 3) + cbWrite > 4)
275 {
276 const unsigned iShw2 = iShw + 2 + i;
277 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
278 {
279 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
280 if (uPde2 & X86_PDE_P)
281 {
282 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
283 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
284 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
285 }
286 }
287 }
288 }
289 }
290 break;
291 }
292
293 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
294 {
295 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
296 const unsigned iShw = off / sizeof(X86PTEPAE);
297 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
298 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
299 {
300 X86PTEPAE GstPte;
301 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
302 AssertRC(rc);
303
304 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PAE_PG_MASK));
305 pgmPoolTracDerefGCPhysHint(pPool, pPage,
306 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
307 GstPte.u & X86_PTE_PAE_PG_MASK,
308 iShw);
309 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
310 }
311
312 /* paranoia / a bit assumptive. */
313 if ( (off & 7)
314 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
315 {
316 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
317 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
318
319 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw2]))
320 {
321 X86PTEPAE GstPte;
322 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte,
323 pvAddress ? (uint8_t const *)pvAddress + sizeof(GstPte) : NULL,
324 GCPhysFault + sizeof(GstPte), sizeof(GstPte));
325 AssertRC(rc);
326 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), GstPte.u & X86_PTE_PAE_PG_MASK));
327 pgmPoolTracDerefGCPhysHint(pPool, pPage,
328 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]),
329 GstPte.u & X86_PTE_PAE_PG_MASK,
330 iShw2);
331 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw2], 0);
332 }
333 }
334 break;
335 }
336
337 case PGMPOOLKIND_32BIT_PD:
338 {
339 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
340 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
341
342 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
343 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
344 X86PGUINT const uPde = uShw.pPD->a[iShw].u;
345 if (uPde & X86_PDE_P)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
348 pgmPoolFree(pVM, uPde & X86_PDE_PG_MASK, pPage->idx, iShw);
349 ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
350 }
351
352 /* paranoia / a bit assumptive. */
353 if ( (off & 3)
354 && (off & 3) + cbWrite > sizeof(X86PTE))
355 {
356 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
357 if ( iShw2 != iShw
358 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
359 {
360 X86PGUINT const uPde2 = uShw.pPD->a[iShw2].u;
361 if (uPde2 & X86_PDE_P)
362 {
363 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
364 pgmPoolFree(pVM, uPde2 & X86_PDE_PG_MASK, pPage->idx, iShw2);
365 ASMAtomicWriteU32(&uShw.pPD->a[iShw2].u, 0);
366 }
367 }
368 }
369#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). - not working any longer... */
370 if ( uShw.pPD->a[iShw].n.u1Present
371 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
372 {
373 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
374 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
375 ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
376 }
377#endif
378 break;
379 }
380
381 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
382 {
383 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
384 const unsigned iShw = off / sizeof(X86PDEPAE);
385 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
386
387 /*
388 * Causes trouble when the guest uses a PDE to refer to the whole page table level
389 * structure. (Invalidate here; faults later on when it tries to change the page
390 * table entries -> recheck; probably only applies to the RC case.)
391 */
392 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw].u;
393 if (uPde & X86_PDE_P)
394 {
395 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
396 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw);
397 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
398 }
399
400 /* paranoia / a bit assumptive. */
401 if ( (off & 7)
402 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
403 {
404 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
405 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
406
407 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
408 if (uPde2 & X86_PDE_P)
409 {
410 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
411 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
412 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
413 }
414 }
415 break;
416 }
417
418 case PGMPOOLKIND_PAE_PDPT:
419 {
420 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
421 /*
422 * Hopefully this doesn't happen very often:
423 * - touching unused parts of the page
424 * - messing with the bits of pd pointers without changing the physical address
425 */
426 /* PDPT roots are not page aligned; 32 byte only! */
427 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
428
429 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
430 const unsigned iShw = offPdpt / sizeof(X86PDPE);
431 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
432 {
433 X86PGPAEUINT const uPdpe = uShw.pPDPT->a[iShw].u;
434 if (uPdpe & X86_PDPE_P)
435 {
436 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
437 pgmPoolFree(pVM, uPdpe & X86_PDPE_PG_MASK, pPage->idx, iShw);
438 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
439 }
440
441 /* paranoia / a bit assumptive. */
442 if ( (offPdpt & 7)
443 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
444 {
445 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
446 if ( iShw2 != iShw
447 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
448 {
449 X86PGPAEUINT const uPdpe2 = uShw.pPDPT->a[iShw2].u;
450 if (uPdpe2 & X86_PDPE_P)
451 {
452 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
453 pgmPoolFree(pVM, uPdpe2 & X86_PDPE_PG_MASK, pPage->idx, iShw2);
454 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
455 }
456 }
457 }
458 }
459 break;
460 }
461
462 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
463 {
464 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
465 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
466 const unsigned iShw = off / sizeof(X86PDEPAE);
467 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw].u;
468 if (uPde & X86_PDE_P)
469 {
470 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
471 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw);
472 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
473 }
474
475 /* paranoia / a bit assumptive. */
476 if ( (off & 7)
477 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
478 {
479 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
480 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
481 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
482 if (uPde2 & X86_PDE_P)
483 {
484 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
485 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
486 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
487 }
488 }
489 break;
490 }
491
492 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
493 {
494 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
495 /*
496 * Hopefully this doesn't happen very often:
497 * - messing with the bits of pd pointers without changing the physical address
498 */
499 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
500 const unsigned iShw = off / sizeof(X86PDPE);
501 X86PGPAEUINT const uPdpe = uShw.pPDPT->a[iShw].u;
502 if (uPdpe & X86_PDPE_P)
503 {
504 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uPdpe));
505 pgmPoolFree(pVM, uPdpe & X86_PDPE_PG_MASK, pPage->idx, iShw);
506 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
507 }
508 /* paranoia / a bit assumptive. */
509 if ( (off & 7)
510 && (off & 7) + cbWrite > sizeof(X86PDPE))
511 {
512 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
513 X86PGPAEUINT const uPdpe2 = uShw.pPDPT->a[iShw2].u;
514 if (uPdpe2 & X86_PDPE_P)
515 {
516 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPdpe2));
517 pgmPoolFree(pVM, uPdpe2 & X86_PDPE_PG_MASK, pPage->idx, iShw2);
518 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
519 }
520 }
521 break;
522 }
523
524 case PGMPOOLKIND_64BIT_PML4:
525 {
526 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4));
527 /*
528 * Hopefully this doesn't happen very often:
529 * - messing with the bits of pd pointers without changing the physical address
530 */
531 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
532 const unsigned iShw = off / sizeof(X86PDPE);
533 X86PGPAEUINT const uPml4e = uShw.pPML4->a[iShw].u;
534 if (uPml4e & X86_PML4E_P)
535 {
536 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uPml4e));
537 pgmPoolFree(pVM, uPml4e & X86_PML4E_PG_MASK, pPage->idx, iShw);
538 ASMAtomicWriteU64(&uShw.pPML4->a[iShw].u, 0);
539 }
540 /* paranoia / a bit assumptive. */
541 if ( (off & 7)
542 && (off & 7) + cbWrite > sizeof(X86PDPE))
543 {
544 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
545 X86PGPAEUINT const uPml4e2 = uShw.pPML4->a[iShw2].u;
546 if (uPml4e2 & X86_PML4E_P)
547 {
548 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPml4e2));
549 pgmPoolFree(pVM, uPml4e2 & X86_PML4E_PG_MASK, pPage->idx, iShw2);
550 ASMAtomicWriteU64(&uShw.pPML4->a[iShw2].u, 0);
551 }
552 }
553 break;
554 }
555
556 default:
557 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
558 }
559 PGM_DYNMAP_UNUSED_HINT_VM(pVM, uShw.pv);
560
561 /* next */
562 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
563 return;
564 pPage = &pPool->aPages[pPage->iMonitoredNext];
565 }
566}
567
568#ifndef IN_RING3
569
570/**
571 * Checks if a access could be a fork operation in progress.
572 *
573 * Meaning, that the guest is setting up the parent process for Copy-On-Write.
574 *
575 * @returns true if it's likely that we're forking, otherwise false.
576 * @param pPool The pool.
577 * @param pDis The disassembled instruction.
578 * @param offFault The access offset.
579 */
580DECLINLINE(bool) pgmRZPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
581{
582 /*
583 * i386 linux is using btr to clear X86_PTE_RW.
584 * The functions involved are (2.6.16 source inspection):
585 * clear_bit
586 * ptep_set_wrprotect
587 * copy_one_pte
588 * copy_pte_range
589 * copy_pmd_range
590 * copy_pud_range
591 * copy_page_range
592 * dup_mmap
593 * dup_mm
594 * copy_mm
595 * copy_process
596 * do_fork
597 */
598 if ( pDis->pCurInstr->uOpcode == OP_BTR
599 && !(offFault & 4)
600 /** @todo Validate that the bit index is X86_PTE_RW. */
601 )
602 {
603 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,Fork)); RT_NOREF_PV(pPool);
604 return true;
605 }
606 return false;
607}
608
609
610/**
611 * Determine whether the page is likely to have been reused.
612 *
613 * @returns true if we consider the page as being reused for a different purpose.
614 * @returns false if we consider it to still be a paging page.
615 * @param pVM The cross context VM structure.
616 * @param pVCpu The cross context virtual CPU structure.
617 * @param pRegFrame Trap register frame.
618 * @param pDis The disassembly info for the faulting instruction.
619 * @param pvFault The fault address.
620 * @param pPage The pool page being accessed.
621 *
622 * @remark The REP prefix check is left to the caller because of STOSD/W.
623 */
624DECLINLINE(bool) pgmRZPoolMonitorIsReused(PVMCC pVM, PVMCPUCC pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault,
625 PPGMPOOLPAGE pPage)
626{
627 /* Locked (CR3, PDPTR*4) should not be reusable. Considering them as
628 such may cause loops booting tst-ubuntu-15_10-64-efi, ++. */
629 if (pPage->cLocked)
630 {
631 Log2(("pgmRZPoolMonitorIsReused: %RGv (%p) can't have been resued, because it's locked!\n", pvFault, pPage));
632 return false;
633 }
634
635 /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */
636 if ( HMHasPendingIrq(pVM)
637 && pRegFrame->rsp - pvFault < 32)
638 {
639 /* Fault caused by stack writes while trying to inject an interrupt event. */
640 Log(("pgmRZPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
641 return true;
642 }
643
644 LogFlow(("Reused instr %RGv %d at %RGv param1.fUse=%llx param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->uOpcode, pvFault, pDis->Param1.fUse, pDis->Param1.Base.idxGenReg));
645
646 /* Non-supervisor mode write means it's used for something else. */
647 if (CPUMGetGuestCPL(pVCpu) == 3)
648 return true;
649
650 switch (pDis->pCurInstr->uOpcode)
651 {
652 /* call implies the actual push of the return address faulted */
653 case OP_CALL:
654 Log4(("pgmRZPoolMonitorIsReused: CALL\n"));
655 return true;
656 case OP_PUSH:
657 Log4(("pgmRZPoolMonitorIsReused: PUSH\n"));
658 return true;
659 case OP_PUSHF:
660 Log4(("pgmRZPoolMonitorIsReused: PUSHF\n"));
661 return true;
662 case OP_PUSHA:
663 Log4(("pgmRZPoolMonitorIsReused: PUSHA\n"));
664 return true;
665 case OP_FXSAVE:
666 Log4(("pgmRZPoolMonitorIsReused: FXSAVE\n"));
667 return true;
668 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
669 Log4(("pgmRZPoolMonitorIsReused: MOVNTI\n"));
670 return true;
671 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
672 Log4(("pgmRZPoolMonitorIsReused: MOVNTDQ\n"));
673 return true;
674 case OP_MOVSWD:
675 case OP_STOSWD:
676 if ( pDis->fPrefix == (DISPREFIX_REP|DISPREFIX_REX)
677 && pRegFrame->rcx >= 0x40
678 )
679 {
680 Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
681
682 Log(("pgmRZPoolMonitorIsReused: OP_STOSQ\n"));
683 return true;
684 }
685 break;
686
687 default:
688 /*
689 * Anything having ESP on the left side means stack writes.
690 */
691 if ( ( (pDis->Param1.fUse & DISUSE_REG_GEN32)
692 || (pDis->Param1.fUse & DISUSE_REG_GEN64))
693 && (pDis->Param1.Base.idxGenReg == DISGREG_ESP))
694 {
695 Log4(("pgmRZPoolMonitorIsReused: ESP\n"));
696 return true;
697 }
698 break;
699 }
700
701 /*
702 * Page table updates are very very unlikely to be crossing page boundraries,
703 * and we don't want to deal with that in pgmPoolMonitorChainChanging and such.
704 */
705 uint32_t const cbWrite = DISGetParamSize(pDis, &pDis->Param1);
706 if ( (((uintptr_t)pvFault + cbWrite) >> X86_PAGE_SHIFT) != ((uintptr_t)pvFault >> X86_PAGE_SHIFT) )
707 {
708 Log4(("pgmRZPoolMonitorIsReused: cross page write\n"));
709 return true;
710 }
711
712 /*
713 * Nobody does an unaligned 8 byte write to a page table, right.
714 */
715 if (cbWrite >= 8 && ((uintptr_t)pvFault & 7) != 0)
716 {
717 Log4(("pgmRZPoolMonitorIsReused: Unaligned 8+ byte write\n"));
718 return true;
719 }
720
721 return false;
722}
723
724
725/**
726 * Flushes the page being accessed.
727 *
728 * @returns VBox status code suitable for scheduling.
729 * @param pVM The cross context VM structure.
730 * @param pVCpu The cross context virtual CPU structure.
731 * @param pPool The pool.
732 * @param pPage The pool page (head).
733 * @param pDis The disassembly of the write instruction.
734 * @param pRegFrame The trap register frame.
735 * @param GCPhysFault The fault address as guest physical address.
736 * @param pvFault The fault address.
737 * @todo VBOXSTRICTRC
738 */
739static int pgmRZPoolAccessPfHandlerFlush(PVMCC pVM, PVMCPUCC pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
740 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
741{
742 NOREF(pVM); NOREF(GCPhysFault);
743
744 /*
745 * First, do the flushing.
746 */
747 pgmPoolMonitorChainFlush(pPool, pPage);
748
749 /*
750 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
751 * Must do this in raw mode (!); XP boot will fail otherwise.
752 */
753 int rc = VINF_SUCCESS;
754 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
755 if (rc2 == VINF_SUCCESS)
756 { /* do nothing */ }
757 else if (rc2 == VINF_EM_RESCHEDULE)
758 {
759 rc = VBOXSTRICTRC_VAL(rc2);
760# ifndef IN_RING3
761 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
762# endif
763 }
764 else if (rc2 == VERR_EM_INTERPRETER)
765 {
766 rc = VINF_EM_RAW_EMULATE_INSTR;
767 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr));
768 }
769 else if (RT_FAILURE_NP(rc2))
770 rc = VBOXSTRICTRC_VAL(rc2);
771 else
772 AssertMsgFailed(("%Rrc\n", VBOXSTRICTRC_VAL(rc2))); /* ASSUMES no complicated stuff here. */
773
774 LogFlow(("pgmRZPoolAccessPfHandlerFlush: returns %Rrc (flushed)\n", rc));
775 return rc;
776}
777
778
779/**
780 * Handles the STOSD write accesses.
781 *
782 * @returns VBox status code suitable for scheduling.
783 * @param pVM The cross context VM structure.
784 * @param pPool The pool.
785 * @param pPage The pool page (head).
786 * @param pDis The disassembly of the write instruction.
787 * @param pRegFrame The trap register frame.
788 * @param GCPhysFault The fault address as guest physical address.
789 * @param pvFault The fault address.
790 */
791DECLINLINE(int) pgmRZPoolAccessPfHandlerSTOSD(PVMCC pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
792 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
793{
794 unsigned uIncrement = pDis->Param1.cb;
795 NOREF(pVM);
796
797 Assert(pDis->uCpuMode == DISCPUMODE_32BIT || pDis->uCpuMode == DISCPUMODE_64BIT);
798 Assert(pRegFrame->rcx <= 0x20);
799
800# ifdef VBOX_STRICT
801 if (pDis->uOpMode == DISCPUMODE_32BIT)
802 Assert(uIncrement == 4);
803 else
804 Assert(uIncrement == 8);
805# endif
806
807 Log3(("pgmRZPoolAccessPfHandlerSTOSD\n"));
808
809 /*
810 * Increment the modification counter and insert it into the list
811 * of modified pages the first time.
812 */
813 if (!pPage->cModifications++)
814 pgmPoolMonitorModifiedInsert(pPool, pPage);
815
816 /*
817 * Execute REP STOSD.
818 *
819 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
820 * write situation, meaning that it's safe to write here.
821 */
822 PVMCPUCC pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
823 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
824 while (pRegFrame->rcx)
825 {
826 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, uIncrement);
827 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement);
828 pu32 += uIncrement;
829 GCPhysFault += uIncrement;
830 pRegFrame->rdi += uIncrement;
831 pRegFrame->rcx--;
832 }
833 pRegFrame->rip += pDis->cbInstr;
834
835 LogFlow(("pgmRZPoolAccessPfHandlerSTOSD: returns\n"));
836 return VINF_SUCCESS;
837}
838
839
840/**
841 * Handles the simple write accesses.
842 *
843 * @returns VBox status code suitable for scheduling.
844 * @param pVM The cross context VM structure.
845 * @param pVCpu The cross context virtual CPU structure.
846 * @param pPool The pool.
847 * @param pPage The pool page (head).
848 * @param pDis The disassembly of the write instruction.
849 * @param pRegFrame The trap register frame.
850 * @param GCPhysFault The fault address as guest physical address.
851 * @param pvFault The fault address.
852 * @param pfReused Reused state (in/out)
853 */
854DECLINLINE(int) pgmRZPoolAccessPfHandlerSimple(PVMCC pVM, PVMCPUCC pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
855 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused)
856{
857 Log3(("pgmRZPoolAccessPfHandlerSimple\n"));
858 NOREF(pVM);
859 NOREF(pfReused); /* initialized by caller */
860
861 /*
862 * Increment the modification counter and insert it into the list
863 * of modified pages the first time.
864 */
865 if (!pPage->cModifications++)
866 pgmPoolMonitorModifiedInsert(pPool, pPage);
867
868 /*
869 * Clear all the pages. ASSUMES that pvFault is readable.
870 */
871 uint32_t cbWrite = DISGetParamSize(pDis, &pDis->Param1);
872 if (cbWrite <= 8)
873 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, cbWrite);
874 else if (cbWrite <= 16)
875 {
876 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, 8);
877 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + 8, NULL, cbWrite - 8);
878 }
879 else
880 {
881 Assert(cbWrite <= 32);
882 for (uint32_t off = 0; off < cbWrite; off += 8)
883 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + off, NULL, RT_MIN(8, cbWrite - off));
884 }
885
886 /*
887 * Interpret the instruction.
888 */
889 VBOXSTRICTRC rc = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
890 if (RT_SUCCESS(rc))
891 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); /* ASSUMES no complicated stuff here. */
892 else if (rc == VERR_EM_INTERPRETER)
893 {
894 LogFlow(("pgmRZPoolAccessPfHandlerSimple: Interpretation failed for %04x:%RGv - opcode=%d\n",
895 pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode));
896 rc = VINF_EM_RAW_EMULATE_INSTR;
897 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr));
898 }
899
900# if 0 /* experimental code */
901 if (rc == VINF_SUCCESS)
902 {
903 switch (pPage->enmKind)
904 {
905 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
906 {
907 X86PTEPAE GstPte;
908 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte));
909 AssertRC(rc);
910
911 /* Check the new value written by the guest. If present and with a bogus physical address, then
912 * it's fairly safe to assume the guest is reusing the PT.
913 */
914 if (GstPte.n.u1Present)
915 {
916 RTHCPHYS HCPhys = -1;
917 int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys);
918 if (rc != VINF_SUCCESS)
919 {
920 *pfReused = true;
921 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
922 }
923 }
924 break;
925 }
926 }
927 }
928# endif
929
930 LogFlow(("pgmRZPoolAccessPfHandlerSimple: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
931 return VBOXSTRICTRC_VAL(rc);
932}
933
934
935/**
936 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
937 * \#PF access handler callback for page table pages.}
938 *
939 * @remarks The @a pvUser argument points to the PGMPOOLPAGE.
940 */
941DECLEXPORT(VBOXSTRICTRC) pgmRZPoolAccessPfHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
942 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
943{
944 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorRZ, a);
945 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
946 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
947 unsigned cMaxModifications;
948 bool fForcedFlush = false;
949 NOREF(uErrorCode);
950
951 LogFlow(("pgmRZPoolAccessPfHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
952
953 PGM_LOCK_VOID(pVM);
954 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
955 {
956 /* Pool page changed while we were waiting for the lock; ignore. */
957 Log(("CPU%d: pgmRZPoolAccessPfHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
958 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a);
959 PGM_UNLOCK(pVM);
960 return VINF_SUCCESS;
961 }
962# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
963 if (pPage->fDirty)
964 {
965 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH));
966 PGM_UNLOCK(pVM);
967 return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */
968 }
969# endif
970
971# if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */
972 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
973 {
974 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
975 void *pvGst;
976 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
977 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
978 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
979 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
980 }
981# endif
982
983 /*
984 * Disassemble the faulting instruction.
985 */
986 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
987 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
988 if (RT_UNLIKELY(rc != VINF_SUCCESS))
989 {
990 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc));
991 PGM_UNLOCK(pVM);
992 return rc;
993 }
994
995 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
996
997 /*
998 * We should ALWAYS have the list head as user parameter. This
999 * is because we use that page to record the changes.
1000 */
1001 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1002
1003# ifdef IN_RING0
1004 /* Maximum nr of modifications depends on the page type. */
1005 if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1006 || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1007 cMaxModifications = 4;
1008 else
1009 cMaxModifications = 24;
1010# else
1011 cMaxModifications = 48;
1012# endif
1013
1014 /*
1015 * Incremental page table updates should weigh more than random ones.
1016 * (Only applies when started from offset 0)
1017 */
1018 pVCpu->pgm.s.cPoolAccessHandler++;
1019 if ( pPage->GCPtrLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */
1020 && pPage->GCPtrLastAccessHandlerRip < pRegFrame->rip + 0x40
1021 && pvFault == (pPage->GCPtrLastAccessHandlerFault + pDis->Param1.cb)
1022 && pVCpu->pgm.s.cPoolAccessHandler == pPage->cLastAccessHandler + 1)
1023 {
1024 Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1025 Assert(pPage->cModifications < 32000);
1026 pPage->cModifications = pPage->cModifications * 2;
1027 pPage->GCPtrLastAccessHandlerFault = pvFault;
1028 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1029 if (pPage->cModifications >= cMaxModifications)
1030 {
1031 STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushReinit);
1032 fForcedFlush = true;
1033 }
1034 }
1035
1036 if (pPage->cModifications >= cMaxModifications)
1037 Log(("Mod overflow %RGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1038
1039 /*
1040 * Check if it's worth dealing with.
1041 */
1042 bool fReused = false;
1043 bool fNotReusedNotForking = false;
1044 if ( ( pPage->cModifications < cMaxModifications /** @todo \#define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1045 || pgmPoolIsPageLocked(pPage)
1046 )
1047 && !(fReused = pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage))
1048 && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1049 {
1050 /*
1051 * Simple instructions, no REP prefix.
1052 */
1053 if (!(pDis->fPrefix & (DISPREFIX_REP | DISPREFIX_REPNE)))
1054 {
1055 rc = pgmRZPoolAccessPfHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused);
1056 if (fReused)
1057 goto flushPage;
1058
1059 /* A mov instruction to change the first page table entry will be remembered so we can detect
1060 * full page table changes early on. This will reduce the amount of unnecessary traps we'll take.
1061 */
1062 if ( rc == VINF_SUCCESS
1063 && !pPage->cLocked /* only applies to unlocked pages as we can't free locked ones (e.g. cr3 root). */
1064 && pDis->pCurInstr->uOpcode == OP_MOV
1065 && (pvFault & PAGE_OFFSET_MASK) == 0)
1066 {
1067 pPage->GCPtrLastAccessHandlerFault = pvFault;
1068 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1069 pPage->GCPtrLastAccessHandlerRip = pRegFrame->rip;
1070 /* Make sure we don't kick out a page too quickly. */
1071 if (pPage->cModifications > 8)
1072 pPage->cModifications = 2;
1073 }
1074 else if (pPage->GCPtrLastAccessHandlerFault == pvFault)
1075 {
1076 /* ignore the 2nd write to this page table entry. */
1077 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1078 }
1079 else
1080 {
1081 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
1082 pPage->GCPtrLastAccessHandlerRip = 0;
1083 }
1084
1085 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a);
1086 PGM_UNLOCK(pVM);
1087 return rc;
1088 }
1089
1090 /*
1091 * Windows is frequently doing small memset() operations (netio test 4k+).
1092 * We have to deal with these or we'll kill the cache and performance.
1093 */
1094 if ( pDis->pCurInstr->uOpcode == OP_STOSWD
1095 && !pRegFrame->eflags.Bits.u1DF
1096 && pDis->uOpMode == pDis->uCpuMode
1097 && pDis->uAddrMode == pDis->uCpuMode)
1098 {
1099 bool fValidStosd = false;
1100
1101 if ( pDis->uCpuMode == DISCPUMODE_32BIT
1102 && pDis->fPrefix == DISPREFIX_REP
1103 && pRegFrame->ecx <= 0x20
1104 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1105 && !((uintptr_t)pvFault & 3)
1106 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1107 )
1108 {
1109 fValidStosd = true;
1110 pRegFrame->rcx &= 0xffffffff; /* paranoia */
1111 }
1112 else
1113 if ( pDis->uCpuMode == DISCPUMODE_64BIT
1114 && pDis->fPrefix == (DISPREFIX_REP | DISPREFIX_REX)
1115 && pRegFrame->rcx <= 0x20
1116 && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1117 && !((uintptr_t)pvFault & 7)
1118 && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */
1119 )
1120 {
1121 fValidStosd = true;
1122 }
1123
1124 if (fValidStosd)
1125 {
1126 rc = pgmRZPoolAccessPfHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1127 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZRepStosd, a);
1128 PGM_UNLOCK(pVM);
1129 return rc;
1130 }
1131 }
1132
1133 /* REP prefix, don't bother. */
1134 STAM_COUNTER_INC(&pPool->StatMonitorPfRZRepPrefix);
1135 Log4(("pgmRZPoolAccessPfHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1136 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode, pDis->fPrefix));
1137 fNotReusedNotForking = true;
1138 }
1139
1140# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0)
1141 /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This
1142 * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring.
1143 */
1144 if ( pPage->cModifications >= cMaxModifications
1145 && !fForcedFlush
1146 && (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1147 && ( fNotReusedNotForking
1148 || ( !pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage)
1149 && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1150 )
1151 )
1152 {
1153 Assert(!pgmPoolIsPageLocked(pPage));
1154 Assert(pPage->fDirty == false);
1155
1156 /* Flush any monitored duplicates as we will disable write protection. */
1157 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1158 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1159 {
1160 PPGMPOOLPAGE pPageHead = pPage;
1161
1162 /* Find the monitor head. */
1163 while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX)
1164 pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev];
1165
1166 while (pPageHead)
1167 {
1168 unsigned idxNext = pPageHead->iMonitoredNext;
1169
1170 if (pPageHead != pPage)
1171 {
1172 STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush);
1173 Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind)));
1174 int rc2 = pgmPoolFlushPage(pPool, pPageHead);
1175 AssertRC(rc2);
1176 }
1177
1178 if (idxNext == NIL_PGMPOOL_IDX)
1179 break;
1180
1181 pPageHead = &pPool->aPages[idxNext];
1182 }
1183 }
1184
1185 /* The flushing above might fail for locked pages, so double check. */
1186 if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX
1187 && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1188 {
1189 pgmPoolAddDirtyPage(pVM, pPool, pPage);
1190
1191 /* Temporarily allow write access to the page table again. */
1192 rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK, pPage->GCPhys & PAGE_BASE_GC_MASK);
1193 if (rc == VINF_SUCCESS)
1194 {
1195 rc = PGMShwMakePageWritable(pVCpu, pvFault, PGM_MK_PG_IS_WRITE_FAULT);
1196 AssertMsg(rc == VINF_SUCCESS
1197 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1198 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1199 || rc == VERR_PAGE_NOT_PRESENT,
1200 ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc));
1201# ifdef VBOX_STRICT
1202 pPage->GCPtrDirtyFault = pvFault;
1203# endif
1204
1205 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, a);
1206 PGM_UNLOCK(pVM);
1207 return rc;
1208 }
1209 }
1210 }
1211# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT && IN_RING0 */
1212
1213 STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushModOverflow);
1214flushPage:
1215 /*
1216 * Not worth it, so flush it.
1217 *
1218 * If we considered it to be reused, don't go back to ring-3
1219 * to emulate failed instructions since we usually cannot
1220 * interpret then. This may be a bit risky, in which case
1221 * the reuse detection must be fixed.
1222 */
1223 rc = pgmRZPoolAccessPfHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1224 if ( rc == VINF_EM_RAW_EMULATE_INSTR
1225 && fReused)
1226 {
1227 /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */
1228 if (PGMShwGetPage(pVCpu, pRegFrame->rip, NULL, NULL) == VINF_SUCCESS)
1229 rc = VINF_SUCCESS; /* safe to restart the instruction. */
1230 }
1231 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZFlushPage, a);
1232 PGM_UNLOCK(pVM);
1233 return rc;
1234}
1235
1236#endif /* !IN_RING3 */
1237
1238/**
1239 * @callback_method_impl{FNPGMPHYSHANDLER,
1240 * Access handler for shadowed page table pages.}
1241 *
1242 * @remarks Only uses the VINF_PGM_HANDLER_DO_DEFAULT status.
1243 */
1244PGM_ALL_CB2_DECL(VBOXSTRICTRC)
1245pgmPoolAccessHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
1246 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
1247{
1248 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1249 STAM_PROFILE_START(&pPool->CTX_SUFF_Z(StatMonitor), a);
1250 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1251 LogFlow(("PGM_ALL_CB_DECL: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
1252 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
1253
1254 NOREF(pvPhys); NOREF(pvBuf); NOREF(enmAccessType);
1255
1256 PGM_LOCK_VOID(pVM);
1257
1258#ifdef VBOX_WITH_STATISTICS
1259 /*
1260 * Collect stats on the access.
1261 */
1262 AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Sizes)) == 19);
1263 if (cbBuf <= 16 && cbBuf > 0)
1264 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[cbBuf - 1]);
1265 else if (cbBuf >= 17 && cbBuf < 32)
1266 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[16]);
1267 else if (cbBuf >= 32 && cbBuf < 64)
1268 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[17]);
1269 else if (cbBuf >= 64)
1270 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[18]);
1271
1272 uint8_t cbAlign;
1273 switch (pPage->enmKind)
1274 {
1275 default:
1276 cbAlign = 7;
1277 break;
1278 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1279 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1280 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1281 case PGMPOOLKIND_32BIT_PD:
1282 case PGMPOOLKIND_32BIT_PD_PHYS:
1283 cbAlign = 3;
1284 break;
1285 }
1286 AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Misaligned)) == 7);
1287 if ((uint8_t)GCPhys & cbAlign)
1288 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Misaligned)[((uint8_t)GCPhys & cbAlign) - 1]);
1289#endif
1290
1291 /*
1292 * Make sure the pool page wasn't modified by a different CPU.
1293 */
1294 if (PHYS_PAGE_ADDRESS(GCPhys) == PHYS_PAGE_ADDRESS(pPage->GCPhys))
1295 {
1296 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1297
1298 /* The max modification count before flushing depends on the context and page type. */
1299#ifdef IN_RING3
1300 uint16_t const cMaxModifications = 96; /* it's cheaper here, right? */
1301#else
1302 uint16_t cMaxModifications;
1303 if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1304 || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1305 cMaxModifications = 4;
1306 else
1307 cMaxModifications = 24;
1308#endif
1309
1310 /*
1311 * We don't have to be very sophisticated about this since there are relativly few calls here.
1312 * However, we must try our best to detect any non-cpu accesses (disk / networking).
1313 */
1314 if ( ( pPage->cModifications < cMaxModifications
1315 || pgmPoolIsPageLocked(pPage) )
1316 && enmOrigin != PGMACCESSORIGIN_DEVICE
1317 && cbBuf <= 16)
1318 {
1319 /* Clear the shadow entry. */
1320 if (!pPage->cModifications++)
1321 pgmPoolMonitorModifiedInsert(pPool, pPage);
1322
1323 if (cbBuf <= 8)
1324 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, (uint32_t)cbBuf);
1325 else
1326 {
1327 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, 8);
1328 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys + 8, (uint8_t *)pvBuf + 8, (uint32_t)cbBuf - 8);
1329 }
1330 }
1331 else
1332 pgmPoolMonitorChainFlush(pPool, pPage);
1333
1334 STAM_PROFILE_STOP_EX(&pPool->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1335 }
1336 else
1337 Log(("CPU%d: PGM_ALL_CB_DECL pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1338 PGM_UNLOCK(pVM);
1339 return VINF_PGM_HANDLER_DO_DEFAULT;
1340}
1341
1342
1343#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1344
1345# if defined(VBOX_STRICT) && !defined(IN_RING3)
1346
1347/**
1348 * Check references to guest physical memory in a PAE / PAE page table.
1349 *
1350 * @param pPool The pool.
1351 * @param pPage The page.
1352 * @param pShwPT The shadow page table (mapping of the page).
1353 * @param pGstPT The guest page table.
1354 */
1355static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
1356{
1357 unsigned cErrors = 0;
1358 int LastRc = -1; /* initialized to shut up gcc */
1359 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1360 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1361 PVMCC pVM = pPool->CTX_SUFF(pVM);
1362
1363# ifdef VBOX_STRICT
1364 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1365 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1366# endif
1367 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1368 {
1369 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1370 {
1371 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1372 int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1373 if ( rc != VINF_SUCCESS
1374 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
1375 {
1376 Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1377 LastPTE = i;
1378 LastRc = rc;
1379 LastHCPhys = HCPhys;
1380 cErrors++;
1381
1382 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1383 rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
1384 AssertRC(rc);
1385
1386 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1387 {
1388 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1389
1390 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1391 {
1392 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
1393
1394 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1395 {
1396 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
1397 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
1398 {
1399 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
1400 }
1401 }
1402
1403 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
1404 }
1405 }
1406 }
1407 }
1408 }
1409 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
1410}
1411
1412
1413/**
1414 * Check references to guest physical memory in a PAE / 32-bit page table.
1415 *
1416 * @param pPool The pool.
1417 * @param pPage The page.
1418 * @param pShwPT The shadow page table (mapping of the page).
1419 * @param pGstPT The guest page table.
1420 */
1421static void pgmPoolTrackCheckPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
1422{
1423 unsigned cErrors = 0;
1424 int LastRc = -1; /* initialized to shut up gcc */
1425 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1426 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1427 PVMCC pVM = pPool->CTX_SUFF(pVM);
1428
1429# ifdef VBOX_STRICT
1430 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1431 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1432# endif
1433 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1434 {
1435 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1436 {
1437 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1438 int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
1439 if ( rc != VINF_SUCCESS
1440 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
1441 {
1442 Log(("rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1443 LastPTE = i;
1444 LastRc = rc;
1445 LastHCPhys = HCPhys;
1446 cErrors++;
1447
1448 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1449 rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
1450 AssertRC(rc);
1451
1452 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1453 {
1454 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1455
1456 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1457 {
1458 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
1459
1460 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1461 {
1462 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
1463 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
1464 {
1465 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
1466 }
1467 }
1468
1469 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
1470 }
1471 }
1472 }
1473 }
1474 }
1475 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
1476}
1477
1478# endif /* VBOX_STRICT && !IN_RING3 */
1479
1480/**
1481 * Clear references to guest physical memory in a PAE / PAE page table.
1482 *
1483 * @returns nr of changed PTEs
1484 * @param pPool The pool.
1485 * @param pPage The page.
1486 * @param pShwPT The shadow page table (mapping of the page).
1487 * @param pGstPT The guest page table.
1488 * @param pOldGstPT The old cached guest page table.
1489 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1490 * @param pfFlush Flush reused page table (out)
1491 */
1492DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT,
1493 PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1494{
1495 unsigned cChanged = 0;
1496
1497# ifdef VBOX_STRICT
1498 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1499 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1500# endif
1501 *pfFlush = false;
1502
1503 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1504 {
1505 /* Check the new value written by the guest. If present and with a bogus physical address, then
1506 * it's fairly safe to assume the guest is reusing the PT.
1507 */
1508 if ( fAllowRemoval
1509 && (pGstPT->a[i].u & X86_PTE_P))
1510 {
1511 if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1512 {
1513 *pfFlush = true;
1514 return ++cChanged;
1515 }
1516 }
1517 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1518 {
1519 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1520 if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1521 {
1522# ifdef VBOX_STRICT
1523 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1524 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1525 AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1526# endif
1527 uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1528 bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
1529 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1530 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1531
1532 if ( uHostAttr == uGuestAttr
1533 && fHostRW <= fGuestRW)
1534 continue;
1535 }
1536 cChanged++;
1537 /* Something was changed, so flush it. */
1538 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n",
1539 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
1540 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK, i);
1541 PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
1542 }
1543 }
1544 return cChanged;
1545}
1546
1547
1548/**
1549 * Clear references to guest physical memory in a PAE / PAE page table.
1550 *
1551 * @returns nr of changed PTEs
1552 * @param pPool The pool.
1553 * @param pPage The page.
1554 * @param pShwPT The shadow page table (mapping of the page).
1555 * @param pGstPT The guest page table.
1556 * @param pOldGstPT The old cached guest page table.
1557 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1558 * @param pfFlush Flush reused page table (out)
1559 */
1560DECLINLINE(unsigned) pgmPoolTrackFlushPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT,
1561 PCX86PT pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1562{
1563 unsigned cChanged = 0;
1564
1565# ifdef VBOX_STRICT
1566 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1567 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1568# endif
1569 *pfFlush = false;
1570
1571 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1572 {
1573 /* Check the new value written by the guest. If present and with a bogus physical address, then
1574 * it's fairly safe to assume the guest is reusing the PT. */
1575 if (fAllowRemoval)
1576 {
1577 X86PGUINT const uPte = pGstPT->a[i].u;
1578 if ( (uPte & X86_PTE_P)
1579 && !PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), uPte & X86_PTE_PG_MASK))
1580 {
1581 *pfFlush = true;
1582 return ++cChanged;
1583 }
1584 }
1585 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1586 {
1587 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1588 if ((pGstPT->a[i].u & X86_PTE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PG_MASK))
1589 {
1590# ifdef VBOX_STRICT
1591 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1592 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
1593 AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %x old %x shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1594# endif
1595 uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
1596 bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
1597 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
1598 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1599
1600 if ( uHostAttr == uGuestAttr
1601 && fHostRW <= fGuestRW)
1602 continue;
1603 }
1604 cChanged++;
1605 /* Something was changed, so flush it. */
1606 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%x\n",
1607 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK));
1608 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK, i);
1609 PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
1610 }
1611 }
1612 return cChanged;
1613}
1614
1615
1616/**
1617 * Flush a dirty page
1618 *
1619 * @param pVM The cross context VM structure.
1620 * @param pPool The pool.
1621 * @param idxSlot Dirty array slot index
1622 * @param fAllowRemoval Allow a reused page table to be removed
1623 */
1624static void pgmPoolFlushDirtyPage(PVMCC pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false)
1625{
1626 AssertCompile(RT_ELEMENTS(pPool->aidxDirtyPages) == RT_ELEMENTS(pPool->aDirtyPages));
1627
1628 Assert(idxSlot < RT_ELEMENTS(pPool->aDirtyPages));
1629 unsigned idxPage = pPool->aidxDirtyPages[idxSlot];
1630 if (idxPage == NIL_PGMPOOL_IDX)
1631 return;
1632
1633 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1634 Assert(pPage->idx == idxPage);
1635 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1636
1637 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot));
1638 Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1639
1640 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
1641 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
1642 Assert(rc == VINF_SUCCESS);
1643 pPage->fDirty = false;
1644
1645# ifdef VBOX_STRICT
1646 uint64_t fFlags = 0;
1647 RTHCPHYS HCPhys;
1648 rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->GCPtrDirtyFault, &fFlags, &HCPhys);
1649 AssertMsg( ( rc == VINF_SUCCESS
1650 && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key))
1651 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1652 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1653 || rc == VERR_PAGE_NOT_PRESENT,
1654 ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->GCPtrDirtyFault, rc, fFlags));
1655# endif
1656
1657 /* Flush those PTEs that have changed. */
1658 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
1659 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
1660 void *pvGst;
1661 rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1662 bool fFlush;
1663 unsigned cChanges;
1664
1665 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1666 cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst,
1667 (PCX86PTPAE)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
1668 else
1669 cChanges = pgmPoolTrackFlushPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst,
1670 (PCX86PT)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
1671
1672 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1673 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1674 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
1675 /* Note: we might want to consider keeping the dirty page active in case there were many changes. */
1676
1677 /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */
1678 Assert(pPage->cModifications);
1679 if (cChanges < 4)
1680 pPage->cModifications = 1; /* must use > 0 here */
1681 else
1682 pPage->cModifications = RT_MAX(1, pPage->cModifications / 2);
1683
1684 STAM_COUNTER_INC(&pPool->StatResetDirtyPages);
1685 if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages))
1686 pPool->idxFreeDirtyPage = idxSlot;
1687
1688 pPool->cDirtyPages--;
1689 pPool->aidxDirtyPages[idxSlot] = NIL_PGMPOOL_IDX;
1690 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1691 if (fFlush)
1692 {
1693 Assert(fAllowRemoval);
1694 Log(("Flush reused page table!\n"));
1695 pgmPoolFlushPage(pPool, pPage);
1696 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
1697 }
1698 else
1699 Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges));
1700}
1701
1702
1703# ifndef IN_RING3
1704/**
1705 * Add a new dirty page
1706 *
1707 * @param pVM The cross context VM structure.
1708 * @param pPool The pool.
1709 * @param pPage The page.
1710 */
1711void pgmPoolAddDirtyPage(PVMCC pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1712{
1713 PGM_LOCK_ASSERT_OWNER(pVM);
1714 AssertCompile(RT_ELEMENTS(pPool->aDirtyPages) == 8 || RT_ELEMENTS(pPool->aDirtyPages) == 16);
1715 Assert(!pPage->fDirty);
1716
1717 unsigned idxFree = pPool->idxFreeDirtyPage;
1718 Assert(idxFree < RT_ELEMENTS(pPool->aDirtyPages));
1719 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1720
1721 if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aDirtyPages))
1722 {
1723 STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush);
1724 pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/);
1725 }
1726 Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages));
1727 AssertMsg(pPool->aidxDirtyPages[idxFree] == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages));
1728
1729 Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree));
1730
1731 /*
1732 * Make a copy of the guest page table as we require valid GCPhys addresses
1733 * when removing references to physical pages.
1734 * (The HCPhys linear lookup is *extremely* expensive!)
1735 */
1736 void *pvGst;
1737 int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1738 memcpy(&pPool->aDirtyPages[idxFree].aPage[0], pvGst, (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) ? PAGE_SIZE : PAGE_SIZE/2);
1739# ifdef VBOX_STRICT
1740 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
1741 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1742 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
1743 else
1744 pgmPoolTrackCheckPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
1745 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1746# endif
1747 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1748
1749 STAM_COUNTER_INC(&pPool->StatDirtyPage);
1750 pPage->fDirty = true;
1751 pPage->idxDirtyEntry = (uint8_t)idxFree; Assert(pPage->idxDirtyEntry == idxFree);
1752 pPool->aidxDirtyPages[idxFree] = pPage->idx;
1753 pPool->cDirtyPages++;
1754
1755 pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
1756 if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages)
1757 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1758 {
1759 unsigned i;
1760 for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1761 {
1762 idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
1763 if (pPool->aidxDirtyPages[idxFree] == NIL_PGMPOOL_IDX)
1764 {
1765 pPool->idxFreeDirtyPage = idxFree;
1766 break;
1767 }
1768 }
1769 Assert(i != RT_ELEMENTS(pPool->aDirtyPages));
1770 }
1771
1772 Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages) || pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX);
1773
1774 /*
1775 * Clear all references to this shadow table. See @bugref{7298}.
1776 */
1777 pgmPoolTrackClearPageUsers(pPool, pPage);
1778}
1779# endif /* !IN_RING3 */
1780
1781
1782/**
1783 * Check if the specified page is dirty (not write monitored)
1784 *
1785 * @return dirty or not
1786 * @param pVM The cross context VM structure.
1787 * @param GCPhys Guest physical address
1788 */
1789bool pgmPoolIsDirtyPageSlow(PVMCC pVM, RTGCPHYS GCPhys)
1790{
1791 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1792 PGM_LOCK_ASSERT_OWNER(pVM);
1793 if (!pPool->cDirtyPages)
1794 return false;
1795
1796 GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
1797
1798 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1799 {
1800 unsigned idxPage = pPool->aidxDirtyPages[i];
1801 if (idxPage != NIL_PGMPOOL_IDX)
1802 {
1803 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1804 if (pPage->GCPhys == GCPhys)
1805 return true;
1806 }
1807 }
1808 return false;
1809}
1810
1811
1812/**
1813 * Reset all dirty pages by reinstating page monitoring.
1814 *
1815 * @param pVM The cross context VM structure.
1816 */
1817void pgmPoolResetDirtyPages(PVMCC pVM)
1818{
1819 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1820 PGM_LOCK_ASSERT_OWNER(pVM);
1821 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1822
1823 if (!pPool->cDirtyPages)
1824 return;
1825
1826 Log(("pgmPoolResetDirtyPages\n"));
1827 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1828 pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/);
1829
1830 pPool->idxFreeDirtyPage = 0;
1831 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
1832 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1833 {
1834 unsigned i;
1835 for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1836 {
1837 if (pPool->aidxDirtyPages[i] == NIL_PGMPOOL_IDX)
1838 {
1839 pPool->idxFreeDirtyPage = i;
1840 break;
1841 }
1842 }
1843 AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1844 }
1845
1846 Assert(pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages));
1847 return;
1848}
1849
1850
1851/**
1852 * Invalidate the PT entry for the specified page
1853 *
1854 * @param pVM The cross context VM structure.
1855 * @param GCPtrPage Guest page to invalidate
1856 */
1857void pgmPoolResetDirtyPage(PVMCC pVM, RTGCPTR GCPtrPage)
1858{
1859 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1860 PGM_LOCK_ASSERT_OWNER(pVM);
1861 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1862
1863 if (!pPool->cDirtyPages)
1864 return;
1865
1866 Log(("pgmPoolResetDirtyPage %RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
1867 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1868 {
1869 /** @todo What was intended here??? This looks incomplete... */
1870 }
1871}
1872
1873
1874/**
1875 * Reset all dirty pages by reinstating page monitoring.
1876 *
1877 * @param pVM The cross context VM structure.
1878 * @param GCPhysPT Physical address of the page table
1879 */
1880void pgmPoolInvalidateDirtyPage(PVMCC pVM, RTGCPHYS GCPhysPT)
1881{
1882 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1883 PGM_LOCK_ASSERT_OWNER(pVM);
1884 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1885 unsigned idxDirtyPage = RT_ELEMENTS(pPool->aDirtyPages);
1886
1887 if (!pPool->cDirtyPages)
1888 return;
1889
1890 GCPhysPT = GCPhysPT & ~(RTGCPHYS)PAGE_OFFSET_MASK;
1891
1892 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1893 {
1894 unsigned idxPage = pPool->aidxDirtyPages[i];
1895 if (idxPage != NIL_PGMPOOL_IDX)
1896 {
1897 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1898 if (pPage->GCPhys == GCPhysPT)
1899 {
1900 idxDirtyPage = i;
1901 break;
1902 }
1903 }
1904 }
1905
1906 if (idxDirtyPage != RT_ELEMENTS(pPool->aDirtyPages))
1907 {
1908 pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/);
1909 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
1910 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1911 {
1912 unsigned i;
1913 for (i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1914 {
1915 if (pPool->aidxDirtyPages[i] == NIL_PGMPOOL_IDX)
1916 {
1917 pPool->idxFreeDirtyPage = i;
1918 break;
1919 }
1920 }
1921 AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1922 }
1923 }
1924}
1925
1926#endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1927
1928/**
1929 * Inserts a page into the GCPhys hash table.
1930 *
1931 * @param pPool The pool.
1932 * @param pPage The page.
1933 */
1934DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1935{
1936 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1937 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1938 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1939 pPage->iNext = pPool->aiHash[iHash];
1940 pPool->aiHash[iHash] = pPage->idx;
1941}
1942
1943
1944/**
1945 * Removes a page from the GCPhys hash table.
1946 *
1947 * @param pPool The pool.
1948 * @param pPage The page.
1949 */
1950DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1951{
1952 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1953 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1954 if (pPool->aiHash[iHash] == pPage->idx)
1955 pPool->aiHash[iHash] = pPage->iNext;
1956 else
1957 {
1958 uint16_t iPrev = pPool->aiHash[iHash];
1959 for (;;)
1960 {
1961 const int16_t i = pPool->aPages[iPrev].iNext;
1962 if (i == pPage->idx)
1963 {
1964 pPool->aPages[iPrev].iNext = pPage->iNext;
1965 break;
1966 }
1967 if (i == NIL_PGMPOOL_IDX)
1968 {
1969 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%d\n", pPage->GCPhys, pPage->idx));
1970 break;
1971 }
1972 iPrev = i;
1973 }
1974 }
1975 pPage->iNext = NIL_PGMPOOL_IDX;
1976}
1977
1978
1979/**
1980 * Frees up one cache page.
1981 *
1982 * @returns VBox status code.
1983 * @retval VINF_SUCCESS on success.
1984 * @param pPool The pool.
1985 * @param iUser The user index.
1986 */
1987static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1988{
1989 const PVMCC pVM = pPool->CTX_SUFF(pVM);
1990 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1991 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1992
1993 /*
1994 * Select one page from the tail of the age list.
1995 */
1996 PPGMPOOLPAGE pPage;
1997 for (unsigned iLoop = 0; ; iLoop++)
1998 {
1999 uint16_t iToFree = pPool->iAgeTail;
2000 if (iToFree == iUser && iUser != NIL_PGMPOOL_IDX)
2001 iToFree = pPool->aPages[iToFree].iAgePrev;
2002/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
2003 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
2004 {
2005 uint16_t i = pPool->aPages[iToFree].iAgePrev;
2006 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
2007 {
2008 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
2009 continue;
2010 iToFree = i;
2011 break;
2012 }
2013 }
2014*/
2015 Assert(iToFree != iUser);
2016 AssertReleaseMsg(iToFree != NIL_PGMPOOL_IDX,
2017 ("iToFree=%#x (iAgeTail=%#x) iUser=%#x iLoop=%u - pPool=%p LB %#zx\n",
2018 iToFree, pPool->iAgeTail, iUser, iLoop, pPool,
2019 RT_UOFFSETOF_DYN(PGMPOOL, aPages[pPool->cMaxPages])
2020 + pPool->cMaxUsers * sizeof(PGMPOOLUSER)
2021 + pPool->cMaxPhysExts * sizeof(PGMPOOLPHYSEXT) ));
2022
2023 pPage = &pPool->aPages[iToFree];
2024
2025 /*
2026 * Reject any attempts at flushing the currently active shadow CR3 mapping.
2027 * Call pgmPoolCacheUsed to move the page to the head of the age list.
2028 */
2029 if ( !pgmPoolIsPageLocked(pPage)
2030 && pPage->idx >= PGMPOOL_IDX_FIRST /* paranoia (#6349) */)
2031 break;
2032 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
2033 pgmPoolCacheUsed(pPool, pPage);
2034 AssertLogRelReturn(iLoop < 8192, VERR_PGM_POOL_TOO_MANY_LOOPS);
2035 }
2036
2037 /*
2038 * Found a usable page, flush it and return.
2039 */
2040 int rc = pgmPoolFlushPage(pPool, pPage);
2041 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
2042 /** @todo find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */
2043 if (rc == VINF_SUCCESS)
2044 PGM_INVL_ALL_VCPU_TLBS(pVM);
2045 return rc;
2046}
2047
2048
2049/**
2050 * Checks if a kind mismatch is really a page being reused
2051 * or if it's just normal remappings.
2052 *
2053 * @returns true if reused and the cached page (enmKind1) should be flushed
2054 * @returns false if not reused.
2055 * @param enmKind1 The kind of the cached page.
2056 * @param enmKind2 The kind of the requested page.
2057 */
2058static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
2059{
2060 switch (enmKind1)
2061 {
2062 /*
2063 * Never reuse them. There is no remapping in non-paging mode.
2064 */
2065 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2066 case PGMPOOLKIND_32BIT_PD_PHYS:
2067 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2068 case PGMPOOLKIND_PAE_PD_PHYS:
2069 case PGMPOOLKIND_PAE_PDPT_PHYS:
2070 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2071 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2072 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2073 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2074 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2075 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
2076 return false;
2077
2078 /*
2079 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
2080 */
2081 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2082 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2083 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2084 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2085 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2086 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2087 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2088 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2089 case PGMPOOLKIND_32BIT_PD:
2090 case PGMPOOLKIND_PAE_PDPT:
2091 switch (enmKind2)
2092 {
2093 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2094 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2095 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2096 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2097 case PGMPOOLKIND_64BIT_PML4:
2098 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2099 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2100 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2101 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2102 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2103 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2104 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2105 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2106 return true;
2107 default:
2108 return false;
2109 }
2110
2111 /*
2112 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
2113 */
2114 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2115 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2116 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2117 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2118 case PGMPOOLKIND_64BIT_PML4:
2119 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2120 switch (enmKind2)
2121 {
2122 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2123 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2124 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2125 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2126 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2127 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2128 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2129 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2130 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2131 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2132 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2133 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2134 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2135 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2136 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2137 return true;
2138 default:
2139 return false;
2140 }
2141
2142 /*
2143 * These cannot be flushed, and it's common to reuse the PDs as PTs.
2144 */
2145 case PGMPOOLKIND_ROOT_NESTED:
2146 return false;
2147
2148 default:
2149 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
2150 }
2151}
2152
2153
2154/**
2155 * Attempts to satisfy a pgmPoolAlloc request from the cache.
2156 *
2157 * @returns VBox status code.
2158 * @retval VINF_PGM_CACHED_PAGE on success.
2159 * @retval VERR_FILE_NOT_FOUND if not found.
2160 * @param pPool The pool.
2161 * @param GCPhys The GC physical address of the page we're gonna shadow.
2162 * @param enmKind The kind of mapping.
2163 * @param enmAccess Access type for the mapping (only relevant for big pages)
2164 * @param fA20Enabled Whether the CPU has the A20 gate enabled.
2165 * @param iUser The shadow page pool index of the user table. This is
2166 * NIL_PGMPOOL_IDX for root pages.
2167 * @param iUserTable The index into the user table (shadowed). Ignored if
2168 * root page
2169 * @param ppPage Where to store the pointer to the page.
2170 */
2171static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
2172 uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
2173{
2174 /*
2175 * Look up the GCPhys in the hash.
2176 */
2177 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2178 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%d iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
2179 if (i != NIL_PGMPOOL_IDX)
2180 {
2181 do
2182 {
2183 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2184 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
2185 if (pPage->GCPhys == GCPhys)
2186 {
2187 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
2188 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess
2189 && pPage->fA20Enabled == fA20Enabled)
2190 {
2191 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
2192 * doesn't flush it in case there are no more free use records.
2193 */
2194 pgmPoolCacheUsed(pPool, pPage);
2195
2196 int rc = VINF_SUCCESS;
2197 if (iUser != NIL_PGMPOOL_IDX)
2198 rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
2199 if (RT_SUCCESS(rc))
2200 {
2201 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
2202 *ppPage = pPage;
2203 if (pPage->cModifications)
2204 pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
2205 STAM_COUNTER_INC(&pPool->StatCacheHits);
2206 return VINF_PGM_CACHED_PAGE;
2207 }
2208 return rc;
2209 }
2210
2211 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
2212 {
2213 /*
2214 * The kind is different. In some cases we should now flush the page
2215 * as it has been reused, but in most cases this is normal remapping
2216 * of PDs as PT or big pages using the GCPhys field in a slightly
2217 * different way than the other kinds.
2218 */
2219 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
2220 {
2221 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
2222 pgmPoolFlushPage(pPool, pPage);
2223 break;
2224 }
2225 }
2226 }
2227
2228 /* next */
2229 i = pPage->iNext;
2230 } while (i != NIL_PGMPOOL_IDX);
2231 }
2232
2233 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
2234 STAM_COUNTER_INC(&pPool->StatCacheMisses);
2235 return VERR_FILE_NOT_FOUND;
2236}
2237
2238
2239/**
2240 * Inserts a page into the cache.
2241 *
2242 * @param pPool The pool.
2243 * @param pPage The cached page.
2244 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
2245 */
2246static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
2247{
2248 /*
2249 * Insert into the GCPhys hash if the page is fit for that.
2250 */
2251 Assert(!pPage->fCached);
2252 if (fCanBeCached)
2253 {
2254 pPage->fCached = true;
2255 pgmPoolHashInsert(pPool, pPage);
2256 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2257 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2258 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
2259 }
2260 else
2261 {
2262 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2263 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2264 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
2265 }
2266
2267 /*
2268 * Insert at the head of the age list.
2269 */
2270 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2271 pPage->iAgeNext = pPool->iAgeHead;
2272 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
2273 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
2274 else
2275 pPool->iAgeTail = pPage->idx;
2276 pPool->iAgeHead = pPage->idx;
2277}
2278
2279
2280/**
2281 * Flushes a cached page.
2282 *
2283 * @param pPool The pool.
2284 * @param pPage The cached page.
2285 */
2286static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2287{
2288 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
2289
2290 /*
2291 * Remove the page from the hash.
2292 */
2293 if (pPage->fCached)
2294 {
2295 pPage->fCached = false;
2296 pgmPoolHashRemove(pPool, pPage);
2297 }
2298 else
2299 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
2300
2301 /*
2302 * Remove it from the age list.
2303 */
2304 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
2305 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
2306 else
2307 pPool->iAgeTail = pPage->iAgePrev;
2308 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
2309 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
2310 else
2311 pPool->iAgeHead = pPage->iAgeNext;
2312 pPage->iAgeNext = NIL_PGMPOOL_IDX;
2313 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2314}
2315
2316
2317/**
2318 * Looks for pages sharing the monitor.
2319 *
2320 * @returns Pointer to the head page.
2321 * @returns NULL if not found.
2322 * @param pPool The Pool
2323 * @param pNewPage The page which is going to be monitored.
2324 */
2325static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
2326{
2327 /*
2328 * Look up the GCPhys in the hash.
2329 */
2330 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
2331 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2332 if (i == NIL_PGMPOOL_IDX)
2333 return NULL;
2334 do
2335 {
2336 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2337 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
2338 && pPage != pNewPage)
2339 {
2340 switch (pPage->enmKind)
2341 {
2342 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2343 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2344 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2345 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2346 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2347 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2348 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2349 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2350 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2351 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2352 case PGMPOOLKIND_64BIT_PML4:
2353 case PGMPOOLKIND_32BIT_PD:
2354 case PGMPOOLKIND_PAE_PDPT:
2355 {
2356 /* find the head */
2357 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2358 {
2359 Assert(pPage->iMonitoredPrev != pPage->idx);
2360 pPage = &pPool->aPages[pPage->iMonitoredPrev];
2361 }
2362 return pPage;
2363 }
2364
2365 /* ignore, no monitoring. */
2366 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2367 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2368 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2369 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2370 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2371 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2372 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2373 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2374 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2375 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2376 case PGMPOOLKIND_ROOT_NESTED:
2377 case PGMPOOLKIND_PAE_PD_PHYS:
2378 case PGMPOOLKIND_PAE_PDPT_PHYS:
2379 case PGMPOOLKIND_32BIT_PD_PHYS:
2380 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2381 break;
2382 default:
2383 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
2384 }
2385 }
2386
2387 /* next */
2388 i = pPage->iNext;
2389 } while (i != NIL_PGMPOOL_IDX);
2390 return NULL;
2391}
2392
2393
2394/**
2395 * Enabled write monitoring of a guest page.
2396 *
2397 * @returns VBox status code.
2398 * @retval VINF_SUCCESS on success.
2399 * @param pPool The pool.
2400 * @param pPage The cached page.
2401 */
2402static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2403{
2404 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK));
2405
2406 /*
2407 * Filter out the relevant kinds.
2408 */
2409 switch (pPage->enmKind)
2410 {
2411 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2412 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2413 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2414 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2415 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2416 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2417 case PGMPOOLKIND_64BIT_PML4:
2418 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2419 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2420 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2421 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2422 case PGMPOOLKIND_32BIT_PD:
2423 case PGMPOOLKIND_PAE_PDPT:
2424 break;
2425
2426 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2427 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2428 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2429 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2430 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2431 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2432 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2433 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2434 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2435 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2436 case PGMPOOLKIND_ROOT_NESTED:
2437 /* Nothing to monitor here. */
2438 return VINF_SUCCESS;
2439
2440 case PGMPOOLKIND_32BIT_PD_PHYS:
2441 case PGMPOOLKIND_PAE_PDPT_PHYS:
2442 case PGMPOOLKIND_PAE_PD_PHYS:
2443 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2444 /* Nothing to monitor here. */
2445 return VINF_SUCCESS;
2446 default:
2447 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2448 }
2449
2450 /*
2451 * Install handler.
2452 */
2453 int rc;
2454 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
2455 if (pPageHead)
2456 {
2457 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
2458 Assert(pPageHead->iMonitoredPrev != pPage->idx);
2459
2460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2461 if (pPageHead->fDirty)
2462 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirtyEntry, false /* do not remove */);
2463#endif
2464
2465 pPage->iMonitoredPrev = pPageHead->idx;
2466 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
2467 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
2468 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
2469 pPageHead->iMonitoredNext = pPage->idx;
2470 rc = VINF_SUCCESS;
2471 }
2472 else
2473 {
2474 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
2475 PVMCC pVM = pPool->CTX_SUFF(pVM);
2476 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
2477 rc = PGMHandlerPhysicalRegister(pVM, GCPhysPage, GCPhysPage + PAGE_OFFSET_MASK, pPool->hAccessHandlerType,
2478 MMHyperCCToR3(pVM, pPage), MMHyperCCToR0(pVM, pPage), NIL_RTRCPTR, NIL_RTR3PTR /*pszDesc*/);
2479 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
2480 * the heap size should suffice. */
2481 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
2482 PVMCPU pVCpu = VMMGetCpu(pVM);
2483 AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("fSyncFlags=%x syncff=%d\n", pVCpu->pgm.s.fSyncFlags, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
2484 }
2485 pPage->fMonitored = true;
2486 return rc;
2487}
2488
2489
2490/**
2491 * Disables write monitoring of a guest page.
2492 *
2493 * @returns VBox status code.
2494 * @retval VINF_SUCCESS on success.
2495 * @param pPool The pool.
2496 * @param pPage The cached page.
2497 */
2498static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2499{
2500 /*
2501 * Filter out the relevant kinds.
2502 */
2503 switch (pPage->enmKind)
2504 {
2505 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2506 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2507 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2508 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2509 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2510 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2511 case PGMPOOLKIND_64BIT_PML4:
2512 case PGMPOOLKIND_32BIT_PD:
2513 case PGMPOOLKIND_PAE_PDPT:
2514 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2515 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2516 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2517 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2518 break;
2519
2520 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2521 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2522 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2523 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2524 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2525 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2526 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2527 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2528 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2529 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2530 case PGMPOOLKIND_ROOT_NESTED:
2531 case PGMPOOLKIND_PAE_PD_PHYS:
2532 case PGMPOOLKIND_PAE_PDPT_PHYS:
2533 case PGMPOOLKIND_32BIT_PD_PHYS:
2534 /* Nothing to monitor here. */
2535 Assert(!pPage->fMonitored);
2536 return VINF_SUCCESS;
2537
2538 default:
2539 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2540 }
2541 Assert(pPage->fMonitored);
2542
2543 /*
2544 * Remove the page from the monitored list or uninstall it if last.
2545 */
2546 const PVMCC pVM = pPool->CTX_SUFF(pVM);
2547 int rc;
2548 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
2549 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2550 {
2551 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
2552 {
2553 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
2554 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
2555 rc = PGMHandlerPhysicalChangeUserArgs(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK,
2556 MMHyperCCToR3(pVM, pNewHead), MMHyperCCToR0(pVM, pNewHead));
2557
2558 AssertFatalRCSuccess(rc);
2559 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2560 }
2561 else
2562 {
2563 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
2564 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
2565 {
2566 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
2567 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2568 }
2569 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
2570 rc = VINF_SUCCESS;
2571 }
2572 }
2573 else
2574 {
2575 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
2576 AssertFatalRC(rc);
2577 PVMCPU pVCpu = VMMGetCpu(pVM);
2578 AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
2579 ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
2580 }
2581 pPage->fMonitored = false;
2582
2583 /*
2584 * Remove it from the list of modified pages (if in it).
2585 */
2586 pgmPoolMonitorModifiedRemove(pPool, pPage);
2587
2588 return rc;
2589}
2590
2591
2592/**
2593 * Inserts the page into the list of modified pages.
2594 *
2595 * @param pPool The pool.
2596 * @param pPage The page.
2597 */
2598void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2599{
2600 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
2601 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
2602 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
2603 && pPool->iModifiedHead != pPage->idx,
2604 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
2605 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
2606 pPool->iModifiedHead, pPool->cModifiedPages));
2607
2608 pPage->iModifiedNext = pPool->iModifiedHead;
2609 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
2610 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
2611 pPool->iModifiedHead = pPage->idx;
2612 pPool->cModifiedPages++;
2613#ifdef VBOX_WITH_STATISTICS
2614 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
2615 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
2616#endif
2617}
2618
2619
2620/**
2621 * Removes the page from the list of modified pages and resets the
2622 * modification counter.
2623 *
2624 * @param pPool The pool.
2625 * @param pPage The page which is believed to be in the list of modified pages.
2626 */
2627static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2628{
2629 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
2630 if (pPool->iModifiedHead == pPage->idx)
2631 {
2632 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2633 pPool->iModifiedHead = pPage->iModifiedNext;
2634 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2635 {
2636 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
2637 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2638 }
2639 pPool->cModifiedPages--;
2640 }
2641 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
2642 {
2643 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
2644 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2645 {
2646 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
2647 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2648 }
2649 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2650 pPool->cModifiedPages--;
2651 }
2652 else
2653 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2654 pPage->cModifications = 0;
2655}
2656
2657
2658/**
2659 * Zaps the list of modified pages, resetting their modification counters in the process.
2660 *
2661 * @param pVM The cross context VM structure.
2662 */
2663static void pgmPoolMonitorModifiedClearAll(PVMCC pVM)
2664{
2665 PGM_LOCK_VOID(pVM);
2666 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2667 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
2668
2669 unsigned cPages = 0; NOREF(cPages);
2670
2671#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2672 pgmPoolResetDirtyPages(pVM);
2673#endif
2674
2675 uint16_t idx = pPool->iModifiedHead;
2676 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2677 while (idx != NIL_PGMPOOL_IDX)
2678 {
2679 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
2680 idx = pPage->iModifiedNext;
2681 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2682 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2683 pPage->cModifications = 0;
2684 Assert(++cPages);
2685 }
2686 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
2687 pPool->cModifiedPages = 0;
2688 PGM_UNLOCK(pVM);
2689}
2690
2691
2692/**
2693 * Handle SyncCR3 pool tasks
2694 *
2695 * @returns VBox status code.
2696 * @retval VINF_SUCCESS if successfully added.
2697 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2698 * @param pVCpu The cross context virtual CPU structure.
2699 * @remark Should only be used when monitoring is available, thus placed in
2700 * the PGMPOOL_WITH_MONITORING \#ifdef.
2701 */
2702int pgmPoolSyncCR3(PVMCPUCC pVCpu)
2703{
2704 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2705 LogFlow(("pgmPoolSyncCR3 fSyncFlags=%x\n", pVCpu->pgm.s.fSyncFlags));
2706
2707 /*
2708 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2709 * Occasionally we will have to clear all the shadow page tables because we wanted
2710 * to monitor a page which was mapped by too many shadowed page tables. This operation
2711 * sometimes referred to as a 'lightweight flush'.
2712 */
2713# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2714 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2715 pgmR3PoolClearAll(pVM, false /*fFlushRemTlb*/);
2716# else /* !IN_RING3 */
2717 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2718 {
2719 Log(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2720 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2721
2722 /* Make sure all other VCPUs return to ring 3. */
2723 if (pVM->cCpus > 1)
2724 {
2725 VM_FF_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
2726 PGM_INVL_ALL_VCPU_TLBS(pVM);
2727 }
2728 return VINF_PGM_SYNC_CR3;
2729 }
2730# endif /* !IN_RING3 */
2731 else
2732 {
2733 pgmPoolMonitorModifiedClearAll(pVM);
2734
2735 /* pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this! */
2736 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2737 {
2738 Log(("pgmPoolMonitorModifiedClearAll caused a pgm flush -> call pgmPoolSyncCR3 again!\n"));
2739 return pgmPoolSyncCR3(pVCpu);
2740 }
2741 }
2742 return VINF_SUCCESS;
2743}
2744
2745
2746/**
2747 * Frees up at least one user entry.
2748 *
2749 * @returns VBox status code.
2750 * @retval VINF_SUCCESS if successfully added.
2751 *
2752 * @param pPool The pool.
2753 * @param iUser The user index.
2754 */
2755static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2756{
2757 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2758 /*
2759 * Just free cached pages in a braindead fashion.
2760 */
2761 /** @todo walk the age list backwards and free the first with usage. */
2762 int rc = VINF_SUCCESS;
2763 do
2764 {
2765 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2766 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2767 rc = rc2;
2768 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2769 return rc;
2770}
2771
2772
2773/**
2774 * Inserts a page into the cache.
2775 *
2776 * This will create user node for the page, insert it into the GCPhys
2777 * hash, and insert it into the age list.
2778 *
2779 * @returns VBox status code.
2780 * @retval VINF_SUCCESS if successfully added.
2781 *
2782 * @param pPool The pool.
2783 * @param pPage The cached page.
2784 * @param GCPhys The GC physical address of the page we're gonna shadow.
2785 * @param iUser The user index.
2786 * @param iUserTable The user table index.
2787 */
2788DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2789{
2790 int rc = VINF_SUCCESS;
2791 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2792
2793 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser=%d iUserTable=%x\n", GCPhys, iUser, iUserTable)); RT_NOREF_PV(GCPhys);
2794
2795 if (iUser != NIL_PGMPOOL_IDX)
2796 {
2797#ifdef VBOX_STRICT
2798 /*
2799 * Check that the entry doesn't already exists.
2800 */
2801 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2802 {
2803 uint16_t i = pPage->iUserHead;
2804 do
2805 {
2806 Assert(i < pPool->cMaxUsers);
2807 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2808 i = paUsers[i].iNext;
2809 } while (i != NIL_PGMPOOL_USER_INDEX);
2810 }
2811#endif
2812
2813 /*
2814 * Find free a user node.
2815 */
2816 uint16_t i = pPool->iUserFreeHead;
2817 if (i == NIL_PGMPOOL_USER_INDEX)
2818 {
2819 rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2820 if (RT_FAILURE(rc))
2821 return rc;
2822 i = pPool->iUserFreeHead;
2823 }
2824
2825 /*
2826 * Unlink the user node from the free list,
2827 * initialize and insert it into the user list.
2828 */
2829 pPool->iUserFreeHead = paUsers[i].iNext;
2830 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2831 paUsers[i].iUser = iUser;
2832 paUsers[i].iUserTable = iUserTable;
2833 pPage->iUserHead = i;
2834 }
2835 else
2836 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
2837
2838
2839 /*
2840 * Insert into cache and enable monitoring of the guest page if enabled.
2841 *
2842 * Until we implement caching of all levels, including the CR3 one, we'll
2843 * have to make sure we don't try monitor & cache any recursive reuse of
2844 * a monitored CR3 page. Because all windows versions are doing this we'll
2845 * have to be able to do combined access monitoring, CR3 + PT and
2846 * PD + PT (guest PAE).
2847 *
2848 * Update:
2849 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2850 */
2851 const bool fCanBeMonitored = true;
2852 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2853 if (fCanBeMonitored)
2854 {
2855 rc = pgmPoolMonitorInsert(pPool, pPage);
2856 AssertRC(rc);
2857 }
2858 return rc;
2859}
2860
2861
2862/**
2863 * Adds a user reference to a page.
2864 *
2865 * This will move the page to the head of the
2866 *
2867 * @returns VBox status code.
2868 * @retval VINF_SUCCESS if successfully added.
2869 *
2870 * @param pPool The pool.
2871 * @param pPage The cached page.
2872 * @param iUser The user index.
2873 * @param iUserTable The user table.
2874 */
2875static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2876{
2877 Log3(("pgmPoolTrackAddUser: GCPhys=%RGp iUser=%x iUserTable=%x\n", pPage->GCPhys, iUser, iUserTable));
2878 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2879 Assert(iUser != NIL_PGMPOOL_IDX);
2880
2881# ifdef VBOX_STRICT
2882 /*
2883 * Check that the entry doesn't already exists. We only allow multiple
2884 * users of top-level paging structures (SHW_POOL_ROOT_IDX).
2885 */
2886 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2887 {
2888 uint16_t i = pPage->iUserHead;
2889 do
2890 {
2891 Assert(i < pPool->cMaxUsers);
2892 /** @todo this assertion looks odd... Shouldn't it be && here? */
2893 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2894 i = paUsers[i].iNext;
2895 } while (i != NIL_PGMPOOL_USER_INDEX);
2896 }
2897# endif
2898
2899 /*
2900 * Allocate a user node.
2901 */
2902 uint16_t i = pPool->iUserFreeHead;
2903 if (i == NIL_PGMPOOL_USER_INDEX)
2904 {
2905 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2906 if (RT_FAILURE(rc))
2907 return rc;
2908 i = pPool->iUserFreeHead;
2909 }
2910 pPool->iUserFreeHead = paUsers[i].iNext;
2911
2912 /*
2913 * Initialize the user node and insert it.
2914 */
2915 paUsers[i].iNext = pPage->iUserHead;
2916 paUsers[i].iUser = iUser;
2917 paUsers[i].iUserTable = iUserTable;
2918 pPage->iUserHead = i;
2919
2920# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2921 if (pPage->fDirty)
2922 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirtyEntry, false /* do not remove */);
2923# endif
2924
2925 /*
2926 * Tell the cache to update its replacement stats for this page.
2927 */
2928 pgmPoolCacheUsed(pPool, pPage);
2929 return VINF_SUCCESS;
2930}
2931
2932
2933/**
2934 * Frees a user record associated with a page.
2935 *
2936 * This does not clear the entry in the user table, it simply replaces the
2937 * user record to the chain of free records.
2938 *
2939 * @param pPool The pool.
2940 * @param pPage The shadow page.
2941 * @param iUser The shadow page pool index of the user table.
2942 * @param iUserTable The index into the user table (shadowed).
2943 *
2944 * @remarks Don't call this for root pages.
2945 */
2946static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2947{
2948 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2949 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2950 Assert(iUser != NIL_PGMPOOL_IDX);
2951
2952 /*
2953 * Unlink and free the specified user entry.
2954 */
2955
2956 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2957 uint16_t i = pPage->iUserHead;
2958 if ( i != NIL_PGMPOOL_USER_INDEX
2959 && paUsers[i].iUser == iUser
2960 && paUsers[i].iUserTable == iUserTable)
2961 {
2962 pPage->iUserHead = paUsers[i].iNext;
2963
2964 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2965 paUsers[i].iNext = pPool->iUserFreeHead;
2966 pPool->iUserFreeHead = i;
2967 return;
2968 }
2969
2970 /* General: Linear search. */
2971 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2972 while (i != NIL_PGMPOOL_USER_INDEX)
2973 {
2974 if ( paUsers[i].iUser == iUser
2975 && paUsers[i].iUserTable == iUserTable)
2976 {
2977 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2978 paUsers[iPrev].iNext = paUsers[i].iNext;
2979 else
2980 pPage->iUserHead = paUsers[i].iNext;
2981
2982 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2983 paUsers[i].iNext = pPool->iUserFreeHead;
2984 pPool->iUserFreeHead = i;
2985 return;
2986 }
2987 iPrev = i;
2988 i = paUsers[i].iNext;
2989 }
2990
2991 /* Fatal: didn't find it */
2992 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%d iUserTable=%#x GCPhys=%RGp\n",
2993 iUser, iUserTable, pPage->GCPhys));
2994}
2995
2996
2997#if 0 /* unused */
2998/**
2999 * Gets the entry size of a shadow table.
3000 *
3001 * @param enmKind The kind of page.
3002 *
3003 * @returns The size of the entry in bytes. That is, 4 or 8.
3004 * @returns If the kind is not for a table, an assertion is raised and 0 is
3005 * returned.
3006 */
3007DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
3008{
3009 switch (enmKind)
3010 {
3011 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3012 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3013 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3014 case PGMPOOLKIND_32BIT_PD:
3015 case PGMPOOLKIND_32BIT_PD_PHYS:
3016 return 4;
3017
3018 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3019 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3020 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3021 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3022 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3023 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3024 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3025 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3026 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3027 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3028 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3029 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3030 case PGMPOOLKIND_64BIT_PML4:
3031 case PGMPOOLKIND_PAE_PDPT:
3032 case PGMPOOLKIND_ROOT_NESTED:
3033 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3034 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3035 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3036 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3037 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3038 case PGMPOOLKIND_PAE_PD_PHYS:
3039 case PGMPOOLKIND_PAE_PDPT_PHYS:
3040 return 8;
3041
3042 default:
3043 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3044 }
3045}
3046#endif /* unused */
3047
3048#if 0 /* unused */
3049/**
3050 * Gets the entry size of a guest table.
3051 *
3052 * @param enmKind The kind of page.
3053 *
3054 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
3055 * @returns If the kind is not for a table, an assertion is raised and 0 is
3056 * returned.
3057 */
3058DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
3059{
3060 switch (enmKind)
3061 {
3062 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3063 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3064 case PGMPOOLKIND_32BIT_PD:
3065 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3066 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3067 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3068 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3069 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3070 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3071 return 4;
3072
3073 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3074 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3075 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3076 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3077 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3078 case PGMPOOLKIND_64BIT_PML4:
3079 case PGMPOOLKIND_PAE_PDPT:
3080 return 8;
3081
3082 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3083 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3084 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3085 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3086 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3087 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3088 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3089 case PGMPOOLKIND_ROOT_NESTED:
3090 case PGMPOOLKIND_PAE_PD_PHYS:
3091 case PGMPOOLKIND_PAE_PDPT_PHYS:
3092 case PGMPOOLKIND_32BIT_PD_PHYS:
3093 /** @todo can we return 0? (nobody is calling this...) */
3094 AssertFailed();
3095 return 0;
3096
3097 default:
3098 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3099 }
3100}
3101#endif /* unused */
3102
3103
3104/**
3105 * Checks one shadow page table entry for a mapping of a physical page.
3106 *
3107 * @returns true / false indicating removal of all relevant PTEs
3108 *
3109 * @param pVM The cross context VM structure.
3110 * @param pPhysPage The guest page in question.
3111 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3112 * @param iShw The shadow page table.
3113 * @param iPte Page table entry or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown
3114 */
3115static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t iPte)
3116{
3117 LogFlow(("pgmPoolTrackFlushGCPhysPTInt: pPhysPage=%RHp iShw=%d iPte=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, iPte));
3118 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3119 bool fRet = false;
3120
3121 /*
3122 * Assert sanity.
3123 */
3124 Assert(iPte != NIL_PGMPOOL_PHYSEXT_IDX_PTE);
3125 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
3126 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
3127
3128 /*
3129 * Then, clear the actual mappings to the page in the shadow PT.
3130 */
3131 switch (pPage->enmKind)
3132 {
3133 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3134 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3135 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3136 {
3137 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3138 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3139 uint32_t u32AndMask = 0;
3140 uint32_t u32OrMask = 0;
3141
3142 if (!fFlushPTEs)
3143 {
3144 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3145 {
3146 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
3147 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
3148 u32OrMask = X86_PTE_RW;
3149 u32AndMask = UINT32_MAX;
3150 fRet = true;
3151 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3152 break;
3153
3154 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
3155 u32OrMask = 0;
3156 u32AndMask = ~X86_PTE_RW;
3157 fRet = true;
3158 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3159 break;
3160 default:
3161 /* (shouldn't be here, will assert below) */
3162 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3163 break;
3164 }
3165 }
3166 else
3167 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3168
3169 /* Update the counter if we're removing references. */
3170 if (!u32AndMask)
3171 {
3172 Assert(pPage->cPresent);
3173 Assert(pPool->cPresent);
3174 pPage->cPresent--;
3175 pPool->cPresent--;
3176 }
3177
3178 if ((pPT->a[iPte].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3179 {
3180 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32\n", iPte, pPT->a[iPte]));
3181 X86PTE Pte;
3182 Pte.u = (pPT->a[iPte].u & u32AndMask) | u32OrMask;
3183 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3184 Pte.u &= ~(X86PGUINT)X86_PTE_RW; /* need to disallow writes when dirty bit tracking is still active. */
3185 ASMAtomicWriteU32(&pPT->a[iPte].u, Pte.u);
3186 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3187 return fRet;
3188 }
3189#ifdef LOG_ENABLED
3190 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3191 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
3192 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3193 {
3194 Log(("i=%d cFound=%d\n", i, ++cFound));
3195 }
3196#endif
3197 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u32=%RX32 poolkind=%x\n", pPage->iFirstPresent, pPage->cPresent, u32, pPage->enmKind));
3198 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
3199 break;
3200 }
3201
3202 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3203 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3204 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3205 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3206 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3207 case PGMPOOLKIND_EPT_PT_FOR_PHYS: /* physical mask the same as PAE; RW bit as well; be careful! */
3208 {
3209 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3210 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3211 uint64_t u64OrMask = 0;
3212 uint64_t u64AndMask = 0;
3213
3214 if (!fFlushPTEs)
3215 {
3216 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3217 {
3218 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
3219 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
3220 u64OrMask = X86_PTE_RW;
3221 u64AndMask = UINT64_MAX;
3222 fRet = true;
3223 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3224 break;
3225
3226 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
3227 u64OrMask = 0;
3228 u64AndMask = ~(uint64_t)X86_PTE_RW;
3229 fRet = true;
3230 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3231 break;
3232
3233 default:
3234 /* (shouldn't be here, will assert below) */
3235 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3236 break;
3237 }
3238 }
3239 else
3240 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3241
3242 /* Update the counter if we're removing references. */
3243 if (!u64AndMask)
3244 {
3245 Assert(pPage->cPresent);
3246 Assert(pPool->cPresent);
3247 pPage->cPresent--;
3248 pPool->cPresent--;
3249 }
3250
3251 if ((PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
3252 {
3253 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64\n", iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
3254 X86PTEPAE Pte;
3255 Pte.u = (PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & u64AndMask) | u64OrMask;
3256 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3257 Pte.u &= ~(X86PGPAEUINT)X86_PTE_RW; /* need to disallow writes when dirty bit tracking is still active. */
3258
3259 PGMSHWPTEPAE_ATOMIC_SET(pPT->a[iPte], Pte.u);
3260 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3261 return fRet;
3262 }
3263#ifdef LOG_ENABLED
3264 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3265 Log(("Found %RX64 expected %RX64\n", PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX), u64));
3266 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
3267 if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
3268 Log(("i=%d cFound=%d\n", i, ++cFound));
3269#endif
3270 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u64=%RX64 poolkind=%x iPte=%d PT=%RX64\n", pPage->iFirstPresent, pPage->cPresent, u64, pPage->enmKind, iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
3271 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
3272 break;
3273 }
3274
3275#ifdef PGM_WITH_LARGE_PAGES
3276 /* Large page case only. */
3277 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3278 {
3279 Assert(pVM->pgm.s.fNestedPaging);
3280
3281 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3282 PEPTPD pPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3283
3284 if ((pPD->a[iPte].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3285 {
3286 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
3287 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3288 pPD->a[iPte].u = 0;
3289 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
3290
3291 /* Update the counter as we're removing references. */
3292 Assert(pPage->cPresent);
3293 Assert(pPool->cPresent);
3294 pPage->cPresent--;
3295 pPool->cPresent--;
3296
3297 return fRet;
3298 }
3299# ifdef LOG_ENABLED
3300 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3301 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
3302 if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3303 Log(("i=%d cFound=%d\n", i, ++cFound));
3304# endif
3305 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3306 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
3307 break;
3308 }
3309
3310 /* AMD-V nested paging */ /** @todo merge with EPT as we only check the parts that are identical. */
3311 case PGMPOOLKIND_PAE_PD_PHYS:
3312 {
3313 Assert(pVM->pgm.s.fNestedPaging);
3314
3315 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3316 PX86PDPAE pPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3317
3318 if ((pPD->a[iPte].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3319 {
3320 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
3321 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3322 pPD->a[iPte].u = 0;
3323 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
3324
3325 /* Update the counter as we're removing references. */
3326 Assert(pPage->cPresent);
3327 Assert(pPool->cPresent);
3328 pPage->cPresent--;
3329 pPool->cPresent--;
3330 return fRet;
3331 }
3332# ifdef LOG_ENABLED
3333 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3334 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
3335 if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3336 Log(("i=%d cFound=%d\n", i, ++cFound));
3337# endif
3338 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3339 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
3340 break;
3341 }
3342#endif /* PGM_WITH_LARGE_PAGES */
3343
3344 default:
3345 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
3346 }
3347
3348 /* not reached. */
3349#ifndef _MSC_VER
3350 return fRet;
3351#endif
3352}
3353
3354
3355/**
3356 * Scans one shadow page table for mappings of a physical page.
3357 *
3358 * @param pVM The cross context VM structure.
3359 * @param pPhysPage The guest page in question.
3360 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3361 * @param iShw The shadow page table.
3362 */
3363static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw)
3364{
3365 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3366
3367 /* We should only come here with when there's only one reference to this physical page. */
3368 Assert(PGMPOOL_TD_GET_CREFS(PGM_PAGE_GET_TRACKING(pPhysPage)) == 1);
3369
3370 Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw));
3371 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
3372 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, PGM_PAGE_GET_PTE_INDEX(pPhysPage));
3373 if (!fKeptPTEs)
3374 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3375 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
3376}
3377
3378
3379/**
3380 * Flushes a list of shadow page tables mapping the same physical page.
3381 *
3382 * @param pVM The cross context VM structure.
3383 * @param pPhysPage The guest page in question.
3384 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3385 * @param iPhysExt The physical cross reference extent list to flush.
3386 */
3387static void pgmPoolTrackFlushGCPhysPTs(PVMCC pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt)
3388{
3389 PGM_LOCK_ASSERT_OWNER(pVM);
3390 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3391 bool fKeepList = false;
3392
3393 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
3394 Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt=%u\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt));
3395
3396 const uint16_t iPhysExtStart = iPhysExt;
3397 PPGMPOOLPHYSEXT pPhysExt;
3398 do
3399 {
3400 Assert(iPhysExt < pPool->cMaxPhysExts);
3401 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3402 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3403 {
3404 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
3405 {
3406 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], pPhysExt->apte[i]);
3407 if (!fKeptPTEs)
3408 {
3409 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3410 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3411 }
3412 else
3413 fKeepList = true;
3414 }
3415 }
3416 /* next */
3417 iPhysExt = pPhysExt->iNext;
3418 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3419
3420 if (!fKeepList)
3421 {
3422 /* insert the list into the free list and clear the ram range entry. */
3423 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3424 pPool->iPhysExtFreeHead = iPhysExtStart;
3425 /* Invalidate the tracking data. */
3426 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3427 }
3428
3429 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
3430}
3431
3432
3433/**
3434 * Flushes all shadow page table mappings of the given guest page.
3435 *
3436 * This is typically called when the host page backing the guest one has been
3437 * replaced or when the page protection was changed due to a guest access
3438 * caught by the monitoring.
3439 *
3440 * @returns VBox status code.
3441 * @retval VINF_SUCCESS if all references has been successfully cleared.
3442 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
3443 * pool cleaning. FF and sync flags are set.
3444 *
3445 * @param pVM The cross context VM structure.
3446 * @param GCPhysPage GC physical address of the page in question
3447 * @param pPhysPage The guest page in question.
3448 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3449 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
3450 * flushed, it is NOT touched if this isn't necessary.
3451 * The caller MUST initialized this to @a false.
3452 */
3453int pgmPoolTrackUpdateGCPhys(PVMCC pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs)
3454{
3455 PVMCPUCC pVCpu = VMMGetCpu(pVM);
3456 PGM_LOCK_VOID(pVM);
3457 int rc = VINF_SUCCESS;
3458
3459#ifdef PGM_WITH_LARGE_PAGES
3460 /* Is this page part of a large page? */
3461 if (PGM_PAGE_GET_PDE_TYPE(pPhysPage) == PGM_PAGE_PDE_TYPE_PDE)
3462 {
3463 RTGCPHYS GCPhysBase = GCPhysPage & X86_PDE2M_PAE_PG_MASK;
3464 GCPhysPage &= X86_PDE_PAE_PG_MASK;
3465
3466 /* Fetch the large page base. */
3467 PPGMPAGE pLargePage;
3468 if (GCPhysBase != GCPhysPage)
3469 {
3470 pLargePage = pgmPhysGetPage(pVM, GCPhysBase);
3471 AssertFatal(pLargePage);
3472 }
3473 else
3474 pLargePage = pPhysPage;
3475
3476 Log(("pgmPoolTrackUpdateGCPhys: update large page PDE for %RGp (%RGp)\n", GCPhysBase, GCPhysPage));
3477
3478 if (PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE)
3479 {
3480 /* Mark the large page as disabled as we need to break it up to change a single page in the 2 MB range. */
3481 PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3482 pVM->pgm.s.cLargePagesDisabled++;
3483
3484 /* Update the base as that *only* that one has a reference and there's only one PDE to clear. */
3485 rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysBase, pLargePage, fFlushPTEs, pfFlushTLBs);
3486
3487 *pfFlushTLBs = true;
3488 PGM_UNLOCK(pVM);
3489 return rc;
3490 }
3491 }
3492#else
3493 NOREF(GCPhysPage);
3494#endif /* PGM_WITH_LARGE_PAGES */
3495
3496 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
3497 if (u16)
3498 {
3499 /*
3500 * The zero page is currently screwing up the tracking and we'll
3501 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3502 * is defined, zero pages won't normally be mapped. Some kind of solution
3503 * will be needed for this problem of course, but it will have to wait...
3504 */
3505 if ( PGM_PAGE_IS_ZERO(pPhysPage)
3506 || PGM_PAGE_IS_BALLOONED(pPhysPage))
3507 rc = VINF_PGM_GCPHYS_ALIASED;
3508 else
3509 {
3510 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3511 {
3512 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3513 pgmPoolTrackFlushGCPhysPT(pVM,
3514 pPhysPage,
3515 fFlushPTEs,
3516 PGMPOOL_TD_GET_IDX(u16));
3517 }
3518 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3519 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16));
3520 else
3521 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3522 *pfFlushTLBs = true;
3523 }
3524 }
3525
3526 if (rc == VINF_PGM_GCPHYS_ALIASED)
3527 {
3528 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3529 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3530 rc = VINF_PGM_SYNC_CR3;
3531 }
3532 PGM_UNLOCK(pVM);
3533 return rc;
3534}
3535
3536
3537/**
3538 * Scans all shadow page tables for mappings of a physical page.
3539 *
3540 * This may be slow, but it's most likely more efficient than cleaning
3541 * out the entire page pool / cache.
3542 *
3543 * @returns VBox status code.
3544 * @retval VINF_SUCCESS if all references has been successfully cleared.
3545 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
3546 * a page pool cleaning.
3547 *
3548 * @param pVM The cross context VM structure.
3549 * @param pPhysPage The guest page in question.
3550 */
3551int pgmPoolTrackFlushGCPhysPTsSlow(PVMCC pVM, PPGMPAGE pPhysPage)
3552{
3553 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3554 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3555 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
3556 pPool->cUsedPages, pPool->cPresent, pPhysPage));
3557
3558 /*
3559 * There is a limit to what makes sense.
3560 */
3561 if ( pPool->cPresent > 1024
3562 && pVM->cCpus == 1)
3563 {
3564 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3565 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3566 return VINF_PGM_GCPHYS_ALIASED;
3567 }
3568
3569 /*
3570 * Iterate all the pages until we've encountered all that in use.
3571 * This is simple but not quite optimal solution.
3572 */
3573 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage);
3574 unsigned cLeft = pPool->cUsedPages;
3575 unsigned iPage = pPool->cCurPages;
3576 while (--iPage >= PGMPOOL_IDX_FIRST)
3577 {
3578 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
3579 if ( pPage->GCPhys != NIL_RTGCPHYS
3580 && pPage->cPresent)
3581 {
3582 switch (pPage->enmKind)
3583 {
3584 /*
3585 * We only care about shadow page tables.
3586 */
3587 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3588 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3589 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3590 {
3591 const uint32_t u32 = (uint32_t)u64;
3592 unsigned cPresent = pPage->cPresent;
3593 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3594 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3595 {
3596 const X86PGUINT uPte = pPT->a[i].u;
3597 if (uPte & X86_PTE_P)
3598 {
3599 if ((uPte & X86_PTE_PG_MASK) == u32)
3600 {
3601 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
3602 ASMAtomicWriteU32(&pPT->a[i].u, 0);
3603
3604 /* Update the counter as we're removing references. */
3605 Assert(pPage->cPresent);
3606 Assert(pPool->cPresent);
3607 pPage->cPresent--;
3608 pPool->cPresent--;
3609 }
3610 if (!--cPresent)
3611 break;
3612 }
3613 }
3614 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3615 break;
3616 }
3617
3618 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3619 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3620 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3621 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3622 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3623 {
3624 unsigned cPresent = pPage->cPresent;
3625 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3626 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3627 if (PGMSHWPTEPAE_IS_P(pPT->a[i]))
3628 {
3629 if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & X86_PTE_PAE_PG_MASK) == u64)
3630 {
3631 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3632 PGMSHWPTEPAE_ATOMIC_SET(pPT->a[i], 0); /// @todo why not atomic?
3633
3634 /* Update the counter as we're removing references. */
3635 Assert(pPage->cPresent);
3636 Assert(pPool->cPresent);
3637 pPage->cPresent--;
3638 pPool->cPresent--;
3639 }
3640 if (!--cPresent)
3641 break;
3642 }
3643 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3644 break;
3645 }
3646
3647 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3648 {
3649 unsigned cPresent = pPage->cPresent;
3650 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3651 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3652 {
3653 X86PGPAEUINT const uPte = pPT->a[i].u;
3654 if (uPte & EPT_E_READ)
3655 {
3656 if ((uPte & EPT_PTE_PG_MASK) == u64)
3657 {
3658 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3659 ASMAtomicWriteU64(&pPT->a[i].u, 0);
3660
3661 /* Update the counter as we're removing references. */
3662 Assert(pPage->cPresent);
3663 Assert(pPool->cPresent);
3664 pPage->cPresent--;
3665 pPool->cPresent--;
3666 }
3667 if (!--cPresent)
3668 break;
3669 }
3670 }
3671 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3672 break;
3673 }
3674 }
3675
3676 if (!--cLeft)
3677 break;
3678 }
3679 }
3680
3681 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3682 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3683
3684 /*
3685 * There is a limit to what makes sense. The above search is very expensive, so force a pgm pool flush.
3686 */
3687 if (pPool->cPresent > 1024)
3688 {
3689 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3690 return VINF_PGM_GCPHYS_ALIASED;
3691 }
3692
3693 return VINF_SUCCESS;
3694}
3695
3696
3697/**
3698 * Clears the user entry in a user table.
3699 *
3700 * This is used to remove all references to a page when flushing it.
3701 */
3702static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
3703{
3704 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
3705 Assert(pUser->iUser < pPool->cCurPages);
3706 uint32_t iUserTable = pUser->iUserTable;
3707
3708 /*
3709 * Map the user page. Ignore references made by fictitious pages.
3710 */
3711 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
3712 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
3713 union
3714 {
3715 uint64_t *pau64;
3716 uint32_t *pau32;
3717 } u;
3718 if (pUserPage->idx < PGMPOOL_IDX_FIRST)
3719 {
3720 Assert(!pUserPage->pvPageR3);
3721 return;
3722 }
3723 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
3724
3725
3726 /* Safety precaution in case we change the paging for other modes too in the future. */
3727 Assert(!pgmPoolIsPageLocked(pPage)); RT_NOREF_PV(pPage);
3728
3729#ifdef VBOX_STRICT
3730 /*
3731 * Some sanity checks.
3732 */
3733 switch (pUserPage->enmKind)
3734 {
3735 case PGMPOOLKIND_32BIT_PD:
3736 case PGMPOOLKIND_32BIT_PD_PHYS:
3737 Assert(iUserTable < X86_PG_ENTRIES);
3738 break;
3739 case PGMPOOLKIND_PAE_PDPT:
3740 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3741 case PGMPOOLKIND_PAE_PDPT_PHYS:
3742 Assert(iUserTable < 4);
3743 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3744 break;
3745 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3746 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3747 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3748 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3749 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3750 case PGMPOOLKIND_PAE_PD_PHYS:
3751 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3752 break;
3753 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3754 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3755 break;
3756 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3757 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3758 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3759 break;
3760 case PGMPOOLKIND_64BIT_PML4:
3761 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3762 /* GCPhys >> PAGE_SHIFT is the index here */
3763 break;
3764 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3765 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3766 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3767 break;
3768
3769 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3770 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3771 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3772 break;
3773
3774 case PGMPOOLKIND_ROOT_NESTED:
3775 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3776 break;
3777
3778 default:
3779 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
3780 break;
3781 }
3782#endif /* VBOX_STRICT */
3783
3784 /*
3785 * Clear the entry in the user page.
3786 */
3787 switch (pUserPage->enmKind)
3788 {
3789 /* 32-bit entries */
3790 case PGMPOOLKIND_32BIT_PD:
3791 case PGMPOOLKIND_32BIT_PD_PHYS:
3792 ASMAtomicWriteU32(&u.pau32[iUserTable], 0);
3793 break;
3794
3795 /* 64-bit entries */
3796 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3797 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3798 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3799 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3800 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3801 case PGMPOOLKIND_PAE_PD_PHYS:
3802 case PGMPOOLKIND_PAE_PDPT_PHYS:
3803 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3804 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3805 case PGMPOOLKIND_64BIT_PML4:
3806 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3807 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3808 case PGMPOOLKIND_PAE_PDPT:
3809 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3810 case PGMPOOLKIND_ROOT_NESTED:
3811 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3812 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3813 ASMAtomicWriteU64(&u.pau64[iUserTable], 0);
3814 break;
3815
3816 default:
3817 AssertFatalMsgFailed(("enmKind=%d iUser=%d iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
3818 }
3819 PGM_DYNMAP_UNUSED_HINT_VM(pPool->CTX_SUFF(pVM), u.pau64);
3820}
3821
3822
3823/**
3824 * Clears all users of a page.
3825 */
3826static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3827{
3828 /*
3829 * Free all the user records.
3830 */
3831 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3832
3833 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3834 uint16_t i = pPage->iUserHead;
3835 while (i != NIL_PGMPOOL_USER_INDEX)
3836 {
3837 /* Clear enter in user table. */
3838 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3839
3840 /* Free it. */
3841 const uint16_t iNext = paUsers[i].iNext;
3842 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3843 paUsers[i].iNext = pPool->iUserFreeHead;
3844 pPool->iUserFreeHead = i;
3845
3846 /* Next. */
3847 i = iNext;
3848 }
3849 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3850}
3851
3852
3853/**
3854 * Allocates a new physical cross reference extent.
3855 *
3856 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3857 * @param pVM The cross context VM structure.
3858 * @param piPhysExt Where to store the phys ext index.
3859 */
3860PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVMCC pVM, uint16_t *piPhysExt)
3861{
3862 PGM_LOCK_ASSERT_OWNER(pVM);
3863 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3864 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3865 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3866 {
3867 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3868 return NULL;
3869 }
3870 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3871 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3872 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3873 *piPhysExt = iPhysExt;
3874 return pPhysExt;
3875}
3876
3877
3878/**
3879 * Frees a physical cross reference extent.
3880 *
3881 * @param pVM The cross context VM structure.
3882 * @param iPhysExt The extent to free.
3883 */
3884void pgmPoolTrackPhysExtFree(PVMCC pVM, uint16_t iPhysExt)
3885{
3886 PGM_LOCK_ASSERT_OWNER(pVM);
3887 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3888 Assert(iPhysExt < pPool->cMaxPhysExts);
3889 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3890 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3891 {
3892 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3893 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3894 }
3895 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3896 pPool->iPhysExtFreeHead = iPhysExt;
3897}
3898
3899
3900/**
3901 * Frees a physical cross reference extent.
3902 *
3903 * @param pVM The cross context VM structure.
3904 * @param iPhysExt The extent to free.
3905 */
3906void pgmPoolTrackPhysExtFreeList(PVMCC pVM, uint16_t iPhysExt)
3907{
3908 PGM_LOCK_ASSERT_OWNER(pVM);
3909 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3910
3911 const uint16_t iPhysExtStart = iPhysExt;
3912 PPGMPOOLPHYSEXT pPhysExt;
3913 do
3914 {
3915 Assert(iPhysExt < pPool->cMaxPhysExts);
3916 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3917 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3918 {
3919 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3920 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3921 }
3922
3923 /* next */
3924 iPhysExt = pPhysExt->iNext;
3925 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3926
3927 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3928 pPool->iPhysExtFreeHead = iPhysExtStart;
3929}
3930
3931
3932/**
3933 * Insert a reference into a list of physical cross reference extents.
3934 *
3935 * @returns The new tracking data for PGMPAGE.
3936 *
3937 * @param pVM The cross context VM structure.
3938 * @param iPhysExt The physical extent index of the list head.
3939 * @param iShwPT The shadow page table index.
3940 * @param iPte Page table entry
3941 *
3942 */
3943static uint16_t pgmPoolTrackPhysExtInsert(PVMCC pVM, uint16_t iPhysExt, uint16_t iShwPT, uint16_t iPte)
3944{
3945 PGM_LOCK_ASSERT_OWNER(pVM);
3946 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3947 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3948
3949 /*
3950 * Special common cases.
3951 */
3952 if (paPhysExts[iPhysExt].aidx[1] == NIL_PGMPOOL_IDX)
3953 {
3954 paPhysExts[iPhysExt].aidx[1] = iShwPT;
3955 paPhysExts[iPhysExt].apte[1] = iPte;
3956 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany);
3957 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,%d pte %d,}\n", iPhysExt, iShwPT, iPte));
3958 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3959 }
3960 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3961 {
3962 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3963 paPhysExts[iPhysExt].apte[2] = iPte;
3964 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany);
3965 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d pte %d}\n", iPhysExt, iShwPT, iPte));
3966 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3967 }
3968 AssertCompile(RT_ELEMENTS(paPhysExts[iPhysExt].aidx) == 3);
3969
3970 /*
3971 * General treatment.
3972 */
3973 const uint16_t iPhysExtStart = iPhysExt;
3974 unsigned cMax = 15;
3975 for (;;)
3976 {
3977 Assert(iPhysExt < pPool->cMaxPhysExts);
3978 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3979 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3980 {
3981 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3982 paPhysExts[iPhysExt].apte[i] = iPte;
3983 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany);
3984 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d pte %d} i=%d cMax=%d\n", iPhysExt, iShwPT, iPte, i, cMax));
3985 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3986 }
3987 if (!--cMax)
3988 {
3989 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackOverflows);
3990 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3991 LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
3992 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3993 }
3994
3995 /* advance */
3996 iPhysExt = paPhysExts[iPhysExt].iNext;
3997 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3998 break;
3999 }
4000
4001 /*
4002 * Add another extent to the list.
4003 */
4004 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
4005 if (!pNew)
4006 {
4007 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackNoExtentsLeft);
4008 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
4009 LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
4010 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4011 }
4012 pNew->iNext = iPhysExtStart;
4013 pNew->aidx[0] = iShwPT;
4014 pNew->apte[0] = iPte;
4015 LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d pte %d}->%d\n", iPhysExt, iShwPT, iPte, iPhysExtStart));
4016 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4017}
4018
4019
4020/**
4021 * Add a reference to guest physical page where extents are in use.
4022 *
4023 * @returns The new tracking data for PGMPAGE.
4024 *
4025 * @param pVM The cross context VM structure.
4026 * @param pPhysPage Pointer to the aPages entry in the ram range.
4027 * @param u16 The ram range flags (top 16-bits).
4028 * @param iShwPT The shadow page table index.
4029 * @param iPte Page table entry
4030 */
4031uint16_t pgmPoolTrackPhysExtAddref(PVMCC pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte)
4032{
4033 PGM_LOCK_VOID(pVM);
4034 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
4035 {
4036 /*
4037 * Convert to extent list.
4038 */
4039 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
4040 uint16_t iPhysExt;
4041 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
4042 if (pPhysExt)
4043 {
4044 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
4045 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliased);
4046 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
4047 pPhysExt->apte[0] = PGM_PAGE_GET_PTE_INDEX(pPhysPage);
4048 pPhysExt->aidx[1] = iShwPT;
4049 pPhysExt->apte[1] = iPte;
4050 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4051 }
4052 else
4053 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4054 }
4055 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
4056 {
4057 /*
4058 * Insert into the extent list.
4059 */
4060 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT, iPte);
4061 }
4062 else
4063 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedLots);
4064 PGM_UNLOCK(pVM);
4065 return u16;
4066}
4067
4068
4069/**
4070 * Clear references to guest physical memory.
4071 *
4072 * @param pPool The pool.
4073 * @param pPage The page.
4074 * @param pPhysPage Pointer to the aPages entry in the ram range.
4075 * @param iPte Shadow PTE index
4076 */
4077void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage, uint16_t iPte)
4078{
4079 PVMCC pVM = pPool->CTX_SUFF(pVM);
4080 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
4081 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
4082
4083 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
4084 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
4085 {
4086 PGM_LOCK_VOID(pVM);
4087
4088 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
4089 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4090 do
4091 {
4092 Assert(iPhysExt < pPool->cMaxPhysExts);
4093
4094 /*
4095 * Look for the shadow page and check if it's all freed.
4096 */
4097 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4098 {
4099 if ( paPhysExts[iPhysExt].aidx[i] == pPage->idx
4100 && paPhysExts[iPhysExt].apte[i] == iPte)
4101 {
4102 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
4103 paPhysExts[iPhysExt].apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
4104
4105 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4106 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
4107 {
4108 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
4109 PGM_UNLOCK(pVM);
4110 return;
4111 }
4112
4113 /* we can free the node. */
4114 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
4115 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
4116 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
4117 {
4118 /* lonely node */
4119 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4120 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
4121 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
4122 }
4123 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
4124 {
4125 /* head */
4126 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
4127 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
4128 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4129 }
4130 else
4131 {
4132 /* in list */
4133 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d in list\n", pPhysPage, pPage->idx));
4134 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
4135 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4136 }
4137 iPhysExt = iPhysExtNext;
4138 PGM_UNLOCK(pVM);
4139 return;
4140 }
4141 }
4142
4143 /* next */
4144 iPhysExtPrev = iPhysExt;
4145 iPhysExt = paPhysExts[iPhysExt].iNext;
4146 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
4147
4148 PGM_UNLOCK(pVM);
4149 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
4150 }
4151 else /* nothing to do */
4152 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
4153}
4154
4155/**
4156 * Clear references to guest physical memory.
4157 *
4158 * This is the same as pgmPoolTracDerefGCPhysHint except that the guest
4159 * physical address is assumed to be correct, so the linear search can be
4160 * skipped and we can assert at an earlier point.
4161 *
4162 * @param pPool The pool.
4163 * @param pPage The page.
4164 * @param HCPhys The host physical address corresponding to the guest page.
4165 * @param GCPhys The guest physical address corresponding to HCPhys.
4166 * @param iPte Shadow PTE index
4167 */
4168static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys, uint16_t iPte)
4169{
4170 /*
4171 * Lookup the page and check if it checks out before derefing it.
4172 */
4173 PVMCC pVM = pPool->CTX_SUFF(pVM);
4174 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhys);
4175 if (pPhysPage)
4176 {
4177 Assert(PGM_PAGE_GET_HCPHYS(pPhysPage));
4178#ifdef LOG_ENABLED
4179 RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(pPhysPage);
4180 Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
4181#endif
4182 if (PGM_PAGE_GET_HCPHYS(pPhysPage) == HCPhys)
4183 {
4184 Assert(pPage->cPresent);
4185 Assert(pPool->cPresent);
4186 pPage->cPresent--;
4187 pPool->cPresent--;
4188 pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
4189 return;
4190 }
4191
4192 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp; found page has HCPhys=%RHp\n",
4193 HCPhys, GCPhys, PGM_PAGE_GET_HCPHYS(pPhysPage)));
4194 }
4195 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
4196}
4197
4198
4199/**
4200 * Clear references to guest physical memory.
4201 *
4202 * @param pPool The pool.
4203 * @param pPage The page.
4204 * @param HCPhys The host physical address corresponding to the guest page.
4205 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
4206 * @param iPte Shadow pte index
4207 */
4208void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte)
4209{
4210 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
4211
4212 /*
4213 * Try the hint first.
4214 */
4215 RTHCPHYS HCPhysHinted;
4216 PVMCC pVM = pPool->CTX_SUFF(pVM);
4217 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysHint);
4218 if (pPhysPage)
4219 {
4220 HCPhysHinted = PGM_PAGE_GET_HCPHYS(pPhysPage);
4221 Assert(HCPhysHinted);
4222 if (HCPhysHinted == HCPhys)
4223 {
4224 Assert(pPage->cPresent);
4225 Assert(pPool->cPresent);
4226 pPage->cPresent--;
4227 pPool->cPresent--;
4228 pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
4229 return;
4230 }
4231 }
4232 else
4233 HCPhysHinted = UINT64_C(0xdeadbeefdeadbeef);
4234
4235 /*
4236 * Damn, the hint didn't work. We'll have to do an expensive linear search.
4237 */
4238 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
4239 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
4240 while (pRam)
4241 {
4242 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4243 while (iPage-- > 0)
4244 {
4245 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
4246 {
4247 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
4248 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
4249 Assert(pPage->cPresent);
4250 Assert(pPool->cPresent);
4251 pPage->cPresent--;
4252 pPool->cPresent--;
4253 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage], iPte);
4254 return;
4255 }
4256 }
4257 pRam = pRam->CTX_SUFF(pNext);
4258 }
4259
4260 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp (Hinted page has HCPhys = %RHp)\n", HCPhys, GCPhysHint, HCPhysHinted));
4261}
4262
4263
4264/**
4265 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
4266 *
4267 * @param pPool The pool.
4268 * @param pPage The page.
4269 * @param pShwPT The shadow page table (mapping of the page).
4270 * @param pGstPT The guest page table.
4271 */
4272DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
4273{
4274 RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
4275 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4276 {
4277 const X86PGUINT uPte = pShwPT->a[i].u;
4278 Assert(!(uPte & RT_BIT_32(10)));
4279 if (uPte & X86_PTE_P)
4280 {
4281 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
4282 i, uPte & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
4283 pgmPoolTracDerefGCPhysHint(pPool, pPage, uPte & X86_PTE_PG_MASK, pGstPT->a[i].u & fPgMask, i);
4284 if (!pPage->cPresent)
4285 break;
4286 }
4287 }
4288}
4289
4290
4291/**
4292 * Clear references to guest physical memory in a PAE / 32-bit page table.
4293 *
4294 * @param pPool The pool.
4295 * @param pPage The page.
4296 * @param pShwPT The shadow page table (mapping of the page).
4297 * @param pGstPT The guest page table (just a half one).
4298 */
4299DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
4300{
4301 RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
4302 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4303 {
4304 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4305 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4306 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4307 {
4308 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
4309 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PG_MASK));
4310 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
4311 if (!pPage->cPresent)
4312 break;
4313 }
4314 }
4315}
4316
4317
4318/**
4319 * Clear references to guest physical memory in a PAE / PAE page table.
4320 *
4321 * @param pPool The pool.
4322 * @param pPage The page.
4323 * @param pShwPT The shadow page table (mapping of the page).
4324 * @param pGstPT The guest page table.
4325 */
4326DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
4327{
4328 RTGCPHYS const fPgMask = pPage->fA20Enabled ? X86_PTE_PAE_PG_MASK : X86_PTE_PAE_PG_MASK & ~RT_BIT_64(20);
4329 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4330 {
4331 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4332 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4333 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4334 {
4335 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
4336 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
4337 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
4338 if (!pPage->cPresent)
4339 break;
4340 }
4341 }
4342}
4343
4344
4345/**
4346 * Clear references to guest physical memory in a 32-bit / 4MB page table.
4347 *
4348 * @param pPool The pool.
4349 * @param pPage The page.
4350 * @param pShwPT The shadow page table (mapping of the page).
4351 */
4352DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
4353{
4354 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4355 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4356 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4357 {
4358 const X86PGUINT uPte = pShwPT->a[i].u;
4359 Assert(!(uPte & RT_BIT_32(10)));
4360 if (uPte & X86_PTE_P)
4361 {
4362 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
4363 i, uPte & X86_PTE_PG_MASK, GCPhys));
4364 pgmPoolTracDerefGCPhys(pPool, pPage, uPte & X86_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
4365 if (!pPage->cPresent)
4366 break;
4367 }
4368 }
4369}
4370
4371
4372/**
4373 * Clear references to guest physical memory in a PAE / 2/4MB page table.
4374 *
4375 * @param pPool The pool.
4376 * @param pPage The page.
4377 * @param pShwPT The shadow page table (mapping of the page).
4378 */
4379DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT)
4380{
4381 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4382 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4383 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4384 {
4385 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4386 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4387 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4388 {
4389 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
4390 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys));
4391 pgmPoolTracDerefGCPhys(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys & GCPhysA20Mask, i);
4392 if (!pPage->cPresent)
4393 break;
4394 }
4395 }
4396}
4397
4398
4399/**
4400 * Clear references to shadowed pages in an EPT page table.
4401 *
4402 * @param pPool The pool.
4403 * @param pPage The page.
4404 * @param pShwPT The shadow page directory pointer table (mapping of the
4405 * page).
4406 */
4407DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
4408{
4409 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4410 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4411 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4412 {
4413 X86PGPAEUINT const uPte = pShwPT->a[i].u;
4414 Assert((uPte & UINT64_C(0xfff0000000000f80)) == 0);
4415 if (uPte & EPT_E_READ)
4416 {
4417 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
4418 i, uPte & EPT_PTE_PG_MASK, pPage->GCPhys));
4419 pgmPoolTracDerefGCPhys(pPool, pPage, uPte & EPT_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
4420 if (!pPage->cPresent)
4421 break;
4422 }
4423 }
4424}
4425
4426
4427/**
4428 * Clear references to shadowed pages in a 32 bits page directory.
4429 *
4430 * @param pPool The pool.
4431 * @param pPage The page.
4432 * @param pShwPD The shadow page directory (mapping of the page).
4433 */
4434DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
4435{
4436 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4437 {
4438 X86PGUINT const uPde = pShwPD->a[i].u;
4439 if (uPde & X86_PDE_P)
4440 {
4441 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
4442 if (pSubPage)
4443 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4444 else
4445 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
4446 }
4447 }
4448}
4449
4450
4451/**
4452 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
4453 *
4454 * @param pPool The pool.
4455 * @param pPage The page.
4456 * @param pShwPD The shadow page directory (mapping of the page).
4457 */
4458DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
4459{
4460 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4461 {
4462 X86PGPAEUINT const uPde = pShwPD->a[i].u;
4463 if (uPde & X86_PDE_P)
4464 {
4465#ifdef PGM_WITH_LARGE_PAGES
4466 if (uPde & X86_PDE_PS)
4467 {
4468 Log4(("pgmPoolTrackDerefPDPae: i=%d pde=%RX64 GCPhys=%RX64\n",
4469 i, uPde & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
4470 pgmPoolTracDerefGCPhys(pPool, pPage, uPde & X86_PDE2M_PAE_PG_MASK,
4471 pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
4472 i);
4473 }
4474 else
4475#endif
4476 {
4477 Assert((uPde & (X86_PDE_PAE_MBZ_MASK_NX | UINT64_C(0x7ff0000000000000))) == 0);
4478 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & X86_PDE_PAE_PG_MASK);
4479 if (pSubPage)
4480 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4481 else
4482 AssertFatalMsgFailed(("%RX64\n", uPde & X86_PDE_PAE_PG_MASK));
4483 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4484 }
4485 }
4486 }
4487}
4488
4489
4490/**
4491 * Clear references to shadowed pages in a PAE page directory pointer table.
4492 *
4493 * @param pPool The pool.
4494 * @param pPage The page.
4495 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4496 */
4497DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4498{
4499 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4500 {
4501 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4502 Assert((uPdpe & (X86_PDPE_PAE_MBZ_MASK | UINT64_C(0x7ff0000000000200))) == 0);
4503 if (uPdpe & X86_PDPE_P)
4504 {
4505 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & X86_PDPE_PG_MASK);
4506 if (pSubPage)
4507 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4508 else
4509 AssertFatalMsgFailed(("%RX64\n", uPdpe & X86_PDPE_PG_MASK));
4510 }
4511 }
4512}
4513
4514
4515/**
4516 * Clear references to shadowed pages in a 64-bit page directory pointer table.
4517 *
4518 * @param pPool The pool.
4519 * @param pPage The page.
4520 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4521 */
4522DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4523{
4524 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4525 {
4526 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4527 Assert((uPdpe & (X86_PDPE_LM_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4528 if (uPdpe & X86_PDPE_P)
4529 {
4530 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & X86_PDPE_PG_MASK);
4531 if (pSubPage)
4532 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4533 else
4534 AssertFatalMsgFailed(("%RX64\n", uPdpe & X86_PDPE_PG_MASK));
4535 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4536 }
4537 }
4538}
4539
4540
4541/**
4542 * Clear references to shadowed pages in a 64-bit level 4 page table.
4543 *
4544 * @param pPool The pool.
4545 * @param pPage The page.
4546 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4547 */
4548DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
4549{
4550 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
4551 {
4552 X86PGPAEUINT const uPml4e = pShwPML4->a[i].u;
4553 Assert((uPml4e & (X86_PML4E_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4554 if (uPml4e & X86_PML4E_P)
4555 {
4556 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPml4e & X86_PDPE_PG_MASK);
4557 if (pSubPage)
4558 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4559 else
4560 AssertFatalMsgFailed(("%RX64\n", uPml4e & X86_PML4E_PG_MASK));
4561 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4562 }
4563 }
4564}
4565
4566
4567/**
4568 * Clear references to shadowed pages in an EPT page directory.
4569 *
4570 * @param pPool The pool.
4571 * @param pPage The page.
4572 * @param pShwPD The shadow page directory (mapping of the page).
4573 */
4574DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
4575{
4576 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4577 {
4578 X86PGPAEUINT const uPde = pShwPD->a[i].u;
4579 Assert((uPde & UINT64_C(0xfff0000000000f80)) == 0);
4580 if (uPde & EPT_E_READ)
4581 {
4582#ifdef PGM_WITH_LARGE_PAGES
4583 if (uPde & EPT_E_LEAF)
4584 {
4585 Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n",
4586 i, uPde & EPT_PDE2M_PG_MASK, pPage->GCPhys));
4587 pgmPoolTracDerefGCPhys(pPool, pPage, uPde & EPT_PDE2M_PG_MASK,
4588 pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
4589 i);
4590 }
4591 else
4592#endif
4593 {
4594 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & EPT_PDE_PG_MASK);
4595 if (pSubPage)
4596 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4597 else
4598 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
4599 }
4600 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4601 }
4602 }
4603}
4604
4605
4606/**
4607 * Clear references to shadowed pages in an EPT page directory pointer table.
4608 *
4609 * @param pPool The pool.
4610 * @param pPage The page.
4611 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4612 */
4613DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
4614{
4615 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4616 {
4617 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4618 Assert((uPdpe & UINT64_C(0xfff0000000000f80)) == 0);
4619 if (uPdpe & EPT_E_READ)
4620 {
4621 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & EPT_PDPTE_PG_MASK);
4622 if (pSubPage)
4623 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4624 else
4625 AssertFatalMsgFailed(("%RX64\n", uPdpe & EPT_PDPTE_PG_MASK));
4626 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4627 }
4628 }
4629}
4630
4631
4632/**
4633 * Clears all references made by this page.
4634 *
4635 * This includes other shadow pages and GC physical addresses.
4636 *
4637 * @param pPool The pool.
4638 * @param pPage The page.
4639 */
4640static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4641{
4642 /*
4643 * Map the shadow page and take action according to the page kind.
4644 */
4645 PVMCC pVM = pPool->CTX_SUFF(pVM);
4646 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4647 switch (pPage->enmKind)
4648 {
4649 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4650 {
4651 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4652 void *pvGst;
4653 int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4654 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
4655 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4656 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4657 break;
4658 }
4659
4660 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4661 {
4662 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4663 void *pvGst;
4664 int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4665 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
4666 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4667 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4668 break;
4669 }
4670
4671 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4672 {
4673 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4674 void *pvGst;
4675 int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4676 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
4677 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4678 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4679 break;
4680 }
4681
4682 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
4683 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4684 {
4685 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4686 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
4687 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4688 break;
4689 }
4690
4691 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
4692 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4693 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4694 {
4695 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4696 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PPGMSHWPTPAE)pvShw);
4697 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4698 break;
4699 }
4700
4701 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4702 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4703 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4704 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4705 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4706 case PGMPOOLKIND_PAE_PD_PHYS:
4707 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4708 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4709 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
4710 break;
4711
4712 case PGMPOOLKIND_32BIT_PD_PHYS:
4713 case PGMPOOLKIND_32BIT_PD:
4714 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
4715 break;
4716
4717 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4718 case PGMPOOLKIND_PAE_PDPT:
4719 case PGMPOOLKIND_PAE_PDPT_PHYS:
4720 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
4721 break;
4722
4723 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4724 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4725 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
4726 break;
4727
4728 case PGMPOOLKIND_64BIT_PML4:
4729 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
4730 break;
4731
4732 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4733 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
4734 break;
4735
4736 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4737 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
4738 break;
4739
4740 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4741 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
4742 break;
4743
4744 default:
4745 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
4746 }
4747
4748 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
4749 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4750 ASMMemZeroPage(pvShw);
4751 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4752 pPage->fZeroed = true;
4753 Assert(!pPage->cPresent);
4754 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
4755}
4756
4757
4758/**
4759 * Flushes a pool page.
4760 *
4761 * This moves the page to the free list after removing all user references to it.
4762 *
4763 * @returns VBox status code.
4764 * @retval VINF_SUCCESS on success.
4765 * @param pPool The pool.
4766 * @param pPage The shadow page.
4767 * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!)
4768 */
4769int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush)
4770{
4771 PVMCC pVM = pPool->CTX_SUFF(pVM);
4772 bool fFlushRequired = false;
4773
4774 int rc = VINF_SUCCESS;
4775 STAM_PROFILE_START(&pPool->StatFlushPage, f);
4776 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
4777 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
4778
4779 /*
4780 * Reject any attempts at flushing any of the special root pages (shall
4781 * not happen).
4782 */
4783 AssertMsgReturn(pPage->idx >= PGMPOOL_IDX_FIRST,
4784 ("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n",
4785 pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx),
4786 VINF_SUCCESS);
4787
4788 PGM_LOCK_VOID(pVM);
4789
4790 /*
4791 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4792 */
4793 if (pgmPoolIsPageLocked(pPage))
4794 {
4795 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4796 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4797 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4798 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4799 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4800 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4801 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4802 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4803 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD
4804 || pPage->enmKind == PGMPOOLKIND_ROOT_NESTED,
4805 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
4806 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4807 PGM_UNLOCK(pVM);
4808 return VINF_SUCCESS;
4809 }
4810
4811 /*
4812 * Mark the page as being in need of an ASMMemZeroPage().
4813 */
4814 pPage->fZeroed = false;
4815
4816#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4817 if (pPage->fDirty)
4818 pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirtyEntry, false /* do not remove */);
4819#endif
4820
4821 /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */
4822 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
4823 fFlushRequired = true;
4824
4825 /*
4826 * Clear the page.
4827 */
4828 pgmPoolTrackClearPageUsers(pPool, pPage);
4829 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4830 pgmPoolTrackDeref(pPool, pPage);
4831 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4832
4833 /*
4834 * Flush it from the cache.
4835 */
4836 pgmPoolCacheFlushPage(pPool, pPage);
4837
4838 /*
4839 * Deregistering the monitoring.
4840 */
4841 if (pPage->fMonitored)
4842 rc = pgmPoolMonitorFlush(pPool, pPage);
4843
4844 /*
4845 * Free the page.
4846 */
4847 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4848 pPage->iNext = pPool->iFreeHead;
4849 pPool->iFreeHead = pPage->idx;
4850 pPage->enmKind = PGMPOOLKIND_FREE;
4851 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4852 pPage->GCPhys = NIL_RTGCPHYS;
4853 pPage->fReusedFlushPending = false;
4854
4855 pPool->cUsedPages--;
4856
4857 /* Flush the TLBs of all VCPUs if required. */
4858 if ( fFlushRequired
4859 && fFlush)
4860 {
4861 PGM_INVL_ALL_VCPU_TLBS(pVM);
4862 }
4863
4864 PGM_UNLOCK(pVM);
4865 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4866 return rc;
4867}
4868
4869
4870/**
4871 * Frees a usage of a pool page.
4872 *
4873 * The caller is responsible to updating the user table so that it no longer
4874 * references the shadow page.
4875 *
4876 * @param pPool The pool.
4877 * @param pPage The shadow page.
4878 * @param iUser The shadow page pool index of the user table.
4879 * NIL_PGMPOOL_IDX for root pages.
4880 * @param iUserTable The index into the user table (shadowed). Ignored if
4881 * root page.
4882 */
4883void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4884{
4885 PVMCC pVM = pPool->CTX_SUFF(pVM);
4886
4887 STAM_PROFILE_START(&pPool->StatFree, a);
4888 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%d iUserTable=%#x\n",
4889 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4890 AssertReturnVoid(pPage->idx >= PGMPOOL_IDX_FIRST); /* paranoia (#6349) */
4891
4892 PGM_LOCK_VOID(pVM);
4893 if (iUser != NIL_PGMPOOL_IDX)
4894 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4895 if (!pPage->fCached)
4896 pgmPoolFlushPage(pPool, pPage);
4897 PGM_UNLOCK(pVM);
4898 STAM_PROFILE_STOP(&pPool->StatFree, a);
4899}
4900
4901
4902/**
4903 * Makes one or more free page free.
4904 *
4905 * @returns VBox status code.
4906 * @retval VINF_SUCCESS on success.
4907 *
4908 * @param pPool The pool.
4909 * @param enmKind Page table kind
4910 * @param iUser The user of the page.
4911 */
4912static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4913{
4914 PVMCC pVM = pPool->CTX_SUFF(pVM);
4915 LogFlow(("pgmPoolMakeMoreFreePages: enmKind=%d iUser=%d\n", enmKind, iUser));
4916 NOREF(enmKind);
4917
4918 /*
4919 * If the pool isn't full grown yet, expand it.
4920 */
4921 if (pPool->cCurPages < pPool->cMaxPages)
4922 {
4923 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4924#ifdef IN_RING3
4925 int rc = PGMR3PoolGrow(pVM, VMMGetCpu(pVM));
4926#else
4927 int rc = PGMR0PoolGrow(pVM, VMMGetCpuId(pVM));
4928#endif
4929 if (RT_FAILURE(rc))
4930 return rc;
4931 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4932 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4933 return VINF_SUCCESS;
4934 }
4935
4936 /*
4937 * Free one cached page.
4938 */
4939 return pgmPoolCacheFreeOne(pPool, iUser);
4940}
4941
4942
4943/**
4944 * Allocates a page from the pool.
4945 *
4946 * This page may actually be a cached page and not in need of any processing
4947 * on the callers part.
4948 *
4949 * @returns VBox status code.
4950 * @retval VINF_SUCCESS if a NEW page was allocated.
4951 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4952 *
4953 * @param pVM The cross context VM structure.
4954 * @param GCPhys The GC physical address of the page we're gonna shadow.
4955 * For 4MB and 2MB PD entries, it's the first address the
4956 * shadow PT is covering.
4957 * @param enmKind The kind of mapping.
4958 * @param enmAccess Access type for the mapping (only relevant for big pages)
4959 * @param fA20Enabled Whether the A20 gate is enabled or not.
4960 * @param iUser The shadow page pool index of the user table. Root
4961 * pages should pass NIL_PGMPOOL_IDX.
4962 * @param iUserTable The index into the user table (shadowed). Ignored for
4963 * root pages (iUser == NIL_PGMPOOL_IDX).
4964 * @param fLockPage Lock the page
4965 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4966 */
4967int pgmPoolAlloc(PVMCC pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
4968 uint16_t iUser, uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage)
4969{
4970 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4971 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4972 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%d iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4973 *ppPage = NULL;
4974 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4975 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4976 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
4977
4978 PGM_LOCK_VOID(pVM);
4979
4980 if (pPool->fCacheEnabled)
4981 {
4982 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, fA20Enabled, iUser, iUserTable, ppPage);
4983 if (RT_SUCCESS(rc2))
4984 {
4985 if (fLockPage)
4986 pgmPoolLockPage(pPool, *ppPage);
4987 PGM_UNLOCK(pVM);
4988 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4989 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4990 return rc2;
4991 }
4992 }
4993
4994 /*
4995 * Allocate a new one.
4996 */
4997 int rc = VINF_SUCCESS;
4998 uint16_t iNew = pPool->iFreeHead;
4999 if (iNew == NIL_PGMPOOL_IDX)
5000 {
5001 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
5002 if (RT_FAILURE(rc))
5003 {
5004 PGM_UNLOCK(pVM);
5005 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
5006 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5007 return rc;
5008 }
5009 iNew = pPool->iFreeHead;
5010 AssertReleaseMsgReturn(iNew != NIL_PGMPOOL_IDX, ("iNew=%#x\n", iNew), VERR_PGM_POOL_IPE);
5011 }
5012
5013 /* unlink the free head */
5014 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
5015 pPool->iFreeHead = pPage->iNext;
5016 pPage->iNext = NIL_PGMPOOL_IDX;
5017
5018 /*
5019 * Initialize it.
5020 */
5021 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
5022 pPage->enmKind = enmKind;
5023 pPage->enmAccess = enmAccess;
5024 pPage->GCPhys = GCPhys;
5025 pPage->fA20Enabled = fA20Enabled;
5026 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
5027 pPage->fMonitored = false;
5028 pPage->fCached = false;
5029 pPage->fDirty = false;
5030 pPage->fReusedFlushPending = false;
5031 pPage->cModifications = 0;
5032 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5033 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5034 pPage->cPresent = 0;
5035 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
5036 pPage->idxDirtyEntry = 0;
5037 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
5038 pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
5039 pPage->cLastAccessHandler = 0;
5040 pPage->cLocked = 0;
5041# ifdef VBOX_STRICT
5042 pPage->GCPtrDirtyFault = NIL_RTGCPTR;
5043# endif
5044
5045 /*
5046 * Insert into the tracking and cache. If this fails, free the page.
5047 */
5048 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
5049 if (RT_FAILURE(rc3))
5050 {
5051 pPool->cUsedPages--;
5052 pPage->enmKind = PGMPOOLKIND_FREE;
5053 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5054 pPage->GCPhys = NIL_RTGCPHYS;
5055 pPage->iNext = pPool->iFreeHead;
5056 pPool->iFreeHead = pPage->idx;
5057 PGM_UNLOCK(pVM);
5058 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5059 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
5060 return rc3;
5061 }
5062
5063 /*
5064 * Commit the allocation, clear the page and return.
5065 */
5066#ifdef VBOX_WITH_STATISTICS
5067 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
5068 pPool->cUsedPagesHigh = pPool->cUsedPages;
5069#endif
5070
5071 if (!pPage->fZeroed)
5072 {
5073 STAM_PROFILE_START(&pPool->StatZeroPage, z);
5074 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
5075 ASMMemZeroPage(pv);
5076 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
5077 }
5078
5079 *ppPage = pPage;
5080 if (fLockPage)
5081 pgmPoolLockPage(pPool, pPage);
5082 PGM_UNLOCK(pVM);
5083 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
5084 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
5085 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5086 return rc;
5087}
5088
5089
5090/**
5091 * Frees a usage of a pool page.
5092 *
5093 * @param pVM The cross context VM structure.
5094 * @param HCPhys The HC physical address of the shadow page.
5095 * @param iUser The shadow page pool index of the user table.
5096 * NIL_PGMPOOL_IDX if root page.
5097 * @param iUserTable The index into the user table (shadowed). Ignored if
5098 * root page.
5099 */
5100void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
5101{
5102 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%d iUserTable=%#x\n", HCPhys, iUser, iUserTable));
5103 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5104 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
5105}
5106
5107
5108/**
5109 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
5110 *
5111 * @returns Pointer to the shadow page structure.
5112 * @param pPool The pool.
5113 * @param HCPhys The HC physical address of the shadow page.
5114 */
5115PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
5116{
5117 PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
5118
5119 /*
5120 * Look up the page.
5121 */
5122 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5123
5124 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
5125 return pPage;
5126}
5127
5128
5129/**
5130 * Internal worker for finding a page for debugging purposes, no assertions.
5131 *
5132 * @returns Pointer to the shadow page structure. NULL on if not found.
5133 * @param pPool The pool.
5134 * @param HCPhys The HC physical address of the shadow page.
5135 */
5136PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys)
5137{
5138 PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
5139 return (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5140}
5141
5142
5143/**
5144 * Internal worker for PGM_HCPHYS_2_PTR.
5145 *
5146 * @returns VBox status code.
5147 * @param pVM The cross context VM structure.
5148 * @param HCPhys The HC physical address of the shadow page.
5149 * @param ppv Where to return the address.
5150 */
5151int pgmPoolHCPhys2Ptr(PVM pVM, RTHCPHYS HCPhys, void **ppv)
5152{
5153 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pVM->pgm.s.CTX_SUFF(pPool)->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5154 AssertMsgReturn(pPage && pPage->enmKind != PGMPOOLKIND_FREE,
5155 ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0),
5156 VERR_PGM_POOL_GET_PAGE_FAILED);
5157 *ppv = (uint8_t *)pPage->CTX_SUFF(pvPage) + (HCPhys & PAGE_OFFSET_MASK);
5158 return VINF_SUCCESS;
5159}
5160
5161#ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */
5162
5163/**
5164 * Flush the specified page if present
5165 *
5166 * @param pVM The cross context VM structure.
5167 * @param GCPhys Guest physical address of the page to flush
5168 */
5169void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys)
5170{
5171 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5172
5173 VM_ASSERT_EMT(pVM);
5174
5175 /*
5176 * Look up the GCPhys in the hash.
5177 */
5178 GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
5179 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
5180 if (i == NIL_PGMPOOL_IDX)
5181 return;
5182
5183 do
5184 {
5185 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5186 if (pPage->GCPhys - GCPhys < PAGE_SIZE)
5187 {
5188 switch (pPage->enmKind)
5189 {
5190 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5191 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5192 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5193 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5194 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5195 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5196 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5197 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5198 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5199 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5200 case PGMPOOLKIND_64BIT_PML4:
5201 case PGMPOOLKIND_32BIT_PD:
5202 case PGMPOOLKIND_PAE_PDPT:
5203 {
5204 Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys));
5205# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5206 if (pPage->fDirty)
5207 STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage);
5208 else
5209# endif
5210 STAM_COUNTER_INC(&pPool->StatForceFlushPage);
5211 Assert(!pgmPoolIsPageLocked(pPage));
5212 pgmPoolMonitorChainFlush(pPool, pPage);
5213 return;
5214 }
5215
5216 /* ignore, no monitoring. */
5217 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5218 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5219 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5220 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5221 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5222 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5223 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5224 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5225 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5226 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5227 case PGMPOOLKIND_ROOT_NESTED:
5228 case PGMPOOLKIND_PAE_PD_PHYS:
5229 case PGMPOOLKIND_PAE_PDPT_PHYS:
5230 case PGMPOOLKIND_32BIT_PD_PHYS:
5231 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5232 break;
5233
5234 default:
5235 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
5236 }
5237 }
5238
5239 /* next */
5240 i = pPage->iNext;
5241 } while (i != NIL_PGMPOOL_IDX);
5242 return;
5243}
5244
5245
5246/**
5247 * Reset CPU on hot plugging.
5248 *
5249 * @param pVM The cross context VM structure.
5250 * @param pVCpu The cross context virtual CPU structure.
5251 */
5252void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
5253{
5254 pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
5255
5256 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5257 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5258 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5259}
5260
5261
5262/**
5263 * Flushes the entire cache.
5264 *
5265 * It will assert a global CR3 flush (FF) and assumes the caller is aware of
5266 * this and execute this CR3 flush.
5267 *
5268 * @param pVM The cross context VM structure.
5269 */
5270void pgmR3PoolReset(PVM pVM)
5271{
5272 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5273
5274 PGM_LOCK_ASSERT_OWNER(pVM);
5275 STAM_PROFILE_START(&pPool->StatR3Reset, a);
5276 LogFlow(("pgmR3PoolReset:\n"));
5277
5278 /*
5279 * If there are no pages in the pool, there is nothing to do.
5280 */
5281 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
5282 {
5283 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5284 return;
5285 }
5286
5287 /*
5288 * Exit the shadow mode since we're going to clear everything,
5289 * including the root page.
5290 */
5291 VMCC_FOR_EACH_VMCPU(pVM)
5292 pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
5293 VMCC_FOR_EACH_VMCPU_END(pVM);
5294
5295
5296 /*
5297 * Nuke the free list and reinsert all pages into it.
5298 */
5299 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
5300 {
5301 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5302
5303 if (pPage->fMonitored)
5304 pgmPoolMonitorFlush(pPool, pPage);
5305 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5306 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5307 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
5308 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
5309 pPage->GCPhys = NIL_RTGCPHYS;
5310 pPage->enmKind = PGMPOOLKIND_FREE;
5311 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5312 Assert(pPage->idx == i);
5313 pPage->iNext = i + 1;
5314 pPage->fA20Enabled = true;
5315 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
5316 pPage->fSeenNonGlobal = false;
5317 pPage->fMonitored = false;
5318 pPage->fDirty = false;
5319 pPage->fCached = false;
5320 pPage->fReusedFlushPending = false;
5321 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
5322 pPage->cPresent = 0;
5323 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
5324 pPage->cModifications = 0;
5325 pPage->iAgeNext = NIL_PGMPOOL_IDX;
5326 pPage->iAgePrev = NIL_PGMPOOL_IDX;
5327 pPage->idxDirtyEntry = 0;
5328 pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
5329 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
5330 pPage->cLastAccessHandler = 0;
5331 pPage->cLocked = 0;
5332# ifdef VBOX_STRICT
5333 pPage->GCPtrDirtyFault = NIL_RTGCPTR;
5334# endif
5335 }
5336 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
5337 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
5338 pPool->cUsedPages = 0;
5339
5340 /*
5341 * Zap and reinitialize the user records.
5342 */
5343 pPool->cPresent = 0;
5344 pPool->iUserFreeHead = 0;
5345 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
5346 const unsigned cMaxUsers = pPool->cMaxUsers;
5347 for (unsigned i = 0; i < cMaxUsers; i++)
5348 {
5349 paUsers[i].iNext = i + 1;
5350 paUsers[i].iUser = NIL_PGMPOOL_IDX;
5351 paUsers[i].iUserTable = 0xfffffffe;
5352 }
5353 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
5354
5355 /*
5356 * Clear all the GCPhys links and rebuild the phys ext free list.
5357 */
5358 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
5359 pRam;
5360 pRam = pRam->CTX_SUFF(pNext))
5361 {
5362 unsigned iPage = pRam->cb >> PAGE_SHIFT;
5363 while (iPage-- > 0)
5364 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
5365 }
5366
5367 pPool->iPhysExtFreeHead = 0;
5368 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
5369 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
5370 for (unsigned i = 0; i < cMaxPhysExts; i++)
5371 {
5372 paPhysExts[i].iNext = i + 1;
5373 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
5374 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5375 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
5376 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5377 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
5378 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5379 }
5380 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
5381
5382 /*
5383 * Just zap the modified list.
5384 */
5385 pPool->cModifiedPages = 0;
5386 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
5387
5388 /*
5389 * Clear the GCPhys hash and the age list.
5390 */
5391 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
5392 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
5393 pPool->iAgeHead = NIL_PGMPOOL_IDX;
5394 pPool->iAgeTail = NIL_PGMPOOL_IDX;
5395
5396# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5397 /* Clear all dirty pages. */
5398 pPool->idxFreeDirtyPage = 0;
5399 pPool->cDirtyPages = 0;
5400 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aidxDirtyPages); i++)
5401 pPool->aidxDirtyPages[i] = NIL_PGMPOOL_IDX;
5402# endif
5403
5404 /*
5405 * Reinsert active pages into the hash and ensure monitoring chains are correct.
5406 */
5407 VMCC_FOR_EACH_VMCPU(pVM)
5408 {
5409 /*
5410 * Re-enter the shadowing mode and assert Sync CR3 FF.
5411 */
5412 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5413 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5414 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5415 }
5416 VMCC_FOR_EACH_VMCPU_END(pVM);
5417
5418 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5419}
5420
5421#endif /* IN_RING3 */
5422
5423#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
5424/**
5425 * Stringifies a PGMPOOLKIND value.
5426 */
5427static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
5428{
5429 switch ((PGMPOOLKIND)enmKind)
5430 {
5431 case PGMPOOLKIND_INVALID:
5432 return "PGMPOOLKIND_INVALID";
5433 case PGMPOOLKIND_FREE:
5434 return "PGMPOOLKIND_FREE";
5435 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5436 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
5437 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5438 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
5439 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5440 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
5441 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5442 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
5443 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5444 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
5445 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5446 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
5447 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5448 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
5449 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5450 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
5451 case PGMPOOLKIND_32BIT_PD:
5452 return "PGMPOOLKIND_32BIT_PD";
5453 case PGMPOOLKIND_32BIT_PD_PHYS:
5454 return "PGMPOOLKIND_32BIT_PD_PHYS";
5455 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5456 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
5457 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5458 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
5459 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5460 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
5461 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5462 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
5463 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5464 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
5465 case PGMPOOLKIND_PAE_PD_PHYS:
5466 return "PGMPOOLKIND_PAE_PD_PHYS";
5467 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5468 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
5469 case PGMPOOLKIND_PAE_PDPT:
5470 return "PGMPOOLKIND_PAE_PDPT";
5471 case PGMPOOLKIND_PAE_PDPT_PHYS:
5472 return "PGMPOOLKIND_PAE_PDPT_PHYS";
5473 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5474 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
5475 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5476 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
5477 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5478 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
5479 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5480 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
5481 case PGMPOOLKIND_64BIT_PML4:
5482 return "PGMPOOLKIND_64BIT_PML4";
5483 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5484 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
5485 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5486 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
5487 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5488 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
5489 case PGMPOOLKIND_ROOT_NESTED:
5490 return "PGMPOOLKIND_ROOT_NESTED";
5491 }
5492 return "Unknown kind!";
5493}
5494#endif /* LOG_ENABLED || VBOX_STRICT */
5495
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette