1 | /** @file
|
---|
2 | *
|
---|
3 | * TM - Timeout Manager, Virtual Time, All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006 InnoTek Systemberatung GmbH
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License as published by the Free Software Foundation,
|
---|
13 | * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
|
---|
14 | * distribution. VirtualBox OSE is distributed in the hope that it will
|
---|
15 | * be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * If you received this file as part of a commercial VirtualBox
|
---|
18 | * distribution, then only the terms of your commercial VirtualBox
|
---|
19 | * license agreement apply instead of the previous paragraph.
|
---|
20 | */
|
---|
21 |
|
---|
22 |
|
---|
23 | /*******************************************************************************
|
---|
24 | * Header Files *
|
---|
25 | *******************************************************************************/
|
---|
26 | #define LOG_GROUP LOG_GROUP_TM
|
---|
27 | #include <VBox/tm.h>
|
---|
28 | #ifdef IN_RING3
|
---|
29 | # include <VBox/rem.h>
|
---|
30 | #endif
|
---|
31 | #include "TMInternal.h"
|
---|
32 | #include <VBox/vm.h>
|
---|
33 | #include <VBox/err.h>
|
---|
34 | #include <VBox/log.h>
|
---|
35 | #include <VBox/sup.h>
|
---|
36 |
|
---|
37 | #include <iprt/time.h>
|
---|
38 | #include <iprt/assert.h>
|
---|
39 | #include <iprt/asm.h>
|
---|
40 |
|
---|
41 |
|
---|
42 |
|
---|
43 |
|
---|
44 | /**
|
---|
45 | * Gets the current TMCLOCK_VIRTUAL time
|
---|
46 | *
|
---|
47 | * @returns The timestamp.
|
---|
48 | * @param pVM VM handle.
|
---|
49 | *
|
---|
50 | * @remark While the flow of time will never go backwards, the speed of the
|
---|
51 | * progress varies due to inaccurate RTTimeNanoTS and TSC. The latter can be
|
---|
52 | * influenced by power saving (SpeedStep, PowerNow!), while the former
|
---|
53 | * makes use of TSC and kernel timers.
|
---|
54 | */
|
---|
55 | TMDECL(uint64_t) TMVirtualGet(PVM pVM)
|
---|
56 | {
|
---|
57 | uint64_t u64;
|
---|
58 | if (pVM->tm.s.fVirtualTicking)
|
---|
59 | {
|
---|
60 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGet);
|
---|
61 | u64 = RTTimeNanoTS() - pVM->tm.s.u64VirtualOffset;
|
---|
62 |
|
---|
63 | /*
|
---|
64 | * Use the chance to check for expired timers.
|
---|
65 | */
|
---|
66 | if ( !VM_FF_ISSET(pVM, VM_FF_TIMER)
|
---|
67 | && ( pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64
|
---|
68 | || ( pVM->tm.s.fVirtualSyncTicking
|
---|
69 | && pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64 - pVM->tm.s.u64VirtualSyncOffset
|
---|
70 | )
|
---|
71 | )
|
---|
72 | )
|
---|
73 | {
|
---|
74 | VM_FF_SET(pVM, VM_FF_TIMER);
|
---|
75 | #ifdef IN_RING3
|
---|
76 | REMR3NotifyTimerPending(pVM);
|
---|
77 | VMR3NotifyFF(pVM, true);
|
---|
78 | #endif
|
---|
79 | }
|
---|
80 | }
|
---|
81 | else
|
---|
82 | u64 = pVM->tm.s.u64Virtual;
|
---|
83 | return u64;
|
---|
84 | }
|
---|
85 |
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * Gets the current TMCLOCK_VIRTUAL_SYNC time.
|
---|
89 | *
|
---|
90 | * @returns The timestamp.
|
---|
91 | * @param pVM VM handle.
|
---|
92 | */
|
---|
93 | TMDECL(uint64_t) TMVirtualGetSync(PVM pVM)
|
---|
94 | {
|
---|
95 | uint64_t u64;
|
---|
96 | if (pVM->tm.s.fVirtualSyncTicking)
|
---|
97 | {
|
---|
98 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGetSync);
|
---|
99 |
|
---|
100 | /*
|
---|
101 | * Do TMVirtualGet() to get the current TMCLOCK_VIRTUAL time.
|
---|
102 | */
|
---|
103 | Assert(pVM->tm.s.fVirtualTicking);
|
---|
104 | u64 = RTTimeNanoTS() - pVM->tm.s.u64VirtualOffset;
|
---|
105 | if ( !VM_FF_ISSET(pVM, VM_FF_TIMER)
|
---|
106 | && pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64)
|
---|
107 | {
|
---|
108 | VM_FF_SET(pVM, VM_FF_TIMER);
|
---|
109 | #ifdef IN_RING3
|
---|
110 | REMR3NotifyTimerPending(pVM);
|
---|
111 | VMR3NotifyFF(pVM, true);
|
---|
112 | #endif
|
---|
113 | }
|
---|
114 |
|
---|
115 | /*
|
---|
116 | * Read the offset and adjust if we're playing catch-up.
|
---|
117 | *
|
---|
118 | * The catch-up adjusting work by us decrementing the offset by a percentage of
|
---|
119 | * the time elapsed since the previous TMVritualGetSync call. We take some simple
|
---|
120 | * precautions against racing other threads here, but assume that this isn't going
|
---|
121 | * to be much of a problem since calls to this function is unlikely from threads
|
---|
122 | * other than the EMT.
|
---|
123 | *
|
---|
124 | * It's possible to get a very long or even negative interval between two read
|
---|
125 | * for the following reasons:
|
---|
126 | * - Someone might have suspended the process execution, frequently the case when
|
---|
127 | * debugging the process.
|
---|
128 | * - We might be on a different CPU which TSC isn't quite in sync with the
|
---|
129 | * other CPUs in the system.
|
---|
130 | * - RTTimeNanoTS() is returning sligtly different values in GC, R0 and R3 because
|
---|
131 | * of the static variable it uses with the previous read time.
|
---|
132 | * - Another thread is racing us and we might have been preemnted while inside
|
---|
133 | * this function.
|
---|
134 | *
|
---|
135 | * Assuming nano second virtual time, we can simply ignore any intervals which has
|
---|
136 | * any of the upper 32 bits set. This will have the nice sideeffect of allowing us
|
---|
137 | * to use (faster) 32-bit math.
|
---|
138 | */
|
---|
139 | AssertCompile(TMCLOCK_FREQ_VIRTUAL <= 2000000000); /* (assumes low 32-bit >= 2 seconds) */
|
---|
140 | uint64_t u64Offset = pVM->tm.s.u64VirtualSyncOffset;
|
---|
141 | if (pVM->tm.s.fVirtualSyncCatchUp)
|
---|
142 | {
|
---|
143 | const uint64_t u64Prev = pVM->tm.s.u64VirtualSyncCatchUpPrev;
|
---|
144 | uint64_t u64Delta = u64 - u64Prev;
|
---|
145 | if (!(u64Delta >> 32))
|
---|
146 | {
|
---|
147 | uint32_t u32Sub = ASMDivU64ByU32RetU32(ASMMult2xU32RetU64((uint32_t)u64Delta, pVM->tm.s.u32VirtualSyncCatchupPrecentage),
|
---|
148 | 100);
|
---|
149 | if (u32Sub < (uint32_t)u64Delta)
|
---|
150 | {
|
---|
151 | const uint64_t u64NewOffset = u64Offset - u32Sub;
|
---|
152 | if (ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64, u64Prev))
|
---|
153 | ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualSyncOffset, u64NewOffset, u64Offset);
|
---|
154 | u64Offset = u64NewOffset;
|
---|
155 | }
|
---|
156 | else
|
---|
157 | {
|
---|
158 | /* we've completely caught up. */
|
---|
159 | if ( ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64, u64Prev)
|
---|
160 | && ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualSyncOffset, 0, u64Offset))
|
---|
161 | ASMAtomicXchgSize(&pVM->tm.s.fVirtualSyncCatchUp, false);
|
---|
162 | }
|
---|
163 | }
|
---|
164 | else
|
---|
165 | {
|
---|
166 | /* Update the previous TMVirtualGetSync time it's not a negative delta. */
|
---|
167 | if (!(u64Delta >> 63))
|
---|
168 | ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64, u64Prev);
|
---|
169 | Log(("TMVirtualGetSync: u64Delta=%VRU64\n", u64Delta));
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | /*
|
---|
174 | * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time.
|
---|
175 | * The current approach will not let us pass any expired timer.
|
---|
176 | */
|
---|
177 | u64 -= u64Offset;
|
---|
178 | if (pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64)
|
---|
179 | {
|
---|
180 | if (!VM_FF_ISSET(pVM, VM_FF_TIMER))
|
---|
181 | {
|
---|
182 | VM_FF_SET(pVM, VM_FF_TIMER);
|
---|
183 | #ifdef IN_RING3
|
---|
184 | REMR3NotifyTimerPending(pVM);
|
---|
185 | VMR3NotifyFF(pVM, true);
|
---|
186 | #endif
|
---|
187 | }
|
---|
188 | const uint64_t u64Expire = pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire;
|
---|
189 | if (u64Expire < u64)
|
---|
190 | u64 = u64Expire;
|
---|
191 | }
|
---|
192 | }
|
---|
193 | else
|
---|
194 | u64 = pVM->tm.s.u64VirtualSync;
|
---|
195 | return u64;
|
---|
196 | }
|
---|
197 |
|
---|
198 |
|
---|
199 | /**
|
---|
200 | * Gets the current TMCLOCK_VIRTUAL frequency.
|
---|
201 | *
|
---|
202 | * @returns The freqency.
|
---|
203 | * @param pVM VM handle.
|
---|
204 | */
|
---|
205 | TMDECL(uint64_t) TMVirtualGetFreq(PVM pVM)
|
---|
206 | {
|
---|
207 | return TMCLOCK_FREQ_VIRTUAL;
|
---|
208 | }
|
---|
209 |
|
---|
210 |
|
---|
211 | //#define TM_CONTINUOUS_TIME
|
---|
212 |
|
---|
213 | /**
|
---|
214 | * Resumes the virtual clock.
|
---|
215 | *
|
---|
216 | * @returns VINF_SUCCESS on success.
|
---|
217 | * @returns VINF_INTERNAL_ERROR and VBOX_STRICT assertion if called out of order.
|
---|
218 | * @param pVM VM handle.
|
---|
219 | */
|
---|
220 | TMDECL(int) TMVirtualResume(PVM pVM)
|
---|
221 | {
|
---|
222 | if (!pVM->tm.s.fVirtualTicking)
|
---|
223 | {
|
---|
224 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualResume);
|
---|
225 | pVM->tm.s.u64VirtualOffset = RTTimeNanoTS() - pVM->tm.s.u64Virtual;
|
---|
226 | pVM->tm.s.fVirtualTicking = true;
|
---|
227 | pVM->tm.s.fVirtualSyncTicking = true;
|
---|
228 | return VINF_SUCCESS;
|
---|
229 | }
|
---|
230 |
|
---|
231 | #ifndef TM_CONTINUOUS_TIME
|
---|
232 | AssertFailed();
|
---|
233 | return VERR_INTERNAL_ERROR;
|
---|
234 | #else
|
---|
235 | return VINF_SUCCESS;
|
---|
236 | #endif
|
---|
237 | }
|
---|
238 |
|
---|
239 |
|
---|
240 | /**
|
---|
241 | * Pauses the virtual clock.
|
---|
242 | *
|
---|
243 | * @returns VINF_SUCCESS on success.
|
---|
244 | * @returns VINF_INTERNAL_ERROR and VBOX_STRICT assertion if called out of order.
|
---|
245 | * @param pVM VM handle.
|
---|
246 | */
|
---|
247 | TMDECL(int) TMVirtualPause(PVM pVM)
|
---|
248 | {
|
---|
249 | if (pVM->tm.s.fVirtualTicking)
|
---|
250 | {
|
---|
251 | #ifndef TM_CONTINUOUS_TIME
|
---|
252 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualPause);
|
---|
253 | pVM->tm.s.u64Virtual = RTTimeNanoTS() - pVM->tm.s.u64VirtualOffset;
|
---|
254 | pVM->tm.s.fVirtualSyncTicking = false;
|
---|
255 | pVM->tm.s.fVirtualTicking = false;
|
---|
256 | #endif
|
---|
257 | return VINF_SUCCESS;
|
---|
258 | }
|
---|
259 |
|
---|
260 | AssertFailed();
|
---|
261 | return VERR_INTERNAL_ERROR;
|
---|
262 | }
|
---|
263 |
|
---|
264 |
|
---|
265 | /**
|
---|
266 | * Converts from virtual ticks to nanoseconds.
|
---|
267 | *
|
---|
268 | * @returns nanoseconds.
|
---|
269 | * @param pVM The VM handle.
|
---|
270 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
271 | * @remark There could be rounding errors here. We just do a simple integere divide
|
---|
272 | * without any adjustments.
|
---|
273 | */
|
---|
274 | TMDECL(uint64_t) TMVirtualToNano(PVM pVM, uint64_t u64VirtualTicks)
|
---|
275 | {
|
---|
276 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
277 | return u64VirtualTicks;
|
---|
278 | }
|
---|
279 |
|
---|
280 |
|
---|
281 | /**
|
---|
282 | * Converts from virtual ticks to microseconds.
|
---|
283 | *
|
---|
284 | * @returns microseconds.
|
---|
285 | * @param pVM The VM handle.
|
---|
286 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
287 | * @remark There could be rounding errors here. We just do a simple integere divide
|
---|
288 | * without any adjustments.
|
---|
289 | */
|
---|
290 | TMDECL(uint64_t) TMVirtualToMicro(PVM pVM, uint64_t u64VirtualTicks)
|
---|
291 | {
|
---|
292 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
293 | return u64VirtualTicks / 1000;
|
---|
294 | }
|
---|
295 |
|
---|
296 |
|
---|
297 | /**
|
---|
298 | * Converts from virtual ticks to milliseconds.
|
---|
299 | *
|
---|
300 | * @returns milliseconds.
|
---|
301 | * @param pVM The VM handle.
|
---|
302 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
303 | * @remark There could be rounding errors here. We just do a simple integere divide
|
---|
304 | * without any adjustments.
|
---|
305 | */
|
---|
306 | TMDECL(uint64_t) TMVirtualToMilli(PVM pVM, uint64_t u64VirtualTicks)
|
---|
307 | {
|
---|
308 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
309 | return u64VirtualTicks / 1000000;
|
---|
310 | }
|
---|
311 |
|
---|
312 |
|
---|
313 | /**
|
---|
314 | * Converts from nanoseconds to virtual ticks.
|
---|
315 | *
|
---|
316 | * @returns virtual ticks.
|
---|
317 | * @param pVM The VM handle.
|
---|
318 | * @param u64NanoTS The nanosecond value ticks to convert.
|
---|
319 | * @remark There could be rounding and overflow errors here.
|
---|
320 | */
|
---|
321 | TMDECL(uint64_t) TMVirtualFromNano(PVM pVM, uint64_t u64NanoTS)
|
---|
322 | {
|
---|
323 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
324 | return u64NanoTS;
|
---|
325 | }
|
---|
326 |
|
---|
327 |
|
---|
328 | /**
|
---|
329 | * Converts from microseconds to virtual ticks.
|
---|
330 | *
|
---|
331 | * @returns virtual ticks.
|
---|
332 | * @param pVM The VM handle.
|
---|
333 | * @param u64MicroTS The microsecond value ticks to convert.
|
---|
334 | * @remark There could be rounding and overflow errors here.
|
---|
335 | */
|
---|
336 | TMDECL(uint64_t) TMVirtualFromMicro(PVM pVM, uint64_t u64MicroTS)
|
---|
337 | {
|
---|
338 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
339 | return u64MicroTS * 1000;
|
---|
340 | }
|
---|
341 |
|
---|
342 |
|
---|
343 | /**
|
---|
344 | * Converts from milliseconds to virtual ticks.
|
---|
345 | *
|
---|
346 | * @returns virtual ticks.
|
---|
347 | * @param pVM The VM handle.
|
---|
348 | * @param u64MilliTS The millisecond value ticks to convert.
|
---|
349 | * @remark There could be rounding and overflow errors here.
|
---|
350 | */
|
---|
351 | TMDECL(uint64_t) TMVirtualFromMilli(PVM pVM, uint64_t u64MilliTS)
|
---|
352 | {
|
---|
353 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
354 | return u64MilliTS * 1000000;
|
---|
355 | }
|
---|
356 |
|
---|