VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/SELMAll.cpp@ 60034

Last change on this file since 60034 was 58126, checked in by vboxsync, 9 years ago

VMM: Fixed almost all the Doxygen warnings.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 39.6 KB
Line 
1/* $Id: SELMAll.cpp 58126 2015-10-08 20:59:48Z vboxsync $ */
2/** @file
3 * SELM All contexts.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_SELM
23#include <VBox/vmm/selm.h>
24#include <VBox/vmm/stam.h>
25#include <VBox/vmm/em.h>
26#include <VBox/vmm/mm.h>
27#include <VBox/vmm/hm.h>
28#include <VBox/vmm/pgm.h>
29#include <VBox/vmm/hm.h>
30#include "SELMInternal.h"
31#include <VBox/vmm/vm.h>
32#include <VBox/err.h>
33#include <VBox/param.h>
34#include <iprt/assert.h>
35#include <VBox/vmm/vmm.h>
36#include <iprt/x86.h>
37#include <iprt/string.h>
38
39#include "SELMInline.h"
40
41
42/*********************************************************************************************************************************
43* Global Variables *
44*********************************************************************************************************************************/
45#if defined(LOG_ENABLED) && defined(VBOX_WITH_RAW_MODE_NOT_R0)
46/** Segment register names. */
47static char const g_aszSRegNms[X86_SREG_COUNT][4] = { "ES", "CS", "SS", "DS", "FS", "GS" };
48#endif
49
50
51#ifndef IN_RING0
52
53# ifdef SELM_TRACK_GUEST_GDT_CHANGES
54/**
55 * @callback_method_impl{FNPGMVIRTHANDLER}
56 */
57PGM_ALL_CB2_DECL(VBOXSTRICTRC)
58selmGuestGDTWriteHandler(PVM pVM, PVMCPU pVCpu, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
59 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
60{
61 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
62 Log(("selmGuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
63 NOREF(pvPtr); NOREF(pvBuf); NOREF(enmOrigin); NOREF(pvUser);
64
65# ifdef IN_RING3
66 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
67 return VINF_PGM_HANDLER_DO_DEFAULT;
68
69# else /* IN_RC: */
70 /*
71 * Execute the write, doing necessary pre and post shadow GDT checks.
72 */
73 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
74 uint32_t offGuestGdt = pCtx->gdtr.pGdt - GCPtr;
75 selmRCGuestGdtPreWriteCheck(pVM, pVCpu, offGuestGdt, cbBuf, pCtx);
76 memcpy(pvBuf, pvPtr, cbBuf);
77 VBOXSTRICTRC rcStrict = selmRCGuestGdtPostWriteCheck(pVM, pVCpu, offGuestGdt, cbBuf, pCtx);
78 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
79 STAM_COUNTER_INC(&pVM->selm.s.StatRCWriteGuestGDTHandled);
80 else
81 STAM_COUNTER_INC(&pVM->selm.s.StatRCWriteGuestGDTUnhandled);
82 return rcStrict;
83# endif
84}
85# endif
86
87
88# ifdef SELM_TRACK_GUEST_LDT_CHANGES
89/**
90 * @callback_method_impl{FNPGMVIRTHANDLER}
91 */
92PGM_ALL_CB2_DECL(VBOXSTRICTRC)
93selmGuestLDTWriteHandler(PVM pVM, PVMCPU pVCpu, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
94 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
95{
96 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
97 Log(("selmGuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
98 NOREF(pvPtr); NOREF(pvBuf); NOREF(enmOrigin); NOREF(pvUser);
99
100 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
101# ifdef IN_RING3
102 return VINF_PGM_HANDLER_DO_DEFAULT;
103# else
104 STAM_COUNTER_INC(&pVM->selm.s.StatRCWriteGuestLDT);
105 return VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT;
106# endif
107}
108# endif
109
110
111# ifdef SELM_TRACK_GUEST_TSS_CHANGES
112/**
113 * @callback_method_impl{FNPGMVIRTHANDLER}
114 */
115PGM_ALL_CB2_DECL(VBOXSTRICTRC)
116selmGuestTSSWriteHandler(PVM pVM, PVMCPU pVCpu, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
117 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
118{
119 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
120 Log(("selmGuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
121 NOREF(pvBuf); NOREF(GCPtr); NOREF(cbBuf); NOREF(enmOrigin); NOREF(pvUser); NOREF(pvPtr);
122
123# ifdef IN_RING3
124 /** @todo This can be optimized by checking for the ESP0 offset and tracking TR
125 * reloads in REM (setting VM_FF_SELM_SYNC_TSS if TR is reloaded). We
126 * should probably also deregister the virtual handler if TR.base/size
127 * changes while we're in REM. May also share
128 * selmRCGuestTssPostWriteCheck code. */
129 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
130 return VINF_PGM_HANDLER_DO_DEFAULT;
131
132# else /* IN_RC */
133 /*
134 * Do the write and check if anything relevant changed.
135 */
136 Assert(pVM->selm.s.GCPtrGuestTss != (uintptr_t)RTRCPTR_MAX);
137 memcpy(pvPtr, pvBuf, cbBuf);
138 return selmRCGuestTssPostWriteCheck(pVM, pVCpu, GCPtr - pVM->selm.s.GCPtrGuestTss, cbBuf);
139# endif
140}
141# endif
142
143#endif /* IN_RING0 */
144
145
146#ifdef VBOX_WITH_RAW_MODE_NOT_R0
147/**
148 * Converts a GC selector based address to a flat address.
149 *
150 * No limit checks are done. Use the SELMToFlat*() or SELMValidate*() functions
151 * for that.
152 *
153 * @returns Flat address.
154 * @param pVM The cross context VM structure.
155 * @param Sel Selector part.
156 * @param Addr Address part.
157 * @remarks Don't use when in long mode.
158 */
159VMMDECL(RTGCPTR) SELMToFlatBySel(PVM pVM, RTSEL Sel, RTGCPTR Addr)
160{
161 Assert(pVM->cCpus == 1 && !CPUMIsGuestInLongMode(VMMGetCpu(pVM))); /* DON'T USE! */
162 Assert(!HMIsEnabled(pVM));
163
164 /** @todo check the limit. */
165 X86DESC Desc;
166 if (!(Sel & X86_SEL_LDT))
167 Desc = pVM->selm.s.CTX_SUFF(paGdt)[Sel >> X86_SEL_SHIFT];
168 else
169 {
170 /** @todo handle LDT pages not present! */
171 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper);
172 Desc = paLDT[Sel >> X86_SEL_SHIFT];
173 }
174
175 return (RTGCPTR)(((RTGCUINTPTR)Addr + X86DESC_BASE(&Desc)) & 0xffffffff);
176}
177#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
178
179
180/**
181 * Converts a GC selector based address to a flat address.
182 *
183 * No limit checks are done. Use the SELMToFlat*() or SELMValidate*() functions
184 * for that.
185 *
186 * @returns Flat address.
187 * @param pVM The cross context VM structure.
188 * @param SelReg Selector register
189 * @param pCtxCore CPU context
190 * @param Addr Address part.
191 */
192VMMDECL(RTGCPTR) SELMToFlat(PVM pVM, DISSELREG SelReg, PCPUMCTXCORE pCtxCore, RTGCPTR Addr)
193{
194 PCPUMSELREG pSReg;
195 PVMCPU pVCpu = VMMGetCpu(pVM);
196
197 int rc = DISFetchRegSegEx(pCtxCore, SelReg, &pSReg); AssertRC(rc);
198
199 /*
200 * Deal with real & v86 mode first.
201 */
202 if ( pCtxCore->eflags.Bits.u1VM
203 || CPUMIsGuestInRealMode(pVCpu))
204 {
205 uint32_t uFlat = (uint32_t)Addr & 0xffff;
206 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
207 uFlat += (uint32_t)pSReg->u64Base;
208 else
209 uFlat += (uint32_t)pSReg->Sel << 4;
210 return (RTGCPTR)uFlat;
211 }
212
213#ifdef VBOX_WITH_RAW_MODE_NOT_R0
214 /** @todo when we're in 16 bits mode, we should cut off the address as well?? */
215 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
216 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
217 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtxCore->cs))
218 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtxCore->cs);
219#else
220 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
221 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtxCore->cs));
222#endif
223
224 /* 64 bits mode: CS, DS, ES and SS are treated as if each segment base is 0
225 (Intel® 64 and IA-32 Architectures Software Developer's Manual: 3.4.2.1). */
226 if ( pCtxCore->cs.Attr.n.u1Long
227 && CPUMIsGuestInLongMode(pVCpu))
228 {
229 switch (SelReg)
230 {
231 case DISSELREG_FS:
232 case DISSELREG_GS:
233 return (RTGCPTR)(pSReg->u64Base + Addr);
234
235 default:
236 return Addr; /* base 0 */
237 }
238 }
239
240 /* AMD64 manual: compatibility mode ignores the high 32 bits when calculating an effective address. */
241 Assert(pSReg->u64Base <= 0xffffffff);
242 return (uint32_t)pSReg->u64Base + (uint32_t)Addr;
243}
244
245
246/**
247 * Converts a GC selector based address to a flat address.
248 *
249 * Some basic checking is done, but not all kinds yet.
250 *
251 * @returns VBox status
252 * @param pVCpu The cross context virtual CPU structure.
253 * @param SelReg Selector register.
254 * @param pCtxCore CPU context.
255 * @param Addr Address part.
256 * @param fFlags SELMTOFLAT_FLAGS_*
257 * GDT entires are valid.
258 * @param ppvGC Where to store the GC flat address.
259 */
260VMMDECL(int) SELMToFlatEx(PVMCPU pVCpu, DISSELREG SelReg, PCPUMCTXCORE pCtxCore, RTGCPTR Addr, uint32_t fFlags, PRTGCPTR ppvGC)
261{
262 /*
263 * Fetch the selector first.
264 */
265 PCPUMSELREG pSReg;
266 int rc = DISFetchRegSegEx(pCtxCore, SelReg, &pSReg);
267 AssertRCReturn(rc, rc); AssertPtr(pSReg);
268
269 /*
270 * Deal with real & v86 mode first.
271 */
272 if ( pCtxCore->eflags.Bits.u1VM
273 || CPUMIsGuestInRealMode(pVCpu))
274 {
275 if (ppvGC)
276 {
277 uint32_t uFlat = (uint32_t)Addr & 0xffff;
278 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
279 *ppvGC = (uint32_t)pSReg->u64Base + uFlat;
280 else
281 *ppvGC = ((uint32_t)pSReg->Sel << 4) + uFlat;
282 }
283 return VINF_SUCCESS;
284 }
285
286#ifdef VBOX_WITH_RAW_MODE_NOT_R0
287 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
288 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
289 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtxCore->cs))
290 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtxCore->cs);
291#else
292 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
293 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtxCore->cs));
294#endif
295
296 /* 64 bits mode: CS, DS, ES and SS are treated as if each segment base is 0
297 (Intel® 64 and IA-32 Architectures Software Developer's Manual: 3.4.2.1). */
298 RTGCPTR pvFlat;
299 bool fCheckLimit = true;
300 if ( pCtxCore->cs.Attr.n.u1Long
301 && CPUMIsGuestInLongMode(pVCpu))
302 {
303 fCheckLimit = false;
304 switch (SelReg)
305 {
306 case DISSELREG_FS:
307 case DISSELREG_GS:
308 pvFlat = pSReg->u64Base + Addr;
309 break;
310
311 default:
312 pvFlat = Addr;
313 break;
314 }
315 }
316 else
317 {
318 /* AMD64 manual: compatibility mode ignores the high 32 bits when calculating an effective address. */
319 Assert(pSReg->u64Base <= UINT32_C(0xffffffff));
320 pvFlat = (uint32_t)pSReg->u64Base + (uint32_t)Addr;
321 Assert(pvFlat <= UINT32_MAX);
322 }
323
324 /*
325 * Check type if present.
326 */
327 if (pSReg->Attr.n.u1Present)
328 {
329 switch (pSReg->Attr.n.u4Type)
330 {
331 /* Read only selector type. */
332 case X86_SEL_TYPE_RO:
333 case X86_SEL_TYPE_RO_ACC:
334 case X86_SEL_TYPE_RW:
335 case X86_SEL_TYPE_RW_ACC:
336 case X86_SEL_TYPE_EO:
337 case X86_SEL_TYPE_EO_ACC:
338 case X86_SEL_TYPE_ER:
339 case X86_SEL_TYPE_ER_ACC:
340 if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL))
341 {
342 /** @todo fix this mess */
343 }
344 /* check limit. */
345 if (fCheckLimit && Addr > pSReg->u32Limit)
346 return VERR_OUT_OF_SELECTOR_BOUNDS;
347 /* ok */
348 if (ppvGC)
349 *ppvGC = pvFlat;
350 return VINF_SUCCESS;
351
352 case X86_SEL_TYPE_EO_CONF:
353 case X86_SEL_TYPE_EO_CONF_ACC:
354 case X86_SEL_TYPE_ER_CONF:
355 case X86_SEL_TYPE_ER_CONF_ACC:
356 if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL))
357 {
358 /** @todo fix this mess */
359 }
360 /* check limit. */
361 if (fCheckLimit && Addr > pSReg->u32Limit)
362 return VERR_OUT_OF_SELECTOR_BOUNDS;
363 /* ok */
364 if (ppvGC)
365 *ppvGC = pvFlat;
366 return VINF_SUCCESS;
367
368 case X86_SEL_TYPE_RO_DOWN:
369 case X86_SEL_TYPE_RO_DOWN_ACC:
370 case X86_SEL_TYPE_RW_DOWN:
371 case X86_SEL_TYPE_RW_DOWN_ACC:
372 if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL))
373 {
374 /** @todo fix this mess */
375 }
376 /* check limit. */
377 if (fCheckLimit)
378 {
379 if (!pSReg->Attr.n.u1Granularity && Addr > UINT32_C(0xffff))
380 return VERR_OUT_OF_SELECTOR_BOUNDS;
381 if (Addr <= pSReg->u32Limit)
382 return VERR_OUT_OF_SELECTOR_BOUNDS;
383 }
384 /* ok */
385 if (ppvGC)
386 *ppvGC = pvFlat;
387 return VINF_SUCCESS;
388
389 default:
390 return VERR_INVALID_SELECTOR;
391
392 }
393 }
394 return VERR_SELECTOR_NOT_PRESENT;
395}
396
397
398#ifdef VBOX_WITH_RAW_MODE_NOT_R0
399/**
400 * Converts a GC selector based address to a flat address.
401 *
402 * Some basic checking is done, but not all kinds yet.
403 *
404 * @returns VBox status
405 * @param pVCpu The cross context virtual CPU structure.
406 * @param eflags Current eflags
407 * @param Sel Selector part.
408 * @param Addr Address part.
409 * @param fFlags SELMTOFLAT_FLAGS_*
410 * GDT entires are valid.
411 * @param ppvGC Where to store the GC flat address.
412 * @param pcb Where to store the bytes from *ppvGC which can be accessed according to
413 * the selector. NULL is allowed.
414 * @remarks Don't use when in long mode.
415 */
416VMMDECL(int) SELMToFlatBySelEx(PVMCPU pVCpu, X86EFLAGS eflags, RTSEL Sel, RTGCPTR Addr,
417 uint32_t fFlags, PRTGCPTR ppvGC, uint32_t *pcb)
418{
419 Assert(!CPUMIsGuestInLongMode(pVCpu)); /* DON'T USE! (Accessing shadow GDT/LDT.) */
420 Assert(!HMIsEnabled(pVCpu->CTX_SUFF(pVM)));
421
422 /*
423 * Deal with real & v86 mode first.
424 */
425 if ( eflags.Bits.u1VM
426 || CPUMIsGuestInRealMode(pVCpu))
427 {
428 RTGCUINTPTR uFlat = (RTGCUINTPTR)Addr & 0xffff;
429 if (ppvGC)
430 *ppvGC = ((RTGCUINTPTR)Sel << 4) + uFlat;
431 if (pcb)
432 *pcb = 0x10000 - uFlat;
433 return VINF_SUCCESS;
434 }
435
436 /** @todo when we're in 16 bits mode, we should cut off the address as well?? */
437 X86DESC Desc;
438 PVM pVM = pVCpu->CTX_SUFF(pVM);
439 if (!(Sel & X86_SEL_LDT))
440 {
441 if ( !(fFlags & SELMTOFLAT_FLAGS_HYPER)
442 && (Sel | X86_SEL_RPL_LDT) > pVM->selm.s.GuestGdtr.cbGdt)
443 return VERR_INVALID_SELECTOR;
444 Desc = pVM->selm.s.CTX_SUFF(paGdt)[Sel >> X86_SEL_SHIFT];
445 }
446 else
447 {
448 if ((Sel | X86_SEL_RPL_LDT) > pVM->selm.s.cbLdtLimit)
449 return VERR_INVALID_SELECTOR;
450
451 /** @todo handle LDT page(s) not present! */
452 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper);
453 Desc = paLDT[Sel >> X86_SEL_SHIFT];
454 }
455
456 /* calc limit. */
457 uint32_t u32Limit = X86DESC_LIMIT_G(&Desc);
458
459 /* calc address assuming straight stuff. */
460 RTGCPTR pvFlat = Addr + X86DESC_BASE(&Desc);
461
462 /* Cut the address to 32 bits. */
463 Assert(!CPUMIsGuestInLongMode(pVCpu));
464 pvFlat &= 0xffffffff;
465
466 uint8_t u1Present = Desc.Gen.u1Present;
467 uint8_t u1Granularity = Desc.Gen.u1Granularity;
468 uint8_t u1DescType = Desc.Gen.u1DescType;
469 uint8_t u4Type = Desc.Gen.u4Type;
470
471 /*
472 * Check if present.
473 */
474 if (u1Present)
475 {
476 /*
477 * Type check.
478 */
479#define BOTH(a, b) ((a << 16) | b)
480 switch (BOTH(u1DescType, u4Type))
481 {
482
483 /** Read only selector type. */
484 case BOTH(1,X86_SEL_TYPE_RO):
485 case BOTH(1,X86_SEL_TYPE_RO_ACC):
486 case BOTH(1,X86_SEL_TYPE_RW):
487 case BOTH(1,X86_SEL_TYPE_RW_ACC):
488 case BOTH(1,X86_SEL_TYPE_EO):
489 case BOTH(1,X86_SEL_TYPE_EO_ACC):
490 case BOTH(1,X86_SEL_TYPE_ER):
491 case BOTH(1,X86_SEL_TYPE_ER_ACC):
492 if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL))
493 {
494 /** @todo fix this mess */
495 }
496 /* check limit. */
497 if ((RTGCUINTPTR)Addr > u32Limit)
498 return VERR_OUT_OF_SELECTOR_BOUNDS;
499 /* ok */
500 if (ppvGC)
501 *ppvGC = pvFlat;
502 if (pcb)
503 *pcb = u32Limit - (uint32_t)Addr + 1;
504 return VINF_SUCCESS;
505
506 case BOTH(1,X86_SEL_TYPE_EO_CONF):
507 case BOTH(1,X86_SEL_TYPE_EO_CONF_ACC):
508 case BOTH(1,X86_SEL_TYPE_ER_CONF):
509 case BOTH(1,X86_SEL_TYPE_ER_CONF_ACC):
510 if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL))
511 {
512 /** @todo fix this mess */
513 }
514 /* check limit. */
515 if ((RTGCUINTPTR)Addr > u32Limit)
516 return VERR_OUT_OF_SELECTOR_BOUNDS;
517 /* ok */
518 if (ppvGC)
519 *ppvGC = pvFlat;
520 if (pcb)
521 *pcb = u32Limit - (uint32_t)Addr + 1;
522 return VINF_SUCCESS;
523
524 case BOTH(1,X86_SEL_TYPE_RO_DOWN):
525 case BOTH(1,X86_SEL_TYPE_RO_DOWN_ACC):
526 case BOTH(1,X86_SEL_TYPE_RW_DOWN):
527 case BOTH(1,X86_SEL_TYPE_RW_DOWN_ACC):
528 if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL))
529 {
530 /** @todo fix this mess */
531 }
532 /* check limit. */
533 if (!u1Granularity && (RTGCUINTPTR)Addr > (RTGCUINTPTR)0xffff)
534 return VERR_OUT_OF_SELECTOR_BOUNDS;
535 if ((RTGCUINTPTR)Addr <= u32Limit)
536 return VERR_OUT_OF_SELECTOR_BOUNDS;
537
538 /* ok */
539 if (ppvGC)
540 *ppvGC = pvFlat;
541 if (pcb)
542 *pcb = (RTGCUINTPTR)(u1Granularity ? 0xffffffff : 0xffff) - (RTGCUINTPTR)Addr + 1;
543 return VINF_SUCCESS;
544
545 case BOTH(0,X86_SEL_TYPE_SYS_286_TSS_AVAIL):
546 case BOTH(0,X86_SEL_TYPE_SYS_LDT):
547 case BOTH(0,X86_SEL_TYPE_SYS_286_TSS_BUSY):
548 case BOTH(0,X86_SEL_TYPE_SYS_286_CALL_GATE):
549 case BOTH(0,X86_SEL_TYPE_SYS_TASK_GATE):
550 case BOTH(0,X86_SEL_TYPE_SYS_286_INT_GATE):
551 case BOTH(0,X86_SEL_TYPE_SYS_286_TRAP_GATE):
552 case BOTH(0,X86_SEL_TYPE_SYS_386_TSS_AVAIL):
553 case BOTH(0,X86_SEL_TYPE_SYS_386_TSS_BUSY):
554 case BOTH(0,X86_SEL_TYPE_SYS_386_CALL_GATE):
555 case BOTH(0,X86_SEL_TYPE_SYS_386_INT_GATE):
556 case BOTH(0,X86_SEL_TYPE_SYS_386_TRAP_GATE):
557 if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL))
558 {
559 /** @todo fix this mess */
560 }
561 /* check limit. */
562 if ((RTGCUINTPTR)Addr > u32Limit)
563 return VERR_OUT_OF_SELECTOR_BOUNDS;
564 /* ok */
565 if (ppvGC)
566 *ppvGC = pvFlat;
567 if (pcb)
568 *pcb = 0xffffffff - (RTGCUINTPTR)pvFlat + 1; /* Depends on the type.. fixme if we care. */
569 return VINF_SUCCESS;
570
571 default:
572 return VERR_INVALID_SELECTOR;
573
574 }
575#undef BOTH
576 }
577 return VERR_SELECTOR_NOT_PRESENT;
578}
579#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
580
581
582#ifdef VBOX_WITH_RAW_MODE_NOT_R0
583
584static void selLoadHiddenSelectorRegFromGuestTable(PVMCPU pVCpu, PCCPUMCTX pCtx, PCPUMSELREG pSReg,
585 RTGCPTR GCPtrDesc, RTSEL const Sel, uint32_t const iSReg)
586{
587 Assert(!HMIsEnabled(pVCpu->CTX_SUFF(pVM)));
588
589 /*
590 * Try read the entry.
591 */
592 X86DESC GstDesc;
593 VBOXSTRICTRC rcStrict = PGMPhysReadGCPtr(pVCpu, &GstDesc, GCPtrDesc, sizeof(GstDesc), PGMACCESSORIGIN_SELM);
594 if (rcStrict == VINF_SUCCESS)
595 {
596 /*
597 * Validate it and load it.
598 */
599 if (selmIsGstDescGoodForSReg(pVCpu, pSReg, &GstDesc, iSReg, CPUMGetGuestCPL(pVCpu)))
600 {
601 selmLoadHiddenSRegFromGuestDesc(pVCpu, pSReg, &GstDesc);
602 Log(("SELMLoadHiddenSelectorReg: loaded %s=%#x:{b=%llx, l=%x, a=%x, vs=%x} (gst)\n",
603 g_aszSRegNms[iSReg], Sel, pSReg->u64Base, pSReg->u32Limit, pSReg->Attr.u, pSReg->ValidSel));
604 STAM_COUNTER_INC(&pVCpu->CTX_SUFF(pVM)->selm.s.StatLoadHidSelGst);
605 }
606 else
607 {
608 Log(("SELMLoadHiddenSelectorReg: Guest table entry is no good (%s=%#x): %.8Rhxs\n", g_aszSRegNms[iSReg], Sel, &GstDesc));
609 STAM_REL_COUNTER_INC(&pVCpu->CTX_SUFF(pVM)->selm.s.StatLoadHidSelGstNoGood);
610 }
611 }
612 else
613 {
614 AssertMsg(RT_FAILURE_NP(rcStrict), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
615 Log(("SELMLoadHiddenSelectorReg: Error reading descriptor %s=%#x: %Rrc\n",
616 g_aszSRegNms[iSReg], Sel, VBOXSTRICTRC_VAL(rcStrict) ));
617 STAM_REL_COUNTER_INC(&pVCpu->CTX_SUFF(pVM)->selm.s.StatLoadHidSelReadErrors);
618 }
619}
620
621
622/**
623 * CPUM helper that loads the hidden selector register from the descriptor table
624 * when executing with raw-mode.
625 *
626 * @remarks This is only used when in legacy protected mode!
627 *
628 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
629 * @param pCtx The guest CPU context.
630 * @param pSReg The selector register.
631 *
632 * @todo Deal 100% correctly with stale selectors. What's more evil is
633 * invalid page table entries, which isn't impossible to imagine for
634 * LDT entries for instance, though unlikely. Currently, we turn a
635 * blind eye to these issues and return the old hidden registers,
636 * though we don't set the valid flag, so that we'll try loading them
637 * over and over again till we succeed loading something.
638 */
639VMM_INT_DECL(void) SELMLoadHiddenSelectorReg(PVMCPU pVCpu, PCCPUMCTX pCtx, PCPUMSELREG pSReg)
640{
641 Assert(pCtx->cr0 & X86_CR0_PE);
642 Assert(!(pCtx->msrEFER & MSR_K6_EFER_LMA));
643
644 PVM pVM = pVCpu->CTX_SUFF(pVM);
645 Assert(pVM->cCpus == 1);
646 Assert(!HMIsEnabled(pVM));
647
648
649 /*
650 * Get the shadow descriptor table entry and validate it.
651 * Should something go amiss, try the guest table.
652 */
653 RTSEL const Sel = pSReg->Sel;
654 uint32_t const iSReg = pSReg - CPUMCTX_FIRST_SREG(pCtx); Assert(iSReg < X86_SREG_COUNT);
655 PCX86DESC pShwDesc;
656 if (!(Sel & X86_SEL_LDT))
657 {
658 /** @todo this shall not happen, we shall check for these things when executing
659 * LGDT */
660 AssertReturnVoid((Sel | X86_SEL_RPL | X86_SEL_LDT) <= pCtx->gdtr.cbGdt);
661
662 pShwDesc = &pVM->selm.s.CTX_SUFF(paGdt)[Sel >> X86_SEL_SHIFT];
663 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT)
664 || !selmIsShwDescGoodForSReg(pSReg, pShwDesc, iSReg, CPUMGetGuestCPL(pVCpu)))
665 {
666 selLoadHiddenSelectorRegFromGuestTable(pVCpu, pCtx, pSReg, pCtx->gdtr.pGdt + (Sel & X86_SEL_MASK), Sel, iSReg);
667 return;
668 }
669 }
670 else
671 {
672 /** @todo this shall not happen, we shall check for these things when executing
673 * LLDT */
674 AssertReturnVoid((Sel | X86_SEL_RPL | X86_SEL_LDT) <= pCtx->ldtr.u32Limit);
675
676 pShwDesc = (PCX86DESC)((uintptr_t)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper + (Sel & X86_SEL_MASK));
677 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT)
678 || !selmIsShwDescGoodForSReg(pSReg, pShwDesc, iSReg, CPUMGetGuestCPL(pVCpu)))
679 {
680 selLoadHiddenSelectorRegFromGuestTable(pVCpu, pCtx, pSReg, pCtx->ldtr.u64Base + (Sel & X86_SEL_MASK), Sel, iSReg);
681 return;
682 }
683 }
684
685 /*
686 * All fine, load it.
687 */
688 selmLoadHiddenSRegFromShadowDesc(pSReg, pShwDesc);
689 STAM_COUNTER_INC(&pVCpu->CTX_SUFF(pVM)->selm.s.StatLoadHidSelShw);
690 Log(("SELMLoadHiddenSelectorReg: loaded %s=%#x:{b=%llx, l=%x, a=%x, vs=%x} (shw)\n",
691 g_aszSRegNms[iSReg], Sel, pSReg->u64Base, pSReg->u32Limit, pSReg->Attr.u, pSReg->ValidSel));
692}
693
694#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
695
696/**
697 * Validates and converts a GC selector based code address to a flat
698 * address when in real or v8086 mode.
699 *
700 * @returns VINF_SUCCESS.
701 * @param pVCpu The cross context virtual CPU structure.
702 * @param SelCS Selector part.
703 * @param pSReg The hidden CS register part. Optional.
704 * @param Addr Address part.
705 * @param ppvFlat Where to store the flat address.
706 */
707DECLINLINE(int) selmValidateAndConvertCSAddrRealMode(PVMCPU pVCpu, RTSEL SelCS, PCCPUMSELREGHID pSReg, RTGCPTR Addr,
708 PRTGCPTR ppvFlat)
709{
710 NOREF(pVCpu);
711 uint32_t uFlat = Addr & 0xffff;
712 if (!pSReg || !CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
713 uFlat += (uint32_t)SelCS << 4;
714 else
715 uFlat += (uint32_t)pSReg->u64Base;
716 *ppvFlat = uFlat;
717 return VINF_SUCCESS;
718}
719
720
721#ifdef VBOX_WITH_RAW_MODE_NOT_R0
722/**
723 * Validates and converts a GC selector based code address to a flat address
724 * when in protected/long mode using the raw-mode algorithm.
725 *
726 * @returns VBox status code.
727 * @param pVM The cross context VM structure.
728 * @param pVCpu The cross context virtual CPU structure.
729 * @param SelCPL Current privilege level. Get this from SS - CS might be
730 * conforming! A full selector can be passed, we'll only
731 * use the RPL part.
732 * @param SelCS Selector part.
733 * @param Addr Address part.
734 * @param ppvFlat Where to store the flat address.
735 * @param pcBits Where to store the segment bitness (16/32/64). Optional.
736 */
737DECLINLINE(int) selmValidateAndConvertCSAddrRawMode(PVM pVM, PVMCPU pVCpu, RTSEL SelCPL, RTSEL SelCS, RTGCPTR Addr,
738 PRTGCPTR ppvFlat, uint32_t *pcBits)
739{
740 NOREF(pVCpu);
741 Assert(!HMIsEnabled(pVM));
742
743 /** @todo validate limit! */
744 X86DESC Desc;
745 if (!(SelCS & X86_SEL_LDT))
746 Desc = pVM->selm.s.CTX_SUFF(paGdt)[SelCS >> X86_SEL_SHIFT];
747 else
748 {
749 /** @todo handle LDT page(s) not present! */
750 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper);
751 Desc = paLDT[SelCS >> X86_SEL_SHIFT];
752 }
753
754 /*
755 * Check if present.
756 */
757 if (Desc.Gen.u1Present)
758 {
759 /*
760 * Type check.
761 */
762 if ( Desc.Gen.u1DescType == 1
763 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
764 {
765 /*
766 * Check level.
767 */
768 unsigned uLevel = RT_MAX(SelCPL & X86_SEL_RPL, SelCS & X86_SEL_RPL);
769 if ( !(Desc.Gen.u4Type & X86_SEL_TYPE_CONF)
770 ? uLevel <= Desc.Gen.u2Dpl
771 : uLevel >= Desc.Gen.u2Dpl /* hope I got this right now... */
772 )
773 {
774 /*
775 * Limit check.
776 */
777 uint32_t u32Limit = X86DESC_LIMIT_G(&Desc);
778 if ((RTGCUINTPTR)Addr <= u32Limit)
779 {
780 *ppvFlat = (RTGCPTR)((RTGCUINTPTR)Addr + X86DESC_BASE(&Desc));
781 /* Cut the address to 32 bits. */
782 *ppvFlat &= 0xffffffff;
783
784 if (pcBits)
785 *pcBits = Desc.Gen.u1DefBig ? 32 : 16; /** @todo GUEST64 */
786 return VINF_SUCCESS;
787 }
788 return VERR_OUT_OF_SELECTOR_BOUNDS;
789 }
790 return VERR_INVALID_RPL;
791 }
792 return VERR_NOT_CODE_SELECTOR;
793 }
794 return VERR_SELECTOR_NOT_PRESENT;
795}
796#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
797
798
799/**
800 * Validates and converts a GC selector based code address to a flat address
801 * when in protected/long mode using the standard hidden selector registers
802 *
803 * @returns VBox status code.
804 * @param pVCpu The cross context virtual CPU structure.
805 * @param SelCPL Current privilege level. Get this from SS - CS might be
806 * conforming! A full selector can be passed, we'll only
807 * use the RPL part.
808 * @param SelCS Selector part.
809 * @param pSRegCS The full CS selector register.
810 * @param Addr The address (think IP/EIP/RIP).
811 * @param ppvFlat Where to store the flat address upon successful return.
812 */
813DECLINLINE(int) selmValidateAndConvertCSAddrHidden(PVMCPU pVCpu, RTSEL SelCPL, RTSEL SelCS, PCCPUMSELREGHID pSRegCS,
814 RTGCPTR Addr, PRTGCPTR ppvFlat)
815{
816 NOREF(SelCPL); NOREF(SelCS);
817
818 /*
819 * Check if present.
820 */
821 if (pSRegCS->Attr.n.u1Present)
822 {
823 /*
824 * Type check.
825 */
826 if ( pSRegCS->Attr.n.u1DescType == 1
827 && (pSRegCS->Attr.n.u4Type & X86_SEL_TYPE_CODE))
828 {
829 /* 64 bits mode: CS, DS, ES and SS are treated as if each segment base is 0
830 (Intel® 64 and IA-32 Architectures Software Developer's Manual: 3.4.2.1). */
831 if ( pSRegCS->Attr.n.u1Long
832 && CPUMIsGuestInLongMode(pVCpu))
833 {
834 *ppvFlat = Addr;
835 return VINF_SUCCESS;
836 }
837
838 /*
839 * Limit check. Note that the limit in the hidden register is the
840 * final value. The granularity bit was included in its calculation.
841 */
842 uint32_t u32Limit = pSRegCS->u32Limit;
843 if ((uint32_t)Addr <= u32Limit)
844 {
845 *ppvFlat = (uint32_t)Addr + (uint32_t)pSRegCS->u64Base;
846 return VINF_SUCCESS;
847 }
848
849 return VERR_OUT_OF_SELECTOR_BOUNDS;
850 }
851 return VERR_NOT_CODE_SELECTOR;
852 }
853 return VERR_SELECTOR_NOT_PRESENT;
854}
855
856
857/**
858 * Validates and converts a GC selector based code address to a flat address.
859 *
860 * @returns VBox status code.
861 * @param pVCpu The cross context virtual CPU structure.
862 * @param Efl Current EFLAGS.
863 * @param SelCPL Current privilege level. Get this from SS - CS might be
864 * conforming! A full selector can be passed, we'll only
865 * use the RPL part.
866 * @param SelCS Selector part.
867 * @param pSRegCS The full CS selector register.
868 * @param Addr The address (think IP/EIP/RIP).
869 * @param ppvFlat Where to store the flat address upon successful return.
870 */
871VMMDECL(int) SELMValidateAndConvertCSAddr(PVMCPU pVCpu, X86EFLAGS Efl, RTSEL SelCPL, RTSEL SelCS, PCPUMSELREG pSRegCS,
872 RTGCPTR Addr, PRTGCPTR ppvFlat)
873{
874 if ( Efl.Bits.u1VM
875 || CPUMIsGuestInRealMode(pVCpu))
876 return selmValidateAndConvertCSAddrRealMode(pVCpu, SelCS, pSRegCS, Addr, ppvFlat);
877
878#ifdef VBOX_WITH_RAW_MODE_NOT_R0
879 /* Use the hidden registers when possible, updating them if outdate. */
880 if (!pSRegCS)
881 return selmValidateAndConvertCSAddrRawMode(pVCpu->CTX_SUFF(pVM), pVCpu, SelCPL, SelCS, Addr, ppvFlat, NULL);
882
883 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
884 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSRegCS);
885
886 /* Undo ring compression. */
887 if ((SelCPL & X86_SEL_RPL) == 1 && !HMIsEnabled(pVCpu->CTX_SUFF(pVM)))
888 SelCPL &= ~X86_SEL_RPL;
889 Assert(pSRegCS->Sel == SelCS);
890 if ((SelCS & X86_SEL_RPL) == 1 && !HMIsEnabled(pVCpu->CTX_SUFF(pVM)))
891 SelCS &= ~X86_SEL_RPL;
892#else
893 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS));
894 Assert(pSRegCS->Sel == SelCS);
895#endif
896
897 return selmValidateAndConvertCSAddrHidden(pVCpu, SelCPL, SelCS, pSRegCS, Addr, ppvFlat);
898}
899
900
901/**
902 * Returns Hypervisor's Trap 08 (\#DF) selector.
903 *
904 * @returns Hypervisor's Trap 08 (\#DF) selector.
905 * @param pVM The cross context VM structure.
906 */
907VMMDECL(RTSEL) SELMGetTrap8Selector(PVM pVM)
908{
909 return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
910}
911
912
913/**
914 * Sets EIP of Hypervisor's Trap 08 (\#DF) TSS.
915 *
916 * @param pVM The cross context VM structure.
917 * @param u32EIP EIP of Trap 08 handler.
918 */
919VMMDECL(void) SELMSetTrap8EIP(PVM pVM, uint32_t u32EIP)
920{
921 pVM->selm.s.TssTrap08.eip = u32EIP;
922}
923
924
925/**
926 * Sets ss:esp for ring1 in main Hypervisor's TSS.
927 *
928 * @param pVM The cross context VM structure.
929 * @param ss Ring1 SS register value. Pass 0 if invalid.
930 * @param esp Ring1 ESP register value.
931 */
932void selmSetRing1Stack(PVM pVM, uint32_t ss, RTGCPTR32 esp)
933{
934 Assert(!HMIsEnabled(pVM));
935 Assert((ss & 1) || esp == 0);
936 pVM->selm.s.Tss.ss1 = ss;
937 pVM->selm.s.Tss.esp1 = (uint32_t)esp;
938}
939
940
941#ifdef VBOX_WITH_RAW_RING1
942/**
943 * Sets ss:esp for ring1 in main Hypervisor's TSS.
944 *
945 * @param pVM The cross context VM structure.
946 * @param ss Ring2 SS register value. Pass 0 if invalid.
947 * @param esp Ring2 ESP register value.
948 */
949void selmSetRing2Stack(PVM pVM, uint32_t ss, RTGCPTR32 esp)
950{
951 Assert(!HMIsEnabled(pVM));
952 Assert((ss & 3) == 2 || esp == 0);
953 pVM->selm.s.Tss.ss2 = ss;
954 pVM->selm.s.Tss.esp2 = (uint32_t)esp;
955}
956#endif
957
958
959#ifdef VBOX_WITH_RAW_MODE_NOT_R0
960/**
961 * Gets ss:esp for ring1 in main Hypervisor's TSS.
962 *
963 * Returns SS=0 if the ring-1 stack isn't valid.
964 *
965 * @returns VBox status code.
966 * @param pVM The cross context VM structure.
967 * @param pSS Ring1 SS register value.
968 * @param pEsp Ring1 ESP register value.
969 */
970VMMDECL(int) SELMGetRing1Stack(PVM pVM, uint32_t *pSS, PRTGCPTR32 pEsp)
971{
972 Assert(!HMIsEnabled(pVM));
973 Assert(pVM->cCpus == 1);
974 PVMCPU pVCpu = &pVM->aCpus[0];
975
976#ifdef SELM_TRACK_GUEST_TSS_CHANGES
977 if (pVM->selm.s.fSyncTSSRing0Stack)
978 {
979#endif
980 RTGCPTR GCPtrTss = pVM->selm.s.GCPtrGuestTss;
981 int rc;
982 VBOXTSS tss;
983
984 Assert(pVM->selm.s.GCPtrGuestTss && pVM->selm.s.cbMonitoredGuestTss);
985
986# ifdef IN_RC
987 bool fTriedAlready = false;
988
989l_tryagain:
990 PVBOXTSS pTss = (PVBOXTSS)(uintptr_t)GCPtrTss;
991 rc = MMGCRamRead(pVM, &tss.ss0, &pTss->ss0, sizeof(tss.ss0));
992 rc |= MMGCRamRead(pVM, &tss.esp0, &pTss->esp0, sizeof(tss.esp0));
993# ifdef DEBUG
994 rc |= MMGCRamRead(pVM, &tss.offIoBitmap, &pTss->offIoBitmap, sizeof(tss.offIoBitmap));
995# endif
996
997 if (RT_FAILURE(rc))
998 {
999 if (!fTriedAlready)
1000 {
1001 /* Shadow page might be out of sync. Sync and try again */
1002 /** @todo might cross page boundary */
1003 fTriedAlready = true;
1004 rc = PGMPrefetchPage(pVCpu, (RTGCPTR)GCPtrTss);
1005 if (rc != VINF_SUCCESS)
1006 return rc;
1007 goto l_tryagain;
1008 }
1009 AssertMsgFailed(("Unable to read TSS structure at %08X\n", GCPtrTss));
1010 return rc;
1011 }
1012
1013# else /* !IN_RC */
1014 /* Reading too much. Could be cheaper than two separate calls though. */
1015 rc = PGMPhysSimpleReadGCPtr(pVCpu, &tss, GCPtrTss, sizeof(VBOXTSS));
1016 if (RT_FAILURE(rc))
1017 {
1018 AssertReleaseMsgFailed(("Unable to read TSS structure at %08X\n", GCPtrTss));
1019 return rc;
1020 }
1021# endif /* !IN_RC */
1022
1023# ifdef LOG_ENABLED
1024 uint32_t ssr0 = pVM->selm.s.Tss.ss1;
1025 uint32_t espr0 = pVM->selm.s.Tss.esp1;
1026 ssr0 &= ~1;
1027
1028 if (ssr0 != tss.ss0 || espr0 != tss.esp0)
1029 Log(("SELMGetRing1Stack: Updating TSS ring 0 stack to %04X:%08X\n", tss.ss0, tss.esp0));
1030
1031 Log(("offIoBitmap=%#x\n", tss.offIoBitmap));
1032# endif
1033 /* Update our TSS structure for the guest's ring 1 stack */
1034 selmSetRing1Stack(pVM, tss.ss0 | 1, (RTGCPTR32)tss.esp0);
1035 pVM->selm.s.fSyncTSSRing0Stack = false;
1036#ifdef SELM_TRACK_GUEST_TSS_CHANGES
1037 }
1038#endif
1039
1040 *pSS = pVM->selm.s.Tss.ss1;
1041 *pEsp = (RTGCPTR32)pVM->selm.s.Tss.esp1;
1042
1043 return VINF_SUCCESS;
1044}
1045#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
1046
1047
1048#if defined(VBOX_WITH_RAW_MODE) || (HC_ARCH_BITS != 64 && defined(VBOX_WITH_64_BITS_GUESTS))
1049
1050/**
1051 * Gets the hypervisor code selector (CS).
1052 * @returns CS selector.
1053 * @param pVM The cross context VM structure.
1054 */
1055VMMDECL(RTSEL) SELMGetHyperCS(PVM pVM)
1056{
1057 return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
1058}
1059
1060
1061/**
1062 * Gets the 64-mode hypervisor code selector (CS64).
1063 * @returns CS selector.
1064 * @param pVM The cross context VM structure.
1065 */
1066VMMDECL(RTSEL) SELMGetHyperCS64(PVM pVM)
1067{
1068 return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64];
1069}
1070
1071
1072/**
1073 * Gets the hypervisor data selector (DS).
1074 * @returns DS selector.
1075 * @param pVM The cross context VM structure.
1076 */
1077VMMDECL(RTSEL) SELMGetHyperDS(PVM pVM)
1078{
1079 return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
1080}
1081
1082
1083/**
1084 * Gets the hypervisor TSS selector.
1085 * @returns TSS selector.
1086 * @param pVM The cross context VM structure.
1087 */
1088VMMDECL(RTSEL) SELMGetHyperTSS(PVM pVM)
1089{
1090 return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS];
1091}
1092
1093
1094/**
1095 * Gets the hypervisor TSS Trap 8 selector.
1096 * @returns TSS Trap 8 selector.
1097 * @param pVM The cross context VM structure.
1098 */
1099VMMDECL(RTSEL) SELMGetHyperTSSTrap08(PVM pVM)
1100{
1101 return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
1102}
1103
1104/**
1105 * Gets the address for the hypervisor GDT.
1106 *
1107 * @returns The GDT address.
1108 * @param pVM The cross context VM structure.
1109 * @remark This is intended only for very special use, like in the world
1110 * switchers. Don't exploit this API!
1111 */
1112VMMDECL(RTRCPTR) SELMGetHyperGDT(PVM pVM)
1113{
1114 /*
1115 * Always convert this from the HC pointer since we can be
1116 * called before the first relocation and have to work correctly
1117 * without having dependencies on the relocation order.
1118 */
1119 return (RTRCPTR)MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3);
1120}
1121
1122#endif /* defined(VBOX_WITH_RAW_MODE) || (HC_ARCH_BITS != 64 && defined(VBOX_WITH_64_BITS_GUESTS)) */
1123
1124/**
1125 * Gets info about the current TSS.
1126 *
1127 * @returns VBox status code.
1128 * @retval VINF_SUCCESS if we've got a TSS loaded.
1129 * @retval VERR_SELM_NO_TSS if we haven't got a TSS (rather unlikely).
1130 *
1131 * @param pVM The cross context VM structure.
1132 * @param pVCpu The cross context virtual CPU structure.
1133 * @param pGCPtrTss Where to store the TSS address.
1134 * @param pcbTss Where to store the TSS size limit.
1135 * @param pfCanHaveIOBitmap Where to store the can-have-I/O-bitmap indicator. (optional)
1136 */
1137VMMDECL(int) SELMGetTSSInfo(PVM pVM, PVMCPU pVCpu, PRTGCUINTPTR pGCPtrTss, PRTGCUINTPTR pcbTss, bool *pfCanHaveIOBitmap)
1138{
1139 NOREF(pVM);
1140
1141 /*
1142 * The TR hidden register is always valid.
1143 */
1144 CPUMSELREGHID trHid;
1145 RTSEL tr = CPUMGetGuestTR(pVCpu, &trHid);
1146 if (!(tr & X86_SEL_MASK_OFF_RPL))
1147 return VERR_SELM_NO_TSS;
1148
1149 *pGCPtrTss = trHid.u64Base;
1150 *pcbTss = trHid.u32Limit + (trHid.u32Limit != UINT32_MAX); /* be careful. */
1151 if (pfCanHaveIOBitmap)
1152 *pfCanHaveIOBitmap = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1153 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1154 return VINF_SUCCESS;
1155}
1156
1157
1158
1159/**
1160 * Notification callback which is called whenever there is a chance that a CR3
1161 * value might have changed.
1162 * This is called by PGM.
1163 *
1164 * @param pVM The cross context VM structure.
1165 * @param pVCpu The cross context virtual CPU structure.
1166 */
1167VMMDECL(void) SELMShadowCR3Changed(PVM pVM, PVMCPU pVCpu)
1168{
1169 /** @todo SMP support!! (64-bit guest scenario, primarily) */
1170 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
1171 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu);
1172}
1173
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette