/* $Id: SELMAll.cpp 19334 2009-05-04 16:03:57Z vboxsync $ */ /** @file * SELM All contexts. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_SELM #include #include #include #include #include "SELMInternal.h" #include #include #include #include #include #include #include #ifndef IN_RING0 /** * Converts a GC selector based address to a flat address. * * No limit checks are done. Use the SELMToFlat*() or SELMValidate*() functions * for that. * * @returns Flat address. * @param pVM VM Handle. * @param Sel Selector part. * @param Addr Address part. * @remarks Don't use when in long mode. */ VMMDECL(RTGCPTR) SELMToFlatBySel(PVM pVM, RTSEL Sel, RTGCPTR Addr) { Assert(pVM->cCPUs == 1 && !CPUMIsGuestInLongMode(VMMGetCpu(pVM))); /* DON'T USE! */ /** @todo check the limit. */ X86DESC Desc; if (!(Sel & X86_SEL_LDT)) Desc = pVM->selm.s.CTX_SUFF(paGdt)[Sel >> X86_SEL_SHIFT]; else { /** @todo handle LDT pages not present! */ PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper); Desc = paLDT[Sel >> X86_SEL_SHIFT]; } return (RTGCPTR)((RTGCUINTPTR)Addr + X86DESC_BASE(Desc)); } #endif /* !IN_RING0 */ /** * Converts a GC selector based address to a flat address. * * No limit checks are done. Use the SELMToFlat*() or SELMValidate*() functions * for that. * * @returns Flat address. * @param pVM VM Handle. * @param SelReg Selector register * @param pCtxCore CPU context * @param Addr Address part. */ VMMDECL(RTGCPTR) SELMToFlat(PVM pVM, DIS_SELREG SelReg, PCPUMCTXCORE pCtxCore, RTGCPTR Addr) { PCPUMSELREGHID pHiddenSel; RTSEL Sel; int rc; PVMCPU pVCpu = VMMGetCpu(pVM); rc = DISFetchRegSegEx(pCtxCore, SelReg, &Sel, &pHiddenSel); AssertRC(rc); /* * Deal with real & v86 mode first. */ if ( CPUMIsGuestInRealMode(pVCpu) || pCtxCore->eflags.Bits.u1VM) { RTGCUINTPTR uFlat = (RTGCUINTPTR)Addr & 0xffff; if (CPUMAreHiddenSelRegsValid(pVM)) uFlat += pHiddenSel->u64Base; else uFlat += ((RTGCUINTPTR)Sel << 4); return (RTGCPTR)uFlat; } #ifdef IN_RING0 Assert(CPUMAreHiddenSelRegsValid(pVM)); #else /** @todo when we're in 16 bits mode, we should cut off the address as well.. */ if (!CPUMAreHiddenSelRegsValid(pVM)) return SELMToFlatBySel(pVM, Sel, Addr); #endif /* 64 bits mode: CS, DS, ES and SS are treated as if each segment base is 0 (Intel® 64 and IA-32 Architectures Software Developer's Manual: 3.4.2.1). */ if ( CPUMIsGuestInLongMode(pVCpu) && pCtxCore->csHid.Attr.n.u1Long) { switch (SelReg) { case DIS_SELREG_FS: case DIS_SELREG_GS: return (RTGCPTR)(pHiddenSel->u64Base + Addr); default: return Addr; /* base 0 */ } } /* AMD64 manual: compatibility mode ignores the high 32 bits when calculating an effective address. */ Assert(pHiddenSel->u64Base <= 0xffffffff); return ((pHiddenSel->u64Base + (RTGCUINTPTR)Addr) & 0xffffffff); } /** * Converts a GC selector based address to a flat address. * * Some basic checking is done, but not all kinds yet. * * @returns VBox status * @param pVM VM Handle. * @param SelReg Selector register * @param pCtxCore CPU context * @param Addr Address part. * @param fFlags SELMTOFLAT_FLAGS_* * GDT entires are valid. * @param ppvGC Where to store the GC flat address. */ VMMDECL(int) SELMToFlatEx(PVM pVM, DIS_SELREG SelReg, PCCPUMCTXCORE pCtxCore, RTGCPTR Addr, unsigned fFlags, PRTGCPTR ppvGC) { /* * Fetch the selector first. */ PCPUMSELREGHID pHiddenSel; RTSEL Sel; PVMCPU pVCpu = VMMGetCpu(pVM); int rc = DISFetchRegSegEx(pCtxCore, SelReg, &Sel, &pHiddenSel); AssertRC(rc); /* * Deal with real & v86 mode first. */ if ( CPUMIsGuestInRealMode(pVCpu) || pCtxCore->eflags.Bits.u1VM) { RTGCUINTPTR uFlat = (RTGCUINTPTR)Addr & 0xffff; if (ppvGC) { if ( pHiddenSel && CPUMAreHiddenSelRegsValid(pVM)) *ppvGC = (RTGCPTR)(pHiddenSel->u64Base + uFlat); else *ppvGC = (RTGCPTR)(((RTGCUINTPTR)Sel << 4) + uFlat); } return VINF_SUCCESS; } uint32_t u32Limit; RTGCPTR pvFlat; uint32_t u1Present, u1DescType, u1Granularity, u4Type; /** @todo when we're in 16 bits mode, we should cut off the address as well.. */ #ifndef IN_RC if ( pHiddenSel && CPUMAreHiddenSelRegsValid(pVM)) { bool fCheckLimit = true; u1Present = pHiddenSel->Attr.n.u1Present; u1Granularity = pHiddenSel->Attr.n.u1Granularity; u1DescType = pHiddenSel->Attr.n.u1DescType; u4Type = pHiddenSel->Attr.n.u4Type; u32Limit = pHiddenSel->u32Limit; /* 64 bits mode: CS, DS, ES and SS are treated as if each segment base is 0 (Intel® 64 and IA-32 Architectures Software Developer's Manual: 3.4.2.1). */ if ( CPUMIsGuestInLongMode(pVCpu) && pCtxCore->csHid.Attr.n.u1Long) { fCheckLimit = false; switch (SelReg) { case DIS_SELREG_FS: case DIS_SELREG_GS: pvFlat = (pHiddenSel->u64Base + Addr); break; default: pvFlat = Addr; break; } } else { /* AMD64 manual: compatibility mode ignores the high 32 bits when calculating an effective address. */ Assert(pHiddenSel->u64Base <= 0xffffffff); pvFlat = (RTGCPTR)((pHiddenSel->u64Base + (RTGCUINTPTR)Addr) & 0xffffffff); } /* * Check if present. */ if (u1Present) { /* * Type check. */ switch (u4Type) { /** Read only selector type. */ case X86_SEL_TYPE_RO: case X86_SEL_TYPE_RO_ACC: case X86_SEL_TYPE_RW: case X86_SEL_TYPE_RW_ACC: case X86_SEL_TYPE_EO: case X86_SEL_TYPE_EO_ACC: case X86_SEL_TYPE_ER: case X86_SEL_TYPE_ER_ACC: if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if (fCheckLimit && (RTGCUINTPTR)Addr > u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; return VINF_SUCCESS; case X86_SEL_TYPE_EO_CONF: case X86_SEL_TYPE_EO_CONF_ACC: case X86_SEL_TYPE_ER_CONF: case X86_SEL_TYPE_ER_CONF_ACC: if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if (fCheckLimit && (RTGCUINTPTR)Addr > u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; return VINF_SUCCESS; case X86_SEL_TYPE_RO_DOWN: case X86_SEL_TYPE_RO_DOWN_ACC: case X86_SEL_TYPE_RW_DOWN: case X86_SEL_TYPE_RW_DOWN_ACC: if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if (fCheckLimit) { if (!u1Granularity && (RTGCUINTPTR)Addr > (RTGCUINTPTR)0xffff) return VERR_OUT_OF_SELECTOR_BOUNDS; if ((RTGCUINTPTR)Addr <= u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; } /* ok */ if (ppvGC) *ppvGC = pvFlat; return VINF_SUCCESS; default: return VERR_INVALID_SELECTOR; } } } # ifndef IN_RING0 else # endif #endif /* !IN_RC */ #ifndef IN_RING0 { X86DESC Desc; if (!(Sel & X86_SEL_LDT)) { if ( !(fFlags & SELMTOFLAT_FLAGS_HYPER) && (unsigned)(Sel & X86_SEL_MASK) >= pVM->selm.s.GuestGdtr.cbGdt) return VERR_INVALID_SELECTOR; Desc = pVM->selm.s.CTX_SUFF(paGdt)[Sel >> X86_SEL_SHIFT]; } else { if ((unsigned)(Sel & X86_SEL_MASK) >= pVM->selm.s.cbLdtLimit) return VERR_INVALID_SELECTOR; /** @todo handle LDT page(s) not present! */ PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper); Desc = paLDT[Sel >> X86_SEL_SHIFT]; } /* calc limit. */ u32Limit = X86DESC_LIMIT(Desc); if (Desc.Gen.u1Granularity) u32Limit = (u32Limit << PAGE_SHIFT) | PAGE_OFFSET_MASK; /* calc address assuming straight stuff. */ pvFlat = (RTGCPTR)((RTGCUINTPTR)Addr + X86DESC_BASE(Desc)); u1Present = Desc.Gen.u1Present; u1Granularity = Desc.Gen.u1Granularity; u1DescType = Desc.Gen.u1DescType; u4Type = Desc.Gen.u4Type; /* * Check if present. */ if (u1Present) { /* * Type check. */ # define BOTH(a, b) ((a << 16) | b) switch (BOTH(u1DescType, u4Type)) { /** Read only selector type. */ case BOTH(1,X86_SEL_TYPE_RO): case BOTH(1,X86_SEL_TYPE_RO_ACC): case BOTH(1,X86_SEL_TYPE_RW): case BOTH(1,X86_SEL_TYPE_RW_ACC): case BOTH(1,X86_SEL_TYPE_EO): case BOTH(1,X86_SEL_TYPE_EO_ACC): case BOTH(1,X86_SEL_TYPE_ER): case BOTH(1,X86_SEL_TYPE_ER_ACC): if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if ((RTGCUINTPTR)Addr > u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; return VINF_SUCCESS; case BOTH(1,X86_SEL_TYPE_EO_CONF): case BOTH(1,X86_SEL_TYPE_EO_CONF_ACC): case BOTH(1,X86_SEL_TYPE_ER_CONF): case BOTH(1,X86_SEL_TYPE_ER_CONF_ACC): if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if ((RTGCUINTPTR)Addr > u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; return VINF_SUCCESS; case BOTH(1,X86_SEL_TYPE_RO_DOWN): case BOTH(1,X86_SEL_TYPE_RO_DOWN_ACC): case BOTH(1,X86_SEL_TYPE_RW_DOWN): case BOTH(1,X86_SEL_TYPE_RW_DOWN_ACC): if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if (!u1Granularity && (RTGCUINTPTR)Addr > (RTGCUINTPTR)0xffff) return VERR_OUT_OF_SELECTOR_BOUNDS; if ((RTGCUINTPTR)Addr <= u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; return VINF_SUCCESS; case BOTH(0,X86_SEL_TYPE_SYS_286_TSS_AVAIL): case BOTH(0,X86_SEL_TYPE_SYS_LDT): case BOTH(0,X86_SEL_TYPE_SYS_286_TSS_BUSY): case BOTH(0,X86_SEL_TYPE_SYS_286_CALL_GATE): case BOTH(0,X86_SEL_TYPE_SYS_TASK_GATE): case BOTH(0,X86_SEL_TYPE_SYS_286_INT_GATE): case BOTH(0,X86_SEL_TYPE_SYS_286_TRAP_GATE): case BOTH(0,X86_SEL_TYPE_SYS_386_TSS_AVAIL): case BOTH(0,X86_SEL_TYPE_SYS_386_TSS_BUSY): case BOTH(0,X86_SEL_TYPE_SYS_386_CALL_GATE): case BOTH(0,X86_SEL_TYPE_SYS_386_INT_GATE): case BOTH(0,X86_SEL_TYPE_SYS_386_TRAP_GATE): if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if ((RTGCUINTPTR)Addr > u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; return VINF_SUCCESS; default: return VERR_INVALID_SELECTOR; } # undef BOTH } } #endif /* !IN_RING0 */ return VERR_SELECTOR_NOT_PRESENT; } #ifndef IN_RING0 /** * Converts a GC selector based address to a flat address. * * Some basic checking is done, but not all kinds yet. * * @returns VBox status * @param pVM VM Handle. * @param eflags Current eflags * @param Sel Selector part. * @param Addr Address part. * @param pHiddenSel Hidden selector register (can be NULL) * @param fFlags SELMTOFLAT_FLAGS_* * GDT entires are valid. * @param ppvGC Where to store the GC flat address. * @param pcb Where to store the bytes from *ppvGC which can be accessed according to * the selector. NULL is allowed. * @remarks Don't use when in long mode. */ VMMDECL(int) SELMToFlatBySelEx(PVM pVM, X86EFLAGS eflags, RTSEL Sel, RTGCPTR Addr, CPUMSELREGHID *pHiddenSel, unsigned fFlags, PRTGCPTR ppvGC, uint32_t *pcb) { PVMCPU pVCpu = VMMGetCpu(pVM); Assert(!CPUMIsGuestInLongMode(pVCpu)); /* DON'T USE! */ /* * Deal with real & v86 mode first. */ if ( CPUMIsGuestInRealMode(pVCpu) || eflags.Bits.u1VM) { RTGCUINTPTR uFlat = (RTGCUINTPTR)Addr & 0xffff; if (ppvGC) { if ( pHiddenSel && CPUMAreHiddenSelRegsValid(pVM)) *ppvGC = (RTGCPTR)(pHiddenSel->u64Base + uFlat); else *ppvGC = (RTGCPTR)(((RTGCUINTPTR)Sel << 4) + uFlat); } if (pcb) *pcb = 0x10000 - uFlat; return VINF_SUCCESS; } uint32_t u32Limit; RTGCPTR pvFlat; uint32_t u1Present, u1DescType, u1Granularity, u4Type; /** @todo when we're in 16 bits mode, we should cut off the address as well.. */ if ( pHiddenSel && CPUMAreHiddenSelRegsValid(pVM)) { u1Present = pHiddenSel->Attr.n.u1Present; u1Granularity = pHiddenSel->Attr.n.u1Granularity; u1DescType = pHiddenSel->Attr.n.u1DescType; u4Type = pHiddenSel->Attr.n.u4Type; u32Limit = pHiddenSel->u32Limit; pvFlat = (RTGCPTR)(pHiddenSel->u64Base + (RTGCUINTPTR)Addr); if ( !CPUMIsGuestInLongMode(pVCpu) || !pHiddenSel->Attr.n.u1Long) { /* AMD64 manual: compatibility mode ignores the high 32 bits when calculating an effective address. */ pvFlat &= 0xffffffff; } } else { X86DESC Desc; if (!(Sel & X86_SEL_LDT)) { if ( !(fFlags & SELMTOFLAT_FLAGS_HYPER) && (unsigned)(Sel & X86_SEL_MASK) >= pVM->selm.s.GuestGdtr.cbGdt) return VERR_INVALID_SELECTOR; Desc = pVM->selm.s.CTX_SUFF(paGdt)[Sel >> X86_SEL_SHIFT]; } else { if ((unsigned)(Sel & X86_SEL_MASK) >= pVM->selm.s.cbLdtLimit) return VERR_INVALID_SELECTOR; /** @todo handle LDT page(s) not present! */ PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper); Desc = paLDT[Sel >> X86_SEL_SHIFT]; } /* calc limit. */ u32Limit = X86DESC_LIMIT(Desc); if (Desc.Gen.u1Granularity) u32Limit = (u32Limit << PAGE_SHIFT) | PAGE_OFFSET_MASK; /* calc address assuming straight stuff. */ pvFlat = (RTGCPTR)((RTGCUINTPTR)Addr + X86DESC_BASE(Desc)); u1Present = Desc.Gen.u1Present; u1Granularity = Desc.Gen.u1Granularity; u1DescType = Desc.Gen.u1DescType; u4Type = Desc.Gen.u4Type; } /* * Check if present. */ if (u1Present) { /* * Type check. */ #define BOTH(a, b) ((a << 16) | b) switch (BOTH(u1DescType, u4Type)) { /** Read only selector type. */ case BOTH(1,X86_SEL_TYPE_RO): case BOTH(1,X86_SEL_TYPE_RO_ACC): case BOTH(1,X86_SEL_TYPE_RW): case BOTH(1,X86_SEL_TYPE_RW_ACC): case BOTH(1,X86_SEL_TYPE_EO): case BOTH(1,X86_SEL_TYPE_EO_ACC): case BOTH(1,X86_SEL_TYPE_ER): case BOTH(1,X86_SEL_TYPE_ER_ACC): if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if ((RTGCUINTPTR)Addr > u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; if (pcb) *pcb = u32Limit - (uint32_t)Addr + 1; return VINF_SUCCESS; case BOTH(1,X86_SEL_TYPE_EO_CONF): case BOTH(1,X86_SEL_TYPE_EO_CONF_ACC): case BOTH(1,X86_SEL_TYPE_ER_CONF): case BOTH(1,X86_SEL_TYPE_ER_CONF_ACC): if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if ((RTGCUINTPTR)Addr > u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; if (pcb) *pcb = u32Limit - (uint32_t)Addr + 1; return VINF_SUCCESS; case BOTH(1,X86_SEL_TYPE_RO_DOWN): case BOTH(1,X86_SEL_TYPE_RO_DOWN_ACC): case BOTH(1,X86_SEL_TYPE_RW_DOWN): case BOTH(1,X86_SEL_TYPE_RW_DOWN_ACC): if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if (!u1Granularity && (RTGCUINTPTR)Addr > (RTGCUINTPTR)0xffff) return VERR_OUT_OF_SELECTOR_BOUNDS; if ((RTGCUINTPTR)Addr <= u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; if (pcb) *pcb = (RTGCUINTPTR)(u1Granularity ? 0xffffffff : 0xffff) - (RTGCUINTPTR)Addr + 1; return VINF_SUCCESS; case BOTH(0,X86_SEL_TYPE_SYS_286_TSS_AVAIL): case BOTH(0,X86_SEL_TYPE_SYS_LDT): case BOTH(0,X86_SEL_TYPE_SYS_286_TSS_BUSY): case BOTH(0,X86_SEL_TYPE_SYS_286_CALL_GATE): case BOTH(0,X86_SEL_TYPE_SYS_TASK_GATE): case BOTH(0,X86_SEL_TYPE_SYS_286_INT_GATE): case BOTH(0,X86_SEL_TYPE_SYS_286_TRAP_GATE): case BOTH(0,X86_SEL_TYPE_SYS_386_TSS_AVAIL): case BOTH(0,X86_SEL_TYPE_SYS_386_TSS_BUSY): case BOTH(0,X86_SEL_TYPE_SYS_386_CALL_GATE): case BOTH(0,X86_SEL_TYPE_SYS_386_INT_GATE): case BOTH(0,X86_SEL_TYPE_SYS_386_TRAP_GATE): if (!(fFlags & SELMTOFLAT_FLAGS_NO_PL)) { /** @todo fix this mess */ } /* check limit. */ if ((RTGCUINTPTR)Addr > u32Limit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* ok */ if (ppvGC) *ppvGC = pvFlat; if (pcb) *pcb = 0xffffffff - (RTGCUINTPTR)pvFlat + 1; /* Depends on the type.. fixme if we care. */ return VINF_SUCCESS; default: return VERR_INVALID_SELECTOR; } #undef BOTH } return VERR_SELECTOR_NOT_PRESENT; } #endif /* !IN_RING0 */ /** * Validates and converts a GC selector based code address to a flat * address when in real or v8086 mode. * * @returns VINF_SUCCESS. * @param pVM VM Handle. * @param SelCS Selector part. * @param pHidCS The hidden CS register part. Optional. * @param Addr Address part. * @param ppvFlat Where to store the flat address. */ DECLINLINE(int) selmValidateAndConvertCSAddrRealMode(PVM pVM, RTSEL SelCS, PCPUMSELREGHID pHidCS, RTGCPTR Addr, PRTGCPTR ppvFlat) { RTGCUINTPTR uFlat = (RTGCUINTPTR)Addr & 0xffff; if (!pHidCS || !CPUMAreHiddenSelRegsValid(pVM)) uFlat += ((RTGCUINTPTR)SelCS << 4); else uFlat += pHidCS->u64Base; *ppvFlat = (RTGCPTR)uFlat; return VINF_SUCCESS; } #ifndef IN_RING0 /** * Validates and converts a GC selector based code address to a flat * address when in protected/long mode using the standard algorithm. * * @returns VBox status code. * @param pVM VM Handle. * @param SelCPL Current privilege level. Get this from SS - CS might be conforming! * A full selector can be passed, we'll only use the RPL part. * @param SelCS Selector part. * @param Addr Address part. * @param ppvFlat Where to store the flat address. * @param pcBits Where to store the segment bitness (16/32/64). Optional. */ DECLINLINE(int) selmValidateAndConvertCSAddrStd(PVM pVM, RTSEL SelCPL, RTSEL SelCS, RTGCPTR Addr, PRTGCPTR ppvFlat, uint32_t *pcBits) { Assert(!CPUMAreHiddenSelRegsValid(pVM)); /** @todo validate limit! */ X86DESC Desc; if (!(SelCS & X86_SEL_LDT)) Desc = pVM->selm.s.CTX_SUFF(paGdt)[SelCS >> X86_SEL_SHIFT]; else { /** @todo handle LDT page(s) not present! */ PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper); Desc = paLDT[SelCS >> X86_SEL_SHIFT]; } /* * Check if present. */ if (Desc.Gen.u1Present) { /* * Type check. */ if ( Desc.Gen.u1DescType == 1 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE)) { /* * Check level. */ unsigned uLevel = RT_MAX(SelCPL & X86_SEL_RPL, SelCS & X86_SEL_RPL); if ( !(Desc.Gen.u4Type & X86_SEL_TYPE_CONF) ? uLevel <= Desc.Gen.u2Dpl : uLevel >= Desc.Gen.u2Dpl /* hope I got this right now... */ ) { /* * Limit check. */ uint32_t u32Limit = X86DESC_LIMIT(Desc); if (Desc.Gen.u1Granularity) u32Limit = (u32Limit << PAGE_SHIFT) | PAGE_OFFSET_MASK; if ((RTGCUINTPTR)Addr <= u32Limit) { *ppvFlat = (RTGCPTR)((RTGCUINTPTR)Addr + X86DESC_BASE(Desc)); if (pcBits) *pcBits = Desc.Gen.u1DefBig ? 32 : 16; /** @todo GUEST64 */ return VINF_SUCCESS; } return VERR_OUT_OF_SELECTOR_BOUNDS; } return VERR_INVALID_RPL; } return VERR_NOT_CODE_SELECTOR; } return VERR_SELECTOR_NOT_PRESENT; } #endif /* !IN_RING0 */ /** * Validates and converts a GC selector based code address to a flat * address when in protected/long mode using the standard algorithm. * * @returns VBox status code. * @param pVCpu VMCPU Handle. * @param SelCPL Current privilege level. Get this from SS - CS might be conforming! * A full selector can be passed, we'll only use the RPL part. * @param SelCS Selector part. * @param Addr Address part. * @param ppvFlat Where to store the flat address. */ DECLINLINE(int) selmValidateAndConvertCSAddrHidden(PVMCPU pVCpu, RTSEL SelCPL, RTSEL SelCS, PCPUMSELREGHID pHidCS, RTGCPTR Addr, PRTGCPTR ppvFlat) { /* * Check if present. */ if (pHidCS->Attr.n.u1Present) { /* * Type check. */ if ( pHidCS->Attr.n.u1DescType == 1 && (pHidCS->Attr.n.u4Type & X86_SEL_TYPE_CODE)) { /* * Check level. */ unsigned uLevel = RT_MAX(SelCPL & X86_SEL_RPL, SelCS & X86_SEL_RPL); if ( !(pHidCS->Attr.n.u4Type & X86_SEL_TYPE_CONF) ? uLevel <= pHidCS->Attr.n.u2Dpl : uLevel >= pHidCS->Attr.n.u2Dpl /* hope I got this right now... */ ) { /* 64 bits mode: CS, DS, ES and SS are treated as if each segment base is 0 (Intel® 64 and IA-32 Architectures Software Developer's Manual: 3.4.2.1). */ if ( CPUMIsGuestInLongMode(pVCpu) && pHidCS->Attr.n.u1Long) { *ppvFlat = Addr; return VINF_SUCCESS; } /* * Limit check. Note that the limit in the hidden register is the * final value. The granularity bit was included in its calculation. */ uint32_t u32Limit = pHidCS->u32Limit; if ((RTGCUINTPTR)Addr <= u32Limit) { *ppvFlat = (RTGCPTR)( (RTGCUINTPTR)Addr + pHidCS->u64Base ); return VINF_SUCCESS; } return VERR_OUT_OF_SELECTOR_BOUNDS; } Log(("Invalid RPL Attr.n.u4Type=%x cpl=%x dpl=%x\n", pHidCS->Attr.n.u4Type, uLevel, pHidCS->Attr.n.u2Dpl)); return VERR_INVALID_RPL; } return VERR_NOT_CODE_SELECTOR; } return VERR_SELECTOR_NOT_PRESENT; } #ifdef IN_RC /** * Validates and converts a GC selector based code address to a flat address. * * This is like SELMValidateAndConvertCSAddr + SELMIsSelector32Bit but with * invalid hidden CS data. It's customized for dealing efficiently with CS * at GC trap time. * * @returns VBox status code. * @param pVM VM Handle. * @param eflags Current eflags * @param SelCPL Current privilege level. Get this from SS - CS might be conforming! * A full selector can be passed, we'll only use the RPL part. * @param SelCS Selector part. * @param Addr Address part. * @param ppvFlat Where to store the flat address. * @param pcBits Where to store the 64-bit/32-bit/16-bit indicator. */ VMMDECL(int) SELMValidateAndConvertCSAddrGCTrap(PVM pVM, X86EFLAGS eflags, RTSEL SelCPL, RTSEL SelCS, RTGCPTR Addr, PRTGCPTR ppvFlat, uint32_t *pcBits) { Assert(pVM->cCPUs == 1); PVMCPU pVCpu = &pVM->aCpus[0]; if ( CPUMIsGuestInRealMode(pVCpu) || eflags.Bits.u1VM) { *pcBits = 16; return selmValidateAndConvertCSAddrRealMode(pVM, SelCS, NULL, Addr, ppvFlat); } return selmValidateAndConvertCSAddrStd(pVM, SelCPL, SelCS, Addr, ppvFlat, pcBits); } #endif /* IN_RC */ /** * Validates and converts a GC selector based code address to a flat address. * * @returns VBox status code. * @param pVM VM Handle. * @param eflags Current eflags * @param SelCPL Current privilege level. Get this from SS - CS might be conforming! * A full selector can be passed, we'll only use the RPL part. * @param SelCS Selector part. * @param pHiddenSel The hidden CS selector register. * @param Addr Address part. * @param ppvFlat Where to store the flat address. */ VMMDECL(int) SELMValidateAndConvertCSAddr(PVM pVM, X86EFLAGS eflags, RTSEL SelCPL, RTSEL SelCS, CPUMSELREGHID *pHiddenCSSel, RTGCPTR Addr, PRTGCPTR ppvFlat) { PVMCPU pVCpu = VMMGetCpu(pVM); if ( CPUMIsGuestInRealMode(pVCpu) || eflags.Bits.u1VM) return selmValidateAndConvertCSAddrRealMode(pVM, SelCS, pHiddenCSSel, Addr, ppvFlat); #ifdef IN_RING0 Assert(CPUMAreHiddenSelRegsValid(pVM)); #else /** @todo when we're in 16 bits mode, we should cut off the address as well? (like in selmValidateAndConvertCSAddrRealMode) */ if (!CPUMAreHiddenSelRegsValid(pVM)) return selmValidateAndConvertCSAddrStd(pVM, SelCPL, SelCS, Addr, ppvFlat, NULL); #endif return selmValidateAndConvertCSAddrHidden(pVCpu, SelCPL, SelCS, pHiddenCSSel, Addr, ppvFlat); } #ifndef IN_RING0 /** * Return the cpu mode corresponding to the (CS) selector * * @returns DISCPUMODE according to the selector type (16, 32 or 64 bits) * @param pVM VM Handle. * @param Sel The selector. */ static DISCPUMODE selmGetCpuModeFromSelector(PVM pVM, RTSEL Sel) { Assert(!CPUMAreHiddenSelRegsValid(pVM)); /** @todo validate limit! */ X86DESC Desc; if (!(Sel & X86_SEL_LDT)) Desc = pVM->selm.s.CTX_SUFF(paGdt)[Sel >> X86_SEL_SHIFT]; else { /** @todo handle LDT page(s) not present! */ PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.CTX_SUFF(pvLdt) + pVM->selm.s.offLdtHyper); Desc = paLDT[Sel >> X86_SEL_SHIFT]; } return (Desc.Gen.u1DefBig) ? CPUMODE_32BIT : CPUMODE_16BIT; } #endif /* !IN_RING0 */ /** * Return the cpu mode corresponding to the (CS) selector * * @returns DISCPUMODE according to the selector type (16, 32 or 64 bits) * @param pVM VM Handle. * @param eflags Current eflags register * @param Sel The selector. * @param pHiddenSel The hidden selector register. */ VMMDECL(DISCPUMODE) SELMGetCpuModeFromSelector(PVM pVM, X86EFLAGS eflags, RTSEL Sel, CPUMSELREGHID *pHiddenSel) { PVMCPU pVCpu = VMMGetCpu(pVM); #ifdef IN_RING0 Assert(CPUMAreHiddenSelRegsValid(pVM)); #else /* !IN_RING0 */ if (!CPUMAreHiddenSelRegsValid(pVM)) { /* * Deal with real & v86 mode first. */ if ( CPUMIsGuestInRealMode(pVCpu) || eflags.Bits.u1VM) return CPUMODE_16BIT; return selmGetCpuModeFromSelector(pVM, Sel); } #endif /* !IN_RING0 */ if ( CPUMIsGuestInLongMode(pVCpu) && pHiddenSel->Attr.n.u1Long) return CPUMODE_64BIT; /* Else compatibility or 32 bits mode. */ return (pHiddenSel->Attr.n.u1DefBig) ? CPUMODE_32BIT : CPUMODE_16BIT; } /** * Returns Hypervisor's Trap 08 (\#DF) selector. * * @returns Hypervisor's Trap 08 (\#DF) selector. * @param pVM VM Handle. */ VMMDECL(RTSEL) SELMGetTrap8Selector(PVM pVM) { return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]; } /** * Sets EIP of Hypervisor's Trap 08 (\#DF) TSS. * * @param pVM VM Handle. * @param u32EIP EIP of Trap 08 handler. */ VMMDECL(void) SELMSetTrap8EIP(PVM pVM, uint32_t u32EIP) { pVM->selm.s.TssTrap08.eip = u32EIP; } /** * Sets ss:esp for ring1 in main Hypervisor's TSS. * * @param pVM VM Handle. * @param ss Ring1 SS register value. Pass 0 if invalid. * @param esp Ring1 ESP register value. */ void selmSetRing1Stack(PVM pVM, uint32_t ss, RTGCPTR32 esp) { Assert((ss & 1) || esp == 0); pVM->selm.s.Tss.ss1 = ss; pVM->selm.s.Tss.esp1 = (uint32_t)esp; } #ifndef IN_RING0 /** * Gets ss:esp for ring1 in main Hypervisor's TSS. * * Returns SS=0 if the ring-1 stack isn't valid. * * @returns VBox status code. * @param pVM VM Handle. * @param pSS Ring1 SS register value. * @param pEsp Ring1 ESP register value. */ VMMDECL(int) SELMGetRing1Stack(PVM pVM, uint32_t *pSS, PRTGCPTR32 pEsp) { Assert(pVM->cCPUs == 1); PVMCPU pVCpu = &pVM->aCpus[0]; if (pVM->selm.s.fSyncTSSRing0Stack) { RTGCPTR GCPtrTss = pVM->selm.s.GCPtrGuestTss; int rc; VBOXTSS tss; Assert(pVM->selm.s.GCPtrGuestTss && pVM->selm.s.cbMonitoredGuestTss); # ifdef IN_RC bool fTriedAlready = false; l_tryagain: rc = MMGCRamRead(pVM, &tss.ss0, (RCPTRTYPE(void *))(GCPtrTss + RT_OFFSETOF(VBOXTSS, ss0)), sizeof(tss.ss0)); rc |= MMGCRamRead(pVM, &tss.esp0, (RCPTRTYPE(void *))(GCPtrTss + RT_OFFSETOF(VBOXTSS, esp0)), sizeof(tss.esp0)); # ifdef DEBUG rc |= MMGCRamRead(pVM, &tss.offIoBitmap, (RCPTRTYPE(void *))(GCPtrTss + RT_OFFSETOF(VBOXTSS, offIoBitmap)), sizeof(tss.offIoBitmap)); # endif if (RT_FAILURE(rc)) { if (!fTriedAlready) { /* Shadow page might be out of sync. Sync and try again */ /** @todo might cross page boundary */ fTriedAlready = true; rc = PGMPrefetchPage(pVCpu, (RTGCPTR)GCPtrTss); if (rc != VINF_SUCCESS) return rc; goto l_tryagain; } AssertMsgFailed(("Unable to read TSS structure at %08X\n", GCPtrTss)); return rc; } # else /* !IN_RC */ /* Reading too much. Could be cheaper than two seperate calls though. */ rc = PGMPhysSimpleReadGCPtr(pVCpu, &tss, GCPtrTss, sizeof(VBOXTSS)); if (RT_FAILURE(rc)) { AssertReleaseMsgFailed(("Unable to read TSS structure at %08X\n", GCPtrTss)); return rc; } # endif /* !IN_RC */ # ifdef LOG_ENABLED uint32_t ssr0 = pVM->selm.s.Tss.ss1; uint32_t espr0 = pVM->selm.s.Tss.esp1; ssr0 &= ~1; if (ssr0 != tss.ss0 || espr0 != tss.esp0) Log(("SELMGetRing1Stack: Updating TSS ring 0 stack to %04X:%08X\n", tss.ss0, tss.esp0)); Log(("offIoBitmap=%#x\n", tss.offIoBitmap)); # endif /* Update our TSS structure for the guest's ring 1 stack */ selmSetRing1Stack(pVM, tss.ss0 | 1, (RTGCPTR32)tss.esp0); pVM->selm.s.fSyncTSSRing0Stack = false; } *pSS = pVM->selm.s.Tss.ss1; *pEsp = (RTGCPTR32)pVM->selm.s.Tss.esp1; return VINF_SUCCESS; } #endif /* !IN_RING0 */ /** * Returns Guest TSS pointer * * @returns Pointer to the guest TSS, RTRCPTR_MAX if not being monitored. * @param pVM VM Handle. */ VMMDECL(RTGCPTR) SELMGetGuestTSS(PVM pVM) { return (RTGCPTR)pVM->selm.s.GCPtrGuestTss; } #ifndef IN_RING0 /** * Gets the hypervisor code selector (CS). * @returns CS selector. * @param pVM The VM handle. */ VMMDECL(RTSEL) SELMGetHyperCS(PVM pVM) { return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]; } /** * Gets the 64-mode hypervisor code selector (CS64). * @returns CS selector. * @param pVM The VM handle. */ VMMDECL(RTSEL) SELMGetHyperCS64(PVM pVM) { return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]; } /** * Gets the hypervisor data selector (DS). * @returns DS selector. * @param pVM The VM handle. */ VMMDECL(RTSEL) SELMGetHyperDS(PVM pVM) { return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]; } /** * Gets the hypervisor TSS selector. * @returns TSS selector. * @param pVM The VM handle. */ VMMDECL(RTSEL) SELMGetHyperTSS(PVM pVM) { return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]; } /** * Gets the hypervisor TSS Trap 8 selector. * @returns TSS Trap 8 selector. * @param pVM The VM handle. */ VMMDECL(RTSEL) SELMGetHyperTSSTrap08(PVM pVM) { return pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]; } /** * Gets the address for the hypervisor GDT. * * @returns The GDT address. * @param pVM The VM handle. * @remark This is intended only for very special use, like in the world * switchers. Don't exploit this API! */ VMMDECL(RTRCPTR) SELMGetHyperGDT(PVM pVM) { /* * Always convert this from the HC pointer since we can be * called before the first relocation and have to work correctly * without having dependencies on the relocation order. */ return (RTRCPTR)MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3); } #endif /* !IN_RING0 */ /** * Gets info about the current TSS. * * @returns VBox status code. * @retval VINF_SUCCESS if we've got a TSS loaded. * @retval VERR_SELM_NO_TSS if we haven't got a TSS (rather unlikely). * * @param pVM The VM handle. * @param pVCpu VMCPU Handle. * @param pGCPtrTss Where to store the TSS address. * @param pcbTss Where to store the TSS size limit. * @param pfCanHaveIOBitmap Where to store the can-have-I/O-bitmap indicator. (optional) */ VMMDECL(int) SELMGetTSSInfo(PVM pVM, PVMCPU pVCpu, PRTGCUINTPTR pGCPtrTss, PRTGCUINTPTR pcbTss, bool *pfCanHaveIOBitmap) { /* * The TR hidden register is always valid. */ CPUMSELREGHID trHid; RTSEL tr = CPUMGetGuestTR(pVCpu, &trHid); if (!(tr & X86_SEL_MASK)) return VERR_SELM_NO_TSS; *pGCPtrTss = trHid.u64Base; *pcbTss = trHid.u32Limit + (trHid.u32Limit != UINT32_MAX); /* be careful. */ if (pfCanHaveIOBitmap) *pfCanHaveIOBitmap = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY; return VINF_SUCCESS; } /** * Notification callback which is called whenever there is a chance that a CR3 * value might have changed. * This is called by PGM. * * @param pVM The VM handle * @param pVCpu The VMCPU handle */ VMMDECL(void) SELMShadowCR3Changed(PVM pVM, PVMCPU pVCpu) { /** @todo SMP support!! */ pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu); pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); }