VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/CPUMR0.cpp@ 78680

Last change on this file since 78680 was 78632, checked in by vboxsync, 6 years ago

Forward ported 130474,130475,130477,130479. bugref:9453

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 38.1 KB
Line 
1/* $Id: CPUMR0.cpp 78632 2019-05-21 13:56:11Z vboxsync $ */
2/** @file
3 * CPUM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_CPUM
23#include <VBox/vmm/cpum.h>
24#include "CPUMInternal.h"
25#include <VBox/vmm/vm.h>
26#include <VBox/vmm/gvm.h>
27#include <VBox/err.h>
28#include <VBox/log.h>
29#include <VBox/vmm/hm.h>
30#include <iprt/assert.h>
31#include <iprt/asm-amd64-x86.h>
32#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
33# include <iprt/mem.h>
34# include <iprt/memobj.h>
35# include <VBox/apic.h>
36#endif
37#include <iprt/x86.h>
38
39
40/*********************************************************************************************************************************
41* Structures and Typedefs *
42*********************************************************************************************************************************/
43#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
44/**
45 * Local APIC mappings.
46 */
47typedef struct CPUMHOSTLAPIC
48{
49 /** Indicates that the entry is in use and have valid data. */
50 bool fEnabled;
51 /** Whether it's operating in X2APIC mode (EXTD). */
52 bool fX2Apic;
53 /** The APIC version number. */
54 uint32_t uVersion;
55 /** The physical address of the APIC registers. */
56 RTHCPHYS PhysBase;
57 /** The memory object entering the physical address. */
58 RTR0MEMOBJ hMemObj;
59 /** The mapping object for hMemObj. */
60 RTR0MEMOBJ hMapObj;
61 /** The mapping address APIC registers.
62 * @remarks Different CPUs may use the same physical address to map their
63 * APICs, so this pointer is only valid when on the CPU owning the
64 * APIC. */
65 void *pv;
66} CPUMHOSTLAPIC;
67#endif
68
69
70/*********************************************************************************************************************************
71* Global Variables *
72*********************************************************************************************************************************/
73#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
74static CPUMHOSTLAPIC g_aLApics[RTCPUSET_MAX_CPUS];
75#endif
76
77/**
78 * CPUID bits to unify among all cores.
79 */
80static struct
81{
82 uint32_t uLeaf; /**< Leaf to check. */
83 uint32_t uEcx; /**< which bits in ecx to unify between CPUs. */
84 uint32_t uEdx; /**< which bits in edx to unify between CPUs. */
85}
86const g_aCpuidUnifyBits[] =
87{
88 {
89 0x00000001,
90 X86_CPUID_FEATURE_ECX_CX16 | X86_CPUID_FEATURE_ECX_MONITOR,
91 X86_CPUID_FEATURE_EDX_CX8
92 }
93};
94
95
96
97/*********************************************************************************************************************************
98* Internal Functions *
99*********************************************************************************************************************************/
100#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
101static int cpumR0MapLocalApics(void);
102static void cpumR0UnmapLocalApics(void);
103#endif
104static int cpumR0SaveHostDebugState(PVMCPU pVCpu);
105
106
107/**
108 * Does the Ring-0 CPU initialization once during module load.
109 * XXX Host-CPU hot-plugging?
110 */
111VMMR0_INT_DECL(int) CPUMR0ModuleInit(void)
112{
113 int rc = VINF_SUCCESS;
114#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
115 rc = cpumR0MapLocalApics();
116#endif
117 return rc;
118}
119
120
121/**
122 * Terminate the module.
123 */
124VMMR0_INT_DECL(int) CPUMR0ModuleTerm(void)
125{
126#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
127 cpumR0UnmapLocalApics();
128#endif
129 return VINF_SUCCESS;
130}
131
132
133/**
134 * Check the CPUID features of this particular CPU and disable relevant features
135 * for the guest which do not exist on this CPU. We have seen systems where the
136 * X86_CPUID_FEATURE_ECX_MONITOR feature flag is only set on some host CPUs, see
137 * @bugref{5436}.
138 *
139 * @note This function might be called simultaneously on more than one CPU!
140 *
141 * @param idCpu The identifier for the CPU the function is called on.
142 * @param pvUser1 Pointer to the VM structure.
143 * @param pvUser2 Ignored.
144 */
145static DECLCALLBACK(void) cpumR0CheckCpuid(RTCPUID idCpu, void *pvUser1, void *pvUser2)
146{
147 PVM pVM = (PVM)pvUser1;
148
149 NOREF(idCpu); NOREF(pvUser2);
150 for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++)
151 {
152 /* Note! Cannot use cpumCpuIdGetLeaf from here because we're not
153 necessarily in the VM process context. So, we using the
154 legacy arrays as temporary storage. */
155
156 uint32_t uLeaf = g_aCpuidUnifyBits[i].uLeaf;
157 PCPUMCPUID pLegacyLeaf;
158 if (uLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd))
159 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmStd[uLeaf];
160 else if (uLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt))
161 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmExt[uLeaf - UINT32_C(0x80000000)];
162 else if (uLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur))
163 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmCentaur[uLeaf - UINT32_C(0xc0000000)];
164 else
165 continue;
166
167 uint32_t eax, ebx, ecx, edx;
168 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &eax, &ebx, &ecx, &edx);
169
170 ASMAtomicAndU32(&pLegacyLeaf->uEcx, ecx | ~g_aCpuidUnifyBits[i].uEcx);
171 ASMAtomicAndU32(&pLegacyLeaf->uEdx, edx | ~g_aCpuidUnifyBits[i].uEdx);
172 }
173}
174
175
176/**
177 * Does Ring-0 CPUM initialization.
178 *
179 * This is mainly to check that the Host CPU mode is compatible
180 * with VBox.
181 *
182 * @returns VBox status code.
183 * @param pVM The cross context VM structure.
184 */
185VMMR0_INT_DECL(int) CPUMR0InitVM(PVM pVM)
186{
187 LogFlow(("CPUMR0Init: %p\n", pVM));
188
189 /*
190 * Check CR0 & CR4 flags.
191 */
192 uint32_t u32CR0 = ASMGetCR0();
193 if ((u32CR0 & (X86_CR0_PE | X86_CR0_PG)) != (X86_CR0_PE | X86_CR0_PG)) /* a bit paranoid perhaps.. */
194 {
195 Log(("CPUMR0Init: PE or PG not set. cr0=%#x\n", u32CR0));
196 return VERR_UNSUPPORTED_CPU_MODE;
197 }
198
199 /*
200 * Check for sysenter and syscall usage.
201 */
202 if (ASMHasCpuId())
203 {
204 /*
205 * SYSENTER/SYSEXIT
206 *
207 * Intel docs claim you should test both the flag and family, model &
208 * stepping because some Pentium Pro CPUs have the SEP cpuid flag set,
209 * but don't support it. AMD CPUs may support this feature in legacy
210 * mode, they've banned it from long mode. Since we switch to 32-bit
211 * mode when entering raw-mode context the feature would become
212 * accessible again on AMD CPUs, so we have to check regardless of
213 * host bitness.
214 */
215 uint32_t u32CpuVersion;
216 uint32_t u32Dummy;
217 uint32_t fFeatures; /* (Used further down to check for MSRs, so don't clobber.) */
218 ASMCpuId(1, &u32CpuVersion, &u32Dummy, &u32Dummy, &fFeatures);
219 uint32_t const u32Family = u32CpuVersion >> 8;
220 uint32_t const u32Model = (u32CpuVersion >> 4) & 0xF;
221 uint32_t const u32Stepping = u32CpuVersion & 0xF;
222 if ( (fFeatures & X86_CPUID_FEATURE_EDX_SEP)
223 && ( u32Family != 6 /* (> pentium pro) */
224 || u32Model >= 3
225 || u32Stepping >= 3
226 || !ASMIsIntelCpu())
227 )
228 {
229 /*
230 * Read the MSR and see if it's in use or not.
231 */
232 uint32_t u32 = ASMRdMsr_Low(MSR_IA32_SYSENTER_CS);
233 if (u32)
234 {
235 pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSENTER;
236 Log(("CPUMR0Init: host uses sysenter cs=%08x%08x\n", ASMRdMsr_High(MSR_IA32_SYSENTER_CS), u32));
237 }
238 }
239
240 /*
241 * SYSCALL/SYSRET
242 *
243 * This feature is indicated by the SEP bit returned in EDX by CPUID
244 * function 0x80000001. Intel CPUs only supports this feature in
245 * long mode. Since we're not running 64-bit guests in raw-mode there
246 * are no issues with 32-bit intel hosts.
247 */
248 uint32_t cExt = 0;
249 ASMCpuId(0x80000000, &cExt, &u32Dummy, &u32Dummy, &u32Dummy);
250 if (ASMIsValidExtRange(cExt))
251 {
252 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
253 if (fExtFeaturesEDX & X86_CPUID_EXT_FEATURE_EDX_SYSCALL)
254 {
255#ifdef RT_ARCH_X86
256 if (!ASMIsIntelCpu())
257#endif
258 {
259 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
260 if (fEfer & MSR_K6_EFER_SCE)
261 {
262 pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSCALL;
263 Log(("CPUMR0Init: host uses syscall\n"));
264 }
265 }
266 }
267 }
268
269 /*
270 * Copy MSR_IA32_ARCH_CAPABILITIES bits over into the host and guest feature
271 * structure and as well as the guest MSR.
272 */
273 pVM->cpum.s.HostFeatures.fArchRdclNo = 0;
274 pVM->cpum.s.HostFeatures.fArchIbrsAll = 0;
275 pVM->cpum.s.HostFeatures.fArchRsbOverride = 0;
276 pVM->cpum.s.HostFeatures.fArchVmmNeedNotFlushL1d = 0;
277 pVM->cpum.s.HostFeatures.fArchMdsNo = 0;
278 uint32_t const cStdRange = ASMCpuId_EAX(0);
279 if ( ASMIsValidStdRange(cStdRange)
280 && cStdRange >= 7)
281 {
282 uint32_t fEdxFeatures = ASMCpuId_EDX(7);
283 if ( (fEdxFeatures & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
284 && (fFeatures & X86_CPUID_FEATURE_EDX_MSR))
285 {
286 uint64_t const fArchVal = ASMRdMsr(MSR_IA32_ARCH_CAPABILITIES);
287 pVM->cpum.s.GuestFeatures.fArchRdclNo
288 = pVM->cpum.s.HostFeatures.fArchRdclNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO);
289 pVM->cpum.s.GuestFeatures.fArchIbrsAll
290 = pVM->cpum.s.HostFeatures.fArchIbrsAll = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL);
291 pVM->cpum.s.GuestFeatures.fArchRsbOverride
292 = pVM->cpum.s.HostFeatures.fArchRsbOverride = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO);
293 pVM->cpum.s.GuestFeatures.fArchVmmNeedNotFlushL1d
294 = pVM->cpum.s.HostFeatures.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D);
295 pVM->cpum.s.GuestFeatures.fArchMdsNo
296 = pVM->cpum.s.HostFeatures.fArchMdsNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_MDS_NO);
297
298 if (pVM->cpum.s.GuestFeatures.fArchCap)
299 for (VMCPUID i = 0; i < pVM->cCpus; i++)
300 pVM->aCpus[i].cpum.s.GuestMsrs.msr.ArchCaps = fArchVal;
301 }
302 else
303 pVM->cpum.s.HostFeatures.fArchCap = 0;
304 }
305
306 /*
307 * Unify/cross check some CPUID feature bits on all available CPU cores
308 * and threads. We've seen CPUs where the monitor support differed.
309 *
310 * Because the hyper heap isn't always mapped into ring-0, we cannot
311 * access it from a RTMpOnAll callback. We use the legacy CPUID arrays
312 * as temp ring-0 accessible memory instead, ASSUMING that they're all
313 * up to date when we get here.
314 */
315 RTMpOnAll(cpumR0CheckCpuid, pVM, NULL);
316
317 for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++)
318 {
319 bool fIgnored;
320 uint32_t uLeaf = g_aCpuidUnifyBits[i].uLeaf;
321 PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, 0, &fIgnored);
322 if (pLeaf)
323 {
324 PCPUMCPUID pLegacyLeaf;
325 if (uLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd))
326 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmStd[uLeaf];
327 else if (uLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt))
328 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmExt[uLeaf - UINT32_C(0x80000000)];
329 else if (uLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur))
330 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmCentaur[uLeaf - UINT32_C(0xc0000000)];
331 else
332 continue;
333
334 pLeaf->uEcx = pLegacyLeaf->uEcx;
335 pLeaf->uEdx = pLegacyLeaf->uEdx;
336 }
337 }
338
339 }
340
341
342 /*
343 * Check if debug registers are armed.
344 * This ASSUMES that DR7.GD is not set, or that it's handled transparently!
345 */
346 uint32_t u32DR7 = ASMGetDR7();
347 if (u32DR7 & X86_DR7_ENABLED_MASK)
348 {
349#ifdef VBOX_BUGREF_9217
350 PGVM pGVM = (PGVM)pVM;
351 for (VMCPUID i = 0; i < pGVM->cCpusSafe; i++)
352 pGVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HOST;
353#else
354 for (VMCPUID i = 0; i < pVM->cCpus; i++)
355 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HOST;
356#endif
357 Log(("CPUMR0Init: host uses debug registers (dr7=%x)\n", u32DR7));
358 }
359
360 return VINF_SUCCESS;
361}
362
363
364/**
365 * Trap handler for device-not-available fault (\#NM).
366 * Device not available, FP or (F)WAIT instruction.
367 *
368 * @returns VBox status code.
369 * @retval VINF_SUCCESS if the guest FPU state is loaded.
370 * @retval VINF_EM_RAW_GUEST_TRAP if it is a guest trap.
371 * @retval VINF_CPUM_HOST_CR0_MODIFIED if we modified the host CR0.
372 *
373 * @param pVM The cross context VM structure.
374 * @param pVCpu The cross context virtual CPU structure.
375 */
376VMMR0_INT_DECL(int) CPUMR0Trap07Handler(PVM pVM, PVMCPU pVCpu)
377{
378 Assert(pVM->cpum.s.HostFeatures.fFxSaveRstor);
379 Assert(ASMGetCR4() & X86_CR4_OSFXSR);
380
381 /* If the FPU state has already been loaded, then it's a guest trap. */
382 if (CPUMIsGuestFPUStateActive(pVCpu))
383 {
384 Assert( ((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS))
385 || ((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS | X86_CR0_EM)));
386 return VINF_EM_RAW_GUEST_TRAP;
387 }
388
389 /*
390 * There are two basic actions:
391 * 1. Save host fpu and restore guest fpu.
392 * 2. Generate guest trap.
393 *
394 * When entering the hypervisor we'll always enable MP (for proper wait
395 * trapping) and TS (for intercepting all fpu/mmx/sse stuff). The EM flag
396 * is taken from the guest OS in order to get proper SSE handling.
397 *
398 *
399 * Actions taken depending on the guest CR0 flags:
400 *
401 * 3 2 1
402 * TS | EM | MP | FPUInstr | WAIT :: VMM Action
403 * ------------------------------------------------------------------------
404 * 0 | 0 | 0 | Exec | Exec :: Clear TS & MP, Save HC, Load GC.
405 * 0 | 0 | 1 | Exec | Exec :: Clear TS, Save HC, Load GC.
406 * 0 | 1 | 0 | #NM | Exec :: Clear TS & MP, Save HC, Load GC.
407 * 0 | 1 | 1 | #NM | Exec :: Clear TS, Save HC, Load GC.
408 * 1 | 0 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already cleared.)
409 * 1 | 0 | 1 | #NM | #NM :: Go to guest taking trap there.
410 * 1 | 1 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already set.)
411 * 1 | 1 | 1 | #NM | #NM :: Go to guest taking trap there.
412 */
413
414 switch (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
415 {
416 case X86_CR0_MP | X86_CR0_TS:
417 case X86_CR0_MP | X86_CR0_TS | X86_CR0_EM:
418 return VINF_EM_RAW_GUEST_TRAP;
419 default:
420 break;
421 }
422
423 return CPUMR0LoadGuestFPU(pVM, pVCpu);
424}
425
426
427/**
428 * Saves the host-FPU/XMM state (if necessary) and (always) loads the guest-FPU
429 * state into the CPU.
430 *
431 * @returns VINF_SUCCESS on success, host CR0 unmodified.
432 * @returns VINF_CPUM_HOST_CR0_MODIFIED on success when the host CR0 was
433 * modified and VT-x needs to update the value in the VMCS.
434 *
435 * @param pVM The cross context VM structure.
436 * @param pVCpu The cross context virtual CPU structure.
437 */
438VMMR0_INT_DECL(int) CPUMR0LoadGuestFPU(PVM pVM, PVMCPU pVCpu)
439{
440 int rc = VINF_SUCCESS;
441 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
442 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST));
443 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_FPU_STATE));
444
445#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
446 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
447 {
448 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE));
449
450 /* Save the host state if necessary. */
451 if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST))
452 rc = cpumRZSaveHostFPUState(&pVCpu->cpum.s);
453
454 /* Restore the state on entry as we need to be in 64-bit mode to access the full state. */
455 pVCpu->cpum.s.fUseFlags |= CPUM_SYNC_FPU_STATE;
456
457 Assert( (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM))
458 == (CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM));
459 }
460 else
461#endif
462 {
463 if (!pVM->cpum.s.HostFeatures.fLeakyFxSR)
464 {
465 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE));
466 rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
467 }
468 else
469 {
470 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE) || (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST));
471 /** @todo r=ramshankar: Can't we used a cached value here
472 * instead of reading the MSR? host EFER doesn't usually
473 * change. */
474 uint64_t uHostEfer = ASMRdMsr(MSR_K6_EFER);
475 if (!(uHostEfer & MSR_K6_EFER_FFXSR))
476 rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
477 else
478 {
479 RTCCUINTREG const uSavedFlags = ASMIntDisableFlags();
480 pVCpu->cpum.s.fUseFlags |= CPUM_USED_MANUAL_XMM_RESTORE;
481 ASMWrMsr(MSR_K6_EFER, uHostEfer & ~MSR_K6_EFER_FFXSR);
482 rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
483 ASMWrMsr(MSR_K6_EFER, uHostEfer | MSR_K6_EFER_FFXSR);
484 ASMSetFlags(uSavedFlags);
485 }
486 }
487 Assert( (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM))
488 == (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM));
489 }
490 return rc;
491}
492
493
494/**
495 * Saves the guest FPU/XMM state if needed, restores the host FPU/XMM state as
496 * needed.
497 *
498 * @returns true if we saved the guest state.
499 * @param pVCpu The cross context virtual CPU structure.
500 */
501VMMR0_INT_DECL(bool) CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(PVMCPU pVCpu)
502{
503 bool fSavedGuest;
504 Assert(pVCpu->CTX_SUFF(pVM)->cpum.s.HostFeatures.fFxSaveRstor);
505 Assert(ASMGetCR4() & X86_CR4_OSFXSR);
506 if (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST))
507 {
508 fSavedGuest = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
509#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
510 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
511 {
512 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
513 {
514 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_FPU_STATE));
515 HMR0SaveFPUState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
516 }
517 else
518 pVCpu->cpum.s.fUseFlags &= ~CPUM_SYNC_FPU_STATE;
519 cpumR0RestoreHostFPUState(&pVCpu->cpum.s);
520 }
521 else
522#endif
523 {
524 if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE))
525 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
526 else
527 {
528 /* Temporarily clear MSR_K6_EFER_FFXSR or else we'll be unable to
529 save/restore the XMM state with fxsave/fxrstor. */
530 uint64_t uHostEfer = ASMRdMsr(MSR_K6_EFER);
531 if (uHostEfer & MSR_K6_EFER_FFXSR)
532 {
533 RTCCUINTREG const uSavedFlags = ASMIntDisableFlags();
534 ASMWrMsr(MSR_K6_EFER, uHostEfer & ~MSR_K6_EFER_FFXSR);
535 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
536 ASMWrMsr(MSR_K6_EFER, uHostEfer | MSR_K6_EFER_FFXSR);
537 ASMSetFlags(uSavedFlags);
538 }
539 else
540 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
541 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_MANUAL_XMM_RESTORE;
542 }
543 }
544 }
545 else
546 fSavedGuest = false;
547 Assert(!( pVCpu->cpum.s.fUseFlags
548 & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_SYNC_FPU_STATE | CPUM_USED_MANUAL_XMM_RESTORE)));
549 return fSavedGuest;
550}
551
552
553/**
554 * Saves the host debug state, setting CPUM_USED_HOST_DEBUG_STATE and loading
555 * DR7 with safe values.
556 *
557 * @returns VBox status code.
558 * @param pVCpu The cross context virtual CPU structure.
559 */
560static int cpumR0SaveHostDebugState(PVMCPU pVCpu)
561{
562 /*
563 * Save the host state.
564 */
565 pVCpu->cpum.s.Host.dr0 = ASMGetDR0();
566 pVCpu->cpum.s.Host.dr1 = ASMGetDR1();
567 pVCpu->cpum.s.Host.dr2 = ASMGetDR2();
568 pVCpu->cpum.s.Host.dr3 = ASMGetDR3();
569 pVCpu->cpum.s.Host.dr6 = ASMGetDR6();
570 /** @todo dr7 might already have been changed to 0x400; don't care right now as it's harmless. */
571 pVCpu->cpum.s.Host.dr7 = ASMGetDR7();
572
573 /* Preemption paranoia. */
574 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HOST);
575
576 /*
577 * Make sure DR7 is harmless or else we could trigger breakpoints when
578 * load guest or hypervisor DRx values later.
579 */
580 if (pVCpu->cpum.s.Host.dr7 != X86_DR7_INIT_VAL)
581 ASMSetDR7(X86_DR7_INIT_VAL);
582
583 return VINF_SUCCESS;
584}
585
586
587/**
588 * Saves the guest DRx state residing in host registers and restore the host
589 * register values.
590 *
591 * The guest DRx state is only saved if CPUMR0LoadGuestDebugState was called,
592 * since it's assumed that we're shadowing the guest DRx register values
593 * accurately when using the combined hypervisor debug register values
594 * (CPUMR0LoadHyperDebugState).
595 *
596 * @returns true if either guest or hypervisor debug registers were loaded.
597 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
598 * @param fDr6 Whether to include DR6 or not.
599 * @thread EMT(pVCpu)
600 */
601VMMR0_INT_DECL(bool) CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(PVMCPU pVCpu, bool fDr6)
602{
603 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
604 bool const fDrXLoaded = RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER));
605
606 /*
607 * Do we need to save the guest DRx registered loaded into host registers?
608 * (DR7 and DR6 (if fDr6 is true) are left to the caller.)
609 */
610 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST)
611 {
612#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
613 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
614 {
615 uint64_t uDr6 = pVCpu->cpum.s.Guest.dr[6];
616 HMR0SaveDebugState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
617 if (!fDr6)
618 pVCpu->cpum.s.Guest.dr[6] = uDr6;
619 }
620 else
621#endif
622 {
623 pVCpu->cpum.s.Guest.dr[0] = ASMGetDR0();
624 pVCpu->cpum.s.Guest.dr[1] = ASMGetDR1();
625 pVCpu->cpum.s.Guest.dr[2] = ASMGetDR2();
626 pVCpu->cpum.s.Guest.dr[3] = ASMGetDR3();
627 if (fDr6)
628 pVCpu->cpum.s.Guest.dr[6] = ASMGetDR6();
629 }
630 }
631 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~( CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER
632 | CPUM_SYNC_DEBUG_REGS_GUEST | CPUM_SYNC_DEBUG_REGS_HYPER));
633
634 /*
635 * Restore the host's debug state. DR0-3, DR6 and only then DR7!
636 */
637 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HOST)
638 {
639 /* A bit of paranoia first... */
640 uint64_t uCurDR7 = ASMGetDR7();
641 if (uCurDR7 != X86_DR7_INIT_VAL)
642 ASMSetDR7(X86_DR7_INIT_VAL);
643
644 ASMSetDR0(pVCpu->cpum.s.Host.dr0);
645 ASMSetDR1(pVCpu->cpum.s.Host.dr1);
646 ASMSetDR2(pVCpu->cpum.s.Host.dr2);
647 ASMSetDR3(pVCpu->cpum.s.Host.dr3);
648 /** @todo consider only updating if they differ, esp. DR6. Need to figure how
649 * expensive DRx reads are over DRx writes. */
650 ASMSetDR6(pVCpu->cpum.s.Host.dr6);
651 ASMSetDR7(pVCpu->cpum.s.Host.dr7);
652
653 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HOST);
654 }
655
656 return fDrXLoaded;
657}
658
659
660/**
661 * Saves the guest DRx state if it resides host registers.
662 *
663 * This does NOT clear any use flags, so the host registers remains loaded with
664 * the guest DRx state upon return. The purpose is only to make sure the values
665 * in the CPU context structure is up to date.
666 *
667 * @returns true if the host registers contains guest values, false if not.
668 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
669 * @param fDr6 Whether to include DR6 or not.
670 * @thread EMT(pVCpu)
671 */
672VMMR0_INT_DECL(bool) CPUMR0DebugStateMaybeSaveGuest(PVMCPU pVCpu, bool fDr6)
673{
674 /*
675 * Do we need to save the guest DRx registered loaded into host registers?
676 * (DR7 and DR6 (if fDr6 is true) are left to the caller.)
677 */
678 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST)
679 {
680#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
681 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
682 {
683 uint64_t uDr6 = pVCpu->cpum.s.Guest.dr[6];
684 HMR0SaveDebugState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
685 if (!fDr6)
686 pVCpu->cpum.s.Guest.dr[6] = uDr6;
687 }
688 else
689#endif
690 {
691 pVCpu->cpum.s.Guest.dr[0] = ASMGetDR0();
692 pVCpu->cpum.s.Guest.dr[1] = ASMGetDR1();
693 pVCpu->cpum.s.Guest.dr[2] = ASMGetDR2();
694 pVCpu->cpum.s.Guest.dr[3] = ASMGetDR3();
695 if (fDr6)
696 pVCpu->cpum.s.Guest.dr[6] = ASMGetDR6();
697 }
698 return true;
699 }
700 return false;
701}
702
703
704/**
705 * Lazily sync in the debug state.
706 *
707 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
708 * @param fDr6 Whether to include DR6 or not.
709 * @thread EMT(pVCpu)
710 */
711VMMR0_INT_DECL(void) CPUMR0LoadGuestDebugState(PVMCPU pVCpu, bool fDr6)
712{
713 /*
714 * Save the host state and disarm all host BPs.
715 */
716 cpumR0SaveHostDebugState(pVCpu);
717 Assert(ASMGetDR7() == X86_DR7_INIT_VAL);
718
719 /*
720 * Activate the guest state DR0-3.
721 * DR7 and DR6 (if fDr6 is true) are left to the caller.
722 */
723#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
724 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
725 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_SYNC_DEBUG_REGS_GUEST); /* Postpone it to the world switch. */
726 else
727#endif
728 {
729 ASMSetDR0(pVCpu->cpum.s.Guest.dr[0]);
730 ASMSetDR1(pVCpu->cpum.s.Guest.dr[1]);
731 ASMSetDR2(pVCpu->cpum.s.Guest.dr[2]);
732 ASMSetDR3(pVCpu->cpum.s.Guest.dr[3]);
733 if (fDr6)
734 ASMSetDR6(pVCpu->cpum.s.Guest.dr[6]);
735
736 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST);
737 }
738}
739
740
741/**
742 * Lazily sync in the hypervisor debug state
743 *
744 * @returns VBox status code.
745 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
746 * @param fDr6 Whether to include DR6 or not.
747 * @thread EMT(pVCpu)
748 */
749VMMR0_INT_DECL(void) CPUMR0LoadHyperDebugState(PVMCPU pVCpu, bool fDr6)
750{
751 /*
752 * Save the host state and disarm all host BPs.
753 */
754 cpumR0SaveHostDebugState(pVCpu);
755 Assert(ASMGetDR7() == X86_DR7_INIT_VAL);
756
757 /*
758 * Make sure the hypervisor values are up to date.
759 */
760 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */, true);
761
762 /*
763 * Activate the guest state DR0-3.
764 * DR7 and DR6 (if fDr6 is true) are left to the caller.
765 */
766#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
767 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
768 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_SYNC_DEBUG_REGS_HYPER); /* Postpone it. */
769 else
770#endif
771 {
772 ASMSetDR0(pVCpu->cpum.s.Hyper.dr[0]);
773 ASMSetDR1(pVCpu->cpum.s.Hyper.dr[1]);
774 ASMSetDR2(pVCpu->cpum.s.Hyper.dr[2]);
775 ASMSetDR3(pVCpu->cpum.s.Hyper.dr[3]);
776 if (fDr6)
777 ASMSetDR6(X86_DR6_INIT_VAL);
778
779 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER);
780 }
781}
782
783#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
784
785/**
786 * Per-CPU callback that probes the CPU for APIC support.
787 *
788 * @param idCpu The identifier for the CPU the function is called on.
789 * @param pvUser1 Ignored.
790 * @param pvUser2 Ignored.
791 */
792static DECLCALLBACK(void) cpumR0MapLocalApicCpuProber(RTCPUID idCpu, void *pvUser1, void *pvUser2)
793{
794 NOREF(pvUser1); NOREF(pvUser2);
795 int iCpu = RTMpCpuIdToSetIndex(idCpu);
796 AssertReturnVoid(iCpu >= 0 && (unsigned)iCpu < RT_ELEMENTS(g_aLApics));
797
798 /*
799 * Check for APIC support.
800 */
801 uint32_t uMaxLeaf, u32EBX, u32ECX, u32EDX;
802 ASMCpuId(0, &uMaxLeaf, &u32EBX, &u32ECX, &u32EDX);
803 if ( ( ASMIsIntelCpuEx(u32EBX, u32ECX, u32EDX)
804 || ASMIsAmdCpuEx(u32EBX, u32ECX, u32EDX)
805 || ASMIsViaCentaurCpuEx(u32EBX, u32ECX, u32EDX)
806 || ASMIsShanghaiCpuEx(u32EBX, u32ECX, u32EDX))
807 && ASMIsValidStdRange(uMaxLeaf))
808 {
809 uint32_t uDummy;
810 ASMCpuId(1, &uDummy, &u32EBX, &u32ECX, &u32EDX);
811 if ( (u32EDX & X86_CPUID_FEATURE_EDX_APIC)
812 && (u32EDX & X86_CPUID_FEATURE_EDX_MSR))
813 {
814 /*
815 * Safe to access the MSR. Read it and calc the BASE (a little complicated).
816 */
817 uint64_t u64ApicBase = ASMRdMsr(MSR_IA32_APICBASE);
818 uint64_t u64Mask = MSR_IA32_APICBASE_BASE_MIN;
819
820 /* see Intel Manual: Local APIC Status and Location: MAXPHYADDR default is bit 36 */
821 uint32_t uMaxExtLeaf;
822 ASMCpuId(0x80000000, &uMaxExtLeaf, &u32EBX, &u32ECX, &u32EDX);
823 if ( uMaxExtLeaf >= UINT32_C(0x80000008)
824 && ASMIsValidExtRange(uMaxExtLeaf))
825 {
826 uint32_t u32PhysBits;
827 ASMCpuId(0x80000008, &u32PhysBits, &u32EBX, &u32ECX, &u32EDX);
828 u32PhysBits &= 0xff;
829 u64Mask = ((UINT64_C(1) << u32PhysBits) - 1) & UINT64_C(0xfffffffffffff000);
830 }
831
832 AssertCompile(sizeof(g_aLApics[iCpu].PhysBase) == sizeof(u64ApicBase));
833 g_aLApics[iCpu].PhysBase = u64ApicBase & u64Mask;
834 g_aLApics[iCpu].fEnabled = RT_BOOL(u64ApicBase & MSR_IA32_APICBASE_EN);
835 g_aLApics[iCpu].fX2Apic = (u64ApicBase & (MSR_IA32_APICBASE_EXTD | MSR_IA32_APICBASE_EN))
836 == (MSR_IA32_APICBASE_EXTD | MSR_IA32_APICBASE_EN);
837 }
838 }
839}
840
841
842
843/**
844 * Per-CPU callback that verifies our APIC expectations.
845 *
846 * @param idCpu The identifier for the CPU the function is called on.
847 * @param pvUser1 Ignored.
848 * @param pvUser2 Ignored.
849 */
850static DECLCALLBACK(void) cpumR0MapLocalApicCpuChecker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
851{
852 NOREF(pvUser1); NOREF(pvUser2);
853
854 int iCpu = RTMpCpuIdToSetIndex(idCpu);
855 AssertReturnVoid(iCpu >= 0 && (unsigned)iCpu < RT_ELEMENTS(g_aLApics));
856 if (!g_aLApics[iCpu].fEnabled)
857 return;
858
859 /*
860 * 0x0X 82489 external APIC
861 * 0x1X Local APIC
862 * 0x2X..0xFF reserved
863 */
864 uint32_t uApicVersion;
865 if (g_aLApics[iCpu].fX2Apic)
866 uApicVersion = ApicX2RegRead32(APIC_REG_VERSION);
867 else
868 uApicVersion = ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_VERSION);
869 if ((APIC_REG_VERSION_GET_VER(uApicVersion) & 0xF0) == 0x10)
870 {
871 g_aLApics[iCpu].uVersion = uApicVersion;
872
873#if 0 /* enable if you need it. */
874 if (g_aLApics[iCpu].fX2Apic)
875 SUPR0Printf("CPUM: X2APIC %02u - ver %#010x, lint0=%#07x lint1=%#07x pc=%#07x thmr=%#07x cmci=%#07x\n",
876 iCpu, uApicVersion,
877 ApicX2RegRead32(APIC_REG_LVT_LINT0), ApicX2RegRead32(APIC_REG_LVT_LINT1),
878 ApicX2RegRead32(APIC_REG_LVT_PC), ApicX2RegRead32(APIC_REG_LVT_THMR),
879 ApicX2RegRead32(APIC_REG_LVT_CMCI));
880 else
881 {
882 SUPR0Printf("CPUM: APIC %02u at %RGp (mapped at %p) - ver %#010x, lint0=%#07x lint1=%#07x pc=%#07x thmr=%#07x cmci=%#07x\n",
883 iCpu, g_aLApics[iCpu].PhysBase, g_aLApics[iCpu].pv, uApicVersion,
884 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_LINT0), ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_LINT1),
885 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_PC), ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_THMR),
886 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_CMCI));
887 if (uApicVersion & 0x80000000)
888 {
889 uint32_t uExtFeatures = ApicRegRead(g_aLApics[iCpu].pv, 0x400);
890 uint32_t cEiLvt = (uExtFeatures >> 16) & 0xff;
891 SUPR0Printf("CPUM: APIC %02u: ExtSpace available. extfeat=%08x eilvt[0..3]=%08x %08x %08x %08x\n",
892 iCpu,
893 ApicRegRead(g_aLApics[iCpu].pv, 0x400),
894 cEiLvt >= 1 ? ApicRegRead(g_aLApics[iCpu].pv, 0x500) : 0,
895 cEiLvt >= 2 ? ApicRegRead(g_aLApics[iCpu].pv, 0x510) : 0,
896 cEiLvt >= 3 ? ApicRegRead(g_aLApics[iCpu].pv, 0x520) : 0,
897 cEiLvt >= 4 ? ApicRegRead(g_aLApics[iCpu].pv, 0x530) : 0);
898 }
899 }
900#endif
901 }
902 else
903 {
904 g_aLApics[iCpu].fEnabled = false;
905 g_aLApics[iCpu].fX2Apic = false;
906 SUPR0Printf("VBox/CPUM: Unsupported APIC version %#x (iCpu=%d)\n", uApicVersion, iCpu);
907 }
908}
909
910
911/**
912 * Map the MMIO page of each local APIC in the system.
913 */
914static int cpumR0MapLocalApics(void)
915{
916 /*
917 * Check that we'll always stay within the array bounds.
918 */
919 if (RTMpGetArraySize() > RT_ELEMENTS(g_aLApics))
920 {
921 LogRel(("CPUM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_aLApics)));
922 return VERR_TOO_MANY_CPUS;
923 }
924
925 /*
926 * Create mappings for all online CPUs we think have legacy APICs.
927 */
928 int rc = RTMpOnAll(cpumR0MapLocalApicCpuProber, NULL, NULL);
929
930 for (unsigned iCpu = 0; RT_SUCCESS(rc) && iCpu < RT_ELEMENTS(g_aLApics); iCpu++)
931 {
932 if (g_aLApics[iCpu].fEnabled && !g_aLApics[iCpu].fX2Apic)
933 {
934 rc = RTR0MemObjEnterPhys(&g_aLApics[iCpu].hMemObj, g_aLApics[iCpu].PhysBase,
935 PAGE_SIZE, RTMEM_CACHE_POLICY_MMIO);
936 if (RT_SUCCESS(rc))
937 {
938 rc = RTR0MemObjMapKernel(&g_aLApics[iCpu].hMapObj, g_aLApics[iCpu].hMemObj, (void *)-1,
939 PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
940 if (RT_SUCCESS(rc))
941 {
942 g_aLApics[iCpu].pv = RTR0MemObjAddress(g_aLApics[iCpu].hMapObj);
943 continue;
944 }
945 RTR0MemObjFree(g_aLApics[iCpu].hMemObj, true /* fFreeMappings */);
946 }
947 g_aLApics[iCpu].fEnabled = false;
948 }
949 g_aLApics[iCpu].pv = NULL;
950 }
951
952 /*
953 * Check the APICs.
954 */
955 if (RT_SUCCESS(rc))
956 rc = RTMpOnAll(cpumR0MapLocalApicCpuChecker, NULL, NULL);
957
958 if (RT_FAILURE(rc))
959 {
960 cpumR0UnmapLocalApics();
961 return rc;
962 }
963
964#ifdef LOG_ENABLED
965 /*
966 * Log the result (pretty useless, requires enabling CPUM in VBoxDrv
967 * and !VBOX_WITH_R0_LOGGING).
968 */
969 if (LogIsEnabled())
970 {
971 uint32_t cEnabled = 0;
972 uint32_t cX2Apics = 0;
973 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_aLApics); iCpu++)
974 if (g_aLApics[iCpu].fEnabled)
975 {
976 cEnabled++;
977 cX2Apics += g_aLApics[iCpu].fX2Apic;
978 }
979 Log(("CPUM: %u APICs, %u X2APICs\n", cEnabled, cX2Apics));
980 }
981#endif
982
983 return VINF_SUCCESS;
984}
985
986
987/**
988 * Unmap the Local APIC of all host CPUs.
989 */
990static void cpumR0UnmapLocalApics(void)
991{
992 for (unsigned iCpu = RT_ELEMENTS(g_aLApics); iCpu-- > 0;)
993 {
994 if (g_aLApics[iCpu].pv)
995 {
996 RTR0MemObjFree(g_aLApics[iCpu].hMapObj, true /* fFreeMappings */);
997 RTR0MemObjFree(g_aLApics[iCpu].hMemObj, true /* fFreeMappings */);
998 g_aLApics[iCpu].hMapObj = NIL_RTR0MEMOBJ;
999 g_aLApics[iCpu].hMemObj = NIL_RTR0MEMOBJ;
1000 g_aLApics[iCpu].fEnabled = false;
1001 g_aLApics[iCpu].fX2Apic = false;
1002 g_aLApics[iCpu].pv = NULL;
1003 }
1004 }
1005}
1006
1007
1008/**
1009 * Updates CPUMCPU::pvApicBase and CPUMCPU::fX2Apic prior to world switch.
1010 *
1011 * Writes the Local APIC mapping address of the current host CPU to CPUMCPU so
1012 * the world switchers can access the APIC registers for the purpose of
1013 * disabling and re-enabling the NMIs. Must be called with disabled preemption
1014 * or disabled interrupts!
1015 *
1016 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1017 * @param iHostCpuSet The CPU set index of the current host CPU.
1018 */
1019VMMR0_INT_DECL(void) CPUMR0SetLApic(PVMCPU pVCpu, uint32_t iHostCpuSet)
1020{
1021 Assert(iHostCpuSet <= RT_ELEMENTS(g_aLApics));
1022 pVCpu->cpum.s.pvApicBase = g_aLApics[iHostCpuSet].pv;
1023 pVCpu->cpum.s.fX2Apic = g_aLApics[iHostCpuSet].fX2Apic;
1024// Log6(("CPUMR0SetLApic: pvApicBase=%p fX2Apic=%d\n", g_aLApics[idxCpu].pv, g_aLApics[idxCpu].fX2Apic));
1025}
1026
1027#endif /* VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI */
1028
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette