VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/CPUMR0.cpp@ 78402

Last change on this file since 78402 was 76886, checked in by vboxsync, 6 years ago

VMM (and related changes): Add support for Shanghai/Zhaoxin CPUs. Modified and improved contribution by Journey Ren submitted under MIT license. Thank you!

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 37.2 KB
Line 
1/* $Id: CPUMR0.cpp 76886 2019-01-18 10:57:02Z vboxsync $ */
2/** @file
3 * CPUM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_CPUM
23#include <VBox/vmm/cpum.h>
24#include "CPUMInternal.h"
25#include <VBox/vmm/vm.h>
26#include <VBox/err.h>
27#include <VBox/log.h>
28#include <VBox/vmm/hm.h>
29#include <iprt/assert.h>
30#include <iprt/asm-amd64-x86.h>
31#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
32# include <iprt/mem.h>
33# include <iprt/memobj.h>
34# include <VBox/apic.h>
35#endif
36#include <iprt/x86.h>
37
38
39/*********************************************************************************************************************************
40* Structures and Typedefs *
41*********************************************************************************************************************************/
42#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
43/**
44 * Local APIC mappings.
45 */
46typedef struct CPUMHOSTLAPIC
47{
48 /** Indicates that the entry is in use and have valid data. */
49 bool fEnabled;
50 /** Whether it's operating in X2APIC mode (EXTD). */
51 bool fX2Apic;
52 /** The APIC version number. */
53 uint32_t uVersion;
54 /** The physical address of the APIC registers. */
55 RTHCPHYS PhysBase;
56 /** The memory object entering the physical address. */
57 RTR0MEMOBJ hMemObj;
58 /** The mapping object for hMemObj. */
59 RTR0MEMOBJ hMapObj;
60 /** The mapping address APIC registers.
61 * @remarks Different CPUs may use the same physical address to map their
62 * APICs, so this pointer is only valid when on the CPU owning the
63 * APIC. */
64 void *pv;
65} CPUMHOSTLAPIC;
66#endif
67
68
69/*********************************************************************************************************************************
70* Global Variables *
71*********************************************************************************************************************************/
72#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
73static CPUMHOSTLAPIC g_aLApics[RTCPUSET_MAX_CPUS];
74#endif
75
76/**
77 * CPUID bits to unify among all cores.
78 */
79static struct
80{
81 uint32_t uLeaf; /**< Leaf to check. */
82 uint32_t uEcx; /**< which bits in ecx to unify between CPUs. */
83 uint32_t uEdx; /**< which bits in edx to unify between CPUs. */
84}
85const g_aCpuidUnifyBits[] =
86{
87 {
88 0x00000001,
89 X86_CPUID_FEATURE_ECX_CX16 | X86_CPUID_FEATURE_ECX_MONITOR,
90 X86_CPUID_FEATURE_EDX_CX8
91 }
92};
93
94
95
96/*********************************************************************************************************************************
97* Internal Functions *
98*********************************************************************************************************************************/
99#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
100static int cpumR0MapLocalApics(void);
101static void cpumR0UnmapLocalApics(void);
102#endif
103static int cpumR0SaveHostDebugState(PVMCPU pVCpu);
104
105
106/**
107 * Does the Ring-0 CPU initialization once during module load.
108 * XXX Host-CPU hot-plugging?
109 */
110VMMR0_INT_DECL(int) CPUMR0ModuleInit(void)
111{
112 int rc = VINF_SUCCESS;
113#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
114 rc = cpumR0MapLocalApics();
115#endif
116 return rc;
117}
118
119
120/**
121 * Terminate the module.
122 */
123VMMR0_INT_DECL(int) CPUMR0ModuleTerm(void)
124{
125#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
126 cpumR0UnmapLocalApics();
127#endif
128 return VINF_SUCCESS;
129}
130
131
132/**
133 * Check the CPUID features of this particular CPU and disable relevant features
134 * for the guest which do not exist on this CPU. We have seen systems where the
135 * X86_CPUID_FEATURE_ECX_MONITOR feature flag is only set on some host CPUs, see
136 * @bugref{5436}.
137 *
138 * @note This function might be called simultaneously on more than one CPU!
139 *
140 * @param idCpu The identifier for the CPU the function is called on.
141 * @param pvUser1 Pointer to the VM structure.
142 * @param pvUser2 Ignored.
143 */
144static DECLCALLBACK(void) cpumR0CheckCpuid(RTCPUID idCpu, void *pvUser1, void *pvUser2)
145{
146 PVM pVM = (PVM)pvUser1;
147
148 NOREF(idCpu); NOREF(pvUser2);
149 for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++)
150 {
151 /* Note! Cannot use cpumCpuIdGetLeaf from here because we're not
152 necessarily in the VM process context. So, we using the
153 legacy arrays as temporary storage. */
154
155 uint32_t uLeaf = g_aCpuidUnifyBits[i].uLeaf;
156 PCPUMCPUID pLegacyLeaf;
157 if (uLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd))
158 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmStd[uLeaf];
159 else if (uLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt))
160 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmExt[uLeaf - UINT32_C(0x80000000)];
161 else if (uLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur))
162 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmCentaur[uLeaf - UINT32_C(0xc0000000)];
163 else
164 continue;
165
166 uint32_t eax, ebx, ecx, edx;
167 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &eax, &ebx, &ecx, &edx);
168
169 ASMAtomicAndU32(&pLegacyLeaf->uEcx, ecx | ~g_aCpuidUnifyBits[i].uEcx);
170 ASMAtomicAndU32(&pLegacyLeaf->uEdx, edx | ~g_aCpuidUnifyBits[i].uEdx);
171 }
172}
173
174
175/**
176 * Does Ring-0 CPUM initialization.
177 *
178 * This is mainly to check that the Host CPU mode is compatible
179 * with VBox.
180 *
181 * @returns VBox status code.
182 * @param pVM The cross context VM structure.
183 */
184VMMR0_INT_DECL(int) CPUMR0InitVM(PVM pVM)
185{
186 LogFlow(("CPUMR0Init: %p\n", pVM));
187
188 /*
189 * Check CR0 & CR4 flags.
190 */
191 uint32_t u32CR0 = ASMGetCR0();
192 if ((u32CR0 & (X86_CR0_PE | X86_CR0_PG)) != (X86_CR0_PE | X86_CR0_PG)) /* a bit paranoid perhaps.. */
193 {
194 Log(("CPUMR0Init: PE or PG not set. cr0=%#x\n", u32CR0));
195 return VERR_UNSUPPORTED_CPU_MODE;
196 }
197
198 /*
199 * Check for sysenter and syscall usage.
200 */
201 if (ASMHasCpuId())
202 {
203 /*
204 * SYSENTER/SYSEXIT
205 *
206 * Intel docs claim you should test both the flag and family, model &
207 * stepping because some Pentium Pro CPUs have the SEP cpuid flag set,
208 * but don't support it. AMD CPUs may support this feature in legacy
209 * mode, they've banned it from long mode. Since we switch to 32-bit
210 * mode when entering raw-mode context the feature would become
211 * accessible again on AMD CPUs, so we have to check regardless of
212 * host bitness.
213 */
214 uint32_t u32CpuVersion;
215 uint32_t u32Dummy;
216 uint32_t fFeatures; /* (Used further down to check for MSRs, so don't clobber.) */
217 ASMCpuId(1, &u32CpuVersion, &u32Dummy, &u32Dummy, &fFeatures);
218 uint32_t const u32Family = u32CpuVersion >> 8;
219 uint32_t const u32Model = (u32CpuVersion >> 4) & 0xF;
220 uint32_t const u32Stepping = u32CpuVersion & 0xF;
221 if ( (fFeatures & X86_CPUID_FEATURE_EDX_SEP)
222 && ( u32Family != 6 /* (> pentium pro) */
223 || u32Model >= 3
224 || u32Stepping >= 3
225 || !ASMIsIntelCpu())
226 )
227 {
228 /*
229 * Read the MSR and see if it's in use or not.
230 */
231 uint32_t u32 = ASMRdMsr_Low(MSR_IA32_SYSENTER_CS);
232 if (u32)
233 {
234 pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSENTER;
235 Log(("CPUMR0Init: host uses sysenter cs=%08x%08x\n", ASMRdMsr_High(MSR_IA32_SYSENTER_CS), u32));
236 }
237 }
238
239 /*
240 * SYSCALL/SYSRET
241 *
242 * This feature is indicated by the SEP bit returned in EDX by CPUID
243 * function 0x80000001. Intel CPUs only supports this feature in
244 * long mode. Since we're not running 64-bit guests in raw-mode there
245 * are no issues with 32-bit intel hosts.
246 */
247 uint32_t cExt = 0;
248 ASMCpuId(0x80000000, &cExt, &u32Dummy, &u32Dummy, &u32Dummy);
249 if (ASMIsValidExtRange(cExt))
250 {
251 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
252 if (fExtFeaturesEDX & X86_CPUID_EXT_FEATURE_EDX_SYSCALL)
253 {
254#ifdef RT_ARCH_X86
255 if (!ASMIsIntelCpu())
256#endif
257 {
258 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
259 if (fEfer & MSR_K6_EFER_SCE)
260 {
261 pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSCALL;
262 Log(("CPUMR0Init: host uses syscall\n"));
263 }
264 }
265 }
266 }
267
268 /*
269 * Copy MSR_IA32_ARCH_CAPABILITIES bits over into the host feature structure.
270 */
271 pVM->cpum.s.HostFeatures.fArchRdclNo = 0;
272 pVM->cpum.s.HostFeatures.fArchIbrsAll = 0;
273 pVM->cpum.s.HostFeatures.fArchRsbOverride = 0;
274 pVM->cpum.s.HostFeatures.fArchVmmNeedNotFlushL1d = 0;
275 uint32_t const cStdRange = ASMCpuId_EAX(0);
276 if ( ASMIsValidStdRange(cStdRange)
277 && cStdRange >= 7)
278 {
279 uint32_t fEdxFeatures = ASMCpuId_EDX(7);
280 if ( (fEdxFeatures & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
281 && (fFeatures & X86_CPUID_FEATURE_EDX_MSR))
282 {
283 uint64_t const fArchVal = ASMRdMsr(MSR_IA32_ARCH_CAPABILITIES);
284 pVM->cpum.s.HostFeatures.fArchRdclNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO);
285 pVM->cpum.s.HostFeatures.fArchIbrsAll = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL);
286 pVM->cpum.s.HostFeatures.fArchRsbOverride = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO);
287 pVM->cpum.s.HostFeatures.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D);
288 }
289 else
290 pVM->cpum.s.HostFeatures.fArchCap = 0;
291 }
292
293 /*
294 * Unify/cross check some CPUID feature bits on all available CPU cores
295 * and threads. We've seen CPUs where the monitor support differed.
296 *
297 * Because the hyper heap isn't always mapped into ring-0, we cannot
298 * access it from a RTMpOnAll callback. We use the legacy CPUID arrays
299 * as temp ring-0 accessible memory instead, ASSUMING that they're all
300 * up to date when we get here.
301 */
302 RTMpOnAll(cpumR0CheckCpuid, pVM, NULL);
303
304 for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++)
305 {
306 bool fIgnored;
307 uint32_t uLeaf = g_aCpuidUnifyBits[i].uLeaf;
308 PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, 0, &fIgnored);
309 if (pLeaf)
310 {
311 PCPUMCPUID pLegacyLeaf;
312 if (uLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd))
313 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmStd[uLeaf];
314 else if (uLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt))
315 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmExt[uLeaf - UINT32_C(0x80000000)];
316 else if (uLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur))
317 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmCentaur[uLeaf - UINT32_C(0xc0000000)];
318 else
319 continue;
320
321 pLeaf->uEcx = pLegacyLeaf->uEcx;
322 pLeaf->uEdx = pLegacyLeaf->uEdx;
323 }
324 }
325
326 }
327
328
329 /*
330 * Check if debug registers are armed.
331 * This ASSUMES that DR7.GD is not set, or that it's handled transparently!
332 */
333 uint32_t u32DR7 = ASMGetDR7();
334 if (u32DR7 & X86_DR7_ENABLED_MASK)
335 {
336 for (VMCPUID i = 0; i < pVM->cCpus; i++)
337 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HOST;
338 Log(("CPUMR0Init: host uses debug registers (dr7=%x)\n", u32DR7));
339 }
340
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * Trap handler for device-not-available fault (\#NM).
347 * Device not available, FP or (F)WAIT instruction.
348 *
349 * @returns VBox status code.
350 * @retval VINF_SUCCESS if the guest FPU state is loaded.
351 * @retval VINF_EM_RAW_GUEST_TRAP if it is a guest trap.
352 * @retval VINF_CPUM_HOST_CR0_MODIFIED if we modified the host CR0.
353 *
354 * @param pVM The cross context VM structure.
355 * @param pVCpu The cross context virtual CPU structure.
356 */
357VMMR0_INT_DECL(int) CPUMR0Trap07Handler(PVM pVM, PVMCPU pVCpu)
358{
359 Assert(pVM->cpum.s.HostFeatures.fFxSaveRstor);
360 Assert(ASMGetCR4() & X86_CR4_OSFXSR);
361
362 /* If the FPU state has already been loaded, then it's a guest trap. */
363 if (CPUMIsGuestFPUStateActive(pVCpu))
364 {
365 Assert( ((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS))
366 || ((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS | X86_CR0_EM)));
367 return VINF_EM_RAW_GUEST_TRAP;
368 }
369
370 /*
371 * There are two basic actions:
372 * 1. Save host fpu and restore guest fpu.
373 * 2. Generate guest trap.
374 *
375 * When entering the hypervisor we'll always enable MP (for proper wait
376 * trapping) and TS (for intercepting all fpu/mmx/sse stuff). The EM flag
377 * is taken from the guest OS in order to get proper SSE handling.
378 *
379 *
380 * Actions taken depending on the guest CR0 flags:
381 *
382 * 3 2 1
383 * TS | EM | MP | FPUInstr | WAIT :: VMM Action
384 * ------------------------------------------------------------------------
385 * 0 | 0 | 0 | Exec | Exec :: Clear TS & MP, Save HC, Load GC.
386 * 0 | 0 | 1 | Exec | Exec :: Clear TS, Save HC, Load GC.
387 * 0 | 1 | 0 | #NM | Exec :: Clear TS & MP, Save HC, Load GC.
388 * 0 | 1 | 1 | #NM | Exec :: Clear TS, Save HC, Load GC.
389 * 1 | 0 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already cleared.)
390 * 1 | 0 | 1 | #NM | #NM :: Go to guest taking trap there.
391 * 1 | 1 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already set.)
392 * 1 | 1 | 1 | #NM | #NM :: Go to guest taking trap there.
393 */
394
395 switch (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
396 {
397 case X86_CR0_MP | X86_CR0_TS:
398 case X86_CR0_MP | X86_CR0_TS | X86_CR0_EM:
399 return VINF_EM_RAW_GUEST_TRAP;
400 default:
401 break;
402 }
403
404 return CPUMR0LoadGuestFPU(pVM, pVCpu);
405}
406
407
408/**
409 * Saves the host-FPU/XMM state (if necessary) and (always) loads the guest-FPU
410 * state into the CPU.
411 *
412 * @returns VINF_SUCCESS on success, host CR0 unmodified.
413 * @returns VINF_CPUM_HOST_CR0_MODIFIED on success when the host CR0 was
414 * modified and VT-x needs to update the value in the VMCS.
415 *
416 * @param pVM The cross context VM structure.
417 * @param pVCpu The cross context virtual CPU structure.
418 */
419VMMR0_INT_DECL(int) CPUMR0LoadGuestFPU(PVM pVM, PVMCPU pVCpu)
420{
421 int rc = VINF_SUCCESS;
422 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
423 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST));
424 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_FPU_STATE));
425
426#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
427 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
428 {
429 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE));
430
431 /* Save the host state if necessary. */
432 if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST))
433 rc = cpumRZSaveHostFPUState(&pVCpu->cpum.s);
434
435 /* Restore the state on entry as we need to be in 64-bit mode to access the full state. */
436 pVCpu->cpum.s.fUseFlags |= CPUM_SYNC_FPU_STATE;
437
438 Assert( (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM))
439 == (CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM));
440 }
441 else
442#endif
443 {
444 if (!pVM->cpum.s.HostFeatures.fLeakyFxSR)
445 {
446 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE));
447 rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
448 }
449 else
450 {
451 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE) || (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST));
452 /** @todo r=ramshankar: Can't we used a cached value here
453 * instead of reading the MSR? host EFER doesn't usually
454 * change. */
455 uint64_t uHostEfer = ASMRdMsr(MSR_K6_EFER);
456 if (!(uHostEfer & MSR_K6_EFER_FFXSR))
457 rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
458 else
459 {
460 RTCCUINTREG const uSavedFlags = ASMIntDisableFlags();
461 pVCpu->cpum.s.fUseFlags |= CPUM_USED_MANUAL_XMM_RESTORE;
462 ASMWrMsr(MSR_K6_EFER, uHostEfer & ~MSR_K6_EFER_FFXSR);
463 rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
464 ASMWrMsr(MSR_K6_EFER, uHostEfer | MSR_K6_EFER_FFXSR);
465 ASMSetFlags(uSavedFlags);
466 }
467 }
468 Assert( (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM))
469 == (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM));
470 }
471 return rc;
472}
473
474
475/**
476 * Saves the guest FPU/XMM state if needed, restores the host FPU/XMM state as
477 * needed.
478 *
479 * @returns true if we saved the guest state.
480 * @param pVCpu The cross context virtual CPU structure.
481 */
482VMMR0_INT_DECL(bool) CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(PVMCPU pVCpu)
483{
484 bool fSavedGuest;
485 Assert(pVCpu->CTX_SUFF(pVM)->cpum.s.HostFeatures.fFxSaveRstor);
486 Assert(ASMGetCR4() & X86_CR4_OSFXSR);
487 if (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST))
488 {
489 fSavedGuest = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
490#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
491 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
492 {
493 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
494 {
495 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_FPU_STATE));
496 HMR0SaveFPUState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
497 }
498 else
499 pVCpu->cpum.s.fUseFlags &= ~CPUM_SYNC_FPU_STATE;
500 cpumR0RestoreHostFPUState(&pVCpu->cpum.s);
501 }
502 else
503#endif
504 {
505 if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE))
506 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
507 else
508 {
509 /* Temporarily clear MSR_K6_EFER_FFXSR or else we'll be unable to
510 save/restore the XMM state with fxsave/fxrstor. */
511 uint64_t uHostEfer = ASMRdMsr(MSR_K6_EFER);
512 if (uHostEfer & MSR_K6_EFER_FFXSR)
513 {
514 RTCCUINTREG const uSavedFlags = ASMIntDisableFlags();
515 ASMWrMsr(MSR_K6_EFER, uHostEfer & ~MSR_K6_EFER_FFXSR);
516 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
517 ASMWrMsr(MSR_K6_EFER, uHostEfer | MSR_K6_EFER_FFXSR);
518 ASMSetFlags(uSavedFlags);
519 }
520 else
521 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
522 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_MANUAL_XMM_RESTORE;
523 }
524 }
525 }
526 else
527 fSavedGuest = false;
528 Assert(!( pVCpu->cpum.s.fUseFlags
529 & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_SYNC_FPU_STATE | CPUM_USED_MANUAL_XMM_RESTORE)));
530 return fSavedGuest;
531}
532
533
534/**
535 * Saves the host debug state, setting CPUM_USED_HOST_DEBUG_STATE and loading
536 * DR7 with safe values.
537 *
538 * @returns VBox status code.
539 * @param pVCpu The cross context virtual CPU structure.
540 */
541static int cpumR0SaveHostDebugState(PVMCPU pVCpu)
542{
543 /*
544 * Save the host state.
545 */
546 pVCpu->cpum.s.Host.dr0 = ASMGetDR0();
547 pVCpu->cpum.s.Host.dr1 = ASMGetDR1();
548 pVCpu->cpum.s.Host.dr2 = ASMGetDR2();
549 pVCpu->cpum.s.Host.dr3 = ASMGetDR3();
550 pVCpu->cpum.s.Host.dr6 = ASMGetDR6();
551 /** @todo dr7 might already have been changed to 0x400; don't care right now as it's harmless. */
552 pVCpu->cpum.s.Host.dr7 = ASMGetDR7();
553
554 /* Preemption paranoia. */
555 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HOST);
556
557 /*
558 * Make sure DR7 is harmless or else we could trigger breakpoints when
559 * load guest or hypervisor DRx values later.
560 */
561 if (pVCpu->cpum.s.Host.dr7 != X86_DR7_INIT_VAL)
562 ASMSetDR7(X86_DR7_INIT_VAL);
563
564 return VINF_SUCCESS;
565}
566
567
568/**
569 * Saves the guest DRx state residing in host registers and restore the host
570 * register values.
571 *
572 * The guest DRx state is only saved if CPUMR0LoadGuestDebugState was called,
573 * since it's assumed that we're shadowing the guest DRx register values
574 * accurately when using the combined hypervisor debug register values
575 * (CPUMR0LoadHyperDebugState).
576 *
577 * @returns true if either guest or hypervisor debug registers were loaded.
578 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
579 * @param fDr6 Whether to include DR6 or not.
580 * @thread EMT(pVCpu)
581 */
582VMMR0_INT_DECL(bool) CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(PVMCPU pVCpu, bool fDr6)
583{
584 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
585 bool const fDrXLoaded = RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER));
586
587 /*
588 * Do we need to save the guest DRx registered loaded into host registers?
589 * (DR7 and DR6 (if fDr6 is true) are left to the caller.)
590 */
591 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST)
592 {
593#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
594 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
595 {
596 uint64_t uDr6 = pVCpu->cpum.s.Guest.dr[6];
597 HMR0SaveDebugState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
598 if (!fDr6)
599 pVCpu->cpum.s.Guest.dr[6] = uDr6;
600 }
601 else
602#endif
603 {
604 pVCpu->cpum.s.Guest.dr[0] = ASMGetDR0();
605 pVCpu->cpum.s.Guest.dr[1] = ASMGetDR1();
606 pVCpu->cpum.s.Guest.dr[2] = ASMGetDR2();
607 pVCpu->cpum.s.Guest.dr[3] = ASMGetDR3();
608 if (fDr6)
609 pVCpu->cpum.s.Guest.dr[6] = ASMGetDR6();
610 }
611 }
612 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~( CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER
613 | CPUM_SYNC_DEBUG_REGS_GUEST | CPUM_SYNC_DEBUG_REGS_HYPER));
614
615 /*
616 * Restore the host's debug state. DR0-3, DR6 and only then DR7!
617 */
618 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HOST)
619 {
620 /* A bit of paranoia first... */
621 uint64_t uCurDR7 = ASMGetDR7();
622 if (uCurDR7 != X86_DR7_INIT_VAL)
623 ASMSetDR7(X86_DR7_INIT_VAL);
624
625 ASMSetDR0(pVCpu->cpum.s.Host.dr0);
626 ASMSetDR1(pVCpu->cpum.s.Host.dr1);
627 ASMSetDR2(pVCpu->cpum.s.Host.dr2);
628 ASMSetDR3(pVCpu->cpum.s.Host.dr3);
629 /** @todo consider only updating if they differ, esp. DR6. Need to figure how
630 * expensive DRx reads are over DRx writes. */
631 ASMSetDR6(pVCpu->cpum.s.Host.dr6);
632 ASMSetDR7(pVCpu->cpum.s.Host.dr7);
633
634 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HOST);
635 }
636
637 return fDrXLoaded;
638}
639
640
641/**
642 * Saves the guest DRx state if it resides host registers.
643 *
644 * This does NOT clear any use flags, so the host registers remains loaded with
645 * the guest DRx state upon return. The purpose is only to make sure the values
646 * in the CPU context structure is up to date.
647 *
648 * @returns true if the host registers contains guest values, false if not.
649 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
650 * @param fDr6 Whether to include DR6 or not.
651 * @thread EMT(pVCpu)
652 */
653VMMR0_INT_DECL(bool) CPUMR0DebugStateMaybeSaveGuest(PVMCPU pVCpu, bool fDr6)
654{
655 /*
656 * Do we need to save the guest DRx registered loaded into host registers?
657 * (DR7 and DR6 (if fDr6 is true) are left to the caller.)
658 */
659 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST)
660 {
661#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
662 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
663 {
664 uint64_t uDr6 = pVCpu->cpum.s.Guest.dr[6];
665 HMR0SaveDebugState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
666 if (!fDr6)
667 pVCpu->cpum.s.Guest.dr[6] = uDr6;
668 }
669 else
670#endif
671 {
672 pVCpu->cpum.s.Guest.dr[0] = ASMGetDR0();
673 pVCpu->cpum.s.Guest.dr[1] = ASMGetDR1();
674 pVCpu->cpum.s.Guest.dr[2] = ASMGetDR2();
675 pVCpu->cpum.s.Guest.dr[3] = ASMGetDR3();
676 if (fDr6)
677 pVCpu->cpum.s.Guest.dr[6] = ASMGetDR6();
678 }
679 return true;
680 }
681 return false;
682}
683
684
685/**
686 * Lazily sync in the debug state.
687 *
688 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
689 * @param fDr6 Whether to include DR6 or not.
690 * @thread EMT(pVCpu)
691 */
692VMMR0_INT_DECL(void) CPUMR0LoadGuestDebugState(PVMCPU pVCpu, bool fDr6)
693{
694 /*
695 * Save the host state and disarm all host BPs.
696 */
697 cpumR0SaveHostDebugState(pVCpu);
698 Assert(ASMGetDR7() == X86_DR7_INIT_VAL);
699
700 /*
701 * Activate the guest state DR0-3.
702 * DR7 and DR6 (if fDr6 is true) are left to the caller.
703 */
704#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
705 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
706 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_SYNC_DEBUG_REGS_GUEST); /* Postpone it to the world switch. */
707 else
708#endif
709 {
710 ASMSetDR0(pVCpu->cpum.s.Guest.dr[0]);
711 ASMSetDR1(pVCpu->cpum.s.Guest.dr[1]);
712 ASMSetDR2(pVCpu->cpum.s.Guest.dr[2]);
713 ASMSetDR3(pVCpu->cpum.s.Guest.dr[3]);
714 if (fDr6)
715 ASMSetDR6(pVCpu->cpum.s.Guest.dr[6]);
716
717 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST);
718 }
719}
720
721
722/**
723 * Lazily sync in the hypervisor debug state
724 *
725 * @returns VBox status code.
726 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
727 * @param fDr6 Whether to include DR6 or not.
728 * @thread EMT(pVCpu)
729 */
730VMMR0_INT_DECL(void) CPUMR0LoadHyperDebugState(PVMCPU pVCpu, bool fDr6)
731{
732 /*
733 * Save the host state and disarm all host BPs.
734 */
735 cpumR0SaveHostDebugState(pVCpu);
736 Assert(ASMGetDR7() == X86_DR7_INIT_VAL);
737
738 /*
739 * Make sure the hypervisor values are up to date.
740 */
741 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */, true);
742
743 /*
744 * Activate the guest state DR0-3.
745 * DR7 and DR6 (if fDr6 is true) are left to the caller.
746 */
747#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
748 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
749 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_SYNC_DEBUG_REGS_HYPER); /* Postpone it. */
750 else
751#endif
752 {
753 ASMSetDR0(pVCpu->cpum.s.Hyper.dr[0]);
754 ASMSetDR1(pVCpu->cpum.s.Hyper.dr[1]);
755 ASMSetDR2(pVCpu->cpum.s.Hyper.dr[2]);
756 ASMSetDR3(pVCpu->cpum.s.Hyper.dr[3]);
757 if (fDr6)
758 ASMSetDR6(X86_DR6_INIT_VAL);
759
760 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER);
761 }
762}
763
764#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
765
766/**
767 * Per-CPU callback that probes the CPU for APIC support.
768 *
769 * @param idCpu The identifier for the CPU the function is called on.
770 * @param pvUser1 Ignored.
771 * @param pvUser2 Ignored.
772 */
773static DECLCALLBACK(void) cpumR0MapLocalApicCpuProber(RTCPUID idCpu, void *pvUser1, void *pvUser2)
774{
775 NOREF(pvUser1); NOREF(pvUser2);
776 int iCpu = RTMpCpuIdToSetIndex(idCpu);
777 AssertReturnVoid(iCpu >= 0 && (unsigned)iCpu < RT_ELEMENTS(g_aLApics));
778
779 /*
780 * Check for APIC support.
781 */
782 uint32_t uMaxLeaf, u32EBX, u32ECX, u32EDX;
783 ASMCpuId(0, &uMaxLeaf, &u32EBX, &u32ECX, &u32EDX);
784 if ( ( ASMIsIntelCpuEx(u32EBX, u32ECX, u32EDX)
785 || ASMIsAmdCpuEx(u32EBX, u32ECX, u32EDX)
786 || ASMIsViaCentaurCpuEx(u32EBX, u32ECX, u32EDX)
787 || ASMIsShanghaiCpuEx(u32EBX, u32ECX, u32EDX))
788 && ASMIsValidStdRange(uMaxLeaf))
789 {
790 uint32_t uDummy;
791 ASMCpuId(1, &uDummy, &u32EBX, &u32ECX, &u32EDX);
792 if ( (u32EDX & X86_CPUID_FEATURE_EDX_APIC)
793 && (u32EDX & X86_CPUID_FEATURE_EDX_MSR))
794 {
795 /*
796 * Safe to access the MSR. Read it and calc the BASE (a little complicated).
797 */
798 uint64_t u64ApicBase = ASMRdMsr(MSR_IA32_APICBASE);
799 uint64_t u64Mask = MSR_IA32_APICBASE_BASE_MIN;
800
801 /* see Intel Manual: Local APIC Status and Location: MAXPHYADDR default is bit 36 */
802 uint32_t uMaxExtLeaf;
803 ASMCpuId(0x80000000, &uMaxExtLeaf, &u32EBX, &u32ECX, &u32EDX);
804 if ( uMaxExtLeaf >= UINT32_C(0x80000008)
805 && ASMIsValidExtRange(uMaxExtLeaf))
806 {
807 uint32_t u32PhysBits;
808 ASMCpuId(0x80000008, &u32PhysBits, &u32EBX, &u32ECX, &u32EDX);
809 u32PhysBits &= 0xff;
810 u64Mask = ((UINT64_C(1) << u32PhysBits) - 1) & UINT64_C(0xfffffffffffff000);
811 }
812
813 AssertCompile(sizeof(g_aLApics[iCpu].PhysBase) == sizeof(u64ApicBase));
814 g_aLApics[iCpu].PhysBase = u64ApicBase & u64Mask;
815 g_aLApics[iCpu].fEnabled = RT_BOOL(u64ApicBase & MSR_IA32_APICBASE_EN);
816 g_aLApics[iCpu].fX2Apic = (u64ApicBase & (MSR_IA32_APICBASE_EXTD | MSR_IA32_APICBASE_EN))
817 == (MSR_IA32_APICBASE_EXTD | MSR_IA32_APICBASE_EN);
818 }
819 }
820}
821
822
823
824/**
825 * Per-CPU callback that verifies our APIC expectations.
826 *
827 * @param idCpu The identifier for the CPU the function is called on.
828 * @param pvUser1 Ignored.
829 * @param pvUser2 Ignored.
830 */
831static DECLCALLBACK(void) cpumR0MapLocalApicCpuChecker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
832{
833 NOREF(pvUser1); NOREF(pvUser2);
834
835 int iCpu = RTMpCpuIdToSetIndex(idCpu);
836 AssertReturnVoid(iCpu >= 0 && (unsigned)iCpu < RT_ELEMENTS(g_aLApics));
837 if (!g_aLApics[iCpu].fEnabled)
838 return;
839
840 /*
841 * 0x0X 82489 external APIC
842 * 0x1X Local APIC
843 * 0x2X..0xFF reserved
844 */
845 uint32_t uApicVersion;
846 if (g_aLApics[iCpu].fX2Apic)
847 uApicVersion = ApicX2RegRead32(APIC_REG_VERSION);
848 else
849 uApicVersion = ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_VERSION);
850 if ((APIC_REG_VERSION_GET_VER(uApicVersion) & 0xF0) == 0x10)
851 {
852 g_aLApics[iCpu].uVersion = uApicVersion;
853
854#if 0 /* enable if you need it. */
855 if (g_aLApics[iCpu].fX2Apic)
856 SUPR0Printf("CPUM: X2APIC %02u - ver %#010x, lint0=%#07x lint1=%#07x pc=%#07x thmr=%#07x cmci=%#07x\n",
857 iCpu, uApicVersion,
858 ApicX2RegRead32(APIC_REG_LVT_LINT0), ApicX2RegRead32(APIC_REG_LVT_LINT1),
859 ApicX2RegRead32(APIC_REG_LVT_PC), ApicX2RegRead32(APIC_REG_LVT_THMR),
860 ApicX2RegRead32(APIC_REG_LVT_CMCI));
861 else
862 {
863 SUPR0Printf("CPUM: APIC %02u at %RGp (mapped at %p) - ver %#010x, lint0=%#07x lint1=%#07x pc=%#07x thmr=%#07x cmci=%#07x\n",
864 iCpu, g_aLApics[iCpu].PhysBase, g_aLApics[iCpu].pv, uApicVersion,
865 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_LINT0), ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_LINT1),
866 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_PC), ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_THMR),
867 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_CMCI));
868 if (uApicVersion & 0x80000000)
869 {
870 uint32_t uExtFeatures = ApicRegRead(g_aLApics[iCpu].pv, 0x400);
871 uint32_t cEiLvt = (uExtFeatures >> 16) & 0xff;
872 SUPR0Printf("CPUM: APIC %02u: ExtSpace available. extfeat=%08x eilvt[0..3]=%08x %08x %08x %08x\n",
873 iCpu,
874 ApicRegRead(g_aLApics[iCpu].pv, 0x400),
875 cEiLvt >= 1 ? ApicRegRead(g_aLApics[iCpu].pv, 0x500) : 0,
876 cEiLvt >= 2 ? ApicRegRead(g_aLApics[iCpu].pv, 0x510) : 0,
877 cEiLvt >= 3 ? ApicRegRead(g_aLApics[iCpu].pv, 0x520) : 0,
878 cEiLvt >= 4 ? ApicRegRead(g_aLApics[iCpu].pv, 0x530) : 0);
879 }
880 }
881#endif
882 }
883 else
884 {
885 g_aLApics[iCpu].fEnabled = false;
886 g_aLApics[iCpu].fX2Apic = false;
887 SUPR0Printf("VBox/CPUM: Unsupported APIC version %#x (iCpu=%d)\n", uApicVersion, iCpu);
888 }
889}
890
891
892/**
893 * Map the MMIO page of each local APIC in the system.
894 */
895static int cpumR0MapLocalApics(void)
896{
897 /*
898 * Check that we'll always stay within the array bounds.
899 */
900 if (RTMpGetArraySize() > RT_ELEMENTS(g_aLApics))
901 {
902 LogRel(("CPUM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_aLApics)));
903 return VERR_TOO_MANY_CPUS;
904 }
905
906 /*
907 * Create mappings for all online CPUs we think have legacy APICs.
908 */
909 int rc = RTMpOnAll(cpumR0MapLocalApicCpuProber, NULL, NULL);
910
911 for (unsigned iCpu = 0; RT_SUCCESS(rc) && iCpu < RT_ELEMENTS(g_aLApics); iCpu++)
912 {
913 if (g_aLApics[iCpu].fEnabled && !g_aLApics[iCpu].fX2Apic)
914 {
915 rc = RTR0MemObjEnterPhys(&g_aLApics[iCpu].hMemObj, g_aLApics[iCpu].PhysBase,
916 PAGE_SIZE, RTMEM_CACHE_POLICY_MMIO);
917 if (RT_SUCCESS(rc))
918 {
919 rc = RTR0MemObjMapKernel(&g_aLApics[iCpu].hMapObj, g_aLApics[iCpu].hMemObj, (void *)-1,
920 PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
921 if (RT_SUCCESS(rc))
922 {
923 g_aLApics[iCpu].pv = RTR0MemObjAddress(g_aLApics[iCpu].hMapObj);
924 continue;
925 }
926 RTR0MemObjFree(g_aLApics[iCpu].hMemObj, true /* fFreeMappings */);
927 }
928 g_aLApics[iCpu].fEnabled = false;
929 }
930 g_aLApics[iCpu].pv = NULL;
931 }
932
933 /*
934 * Check the APICs.
935 */
936 if (RT_SUCCESS(rc))
937 rc = RTMpOnAll(cpumR0MapLocalApicCpuChecker, NULL, NULL);
938
939 if (RT_FAILURE(rc))
940 {
941 cpumR0UnmapLocalApics();
942 return rc;
943 }
944
945#ifdef LOG_ENABLED
946 /*
947 * Log the result (pretty useless, requires enabling CPUM in VBoxDrv
948 * and !VBOX_WITH_R0_LOGGING).
949 */
950 if (LogIsEnabled())
951 {
952 uint32_t cEnabled = 0;
953 uint32_t cX2Apics = 0;
954 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_aLApics); iCpu++)
955 if (g_aLApics[iCpu].fEnabled)
956 {
957 cEnabled++;
958 cX2Apics += g_aLApics[iCpu].fX2Apic;
959 }
960 Log(("CPUM: %u APICs, %u X2APICs\n", cEnabled, cX2Apics));
961 }
962#endif
963
964 return VINF_SUCCESS;
965}
966
967
968/**
969 * Unmap the Local APIC of all host CPUs.
970 */
971static void cpumR0UnmapLocalApics(void)
972{
973 for (unsigned iCpu = RT_ELEMENTS(g_aLApics); iCpu-- > 0;)
974 {
975 if (g_aLApics[iCpu].pv)
976 {
977 RTR0MemObjFree(g_aLApics[iCpu].hMapObj, true /* fFreeMappings */);
978 RTR0MemObjFree(g_aLApics[iCpu].hMemObj, true /* fFreeMappings */);
979 g_aLApics[iCpu].hMapObj = NIL_RTR0MEMOBJ;
980 g_aLApics[iCpu].hMemObj = NIL_RTR0MEMOBJ;
981 g_aLApics[iCpu].fEnabled = false;
982 g_aLApics[iCpu].fX2Apic = false;
983 g_aLApics[iCpu].pv = NULL;
984 }
985 }
986}
987
988
989/**
990 * Updates CPUMCPU::pvApicBase and CPUMCPU::fX2Apic prior to world switch.
991 *
992 * Writes the Local APIC mapping address of the current host CPU to CPUMCPU so
993 * the world switchers can access the APIC registers for the purpose of
994 * disabling and re-enabling the NMIs. Must be called with disabled preemption
995 * or disabled interrupts!
996 *
997 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
998 * @param iHostCpuSet The CPU set index of the current host CPU.
999 */
1000VMMR0_INT_DECL(void) CPUMR0SetLApic(PVMCPU pVCpu, uint32_t iHostCpuSet)
1001{
1002 Assert(iHostCpuSet <= RT_ELEMENTS(g_aLApics));
1003 pVCpu->cpum.s.pvApicBase = g_aLApics[iHostCpuSet].pv;
1004 pVCpu->cpum.s.fX2Apic = g_aLApics[iHostCpuSet].fX2Apic;
1005// Log6(("CPUMR0SetLApic: pvApicBase=%p fX2Apic=%d\n", g_aLApics[idxCpu].pv, g_aLApics[idxCpu].fX2Apic));
1006}
1007
1008#endif /* VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI */
1009
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette