1 | /* $Id: IEMAllTlbInline-x86.h 108791 2025-03-28 21:58:31Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Interpreted Execution Manager - x86 target, Inline TLB routines.
|
---|
4 | *
|
---|
5 | * Mainly related to large pages.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * Copyright (C) 2011-2024 Oracle and/or its affiliates.
|
---|
10 | *
|
---|
11 | * This file is part of VirtualBox base platform packages, as
|
---|
12 | * available from https://www.virtualbox.org.
|
---|
13 | *
|
---|
14 | * This program is free software; you can redistribute it and/or
|
---|
15 | * modify it under the terms of the GNU General Public License
|
---|
16 | * as published by the Free Software Foundation, in version 3 of the
|
---|
17 | * License.
|
---|
18 | *
|
---|
19 | * This program is distributed in the hope that it will be useful, but
|
---|
20 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
21 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
22 | * General Public License for more details.
|
---|
23 | *
|
---|
24 | * You should have received a copy of the GNU General Public License
|
---|
25 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
26 | *
|
---|
27 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
28 | */
|
---|
29 |
|
---|
30 |
|
---|
31 | #ifndef VMM_INCLUDED_SRC_VMMAll_target_x86_IEMAllTlbInline_x86_h
|
---|
32 | #define VMM_INCLUDED_SRC_VMMAll_target_x86_IEMAllTlbInline_x86_h
|
---|
33 | #ifndef RT_WITHOUT_PRAGMA_ONCE
|
---|
34 | # pragma once
|
---|
35 | #endif
|
---|
36 |
|
---|
37 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
38 |
|
---|
39 | /**
|
---|
40 | * Helper for doing large page accounting at TLB load time.
|
---|
41 | */
|
---|
42 | template<bool const a_fGlobal>
|
---|
43 | DECL_FORCE_INLINE(void) iemTlbLoadedLargePage(PVMCPUCC pVCpu, IEMTLB *pTlb, RTGCPTR uTagNoRev, bool f2MbLargePages)
|
---|
44 | {
|
---|
45 | if (a_fGlobal)
|
---|
46 | pTlb->cTlbGlobalLargePageCurLoads++;
|
---|
47 | else
|
---|
48 | pTlb->cTlbNonGlobalLargePageCurLoads++;
|
---|
49 |
|
---|
50 | # ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
|
---|
51 | RTGCPTR const idxBit = IEMTLB_TAG_TO_EVEN_INDEX(uTagNoRev) + a_fGlobal;
|
---|
52 | ASMBitSet(pTlb->bmLargePage, idxBit);
|
---|
53 | # endif
|
---|
54 |
|
---|
55 | AssertCompile(IEMTLB_CALC_TAG_NO_REV(pVCpu, (RTGCPTR)0x8731U << GUEST_PAGE_SHIFT) == 0x8731U);
|
---|
56 | uint32_t const fMask = (f2MbLargePages ? _2M - 1U : _4M - 1U) >> GUEST_PAGE_SHIFT;
|
---|
57 | IEMTLB::LARGEPAGERANGE * const pRange = a_fGlobal
|
---|
58 | ? &pTlb->GlobalLargePageRange
|
---|
59 | : &pTlb->NonGlobalLargePageRange;
|
---|
60 | uTagNoRev &= ~(RTGCPTR)fMask;
|
---|
61 | if (uTagNoRev < pRange->uFirstTag)
|
---|
62 | pRange->uFirstTag = uTagNoRev;
|
---|
63 |
|
---|
64 | uTagNoRev |= fMask;
|
---|
65 | if (uTagNoRev > pRange->uLastTag)
|
---|
66 | pRange->uLastTag = uTagNoRev;
|
---|
67 |
|
---|
68 | RT_NOREF_PV(pVCpu);
|
---|
69 | }
|
---|
70 |
|
---|
71 |
|
---|
72 | /** @todo graduate this to cdefs.h or asm-mem.h. */
|
---|
73 | # ifdef RT_ARCH_ARM64 /** @todo RT_CACHELINE_SIZE is wrong for M1 */
|
---|
74 | # undef RT_CACHELINE_SIZE
|
---|
75 | # define RT_CACHELINE_SIZE 128
|
---|
76 | # endif
|
---|
77 |
|
---|
78 | # if defined(_MM_HINT_T0) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
|
---|
79 | # define MY_PREFETCH(a_pvAddr) _mm_prefetch((const char *)(a_pvAddr), _MM_HINT_T0)
|
---|
80 | # elif defined(_MSC_VER) && (defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32))
|
---|
81 | # define MY_PREFETCH(a_pvAddr) __prefetch((a_pvAddr))
|
---|
82 | # elif defined(__GNUC__) || RT_CLANG_HAS_FEATURE(__builtin_prefetch)
|
---|
83 | # define MY_PREFETCH(a_pvAddr) __builtin_prefetch((a_pvAddr), 0 /*rw*/, 3 /*locality*/)
|
---|
84 | # else
|
---|
85 | # define MY_PREFETCH(a_pvAddr) ((void)0)
|
---|
86 | # endif
|
---|
87 | # if 0
|
---|
88 | # undef MY_PREFETCH
|
---|
89 | # define MY_PREFETCH(a_pvAddr) ((void)0)
|
---|
90 | # endif
|
---|
91 |
|
---|
92 | /** @def MY_PREFETCH_64
|
---|
93 | * 64 byte prefetch hint, could be more depending on cache line size. */
|
---|
94 | /** @def MY_PREFETCH_128
|
---|
95 | * 128 byte prefetch hint. */
|
---|
96 | /** @def MY_PREFETCH_256
|
---|
97 | * 256 byte prefetch hint. */
|
---|
98 | # if RT_CACHELINE_SIZE >= 128
|
---|
99 | /* 128 byte cache lines */
|
---|
100 | # define MY_PREFETCH_64(a_pvAddr) MY_PREFETCH(a_pvAddr)
|
---|
101 | # define MY_PREFETCH_128(a_pvAddr) MY_PREFETCH(a_pvAddr)
|
---|
102 | # define MY_PREFETCH_256(a_pvAddr) do { \
|
---|
103 | MY_PREFETCH(a_pvAddr); \
|
---|
104 | MY_PREFETCH((uint8_t const *)a_pvAddr + 128); \
|
---|
105 | } while (0)
|
---|
106 | # else
|
---|
107 | /* 64 byte cache lines */
|
---|
108 | # define MY_PREFETCH_64(a_pvAddr) MY_PREFETCH(a_pvAddr)
|
---|
109 | # define MY_PREFETCH_128(a_pvAddr) do { \
|
---|
110 | MY_PREFETCH(a_pvAddr); \
|
---|
111 | MY_PREFETCH((uint8_t const *)a_pvAddr + 64); \
|
---|
112 | } while (0)
|
---|
113 | # define MY_PREFETCH_256(a_pvAddr) do { \
|
---|
114 | MY_PREFETCH(a_pvAddr); \
|
---|
115 | MY_PREFETCH((uint8_t const *)a_pvAddr + 64); \
|
---|
116 | MY_PREFETCH((uint8_t const *)a_pvAddr + 128); \
|
---|
117 | MY_PREFETCH((uint8_t const *)a_pvAddr + 192); \
|
---|
118 | } while (0)
|
---|
119 | # endif
|
---|
120 |
|
---|
121 | template<bool const a_fDataTlb, bool const a_f2MbLargePage, bool const a_fGlobal, bool const a_fNonGlobal>
|
---|
122 | DECLINLINE(void) iemTlbInvalidateLargePageWorkerInner(PVMCPUCC pVCpu, IEMTLB *pTlb, RTGCPTR GCPtrTag,
|
---|
123 | RTGCPTR GCPtrInstrBufPcTag) RT_NOEXCEPT
|
---|
124 | {
|
---|
125 | IEMTLBTRACE_LARGE_SCAN(pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb);
|
---|
126 | AssertCompile(IEMTLB_ENTRY_COUNT >= 16); /* prefetching + unroll assumption */
|
---|
127 |
|
---|
128 | if (a_fGlobal)
|
---|
129 | pTlb->cTlbInvlPgLargeGlobal += 1;
|
---|
130 | if (a_fNonGlobal)
|
---|
131 | pTlb->cTlbInvlPgLargeNonGlobal += 1;
|
---|
132 |
|
---|
133 | /*
|
---|
134 | * Set up the scan.
|
---|
135 | *
|
---|
136 | * GCPtrTagMask: A 2MB page consists of 512 4K pages, so a 256 TLB will map
|
---|
137 | * offset zero and offset 1MB to the same slot pair. Our GCPtrTag[Globl]
|
---|
138 | * values are for the range 0-1MB, or slots 0-256. So, we construct a mask
|
---|
139 | * that fold large page offsets 1MB-2MB into the 0-1MB range.
|
---|
140 | *
|
---|
141 | * For our example with 2MB pages and a 256 entry TLB: 0xfffffffffffffeff
|
---|
142 | *
|
---|
143 | * MY_PREFETCH: Hope that prefetching 256 bytes at the time is okay for
|
---|
144 | * relevant host architectures.
|
---|
145 | */
|
---|
146 | /** @todo benchmark this code from the guest side. */
|
---|
147 | bool const fPartialScan = IEMTLB_ENTRY_COUNT > (a_f2MbLargePage ? 512 : 1024);
|
---|
148 | #ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
|
---|
149 | uintptr_t idxBitmap = fPartialScan ? IEMTLB_TAG_TO_EVEN_INDEX(GCPtrTag) / 64 : 0;
|
---|
150 | uintptr_t const idxBitmapEnd = fPartialScan ? idxBitmap + ((a_f2MbLargePage ? 512 : 1024) * 2) / 64
|
---|
151 | : IEMTLB_ENTRY_COUNT * 2 / 64;
|
---|
152 | #else
|
---|
153 | uintptr_t idxEven = fPartialScan ? IEMTLB_TAG_TO_EVEN_INDEX(GCPtrTag) : 0;
|
---|
154 | MY_PREFETCH_256(&pTlb->aEntries[idxEven + !a_fNonGlobal]);
|
---|
155 | uintptr_t const idxEvenEnd = fPartialScan ? idxEven + ((a_f2MbLargePage ? 512 : 1024) * 2) : IEMTLB_ENTRY_COUNT * 2;
|
---|
156 | #endif
|
---|
157 | RTGCPTR const GCPtrTagMask = fPartialScan ? ~(RTGCPTR)0
|
---|
158 | : ~(RTGCPTR)( (RT_BIT_32(a_f2MbLargePage ? 9 : 10) - 1U)
|
---|
159 | & ~(uint32_t)(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) - 1U));
|
---|
160 |
|
---|
161 | /*
|
---|
162 | * Set cbInstrBufTotal to zero if GCPtrInstrBufPcTag is within any of the tag ranges.
|
---|
163 | * We make ASSUMPTIONS about IEMTLB_CALC_TAG_NO_REV here.
|
---|
164 | */
|
---|
165 | AssertCompile(IEMTLB_CALC_TAG_NO_REV(pVCpu, (RTGCPTR)0x8731U << GUEST_PAGE_SHIFT) == 0x8731U);
|
---|
166 | if ( !a_fDataTlb
|
---|
167 | && GCPtrInstrBufPcTag - GCPtrTag < (a_f2MbLargePage ? 512U : 1024U))
|
---|
168 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
169 |
|
---|
170 | /*
|
---|
171 | * Combine TAG values with the TLB revisions.
|
---|
172 | */
|
---|
173 | RTGCPTR GCPtrTagGlob = a_fGlobal ? GCPtrTag | pTlb->uTlbRevisionGlobal : 0;
|
---|
174 | if (a_fNonGlobal)
|
---|
175 | GCPtrTag |= pTlb->uTlbRevision;
|
---|
176 |
|
---|
177 | /*
|
---|
178 | * Do the scanning.
|
---|
179 | */
|
---|
180 | #ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
|
---|
181 | uint64_t const bmMask = a_fGlobal && a_fNonGlobal ? UINT64_MAX
|
---|
182 | : a_fGlobal ? UINT64_C(0xaaaaaaaaaaaaaaaa) : UINT64_C(0x5555555555555555);
|
---|
183 | /* Scan bitmap entries (64 bits at the time): */
|
---|
184 | for (;;)
|
---|
185 | {
|
---|
186 | # if 1
|
---|
187 | uint64_t bmEntry = pTlb->bmLargePage[idxBitmap] & bmMask;
|
---|
188 | if (bmEntry)
|
---|
189 | {
|
---|
190 | /* Scan the non-zero 64-bit value in groups of 8 bits: */
|
---|
191 | uint64_t bmToClear = 0;
|
---|
192 | uintptr_t idxEven = idxBitmap * 64;
|
---|
193 | uint32_t idxTag = 0;
|
---|
194 | for (;;)
|
---|
195 | {
|
---|
196 | if (bmEntry & 0xff)
|
---|
197 | {
|
---|
198 | # define ONE_PAIR(a_idxTagIter, a_idxEvenIter, a_bmNonGlobal, a_bmGlobal) \
|
---|
199 | if (a_fNonGlobal) \
|
---|
200 | { \
|
---|
201 | if (bmEntry & a_bmNonGlobal) \
|
---|
202 | { \
|
---|
203 | Assert(pTlb->aEntries[a_idxEvenIter].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE); \
|
---|
204 | if ((pTlb->aEntries[a_idxEvenIter].uTag & GCPtrTagMask) == (GCPtrTag + a_idxTagIter)) \
|
---|
205 | { \
|
---|
206 | IEMTLBTRACE_LARGE_EVICT_SLOT(pVCpu, GCPtrTag + a_idxTagIter, \
|
---|
207 | pTlb->aEntries[a_idxEvenIter].GCPhys, \
|
---|
208 | a_idxEvenIter, a_fDataTlb); \
|
---|
209 | pTlb->aEntries[a_idxEvenIter].uTag = 0; \
|
---|
210 | bmToClearSub8 |= a_bmNonGlobal; \
|
---|
211 | } \
|
---|
212 | } \
|
---|
213 | else \
|
---|
214 | Assert( !(pTlb->aEntries[a_idxEvenIter].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE)\
|
---|
215 | || (pTlb->aEntries[a_idxEvenIter].uTag & IEMTLB_REVISION_MASK) \
|
---|
216 | != (GCPtrTag & IEMTLB_REVISION_MASK)); \
|
---|
217 | } \
|
---|
218 | if (a_fGlobal) \
|
---|
219 | { \
|
---|
220 | if (bmEntry & a_bmGlobal) \
|
---|
221 | { \
|
---|
222 | Assert(pTlb->aEntries[a_idxEvenIter + 1].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE); \
|
---|
223 | if ((pTlb->aEntries[a_idxEvenIter + 1].uTag & GCPtrTagMask) == (GCPtrTagGlob + a_idxTagIter)) \
|
---|
224 | { \
|
---|
225 | IEMTLBTRACE_LARGE_EVICT_SLOT(pVCpu, GCPtrTagGlob + a_idxTagIter, \
|
---|
226 | pTlb->aEntries[a_idxEvenIter + 1].GCPhys, \
|
---|
227 | a_idxEvenIter + 1, a_fDataTlb); \
|
---|
228 | pTlb->aEntries[a_idxEvenIter + 1].uTag = 0; \
|
---|
229 | bmToClearSub8 |= a_bmGlobal; \
|
---|
230 | } \
|
---|
231 | } \
|
---|
232 | else \
|
---|
233 | Assert( !(pTlb->aEntries[a_idxEvenIter + 1].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE)\
|
---|
234 | || (pTlb->aEntries[a_idxEvenIter + 1].uTag & IEMTLB_REVISION_MASK) \
|
---|
235 | != (GCPtrTagGlob & IEMTLB_REVISION_MASK)); \
|
---|
236 | }
|
---|
237 | uint64_t bmToClearSub8 = 0;
|
---|
238 | ONE_PAIR(idxTag + 0, idxEven + 0, 0x01, 0x02)
|
---|
239 | ONE_PAIR(idxTag + 1, idxEven + 2, 0x04, 0x08)
|
---|
240 | ONE_PAIR(idxTag + 2, idxEven + 4, 0x10, 0x20)
|
---|
241 | ONE_PAIR(idxTag + 3, idxEven + 6, 0x40, 0x80)
|
---|
242 | bmToClear |= bmToClearSub8 << (idxTag * 2);
|
---|
243 | # undef ONE_PAIR
|
---|
244 | }
|
---|
245 |
|
---|
246 | /* advance to the next 8 bits. */
|
---|
247 | bmEntry >>= 8;
|
---|
248 | if (!bmEntry)
|
---|
249 | break;
|
---|
250 | idxEven += 8;
|
---|
251 | idxTag += 4;
|
---|
252 | }
|
---|
253 |
|
---|
254 | /* Clear the large page flags we covered. */
|
---|
255 | pTlb->bmLargePage[idxBitmap] &= ~bmToClear;
|
---|
256 | }
|
---|
257 | # else
|
---|
258 | uint64_t const bmEntry = pTlb->bmLargePage[idxBitmap] & bmMask;
|
---|
259 | if (bmEntry)
|
---|
260 | {
|
---|
261 | /* Scan the non-zero 64-bit value completely unrolled: */
|
---|
262 | uintptr_t const idxEven = idxBitmap * 64;
|
---|
263 | uint64_t bmToClear = 0;
|
---|
264 | # define ONE_PAIR(a_idxTagIter, a_idxEvenIter, a_bmNonGlobal, a_bmGlobal) \
|
---|
265 | if (a_fNonGlobal) \
|
---|
266 | { \
|
---|
267 | if (bmEntry & a_bmNonGlobal) \
|
---|
268 | { \
|
---|
269 | Assert(pTlb->aEntries[a_idxEvenIter].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE); \
|
---|
270 | if ((pTlb->aEntries[a_idxEvenIter].uTag & GCPtrTagMask) == (GCPtrTag + a_idxTagIter)) \
|
---|
271 | { \
|
---|
272 | IEMTLBTRACE_LARGE_EVICT_SLOT(pVCpu, GCPtrTag + a_idxTagIter, \
|
---|
273 | pTlb->aEntries[a_idxEvenIter].GCPhys, \
|
---|
274 | a_idxEvenIter, a_fDataTlb); \
|
---|
275 | pTlb->aEntries[a_idxEvenIter].uTag = 0; \
|
---|
276 | bmToClear |= a_bmNonGlobal; \
|
---|
277 | } \
|
---|
278 | } \
|
---|
279 | else \
|
---|
280 | Assert( !(pTlb->aEntriqes[a_idxEvenIter].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE)\
|
---|
281 | || (pTlb->aEntries[a_idxEvenIter].uTag & IEMTLB_REVISION_MASK) \
|
---|
282 | != (GCPtrTag & IEMTLB_REVISION_MASK)); \
|
---|
283 | } \
|
---|
284 | if (a_fGlobal) \
|
---|
285 | { \
|
---|
286 | if (bmEntry & a_bmGlobal) \
|
---|
287 | { \
|
---|
288 | Assert(pTlb->aEntries[a_idxEvenIter + 1].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE); \
|
---|
289 | if ((pTlb->aEntries[a_idxEvenIter + 1].uTag & GCPtrTagMask) == (GCPtrTagGlob + a_idxTagIter)) \
|
---|
290 | { \
|
---|
291 | IEMTLBTRACE_LARGE_EVICT_SLOT(pVCpu, GCPtrTagGlob + a_idxTagIter, \
|
---|
292 | pTlb->aEntries[a_idxEvenIter + 1].GCPhys, \
|
---|
293 | a_idxEvenIter + 1, a_fDataTlb); \
|
---|
294 | pTlb->aEntries[a_idxEvenIter + 1].uTag = 0; \
|
---|
295 | bmToClear |= a_bmGlobal; \
|
---|
296 | } \
|
---|
297 | } \
|
---|
298 | else \
|
---|
299 | Assert( !(pTlb->aEntries[a_idxEvenIter + 1].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE)\
|
---|
300 | || (pTlb->aEntries[a_idxEvenIter + 1].uTag & IEMTLB_REVISION_MASK) \
|
---|
301 | != (GCPtrTagGlob & IEMTLB_REVISION_MASK)); \
|
---|
302 | } ((void)0)
|
---|
303 | # define FOUR_PAIRS(a_iByte, a_cShift) \
|
---|
304 | ONE_PAIR(0 + a_iByte * 4, idxEven + 0 + a_iByte * 8, UINT64_C(0x01) << a_cShift, UINT64_C(0x02) << a_cShift); \
|
---|
305 | ONE_PAIR(1 + a_iByte * 4, idxEven + 2 + a_iByte * 8, UINT64_C(0x04) << a_cShift, UINT64_C(0x08) << a_cShift); \
|
---|
306 | ONE_PAIR(2 + a_iByte * 4, idxEven + 4 + a_iByte * 8, UINT64_C(0x10) << a_cShift, UINT64_C(0x20) << a_cShift); \
|
---|
307 | ONE_PAIR(3 + a_iByte * 4, idxEven + 6 + a_iByte * 8, UINT64_C(0x40) << a_cShift, UINT64_C(0x80) << a_cShift)
|
---|
308 | if (bmEntry & (uint32_t)UINT16_MAX)
|
---|
309 | {
|
---|
310 | FOUR_PAIRS(0, 0);
|
---|
311 | FOUR_PAIRS(1, 8);
|
---|
312 | }
|
---|
313 | if (bmEntry & ((uint32_t)UINT16_MAX << 16))
|
---|
314 | {
|
---|
315 | FOUR_PAIRS(2, 16);
|
---|
316 | FOUR_PAIRS(3, 24);
|
---|
317 | }
|
---|
318 | if (bmEntry & ((uint64_t)UINT16_MAX << 32))
|
---|
319 | {
|
---|
320 | FOUR_PAIRS(4, 32);
|
---|
321 | FOUR_PAIRS(5, 40);
|
---|
322 | }
|
---|
323 | if (bmEntry & ((uint64_t)UINT16_MAX << 16))
|
---|
324 | {
|
---|
325 | FOUR_PAIRS(6, 48);
|
---|
326 | FOUR_PAIRS(7, 56);
|
---|
327 | }
|
---|
328 | # undef FOUR_PAIRS
|
---|
329 |
|
---|
330 | /* Clear the large page flags we covered. */
|
---|
331 | pTlb->bmLargePage[idxBitmap] &= ~bmToClear;
|
---|
332 | }
|
---|
333 | # endif
|
---|
334 |
|
---|
335 | /* advance */
|
---|
336 | idxBitmap++;
|
---|
337 | if (idxBitmap >= idxBitmapEnd)
|
---|
338 | break;
|
---|
339 | if (a_fNonGlobal)
|
---|
340 | GCPtrTag += 32;
|
---|
341 | if (a_fGlobal)
|
---|
342 | GCPtrTagGlob += 32;
|
---|
343 | }
|
---|
344 |
|
---|
345 | #else /* !IEMTLB_WITH_LARGE_PAGE_BITMAP */
|
---|
346 |
|
---|
347 | for (; idxEven < idxEvenEnd; idxEven += 8)
|
---|
348 | {
|
---|
349 | # define ONE_ITERATION(a_idxEvenIter) \
|
---|
350 | if (a_fNonGlobal) \
|
---|
351 | { \
|
---|
352 | if ((pTlb->aEntries[a_idxEvenIter].uTag & GCPtrTagMask) == GCPtrTag) \
|
---|
353 | { \
|
---|
354 | if (pTlb->aEntries[a_idxEvenIter].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE) \
|
---|
355 | { \
|
---|
356 | IEMTLBTRACE_LARGE_EVICT_SLOT(pVCpu, GCPtrTag, pTlb->aEntries[a_idxEvenIter].GCPhys, \
|
---|
357 | a_idxEvenIter, a_fDataTlb); \
|
---|
358 | pTlb->aEntries[a_idxEvenIter].uTag = 0; \
|
---|
359 | } \
|
---|
360 | } \
|
---|
361 | GCPtrTag++; \
|
---|
362 | } \
|
---|
363 | \
|
---|
364 | if (a_fGlobal) \
|
---|
365 | { \
|
---|
366 | if ((pTlb->aEntries[a_idxEvenIter + 1].uTag & GCPtrTagMask) == GCPtrTagGlob) \
|
---|
367 | { \
|
---|
368 | if (pTlb->aEntries[a_idxEvenIter + 1].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE) \
|
---|
369 | { \
|
---|
370 | IEMTLBTRACE_LARGE_EVICT_SLOT(pVCpu, GCPtrTag, pTlb->aEntries[a_idxEvenIter + 1].GCPhys, \
|
---|
371 | a_idxEvenIter + 1, a_fDataTlb); \
|
---|
372 | pTlb->aEntries[a_idxEvenIter + 1].uTag = 0; \
|
---|
373 | } \
|
---|
374 | } \
|
---|
375 | GCPtrTagGlob++; \
|
---|
376 | }
|
---|
377 | if (idxEven < idxEvenEnd - 4)
|
---|
378 | MY_PREFETCH_256(&pTlb->aEntries[idxEven + 8 + !a_fNonGlobal]);
|
---|
379 | ONE_ITERATION(idxEven)
|
---|
380 | ONE_ITERATION(idxEven + 2)
|
---|
381 | ONE_ITERATION(idxEven + 4)
|
---|
382 | ONE_ITERATION(idxEven + 6)
|
---|
383 | # undef ONE_ITERATION
|
---|
384 | }
|
---|
385 | #endif /* !IEMTLB_WITH_LARGE_PAGE_BITMAP */
|
---|
386 | }
|
---|
387 |
|
---|
388 | template<bool const a_fDataTlb, bool const a_f2MbLargePage>
|
---|
389 | DECLINLINE(void) iemTlbInvalidateLargePageWorker(PVMCPUCC pVCpu, IEMTLB *pTlb, RTGCPTR GCPtrTag,
|
---|
390 | RTGCPTR GCPtrInstrBufPcTag) RT_NOEXCEPT
|
---|
391 | {
|
---|
392 | AssertCompile(IEMTLB_CALC_TAG_NO_REV(pVCpu, (RTGCPTR)0x8731U << GUEST_PAGE_SHIFT) == 0x8731U);
|
---|
393 |
|
---|
394 | GCPtrTag &= ~(RTGCPTR)(RT_BIT_64((a_f2MbLargePage ? 21 : 22) - GUEST_PAGE_SHIFT) - 1U);
|
---|
395 | if ( GCPtrTag >= pTlb->GlobalLargePageRange.uFirstTag
|
---|
396 | && GCPtrTag <= pTlb->GlobalLargePageRange.uLastTag)
|
---|
397 | {
|
---|
398 | if ( GCPtrTag < pTlb->NonGlobalLargePageRange.uFirstTag
|
---|
399 | || GCPtrTag > pTlb->NonGlobalLargePageRange.uLastTag)
|
---|
400 | iemTlbInvalidateLargePageWorkerInner<a_fDataTlb, a_f2MbLargePage, true, false>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
401 | else
|
---|
402 | iemTlbInvalidateLargePageWorkerInner<a_fDataTlb, a_f2MbLargePage, true, true>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
403 | }
|
---|
404 | else if ( GCPtrTag < pTlb->NonGlobalLargePageRange.uFirstTag
|
---|
405 | || GCPtrTag > pTlb->NonGlobalLargePageRange.uLastTag)
|
---|
406 | {
|
---|
407 | /* Large pages aren't as likely in the non-global TLB half. */
|
---|
408 | IEMTLBTRACE_LARGE_SCAN(pVCpu, false, false, a_fDataTlb);
|
---|
409 | }
|
---|
410 | else
|
---|
411 | iemTlbInvalidateLargePageWorkerInner<a_fDataTlb, a_f2MbLargePage, false, true>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
412 | }
|
---|
413 |
|
---|
414 | template<bool const a_fDataTlb>
|
---|
415 | DECLINLINE(void) iemTlbInvalidatePageWorker(PVMCPUCC pVCpu, IEMTLB *pTlb, RTGCPTR GCPtrTag, uintptr_t idxEven) RT_NOEXCEPT
|
---|
416 | {
|
---|
417 | pTlb->cTlbInvlPg += 1;
|
---|
418 |
|
---|
419 | /*
|
---|
420 | * Flush the entry pair.
|
---|
421 | */
|
---|
422 | if (pTlb->aEntries[idxEven].uTag == (GCPtrTag | pTlb->uTlbRevision))
|
---|
423 | {
|
---|
424 | IEMTLBTRACE_EVICT_SLOT(pVCpu, GCPtrTag, pTlb->aEntries[idxEven].GCPhys, idxEven, a_fDataTlb);
|
---|
425 | pTlb->aEntries[idxEven].uTag = 0;
|
---|
426 | if (!a_fDataTlb && GCPtrTag == IEMTLB_CALC_TAG_NO_REV(pVCpu, pVCpu->iem.s.uInstrBufPc))
|
---|
427 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
428 | }
|
---|
429 | if (pTlb->aEntries[idxEven + 1].uTag == (GCPtrTag | pTlb->uTlbRevisionGlobal))
|
---|
430 | {
|
---|
431 | IEMTLBTRACE_EVICT_SLOT(pVCpu, GCPtrTag, pTlb->aEntries[idxEven + 1].GCPhys, idxEven + 1, a_fDataTlb);
|
---|
432 | pTlb->aEntries[idxEven + 1].uTag = 0;
|
---|
433 | if (!a_fDataTlb && GCPtrTag == IEMTLB_CALC_TAG_NO_REV(pVCpu, pVCpu->iem.s.uInstrBufPc))
|
---|
434 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
435 | }
|
---|
436 |
|
---|
437 | /*
|
---|
438 | * If there are (or has been) large pages in the TLB, we must check if the
|
---|
439 | * address being flushed may involve one of those, as then we'd have to
|
---|
440 | * scan for entries relating to the same page and flush those as well.
|
---|
441 | */
|
---|
442 | # if 0 /** @todo do accurate counts or currently loaded large stuff and we can use those */
|
---|
443 | if (pTlb->cTlbGlobalLargePageCurLoads || pTlb->cTlbNonGlobalLargePageCurLoads)
|
---|
444 | # else
|
---|
445 | if (pTlb->GlobalLargePageRange.uLastTag || pTlb->NonGlobalLargePageRange.uLastTag)
|
---|
446 | # endif
|
---|
447 | {
|
---|
448 | RTGCPTR const GCPtrInstrBufPcTag = a_fDataTlb ? 0 : IEMTLB_CALC_TAG_NO_REV(pVCpu, pVCpu->iem.s.uInstrBufPc);
|
---|
449 | if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
|
---|
450 | iemTlbInvalidateLargePageWorker<a_fDataTlb, true>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
451 | else
|
---|
452 | iemTlbInvalidateLargePageWorker<a_fDataTlb, false>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
453 | }
|
---|
454 | }
|
---|
455 |
|
---|
456 | #endif /* defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB) */
|
---|
457 |
|
---|
458 | #endif /* !VMM_INCLUDED_SRC_VMMAll_target_x86_IEMAllTlbInline_x86_h */
|
---|