VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/GMMR0.cpp@ 16665

Last change on this file since 16665 was 14299, checked in by vboxsync, 16 years ago

Corrected grammos in comments. No code changes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 94.6 KB
Line 
1/* $Id: GMMR0.cpp 14299 2008-11-18 13:25:40Z vboxsync $ */
2/** @file
3 * GMM - Global Memory Manager.
4 */
5
6/*
7 * Copyright (C) 2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_gmm GMM - The Global Memory Manager
24 *
25 * As the name indicates, this component is responsible for global memory
26 * management. Currently only guest RAM is allocated from the GMM, but this
27 * may change to include shadow page tables and other bits later.
28 *
29 * Guest RAM is managed as individual pages, but allocated from the host OS
30 * in chunks for reasons of portability / efficiency. To minimize the memory
31 * footprint all tracking structure must be as small as possible without
32 * unnecessary performance penalties.
33 *
34 * The allocation chunks has fixed sized, the size defined at compile time
35 * by the #GMM_CHUNK_SIZE \#define.
36 *
37 * Each chunk is given an unquie ID. Each page also has a unique ID. The
38 * relation ship between the two IDs is:
39 * @code
40 * GMM_CHUNK_SHIFT = log2(GMM_CHUNK_SIZE / PAGE_SIZE);
41 * idPage = (idChunk << GMM_CHUNK_SHIFT) | iPage;
42 * @endcode
43 * Where iPage is the index of the page within the chunk. This ID scheme
44 * permits for efficient chunk and page lookup, but it relies on the chunk size
45 * to be set at compile time. The chunks are organized in an AVL tree with their
46 * IDs being the keys.
47 *
48 * The physical address of each page in an allocation chunk is maintained by
49 * the #RTR0MEMOBJ and obtained using #RTR0MemObjGetPagePhysAddr. There is no
50 * need to duplicate this information (it'll cost 8-bytes per page if we did).
51 *
52 * So what do we need to track per page? Most importantly we need to know
53 * which state the page is in:
54 * - Private - Allocated for (eventually) backing one particular VM page.
55 * - Shared - Readonly page that is used by one or more VMs and treated
56 * as COW by PGM.
57 * - Free - Not used by anyone.
58 *
59 * For the page replacement operations (sharing, defragmenting and freeing)
60 * to be somewhat efficient, private pages needs to be associated with a
61 * particular page in a particular VM.
62 *
63 * Tracking the usage of shared pages is impractical and expensive, so we'll
64 * settle for a reference counting system instead.
65 *
66 * Free pages will be chained on LIFOs
67 *
68 * On 64-bit systems we will use a 64-bit bitfield per page, while on 32-bit
69 * systems a 32-bit bitfield will have to suffice because of address space
70 * limitations. The #GMMPAGE structure shows the details.
71 *
72 *
73 * @section sec_gmm_alloc_strat Page Allocation Strategy
74 *
75 * The strategy for allocating pages has to take fragmentation and shared
76 * pages into account, or we may end up with with 2000 chunks with only
77 * a few pages in each. Shared pages cannot easily be reallocated because
78 * of the inaccurate usage accounting (see above). Private pages can be
79 * reallocated by a defragmentation thread in the same manner that sharing
80 * is done.
81 *
82 * The first approach is to manage the free pages in two sets depending on
83 * whether they are mainly for the allocation of shared or private pages.
84 * In the initial implementation there will be almost no possibility for
85 * mixing shared and private pages in the same chunk (only if we're really
86 * stressed on memory), but when we implement forking of VMs and have to
87 * deal with lots of COW pages it'll start getting kind of interesting.
88 *
89 * The sets are lists of chunks with approximately the same number of
90 * free pages. Say the chunk size is 1MB, meaning 256 pages, and a set
91 * consists of 16 lists. So, the first list will contain the chunks with
92 * 1-7 free pages, the second covers 8-15, and so on. The chunks will be
93 * moved between the lists as pages are freed up or allocated.
94 *
95 *
96 * @section sec_gmm_costs Costs
97 *
98 * The per page cost in kernel space is 32-bit plus whatever RTR0MEMOBJ
99 * entails. In addition there is the chunk cost of approximately
100 * (sizeof(RT0MEMOBJ) + sizof(CHUNK)) / 2^CHUNK_SHIFT bytes per page.
101 *
102 * On Windows the per page #RTR0MEMOBJ cost is 32-bit on 32-bit windows
103 * and 64-bit on 64-bit windows (a PFN_NUMBER in the MDL). So, 64-bit per page.
104 * The cost on Linux is identical, but here it's because of sizeof(struct page *).
105 *
106 *
107 * @section sec_gmm_legacy Legacy Mode for Non-Tier-1 Platforms
108 *
109 * In legacy mode the page source is locked user pages and not
110 * #RTR0MemObjAllocPhysNC, this means that a page can only be allocated
111 * by the VM that locked it. We will make no attempt at implementing
112 * page sharing on these systems, just do enough to make it all work.
113 *
114 *
115 * @subsection sub_gmm_locking Serializing
116 *
117 * One simple fast mutex will be employed in the initial implementation, not
118 * two as metioned in @ref subsec_pgmPhys_Serializing.
119 *
120 * @see @ref subsec_pgmPhys_Serializing
121 *
122 *
123 * @section sec_gmm_overcommit Memory Over-Commitment Management
124 *
125 * The GVM will have to do the system wide memory over-commitment
126 * management. My current ideas are:
127 * - Per VM oc policy that indicates how much to initially commit
128 * to it and what to do in a out-of-memory situation.
129 * - Prevent overtaxing the host.
130 *
131 * There are some challenges here, the main ones are configurability and
132 * security. Should we for instance permit anyone to request 100% memory
133 * commitment? Who should be allowed to do runtime adjustments of the
134 * config. And how to prevent these settings from being lost when the last
135 * VM process exits? The solution is probably to have an optional root
136 * daemon the will keep VMMR0.r0 in memory and enable the security measures.
137 *
138 *
139 *
140 * @section sec_gmm_numa NUMA
141 *
142 * NUMA considerations will be designed and implemented a bit later.
143 *
144 * The preliminary guesses is that we will have to try allocate memory as
145 * close as possible to the CPUs the VM is executed on (EMT and additional CPU
146 * threads). Which means it's mostly about allocation and sharing policies.
147 * Both the scheduler and allocator interface will to supply some NUMA info
148 * and we'll need to have a way to calc access costs.
149 *
150 */
151
152
153/*******************************************************************************
154* Header Files *
155*******************************************************************************/
156#define LOG_GROUP LOG_GROUP_GMM
157#include <VBox/gmm.h>
158#include "GMMR0Internal.h"
159#include <VBox/gvm.h>
160#include <VBox/log.h>
161#include <VBox/param.h>
162#include <VBox/err.h>
163#include <iprt/avl.h>
164#include <iprt/mem.h>
165#include <iprt/memobj.h>
166#include <iprt/semaphore.h>
167#include <iprt/string.h>
168
169
170/*******************************************************************************
171* Structures and Typedefs *
172*******************************************************************************/
173/** Pointer to set of free chunks. */
174typedef struct GMMCHUNKFREESET *PGMMCHUNKFREESET;
175
176/** Pointer to a GMM allocation chunk. */
177typedef struct GMMCHUNK *PGMMCHUNK;
178
179/**
180 * The per-page tracking structure employed by the GMM.
181 *
182 * On 32-bit hosts we'll some trickery is necessary to compress all
183 * the information into 32-bits. When the fSharedFree member is set,
184 * the 30th bit decides whether it's a free page or not.
185 *
186 * Because of the different layout on 32-bit and 64-bit hosts, macros
187 * are used to get and set some of the data.
188 */
189typedef union GMMPAGE
190{
191#if HC_ARCH_BITS == 64
192 /** Unsigned integer view. */
193 uint64_t u;
194
195 /** The common view. */
196 struct GMMPAGECOMMON
197 {
198 uint32_t uStuff1 : 32;
199 uint32_t uStuff2 : 20;
200 /** The page state. */
201 uint32_t u2State : 2;
202 } Common;
203
204 /** The view of a private page. */
205 struct GMMPAGEPRIVATE
206 {
207 /** The guest page frame number. (Max addressable: 2 ^ 44 - 16) */
208 uint32_t pfn;
209 /** The GVM handle. (64K VMs) */
210 uint32_t hGVM : 16;
211 /** Reserved. */
212 uint32_t u16Reserved : 14;
213 /** The page state. */
214 uint32_t u2State : 2;
215 } Private;
216
217 /** The view of a shared page. */
218 struct GMMPAGESHARED
219 {
220 /** The reference count. */
221 uint32_t cRefs;
222 /** Reserved. Checksum or something? Two hGVMs for forking? */
223 uint32_t u30Reserved : 30;
224 /** The page state. */
225 uint32_t u2State : 2;
226 } Shared;
227
228 /** The view of a free page. */
229 struct GMMPAGEFREE
230 {
231 /** The index of the next page in the free list. UINT16_MAX is NIL. */
232 uint16_t iNext;
233 /** Reserved. Checksum or something? */
234 uint16_t u16Reserved0;
235 /** Reserved. Checksum or something? */
236 uint32_t u30Reserved1 : 30;
237 /** The page state. */
238 uint32_t u2State : 2;
239 } Free;
240
241#else /* 32-bit */
242 /** Unsigned integer view. */
243 uint32_t u;
244
245 /** The common view. */
246 struct GMMPAGECOMMON
247 {
248 uint32_t uStuff : 30;
249 /** The page state. */
250 uint32_t u2State : 2;
251 } Common;
252
253 /** The view of a private page. */
254 struct GMMPAGEPRIVATE
255 {
256 /** The guest page frame number. (Max addressable: 2 ^ 36) */
257 uint32_t pfn : 24;
258 /** The GVM handle. (127 VMs) */
259 uint32_t hGVM : 7;
260 /** The top page state bit, MBZ. */
261 uint32_t fZero : 1;
262 } Private;
263
264 /** The view of a shared page. */
265 struct GMMPAGESHARED
266 {
267 /** The reference count. */
268 uint32_t cRefs : 30;
269 /** The page state. */
270 uint32_t u2State : 2;
271 } Shared;
272
273 /** The view of a free page. */
274 struct GMMPAGEFREE
275 {
276 /** The index of the next page in the free list. UINT16_MAX is NIL. */
277 uint32_t iNext : 16;
278 /** Reserved. Checksum or something? */
279 uint32_t u14Reserved : 14;
280 /** The page state. */
281 uint32_t u2State : 2;
282 } Free;
283#endif
284} GMMPAGE;
285AssertCompileSize(GMMPAGE, sizeof(RTHCUINTPTR));
286/** Pointer to a GMMPAGE. */
287typedef GMMPAGE *PGMMPAGE;
288
289
290/** @name The Page States.
291 * @{ */
292/** A private page. */
293#define GMM_PAGE_STATE_PRIVATE 0
294/** A private page - alternative value used on the 32-bit implemenation.
295 * This will never be used on 64-bit hosts. */
296#define GMM_PAGE_STATE_PRIVATE_32 1
297/** A shared page. */
298#define GMM_PAGE_STATE_SHARED 2
299/** A free page. */
300#define GMM_PAGE_STATE_FREE 3
301/** @} */
302
303
304/** @def GMM_PAGE_IS_PRIVATE
305 *
306 * @returns true if free, false if not.
307 * @param pPage The GMM page.
308 */
309#if HC_ARCH_BITS == 64
310# define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_PRIVATE )
311#else
312# define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Private.fZero == 0 )
313#endif
314
315/** @def GMM_PAGE_IS_FREE
316 *
317 * @returns true if free, false if not.
318 * @param pPage The GMM page.
319 */
320#define GMM_PAGE_IS_SHARED(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_SHARED )
321
322/** @def GMM_PAGE_IS_FREE
323 *
324 * @returns true if free, false if not.
325 * @param pPage The GMM page.
326 */
327#define GMM_PAGE_IS_FREE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_FREE )
328
329/** @def GMM_PAGE_PFN_END
330 * The end of the valid guest pfn range, {0..GMM_PAGE_PFN_END-1}.
331 * @remark Some of the values outside the range has special meaning, see related \#defines.
332 */
333#if HC_ARCH_BITS == 64
334# define GMM_PAGE_PFN_END UINT32_C(0xfffffff0)
335#else
336# define GMM_PAGE_PFN_END UINT32_C(0x00fffff0)
337#endif
338
339/** @def GMM_PAGE_PFN_UNSHAREABLE
340 * Indicates that this page isn't used for normal guest memory and thus isn't shareable.
341 */
342#if HC_ARCH_BITS == 64
343# define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0xfffffff1)
344#else
345# define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0x00fffff1)
346#endif
347
348/** @def GMM_GCPHYS_END
349 * The end of the valid guest physical address as it applies to GMM pages.
350 *
351 * This must reflect the constraints imposed by the RTGCPHYS type and
352 * the guest page frame number used internally in GMMPAGE. */
353#define GMM_GCPHYS_END UINT32_C(0xfffff000)
354
355
356/**
357 * A GMM allocation chunk ring-3 mapping record.
358 *
359 * This should really be associated with a session and not a VM, but
360 * it's simpler to associated with a VM and cleanup with the VM object
361 * is destroyed.
362 */
363typedef struct GMMCHUNKMAP
364{
365 /** The mapping object. */
366 RTR0MEMOBJ MapObj;
367 /** The VM owning the mapping. */
368 PGVM pGVM;
369} GMMCHUNKMAP;
370/** Pointer to a GMM allocation chunk mapping. */
371typedef struct GMMCHUNKMAP *PGMMCHUNKMAP;
372
373
374/**
375 * A GMM allocation chunk.
376 */
377typedef struct GMMCHUNK
378{
379 /** The AVL node core.
380 * The Key is the chunk ID. */
381 AVLU32NODECORE Core;
382 /** The memory object.
383 * Either from RTR0MemObjAllocPhysNC or RTR0MemObjLockUser depending on
384 * what the host can dish up with. */
385 RTR0MEMOBJ MemObj;
386 /** Pointer to the next chunk in the free list. */
387 PGMMCHUNK pFreeNext;
388 /** Pointer to the previous chunk in the free list. */
389 PGMMCHUNK pFreePrev;
390 /** Pointer to the free set this chunk belongs to. NULL for
391 * chunks with no free pages. */
392 PGMMCHUNKFREESET pSet;
393 /** Pointer to an array of mappings. */
394 PGMMCHUNKMAP paMappings;
395 /** The number of mappings. */
396 uint16_t cMappings;
397 /** The head of the list of free pages. UINT16_MAX is the NIL value. */
398 uint16_t iFreeHead;
399 /** The number of free pages. */
400 uint16_t cFree;
401 /** The GVM handle of the VM that first allocated pages from this chunk, this
402 * is used as a preference when there are several chunks to choose from.
403 * When in legacy mode this isn't a preference any longer. */
404 uint16_t hGVM;
405 /** The number of private pages. */
406 uint16_t cPrivate;
407 /** The number of shared pages. */
408 uint16_t cShared;
409#if HC_ARCH_BITS == 64
410 /** Reserved for later. */
411 uint16_t au16Reserved[2];
412#endif
413 /** The pages. */
414 GMMPAGE aPages[GMM_CHUNK_SIZE >> PAGE_SHIFT];
415} GMMCHUNK;
416
417
418/**
419 * An allocation chunk TLB entry.
420 */
421typedef struct GMMCHUNKTLBE
422{
423 /** The chunk id. */
424 uint32_t idChunk;
425 /** Pointer to the chunk. */
426 PGMMCHUNK pChunk;
427} GMMCHUNKTLBE;
428/** Pointer to an allocation chunk TLB entry. */
429typedef GMMCHUNKTLBE *PGMMCHUNKTLBE;
430
431
432/** The number of entries tin the allocation chunk TLB. */
433#define GMM_CHUNKTLB_ENTRIES 32
434/** Gets the TLB entry index for the given Chunk ID. */
435#define GMM_CHUNKTLB_IDX(idChunk) ( (idChunk) & (GMM_CHUNKTLB_ENTRIES - 1) )
436
437/**
438 * An allocation chunk TLB.
439 */
440typedef struct GMMCHUNKTLB
441{
442 /** The TLB entries. */
443 GMMCHUNKTLBE aEntries[GMM_CHUNKTLB_ENTRIES];
444} GMMCHUNKTLB;
445/** Pointer to an allocation chunk TLB. */
446typedef GMMCHUNKTLB *PGMMCHUNKTLB;
447
448
449/** The number of lists in set. */
450#define GMM_CHUNK_FREE_SET_LISTS 16
451/** The GMMCHUNK::cFree shift count. */
452#define GMM_CHUNK_FREE_SET_SHIFT 4
453/** The GMMCHUNK::cFree mask for use when considering relinking a chunk. */
454#define GMM_CHUNK_FREE_SET_MASK 15
455
456/**
457 * A set of free chunks.
458 */
459typedef struct GMMCHUNKFREESET
460{
461 /** The number of free pages in the set. */
462 uint64_t cPages;
463 /** */
464 PGMMCHUNK apLists[GMM_CHUNK_FREE_SET_LISTS];
465} GMMCHUNKFREESET;
466
467
468/**
469 * The GMM instance data.
470 */
471typedef struct GMM
472{
473 /** Magic / eye catcher. GMM_MAGIC */
474 uint32_t u32Magic;
475 /** The fast mutex protecting the GMM.
476 * More fine grained locking can be implemented later if necessary. */
477 RTSEMFASTMUTEX Mtx;
478 /** The chunk tree. */
479 PAVLU32NODECORE pChunks;
480 /** The chunk TLB. */
481 GMMCHUNKTLB ChunkTLB;
482 /** The private free set. */
483 GMMCHUNKFREESET Private;
484 /** The shared free set. */
485 GMMCHUNKFREESET Shared;
486
487 /** The maximum number of pages we're allowed to allocate.
488 * @gcfgm 64-bit GMM/MaxPages Direct.
489 * @gcfgm 32-bit GMM/PctPages Relative to the number of host pages. */
490 uint64_t cMaxPages;
491 /** The number of pages that has been reserved.
492 * The deal is that cReservedPages - cOverCommittedPages <= cMaxPages. */
493 uint64_t cReservedPages;
494 /** The number of pages that we have over-committed in reservations. */
495 uint64_t cOverCommittedPages;
496 /** The number of actually allocated (committed if you like) pages. */
497 uint64_t cAllocatedPages;
498 /** The number of pages that are shared. A subset of cAllocatedPages. */
499 uint64_t cSharedPages;
500 /** The number of pages that are shared that has been left behind by
501 * VMs not doing proper cleanups. */
502 uint64_t cLeftBehindSharedPages;
503 /** The number of allocation chunks.
504 * (The number of pages we've allocated from the host can be derived from this.) */
505 uint32_t cChunks;
506 /** The number of current ballooned pages. */
507 uint64_t cBalloonedPages;
508
509 /** The legacy mode indicator.
510 * This is determined at initialization time. */
511 bool fLegacyMode;
512 /** The number of registered VMs. */
513 uint16_t cRegisteredVMs;
514
515 /** The previous allocated Chunk ID.
516 * Used as a hint to avoid scanning the whole bitmap. */
517 uint32_t idChunkPrev;
518 /** Chunk ID allocation bitmap.
519 * Bits of allocated IDs are set, free ones are cleared.
520 * The NIL id (0) is marked allocated. */
521 uint32_t bmChunkId[(GMM_CHUNKID_LAST + 32) >> 10];
522} GMM;
523/** Pointer to the GMM instance. */
524typedef GMM *PGMM;
525
526/** The value of GMM::u32Magic (Katsuhiro Otomo). */
527#define GMM_MAGIC 0x19540414
528
529
530/*******************************************************************************
531* Global Variables *
532*******************************************************************************/
533/** Pointer to the GMM instance data. */
534static PGMM g_pGMM = NULL;
535
536/** Macro for obtaining and validating the g_pGMM pointer.
537 * On failure it will return from the invoking function with the specified return value.
538 *
539 * @param pGMM The name of the pGMM variable.
540 * @param rc The return value on failure. Use VERR_INTERNAL_ERROR for
541 * VBox status codes.
542 */
543#define GMM_GET_VALID_INSTANCE(pGMM, rc) \
544 do { \
545 (pGMM) = g_pGMM; \
546 AssertPtrReturn((pGMM), (rc)); \
547 AssertMsgReturn((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic), (rc)); \
548 } while (0)
549
550/** Macro for obtaining and validating the g_pGMM pointer, void function variant.
551 * On failure it will return from the invoking function.
552 *
553 * @param pGMM The name of the pGMM variable.
554 */
555#define GMM_GET_VALID_INSTANCE_VOID(pGMM) \
556 do { \
557 (pGMM) = g_pGMM; \
558 AssertPtrReturnVoid((pGMM)); \
559 AssertMsgReturnVoid((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic)); \
560 } while (0)
561
562
563/*******************************************************************************
564* Internal Functions *
565*******************************************************************************/
566static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM);
567static DECLCALLBACK(int) gmmR0CleanupVMScanChunk(PAVLU32NODECORE pNode, void *pvGMM);
568/*static*/ DECLCALLBACK(int) gmmR0CleanupVMDestroyChunk(PAVLU32NODECORE pNode, void *pvGVM);
569DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet);
570DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk);
571static void gmmR0FreeChunk(PGMM pGMM, PGMMCHUNK pChunk);
572static void gmmR0FreeSharedPage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage);
573
574
575
576/**
577 * Initializes the GMM component.
578 *
579 * This is called when the VMMR0.r0 module is loaded and protected by the
580 * loader semaphore.
581 *
582 * @returns VBox status code.
583 */
584GMMR0DECL(int) GMMR0Init(void)
585{
586 LogFlow(("GMMInit:\n"));
587
588 /*
589 * Allocate the instance data and the lock(s).
590 */
591 PGMM pGMM = (PGMM)RTMemAllocZ(sizeof(*pGMM));
592 if (!pGMM)
593 return VERR_NO_MEMORY;
594 pGMM->u32Magic = GMM_MAGIC;
595 for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++)
596 pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID;
597 ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID);
598
599 int rc = RTSemFastMutexCreate(&pGMM->Mtx);
600 if (RT_SUCCESS(rc))
601 {
602 /*
603 * Check and see if RTR0MemObjAllocPhysNC works.
604 */
605#if 0 /* later */
606 RTR0MEMOBJ MemObj;
607 rc = RTR0MemObjAllocPhysNC(&MemObj, _64K, NIL_RTHCPHYS);
608 if (RT_SUCCESS(rc))
609 {
610 rc = RTR0MemObjFree(MemObj, true);
611 AssertRC(rc);
612 }
613 else if (rc == VERR_NOT_SUPPORTED)
614 pGMM->fLegacyMode = true;
615 else
616 SUPR0Printf("GMMR0Init: RTR0MemObjAllocPhysNC(,64K,Any) -> %d!\n", rc);
617#else
618 pGMM->fLegacyMode = true;
619#endif
620
621 g_pGMM = pGMM;
622 LogFlow(("GMMInit: pGMM=%p fLegacy=%RTbool\n", pGMM, pGMM->fLegacyMode));
623 return VINF_SUCCESS;
624 }
625
626 RTMemFree(pGMM);
627 SUPR0Printf("GMMR0Init: failed! rc=%d\n", rc);
628 return rc;
629}
630
631
632/**
633 * Terminates the GMM component.
634 */
635GMMR0DECL(void) GMMR0Term(void)
636{
637 LogFlow(("GMMTerm:\n"));
638
639 /*
640 * Take care / be paranoid...
641 */
642 PGMM pGMM = g_pGMM;
643 if (!VALID_PTR(pGMM))
644 return;
645 if (pGMM->u32Magic != GMM_MAGIC)
646 {
647 SUPR0Printf("GMMR0Term: u32Magic=%#x\n", pGMM->u32Magic);
648 return;
649 }
650
651 /*
652 * Undo what init did and free all the resources we've acquired.
653 */
654 /* Destroy the fundamentals. */
655 g_pGMM = NULL;
656 pGMM->u32Magic++;
657 RTSemFastMutexDestroy(pGMM->Mtx);
658 pGMM->Mtx = NIL_RTSEMFASTMUTEX;
659
660 /* free any chunks still hanging around. */
661 RTAvlU32Destroy(&pGMM->pChunks, gmmR0TermDestroyChunk, pGMM);
662
663 /* finally the instance data itself. */
664 RTMemFree(pGMM);
665 LogFlow(("GMMTerm: done\n"));
666}
667
668
669/**
670 * RTAvlU32Destroy callback.
671 *
672 * @returns 0
673 * @param pNode The node to destroy.
674 * @param pvGMM The GMM handle.
675 */
676static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM)
677{
678 PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
679
680 if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT))
681 SUPR0Printf("GMMR0Term: %p/%#x: cFree=%d cPrivate=%d cShared=%d cMappings=%d\n", pChunk,
682 pChunk->Core.Key, pChunk->cFree, pChunk->cPrivate, pChunk->cShared, pChunk->cMappings);
683
684 int rc = RTR0MemObjFree(pChunk->MemObj, true /* fFreeMappings */);
685 if (RT_FAILURE(rc))
686 {
687 SUPR0Printf("GMMR0Term: %p/%#x: RTRMemObjFree(%p,true) -> %d (cMappings=%d)\n", pChunk,
688 pChunk->Core.Key, pChunk->MemObj, rc, pChunk->cMappings);
689 AssertRC(rc);
690 }
691 pChunk->MemObj = NIL_RTR0MEMOBJ;
692
693 RTMemFree(pChunk->paMappings);
694 pChunk->paMappings = NULL;
695
696 RTMemFree(pChunk);
697 NOREF(pvGMM);
698 return 0;
699}
700
701
702/**
703 * Initializes the per-VM data for the GMM.
704 *
705 * This is called from within the GVMM lock (from GVMMR0CreateVM)
706 * and should only initialize the data members so GMMR0CleanupVM
707 * can deal with them. We reserve no memory or anything here,
708 * that's done later in GMMR0InitVM.
709 *
710 * @param pGVM Pointer to the Global VM structure.
711 */
712GMMR0DECL(void) GMMR0InitPerVMData(PGVM pGVM)
713{
714 AssertCompile(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding));
715 AssertRelease(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding));
716
717 pGVM->gmm.s.enmPolicy = GMMOCPOLICY_INVALID;
718 pGVM->gmm.s.enmPriority = GMMPRIORITY_INVALID;
719 pGVM->gmm.s.fMayAllocate = false;
720}
721
722
723/**
724 * Cleans up when a VM is terminating.
725 *
726 * @param pGVM Pointer to the Global VM structure.
727 */
728GMMR0DECL(void) GMMR0CleanupVM(PGVM pGVM)
729{
730 LogFlow(("GMMR0CleanupVM: pGVM=%p:{.pVM=%p, .hSelf=%#x}\n", pGVM, pGVM->pVM, pGVM->hSelf));
731
732 PGMM pGMM;
733 GMM_GET_VALID_INSTANCE_VOID(pGMM);
734
735 int rc = RTSemFastMutexRequest(pGMM->Mtx);
736 AssertRC(rc);
737
738 /*
739 * The policy is 'INVALID' until the initial reservation
740 * request has been serviced.
741 */
742 if ( pGVM->gmm.s.enmPolicy > GMMOCPOLICY_INVALID
743 || pGVM->gmm.s.enmPolicy < GMMOCPOLICY_END)
744 {
745 /*
746 * If it's the last VM around, we can skip walking all the chunk looking
747 * for the pages owned by this VM and instead flush the whole shebang.
748 *
749 * This takes care of the eventuality that a VM has left shared page
750 * references behind (shouldn't happen of course, but you never know).
751 */
752 Assert(pGMM->cRegisteredVMs);
753 pGMM->cRegisteredVMs--;
754#if 0 /* disabled so it won't hide bugs. */
755 if (!pGMM->cRegisteredVMs)
756 {
757 RTAvlU32Destroy(&pGMM->pChunks, gmmR0CleanupVMDestroyChunk, pGMM);
758
759 for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++)
760 {
761 pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID;
762 pGMM->ChunkTLB.aEntries[i].pChunk = NULL;
763 }
764
765 memset(&pGMM->Private, 0, sizeof(pGMM->Private));
766 memset(&pGMM->Shared, 0, sizeof(pGMM->Shared));
767
768 memset(&pGMM->bmChunkId[0], 0, sizeof(pGMM->bmChunkId));
769 ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID);
770
771 pGMM->cReservedPages = 0;
772 pGMM->cOverCommittedPages = 0;
773 pGMM->cAllocatedPages = 0;
774 pGMM->cSharedPages = 0;
775 pGMM->cLeftBehindSharedPages = 0;
776 pGMM->cChunks = 0;
777 pGMM->cBalloonedPages = 0;
778 }
779 else
780#endif
781 {
782 /*
783 * Walk the entire pool looking for pages that belongs to this VM
784 * and left over mappings. (This'll only catch private pages, shared
785 * pages will be 'left behind'.)
786 */
787 uint64_t cPrivatePages = pGVM->gmm.s.cPrivatePages; /* save */
788 RTAvlU32DoWithAll(&pGMM->pChunks, true /* fFromLeft */, gmmR0CleanupVMScanChunk, pGVM);
789 if (pGVM->gmm.s.cPrivatePages)
790 SUPR0Printf("GMMR0CleanupVM: hGVM=%#x has %#x private pages that cannot be found!\n", pGVM->hSelf, pGVM->gmm.s.cPrivatePages);
791 pGMM->cAllocatedPages -= cPrivatePages;
792
793 /* free empty chunks. */
794 if (cPrivatePages)
795 {
796 PGMMCHUNK pCur = pGMM->Private.apLists[RT_ELEMENTS(pGMM->Private.apLists) - 1];
797 while (pCur)
798 {
799 PGMMCHUNK pNext = pCur->pFreeNext;
800 if ( pCur->cFree == GMM_CHUNK_NUM_PAGES
801 && (!pGMM->fLegacyMode || pCur->hGVM == pGVM->hSelf))
802 gmmR0FreeChunk(pGMM, pCur);
803 pCur = pNext;
804 }
805 }
806
807 /* account for shared pages that weren't freed. */
808 if (pGVM->gmm.s.cSharedPages)
809 {
810 Assert(pGMM->cSharedPages >= pGVM->gmm.s.cSharedPages);
811 SUPR0Printf("GMMR0CleanupVM: hGVM=%#x left %#x shared pages behind!\n", pGVM->hSelf, pGVM->gmm.s.cSharedPages);
812 pGMM->cLeftBehindSharedPages += pGVM->gmm.s.cSharedPages;
813 }
814
815 /*
816 * Update the over-commitment management statistics.
817 */
818 pGMM->cReservedPages -= pGVM->gmm.s.Reserved.cBasePages
819 + pGVM->gmm.s.Reserved.cFixedPages
820 + pGVM->gmm.s.Reserved.cShadowPages;
821 switch (pGVM->gmm.s.enmPolicy)
822 {
823 case GMMOCPOLICY_NO_OC:
824 break;
825 default:
826 /** @todo Update GMM->cOverCommittedPages */
827 break;
828 }
829 }
830 }
831
832 /* zap the GVM data. */
833 pGVM->gmm.s.enmPolicy = GMMOCPOLICY_INVALID;
834 pGVM->gmm.s.enmPriority = GMMPRIORITY_INVALID;
835 pGVM->gmm.s.fMayAllocate = false;
836
837 RTSemFastMutexRelease(pGMM->Mtx);
838
839 LogFlow(("GMMR0CleanupVM: returns\n"));
840}
841
842
843/**
844 * RTAvlU32DoWithAll callback.
845 *
846 * @returns 0
847 * @param pNode The node to search.
848 * @param pvGVM Pointer to the shared VM structure.
849 */
850static DECLCALLBACK(int) gmmR0CleanupVMScanChunk(PAVLU32NODECORE pNode, void *pvGVM)
851{
852 PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
853 PGVM pGVM = (PGVM)pvGVM;
854
855 /*
856 * Look for pages belonging to the VM.
857 * (Perform some internal checks while we're scanning.)
858 */
859#ifndef VBOX_STRICT
860 if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT))
861#endif
862 {
863 unsigned cPrivate = 0;
864 unsigned cShared = 0;
865 unsigned cFree = 0;
866
867 uint16_t hGVM = pGVM->hSelf;
868 unsigned iPage = (GMM_CHUNK_SIZE >> PAGE_SHIFT);
869 while (iPage-- > 0)
870 if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage]))
871 {
872 if (pChunk->aPages[iPage].Private.hGVM == hGVM)
873 {
874 /*
875 * Free the page.
876 *
877 * The reason for not using gmmR0FreePrivatePage here is that we
878 * must *not* cause the chunk to be freed from under us - we're in
879 * a AVL tree walk here.
880 */
881 pChunk->aPages[iPage].u = 0;
882 pChunk->aPages[iPage].Free.iNext = pChunk->iFreeHead;
883 pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE;
884 pChunk->iFreeHead = iPage;
885 pChunk->cPrivate--;
886 if ((pChunk->cFree & GMM_CHUNK_FREE_SET_MASK) == 0)
887 {
888 gmmR0UnlinkChunk(pChunk);
889 pChunk->cFree++;
890 gmmR0LinkChunk(pChunk, pChunk->cShared ? &g_pGMM->Shared : &g_pGMM->Private);
891 }
892 else
893 pChunk->cFree++;
894 pGVM->gmm.s.cPrivatePages--;
895 cFree++;
896 }
897 else
898 cPrivate++;
899 }
900 else if (GMM_PAGE_IS_FREE(&pChunk->aPages[iPage]))
901 cFree++;
902 else
903 cShared++;
904
905 /*
906 * Did it add up?
907 */
908 if (RT_UNLIKELY( pChunk->cFree != cFree
909 || pChunk->cPrivate != cPrivate
910 || pChunk->cShared != cShared))
911 {
912 SUPR0Printf("gmmR0CleanupVMScanChunk: Chunk %p/%#x has bogus stats - free=%d/%d private=%d/%d shared=%d/%d\n",
913 pChunk->cFree, cFree, pChunk->cPrivate, cPrivate, pChunk->cShared, cShared);
914 pChunk->cFree = cFree;
915 pChunk->cPrivate = cPrivate;
916 pChunk->cShared = cShared;
917 }
918 }
919
920 /*
921 * Look for the mapping belonging to the terminating VM.
922 */
923 for (unsigned i = 0; i < pChunk->cMappings; i++)
924 if (pChunk->paMappings[i].pGVM == pGVM)
925 {
926 RTR0MEMOBJ MemObj = pChunk->paMappings[i].MapObj;
927
928 pChunk->cMappings--;
929 if (i < pChunk->cMappings)
930 pChunk->paMappings[i] = pChunk->paMappings[pChunk->cMappings];
931 pChunk->paMappings[pChunk->cMappings].pGVM = NULL;
932 pChunk->paMappings[pChunk->cMappings].MapObj = NIL_RTR0MEMOBJ;
933
934 int rc = RTR0MemObjFree(MemObj, false /* fFreeMappings (NA) */);
935 if (RT_FAILURE(rc))
936 {
937 SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: mapping #%x: RTRMemObjFree(%p,false) -> %d \n",
938 pChunk, pChunk->Core.Key, i, MemObj, rc);
939 AssertRC(rc);
940 }
941 break;
942 }
943
944 /*
945 * If not in legacy mode, we should reset the hGVM field
946 * if it has our handle in it.
947 */
948 if (pChunk->hGVM == pGVM->hSelf)
949 {
950 if (!g_pGMM->fLegacyMode)
951 pChunk->hGVM = NIL_GVM_HANDLE;
952 else if (pChunk->cFree != GMM_CHUNK_NUM_PAGES)
953 {
954 SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: cFree=%#x - it should be 0 in legacy mode!\n",
955 pChunk, pChunk->Core.Key, pChunk->cFree);
956 AssertMsgFailed(("%p/%#x: cFree=%#x - it should be 0 in legacy mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree));
957
958 gmmR0UnlinkChunk(pChunk);
959 pChunk->cFree = GMM_CHUNK_NUM_PAGES;
960 gmmR0LinkChunk(pChunk, pChunk->cShared ? &g_pGMM->Shared : &g_pGMM->Private);
961 }
962 }
963
964 return 0;
965}
966
967
968/**
969 * RTAvlU32Destroy callback for GMMR0CleanupVM.
970 *
971 * @returns 0
972 * @param pNode The node (allocation chunk) to destroy.
973 * @param pvGVM Pointer to the shared VM structure.
974 */
975/*static*/ DECLCALLBACK(int) gmmR0CleanupVMDestroyChunk(PAVLU32NODECORE pNode, void *pvGVM)
976{
977 PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
978 PGVM pGVM = (PGVM)pvGVM;
979
980 for (unsigned i = 0; i < pChunk->cMappings; i++)
981 {
982 if (pChunk->paMappings[i].pGVM != pGVM)
983 SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: mapping #%x: pGVM=%p exepcted %p\n", pChunk,
984 pChunk->Core.Key, i, pChunk->paMappings[i].pGVM, pGVM);
985 int rc = RTR0MemObjFree(pChunk->paMappings[i].MapObj, false /* fFreeMappings (NA) */);
986 if (RT_FAILURE(rc))
987 {
988 SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: mapping #%x: RTRMemObjFree(%p,false) -> %d \n", pChunk,
989 pChunk->Core.Key, i, pChunk->paMappings[i].MapObj, rc);
990 AssertRC(rc);
991 }
992 }
993
994 int rc = RTR0MemObjFree(pChunk->MemObj, true /* fFreeMappings */);
995 if (RT_FAILURE(rc))
996 {
997 SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: RTRMemObjFree(%p,true) -> %d (cMappings=%d)\n", pChunk,
998 pChunk->Core.Key, pChunk->MemObj, rc, pChunk->cMappings);
999 AssertRC(rc);
1000 }
1001 pChunk->MemObj = NIL_RTR0MEMOBJ;
1002
1003 RTMemFree(pChunk->paMappings);
1004 pChunk->paMappings = NULL;
1005
1006 RTMemFree(pChunk);
1007 return 0;
1008}
1009
1010
1011/**
1012 * The initial resource reservations.
1013 *
1014 * This will make memory reservations according to policy and priority. If there isn't
1015 * sufficient resources available to sustain the VM this function will fail and all
1016 * future allocations requests will fail as well.
1017 *
1018 * These are just the initial reservations made very very early during the VM creation
1019 * process and will be adjusted later in the GMMR0UpdateReservation call after the
1020 * ring-3 init has completed.
1021 *
1022 * @returns VBox status code.
1023 * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED
1024 * @retval VERR_GMM_
1025 *
1026 * @param pVM Pointer to the shared VM structure.
1027 * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs.
1028 * This does not include MMIO2 and similar.
1029 * @param cShadowPages The number of pages that may be allocated for shadow pageing structures.
1030 * @param cFixedPages The number of pages that may be allocated for fixed objects like the
1031 * hyper heap, MMIO2 and similar.
1032 * @param enmPolicy The OC policy to use on this VM.
1033 * @param enmPriority The priority in an out-of-memory situation.
1034 *
1035 * @thread The creator thread / EMT.
1036 */
1037GMMR0DECL(int) GMMR0InitialReservation(PVM pVM, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages,
1038 GMMOCPOLICY enmPolicy, GMMPRIORITY enmPriority)
1039{
1040 LogFlow(("GMMR0InitialReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x enmPolicy=%d enmPriority=%d\n",
1041 pVM, cBasePages, cShadowPages, cFixedPages, enmPolicy, enmPriority));
1042
1043 /*
1044 * Validate, get basics and take the semaphore.
1045 */
1046 PGMM pGMM;
1047 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
1048 PGVM pGVM = GVMMR0ByVM(pVM);
1049 if (!pGVM)
1050 return VERR_INVALID_PARAMETER;
1051 if (pGVM->hEMT != RTThreadNativeSelf())
1052 return VERR_NOT_OWNER;
1053
1054 AssertReturn(cBasePages, VERR_INVALID_PARAMETER);
1055 AssertReturn(cShadowPages, VERR_INVALID_PARAMETER);
1056 AssertReturn(cFixedPages, VERR_INVALID_PARAMETER);
1057 AssertReturn(enmPolicy > GMMOCPOLICY_INVALID && enmPolicy < GMMOCPOLICY_END, VERR_INVALID_PARAMETER);
1058 AssertReturn(enmPriority > GMMPRIORITY_INVALID && enmPriority < GMMPRIORITY_END, VERR_INVALID_PARAMETER);
1059
1060 int rc = RTSemFastMutexRequest(pGMM->Mtx);
1061 AssertRC(rc);
1062
1063 if ( !pGVM->gmm.s.Reserved.cBasePages
1064 && !pGVM->gmm.s.Reserved.cFixedPages
1065 && !pGVM->gmm.s.Reserved.cShadowPages)
1066 {
1067 /*
1068 * Check if we can accomodate this.
1069 */
1070 /* ... later ... */
1071 if (RT_SUCCESS(rc))
1072 {
1073 /*
1074 * Update the records.
1075 */
1076 pGVM->gmm.s.Reserved.cBasePages = cBasePages;
1077 pGVM->gmm.s.Reserved.cFixedPages = cFixedPages;
1078 pGVM->gmm.s.Reserved.cShadowPages = cShadowPages;
1079 pGVM->gmm.s.enmPolicy = enmPolicy;
1080 pGVM->gmm.s.enmPriority = enmPriority;
1081 pGVM->gmm.s.fMayAllocate = true;
1082
1083 pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages;
1084 pGMM->cRegisteredVMs++;
1085 }
1086 }
1087 else
1088 rc = VERR_WRONG_ORDER;
1089
1090 RTSemFastMutexRelease(pGMM->Mtx);
1091 LogFlow(("GMMR0InitialReservation: returns %Rrc\n", rc));
1092 return rc;
1093}
1094
1095
1096/**
1097 * VMMR0 request wrapper for GMMR0InitialReservation.
1098 *
1099 * @returns see GMMR0InitialReservation.
1100 * @param pVM Pointer to the shared VM structure.
1101 * @param pReq The request packet.
1102 */
1103GMMR0DECL(int) GMMR0InitialReservationReq(PVM pVM, PGMMINITIALRESERVATIONREQ pReq)
1104{
1105 /*
1106 * Validate input and pass it on.
1107 */
1108 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1109 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
1110 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
1111
1112 return GMMR0InitialReservation(pVM, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages, pReq->enmPolicy, pReq->enmPriority);
1113}
1114
1115
1116/**
1117 * This updates the memory reservation with the additional MMIO2 and ROM pages.
1118 *
1119 * @returns VBox status code.
1120 * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED
1121 *
1122 * @param pVM Pointer to the shared VM structure.
1123 * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs.
1124 * This does not include MMIO2 and similar.
1125 * @param cShadowPages The number of pages that may be allocated for shadow pageing structures.
1126 * @param cFixedPages The number of pages that may be allocated for fixed objects like the
1127 * hyper heap, MMIO2 and similar.
1128 *
1129 * @thread EMT.
1130 */
1131GMMR0DECL(int) GMMR0UpdateReservation(PVM pVM, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages)
1132{
1133 LogFlow(("GMMR0UpdateReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x\n",
1134 pVM, cBasePages, cShadowPages, cFixedPages));
1135
1136 /*
1137 * Validate, get basics and take the semaphore.
1138 */
1139 PGMM pGMM;
1140 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
1141 PGVM pGVM = GVMMR0ByVM(pVM);
1142 if (!pGVM)
1143 return VERR_INVALID_PARAMETER;
1144 if (pGVM->hEMT != RTThreadNativeSelf())
1145 return VERR_NOT_OWNER;
1146
1147 AssertReturn(cBasePages, VERR_INVALID_PARAMETER);
1148 AssertReturn(cShadowPages, VERR_INVALID_PARAMETER);
1149 AssertReturn(cFixedPages, VERR_INVALID_PARAMETER);
1150
1151 int rc = RTSemFastMutexRequest(pGMM->Mtx);
1152 AssertRC(rc);
1153
1154 if ( pGVM->gmm.s.Reserved.cBasePages
1155 && pGVM->gmm.s.Reserved.cFixedPages
1156 && pGVM->gmm.s.Reserved.cShadowPages)
1157 {
1158 /*
1159 * Check if we can accomodate this.
1160 */
1161 /* ... later ... */
1162 if (RT_SUCCESS(rc))
1163 {
1164 /*
1165 * Update the records.
1166 */
1167 pGMM->cReservedPages -= pGVM->gmm.s.Reserved.cBasePages
1168 + pGVM->gmm.s.Reserved.cFixedPages
1169 + pGVM->gmm.s.Reserved.cShadowPages;
1170 pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages;
1171
1172 pGVM->gmm.s.Reserved.cBasePages = cBasePages;
1173 pGVM->gmm.s.Reserved.cFixedPages = cFixedPages;
1174 pGVM->gmm.s.Reserved.cShadowPages = cShadowPages;
1175 }
1176 }
1177 else
1178 rc = VERR_WRONG_ORDER;
1179
1180 RTSemFastMutexRelease(pGMM->Mtx);
1181 LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc));
1182 return rc;
1183}
1184
1185
1186/**
1187 * VMMR0 request wrapper for GMMR0UpdateReservation.
1188 *
1189 * @returns see GMMR0UpdateReservation.
1190 * @param pVM Pointer to the shared VM structure.
1191 * @param pReq The request packet.
1192 */
1193GMMR0DECL(int) GMMR0UpdateReservationReq(PVM pVM, PGMMUPDATERESERVATIONREQ pReq)
1194{
1195 /*
1196 * Validate input and pass it on.
1197 */
1198 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1199 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
1200 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
1201
1202 return GMMR0UpdateReservation(pVM, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages);
1203}
1204
1205
1206/**
1207 * Looks up a chunk in the tree and fill in the TLB entry for it.
1208 *
1209 * This is not expected to fail and will bitch if it does.
1210 *
1211 * @returns Pointer to the allocation chunk, NULL if not found.
1212 * @param pGMM Pointer to the GMM instance.
1213 * @param idChunk The ID of the chunk to find.
1214 * @param pTlbe Pointer to the TLB entry.
1215 */
1216static PGMMCHUNK gmmR0GetChunkSlow(PGMM pGMM, uint32_t idChunk, PGMMCHUNKTLBE pTlbe)
1217{
1218 PGMMCHUNK pChunk = (PGMMCHUNK)RTAvlU32Get(&pGMM->pChunks, idChunk);
1219 AssertMsgReturn(pChunk, ("Chunk %#x not found!\n", idChunk), NULL);
1220 pTlbe->idChunk = idChunk;
1221 pTlbe->pChunk = pChunk;
1222 return pChunk;
1223}
1224
1225
1226/**
1227 * Finds a allocation chunk.
1228 *
1229 * This is not expected to fail and will bitch if it does.
1230 *
1231 * @returns Pointer to the allocation chunk, NULL if not found.
1232 * @param pGMM Pointer to the GMM instance.
1233 * @param idChunk The ID of the chunk to find.
1234 */
1235DECLINLINE(PGMMCHUNK) gmmR0GetChunk(PGMM pGMM, uint32_t idChunk)
1236{
1237 /*
1238 * Do a TLB lookup, branch if not in the TLB.
1239 */
1240 PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(idChunk)];
1241 if ( pTlbe->idChunk != idChunk
1242 || !pTlbe->pChunk)
1243 return gmmR0GetChunkSlow(pGMM, idChunk, pTlbe);
1244 return pTlbe->pChunk;
1245}
1246
1247
1248/**
1249 * Finds a page.
1250 *
1251 * This is not expected to fail and will bitch if it does.
1252 *
1253 * @returns Pointer to the page, NULL if not found.
1254 * @param pGMM Pointer to the GMM instance.
1255 * @param idPage The ID of the page to find.
1256 */
1257DECLINLINE(PGMMPAGE) gmmR0GetPage(PGMM pGMM, uint32_t idPage)
1258{
1259 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
1260 if (RT_LIKELY(pChunk))
1261 return &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK];
1262 return NULL;
1263}
1264
1265
1266/**
1267 * Unlinks the chunk from the free list it's currently on (if any).
1268 *
1269 * @param pChunk The allocation chunk.
1270 */
1271DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk)
1272{
1273 PGMMCHUNKFREESET pSet = pChunk->pSet;
1274 if (RT_LIKELY(pSet))
1275 {
1276 pSet->cPages -= pChunk->cFree;
1277
1278 PGMMCHUNK pPrev = pChunk->pFreePrev;
1279 PGMMCHUNK pNext = pChunk->pFreeNext;
1280 if (pPrev)
1281 pPrev->pFreeNext = pNext;
1282 else
1283 pSet->apLists[(pChunk->cFree - 1) >> GMM_CHUNK_FREE_SET_SHIFT] = pNext;
1284 if (pNext)
1285 pNext->pFreePrev = pPrev;
1286
1287 pChunk->pSet = NULL;
1288 pChunk->pFreeNext = NULL;
1289 pChunk->pFreePrev = NULL;
1290 }
1291 else
1292 {
1293 Assert(!pChunk->pFreeNext);
1294 Assert(!pChunk->pFreePrev);
1295 Assert(!pChunk->cFree);
1296 }
1297}
1298
1299
1300/**
1301 * Links the chunk onto the appropriate free list in the specified free set.
1302 *
1303 * If no free entries, it's not linked into any list.
1304 *
1305 * @param pChunk The allocation chunk.
1306 * @param pSet The free set.
1307 */
1308DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet)
1309{
1310 Assert(!pChunk->pSet);
1311 Assert(!pChunk->pFreeNext);
1312 Assert(!pChunk->pFreePrev);
1313
1314 if (pChunk->cFree > 0)
1315 {
1316 pChunk->pFreePrev = NULL;
1317 unsigned iList = (pChunk->cFree - 1) >> GMM_CHUNK_FREE_SET_SHIFT;
1318 pChunk->pFreeNext = pSet->apLists[iList];
1319 pSet->apLists[iList] = pChunk;
1320
1321 pSet->cPages += pChunk->cFree;
1322 }
1323}
1324
1325
1326/**
1327 * Frees a Chunk ID.
1328 *
1329 * @param pGMM Pointer to the GMM instance.
1330 * @param idChunk The Chunk ID to free.
1331 */
1332static void gmmR0FreeChunkId(PGMM pGMM, uint32_t idChunk)
1333{
1334 Assert(idChunk != NIL_GMM_CHUNKID);
1335 Assert(ASMBitTest(&pGMM->bmChunkId[0], idChunk));
1336 ASMAtomicBitClear(&pGMM->bmChunkId[0], idChunk);
1337}
1338
1339
1340/**
1341 * Allocates a new Chunk ID.
1342 *
1343 * @returns The Chunk ID.
1344 * @param pGMM Pointer to the GMM instance.
1345 */
1346static uint32_t gmmR0AllocateChunkId(PGMM pGMM)
1347{
1348 AssertCompile(!((GMM_CHUNKID_LAST + 1) & 31)); /* must be a multiple of 32 */
1349 AssertCompile(NIL_GMM_CHUNKID == 0);
1350
1351 /*
1352 * Try the next sequential one.
1353 */
1354 int32_t idChunk = ++pGMM->idChunkPrev;
1355#if 0 /* test the fallback first */
1356 if ( idChunk <= GMM_CHUNKID_LAST
1357 && idChunk > NIL_GMM_CHUNKID
1358 && !ASMAtomicBitTestAndSet(&pVMM->bmChunkId[0], idChunk))
1359 return idChunk;
1360#endif
1361
1362 /*
1363 * Scan sequentially from the last one.
1364 */
1365 if ( (uint32_t)idChunk < GMM_CHUNKID_LAST
1366 && idChunk > NIL_GMM_CHUNKID)
1367 {
1368 idChunk = ASMBitNextClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1, idChunk);
1369 if (idChunk > NIL_GMM_CHUNKID)
1370 return pGMM->idChunkPrev = idChunk;
1371 }
1372
1373 /*
1374 * Ok, scan from the start.
1375 * We're not racing anyone, so there is no need to expect failures or have restart loops.
1376 */
1377 idChunk = ASMBitFirstClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1);
1378 AssertMsgReturn(idChunk > NIL_GMM_CHUNKID, ("%d\n", idChunk), NIL_GVM_HANDLE);
1379 AssertMsgReturn(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%d\n", idChunk), NIL_GVM_HANDLE);
1380
1381 return pGMM->idChunkPrev = idChunk;
1382}
1383
1384
1385/**
1386 * Registers a new chunk of memory.
1387 *
1388 * This is called by both gmmR0AllocateOneChunk and GMMR0SeedChunk.
1389 *
1390 * @returns VBox status code.
1391 * @param pGMM Pointer to the GMM instance.
1392 * @param pSet Pointer to the set.
1393 * @param MemObj The memory object for the chunk.
1394 * @param hGVM The hGVM value. (Only used by GMMR0SeedChunk.)
1395 */
1396static int gmmR0RegisterChunk(PGMM pGMM, PGMMCHUNKFREESET pSet, RTR0MEMOBJ MemObj, uint16_t hGVM)
1397{
1398 int rc;
1399 PGMMCHUNK pChunk = (PGMMCHUNK)RTMemAllocZ(sizeof(*pChunk));
1400 if (pChunk)
1401 {
1402 /*
1403 * Initialize it.
1404 */
1405 pChunk->MemObj = MemObj;
1406 pChunk->cFree = GMM_CHUNK_NUM_PAGES;
1407 pChunk->hGVM = hGVM;
1408 pChunk->iFreeHead = 0;
1409 for (unsigned iPage = 0; iPage < RT_ELEMENTS(pChunk->aPages) - 1; iPage++)
1410 {
1411 pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE;
1412 pChunk->aPages[iPage].Free.iNext = iPage + 1;
1413 }
1414 pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.u2State = GMM_PAGE_STATE_FREE;
1415 pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.iNext = UINT16_MAX;
1416
1417 /*
1418 * Allocate a Chunk ID and insert it into the tree.
1419 * It doesn't cost anything to be careful here.
1420 */
1421 pChunk->Core.Key = gmmR0AllocateChunkId(pGMM);
1422 if ( pChunk->Core.Key != NIL_GMM_CHUNKID
1423 && pChunk->Core.Key <= GMM_CHUNKID_LAST
1424 && RTAvlU32Insert(&pGMM->pChunks, &pChunk->Core))
1425 {
1426 pGMM->cChunks++;
1427 gmmR0LinkChunk(pChunk, pSet);
1428 return VINF_SUCCESS;
1429 }
1430
1431 rc = VERR_INTERNAL_ERROR;
1432 RTMemFree(pChunk);
1433 }
1434 else
1435 rc = VERR_NO_MEMORY;
1436 return rc;
1437}
1438
1439
1440/**
1441 * Allocate one new chunk and add it to the specified free set.
1442 *
1443 * @returns VBox status code.
1444 * @param pGMM Pointer to the GMM instance.
1445 * @param pSet Pointer to the set.
1446 */
1447static int gmmR0AllocateOneChunk(PGMM pGMM, PGMMCHUNKFREESET pSet)
1448{
1449 /*
1450 * Allocate the memory.
1451 */
1452 RTR0MEMOBJ MemObj;
1453 int rc = RTR0MemObjAllocPhysNC(&MemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS);
1454 if (RT_SUCCESS(rc))
1455 {
1456 rc = gmmR0RegisterChunk(pGMM, pSet, MemObj, NIL_GVM_HANDLE);
1457 if (RT_FAILURE(rc))
1458 RTR0MemObjFree(MemObj, false /* fFreeMappings */);
1459 }
1460 return rc;
1461}
1462
1463
1464/**
1465 * Attempts to allocate more pages until the requested amount is met.
1466 *
1467 * @returns VBox status code.
1468 * @param pGMM Pointer to the GMM instance data.
1469 * @param pSet Pointer to the free set to grow.
1470 * @param cPages The number of pages needed.
1471 */
1472static int gmmR0AllocateMoreChunks(PGMM pGMM, PGMMCHUNKFREESET pSet, uint32_t cPages)
1473{
1474 Assert(!pGMM->fLegacyMode);
1475
1476 /*
1477 * Try steal free chunks from the other set first. (Only take 100% free chunks.)
1478 */
1479 PGMMCHUNKFREESET pOtherSet = pSet == &pGMM->Private ? &pGMM->Shared : &pGMM->Private;
1480 while ( pSet->cPages < cPages
1481 && pOtherSet->cPages >= GMM_CHUNK_NUM_PAGES)
1482 {
1483 PGMMCHUNK pChunk = pOtherSet->apLists[GMM_CHUNK_FREE_SET_LISTS - 1];
1484 while (pChunk && pChunk->cFree != GMM_CHUNK_NUM_PAGES)
1485 pChunk = pChunk->pFreeNext;
1486 if (!pChunk)
1487 break;
1488
1489 gmmR0UnlinkChunk(pChunk);
1490 gmmR0LinkChunk(pChunk, pSet);
1491 }
1492
1493 /*
1494 * If we need still more pages, allocate new chunks.
1495 */
1496 while (pSet->cPages < cPages)
1497 {
1498 int rc = gmmR0AllocateOneChunk(pGMM, pSet);
1499 if (RT_FAILURE(rc))
1500 return rc;
1501 }
1502
1503 return VINF_SUCCESS;
1504}
1505
1506
1507/**
1508 * Allocates one page.
1509 *
1510 * Worker for gmmR0AllocatePages.
1511 *
1512 * @param pGMM Pointer to the GMM instance data.
1513 * @param hGVM The GVM handle of the VM requesting memory.
1514 * @param pChunk The chunk to allocate it from.
1515 * @param pPageDesc The page descriptor.
1516 */
1517static void gmmR0AllocatePage(PGMM pGMM, uint32_t hGVM, PGMMCHUNK pChunk, PGMMPAGEDESC pPageDesc)
1518{
1519 /* update the chunk stats. */
1520 if (pChunk->hGVM == NIL_GVM_HANDLE)
1521 pChunk->hGVM = hGVM;
1522 Assert(pChunk->cFree);
1523 pChunk->cFree--;
1524
1525 /* unlink the first free page. */
1526 const uint32_t iPage = pChunk->iFreeHead;
1527 AssertReleaseMsg(iPage < RT_ELEMENTS(pChunk->aPages), ("%d\n", iPage));
1528 PGMMPAGE pPage = &pChunk->aPages[iPage];
1529 Assert(GMM_PAGE_IS_FREE(pPage));
1530 pChunk->iFreeHead = pPage->Free.iNext;
1531
1532 /* make the page private. */
1533 pPage->u = 0;
1534 AssertCompile(GMM_PAGE_STATE_PRIVATE == 0);
1535 pPage->Private.hGVM = hGVM;
1536 AssertCompile(NIL_RTHCPHYS >= GMM_GCPHYS_END);
1537 AssertCompile(GMM_GCPHYS_UNSHAREABLE >= GMM_GCPHYS_END);
1538 if (pPageDesc->HCPhysGCPhys < GMM_GCPHYS_END)
1539 pPage->Private.pfn = pPageDesc->HCPhysGCPhys >> PAGE_SHIFT;
1540 else
1541 pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */
1542
1543 /* update the page descriptor. */
1544 pPageDesc->HCPhysGCPhys = RTR0MemObjGetPagePhysAddr(pChunk->MemObj, iPage);
1545 Assert(pPageDesc->HCPhysGCPhys != NIL_RTHCPHYS);
1546 pPageDesc->idPage = (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage;
1547 pPageDesc->idSharedPage = NIL_GMM_PAGEID;
1548}
1549
1550
1551/**
1552 * Common worker for GMMR0AllocateHandyPages and GMMR0AllocatePages.
1553 *
1554 * @returns VBox status code:
1555 * @retval xxx
1556 *
1557 * @param pGMM Pointer to the GMM instance data.
1558 * @param pGVM Pointer to the shared VM structure.
1559 * @param cPages The number of pages to allocate.
1560 * @param paPages Pointer to the page descriptors.
1561 * See GMMPAGEDESC for details on what is expected on input.
1562 * @param enmAccount The account to charge.
1563 */
1564static int gmmR0AllocatePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount)
1565{
1566 /*
1567 * Check allocation limits.
1568 */
1569 if (RT_UNLIKELY(pGMM->cAllocatedPages + cPages > pGMM->cMaxPages))
1570 return VERR_GMM_HIT_GLOBAL_LIMIT;
1571
1572 switch (enmAccount)
1573 {
1574 case GMMACCOUNT_BASE:
1575 if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cBasePages + cPages > pGVM->gmm.s.Reserved.cBasePages))
1576 {
1577 Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n",
1578 pGVM->gmm.s.Reserved.cBasePages, pGVM->gmm.s.Allocated.cBasePages, cPages));
1579 return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
1580 }
1581 break;
1582 case GMMACCOUNT_SHADOW:
1583 if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cShadowPages + cPages > pGVM->gmm.s.Reserved.cShadowPages))
1584 {
1585 Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n",
1586 pGVM->gmm.s.Reserved.cShadowPages, pGVM->gmm.s.Allocated.cShadowPages, cPages));
1587 return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
1588 }
1589 break;
1590 case GMMACCOUNT_FIXED:
1591 if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cFixedPages + cPages > pGVM->gmm.s.Reserved.cFixedPages))
1592 {
1593 Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n",
1594 pGVM->gmm.s.Reserved.cFixedPages, pGVM->gmm.s.Allocated.cFixedPages, cPages));
1595 return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
1596 }
1597 break;
1598 default:
1599 AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR);
1600 }
1601
1602 /*
1603 * Check if we need to allocate more memory or not. In legacy mode this is
1604 * a bit extra work but it's easier to do it upfront than bailing out later.
1605 */
1606 PGMMCHUNKFREESET pSet = &pGMM->Private;
1607 if (pSet->cPages < cPages)
1608 {
1609 if (pGMM->fLegacyMode)
1610 return VERR_GMM_SEED_ME;
1611
1612 int rc = gmmR0AllocateMoreChunks(pGMM, pSet, cPages);
1613 if (RT_FAILURE(rc))
1614 return rc;
1615 Assert(pSet->cPages >= cPages);
1616 }
1617 else if (pGMM->fLegacyMode)
1618 {
1619 uint16_t hGVM = pGVM->hSelf;
1620 uint32_t cPagesFound = 0;
1621 for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists); i++)
1622 for (PGMMCHUNK pCur = pSet->apLists[i]; pCur; pCur = pCur->pFreeNext)
1623 if (pCur->hGVM == hGVM)
1624 {
1625 cPagesFound += pCur->cFree;
1626 if (cPagesFound >= cPages)
1627 break;
1628 }
1629 if (cPagesFound < cPages)
1630 return VERR_GMM_SEED_ME;
1631 }
1632
1633 /*
1634 * Pick the pages.
1635 */
1636 uint16_t hGVM = pGVM->hSelf;
1637 uint32_t iPage = 0;
1638 for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists) && iPage < cPages; i++)
1639 {
1640 /* first round, pick from chunks with an affinity to the VM. */
1641 PGMMCHUNK pCur = pSet->apLists[i];
1642 while (pCur && iPage < cPages)
1643 {
1644 PGMMCHUNK pNext = pCur->pFreeNext;
1645
1646 if ( pCur->hGVM == hGVM
1647 && ( pCur->cFree < GMM_CHUNK_NUM_PAGES
1648 || pGMM->fLegacyMode))
1649 {
1650 gmmR0UnlinkChunk(pCur);
1651 for (; pCur->cFree && iPage < cPages; iPage++)
1652 gmmR0AllocatePage(pGMM, hGVM, pCur, &paPages[iPage]);
1653 gmmR0LinkChunk(pCur, pSet);
1654 }
1655
1656 pCur = pNext;
1657 }
1658
1659 /* second round, take all free pages in this list. */
1660 if (!pGMM->fLegacyMode)
1661 {
1662 PGMMCHUNK pCur = pSet->apLists[i];
1663 while (pCur && iPage < cPages)
1664 {
1665 PGMMCHUNK pNext = pCur->pFreeNext;
1666
1667 gmmR0UnlinkChunk(pCur);
1668 for (; pCur->cFree && iPage < cPages; iPage++)
1669 gmmR0AllocatePage(pGMM, hGVM, pCur, &paPages[iPage]);
1670 gmmR0LinkChunk(pCur, pSet);
1671
1672 pCur = pNext;
1673 }
1674 }
1675 }
1676
1677 /*
1678 * Update the account.
1679 */
1680 switch (enmAccount)
1681 {
1682 case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages += iPage;
1683 case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages += iPage;
1684 case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages += iPage;
1685 default:
1686 AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR);
1687 }
1688 pGVM->gmm.s.cPrivatePages += iPage;
1689 pGMM->cAllocatedPages += iPage;
1690
1691 AssertMsgReturn(iPage == cPages, ("%d != %d\n", iPage, cPages), VERR_INTERNAL_ERROR);
1692
1693 /*
1694 * Check if we've reached some threshold and should kick one or two VMs and tell
1695 * them to inflate their balloons a bit more... later.
1696 */
1697
1698 return VINF_SUCCESS;
1699}
1700
1701
1702/**
1703 * Updates the previous allocations and allocates more pages.
1704 *
1705 * The handy pages are always taken from the 'base' memory account.
1706 *
1707 * @returns VBox status code:
1708 * @retval xxx
1709 *
1710 * @param pVM Pointer to the shared VM structure.
1711 * @param cPagesToUpdate The number of pages to update (starting from the head).
1712 * @param cPagesToAlloc The number of pages to allocate (starting from the head).
1713 * @param paPages The array of page descriptors.
1714 * See GMMPAGEDESC for details on what is expected on input.
1715 * @thread EMT.
1716 */
1717GMMR0DECL(int) GMMR0AllocateHandyPages(PVM pVM, uint32_t cPagesToUpdate, uint32_t cPagesToAlloc, PGMMPAGEDESC paPages)
1718{
1719 LogFlow(("GMMR0AllocateHandyPages: pVM=%p cPagesToUpdate=%#x cPagesToAlloc=%#x paPages=%p\n",
1720 pVM, cPagesToUpdate, cPagesToAlloc, paPages));
1721
1722 /*
1723 * Validate, get basics and take the semaphore.
1724 * (This is a relatively busy path, so make predictions where possible.)
1725 */
1726 PGMM pGMM;
1727 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
1728 PGVM pGVM = GVMMR0ByVM(pVM);
1729 if (RT_UNLIKELY(!pGVM))
1730 return VERR_INVALID_PARAMETER;
1731 if (RT_UNLIKELY(pGVM->hEMT != RTThreadNativeSelf()))
1732 return VERR_NOT_OWNER;
1733
1734 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
1735 AssertMsgReturn( (cPagesToUpdate && cPagesToUpdate < 1024)
1736 || (cPagesToAlloc && cPagesToAlloc < 1024),
1737 ("cPagesToUpdate=%#x cPagesToAlloc=%#x\n", cPagesToUpdate, cPagesToAlloc),
1738 VERR_INVALID_PARAMETER);
1739
1740 unsigned iPage = 0;
1741 for (; iPage < cPagesToUpdate; iPage++)
1742 {
1743 AssertMsgReturn( ( paPages[iPage].HCPhysGCPhys < GMM_GCPHYS_END
1744 && !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK))
1745 || paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS
1746 || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE,
1747 ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys),
1748 VERR_INVALID_PARAMETER);
1749 AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
1750 /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
1751 ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
1752 AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
1753 /*|| paPages[iPage].idSharedPage == NIL_GMM_PAGEID*/,
1754 ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
1755 }
1756
1757 for (; iPage < cPagesToAlloc; iPage++)
1758 {
1759 AssertMsgReturn(paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER);
1760 AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
1761 AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
1762 }
1763
1764 int rc = RTSemFastMutexRequest(pGMM->Mtx);
1765 AssertRC(rc);
1766
1767 /* No allocations before the initial reservation has been made! */
1768 if (RT_LIKELY( pGVM->gmm.s.Reserved.cBasePages
1769 && pGVM->gmm.s.Reserved.cFixedPages
1770 && pGVM->gmm.s.Reserved.cShadowPages))
1771 {
1772 /*
1773 * Perform the updates.
1774 * Stop on the first error.
1775 */
1776 for (iPage = 0; iPage < cPagesToUpdate; iPage++)
1777 {
1778 if (paPages[iPage].idPage != NIL_GMM_PAGEID)
1779 {
1780 PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idPage);
1781 if (RT_LIKELY(pPage))
1782 {
1783 if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage)))
1784 {
1785 if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf))
1786 {
1787 AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_END && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_END);
1788 if (RT_LIKELY(paPages[iPage].HCPhysGCPhys < GMM_GCPHYS_END))
1789 pPage->Private.pfn = paPages[iPage].HCPhysGCPhys >> PAGE_SHIFT;
1790 else if (paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE)
1791 pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE;
1792 /* else: NIL_RTHCPHYS nothing */
1793
1794 paPages[iPage].idPage = NIL_GMM_PAGEID;
1795 paPages[iPage].HCPhysGCPhys = NIL_RTHCPHYS;
1796 }
1797 else
1798 {
1799 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not owner! hGVM=%#x hSelf=%#x\n",
1800 iPage, paPages[iPage].idPage, pPage->Private.hGVM, pGVM->hSelf));
1801 rc = VERR_GMM_NOT_PAGE_OWNER;
1802 break;
1803 }
1804 }
1805 else
1806 {
1807 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not private!\n", iPage, paPages[iPage].idPage));
1808 rc = VERR_GMM_PAGE_NOT_PRIVATE;
1809 break;
1810 }
1811 }
1812 else
1813 {
1814 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (private)\n", iPage, paPages[iPage].idPage));
1815 rc = VERR_GMM_PAGE_NOT_FOUND;
1816 break;
1817 }
1818 }
1819
1820 if (paPages[iPage].idSharedPage != NIL_GMM_PAGEID)
1821 {
1822 PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idSharedPage);
1823 if (RT_LIKELY(pPage))
1824 {
1825 if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage)))
1826 {
1827 AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_END && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_END);
1828 Assert(pPage->Shared.cRefs);
1829 Assert(pGVM->gmm.s.cSharedPages);
1830 Assert(pGVM->gmm.s.Allocated.cBasePages);
1831
1832 pGVM->gmm.s.cSharedPages--;
1833 pGVM->gmm.s.Allocated.cBasePages--;
1834 if (!--pPage->Shared.cRefs)
1835 gmmR0FreeSharedPage(pGMM, paPages[iPage].idSharedPage, pPage);
1836
1837 paPages[iPage].idSharedPage = NIL_GMM_PAGEID;
1838 }
1839 else
1840 {
1841 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not shared!\n", iPage, paPages[iPage].idSharedPage));
1842 rc = VERR_GMM_PAGE_NOT_SHARED;
1843 break;
1844 }
1845 }
1846 else
1847 {
1848 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (shared)\n", iPage, paPages[iPage].idSharedPage));
1849 rc = VERR_GMM_PAGE_NOT_FOUND;
1850 break;
1851 }
1852 }
1853 }
1854
1855 /*
1856 * Join paths with GMMR0AllocatePages for the allocation.
1857 */
1858 if (RT_SUCCESS(rc))
1859 rc = gmmR0AllocatePages(pGMM, pGVM, cPagesToAlloc, paPages, GMMACCOUNT_BASE);
1860 }
1861 else
1862 rc = VERR_WRONG_ORDER;
1863
1864 RTSemFastMutexRelease(pGMM->Mtx);
1865 LogFlow(("GMMR0AllocateHandyPages: returns %Rrc\n", rc));
1866 return rc;
1867}
1868
1869
1870/**
1871 * Allocate one or more pages.
1872 *
1873 * This is typically used for ROMs and MMIO2 (VRAM) during VM creation.
1874 *
1875 * @returns VBox status code:
1876 * @retval xxx
1877 *
1878 * @param pVM Pointer to the shared VM structure.
1879 * @param cPages The number of pages to allocate.
1880 * @param paPages Pointer to the page descriptors.
1881 * See GMMPAGEDESC for details on what is expected on input.
1882 * @param enmAccount The account to charge.
1883 *
1884 * @thread EMT.
1885 */
1886GMMR0DECL(int) GMMR0AllocatePages(PVM pVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount)
1887{
1888 LogFlow(("GMMR0AllocatePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount));
1889
1890 /*
1891 * Validate, get basics and take the semaphore.
1892 */
1893 PGMM pGMM;
1894 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
1895 PGVM pGVM = GVMMR0ByVM(pVM);
1896 if (!pGVM)
1897 return VERR_INVALID_PARAMETER;
1898 if (pGVM->hEMT != RTThreadNativeSelf())
1899 return VERR_NOT_OWNER;
1900
1901 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
1902 AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER);
1903 AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
1904
1905 for (unsigned iPage = 0; iPage < cPages; iPage++)
1906 {
1907 AssertMsgReturn( paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS
1908 || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE
1909 || ( enmAccount == GMMACCOUNT_BASE
1910 && paPages[iPage].HCPhysGCPhys < GMM_GCPHYS_END
1911 && !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK)),
1912 ("#%#x: %RHp enmAccount=%d\n", iPage, paPages[iPage].HCPhysGCPhys, enmAccount),
1913 VERR_INVALID_PARAMETER);
1914 AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
1915 AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
1916 }
1917
1918 int rc = RTSemFastMutexRequest(pGMM->Mtx);
1919 AssertRC(rc);
1920
1921 /* No allocations before the initial reservation has been made! */
1922 if ( pGVM->gmm.s.Reserved.cBasePages
1923 && pGVM->gmm.s.Reserved.cFixedPages
1924 && pGVM->gmm.s.Reserved.cShadowPages)
1925 rc = gmmR0AllocatePages(pGMM, pGVM, cPages, paPages, enmAccount);
1926 else
1927 rc = VERR_WRONG_ORDER;
1928
1929 RTSemFastMutexRelease(pGMM->Mtx);
1930 LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc));
1931 return rc;
1932}
1933
1934
1935/**
1936 * VMMR0 request wrapper for GMMR0AllocatePages.
1937 *
1938 * @returns see GMMR0AllocatePages.
1939 * @param pVM Pointer to the shared VM structure.
1940 * @param pReq The request packet.
1941 */
1942GMMR0DECL(int) GMMR0AllocatePagesReq(PVM pVM, PGMMALLOCATEPAGESREQ pReq)
1943{
1944 /*
1945 * Validate input and pass it on.
1946 */
1947 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1948 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
1949 AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0]),
1950 ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0])),
1951 VERR_INVALID_PARAMETER);
1952 AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages]),
1953 ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages])),
1954 VERR_INVALID_PARAMETER);
1955
1956 return GMMR0AllocatePages(pVM, pReq->cPages, &pReq->aPages[0], pReq->enmAccount);
1957}
1958
1959
1960/**
1961 * Frees a chunk, giving it back to the host OS.
1962 *
1963 * @param pGMM Pointer to the GMM instance.
1964 * @param pChunk The chunk to free.
1965 */
1966static void gmmR0FreeChunk(PGMM pGMM, PGMMCHUNK pChunk)
1967{
1968 /*
1969 * If there are current mappings of the chunk, then request the
1970 * VMs to unmap them. Reposition the chunk in the free list so
1971 * it won't be a likely candidate for allocations.
1972 */
1973 if (pChunk->cMappings)
1974 {
1975 /** @todo R0 -> VM request */
1976
1977 }
1978 else
1979 {
1980 /*
1981 * Try free the memory object.
1982 */
1983 int rc = RTR0MemObjFree(pChunk->MemObj, false /* fFreeMappings */);
1984 if (RT_SUCCESS(rc))
1985 {
1986 pChunk->MemObj = NIL_RTR0MEMOBJ;
1987
1988 /*
1989 * Unlink it from everywhere.
1990 */
1991 gmmR0UnlinkChunk(pChunk);
1992
1993 PAVLU32NODECORE pCore = RTAvlU32Remove(&pGMM->pChunks, pChunk->Core.Key);
1994 Assert(pCore == &pChunk->Core); NOREF(pCore);
1995
1996 PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(pCore->Key)];
1997 if (pTlbe->pChunk == pChunk)
1998 {
1999 pTlbe->idChunk = NIL_GMM_CHUNKID;
2000 pTlbe->pChunk = NULL;
2001 }
2002
2003 Assert(pGMM->cChunks > 0);
2004 pGMM->cChunks--;
2005
2006 /*
2007 * Free the Chunk ID and struct.
2008 */
2009 gmmR0FreeChunkId(pGMM, pChunk->Core.Key);
2010 pChunk->Core.Key = NIL_GMM_CHUNKID;
2011
2012 RTMemFree(pChunk->paMappings);
2013 pChunk->paMappings = NULL;
2014
2015 RTMemFree(pChunk);
2016 }
2017 else
2018 AssertRC(rc);
2019 }
2020}
2021
2022
2023/**
2024 * Free page worker.
2025 *
2026 * The caller does all the statistic decrementing, we do all the incrementing.
2027 *
2028 * @param pGMM Pointer to the GMM instance data.
2029 * @param pChunk Pointer to the chunk this page belongs to.
2030 * @param pPage Pointer to the page.
2031 */
2032static void gmmR0FreePageWorker(PGMM pGMM, PGMMCHUNK pChunk, PGMMPAGE pPage)
2033{
2034 /*
2035 * Put the page on the free list.
2036 */
2037 pPage->u = 0;
2038 pPage->Free.u2State = GMM_PAGE_STATE_FREE;
2039 Assert(pChunk->iFreeHead < RT_ELEMENTS(pChunk->aPages) || pChunk->iFreeHead == UINT16_MAX);
2040 pPage->Free.iNext = pChunk->iFreeHead;
2041 pChunk->iFreeHead = pPage - &pChunk->aPages[0];
2042
2043 /*
2044 * Update statistics (the cShared/cPrivate stats are up to date already),
2045 * and relink the chunk if necessary.
2046 */
2047 if ((pChunk->cFree & GMM_CHUNK_FREE_SET_MASK) == 0)
2048 {
2049 gmmR0UnlinkChunk(pChunk);
2050 pChunk->cFree++;
2051 gmmR0LinkChunk(pChunk, pChunk->cShared ? &pGMM->Shared : &pGMM->Private);
2052 }
2053 else
2054 {
2055 pChunk->cFree++;
2056 pChunk->pSet->cPages++;
2057
2058 /*
2059 * If the chunk becomes empty, consider giving memory back to the host OS.
2060 *
2061 * The current strategy is to try give it back if there are other chunks
2062 * in this free list, meaning if there are at least 240 free pages in this
2063 * category. Note that since there are probably mappings of the chunk,
2064 * it won't be freed up instantly, which probably screws up this logic
2065 * a bit...
2066 */
2067 if (RT_UNLIKELY( pChunk->cFree == GMM_CHUNK_NUM_PAGES
2068 && pChunk->pFreeNext
2069 && pChunk->pFreePrev))
2070 gmmR0FreeChunk(pGMM, pChunk);
2071 }
2072}
2073
2074
2075/**
2076 * Frees a shared page, the page is known to exist and be valid and such.
2077 *
2078 * @param pGMM Pointer to the GMM instance.
2079 * @param idPage The Page ID
2080 * @param pPage The page structure.
2081 */
2082DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage)
2083{
2084 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
2085 Assert(pChunk);
2086 Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
2087 Assert(pChunk->cShared > 0);
2088 Assert(pGMM->cSharedPages > 0);
2089 Assert(pGMM->cAllocatedPages > 0);
2090 Assert(!pPage->Shared.cRefs);
2091
2092 pChunk->cShared--;
2093 pGMM->cAllocatedPages--;
2094 pGMM->cSharedPages--;
2095 gmmR0FreePageWorker(pGMM, pChunk, pPage);
2096}
2097
2098
2099/**
2100 * Frees a private page, the page is known to exist and be valid and such.
2101 *
2102 * @param pGMM Pointer to the GMM instance.
2103 * @param idPage The Page ID
2104 * @param pPage The page structure.
2105 */
2106DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage)
2107{
2108 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
2109 Assert(pChunk);
2110 Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
2111 Assert(pChunk->cPrivate > 0);
2112 Assert(pGMM->cAllocatedPages > 0);
2113
2114 pChunk->cPrivate--;
2115 pGMM->cAllocatedPages--;
2116 gmmR0FreePageWorker(pGMM, pChunk, pPage);
2117}
2118
2119
2120/**
2121 * Common worker for GMMR0FreePages and GMMR0BalloonedPages.
2122 *
2123 * @returns VBox status code:
2124 * @retval xxx
2125 *
2126 * @param pGMM Pointer to the GMM instance data.
2127 * @param pGVM Pointer to the shared VM structure.
2128 * @param cPages The number of pages to free.
2129 * @param paPages Pointer to the page descriptors.
2130 * @param enmAccount The account this relates to.
2131 */
2132static int gmmR0FreePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount)
2133{
2134 /*
2135 * Check that the request isn't impossible wrt to the account status.
2136 */
2137 switch (enmAccount)
2138 {
2139 case GMMACCOUNT_BASE:
2140 if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cBasePages < cPages))
2141 {
2142 Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cBasePages, cPages));
2143 return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
2144 }
2145 break;
2146 case GMMACCOUNT_SHADOW:
2147 if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cShadowPages < cPages))
2148 {
2149 Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cShadowPages, cPages));
2150 return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
2151 }
2152 break;
2153 case GMMACCOUNT_FIXED:
2154 if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cFixedPages < cPages))
2155 {
2156 Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cFixedPages, cPages));
2157 return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
2158 }
2159 break;
2160 default:
2161 AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR);
2162 }
2163
2164 /*
2165 * Walk the descriptors and free the pages.
2166 *
2167 * Statistics (except the account) are being updated as we go along,
2168 * unlike the alloc code. Also, stop on the first error.
2169 */
2170 int rc = VINF_SUCCESS;
2171 uint32_t iPage;
2172 for (iPage = 0; iPage < cPages; iPage++)
2173 {
2174 uint32_t idPage = paPages[iPage].idPage;
2175 PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage);
2176 if (RT_LIKELY(pPage))
2177 {
2178 if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage)))
2179 {
2180 if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf))
2181 {
2182 Assert(pGVM->gmm.s.cPrivatePages);
2183 pGVM->gmm.s.cPrivatePages--;
2184 gmmR0FreePrivatePage(pGMM, idPage, pPage);
2185 }
2186 else
2187 {
2188 Log(("gmmR0AllocatePages: #%#x/%#x: not owner! hGVM=%#x hSelf=%#x\n", iPage, idPage,
2189 pPage->Private.hGVM, pGVM->hEMT));
2190 rc = VERR_GMM_NOT_PAGE_OWNER;
2191 break;
2192 }
2193 }
2194 else if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage)))
2195 {
2196 Assert(pGVM->gmm.s.cSharedPages);
2197 pGVM->gmm.s.cSharedPages--;
2198 Assert(pPage->Shared.cRefs);
2199 if (!--pPage->Shared.cRefs)
2200 gmmR0FreeSharedPage(pGMM, idPage, pPage);
2201 }
2202 else
2203 {
2204 Log(("gmmR0AllocatePages: #%#x/%#x: already free!\n", iPage, idPage));
2205 rc = VERR_GMM_PAGE_ALREADY_FREE;
2206 break;
2207 }
2208 }
2209 else
2210 {
2211 Log(("gmmR0AllocatePages: #%#x/%#x: not found!\n", iPage, idPage));
2212 rc = VERR_GMM_PAGE_NOT_FOUND;
2213 break;
2214 }
2215 paPages[iPage].idPage = NIL_GMM_PAGEID;
2216 }
2217
2218 /*
2219 * Update the account.
2220 */
2221 switch (enmAccount)
2222 {
2223 case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages -= iPage;
2224 case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages -= iPage;
2225 case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages -= iPage;
2226 default:
2227 AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR);
2228 }
2229
2230 /*
2231 * Any threshold stuff to be done here?
2232 */
2233
2234 return rc;
2235}
2236
2237
2238/**
2239 * Free one or more pages.
2240 *
2241 * This is typically used at reset time or power off.
2242 *
2243 * @returns VBox status code:
2244 * @retval xxx
2245 *
2246 * @param pVM Pointer to the shared VM structure.
2247 * @param cPages The number of pages to allocate.
2248 * @param paPages Pointer to the page descriptors containing the Page IDs for each page.
2249 * @param enmAccount The account this relates to.
2250 * @thread EMT.
2251 */
2252GMMR0DECL(int) GMMR0FreePages(PVM pVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount)
2253{
2254 LogFlow(("GMMR0FreePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount));
2255
2256 /*
2257 * Validate input and get the basics.
2258 */
2259 PGMM pGMM;
2260 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
2261 PGVM pGVM = GVMMR0ByVM(pVM);
2262 if (!pGVM)
2263 return VERR_INVALID_PARAMETER;
2264 if (pGVM->hEMT != RTThreadNativeSelf())
2265 return VERR_NOT_OWNER;
2266
2267 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
2268 AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER);
2269 AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
2270
2271 for (unsigned iPage = 0; iPage < cPages; iPage++)
2272 AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
2273 /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
2274 ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
2275
2276 /*
2277 * Take the semaphore and call the worker function.
2278 */
2279 int rc = RTSemFastMutexRequest(pGMM->Mtx);
2280 AssertRC(rc);
2281
2282 rc = gmmR0FreePages(pGMM, pGVM, cPages, paPages, enmAccount);
2283
2284 RTSemFastMutexRelease(pGMM->Mtx);
2285 LogFlow(("GMMR0FreePages: returns %Rrc\n", rc));
2286 return rc;
2287}
2288
2289
2290/**
2291 * VMMR0 request wrapper for GMMR0FreePages.
2292 *
2293 * @returns see GMMR0FreePages.
2294 * @param pVM Pointer to the shared VM structure.
2295 * @param pReq The request packet.
2296 */
2297GMMR0DECL(int) GMMR0FreePagesReq(PVM pVM, PGMMFREEPAGESREQ pReq)
2298{
2299 /*
2300 * Validate input and pass it on.
2301 */
2302 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
2303 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2304 AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0]),
2305 ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0])),
2306 VERR_INVALID_PARAMETER);
2307 AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages]),
2308 ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages])),
2309 VERR_INVALID_PARAMETER);
2310
2311 return GMMR0FreePages(pVM, pReq->cPages, &pReq->aPages[0], pReq->enmAccount);
2312}
2313
2314
2315/**
2316 * Report back on a memory ballooning request.
2317 *
2318 * The request may or may not have been initiated by the GMM. If it was initiated
2319 * by the GMM it is important that this function is called even if no pages was
2320 * ballooned.
2321 *
2322 * Since the whole purpose of ballooning is to free up guest RAM pages, this API
2323 * may also be given a set of related pages to be freed. These pages are assumed
2324 * to be on the base account.
2325 *
2326 * @returns VBox status code:
2327 * @retval xxx
2328 *
2329 * @param pVM Pointer to the shared VM structure.
2330 * @param cBalloonedPages The number of pages that was ballooned.
2331 * @param cPagesToFree The number of pages to be freed.
2332 * @param paPages Pointer to the page descriptors for the pages that's to be freed.
2333 * @param fCompleted Indicates whether the ballooning request was completed (true) or
2334 * if there is more pages to come (false). If the ballooning was not
2335 * not triggered by the GMM, don't set this.
2336 * @thread EMT.
2337 */
2338GMMR0DECL(int) GMMR0BalloonedPages(PVM pVM, uint32_t cBalloonedPages, uint32_t cPagesToFree, PGMMFREEPAGEDESC paPages, bool fCompleted)
2339{
2340 LogFlow(("GMMR0BalloonedPages: pVM=%p cBalloonedPages=%#x cPagestoFree=%#x paPages=%p enmAccount=%d fCompleted=%RTbool\n",
2341 pVM, cBalloonedPages, cPagesToFree, paPages, fCompleted));
2342
2343 /*
2344 * Validate input and get the basics.
2345 */
2346 PGMM pGMM;
2347 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
2348 PGVM pGVM = GVMMR0ByVM(pVM);
2349 if (!pGVM)
2350 return VERR_INVALID_PARAMETER;
2351 if (pGVM->hEMT != RTThreadNativeSelf())
2352 return VERR_NOT_OWNER;
2353
2354 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
2355 AssertMsgReturn(cBalloonedPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cBalloonedPages), VERR_INVALID_PARAMETER);
2356 AssertMsgReturn(cPagesToFree <= cBalloonedPages, ("%#x\n", cPagesToFree), VERR_INVALID_PARAMETER);
2357
2358 for (unsigned iPage = 0; iPage < cPagesToFree; iPage++)
2359 AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
2360 /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
2361 ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
2362
2363 /*
2364 * Take the sempahore and do some more validations.
2365 */
2366 int rc = RTSemFastMutexRequest(pGMM->Mtx);
2367 AssertRC(rc);
2368 if (pGVM->gmm.s.Allocated.cBasePages >= cPagesToFree)
2369 {
2370 /*
2371 * Record the ballooned memory.
2372 */
2373 pGMM->cBalloonedPages += cBalloonedPages;
2374 if (pGVM->gmm.s.cReqBalloonedPages)
2375 {
2376 pGVM->gmm.s.cBalloonedPages += cBalloonedPages;
2377 pGVM->gmm.s.cReqActuallyBalloonedPages += cBalloonedPages;
2378 if (fCompleted)
2379 {
2380 Log(("GMMR0BalloonedPages: +%#x - Global=%#llx; / VM: Total=%#llx Req=%#llx Actual=%#llx (completed)\n", cBalloonedPages,
2381 pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqBalloonedPages, pGVM->gmm.s.cReqActuallyBalloonedPages));
2382
2383 /*
2384 * Anything we need to do here now when the request has been completed?
2385 */
2386 pGVM->gmm.s.cReqBalloonedPages = 0;
2387 }
2388 else
2389 Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx Req=%#llx Actual=%#llx (pending)\n", cBalloonedPages,
2390 pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqBalloonedPages, pGVM->gmm.s.cReqActuallyBalloonedPages));
2391 }
2392 else
2393 {
2394 pGVM->gmm.s.cBalloonedPages += cBalloonedPages;
2395 Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx (user)\n",
2396 cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages));
2397 }
2398
2399 /*
2400 * Any pages to free?
2401 */
2402 if (cPagesToFree)
2403 rc = gmmR0FreePages(pGMM, pGVM, cPagesToFree, paPages, GMMACCOUNT_BASE);
2404 }
2405 else
2406 {
2407 rc = VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
2408 }
2409
2410 RTSemFastMutexRelease(pGMM->Mtx);
2411 LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc));
2412 return rc;
2413}
2414
2415
2416/**
2417 * VMMR0 request wrapper for GMMR0BalloonedPages.
2418 *
2419 * @returns see GMMR0BalloonedPages.
2420 * @param pVM Pointer to the shared VM structure.
2421 * @param pReq The request packet.
2422 */
2423GMMR0DECL(int) GMMR0BalloonedPagesReq(PVM pVM, PGMMBALLOONEDPAGESREQ pReq)
2424{
2425 /*
2426 * Validate input and pass it on.
2427 */
2428 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
2429 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2430 AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[0]),
2431 ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[0])),
2432 VERR_INVALID_PARAMETER);
2433 AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[pReq->cPagesToFree]),
2434 ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[pReq->cPagesToFree])),
2435 VERR_INVALID_PARAMETER);
2436
2437 return GMMR0BalloonedPages(pVM, pReq->cBalloonedPages, pReq->cPagesToFree, &pReq->aPages[0], pReq->fCompleted);
2438}
2439
2440
2441/**
2442 * Report balloon deflating.
2443 *
2444 * @returns VBox status code:
2445 * @retval xxx
2446 *
2447 * @param pVM Pointer to the shared VM structure.
2448 * @param cPages The number of pages that was let out of the balloon.
2449 * @thread EMT.
2450 */
2451GMMR0DECL(int) GMMR0DeflatedBalloon(PVM pVM, uint32_t cPages)
2452{
2453 LogFlow(("GMMR0DeflatedBalloon: pVM=%p cPages=%#x\n", pVM, cPages));
2454
2455 /*
2456 * Validate input and get the basics.
2457 */
2458 PGMM pGMM;
2459 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
2460 PGVM pGVM = GVMMR0ByVM(pVM);
2461 if (!pGVM)
2462 return VERR_INVALID_PARAMETER;
2463 if (pGVM->hEMT != RTThreadNativeSelf())
2464 return VERR_NOT_OWNER;
2465
2466 AssertMsgReturn(cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
2467
2468 /*
2469 * Take the sempahore and do some more validations.
2470 */
2471 int rc = RTSemFastMutexRequest(pGMM->Mtx);
2472 AssertRC(rc);
2473
2474 if (pGVM->gmm.s.cBalloonedPages < cPages)
2475 {
2476 Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.cBalloonedPages);
2477
2478 /*
2479 * Record it.
2480 */
2481 pGMM->cBalloonedPages -= cPages;
2482 pGVM->gmm.s.cBalloonedPages -= cPages;
2483 if (pGVM->gmm.s.cReqDeflatePages)
2484 {
2485 Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx Req=%#llx\n", cPages,
2486 pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqDeflatePages));
2487
2488 /*
2489 * Anything we need to do here now when the request has been completed?
2490 */
2491 pGVM->gmm.s.cReqDeflatePages = 0;
2492 }
2493 else
2494 Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx\n", cPages,
2495 pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages));
2496 }
2497 else
2498 {
2499 Log(("GMMR0DeflatedBalloon: cBalloonedPages=%#llx cPages=%#x\n", pGVM->gmm.s.cBalloonedPages, cPages));
2500 rc = VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH;
2501 }
2502
2503 RTSemFastMutexRelease(pGMM->Mtx);
2504 LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc));
2505 return rc;
2506}
2507
2508
2509/**
2510 * Unmaps a chunk previously mapped into the address space of the current process.
2511 *
2512 * @returns VBox status code.
2513 * @param pGMM Pointer to the GMM instance data.
2514 * @param pGVM Pointer to the Global VM structure.
2515 * @param pChunk Pointer to the chunk to be unmapped.
2516 */
2517static int gmmR0UnmapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk)
2518{
2519 /*
2520 * Find the mapping and try unmapping it.
2521 */
2522 for (uint32_t i = 0; i < pChunk->cMappings; i++)
2523 {
2524 Assert(pChunk->paMappings[i].pGVM && pChunk->paMappings[i].MapObj != NIL_RTR0MEMOBJ);
2525 if (pChunk->paMappings[i].pGVM == pGVM)
2526 {
2527 /* unmap */
2528 int rc = RTR0MemObjFree(pChunk->paMappings[i].MapObj, false /* fFreeMappings (NA) */);
2529 if (RT_SUCCESS(rc))
2530 {
2531 /* update the record. */
2532 pChunk->cMappings--;
2533 if (i < pChunk->cMappings)
2534 pChunk->paMappings[i] = pChunk->paMappings[pChunk->cMappings];
2535 pChunk->paMappings[pChunk->cMappings].MapObj = NIL_RTR0MEMOBJ;
2536 pChunk->paMappings[pChunk->cMappings].pGVM = NULL;
2537 }
2538 return rc;
2539 }
2540 }
2541
2542 Log(("gmmR0MapChunk: Chunk %#x is not mapped into pGVM=%p/%#x\n", pChunk->Core.Key, pGVM, pGVM->hSelf));
2543 return VERR_GMM_CHUNK_NOT_MAPPED;
2544}
2545
2546
2547/**
2548 * Maps a chunk into the user address space of the current process.
2549 *
2550 * @returns VBox status code.
2551 * @param pGMM Pointer to the GMM instance data.
2552 * @param pGVM Pointer to the Global VM structure.
2553 * @param pChunk Pointer to the chunk to be mapped.
2554 * @param ppvR3 Where to store the ring-3 address of the mapping.
2555 * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be
2556 * contain the address of the existing mapping.
2557 */
2558static int gmmR0MapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3)
2559{
2560 /*
2561 * Check to see if the chunk is already mapped.
2562 */
2563 for (uint32_t i = 0; i < pChunk->cMappings; i++)
2564 {
2565 Assert(pChunk->paMappings[i].pGVM && pChunk->paMappings[i].MapObj != NIL_RTR0MEMOBJ);
2566 if (pChunk->paMappings[i].pGVM == pGVM)
2567 {
2568 *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappings[i].MapObj);
2569 Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3));
2570 return VERR_GMM_CHUNK_ALREADY_MAPPED;
2571 }
2572 }
2573
2574 /*
2575 * Do the mapping.
2576 */
2577 RTR0MEMOBJ MapObj;
2578 int rc = RTR0MemObjMapUser(&MapObj, pChunk->MemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
2579 if (RT_SUCCESS(rc))
2580 {
2581 /* reallocate the array? */
2582 if ((pChunk->cMappings & 1 /*7*/) == 0)
2583 {
2584 void *pvMappings = RTMemRealloc(pChunk->paMappings, (pChunk->cMappings + 2 /*8*/) * sizeof(pChunk->paMappings[0]));
2585 if (RT_UNLIKELY(pvMappings))
2586 {
2587 rc = RTR0MemObjFree(MapObj, false /* fFreeMappings (NA) */);
2588 AssertRC(rc);
2589 return VERR_NO_MEMORY;
2590 }
2591 pChunk->paMappings = (PGMMCHUNKMAP)pvMappings;
2592 }
2593
2594 /* insert new entry */
2595 pChunk->paMappings[pChunk->cMappings].MapObj = MapObj;
2596 pChunk->paMappings[pChunk->cMappings].pGVM = pGVM;
2597 pChunk->cMappings++;
2598
2599 *ppvR3 = RTR0MemObjAddressR3(MapObj);
2600 }
2601
2602 return rc;
2603}
2604
2605
2606/**
2607 * Map a chunk and/or unmap another chunk.
2608 *
2609 * The mapping and unmapping applies to the current process.
2610 *
2611 * This API does two things because it saves a kernel call per mapping when
2612 * when the ring-3 mapping cache is full.
2613 *
2614 * @returns VBox status code.
2615 * @param pVM The VM.
2616 * @param idChunkMap The chunk to map. NIL_GMM_CHUNKID if nothing to map.
2617 * @param idChunkUnmap The chunk to unmap. NIL_GMM_CHUNKID if nothing to unmap.
2618 * @param ppvR3 Where to store the address of the mapped chunk. NULL is ok if nothing to map.
2619 * @thread EMT
2620 */
2621GMMR0DECL(int) GMMR0MapUnmapChunk(PVM pVM, uint32_t idChunkMap, uint32_t idChunkUnmap, PRTR3PTR ppvR3)
2622{
2623 LogFlow(("GMMR0MapUnmapChunk: pVM=%p idChunkMap=%#x idChunkUnmap=%#x ppvR3=%p\n",
2624 pVM, idChunkMap, idChunkUnmap, ppvR3));
2625
2626 /*
2627 * Validate input and get the basics.
2628 */
2629 PGMM pGMM;
2630 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
2631 PGVM pGVM = GVMMR0ByVM(pVM);
2632 if (!pGVM)
2633 return VERR_INVALID_PARAMETER;
2634 if (pGVM->hEMT != RTThreadNativeSelf())
2635 return VERR_NOT_OWNER;
2636
2637 AssertCompile(NIL_GMM_CHUNKID == 0);
2638 AssertMsgReturn(idChunkMap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkMap), VERR_INVALID_PARAMETER);
2639 AssertMsgReturn(idChunkUnmap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkUnmap), VERR_INVALID_PARAMETER);
2640
2641 if ( idChunkMap == NIL_GMM_CHUNKID
2642 && idChunkUnmap == NIL_GMM_CHUNKID)
2643 return VERR_INVALID_PARAMETER;
2644
2645 if (idChunkMap != NIL_GMM_CHUNKID)
2646 {
2647 AssertPtrReturn(ppvR3, VERR_INVALID_POINTER);
2648 *ppvR3 = NIL_RTR3PTR;
2649 }
2650
2651 if (pGMM->fLegacyMode)
2652 {
2653 Log(("GMMR0MapUnmapChunk: legacy mode!\n"));
2654 return VERR_NOT_SUPPORTED;
2655 }
2656
2657 /*
2658 * Take the semaphore and do the work.
2659 *
2660 * The unmapping is done last since it's easier to undo a mapping than
2661 * undoing an unmapping. The ring-3 mapping cache cannot not be so big
2662 * that it pushes the user virtual address space to within a chunk of
2663 * it it's limits, so, no problem here.
2664 */
2665 int rc = RTSemFastMutexRequest(pGMM->Mtx);
2666 AssertRC(rc);
2667
2668 PGMMCHUNK pMap = NULL;
2669 if (idChunkMap != NIL_GVM_HANDLE)
2670 {
2671 pMap = gmmR0GetChunk(pGMM, idChunkMap);
2672 if (RT_LIKELY(pMap))
2673 rc = gmmR0MapChunk(pGMM, pGVM, pMap, ppvR3);
2674 else
2675 {
2676 Log(("GMMR0MapUnmapChunk: idChunkMap=%#x\n", idChunkMap));
2677 rc = VERR_GMM_CHUNK_NOT_FOUND;
2678 }
2679 }
2680
2681 if ( idChunkUnmap != NIL_GMM_CHUNKID
2682 && RT_SUCCESS(rc))
2683 {
2684 PGMMCHUNK pUnmap = gmmR0GetChunk(pGMM, idChunkUnmap);
2685 if (RT_LIKELY(pUnmap))
2686 rc = gmmR0UnmapChunk(pGMM, pGVM, pUnmap);
2687 else
2688 {
2689 Log(("GMMR0MapUnmapChunk: idChunkUnmap=%#x\n", idChunkUnmap));
2690 rc = VERR_GMM_CHUNK_NOT_FOUND;
2691 }
2692
2693 if (RT_FAILURE(rc) && pMap)
2694 gmmR0UnmapChunk(pGMM, pGVM, pMap);
2695 }
2696
2697 RTSemFastMutexRelease(pGMM->Mtx);
2698
2699 LogFlow(("GMMR0MapUnmapChunk: returns %Rrc\n", rc));
2700 return rc;
2701}
2702
2703
2704/**
2705 * VMMR0 request wrapper for GMMR0MapUnmapChunk.
2706 *
2707 * @returns see GMMR0MapUnmapChunk.
2708 * @param pVM Pointer to the shared VM structure.
2709 * @param pReq The request packet.
2710 */
2711GMMR0DECL(int) GMMR0MapUnmapChunkReq(PVM pVM, PGMMMAPUNMAPCHUNKREQ pReq)
2712{
2713 /*
2714 * Validate input and pass it on.
2715 */
2716 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
2717 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2718 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
2719
2720 return GMMR0MapUnmapChunk(pVM, pReq->idChunkMap, pReq->idChunkUnmap, &pReq->pvR3);
2721}
2722
2723
2724/**
2725 * Legacy mode API for supplying pages.
2726 *
2727 * The specified user address points to a allocation chunk sized block that
2728 * will be locked down and used by the GMM when the GM asks for pages.
2729 *
2730 * @returns VBox status code.
2731 * @param pVM The VM.
2732 * @param pvR3 Pointer to the chunk size memory block to lock down.
2733 */
2734GMMR0DECL(int) GMMR0SeedChunk(PVM pVM, RTR3PTR pvR3)
2735{
2736 /*
2737 * Validate input and get the basics.
2738 */
2739 PGMM pGMM;
2740 GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR);
2741 PGVM pGVM = GVMMR0ByVM(pVM);
2742 if (!pGVM)
2743 return VERR_INVALID_PARAMETER;
2744 if (pGVM->hEMT != RTThreadNativeSelf())
2745 return VERR_NOT_OWNER;
2746
2747 AssertPtrReturn(pvR3, VERR_INVALID_POINTER);
2748 AssertReturn(!(PAGE_OFFSET_MASK & pvR3), VERR_INVALID_POINTER);
2749
2750 if (!pGMM->fLegacyMode)
2751 {
2752 Log(("GMMR0SeedChunk: not in legacy mode!\n"));
2753 return VERR_NOT_SUPPORTED;
2754 }
2755
2756 /*
2757 * Lock the memory before taking the semaphore.
2758 */
2759 RTR0MEMOBJ MemObj;
2760 int rc = RTR0MemObjLockUser(&MemObj, pvR3, GMM_CHUNK_SIZE, NIL_RTR0PROCESS);
2761 if (RT_SUCCESS(rc))
2762 {
2763 /*
2764 * Take the semaphore and add a new chunk with our hGVM.
2765 */
2766 int rc = RTSemFastMutexRequest(pGMM->Mtx);
2767 AssertRC(rc);
2768
2769 rc = gmmR0RegisterChunk(pGMM, &pGMM->Private, MemObj, pGVM->hSelf);
2770
2771 RTSemFastMutexRelease(pGMM->Mtx);
2772
2773 if (RT_FAILURE(rc))
2774 RTR0MemObjFree(MemObj, false /* fFreeMappings */);
2775 }
2776
2777 return rc;
2778}
2779
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette