1 | /* $Id: IEMAllN8veEmit-x86.h 103799 2024-03-11 22:23:37Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Native Recompiler, x86 Target - Code Emitters.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2023-2024 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 | #ifndef VMM_INCLUDED_SRC_VMMAll_target_x86_IEMAllN8veEmit_x86_h
|
---|
29 | #define VMM_INCLUDED_SRC_VMMAll_target_x86_IEMAllN8veEmit_x86_h
|
---|
30 | #ifndef RT_WITHOUT_PRAGMA_ONCE
|
---|
31 | # pragma once
|
---|
32 | #endif
|
---|
33 |
|
---|
34 |
|
---|
35 | #ifdef RT_ARCH_AMD64
|
---|
36 |
|
---|
37 | /**
|
---|
38 | * Emits an ModR/M instruction with one opcode byte and only register operands.
|
---|
39 | */
|
---|
40 | DECL_FORCE_INLINE(uint32_t)
|
---|
41 | iemNativeEmitAmd64OneByteModRmInstrRREx(PIEMNATIVEINSTR pCodeBuf, uint32_t off, uint8_t bOpcode8, uint8_t bOpcodeOther,
|
---|
42 | uint8_t cOpBits, uint8_t idxRegReg, uint8_t idxRegRm)
|
---|
43 | {
|
---|
44 | Assert(idxRegReg < 16); Assert(idxRegRm < 16);
|
---|
45 | switch (cOpBits)
|
---|
46 | {
|
---|
47 | case 16:
|
---|
48 | pCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
49 | RT_FALL_THRU();
|
---|
50 | case 32:
|
---|
51 | if (idxRegReg >= 8 || idxRegRm >= 8)
|
---|
52 | pCodeBuf[off++] = (idxRegReg >= 8 ? X86_OP_REX_R : 0) | (idxRegRm >= 8 ? X86_OP_REX_B : 0);
|
---|
53 | pCodeBuf[off++] = bOpcodeOther;
|
---|
54 | break;
|
---|
55 |
|
---|
56 | default: AssertFailed(); RT_FALL_THRU();
|
---|
57 | case 64:
|
---|
58 | pCodeBuf[off++] = X86_OP_REX_W | (idxRegReg >= 8 ? X86_OP_REX_R : 0) | (idxRegRm >= 8 ? X86_OP_REX_B : 0);
|
---|
59 | pCodeBuf[off++] = bOpcodeOther;
|
---|
60 | break;
|
---|
61 |
|
---|
62 | case 8:
|
---|
63 | if (idxRegReg >= 8 || idxRegRm >= 8)
|
---|
64 | pCodeBuf[off++] = (idxRegReg >= 8 ? X86_OP_REX_R : 0) | (idxRegRm >= 8 ? X86_OP_REX_B : 0);
|
---|
65 | else if (idxRegReg >= 4 || idxRegRm >= 4)
|
---|
66 | pCodeBuf[off++] = X86_OP_REX;
|
---|
67 | pCodeBuf[off++] = bOpcode8;
|
---|
68 | break;
|
---|
69 | }
|
---|
70 | pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxRegReg & 7, idxRegRm & 7);
|
---|
71 | return off;
|
---|
72 | }
|
---|
73 |
|
---|
74 |
|
---|
75 | /**
|
---|
76 | * Emits an ModR/M instruction with two opcode bytes and only register operands.
|
---|
77 | */
|
---|
78 | DECL_FORCE_INLINE(uint32_t)
|
---|
79 | iemNativeEmitAmd64TwoByteModRmInstrRREx(PIEMNATIVEINSTR pCodeBuf, uint32_t off,
|
---|
80 | uint8_t bOpcode0, uint8_t bOpcode8, uint8_t bOpcodeOther,
|
---|
81 | uint8_t cOpBits, uint8_t idxRegReg, uint8_t idxRegRm)
|
---|
82 | {
|
---|
83 | Assert(idxRegReg < 16); Assert(idxRegRm < 16);
|
---|
84 | switch (cOpBits)
|
---|
85 | {
|
---|
86 | case 16:
|
---|
87 | pCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
88 | RT_FALL_THRU();
|
---|
89 | case 32:
|
---|
90 | if (idxRegReg >= 8 || idxRegRm >= 8)
|
---|
91 | pCodeBuf[off++] = (idxRegReg >= 8 ? X86_OP_REX_R : 0) | (idxRegRm >= 8 ? X86_OP_REX_B : 0);
|
---|
92 | pCodeBuf[off++] = bOpcode0;
|
---|
93 | pCodeBuf[off++] = bOpcodeOther;
|
---|
94 | break;
|
---|
95 |
|
---|
96 | default: AssertFailed(); RT_FALL_THRU();
|
---|
97 | case 64:
|
---|
98 | pCodeBuf[off++] = X86_OP_REX_W | (idxRegReg >= 8 ? X86_OP_REX_R : 0) | (idxRegRm >= 8 ? X86_OP_REX_B : 0);
|
---|
99 | pCodeBuf[off++] = bOpcode0;
|
---|
100 | pCodeBuf[off++] = bOpcodeOther;
|
---|
101 | break;
|
---|
102 |
|
---|
103 | case 8:
|
---|
104 | if (idxRegReg >= 8 || idxRegRm >= 8)
|
---|
105 | pCodeBuf[off++] = (idxRegReg >= 8 ? X86_OP_REX_R : 0) | (idxRegRm >= 8 ? X86_OP_REX_B : 0);
|
---|
106 | else if (idxRegReg >= 4 || idxRegRm >= 4)
|
---|
107 | pCodeBuf[off++] = X86_OP_REX;
|
---|
108 | pCodeBuf[off++] = bOpcode0;
|
---|
109 | pCodeBuf[off++] = bOpcode8;
|
---|
110 | break;
|
---|
111 | }
|
---|
112 | pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxRegReg & 7, idxRegRm & 7);
|
---|
113 | return off;
|
---|
114 | }
|
---|
115 |
|
---|
116 |
|
---|
117 | /**
|
---|
118 | * Emits one of three opcodes with an immediate.
|
---|
119 | *
|
---|
120 | * These are expected to be a /idxRegReg form.
|
---|
121 | */
|
---|
122 | DECL_FORCE_INLINE(uint32_t)
|
---|
123 | iemNativeEmitAmd64OneByteModRmInstrRIEx(PIEMNATIVEINSTR pCodeBuf, uint32_t off, uint8_t bOpcode8, uint8_t bOpcodeOtherImm8,
|
---|
124 | uint8_t bOpcodeOther, uint8_t cOpBits, uint8_t cImmBits, uint8_t idxRegReg,
|
---|
125 | uint8_t idxRegRm, uint64_t uImmOp)
|
---|
126 | {
|
---|
127 | Assert(idxRegReg < 8); Assert(idxRegRm < 16);
|
---|
128 | if ( cImmBits == 8
|
---|
129 | || (uImmOp <= (uint64_t)0x7f && bOpcodeOtherImm8 != 0xcc))
|
---|
130 | {
|
---|
131 | switch (cOpBits)
|
---|
132 | {
|
---|
133 | case 16:
|
---|
134 | pCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
135 | RT_FALL_THRU();
|
---|
136 | case 32:
|
---|
137 | if (idxRegRm >= 8)
|
---|
138 | pCodeBuf[off++] = X86_OP_REX_B;
|
---|
139 | pCodeBuf[off++] = bOpcodeOtherImm8; Assert(bOpcodeOtherImm8 != 0xcc);
|
---|
140 | break;
|
---|
141 |
|
---|
142 | default: AssertFailed(); RT_FALL_THRU();
|
---|
143 | case 64:
|
---|
144 | pCodeBuf[off++] = X86_OP_REX_W | (idxRegRm >= 8 ? X86_OP_REX_B : 0);
|
---|
145 | pCodeBuf[off++] = bOpcodeOtherImm8; Assert(bOpcodeOtherImm8 != 0xcc);
|
---|
146 | break;
|
---|
147 |
|
---|
148 | case 8:
|
---|
149 | if (idxRegRm >= 8)
|
---|
150 | pCodeBuf[off++] = X86_OP_REX_B;
|
---|
151 | else if (idxRegRm >= 4)
|
---|
152 | pCodeBuf[off++] = X86_OP_REX;
|
---|
153 | pCodeBuf[off++] = bOpcode8; Assert(bOpcode8 != 0xcc);
|
---|
154 | break;
|
---|
155 | }
|
---|
156 | pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxRegReg, idxRegRm & 7);
|
---|
157 | pCodeBuf[off++] = (uint8_t)uImmOp;
|
---|
158 | }
|
---|
159 | else
|
---|
160 | {
|
---|
161 | switch (cOpBits)
|
---|
162 | {
|
---|
163 | case 32:
|
---|
164 | if (idxRegRm >= 8)
|
---|
165 | pCodeBuf[off++] = X86_OP_REX_B;
|
---|
166 | break;
|
---|
167 |
|
---|
168 | default: AssertFailed(); RT_FALL_THRU();
|
---|
169 | case 64:
|
---|
170 | pCodeBuf[off++] = X86_OP_REX_W | (idxRegRm >= 8 ? X86_OP_REX_B : 0);
|
---|
171 | break;
|
---|
172 |
|
---|
173 | case 16:
|
---|
174 | pCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
175 | if (idxRegRm >= 8)
|
---|
176 | pCodeBuf[off++] = X86_OP_REX_B;
|
---|
177 | pCodeBuf[off++] = bOpcodeOther;
|
---|
178 | pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxRegReg, idxRegRm & 7);
|
---|
179 | pCodeBuf[off++] = RT_BYTE1(uImmOp);
|
---|
180 | pCodeBuf[off++] = RT_BYTE2(uImmOp);
|
---|
181 | Assert(cImmBits == 16);
|
---|
182 | return off;
|
---|
183 | }
|
---|
184 | pCodeBuf[off++] = bOpcodeOther;
|
---|
185 | pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxRegReg, idxRegRm & 7);
|
---|
186 | pCodeBuf[off++] = RT_BYTE1(uImmOp);
|
---|
187 | pCodeBuf[off++] = RT_BYTE2(uImmOp);
|
---|
188 | pCodeBuf[off++] = RT_BYTE3(uImmOp);
|
---|
189 | pCodeBuf[off++] = RT_BYTE4(uImmOp);
|
---|
190 | Assert(cImmBits == 32);
|
---|
191 | }
|
---|
192 | return off;
|
---|
193 | }
|
---|
194 |
|
---|
195 | #endif /* RT_ARCH_AMD64 */
|
---|
196 |
|
---|
197 | /**
|
---|
198 | * This is an implementation of IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGICAL.
|
---|
199 | *
|
---|
200 | * It takes liveness stuff into account.
|
---|
201 | */
|
---|
202 | DECL_INLINE_THROW(uint32_t)
|
---|
203 | iemNativeEmitEFlagsForLogical(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarEfl
|
---|
204 | #ifndef RT_ARCH_AMD64
|
---|
205 | , uint8_t cOpBits, uint8_t idxRegResult, bool fNativeFlags = false
|
---|
206 | #endif
|
---|
207 | )
|
---|
208 | {
|
---|
209 | #ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
|
---|
210 | if (1) /** @todo check if all bits are clobbered. */
|
---|
211 | #endif
|
---|
212 | {
|
---|
213 | #ifdef RT_ARCH_AMD64
|
---|
214 | /*
|
---|
215 | * Collect flags and merge them with eflags.
|
---|
216 | */
|
---|
217 | /** @todo we could alternatively use SAHF here when host rax is free since,
|
---|
218 | * OF is cleared. */
|
---|
219 | PIEMNATIVEINSTR pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
220 | /* pushf - do this before any reg allocations as they may emit instructions too. */
|
---|
221 | pCodeBuf[off++] = 0x9c;
|
---|
222 |
|
---|
223 | uint8_t const idxRegEfl = iemNativeVarRegisterAcquire(pReNative, idxVarEfl, &off, true /*fInitialized*/);
|
---|
224 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
225 | pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2 + 7 + 7 + 3);
|
---|
226 | /* pop tmp */
|
---|
227 | if (idxTmpReg >= 8)
|
---|
228 | pCodeBuf[off++] = X86_OP_REX_B;
|
---|
229 | pCodeBuf[off++] = 0x58 + (idxTmpReg & 7);
|
---|
230 | /* and tmp, X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF */
|
---|
231 | off = iemNativeEmitAndGpr32ByImmEx(pCodeBuf, off, idxTmpReg, X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF);
|
---|
232 | /* Clear the status bits in EFLs. */
|
---|
233 | off = iemNativeEmitAndGpr32ByImmEx(pCodeBuf, off, idxRegEfl, ~X86_EFL_STATUS_BITS);
|
---|
234 | /* OR in the flags we collected. */
|
---|
235 | off = iemNativeEmitOrGpr32ByGprEx(pCodeBuf, off, idxRegEfl, idxTmpReg);
|
---|
236 | iemNativeVarRegisterRelease(pReNative, idxVarEfl);
|
---|
237 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
238 |
|
---|
239 | #elif defined(RT_ARCH_ARM64)
|
---|
240 | /*
|
---|
241 | * Calculate flags.
|
---|
242 | */
|
---|
243 | uint8_t const idxRegEfl = iemNativeVarRegisterAcquire(pReNative, idxVarEfl, &off, true /*fInitialized*/);
|
---|
244 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
245 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 15);
|
---|
246 |
|
---|
247 | /* Clear the status bits. ~0x8D5 (or ~0x8FD) can't be AND immediate, so use idxTmpReg for constant. */
|
---|
248 | off = iemNativeEmitLoadGpr32ImmEx(pCodeBuf, off, idxTmpReg, ~X86_EFL_STATUS_BITS);
|
---|
249 | off = iemNativeEmitAndGpr32ByGpr32Ex(pCodeBuf, off, idxRegEfl, idxTmpReg);
|
---|
250 |
|
---|
251 | /* N,Z -> SF,ZF */
|
---|
252 | if (cOpBits < 32)
|
---|
253 | pCodeBuf[off++] = Armv8A64MkInstrSetF8SetF16(idxRegResult, cOpBits > 8); /* sets NZ */
|
---|
254 | else if (!fNativeFlags)
|
---|
255 | pCodeBuf[off++] = Armv8A64MkInstrAnds(ARMV8_A64_REG_XZR, idxRegResult, idxRegResult, cOpBits > 32 /*f64Bit*/);
|
---|
256 | pCodeBuf[off++] = Armv8A64MkInstrMrs(idxTmpReg, ARMV8_AARCH64_SYSREG_NZCV); /* Bits: 31=N; 30=Z; 29=C; 28=V; */
|
---|
257 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxTmpReg, idxTmpReg, 30);
|
---|
258 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegEfl, idxTmpReg, X86_EFL_ZF_BIT, 2, false /*f64Bit*/);
|
---|
259 | AssertCompile(X86_EFL_ZF_BIT + 1 == X86_EFL_SF_BIT);
|
---|
260 |
|
---|
261 | /* Calculate 8-bit parity of the result. */
|
---|
262 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxRegResult, idxRegResult, false /*f64Bit*/,
|
---|
263 | 4 /*offShift6*/, kArmv8A64InstrShift_Lsr);
|
---|
264 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxTmpReg, idxTmpReg, false /*f64Bit*/,
|
---|
265 | 2 /*offShift6*/, kArmv8A64InstrShift_Lsr);
|
---|
266 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxTmpReg, idxTmpReg, false /*f64Bit*/,
|
---|
267 | 1 /*offShift6*/, kArmv8A64InstrShift_Lsr);
|
---|
268 | Assert(Armv8A64ConvertImmRImmS2Mask32(0, 0) == 1);
|
---|
269 | pCodeBuf[off++] = Armv8A64MkInstrEorImm(idxTmpReg, idxTmpReg, 0, 0, false /*f64Bit*/);
|
---|
270 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegEfl, idxTmpReg, X86_EFL_PF_BIT, 1, false /*f64Bit*/);
|
---|
271 |
|
---|
272 | iemNativeVarRegisterRelease(pReNative, idxVarEfl);
|
---|
273 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
274 | #else
|
---|
275 | # error "port me"
|
---|
276 | #endif
|
---|
277 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
278 | }
|
---|
279 | return off;
|
---|
280 | }
|
---|
281 |
|
---|
282 |
|
---|
283 | /**
|
---|
284 | * This is an implementation of IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC.
|
---|
285 | *
|
---|
286 | * It takes liveness stuff into account.
|
---|
287 | */
|
---|
288 | DECL_FORCE_INLINE_THROW(uint32_t)
|
---|
289 | iemNativeEmitEFlagsForArithmetic(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarEfl, uint8_t idxRegEflIn
|
---|
290 | #ifndef RT_ARCH_AMD64
|
---|
291 | , uint8_t cOpBits, uint8_t idxRegResult, uint8_t idxRegDstIn, uint8_t idxRegSrc
|
---|
292 | , bool fInvertCarry, uint64_t uImmSrc
|
---|
293 | #endif
|
---|
294 | )
|
---|
295 | {
|
---|
296 | #ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
|
---|
297 | if (1) /** @todo check if all bits are clobbered. */
|
---|
298 | #endif
|
---|
299 | {
|
---|
300 | #ifdef RT_ARCH_AMD64
|
---|
301 | /*
|
---|
302 | * Collect flags and merge them with eflags.
|
---|
303 | */
|
---|
304 | PIEMNATIVEINSTR pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
305 | /* pushf - do this before any reg allocations as they may emit instructions too. */
|
---|
306 | pCodeBuf[off++] = 0x9c;
|
---|
307 |
|
---|
308 | uint8_t const idxRegEfl = idxRegEflIn != UINT8_MAX ? idxRegEflIn
|
---|
309 | : iemNativeVarRegisterAcquire(pReNative, idxVarEfl, &off, true /*fInitialized*/);
|
---|
310 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
311 | pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2 + 7 + 7 + 3);
|
---|
312 | /* pop tmp */
|
---|
313 | if (idxTmpReg >= 8)
|
---|
314 | pCodeBuf[off++] = X86_OP_REX_B;
|
---|
315 | pCodeBuf[off++] = 0x58 + (idxTmpReg & 7);
|
---|
316 | /* Isolate the flags we want. */
|
---|
317 | off = iemNativeEmitAndGpr32ByImmEx(pCodeBuf, off, idxTmpReg, X86_EFL_STATUS_BITS);
|
---|
318 | /* Clear the status bits in EFLs. */
|
---|
319 | off = iemNativeEmitAndGpr32ByImmEx(pCodeBuf, off, idxRegEfl, ~X86_EFL_STATUS_BITS);
|
---|
320 | /* OR in the flags we collected. */
|
---|
321 | off = iemNativeEmitOrGpr32ByGprEx(pCodeBuf, off, idxRegEfl, idxTmpReg);
|
---|
322 | if (idxRegEflIn != idxRegEfl)
|
---|
323 | iemNativeVarRegisterRelease(pReNative, idxVarEfl);
|
---|
324 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
325 |
|
---|
326 | #elif defined(RT_ARCH_ARM64)
|
---|
327 | /*
|
---|
328 | * Calculate flags.
|
---|
329 | */
|
---|
330 | uint8_t const idxRegEfl = idxRegEflIn != UINT8_MAX ? idxRegEflIn
|
---|
331 | : iemNativeVarRegisterAcquire(pReNative, idxVarEfl, &off, true /*fInitialized*/);
|
---|
332 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
333 | uint8_t const idxTmpReg2 = cOpBits >= 32 ? UINT8_MAX : iemNativeRegAllocTmp(pReNative, &off);
|
---|
334 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 20);
|
---|
335 |
|
---|
336 | /* Invert CF (stored inved on ARM) and load the flags into the temporary register. */
|
---|
337 | if (fInvertCarry)
|
---|
338 | pCodeBuf[off++] = ARMV8_A64_INSTR_CFINV;
|
---|
339 | pCodeBuf[off++] = Armv8A64MkInstrMrs(idxTmpReg, ARMV8_AARCH64_SYSREG_NZCV); /* Bits: 31=N; 30=Z; 29=C; 28=V; */
|
---|
340 |
|
---|
341 | if (cOpBits >= 32)
|
---|
342 | {
|
---|
343 | /* V -> OF */
|
---|
344 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxTmpReg, idxTmpReg, 28);
|
---|
345 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegEfl, idxTmpReg, X86_EFL_OF_BIT, 1, false /*f64Bit*/);
|
---|
346 |
|
---|
347 | /* C -> CF */
|
---|
348 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxTmpReg, idxTmpReg, 1);
|
---|
349 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegEfl, idxTmpReg, X86_EFL_CF_BIT, 1, false /*f64Bit*/);
|
---|
350 | }
|
---|
351 |
|
---|
352 | /* N,Z -> SF,ZF */
|
---|
353 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxTmpReg, idxTmpReg, cOpBits >= 32 ? 1 : 30);
|
---|
354 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegEfl, idxTmpReg, X86_EFL_ZF_BIT, 2, false /*f64Bit*/);
|
---|
355 |
|
---|
356 | /* For ADC and SBB we have to calculate overflow and carry our selves. */
|
---|
357 | if (cOpBits < 32)
|
---|
358 | {
|
---|
359 | /* Since the carry flag is the zero'th flag, we just use BFXIL got copy it over. */
|
---|
360 | AssertCompile(X86_EFL_CF_BIT == 0);
|
---|
361 | pCodeBuf[off++] = Armv8A64MkInstrBfxil(idxRegEfl, idxRegResult, cOpBits, 1, false /*f64Bit*/);
|
---|
362 |
|
---|
363 | /* The overflow flag is more work as we have to compare the signed bits for
|
---|
364 | both inputs and the result. See IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC.
|
---|
365 |
|
---|
366 | Formula: ~(a_uDst ^ a_uSrcOf) & (a_uResult ^ a_uDst)
|
---|
367 | With a_uSrcOf as a_uSrc for additions and ~a_uSrc for subtractions.
|
---|
368 |
|
---|
369 | It is a bit simpler when the right (source) side is constant:
|
---|
370 | adc: S D R -> OF sbb: S D R -> OF
|
---|
371 | 0 0 0 -> 0 \ 0 0 0 -> 0 \
|
---|
372 | 0 0 1 -> 1 \ 0 0 1 -> 0 \
|
---|
373 | 0 1 0 -> 0 / and not(D), R 0 1 0 -> 1 / and D, not(R)
|
---|
374 | 0 1 1 -> 0 / 0 1 1 -> 0 /
|
---|
375 | 1 0 0 -> 0 \ 1 0 0 -> 0 \
|
---|
376 | 1 0 1 -> 0 \ and D, not(R) 1 0 1 -> 1 \ and not(D), R
|
---|
377 | 1 1 0 -> 1 / 1 1 0 -> 0 /
|
---|
378 | 1 1 1 -> 0 / 1 1 1 -> 0 / */
|
---|
379 | if (idxRegSrc != UINT8_MAX)
|
---|
380 | {
|
---|
381 | if (fInvertCarry) /* sbb: ~((a_uDst) ^ ~(a_uSrcOf)) -> (a_uDst) ^ (a_uSrcOf); HACK ALERT: fInvertCarry == sbb */
|
---|
382 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxRegDstIn, idxRegSrc, false);
|
---|
383 | else /* adc: ~((a_uDst) ^ (a_uSrcOf)) -> (a_uDst) ^ ~(a_uSrcOf) */
|
---|
384 | pCodeBuf[off++] = Armv8A64MkInstrEon(idxTmpReg, idxRegDstIn, idxRegSrc, false);
|
---|
385 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg2, idxRegDstIn, idxRegResult, false); /* (a_uDst) ^ (a_uResult) */
|
---|
386 | pCodeBuf[off++] = Armv8A64MkInstrAnd(idxTmpReg, idxTmpReg, idxTmpReg2, false /*f64Bit*/);
|
---|
387 | }
|
---|
388 | else if (uImmSrc & RT_BIT_32(cOpBits - 1))
|
---|
389 | {
|
---|
390 | if (fInvertCarry) /* HACK ALERT: fInvertCarry == sbb */
|
---|
391 | pCodeBuf[off++] = Armv8A64MkInstrBic(idxTmpReg, idxRegResult, idxRegDstIn, false);
|
---|
392 | else
|
---|
393 | pCodeBuf[off++] = Armv8A64MkInstrBic(idxTmpReg, idxRegDstIn, idxRegResult, false);
|
---|
394 | }
|
---|
395 | else
|
---|
396 | {
|
---|
397 | if (fInvertCarry) /* HACK ALERT: fInvertCarry == sbb */
|
---|
398 | pCodeBuf[off++] = Armv8A64MkInstrBic(idxTmpReg, idxRegDstIn, idxRegResult, false);
|
---|
399 | else
|
---|
400 | pCodeBuf[off++] = Armv8A64MkInstrBic(idxTmpReg, idxRegResult, idxRegDstIn, false);
|
---|
401 | }
|
---|
402 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxTmpReg, idxTmpReg, cOpBits - 1, false /*f64Bit*/);
|
---|
403 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegEfl, idxTmpReg, X86_EFL_OF_BIT, 1);
|
---|
404 | iemNativeRegFreeTmp(pReNative, idxTmpReg2);
|
---|
405 | }
|
---|
406 |
|
---|
407 | /* Calculate 8-bit parity of the result. */
|
---|
408 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxRegResult, idxRegResult, false /*f64Bit*/,
|
---|
409 | 4 /*offShift6*/, kArmv8A64InstrShift_Lsr);
|
---|
410 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxTmpReg, idxTmpReg, false /*f64Bit*/,
|
---|
411 | 2 /*offShift6*/, kArmv8A64InstrShift_Lsr);
|
---|
412 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxTmpReg, idxTmpReg, false /*f64Bit*/,
|
---|
413 | 1 /*offShift6*/, kArmv8A64InstrShift_Lsr);
|
---|
414 | Assert(Armv8A64ConvertImmRImmS2Mask32(0, 0) == 1);
|
---|
415 | pCodeBuf[off++] = Armv8A64MkInstrEorImm(idxTmpReg, idxTmpReg, 0, 0, false /*f64Bit*/);
|
---|
416 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegEfl, idxTmpReg, X86_EFL_PF_BIT, 1, false /*f64Bit*/);
|
---|
417 |
|
---|
418 | /* Calculate auxilary carry/borrow. This is related to 8-bit BCD.
|
---|
419 | General formula: ((uint32_t)(a_uResult) ^ (uint32_t)(a_uSrc) ^ (uint32_t)(a_uDst)) & X86_EFL_AF;
|
---|
420 | S D R
|
---|
421 | 0 0 0 -> 0; \
|
---|
422 | 0 0 1 -> 1; \ regular
|
---|
423 | 0 1 0 -> 1; / xor R, D
|
---|
424 | 0 1 1 -> 0; /
|
---|
425 | 1 0 0 -> 1; \
|
---|
426 | 1 0 1 -> 0; \ invert one of the two
|
---|
427 | 1 1 0 -> 0; / xor not(R), D
|
---|
428 | 1 1 1 -> 1; /
|
---|
429 | a_uSrc[bit 4]=0: ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF;
|
---|
430 | a_uSrc[bit 4]=1: ((uint32_t)~(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF;
|
---|
431 | */
|
---|
432 |
|
---|
433 | if (idxRegSrc != UINT8_MAX)
|
---|
434 | {
|
---|
435 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxRegDstIn, idxRegSrc, false /*f64Bit*/);
|
---|
436 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxTmpReg, idxRegResult, false /*f64Bit*/);
|
---|
437 | }
|
---|
438 | else if (uImmSrc & X86_EFL_AF)
|
---|
439 | pCodeBuf[off++] = Armv8A64MkInstrEon(idxTmpReg, idxRegDstIn, idxRegResult, false /*f64Bit*/);
|
---|
440 | else
|
---|
441 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxRegDstIn, idxRegResult, false /*f64Bit*/);
|
---|
442 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxTmpReg, idxTmpReg, X86_EFL_AF_BIT, false /*f64Bit*/);
|
---|
443 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegEfl, idxTmpReg, X86_EFL_AF_BIT, 1, false /*f64Bit*/);
|
---|
444 |
|
---|
445 | if (idxRegEflIn != idxRegEfl)
|
---|
446 | iemNativeVarRegisterRelease(pReNative, idxVarEfl);
|
---|
447 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
448 | #else
|
---|
449 | # error "port me"
|
---|
450 | #endif
|
---|
451 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
452 | }
|
---|
453 | return off;
|
---|
454 |
|
---|
455 | }
|
---|
456 |
|
---|
457 |
|
---|
458 | /**
|
---|
459 | * The AND instruction will clear OF, CF and AF (latter is undefined) and
|
---|
460 | * set the other flags according to the result.
|
---|
461 | */
|
---|
462 | DECL_INLINE_THROW(uint32_t)
|
---|
463 | iemNativeEmit_and_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
464 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
465 | {
|
---|
466 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
467 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
468 | #ifdef RT_ARCH_AMD64
|
---|
469 | /* On AMD64 we just use the correctly size AND instruction harvest the EFLAGS. */
|
---|
470 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(iemNativeInstrBufEnsure(pReNative, off, 4), off,
|
---|
471 | 0x22, 0x23, cOpBits, idxRegDst, idxRegSrc);
|
---|
472 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
473 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
474 |
|
---|
475 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl);
|
---|
476 |
|
---|
477 | #elif defined(RT_ARCH_ARM64)
|
---|
478 | /* On ARM64 we use 32-bit AND for the 8-bit and 16-bit bit ones. */
|
---|
479 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
480 | pCodeBuf[off++] = Armv8A64MkInstrAnds(idxRegDst, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/);
|
---|
481 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
482 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
483 |
|
---|
484 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl, cOpBits, idxRegDst, true /*fNativeFlags*/);
|
---|
485 | #else
|
---|
486 | # error "Port me"
|
---|
487 | #endif
|
---|
488 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
489 | return off;
|
---|
490 | }
|
---|
491 |
|
---|
492 |
|
---|
493 | /**
|
---|
494 | * The AND instruction with immediate value as right operand.
|
---|
495 | */
|
---|
496 | DECL_INLINE_THROW(uint32_t)
|
---|
497 | iemNativeEmit_and_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
498 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
499 | {
|
---|
500 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
501 | #ifdef RT_ARCH_AMD64
|
---|
502 | /* On AMD64 we just use the correctly size AND instruction harvest the EFLAGS. */
|
---|
503 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
504 | off = iemNativeEmitAmd64OneByteModRmInstrRIEx(pCodeBuf, off, 0x80, 0x83, 0x81, cOpBits, cImmBits, 4, idxRegDst, uImmOp);
|
---|
505 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
506 |
|
---|
507 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl);
|
---|
508 |
|
---|
509 | #elif defined(RT_ARCH_ARM64)
|
---|
510 | /* On ARM64 we use 32-bit AND for the 8-bit and 16-bit bit ones. */
|
---|
511 | uint32_t uImmSizeLen, uImmRotations;
|
---|
512 | if ( cOpBits > 32
|
---|
513 | ? Armv8A64ConvertMask64ToImmRImmS(uImmOp, &uImmSizeLen, &uImmRotations)
|
---|
514 | : Armv8A64ConvertMask32ToImmRImmS(uImmOp, &uImmSizeLen, &uImmRotations))
|
---|
515 | {
|
---|
516 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
517 | if (cOpBits >= 32)
|
---|
518 | pCodeBuf[off++] = Armv8A64MkInstrAndsImm(idxRegDst, idxRegDst, uImmSizeLen, uImmRotations, cOpBits > 32 /*f64Bit*/);
|
---|
519 | else
|
---|
520 | pCodeBuf[off++] = Armv8A64MkInstrAndImm(idxRegDst, idxRegDst, uImmSizeLen, uImmRotations, cOpBits > 32 /*f64Bit*/);
|
---|
521 | }
|
---|
522 | else
|
---|
523 | {
|
---|
524 | uint8_t const idxRegTmpImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
525 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
526 | if (cOpBits >= 32)
|
---|
527 | pCodeBuf[off++] = Armv8A64MkInstrAnds(idxRegDst, idxRegDst, idxRegTmpImm, cOpBits > 32 /*f64Bit*/);
|
---|
528 | else
|
---|
529 | pCodeBuf[off++] = Armv8A64MkInstrAnd(idxRegDst, idxRegDst, idxRegTmpImm, cOpBits > 32 /*f64Bit*/);
|
---|
530 | iemNativeRegFreeTmpImm(pReNative, idxRegTmpImm);
|
---|
531 | }
|
---|
532 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
533 |
|
---|
534 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl, cOpBits, idxRegDst, cOpBits >= 32 /*fNativeFlags*/);
|
---|
535 | RT_NOREF_PV(cImmBits)
|
---|
536 |
|
---|
537 | #else
|
---|
538 | # error "Port me"
|
---|
539 | #endif
|
---|
540 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
541 | return off;
|
---|
542 | }
|
---|
543 |
|
---|
544 |
|
---|
545 | /**
|
---|
546 | * The TEST instruction will clear OF, CF and AF (latter is undefined) and
|
---|
547 | * set the other flags according to the result.
|
---|
548 | */
|
---|
549 | DECL_INLINE_THROW(uint32_t)
|
---|
550 | iemNativeEmit_test_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
551 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
552 | {
|
---|
553 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
554 | uint8_t const idxRegSrc = idxVarSrc == idxVarDst ? idxRegDst /* special case of 'test samereg,samereg' */
|
---|
555 | : iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
556 | #ifdef RT_ARCH_AMD64
|
---|
557 | /* On AMD64 we just use the correctly size TEST instruction harvest the EFLAGS. */
|
---|
558 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(iemNativeInstrBufEnsure(pReNative, off, 4), off,
|
---|
559 | 0x84, 0x85, cOpBits, idxRegSrc, idxRegDst);
|
---|
560 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
561 |
|
---|
562 | #elif defined(RT_ARCH_ARM64)
|
---|
563 | /* On ARM64 we use 32-bit AND for the 8-bit and 16-bit bit ones. We also
|
---|
564 | need to keep the result in order to calculate the flags. */
|
---|
565 | uint8_t const idxRegResult = iemNativeRegAllocTmp(pReNative, &off);
|
---|
566 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
567 | if (cOpBits >= 32)
|
---|
568 | pCodeBuf[off++] = Armv8A64MkInstrAnds(idxRegResult, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/);
|
---|
569 | else
|
---|
570 | pCodeBuf[off++] = Armv8A64MkInstrAnd(idxRegResult, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/);
|
---|
571 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
572 |
|
---|
573 | #else
|
---|
574 | # error "Port me"
|
---|
575 | #endif
|
---|
576 | if (idxVarSrc != idxVarDst)
|
---|
577 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
578 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
579 |
|
---|
580 | #ifdef RT_ARCH_AMD64
|
---|
581 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl);
|
---|
582 | #else
|
---|
583 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl, cOpBits, idxRegResult, cOpBits >= 32 /*fNativeFlags*/);
|
---|
584 | iemNativeRegFreeTmp(pReNative, idxRegResult);
|
---|
585 | #endif
|
---|
586 | return off;
|
---|
587 | }
|
---|
588 |
|
---|
589 |
|
---|
590 | /**
|
---|
591 | * The TEST instruction with immediate value as right operand.
|
---|
592 | */
|
---|
593 | DECL_INLINE_THROW(uint32_t)
|
---|
594 | iemNativeEmit_test_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
595 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
596 | {
|
---|
597 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
598 | #ifdef RT_ARCH_AMD64
|
---|
599 | /* On AMD64 we just use the correctly size AND instruction harvest the EFLAGS. */
|
---|
600 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
601 | off = iemNativeEmitAmd64OneByteModRmInstrRIEx(pCodeBuf, off, 0xf6, 0xcc, 0xf7, cOpBits, cImmBits, 0, idxRegDst, uImmOp);
|
---|
602 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
603 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
604 |
|
---|
605 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl);
|
---|
606 |
|
---|
607 | #elif defined(RT_ARCH_ARM64)
|
---|
608 | /* On ARM64 we use 32-bit AND for the 8-bit and 16-bit bit ones. We also
|
---|
609 | need to keep the result in order to calculate the flags. */
|
---|
610 | uint8_t const idxRegResult = iemNativeRegAllocTmp(pReNative, &off);
|
---|
611 | uint32_t uImmSizeLen, uImmRotations;
|
---|
612 | if ( cOpBits > 32
|
---|
613 | ? Armv8A64ConvertMask64ToImmRImmS(uImmOp, &uImmSizeLen, &uImmRotations)
|
---|
614 | : Armv8A64ConvertMask32ToImmRImmS(uImmOp, &uImmSizeLen, &uImmRotations))
|
---|
615 | {
|
---|
616 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
617 | if (cOpBits >= 32)
|
---|
618 | pCodeBuf[off++] = Armv8A64MkInstrAndsImm(idxRegResult, idxRegDst, uImmSizeLen, uImmRotations, cOpBits > 32 /*f64Bit*/);
|
---|
619 | else
|
---|
620 | pCodeBuf[off++] = Armv8A64MkInstrAndImm(idxRegResult, idxRegDst, uImmSizeLen, uImmRotations, cOpBits > 32 /*f64Bit*/);
|
---|
621 | }
|
---|
622 | else
|
---|
623 | {
|
---|
624 | uint8_t const idxRegTmpImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
625 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
626 | if (cOpBits >= 32)
|
---|
627 | pCodeBuf[off++] = Armv8A64MkInstrAnds(idxRegResult, idxRegDst, idxRegTmpImm, cOpBits > 32 /*f64Bit*/);
|
---|
628 | else
|
---|
629 | pCodeBuf[off++] = Armv8A64MkInstrAnd(idxRegResult, idxRegDst, idxRegTmpImm, cOpBits > 32 /*f64Bit*/);
|
---|
630 | iemNativeRegFreeTmpImm(pReNative, idxRegTmpImm);
|
---|
631 | }
|
---|
632 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
633 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
634 |
|
---|
635 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl, cOpBits, idxRegResult, cOpBits >= 32 /*fNativeFlags*/);
|
---|
636 |
|
---|
637 | iemNativeRegFreeTmp(pReNative, idxRegResult);
|
---|
638 | RT_NOREF_PV(cImmBits)
|
---|
639 |
|
---|
640 | #else
|
---|
641 | # error "Port me"
|
---|
642 | #endif
|
---|
643 | return off;
|
---|
644 | }
|
---|
645 |
|
---|
646 |
|
---|
647 | /**
|
---|
648 | * The OR instruction will clear OF, CF and AF (latter is undefined) and
|
---|
649 | * set the other flags according to the result.
|
---|
650 | */
|
---|
651 | DECL_INLINE_THROW(uint32_t)
|
---|
652 | iemNativeEmit_or_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
653 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
654 | {
|
---|
655 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
656 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
657 | #ifdef RT_ARCH_AMD64
|
---|
658 | /* On AMD64 we just use the correctly size OR instruction harvest the EFLAGS. */
|
---|
659 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(iemNativeInstrBufEnsure(pReNative, off, 4), off,
|
---|
660 | 0x0a, 0x0b, cOpBits, idxRegDst, idxRegSrc);
|
---|
661 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
662 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
663 |
|
---|
664 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl);
|
---|
665 |
|
---|
666 | #elif defined(RT_ARCH_ARM64)
|
---|
667 | /* On ARM64 we use 32-bit OR for the 8-bit and 16-bit bit ones. */
|
---|
668 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
669 | pCodeBuf[off++] = Armv8A64MkInstrOrr(idxRegDst, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/);
|
---|
670 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
671 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
672 |
|
---|
673 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl, cOpBits, idxRegDst);
|
---|
674 |
|
---|
675 | #else
|
---|
676 | # error "Port me"
|
---|
677 | #endif
|
---|
678 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
679 | return off;
|
---|
680 | }
|
---|
681 |
|
---|
682 |
|
---|
683 | /**
|
---|
684 | * The OR instruction with immediate value as right operand.
|
---|
685 | */
|
---|
686 | DECL_INLINE_THROW(uint32_t)
|
---|
687 | iemNativeEmit_or_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
688 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
689 | {
|
---|
690 | RT_NOREF(pReNative, off, idxVarDst, uImmOp, idxVarEfl, cOpBits, cImmBits);
|
---|
691 | return off;
|
---|
692 | }
|
---|
693 |
|
---|
694 |
|
---|
695 | /**
|
---|
696 | * The XOR instruction will clear OF, CF and AF (latter is undefined) and
|
---|
697 | * set the other flags according to the result.
|
---|
698 | */
|
---|
699 | DECL_INLINE_THROW(uint32_t)
|
---|
700 | iemNativeEmit_xor_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
701 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
702 | {
|
---|
703 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
704 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
705 | #ifdef RT_ARCH_AMD64
|
---|
706 | /* On AMD64 we just use the correctly size OR instruction harvest the EFLAGS. */
|
---|
707 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(iemNativeInstrBufEnsure(pReNative, off, 4), off,
|
---|
708 | 0x32, 0x33, cOpBits, idxRegDst, idxRegSrc);
|
---|
709 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
710 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
711 |
|
---|
712 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl);
|
---|
713 |
|
---|
714 | #elif defined(RT_ARCH_ARM64)
|
---|
715 | /* On ARM64 we use 32-bit OR for the 8-bit and 16-bit bit ones. */
|
---|
716 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
717 | pCodeBuf[off++] = Armv8A64MkInstrEor(idxRegDst, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/);
|
---|
718 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
719 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
720 |
|
---|
721 | off = iemNativeEmitEFlagsForLogical(pReNative, off, idxVarEfl, cOpBits, idxRegDst);
|
---|
722 |
|
---|
723 | #else
|
---|
724 | # error "Port me"
|
---|
725 | #endif
|
---|
726 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
727 | return off;
|
---|
728 | }
|
---|
729 |
|
---|
730 |
|
---|
731 | /**
|
---|
732 | * The XOR instruction with immediate value as right operand.
|
---|
733 | */
|
---|
734 | DECL_INLINE_THROW(uint32_t)
|
---|
735 | iemNativeEmit_xor_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
736 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
737 | {
|
---|
738 | RT_NOREF(pReNative, off, idxVarDst, uImmOp, idxVarEfl, cOpBits, cImmBits);
|
---|
739 | return off;
|
---|
740 | }
|
---|
741 |
|
---|
742 |
|
---|
743 | /**
|
---|
744 | * The ADD instruction will set all status flags.
|
---|
745 | */
|
---|
746 | DECL_INLINE_THROW(uint32_t)
|
---|
747 | iemNativeEmit_add_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
748 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
749 | {
|
---|
750 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
751 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
752 |
|
---|
753 | #ifdef RT_ARCH_AMD64
|
---|
754 | /* On AMD64 we just use the correctly sized ADD instruction to get the right EFLAGS.SF value. */
|
---|
755 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(iemNativeInstrBufEnsure(pReNative, off, 4), off,
|
---|
756 | 0x02, 0x03, cOpBits, idxRegDst, idxRegSrc);
|
---|
757 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
758 |
|
---|
759 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
760 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
761 |
|
---|
762 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX);
|
---|
763 |
|
---|
764 | #elif defined(RT_ARCH_ARM64)
|
---|
765 | /* On ARM64 we'll need the two input operands as well as the result in order
|
---|
766 | to calculate the right flags, even if we use ADDS and translates NZCV into
|
---|
767 | OF, CF, ZF and SF. */
|
---|
768 | uint8_t const idxRegDstIn = iemNativeRegAllocTmp(pReNative, &off);
|
---|
769 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4);
|
---|
770 | if (cOpBits >= 32)
|
---|
771 | {
|
---|
772 | off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, idxRegDstIn, idxRegDst);
|
---|
773 | pCodeBuf[off++] = Armv8A64MkInstrAddReg(idxRegDst, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
774 | }
|
---|
775 | else
|
---|
776 | {
|
---|
777 | /* Shift the operands up so we can perform a 32-bit operation and get all four flags. */
|
---|
778 | uint32_t const cShift = 32 - cOpBits;
|
---|
779 | pCodeBuf[off++] = Armv8A64MkInstrOrr(idxRegDstIn, ARMV8_A64_REG_XZR, idxRegDst, false /*f64Bit*/, cShift);
|
---|
780 | pCodeBuf[off++] = Armv8A64MkInstrAddReg(idxRegDst, idxRegDstIn, idxRegSrc, false /*f64Bit*/,
|
---|
781 | true /*fSetFlags*/, cShift);
|
---|
782 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegDstIn, idxRegDstIn, cShift, false /*f64Bit*/);
|
---|
783 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegDst, idxRegDst, cShift, false /*f64Bit*/);
|
---|
784 | cOpBits = 32;
|
---|
785 | }
|
---|
786 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
787 |
|
---|
788 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX, cOpBits, idxRegDst,
|
---|
789 | idxRegDstIn, idxRegSrc, false /*fInvertCarry*/, 0);
|
---|
790 |
|
---|
791 | iemNativeRegFreeTmp(pReNative, idxRegDstIn);
|
---|
792 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
793 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
794 |
|
---|
795 | #else
|
---|
796 | # error "port me"
|
---|
797 | #endif
|
---|
798 | return off;
|
---|
799 | }
|
---|
800 |
|
---|
801 |
|
---|
802 | /**
|
---|
803 | * The ADD instruction with immediate value as right operand.
|
---|
804 | */
|
---|
805 | DECL_INLINE_THROW(uint32_t)
|
---|
806 | iemNativeEmit_add_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
807 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
808 | {
|
---|
809 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
810 |
|
---|
811 | #ifdef RT_ARCH_AMD64
|
---|
812 | /* On AMD64 we just use the correctly sized ADD instruction to get the right EFLAGS.SF value. */
|
---|
813 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
814 | off = iemNativeEmitAmd64OneByteModRmInstrRIEx(pCodeBuf, off, 0x80, 0x83, 0x81, cOpBits, cImmBits, 0, idxRegDst, uImmOp);
|
---|
815 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
816 |
|
---|
817 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
818 |
|
---|
819 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX);
|
---|
820 |
|
---|
821 | #elif defined(RT_ARCH_ARM64)
|
---|
822 | /* On ARM64 we'll need the two input operands as well as the result in order
|
---|
823 | to calculate the right flags, even if we use ADDS and translates NZCV into
|
---|
824 | OF, CF, ZF and SF. */
|
---|
825 | uint8_t const idxRegDstIn = iemNativeRegAllocTmp(pReNative, &off);
|
---|
826 | PIEMNATIVEINSTR pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
827 | off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, idxRegDstIn, idxRegDst);
|
---|
828 | if (cOpBits >= 32)
|
---|
829 | {
|
---|
830 | if (uImmOp <= 0xfffU)
|
---|
831 | pCodeBuf[off++] = Armv8A64MkInstrAddUImm12(idxRegDst, idxRegDst, uImmOp, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
832 | else if (uImmOp <= 0xfff000U && !(uImmOp & 0xfff))
|
---|
833 | pCodeBuf[off++] = Armv8A64MkInstrAddUImm12(idxRegDst, idxRegDst, uImmOp >> 12, cOpBits > 32 /*f64Bit*/,
|
---|
834 | true /*fSetFlags*/, true /*fShift12*/);
|
---|
835 | else
|
---|
836 | {
|
---|
837 | uint8_t const idxRegTmpImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
838 | pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
839 | pCodeBuf[off++] = Armv8A64MkInstrAddReg(idxRegDst, idxRegDst, idxRegTmpImm, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
840 | iemNativeRegFreeTmpImm(pReNative, idxRegTmpImm);
|
---|
841 | }
|
---|
842 | }
|
---|
843 | else
|
---|
844 | {
|
---|
845 | /* Shift the operands up so we can perform a 32-bit operation and get all four flags. */
|
---|
846 | uint32_t const cShift = 32 - cOpBits;
|
---|
847 | uint8_t const idxRegTmpImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp << cShift);
|
---|
848 | pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
849 | pCodeBuf[off++] = Armv8A64MkInstrAddReg(idxRegDst, idxRegTmpImm, idxRegDstIn, false /*f64Bit*/, true /*fSetFlags*/, cShift);
|
---|
850 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegDst, idxRegDst, cShift, false /*f64Bit*/);
|
---|
851 | cOpBits = 32;
|
---|
852 | iemNativeRegFreeTmpImm(pReNative, idxRegTmpImm);
|
---|
853 | }
|
---|
854 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
855 |
|
---|
856 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX, cOpBits, idxRegDst,
|
---|
857 | idxRegDstIn, UINT8_MAX, false /*fInvertCarry*/, uImmOp);
|
---|
858 |
|
---|
859 | iemNativeRegFreeTmp(pReNative, idxRegDstIn);
|
---|
860 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
861 | RT_NOREF(cImmBits);
|
---|
862 |
|
---|
863 | #else
|
---|
864 | # error "port me"
|
---|
865 | #endif
|
---|
866 | return off;
|
---|
867 | }
|
---|
868 |
|
---|
869 |
|
---|
870 | /**
|
---|
871 | * The ADC instruction takes CF as input and will set all status flags.
|
---|
872 | */
|
---|
873 | DECL_INLINE_THROW(uint32_t)
|
---|
874 | iemNativeEmit_adc_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
875 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
876 | {
|
---|
877 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
878 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
879 | uint8_t const idxRegEfl = iemNativeVarRegisterAcquire(pReNative, idxVarEfl, &off, true /*fInitialized*/);
|
---|
880 |
|
---|
881 | #ifdef RT_ARCH_AMD64
|
---|
882 | /* On AMD64 we use BT to set EFLAGS.CF and then issue an ADC instruction
|
---|
883 | with matching size to get the correct flags. */
|
---|
884 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 9);
|
---|
885 |
|
---|
886 | /* Use the BT instruction to set CF according to idxRegEfl. */
|
---|
887 | off = iemNativeEmitAmd64TwoByteModRmInstrRREx(pCodeBuf, off, 0x0f, 0x0b, 0xba, 32 /*cOpBits*/, 4, idxRegEfl);
|
---|
888 | pCodeBuf[off++] = X86_EFL_CF_BIT;
|
---|
889 |
|
---|
890 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(pCodeBuf, off, 0x12, 0x13, cOpBits, idxRegDst, idxRegSrc);
|
---|
891 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
892 |
|
---|
893 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
894 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
895 |
|
---|
896 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, UINT8_MAX, idxRegEfl);
|
---|
897 |
|
---|
898 | #elif defined(RT_ARCH_ARM64)
|
---|
899 | /* On ARM64 we use the RMIF instruction to load PSTATE.CF from idxRegEfl and
|
---|
900 | then ADCS for the calculation. We need all inputs and result for the two
|
---|
901 | flags (AF,PF) that can't be directly derived from PSTATE.NZCV. */
|
---|
902 | uint8_t const idxRegDstIn = iemNativeRegAllocTmp(pReNative, &off);
|
---|
903 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7);
|
---|
904 |
|
---|
905 | pCodeBuf[off++] = Armv8A64MkInstrRmif(idxRegEfl, (X86_EFL_CF_BIT - 1) & 63, RT_BIT_32(1) /*fMask=C*/);
|
---|
906 | off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, idxRegDstIn, idxRegDst);
|
---|
907 | if (cOpBits >= 32)
|
---|
908 | pCodeBuf[off++] = Armv8A64MkInstrAdcs(idxRegDst, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/);
|
---|
909 | else
|
---|
910 | {
|
---|
911 | /* Since we're also adding in the carry flag here, shifting operands up
|
---|
912 | doesn't work. So, we have to calculate carry & overflow manually. */
|
---|
913 | pCodeBuf[off++] = Armv8A64MkInstrAdc(idxRegDst, idxRegDst, idxRegSrc, false /*f64Bit*/);
|
---|
914 | pCodeBuf[off++] = Armv8A64MkInstrSetF8SetF16(idxRegDst, cOpBits > 8); /* NZ are okay, CV aren't.*/
|
---|
915 | }
|
---|
916 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
917 |
|
---|
918 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, UINT8_MAX, idxRegEfl, cOpBits, idxRegDst,
|
---|
919 | idxRegDstIn, idxRegSrc, false /*fInvertCarry*/, 0);
|
---|
920 |
|
---|
921 | iemNativeRegFreeTmp(pReNative, idxRegDstIn);
|
---|
922 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
923 | if (cOpBits < 32)
|
---|
924 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxRegDst, RT_BIT_32(cOpBits) - 1U);
|
---|
925 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
926 |
|
---|
927 | #else
|
---|
928 | # error "port me"
|
---|
929 | #endif
|
---|
930 | iemNativeVarRegisterRelease(pReNative, idxVarEfl);
|
---|
931 | return off;
|
---|
932 | }
|
---|
933 |
|
---|
934 |
|
---|
935 | /**
|
---|
936 | * The ADC instruction with immediate value as right operand.
|
---|
937 | */
|
---|
938 | DECL_INLINE_THROW(uint32_t)
|
---|
939 | iemNativeEmit_adc_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
940 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
941 | {
|
---|
942 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
943 | uint8_t const idxRegEfl = iemNativeVarRegisterAcquire(pReNative, idxVarEfl, &off, true /*fInitialized*/);
|
---|
944 |
|
---|
945 | #ifdef RT_ARCH_AMD64
|
---|
946 | /* On AMD64 we use BT to set EFLAGS.CF and then issue an ADC instruction
|
---|
947 | with matching size to get the correct flags. */
|
---|
948 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 12);
|
---|
949 |
|
---|
950 | off = iemNativeEmitAmd64TwoByteModRmInstrRREx(pCodeBuf, off, 0x0f, 0x0b, 0xba, 32 /*cOpBits*/, 4, idxRegEfl);
|
---|
951 | pCodeBuf[off++] = X86_EFL_CF_BIT;
|
---|
952 |
|
---|
953 | off = iemNativeEmitAmd64OneByteModRmInstrRIEx(pCodeBuf, off, 0x80, 0x83, 0x81, cOpBits, cImmBits, 2, idxRegDst, uImmOp);
|
---|
954 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
955 |
|
---|
956 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
957 |
|
---|
958 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, UINT8_MAX, idxRegEfl);
|
---|
959 |
|
---|
960 | #elif defined(RT_ARCH_ARM64)
|
---|
961 | /* On ARM64 we use the RMIF instructions to load PSTATE.CF from idxRegEfl
|
---|
962 | and then ADCS for the calculation. We need all inputs and result for
|
---|
963 | the two flags (AF,PF) that can't be directly derived from PSTATE.NZCV. */
|
---|
964 | uint8_t const idxRegDstIn = iemNativeRegAllocTmp(pReNative, &off);
|
---|
965 | uint8_t const idxRegImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
966 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4);
|
---|
967 |
|
---|
968 | pCodeBuf[off++] = Armv8A64MkInstrRmif(idxRegEfl, (X86_EFL_CF_BIT - 1) & 63, RT_BIT_32(1) /*fMask=C*/);
|
---|
969 | off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, idxRegDstIn, idxRegDst);
|
---|
970 | if (cOpBits >= 32)
|
---|
971 | pCodeBuf[off++] = Armv8A64MkInstrAdcs(idxRegDst, idxRegDst, idxRegImm, cOpBits > 32 /*f64Bit*/);
|
---|
972 | else
|
---|
973 | {
|
---|
974 | /* Since we're also adding in the carry flag here, shifting operands up
|
---|
975 | doesn't work. So, we have to calculate carry & overflow manually. */
|
---|
976 | pCodeBuf[off++] = Armv8A64MkInstrAdc(idxRegDst, idxRegDst, idxRegImm, false /*f64Bit*/);
|
---|
977 | pCodeBuf[off++] = Armv8A64MkInstrSetF8SetF16(idxRegDst, cOpBits > 8); /* NZ are okay, CV aren't.*/
|
---|
978 | }
|
---|
979 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
980 |
|
---|
981 | iemNativeRegFreeTmp(pReNative, idxRegImm);
|
---|
982 |
|
---|
983 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, UINT8_MAX, idxRegEfl, cOpBits, idxRegDst,
|
---|
984 | idxRegDstIn, UINT8_MAX, false /*fInvertCarry*/, uImmOp);
|
---|
985 |
|
---|
986 | iemNativeRegFreeTmp(pReNative, idxRegDstIn);
|
---|
987 | if (cOpBits < 32)
|
---|
988 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxRegDst, RT_BIT_32(cOpBits) - 1U);
|
---|
989 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
990 | RT_NOREF(cImmBits);
|
---|
991 |
|
---|
992 | #else
|
---|
993 | # error "port me"
|
---|
994 | #endif
|
---|
995 | iemNativeVarRegisterRelease(pReNative, idxVarEfl);
|
---|
996 | return off;
|
---|
997 | }
|
---|
998 |
|
---|
999 |
|
---|
1000 | /**
|
---|
1001 | * The SUB instruction will set all status flags.
|
---|
1002 | */
|
---|
1003 | DECL_INLINE_THROW(uint32_t)
|
---|
1004 | iemNativeEmit_sub_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1005 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
1006 | {
|
---|
1007 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
1008 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
1009 |
|
---|
1010 | #ifdef RT_ARCH_AMD64
|
---|
1011 | /* On AMD64 we just use the correctly sized SUB instruction to get the right EFLAGS.SF value. */
|
---|
1012 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(iemNativeInstrBufEnsure(pReNative, off, 4), off,
|
---|
1013 | 0x2a, 0x2b, cOpBits, idxRegDst, idxRegSrc);
|
---|
1014 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1015 |
|
---|
1016 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
1017 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1018 |
|
---|
1019 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX);
|
---|
1020 |
|
---|
1021 | #elif defined(RT_ARCH_ARM64)
|
---|
1022 | /* On ARM64 we'll need the two input operands as well as the result in order
|
---|
1023 | to calculate the right flags, even if we use SUBS and translates NZCV into
|
---|
1024 | OF, CF, ZF and SF. */
|
---|
1025 | uint8_t const idxRegDstIn = iemNativeRegAllocTmp(pReNative, &off);
|
---|
1026 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4);
|
---|
1027 | if (cOpBits >= 32)
|
---|
1028 | {
|
---|
1029 | off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, idxRegDstIn, idxRegDst);
|
---|
1030 | pCodeBuf[off++] = Armv8A64MkInstrSubReg(idxRegDst, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
1031 | }
|
---|
1032 | else
|
---|
1033 | {
|
---|
1034 | /* Shift the operands up so we can perform a 32-bit operation and get all four flags. */
|
---|
1035 | uint32_t const cShift = 32 - cOpBits;
|
---|
1036 | pCodeBuf[off++] = Armv8A64MkInstrOrr(idxRegDstIn, ARMV8_A64_REG_XZR, idxRegDst, false /*f64Bit*/, cShift);
|
---|
1037 | pCodeBuf[off++] = Armv8A64MkInstrSubReg(idxRegDst, idxRegDstIn, idxRegSrc, false /*f64Bit*/,
|
---|
1038 | true /*fSetFlags*/, cShift);
|
---|
1039 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegDstIn, idxRegDstIn, cShift, false /*f64Bit*/);
|
---|
1040 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegDst, idxRegDst, cShift, false /*f64Bit*/);
|
---|
1041 | cOpBits = 32;
|
---|
1042 | }
|
---|
1043 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1044 |
|
---|
1045 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX, cOpBits, idxRegDst,
|
---|
1046 | idxRegDstIn, idxRegSrc, true /*fInvertCarry*/, 0);
|
---|
1047 |
|
---|
1048 | iemNativeRegFreeTmp(pReNative, idxRegDstIn);
|
---|
1049 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
1050 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1051 |
|
---|
1052 | #else
|
---|
1053 | # error "port me"
|
---|
1054 | #endif
|
---|
1055 | return off;
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 |
|
---|
1059 | /**
|
---|
1060 | * The SUB instruction with immediate value as right operand.
|
---|
1061 | */
|
---|
1062 | DECL_INLINE_THROW(uint32_t)
|
---|
1063 | iemNativeEmit_sub_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1064 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
1065 | {
|
---|
1066 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
1067 |
|
---|
1068 | #ifdef RT_ARCH_AMD64
|
---|
1069 | /* On AMD64 we just use the correctly sized SUB instruction to get the right EFLAGS.SF value. */
|
---|
1070 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
1071 | off = iemNativeEmitAmd64OneByteModRmInstrRIEx(pCodeBuf, off, 0x80, 0x83, 0x81, cOpBits, cImmBits, 5, idxRegDst, uImmOp);
|
---|
1072 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1073 |
|
---|
1074 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1075 |
|
---|
1076 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX);
|
---|
1077 |
|
---|
1078 | #elif defined(RT_ARCH_ARM64)
|
---|
1079 | /* On ARM64 we'll need the two input operands as well as the result in order
|
---|
1080 | to calculate the right flags, even if we use SUBS and translates NZCV into
|
---|
1081 | OF, CF, ZF and SF. */
|
---|
1082 | uint8_t const idxRegDstIn = iemNativeRegAllocTmp(pReNative, &off);
|
---|
1083 | PIEMNATIVEINSTR pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
1084 | off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, idxRegDstIn, idxRegDst);
|
---|
1085 | if (cOpBits >= 32)
|
---|
1086 | {
|
---|
1087 | if (uImmOp <= 0xfffU)
|
---|
1088 | pCodeBuf[off++] = Armv8A64MkInstrSubUImm12(idxRegDst, idxRegDst, uImmOp, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
1089 | else if (uImmOp <= 0xfff000U && !(uImmOp & 0xfff))
|
---|
1090 | pCodeBuf[off++] = Armv8A64MkInstrSubUImm12(idxRegDst, idxRegDst, uImmOp >> 12, cOpBits > 32 /*f64Bit*/,
|
---|
1091 | true /*fSetFlags*/, true /*fShift12*/);
|
---|
1092 | else
|
---|
1093 | {
|
---|
1094 | uint8_t const idxRegTmpImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
1095 | pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
1096 | pCodeBuf[off++] = Armv8A64MkInstrSubReg(idxRegDst, idxRegDst, idxRegTmpImm, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
1097 | iemNativeRegFreeTmpImm(pReNative, idxRegTmpImm);
|
---|
1098 | }
|
---|
1099 | }
|
---|
1100 | else
|
---|
1101 | {
|
---|
1102 | /* Shift the operands up so we can perform a 32-bit operation and get all four flags. */
|
---|
1103 | uint32_t const cShift = 32 - cOpBits;
|
---|
1104 | uint8_t const idxRegTmpImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
1105 | pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4);
|
---|
1106 | pCodeBuf[off++] = Armv8A64MkInstrLslImm(idxRegDstIn, idxRegDstIn, cShift, false /*f64Bit*/);
|
---|
1107 | pCodeBuf[off++] = Armv8A64MkInstrSubReg(idxRegDst, idxRegDstIn, idxRegTmpImm, false /*f64Bit*/, true /*fSetFlags*/, cShift);
|
---|
1108 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegDstIn, idxRegDstIn, cShift, false /*f64Bit*/);
|
---|
1109 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegDst, idxRegDst, cShift, false /*f64Bit*/);
|
---|
1110 | cOpBits = 32;
|
---|
1111 | iemNativeRegFreeTmpImm(pReNative, idxRegTmpImm);
|
---|
1112 | }
|
---|
1113 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1114 |
|
---|
1115 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX, cOpBits, idxRegDst,
|
---|
1116 | idxRegDstIn, UINT8_MAX, true /*fInvertCarry*/, uImmOp);
|
---|
1117 |
|
---|
1118 | iemNativeRegFreeTmp(pReNative, idxRegDstIn);
|
---|
1119 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1120 | RT_NOREF(cImmBits);
|
---|
1121 |
|
---|
1122 | #else
|
---|
1123 | # error "port me"
|
---|
1124 | #endif
|
---|
1125 | return off;
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 |
|
---|
1129 | /**
|
---|
1130 | * The CMP instruction will set all status flags, but modifies no registers.
|
---|
1131 | */
|
---|
1132 | DECL_INLINE_THROW(uint32_t)
|
---|
1133 | iemNativeEmit_cmp_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1134 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
1135 | {
|
---|
1136 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
1137 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
1138 |
|
---|
1139 | #ifdef RT_ARCH_AMD64
|
---|
1140 | /* On AMD64 we just use the correctly sized CMP instruction to get the right EFLAGS.SF value. */
|
---|
1141 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(iemNativeInstrBufEnsure(pReNative, off, 4), off,
|
---|
1142 | 0x3a, 0x3b, cOpBits, idxRegDst, idxRegSrc);
|
---|
1143 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1144 |
|
---|
1145 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
1146 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1147 |
|
---|
1148 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX);
|
---|
1149 |
|
---|
1150 | #elif defined(RT_ARCH_ARM64)
|
---|
1151 | /* On ARM64 we'll need the actual result as well as both input operands in order
|
---|
1152 | to calculate the right flags, even if we use SUBS and translates NZCV into
|
---|
1153 | OF, CF, ZF and SF. */
|
---|
1154 | uint8_t const idxRegResult = iemNativeRegAllocTmp(pReNative, &off);
|
---|
1155 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
1156 | if (cOpBits >= 32)
|
---|
1157 | pCodeBuf[off++] = Armv8A64MkInstrSubReg(idxRegResult, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
1158 | else
|
---|
1159 | {
|
---|
1160 | /* Shift the operands up so we can perform a 32-bit operation and get all four flags. */
|
---|
1161 | uint32_t const cShift = 32 - cOpBits;
|
---|
1162 | pCodeBuf[off++] = Armv8A64MkInstrOrr(idxRegResult, ARMV8_A64_REG_XZR, idxRegDst, false /*f64Bit*/, cShift);
|
---|
1163 | pCodeBuf[off++] = Armv8A64MkInstrSubReg(idxRegResult, idxRegResult, idxRegSrc, false /*f64Bit*/,
|
---|
1164 | true /*fSetFlags*/, cShift);
|
---|
1165 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegResult, idxRegResult, cShift, false /*f64Bit*/);
|
---|
1166 | cOpBits = 32;
|
---|
1167 | }
|
---|
1168 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1169 |
|
---|
1170 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX, cOpBits, idxRegResult,
|
---|
1171 | idxRegDst, idxRegSrc, true /*fInvertCarry*/, 0);
|
---|
1172 |
|
---|
1173 | iemNativeRegFreeTmp(pReNative, idxRegResult);
|
---|
1174 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
1175 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1176 |
|
---|
1177 | #else
|
---|
1178 | # error "port me"
|
---|
1179 | #endif
|
---|
1180 | return off;
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 |
|
---|
1184 | /**
|
---|
1185 | * The CMP instruction with immediate value as right operand.
|
---|
1186 | */
|
---|
1187 | DECL_INLINE_THROW(uint32_t)
|
---|
1188 | iemNativeEmit_cmp_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1189 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
1190 | {
|
---|
1191 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
1192 |
|
---|
1193 | #ifdef RT_ARCH_AMD64
|
---|
1194 | /* On AMD64 we just use the correctly sized CMP instruction to get the right EFLAGS.SF value. */
|
---|
1195 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
1196 | off = iemNativeEmitAmd64OneByteModRmInstrRIEx(pCodeBuf, off, 0x80, 0x83, 0x81, cOpBits, cImmBits, 7, idxRegDst, uImmOp);
|
---|
1197 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1198 |
|
---|
1199 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1200 |
|
---|
1201 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX);
|
---|
1202 |
|
---|
1203 | #elif defined(RT_ARCH_ARM64)
|
---|
1204 | /* On ARM64 we'll need the actual result as well as both input operands in order
|
---|
1205 | to calculate the right flags, even if we use SUBS and translates NZCV into
|
---|
1206 | OF, CF, ZF and SF. */
|
---|
1207 | uint8_t const idxRegResult = iemNativeRegAllocTmp(pReNative, &off);
|
---|
1208 | PIEMNATIVEINSTR pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
1209 | if (cOpBits >= 32)
|
---|
1210 | {
|
---|
1211 | if (uImmOp <= 0xfffU)
|
---|
1212 | pCodeBuf[off++] = Armv8A64MkInstrSubUImm12(idxRegResult, idxRegDst, uImmOp, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
1213 | else if (uImmOp <= 0xfff000U && !(uImmOp & 0xfff))
|
---|
1214 | pCodeBuf[off++] = Armv8A64MkInstrSubUImm12(idxRegResult, idxRegDst, uImmOp >> 12, cOpBits > 32 /*f64Bit*/,
|
---|
1215 | true /*fSetFlags*/, true /*fShift12*/);
|
---|
1216 | else
|
---|
1217 | {
|
---|
1218 | uint8_t const idxRegTmpImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
1219 | pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
1220 | pCodeBuf[off++] = Armv8A64MkInstrSubReg(idxRegResult, idxRegDst, idxRegTmpImm, cOpBits > 32 /*f64Bit*/, true /*fSetFlags*/);
|
---|
1221 | iemNativeRegFreeTmpImm(pReNative, idxRegTmpImm);
|
---|
1222 | }
|
---|
1223 | }
|
---|
1224 | else
|
---|
1225 | {
|
---|
1226 | /* Shift the operands up so we can perform a 32-bit operation and get all four flags. */
|
---|
1227 | uint32_t const cShift = 32 - cOpBits;
|
---|
1228 | uint8_t const idxRegTmpImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
1229 | pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
1230 | pCodeBuf[off++] = Armv8A64MkInstrLslImm(idxRegResult, idxRegDst, cShift, false /*f64Bit*/);
|
---|
1231 | pCodeBuf[off++] = Armv8A64MkInstrSubReg(idxRegResult, idxRegResult, idxRegTmpImm, false /*f64Bit*/, true /*fSetFlags*/, cShift);
|
---|
1232 | pCodeBuf[off++] = Armv8A64MkInstrLsrImm(idxRegResult, idxRegResult, cShift, false /*f64Bit*/);
|
---|
1233 | cOpBits = 32;
|
---|
1234 | iemNativeRegFreeTmpImm(pReNative, idxRegTmpImm);
|
---|
1235 | }
|
---|
1236 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1237 |
|
---|
1238 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, idxVarEfl, UINT8_MAX, cOpBits, idxRegResult,
|
---|
1239 | idxRegDst, UINT8_MAX, true /*fInvertCarry*/, uImmOp);
|
---|
1240 |
|
---|
1241 | iemNativeRegFreeTmp(pReNative, idxRegResult);
|
---|
1242 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1243 | RT_NOREF(cImmBits);
|
---|
1244 |
|
---|
1245 | #else
|
---|
1246 | # error "port me"
|
---|
1247 | #endif
|
---|
1248 | return off;
|
---|
1249 | }
|
---|
1250 |
|
---|
1251 |
|
---|
1252 | /**
|
---|
1253 | * The SBB instruction takes CF as input and will set all status flags.
|
---|
1254 | */
|
---|
1255 | DECL_INLINE_THROW(uint32_t)
|
---|
1256 | iemNativeEmit_sbb_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1257 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
1258 | {
|
---|
1259 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
1260 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off, true /*fInitialized*/);
|
---|
1261 | uint8_t const idxRegEfl = iemNativeVarRegisterAcquire(pReNative, idxVarEfl, &off, true /*fInitialized*/);
|
---|
1262 |
|
---|
1263 | #ifdef RT_ARCH_AMD64
|
---|
1264 | /* On AMD64 we use BT to set EFLAGS.CF and then issue an SBB instruction
|
---|
1265 | with matching size to get the correct flags. */
|
---|
1266 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 9);
|
---|
1267 |
|
---|
1268 | off = iemNativeEmitAmd64TwoByteModRmInstrRREx(pCodeBuf, off, 0x0f, 0x0b, 0xba, 32 /*cOpBits*/, 4, idxRegEfl);
|
---|
1269 | pCodeBuf[off++] = X86_EFL_CF_BIT;
|
---|
1270 |
|
---|
1271 | off = iemNativeEmitAmd64OneByteModRmInstrRREx(pCodeBuf, off, 0x1a, 0x1b, cOpBits, idxRegDst, idxRegSrc);
|
---|
1272 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1273 |
|
---|
1274 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
1275 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1276 |
|
---|
1277 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, UINT8_MAX, idxRegEfl);
|
---|
1278 |
|
---|
1279 | #elif defined(RT_ARCH_ARM64)
|
---|
1280 | /* On ARM64 we use the RMIF+CFINV instructions to load PSTATE.CF from
|
---|
1281 | idxRegEfl and then SBCS for the calculation. We need all inputs and
|
---|
1282 | result for the two flags (AF,PF) that can't be directly derived from
|
---|
1283 | PSTATE.NZCV. */
|
---|
1284 | uint8_t const idxRegDstIn = iemNativeRegAllocTmp(pReNative, &off);
|
---|
1285 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 5);
|
---|
1286 |
|
---|
1287 | pCodeBuf[off++] = Armv8A64MkInstrRmif(idxRegEfl, (X86_EFL_CF_BIT - 1) & 63, RT_BIT_32(1) /*fMask=C*/);
|
---|
1288 | pCodeBuf[off++] = ARMV8_A64_INSTR_CFINV;
|
---|
1289 | off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, idxRegDstIn, idxRegDst);
|
---|
1290 | if (cOpBits >= 32)
|
---|
1291 | pCodeBuf[off++] = Armv8A64MkInstrSbcs(idxRegDst, idxRegDst, idxRegSrc, cOpBits > 32 /*f64Bit*/);
|
---|
1292 | else
|
---|
1293 | {
|
---|
1294 | /* Since we're also adding in the carry flag here, shifting operands up
|
---|
1295 | doesn't work. So, we have to calculate carry & overflow manually. */
|
---|
1296 | pCodeBuf[off++] = Armv8A64MkInstrSbc(idxRegDst, idxRegDst, idxRegSrc, false /*f64Bit*/);
|
---|
1297 | pCodeBuf[off++] = Armv8A64MkInstrSetF8SetF16(idxRegDst, cOpBits > 8); /* NZ are okay, CV aren't.*/
|
---|
1298 | }
|
---|
1299 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1300 |
|
---|
1301 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, UINT8_MAX, idxRegEfl, cOpBits, idxRegDst,
|
---|
1302 | idxRegDstIn, idxRegSrc, true /*fInvertCarry*/, 0);
|
---|
1303 |
|
---|
1304 | iemNativeRegFreeTmp(pReNative, idxRegDstIn);
|
---|
1305 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
1306 | if (cOpBits < 32)
|
---|
1307 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxRegDst, RT_BIT_32(cOpBits) - 1U);
|
---|
1308 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1309 |
|
---|
1310 | #else
|
---|
1311 | # error "port me"
|
---|
1312 | #endif
|
---|
1313 | iemNativeVarRegisterRelease(pReNative, idxVarEfl);
|
---|
1314 | return off;
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 |
|
---|
1318 | /**
|
---|
1319 | * The SBB instruction with immediate value as right operand.
|
---|
1320 | */
|
---|
1321 | DECL_INLINE_THROW(uint32_t)
|
---|
1322 | iemNativeEmit_sbb_r_i_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1323 | uint8_t idxVarDst, uint64_t uImmOp, uint8_t idxVarEfl, uint8_t cOpBits, uint8_t cImmBits)
|
---|
1324 | {
|
---|
1325 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off, true /*fInitialized*/);
|
---|
1326 | uint8_t const idxRegEfl = iemNativeVarRegisterAcquire(pReNative, idxVarEfl, &off, true /*fInitialized*/);
|
---|
1327 |
|
---|
1328 | #ifdef RT_ARCH_AMD64
|
---|
1329 | /* On AMD64 we use BT to set EFLAGS.CF and then issue an SBB instruction
|
---|
1330 | with matching size to get the correct flags. */
|
---|
1331 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 12);
|
---|
1332 |
|
---|
1333 | off = iemNativeEmitAmd64TwoByteModRmInstrRREx(pCodeBuf, off, 0x0f, 0x0b, 0xba, 32 /*cOpBits*/, 4, idxRegEfl);
|
---|
1334 | pCodeBuf[off++] = X86_EFL_CF_BIT;
|
---|
1335 |
|
---|
1336 | off = iemNativeEmitAmd64OneByteModRmInstrRIEx(pCodeBuf, off, 0x80, 0x83, 0x81, cOpBits, cImmBits, 3, idxRegDst, uImmOp);
|
---|
1337 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1338 |
|
---|
1339 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1340 |
|
---|
1341 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, UINT8_MAX, idxRegEfl);
|
---|
1342 |
|
---|
1343 | #elif defined(RT_ARCH_ARM64)
|
---|
1344 | /* On ARM64 we use the RMIF+CFINV instructions to load PSTATE.CF from
|
---|
1345 | idxRegEfl and then SBCS for the calculation. We need all inputs and
|
---|
1346 | result for the two flags (AF,PF) that can't be directly derived from
|
---|
1347 | PSTATE.NZCV. */
|
---|
1348 | uint8_t const idxRegDstIn = iemNativeRegAllocTmp(pReNative, &off);
|
---|
1349 | uint8_t const idxRegImm = iemNativeRegAllocTmpImm(pReNative, &off, uImmOp);
|
---|
1350 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 5);
|
---|
1351 |
|
---|
1352 | pCodeBuf[off++] = Armv8A64MkInstrRmif(idxRegEfl, (X86_EFL_CF_BIT - 1) & 63, RT_BIT_32(1) /*fMask=C*/);
|
---|
1353 | pCodeBuf[off++] = ARMV8_A64_INSTR_CFINV;
|
---|
1354 | off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, idxRegDstIn, idxRegDst);
|
---|
1355 | if (cOpBits >= 32)
|
---|
1356 | pCodeBuf[off++] = Armv8A64MkInstrSbcs(idxRegDst, idxRegDst, idxRegImm, cOpBits > 32 /*f64Bit*/);
|
---|
1357 | else
|
---|
1358 | {
|
---|
1359 | /* Since we're also adding in the carry flag here, shifting operands up
|
---|
1360 | doesn't work. So, we have to calculate carry & overflow manually. */
|
---|
1361 | pCodeBuf[off++] = Armv8A64MkInstrSbc(idxRegDst, idxRegDst, idxRegImm, false /*f64Bit*/);
|
---|
1362 | pCodeBuf[off++] = Armv8A64MkInstrSetF8SetF16(idxRegDst, cOpBits > 8); /* NZ are okay, CV aren't.*/
|
---|
1363 | }
|
---|
1364 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
1365 |
|
---|
1366 | iemNativeRegFreeTmp(pReNative, idxRegImm);
|
---|
1367 |
|
---|
1368 | off = iemNativeEmitEFlagsForArithmetic(pReNative, off, UINT8_MAX, idxRegEfl, cOpBits, idxRegDst,
|
---|
1369 | idxRegDstIn, UINT8_MAX, true /*fInvertCarry*/, uImmOp);
|
---|
1370 |
|
---|
1371 | iemNativeRegFreeTmp(pReNative, idxRegDstIn);
|
---|
1372 | if (cOpBits < 32)
|
---|
1373 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxRegDst, RT_BIT_32(cOpBits) - 1U);
|
---|
1374 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
1375 | RT_NOREF(cImmBits);
|
---|
1376 |
|
---|
1377 | #else
|
---|
1378 | # error "port me"
|
---|
1379 | #endif
|
---|
1380 | iemNativeVarRegisterRelease(pReNative, idxVarEfl);
|
---|
1381 | return off;
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 |
|
---|
1385 | DECL_INLINE_THROW(uint32_t)
|
---|
1386 | iemNativeEmit_imul_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1387 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
1388 | {
|
---|
1389 | RT_NOREF(idxVarDst, idxVarSrc, idxVarEfl, cOpBits);
|
---|
1390 | AssertFailed();
|
---|
1391 | return iemNativeEmitBrk(pReNative, off, 0x666);
|
---|
1392 | }
|
---|
1393 |
|
---|
1394 |
|
---|
1395 | DECL_INLINE_THROW(uint32_t)
|
---|
1396 | iemNativeEmit_popcnt_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1397 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
1398 | {
|
---|
1399 | RT_NOREF(idxVarDst, idxVarSrc, idxVarEfl, cOpBits);
|
---|
1400 | AssertFailed();
|
---|
1401 | return iemNativeEmitBrk(pReNative, off, 0x666);
|
---|
1402 | }
|
---|
1403 |
|
---|
1404 |
|
---|
1405 | DECL_INLINE_THROW(uint32_t)
|
---|
1406 | iemNativeEmit_tzcnt_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1407 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
1408 | {
|
---|
1409 | RT_NOREF(idxVarDst, idxVarSrc, idxVarEfl, cOpBits);
|
---|
1410 | AssertFailed();
|
---|
1411 | return iemNativeEmitBrk(pReNative, off, 0x666);
|
---|
1412 | }
|
---|
1413 |
|
---|
1414 |
|
---|
1415 | DECL_INLINE_THROW(uint32_t)
|
---|
1416 | iemNativeEmit_lzcnt_r_r_efl(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
1417 | uint8_t idxVarDst, uint8_t idxVarSrc, uint8_t idxVarEfl, uint8_t cOpBits)
|
---|
1418 | {
|
---|
1419 | RT_NOREF(idxVarDst, idxVarSrc, idxVarEfl, cOpBits);
|
---|
1420 | AssertFailed();
|
---|
1421 | return iemNativeEmitBrk(pReNative, off, 0x666);
|
---|
1422 | }
|
---|
1423 |
|
---|
1424 |
|
---|
1425 | #endif /* !VMM_INCLUDED_SRC_VMMAll_target_x86_IEMAllN8veEmit_x86_h */
|
---|