/* $Id: GMMR0.cpp 37251 2011-05-30 10:54:45Z vboxsync $ */ /** @file * GMM - Global Memory Manager. */ /* * Copyright (C) 2007-2011 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_gmm GMM - The Global Memory Manager * * As the name indicates, this component is responsible for global memory * management. Currently only guest RAM is allocated from the GMM, but this * may change to include shadow page tables and other bits later. * * Guest RAM is managed as individual pages, but allocated from the host OS * in chunks for reasons of portability / efficiency. To minimize the memory * footprint all tracking structure must be as small as possible without * unnecessary performance penalties. * * The allocation chunks has fixed sized, the size defined at compile time * by the #GMM_CHUNK_SIZE \#define. * * Each chunk is given an unique ID. Each page also has a unique ID. The * relation ship between the two IDs is: * @code * GMM_CHUNK_SHIFT = log2(GMM_CHUNK_SIZE / PAGE_SIZE); * idPage = (idChunk << GMM_CHUNK_SHIFT) | iPage; * @endcode * Where iPage is the index of the page within the chunk. This ID scheme * permits for efficient chunk and page lookup, but it relies on the chunk size * to be set at compile time. The chunks are organized in an AVL tree with their * IDs being the keys. * * The physical address of each page in an allocation chunk is maintained by * the #RTR0MEMOBJ and obtained using #RTR0MemObjGetPagePhysAddr. There is no * need to duplicate this information (it'll cost 8-bytes per page if we did). * * So what do we need to track per page? Most importantly we need to know * which state the page is in: * - Private - Allocated for (eventually) backing one particular VM page. * - Shared - Readonly page that is used by one or more VMs and treated * as COW by PGM. * - Free - Not used by anyone. * * For the page replacement operations (sharing, defragmenting and freeing) * to be somewhat efficient, private pages needs to be associated with a * particular page in a particular VM. * * Tracking the usage of shared pages is impractical and expensive, so we'll * settle for a reference counting system instead. * * Free pages will be chained on LIFOs * * On 64-bit systems we will use a 64-bit bitfield per page, while on 32-bit * systems a 32-bit bitfield will have to suffice because of address space * limitations. The #GMMPAGE structure shows the details. * * * @section sec_gmm_alloc_strat Page Allocation Strategy * * The strategy for allocating pages has to take fragmentation and shared * pages into account, or we may end up with with 2000 chunks with only * a few pages in each. Shared pages cannot easily be reallocated because * of the inaccurate usage accounting (see above). Private pages can be * reallocated by a defragmentation thread in the same manner that sharing * is done. * * The first approach is to manage the free pages in two sets depending on * whether they are mainly for the allocation of shared or private pages. * In the initial implementation there will be almost no possibility for * mixing shared and private pages in the same chunk (only if we're really * stressed on memory), but when we implement forking of VMs and have to * deal with lots of COW pages it'll start getting kind of interesting. * * The sets are lists of chunks with approximately the same number of * free pages. Say the chunk size is 1MB, meaning 256 pages, and a set * consists of 16 lists. So, the first list will contain the chunks with * 1-7 free pages, the second covers 8-15, and so on. The chunks will be * moved between the lists as pages are freed up or allocated. * * * @section sec_gmm_costs Costs * * The per page cost in kernel space is 32-bit plus whatever RTR0MEMOBJ * entails. In addition there is the chunk cost of approximately * (sizeof(RT0MEMOBJ) + sizeof(CHUNK)) / 2^CHUNK_SHIFT bytes per page. * * On Windows the per page #RTR0MEMOBJ cost is 32-bit on 32-bit windows * and 64-bit on 64-bit windows (a PFN_NUMBER in the MDL). So, 64-bit per page. * The cost on Linux is identical, but here it's because of sizeof(struct page *). * * * @section sec_gmm_legacy Legacy Mode for Non-Tier-1 Platforms * * In legacy mode the page source is locked user pages and not * #RTR0MemObjAllocPhysNC, this means that a page can only be allocated * by the VM that locked it. We will make no attempt at implementing * page sharing on these systems, just do enough to make it all work. * * * @subsection sub_gmm_locking Serializing * * One simple fast mutex will be employed in the initial implementation, not * two as mentioned in @ref subsec_pgmPhys_Serializing. * * @see @ref subsec_pgmPhys_Serializing * * * @section sec_gmm_overcommit Memory Over-Commitment Management * * The GVM will have to do the system wide memory over-commitment * management. My current ideas are: * - Per VM oc policy that indicates how much to initially commit * to it and what to do in a out-of-memory situation. * - Prevent overtaxing the host. * * There are some challenges here, the main ones are configurability and * security. Should we for instance permit anyone to request 100% memory * commitment? Who should be allowed to do runtime adjustments of the * config. And how to prevent these settings from being lost when the last * VM process exits? The solution is probably to have an optional root * daemon the will keep VMMR0.r0 in memory and enable the security measures. * * * * @section sec_gmm_numa NUMA * * NUMA considerations will be designed and implemented a bit later. * * The preliminary guesses is that we will have to try allocate memory as * close as possible to the CPUs the VM is executed on (EMT and additional CPU * threads). Which means it's mostly about allocation and sharing policies. * Both the scheduler and allocator interface will to supply some NUMA info * and we'll need to have a way to calc access costs. * */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_GMM #include #include #include #include "GMMR0Internal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** Pointer to set of free chunks. */ typedef struct GMMCHUNKFREESET *PGMMCHUNKFREESET; /** * The per-page tracking structure employed by the GMM. * * On 32-bit hosts we'll some trickery is necessary to compress all * the information into 32-bits. When the fSharedFree member is set, * the 30th bit decides whether it's a free page or not. * * Because of the different layout on 32-bit and 64-bit hosts, macros * are used to get and set some of the data. */ typedef union GMMPAGE { #if HC_ARCH_BITS == 64 /** Unsigned integer view. */ uint64_t u; /** The common view. */ struct GMMPAGECOMMON { uint32_t uStuff1 : 32; uint32_t uStuff2 : 30; /** The page state. */ uint32_t u2State : 2; } Common; /** The view of a private page. */ struct GMMPAGEPRIVATE { /** The guest page frame number. (Max addressable: 2 ^ 44 - 16) */ uint32_t pfn; /** The GVM handle. (64K VMs) */ uint32_t hGVM : 16; /** Reserved. */ uint32_t u16Reserved : 14; /** The page state. */ uint32_t u2State : 2; } Private; /** The view of a shared page. */ struct GMMPAGESHARED { /** The host page frame number. (Max addressable: 2 ^ 44 - 16) */ uint32_t pfn; /** The reference count (64K VMs). */ uint32_t cRefs : 16; /** Reserved. Checksum or something? Two hGVMs for forking? */ uint32_t u14Reserved : 14; /** The page state. */ uint32_t u2State : 2; } Shared; /** The view of a free page. */ struct GMMPAGEFREE { /** The index of the next page in the free list. UINT16_MAX is NIL. */ uint16_t iNext; /** Reserved. Checksum or something? */ uint16_t u16Reserved0; /** Reserved. Checksum or something? */ uint32_t u30Reserved1 : 30; /** The page state. */ uint32_t u2State : 2; } Free; #else /* 32-bit */ /** Unsigned integer view. */ uint32_t u; /** The common view. */ struct GMMPAGECOMMON { uint32_t uStuff : 30; /** The page state. */ uint32_t u2State : 2; } Common; /** The view of a private page. */ struct GMMPAGEPRIVATE { /** The guest page frame number. (Max addressable: 2 ^ 36) */ uint32_t pfn : 24; /** The GVM handle. (127 VMs) */ uint32_t hGVM : 7; /** The top page state bit, MBZ. */ uint32_t fZero : 1; } Private; /** The view of a shared page. */ struct GMMPAGESHARED { /** The reference count. */ uint32_t cRefs : 30; /** The page state. */ uint32_t u2State : 2; } Shared; /** The view of a free page. */ struct GMMPAGEFREE { /** The index of the next page in the free list. UINT16_MAX is NIL. */ uint32_t iNext : 16; /** Reserved. Checksum or something? */ uint32_t u14Reserved : 14; /** The page state. */ uint32_t u2State : 2; } Free; #endif } GMMPAGE; AssertCompileSize(GMMPAGE, sizeof(RTHCUINTPTR)); /** Pointer to a GMMPAGE. */ typedef GMMPAGE *PGMMPAGE; /** @name The Page States. * @{ */ /** A private page. */ #define GMM_PAGE_STATE_PRIVATE 0 /** A private page - alternative value used on the 32-bit implementation. * This will never be used on 64-bit hosts. */ #define GMM_PAGE_STATE_PRIVATE_32 1 /** A shared page. */ #define GMM_PAGE_STATE_SHARED 2 /** A free page. */ #define GMM_PAGE_STATE_FREE 3 /** @} */ /** @def GMM_PAGE_IS_PRIVATE * * @returns true if private, false if not. * @param pPage The GMM page. */ #if HC_ARCH_BITS == 64 # define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_PRIVATE ) #else # define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Private.fZero == 0 ) #endif /** @def GMM_PAGE_IS_SHARED * * @returns true if shared, false if not. * @param pPage The GMM page. */ #define GMM_PAGE_IS_SHARED(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_SHARED ) /** @def GMM_PAGE_IS_FREE * * @returns true if free, false if not. * @param pPage The GMM page. */ #define GMM_PAGE_IS_FREE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_FREE ) /** @def GMM_PAGE_PFN_LAST * The last valid guest pfn range. * @remark Some of the values outside the range has special meaning, * see GMM_PAGE_PFN_UNSHAREABLE. */ #if HC_ARCH_BITS == 64 # define GMM_PAGE_PFN_LAST UINT32_C(0xfffffff0) #else # define GMM_PAGE_PFN_LAST UINT32_C(0x00fffff0) #endif AssertCompile(GMM_PAGE_PFN_LAST == (GMM_GCPHYS_LAST >> PAGE_SHIFT)); /** @def GMM_PAGE_PFN_UNSHAREABLE * Indicates that this page isn't used for normal guest memory and thus isn't shareable. */ #if HC_ARCH_BITS == 64 # define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0xfffffff1) #else # define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0x00fffff1) #endif AssertCompile(GMM_PAGE_PFN_UNSHAREABLE == (GMM_GCPHYS_UNSHAREABLE >> PAGE_SHIFT)); /** * A GMM allocation chunk ring-3 mapping record. * * This should really be associated with a session and not a VM, but * it's simpler to associated with a VM and cleanup with the VM object * is destroyed. */ typedef struct GMMCHUNKMAP { /** The mapping object. */ RTR0MEMOBJ hMapObj; /** The VM owning the mapping. */ PGVM pGVM; } GMMCHUNKMAP; /** Pointer to a GMM allocation chunk mapping. */ typedef struct GMMCHUNKMAP *PGMMCHUNKMAP; /** * A GMM allocation chunk. */ typedef struct GMMCHUNK { /** The AVL node core. * The Key is the chunk ID. (Giant mtx.) */ AVLU32NODECORE Core; /** The memory object. * Either from RTR0MemObjAllocPhysNC or RTR0MemObjLockUser depending on * what the host can dish up with. (Chunk mtx protects mapping accesses * and related frees.) */ RTR0MEMOBJ hMemObj; /** Pointer to the next chunk in the free list. (Giant mtx.) */ PGMMCHUNK pFreeNext; /** Pointer to the previous chunk in the free list. (Giant mtx.) */ PGMMCHUNK pFreePrev; /** Pointer to the free set this chunk belongs to. NULL for * chunks with no free pages. (Giant mtx.) */ PGMMCHUNKFREESET pSet; /** List node in the chunk list (GMM::ChunkList). (Giant mtx.) */ RTLISTNODE ListNode; /** Pointer to an array of mappings. (Chunk mtx.) */ PGMMCHUNKMAP paMappingsX; /** The number of mappings. (Chunk mtx.) */ uint16_t cMappingsX; /** The mapping lock this chunk is using using. UINT16_MAX if nobody is * mapping or freeing anything. (Giant mtx.) */ uint8_t volatile iChunkMtx; /** Flags field reserved for future use (like eliminating enmType). * (Giant mtx.) */ uint8_t fFlags; /** The head of the list of free pages. UINT16_MAX is the NIL value. * (Giant mtx.) */ uint16_t iFreeHead; /** The number of free pages. (Giant mtx.) */ uint16_t cFree; /** The GVM handle of the VM that first allocated pages from this chunk, this * is used as a preference when there are several chunks to choose from. * When in bound memory mode this isn't a preference any longer. (Giant * mtx.) */ uint16_t hGVM; /** The ID of the NUMA node the memory mostly resides on. (Reserved for * future use.) (Giant mtx.) */ uint16_t idNumaNode; /** The number of private pages. (Giant mtx.) */ uint16_t cPrivate; /** The number of shared pages. (Giant mtx.) */ uint16_t cShared; /** The pages. (Giant mtx.) */ GMMPAGE aPages[GMM_CHUNK_SIZE >> PAGE_SHIFT]; } GMMCHUNK; /** Indicates that the NUMA properies of the memory is unknown. */ #define GMM_CHUNK_NUMA_ID_UNKNOWN UINT16_C(0xfffe) /** @name GMM_CHUNK_FLAGS_XXX - chunk flags. * @{ */ /** Indicates that the chunk is a large page (2MB). */ #define GMM_CHUNK_FLAGS_LARGE_PAGE UINT16_C(0x0001) /** @} */ /** * An allocation chunk TLB entry. */ typedef struct GMMCHUNKTLBE { /** The chunk id. */ uint32_t idChunk; /** Pointer to the chunk. */ PGMMCHUNK pChunk; } GMMCHUNKTLBE; /** Pointer to an allocation chunk TLB entry. */ typedef GMMCHUNKTLBE *PGMMCHUNKTLBE; /** The number of entries tin the allocation chunk TLB. */ #define GMM_CHUNKTLB_ENTRIES 32 /** Gets the TLB entry index for the given Chunk ID. */ #define GMM_CHUNKTLB_IDX(idChunk) ( (idChunk) & (GMM_CHUNKTLB_ENTRIES - 1) ) /** * An allocation chunk TLB. */ typedef struct GMMCHUNKTLB { /** The TLB entries. */ GMMCHUNKTLBE aEntries[GMM_CHUNKTLB_ENTRIES]; } GMMCHUNKTLB; /** Pointer to an allocation chunk TLB. */ typedef GMMCHUNKTLB *PGMMCHUNKTLB; /** * The GMM instance data. */ typedef struct GMM { /** Magic / eye catcher. GMM_MAGIC */ uint32_t u32Magic; /** The number of threads waiting on the mutex. */ uint32_t cMtxContenders; /** The fast mutex protecting the GMM. * More fine grained locking can be implemented later if necessary. */ RTSEMFASTMUTEX hMtx; #ifdef VBOX_STRICT /** The current mutex owner. */ RTNATIVETHREAD hMtxOwner; #endif /** The chunk tree. */ PAVLU32NODECORE pChunks; /** The chunk TLB. */ GMMCHUNKTLB ChunkTLB; /** The private free set. */ GMMCHUNKFREESET PrivateX; /** The shared free set. */ GMMCHUNKFREESET Shared; /** Shared module tree (global). */ /** @todo separate trees for distinctly different guest OSes. */ PAVLGCPTRNODECORE pGlobalSharedModuleTree; /** The chunk list. For simplifying the cleanup process. */ RTLISTNODE ChunkList; /** The maximum number of pages we're allowed to allocate. * @gcfgm 64-bit GMM/MaxPages Direct. * @gcfgm 32-bit GMM/PctPages Relative to the number of host pages. */ uint64_t cMaxPages; /** The number of pages that has been reserved. * The deal is that cReservedPages - cOverCommittedPages <= cMaxPages. */ uint64_t cReservedPages; /** The number of pages that we have over-committed in reservations. */ uint64_t cOverCommittedPages; /** The number of actually allocated (committed if you like) pages. */ uint64_t cAllocatedPages; /** The number of pages that are shared. A subset of cAllocatedPages. */ uint64_t cSharedPages; /** The number of pages that are actually shared between VMs. */ uint64_t cDuplicatePages; /** The number of pages that are shared that has been left behind by * VMs not doing proper cleanups. */ uint64_t cLeftBehindSharedPages; /** The number of allocation chunks. * (The number of pages we've allocated from the host can be derived from this.) */ uint32_t cChunks; /** The number of current ballooned pages. */ uint64_t cBalloonedPages; /** The legacy allocation mode indicator. * This is determined at initialization time. */ bool fLegacyAllocationMode; /** The bound memory mode indicator. * When set, the memory will be bound to a specific VM and never * shared. This is always set if fLegacyAllocationMode is set. * (Also determined at initialization time.) */ bool fBoundMemoryMode; /** The number of registered VMs. */ uint16_t cRegisteredVMs; /** The number of freed chunks ever. This is used a list generation to * avoid restarting the cleanup scanning when the list wasn't modified. */ uint32_t cFreedChunks; /** The previous allocated Chunk ID. * Used as a hint to avoid scanning the whole bitmap. */ uint32_t idChunkPrev; /** Chunk ID allocation bitmap. * Bits of allocated IDs are set, free ones are clear. * The NIL id (0) is marked allocated. */ uint32_t bmChunkId[(GMM_CHUNKID_LAST + 1 + 31) / 32]; /** The index of the next mutex to use. */ uint32_t iNextChunkMtx; /** Chunk locks for reducing lock contention without having to allocate * one lock per chunk. */ struct { /** The mutex */ RTSEMFASTMUTEX hMtx; /** The number of threads currently using this mutex. */ uint32_t volatile cUsers; } aChunkMtx[64]; } GMM; /** Pointer to the GMM instance. */ typedef GMM *PGMM; /** The value of GMM::u32Magic (Katsuhiro Otomo). */ #define GMM_MAGIC UINT32_C(0x19540414) /** * GMM chunk mutex state. * * This is returned by gmmR0ChunkMutexAcquire and is used by the other * gmmR0ChunkMutex* methods. */ typedef struct GMMR0CHUNKMTXSTATE { PGMM pGMM; /** The index of the chunk mutex. */ uint8_t iChunkMtx; /** The relevant flags (GMMR0CHUNK_MTX_XXX). */ uint8_t fFlags; } GMMR0CHUNKMTXSTATE; /** Pointer to a chunk mutex state. */ typedef GMMR0CHUNKMTXSTATE *PGMMR0CHUNKMTXSTATE; /** @name GMMR0CHUNK_MTX_XXX * @{ */ #define GMMR0CHUNK_MTX_INVALID UINT32_C(0) #define GMMR0CHUNK_MTX_KEEP_GIANT UINT32_C(1) #define GMMR0CHUNK_MTX_RETAKE_GIANT UINT32_C(2) #define GMMR0CHUNK_MTX_DROP_GIANT UINT32_C(3) #define GMMR0CHUNK_MTX_END UINT32_C(4) /** @} */ /******************************************************************************* * Global Variables * *******************************************************************************/ /** Pointer to the GMM instance data. */ static PGMM g_pGMM = NULL; /** Macro for obtaining and validating the g_pGMM pointer. * On failure it will return from the invoking function with the specified return value. * * @param pGMM The name of the pGMM variable. * @param rc The return value on failure. Use VERR_INTERNAL_ERROR for * VBox status codes. */ #define GMM_GET_VALID_INSTANCE(pGMM, rc) \ do { \ (pGMM) = g_pGMM; \ AssertPtrReturn((pGMM), (rc)); \ AssertMsgReturn((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic), (rc)); \ } while (0) /** Macro for obtaining and validating the g_pGMM pointer, void function variant. * On failure it will return from the invoking function. * * @param pGMM The name of the pGMM variable. */ #define GMM_GET_VALID_INSTANCE_VOID(pGMM) \ do { \ (pGMM) = g_pGMM; \ AssertPtrReturnVoid((pGMM)); \ AssertMsgReturnVoid((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic)); \ } while (0) /** @def GMM_CHECK_SANITY_UPON_ENTERING * Checks the sanity of the GMM instance data before making changes. * * This is macro is a stub by default and must be enabled manually in the code. * * @returns true if sane, false if not. * @param pGMM The name of the pGMM variable. */ #if defined(VBOX_STRICT) && 0 # define GMM_CHECK_SANITY_UPON_ENTERING(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0) #else # define GMM_CHECK_SANITY_UPON_ENTERING(pGMM) (true) #endif /** @def GMM_CHECK_SANITY_UPON_LEAVING * Checks the sanity of the GMM instance data after making changes. * * This is macro is a stub by default and must be enabled manually in the code. * * @returns true if sane, false if not. * @param pGMM The name of the pGMM variable. */ #if defined(VBOX_STRICT) && 0 # define GMM_CHECK_SANITY_UPON_LEAVING(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0) #else # define GMM_CHECK_SANITY_UPON_LEAVING(pGMM) (true) #endif /** @def GMM_CHECK_SANITY_IN_LOOPS * Checks the sanity of the GMM instance in the allocation loops. * * This is macro is a stub by default and must be enabled manually in the code. * * @returns true if sane, false if not. * @param pGMM The name of the pGMM variable. */ #if defined(VBOX_STRICT) && 0 # define GMM_CHECK_SANITY_IN_LOOPS(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0) #else # define GMM_CHECK_SANITY_IN_LOOPS(pGMM) (true) #endif /******************************************************************************* * Internal Functions * *******************************************************************************/ static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM); static bool gmmR0CleanupVMScanChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk); DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk); DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet); DECLINLINE(void) gmmR0SelectSetAndLinkChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk); static uint32_t gmmR0SanityCheck(PGMM pGMM, const char *pszFunction, unsigned uLineNo); static bool gmmR0FreeChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem); DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage); DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage); static int gmmR0UnmapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk); static void gmmR0SharedModuleCleanup(PGMM pGMM, PGVM pGVM); /** * Initializes the GMM component. * * This is called when the VMMR0.r0 module is loaded and protected by the * loader semaphore. * * @returns VBox status code. */ GMMR0DECL(int) GMMR0Init(void) { LogFlow(("GMMInit:\n")); /* * Allocate the instance data and the locks. */ PGMM pGMM = (PGMM)RTMemAllocZ(sizeof(*pGMM)); if (!pGMM) return VERR_NO_MEMORY; pGMM->u32Magic = GMM_MAGIC; for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++) pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID; RTListInit(&pGMM->ChunkList); ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID); int rc = RTSemFastMutexCreate(&pGMM->hMtx); if (RT_SUCCESS(rc)) { unsigned iMtx; for (iMtx = 0; iMtx < RT_ELEMENTS(pGMM->aChunkMtx); iMtx++) { rc = RTSemFastMutexCreate(&pGMM->aChunkMtx[iMtx].hMtx); if (RT_FAILURE(rc)) break; } if (RT_SUCCESS(rc)) { /* * Check and see if RTR0MemObjAllocPhysNC works. */ #if 0 /* later, see #3170. */ RTR0MEMOBJ MemObj; rc = RTR0MemObjAllocPhysNC(&MemObj, _64K, NIL_RTHCPHYS); if (RT_SUCCESS(rc)) { rc = RTR0MemObjFree(MemObj, true); AssertRC(rc); } else if (rc == VERR_NOT_SUPPORTED) pGMM->fLegacyAllocationMode = pGMM->fBoundMemoryMode = true; else SUPR0Printf("GMMR0Init: RTR0MemObjAllocPhysNC(,64K,Any) -> %d!\n", rc); #else # if defined(RT_OS_WINDOWS) || (defined(RT_OS_SOLARIS) && ARCH_BITS == 64) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD) pGMM->fLegacyAllocationMode = false; # if ARCH_BITS == 32 /* Don't reuse possibly partial chunks because of the virtual address space limitation. */ pGMM->fBoundMemoryMode = true; # else pGMM->fBoundMemoryMode = false; # endif # else pGMM->fLegacyAllocationMode = true; pGMM->fBoundMemoryMode = true; # endif #endif /* * Query system page count and guess a reasonable cMaxPages value. */ pGMM->cMaxPages = UINT32_MAX; /** @todo IPRT function for query ram size and such. */ g_pGMM = pGMM; LogFlow(("GMMInit: pGMM=%p fLegacyAllocationMode=%RTbool fBoundMemoryMode=%RTbool\n", pGMM, pGMM->fLegacyAllocationMode, pGMM->fBoundMemoryMode)); return VINF_SUCCESS; } /* * Bail out. */ while (iMtx-- > 0) RTSemFastMutexDestroy(pGMM->aChunkMtx[iMtx].hMtx); RTSemFastMutexDestroy(pGMM->hMtx); } pGMM->u32Magic = 0; RTMemFree(pGMM); SUPR0Printf("GMMR0Init: failed! rc=%d\n", rc); return rc; } /** * Terminates the GMM component. */ GMMR0DECL(void) GMMR0Term(void) { LogFlow(("GMMTerm:\n")); /* * Take care / be paranoid... */ PGMM pGMM = g_pGMM; if (!VALID_PTR(pGMM)) return; if (pGMM->u32Magic != GMM_MAGIC) { SUPR0Printf("GMMR0Term: u32Magic=%#x\n", pGMM->u32Magic); return; } /* * Undo what init did and free all the resources we've acquired. */ /* Destroy the fundamentals. */ g_pGMM = NULL; pGMM->u32Magic = ~GMM_MAGIC; RTSemFastMutexDestroy(pGMM->hMtx); pGMM->hMtx = NIL_RTSEMFASTMUTEX; /* Free any chunks still hanging around. */ RTAvlU32Destroy(&pGMM->pChunks, gmmR0TermDestroyChunk, pGMM); /* Destroy the chunk locks. */ for (unsigned iMtx = 0; iMtx++ < RT_ELEMENTS(pGMM->aChunkMtx); iMtx++) { Assert(pGMM->aChunkMtx[iMtx].cUsers == 0); RTSemFastMutexDestroy(pGMM->aChunkMtx[iMtx].hMtx); pGMM->aChunkMtx[iMtx].hMtx = NIL_RTSEMFASTMUTEX; } /* Finally the instance data itself. */ RTMemFree(pGMM); LogFlow(("GMMTerm: done\n")); } /** * RTAvlU32Destroy callback. * * @returns 0 * @param pNode The node to destroy. * @param pvGMM The GMM handle. */ static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM) { PGMMCHUNK pChunk = (PGMMCHUNK)pNode; if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT)) SUPR0Printf("GMMR0Term: %p/%#x: cFree=%d cPrivate=%d cShared=%d cMappings=%d\n", pChunk, pChunk->Core.Key, pChunk->cFree, pChunk->cPrivate, pChunk->cShared, pChunk->cMappingsX); int rc = RTR0MemObjFree(pChunk->hMemObj, true /* fFreeMappings */); if (RT_FAILURE(rc)) { SUPR0Printf("GMMR0Term: %p/%#x: RTRMemObjFree(%p,true) -> %d (cMappings=%d)\n", pChunk, pChunk->Core.Key, pChunk->hMemObj, rc, pChunk->cMappingsX); AssertRC(rc); } pChunk->hMemObj = NIL_RTR0MEMOBJ; RTMemFree(pChunk->paMappingsX); pChunk->paMappingsX = NULL; RTMemFree(pChunk); NOREF(pvGMM); return 0; } /** * Initializes the per-VM data for the GMM. * * This is called from within the GVMM lock (from GVMMR0CreateVM) * and should only initialize the data members so GMMR0CleanupVM * can deal with them. We reserve no memory or anything here, * that's done later in GMMR0InitVM. * * @param pGVM Pointer to the Global VM structure. */ GMMR0DECL(void) GMMR0InitPerVMData(PGVM pGVM) { AssertCompile(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding)); pGVM->gmm.s.enmPolicy = GMMOCPOLICY_INVALID; pGVM->gmm.s.enmPriority = GMMPRIORITY_INVALID; pGVM->gmm.s.fMayAllocate = false; } /** * Acquires the GMM giant lock. * * @returns Assert status code from RTSemFastMutexRequest. * @param pGMM Pointer to the GMM instance. */ static int gmmR0MutexAcquire(PGMM pGMM) { ASMAtomicIncU32(&pGMM->cMtxContenders); int rc = RTSemFastMutexRequest(pGMM->hMtx); ASMAtomicDecU32(&pGMM->cMtxContenders); AssertRC(rc); #ifdef VBOX_STRICT pGMM->hMtxOwner = RTThreadNativeSelf(); #endif return rc; } /** * Releases the GMM giant lock. * * @returns Assert status code from RTSemFastMutexRequest. * @param pGMM Pointer to the GMM instance. */ static int gmmR0MutexRelease(PGMM pGMM) { #ifdef VBOX_STRICT pGMM->hMtxOwner = NIL_RTNATIVETHREAD; #endif int rc = RTSemFastMutexRelease(pGMM->hMtx); AssertRC(rc); return rc; } /** * Yields the GMM giant lock if there is contention and a certain minimum time * has elapsed since we took it. * * @returns @c true if the mutex was yielded, @c false if not. * @param pGMM Pointer to the GMM instance. * @param puLockNanoTS Where the lock acquisition time stamp is kept * (in/out). */ static bool gmmR0MutexYield(PGMM pGMM, uint64_t *puLockNanoTS) { /* * If nobody is contending the mutex, don't bother checking the time. */ if (ASMAtomicReadU32(&pGMM->cMtxContenders) == 0) return false; /* * Don't yield if we haven't executed for at least 2 milliseconds. */ uint64_t uNanoNow = RTTimeSystemNanoTS(); if (uNanoNow - *puLockNanoTS < UINT32_C(2000000)) return false; /* * Yield the mutex. */ #ifdef VBOX_STRICT pGMM->hMtxOwner = NIL_RTNATIVETHREAD; #endif ASMAtomicIncU32(&pGMM->cMtxContenders); int rc1 = RTSemFastMutexRelease(pGMM->hMtx); AssertRC(rc1); RTThreadYield(); int rc2 = RTSemFastMutexRequest(pGMM->hMtx); AssertRC(rc2); *puLockNanoTS = RTTimeSystemNanoTS(); ASMAtomicDecU32(&pGMM->cMtxContenders); #ifdef VBOX_STRICT pGMM->hMtxOwner = RTThreadNativeSelf(); #endif return true; } /** * Acquires a chunk lock. * * The caller must own the giant lock. * * @returns Assert status code from RTSemFastMutexRequest. * @param pMtxState The chunk mutex state info. (Avoids * passing the same flags and stuff around * for subsequent release and drop-giant * calls.) * @param pGMM Pointer to the GMM instance. * @param pChunk Pointer to the chunk. * @param fFlags Flags regarding the giant lock, GMMR0CHUNK_MTX_XXX. */ static int gmmR0ChunkMutexAcquire(PGMMR0CHUNKMTXSTATE pMtxState, PGMM pGMM, PGMMCHUNK pChunk, uint32_t fFlags) { Assert(fFlags > GMMR0CHUNK_MTX_INVALID && fFlags < GMMR0CHUNK_MTX_END); Assert(pGMM->hMtxOwner == RTThreadNativeSelf()); pMtxState->pGMM = pGMM; pMtxState->fFlags = (uint8_t)fFlags; /* * Get the lock index and reference the lock. */ Assert(pGMM->hMtxOwner == RTThreadNativeSelf()); uint32_t iChunkMtx = pChunk->iChunkMtx; if (iChunkMtx == UINT8_MAX) { iChunkMtx = pGMM->iNextChunkMtx++; iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx); /* Try get an unused one... */ if (pGMM->aChunkMtx[iChunkMtx].cUsers) { iChunkMtx = pGMM->iNextChunkMtx++; iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx); if (pGMM->aChunkMtx[iChunkMtx].cUsers) { iChunkMtx = pGMM->iNextChunkMtx++; iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx); if (pGMM->aChunkMtx[iChunkMtx].cUsers) { iChunkMtx = pGMM->iNextChunkMtx++; iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx); } } } pChunk->iChunkMtx = iChunkMtx; } AssertCompile(RT_ELEMENTS(pGMM->aChunkMtx) < UINT8_MAX); pMtxState->iChunkMtx = (uint8_t)iChunkMtx; ASMAtomicIncU32(&pGMM->aChunkMtx[iChunkMtx].cUsers); /* * Drop the giant? */ if (fFlags != GMMR0CHUNK_MTX_KEEP_GIANT) { /** @todo GMM life cycle cleanup (we may race someone * destroying and cleaning up GMM)? */ gmmR0MutexRelease(pGMM); } /* * Take the chunk mutex. */ int rc = RTSemFastMutexRequest(pGMM->aChunkMtx[iChunkMtx].hMtx); AssertRC(rc); return rc; } /** * Releases the GMM giant lock. * * @returns Assert status code from RTSemFastMutexRequest. * @param pGMM Pointer to the GMM instance. * @param pChunk Pointer to the chunk if it's still * alive, NULL if it isn't. This is used to deassociate * the chunk from the mutex on the way out so a new one * can be selected next time, thus avoiding contented * mutexes. */ static int gmmR0ChunkMutexRelease(PGMMR0CHUNKMTXSTATE pMtxState, PGMMCHUNK pChunk) { PGMM pGMM = pMtxState->pGMM; /* * Release the chunk mutex and reacquire the giant if requested. */ int rc = RTSemFastMutexRelease(pGMM->aChunkMtx[pMtxState->iChunkMtx].hMtx); AssertRC(rc); if (pMtxState->fFlags == GMMR0CHUNK_MTX_RETAKE_GIANT) rc = gmmR0MutexAcquire(pGMM); else Assert((pMtxState->fFlags != GMMR0CHUNK_MTX_DROP_GIANT) == (pGMM->hMtxOwner == RTThreadNativeSelf())); /* * Drop the chunk mutex user reference and deassociate it from the chunk * when possible. */ if ( ASMAtomicDecU32(&pGMM->aChunkMtx[pMtxState->iChunkMtx].cUsers) == 0 && pChunk && RT_SUCCESS(rc) ) { if (pMtxState->fFlags != GMMR0CHUNK_MTX_DROP_GIANT) pChunk->iChunkMtx = UINT8_MAX; else { rc = gmmR0MutexAcquire(pGMM); if (RT_SUCCESS(rc)) { if (pGMM->aChunkMtx[pMtxState->iChunkMtx].cUsers == 0) pChunk->iChunkMtx = UINT8_MAX; rc = gmmR0MutexRelease(pGMM); } } } pMtxState->pGMM = NULL; return rc; } /** * Drops the giant GMM lock we kept in gmmR0ChunkMutexAcquire while keeping the * chunk locked. * * This only works if gmmR0ChunkMutexAcquire was called with * GMMR0CHUNK_MTX_KEEP_GIANT. gmmR0ChunkMutexRelease will retake the giant * mutex, i.e. behave as if GMMR0CHUNK_MTX_RETAKE_GIANT was used. * * @returns VBox status code (assuming success is ok). * @param pMtxState Pointer to the chunk mutex state. */ static int gmmR0ChunkMutexDropGiant(PGMMR0CHUNKMTXSTATE pMtxState) { AssertReturn(pMtxState->fFlags == GMMR0CHUNK_MTX_KEEP_GIANT, VERR_INTERNAL_ERROR_2); Assert(pMtxState->pGMM->hMtxOwner == RTThreadNativeSelf()); pMtxState->fFlags = GMMR0CHUNK_MTX_RETAKE_GIANT; /** @todo GMM life cycle cleanup (we may race someone * destroying and cleaning up GMM)? */ return gmmR0MutexRelease(pMtxState->pGMM); } /** * For experimenting with NUMA affinity and such. * * @returns The current NUMA Node ID. */ static uint16_t gmmR0GetCurrentNumaNodeId(void) { #if 1 return GMM_CHUNK_NUMA_ID_UNKNOWN; #else return RTMpCpuId() / 16; #endif } /** * Cleans up when a VM is terminating. * * @param pGVM Pointer to the Global VM structure. */ GMMR0DECL(void) GMMR0CleanupVM(PGVM pGVM) { LogFlow(("GMMR0CleanupVM: pGVM=%p:{.pVM=%p, .hSelf=%#x}\n", pGVM, pGVM->pVM, pGVM->hSelf)); PGMM pGMM; GMM_GET_VALID_INSTANCE_VOID(pGMM); #ifdef VBOX_WITH_PAGE_SHARING /* * Clean up all registered shared modules first. */ gmmR0SharedModuleCleanup(pGMM, pGVM); #endif gmmR0MutexAcquire(pGMM); uint64_t uLockNanoTS = RTTimeSystemNanoTS(); GMM_CHECK_SANITY_UPON_ENTERING(pGMM); /* * The policy is 'INVALID' until the initial reservation * request has been serviced. */ if ( pGVM->gmm.s.enmPolicy > GMMOCPOLICY_INVALID && pGVM->gmm.s.enmPolicy < GMMOCPOLICY_END) { /* * If it's the last VM around, we can skip walking all the chunk looking * for the pages owned by this VM and instead flush the whole shebang. * * This takes care of the eventuality that a VM has left shared page * references behind (shouldn't happen of course, but you never know). */ Assert(pGMM->cRegisteredVMs); pGMM->cRegisteredVMs--; /* * Walk the entire pool looking for pages that belong to this VM * and leftover mappings. (This'll only catch private pages, * shared pages will be 'left behind'.) */ uint64_t cPrivatePages = pGVM->gmm.s.cPrivatePages; /* save */ unsigned iCountDown = 64; bool fRedoFromStart; PGMMCHUNK pChunk; do { fRedoFromStart = false; RTListForEachReverse(&pGMM->ChunkList, pChunk, GMMCHUNK, ListNode) { uint32_t const cFreeChunksOld = pGMM->cFreedChunks; if (gmmR0CleanupVMScanChunk(pGMM, pGVM, pChunk)) { /* We left the giant mutex, so reset the yield counters. */ uLockNanoTS = RTTimeSystemNanoTS(); iCountDown = 64; } else { /* Didn't leave it, so do normal yielding. */ if (!iCountDown) gmmR0MutexYield(pGMM, &uLockNanoTS); else iCountDown--; } if (pGMM->cFreedChunks != cFreeChunksOld) break; } } while (fRedoFromStart); if (pGVM->gmm.s.cPrivatePages) SUPR0Printf("GMMR0CleanupVM: hGVM=%#x has %#x private pages that cannot be found!\n", pGVM->hSelf, pGVM->gmm.s.cPrivatePages); pGMM->cAllocatedPages -= cPrivatePages; /* * Free empty chunks. */ PGMMCHUNKFREESET pPrivateSet = pGMM->fBoundMemoryMode ? &pGVM->gmm.s.Private : &pGMM->PrivateX; do { fRedoFromStart = false; iCountDown = 10240; pChunk = pPrivateSet->apLists[GMM_CHUNK_FREE_SET_UNUSED_LIST]; while (pChunk) { PGMMCHUNK pNext = pChunk->pFreeNext; Assert(pChunk->cFree == GMM_CHUNK_NUM_PAGES); if ( !pGMM->fBoundMemoryMode || pChunk->hGVM == pGVM->hSelf) { uint64_t const idGenerationOld = pPrivateSet->idGeneration; if (gmmR0FreeChunk(pGMM, pGVM, pChunk, true /*fRelaxedSem*/)) { /* We've left the giant mutex, restart? (+1 for our unlink) */ fRedoFromStart = pPrivateSet->idGeneration != idGenerationOld + 1; if (fRedoFromStart) break; uLockNanoTS = RTTimeSystemNanoTS(); iCountDown = 10240; } } /* Advance and maybe yield the lock. */ pChunk = pNext; if (--iCountDown == 0) { uint64_t const idGenerationOld = pPrivateSet->idGeneration; fRedoFromStart = gmmR0MutexYield(pGMM, &uLockNanoTS) && pPrivateSet->idGeneration != idGenerationOld; if (fRedoFromStart) break; iCountDown = 10240; } } } while (fRedoFromStart); /* * Account for shared pages that weren't freed. */ if (pGVM->gmm.s.cSharedPages) { Assert(pGMM->cSharedPages >= pGVM->gmm.s.cSharedPages); SUPR0Printf("GMMR0CleanupVM: hGVM=%#x left %#x shared pages behind!\n", pGVM->hSelf, pGVM->gmm.s.cSharedPages); pGMM->cLeftBehindSharedPages += pGVM->gmm.s.cSharedPages; } /* * Clean up balloon statistics in case the VM process crashed. */ Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.cBalloonedPages); pGMM->cBalloonedPages -= pGVM->gmm.s.cBalloonedPages; /* * Update the over-commitment management statistics. */ pGMM->cReservedPages -= pGVM->gmm.s.Reserved.cBasePages + pGVM->gmm.s.Reserved.cFixedPages + pGVM->gmm.s.Reserved.cShadowPages; switch (pGVM->gmm.s.enmPolicy) { case GMMOCPOLICY_NO_OC: break; default: /** @todo Update GMM->cOverCommittedPages */ break; } } /* zap the GVM data. */ pGVM->gmm.s.enmPolicy = GMMOCPOLICY_INVALID; pGVM->gmm.s.enmPriority = GMMPRIORITY_INVALID; pGVM->gmm.s.fMayAllocate = false; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); gmmR0MutexRelease(pGMM); LogFlow(("GMMR0CleanupVM: returns\n")); } /** * Scan one chunk for private pages belonging to the specified VM. * * @note This function may drop the gian mutex! * * @returns @c true if we've temporarily dropped the giant mutex, @c false if * we didn't. * @param pGMM Pointer to the GMM instance. * @param pGVM The global VM handle. * @param pChunk The chunk to scan. */ static bool gmmR0CleanupVMScanChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk) { /* * Look for pages belonging to the VM. * (Perform some internal checks while we're scanning.) */ #ifndef VBOX_STRICT if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT)) #endif { unsigned cPrivate = 0; unsigned cShared = 0; unsigned cFree = 0; gmmR0UnlinkChunk(pChunk); /* avoiding cFreePages updates. */ uint16_t hGVM = pGVM->hSelf; unsigned iPage = (GMM_CHUNK_SIZE >> PAGE_SHIFT); while (iPage-- > 0) if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage])) { if (pChunk->aPages[iPage].Private.hGVM == hGVM) { /* * Free the page. * * The reason for not using gmmR0FreePrivatePage here is that we * must *not* cause the chunk to be freed from under us - we're in * an AVL tree walk here. */ pChunk->aPages[iPage].u = 0; pChunk->aPages[iPage].Free.iNext = pChunk->iFreeHead; pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE; pChunk->iFreeHead = iPage; pChunk->cPrivate--; pChunk->cFree++; pGVM->gmm.s.cPrivatePages--; cFree++; } else cPrivate++; } else if (GMM_PAGE_IS_FREE(&pChunk->aPages[iPage])) cFree++; else cShared++; gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk); /* * Did it add up? */ if (RT_UNLIKELY( pChunk->cFree != cFree || pChunk->cPrivate != cPrivate || pChunk->cShared != cShared)) { SUPR0Printf("gmmR0CleanupVMScanChunk: Chunk %p/%#x has bogus stats - free=%d/%d private=%d/%d shared=%d/%d\n", pChunk->cFree, cFree, pChunk->cPrivate, cPrivate, pChunk->cShared, cShared); pChunk->cFree = cFree; pChunk->cPrivate = cPrivate; pChunk->cShared = cShared; } } /* * If not in bound memory mode, we should reset the hGVM field * if it has our handle in it. */ if (pChunk->hGVM == pGVM->hSelf) { if (!g_pGMM->fBoundMemoryMode) pChunk->hGVM = NIL_GVM_HANDLE; else if (pChunk->cFree != GMM_CHUNK_NUM_PAGES) { SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: cFree=%#x - it should be 0 in bound mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree); AssertMsgFailed(("%p/%#x: cFree=%#x - it should be 0 in bound mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree)); gmmR0UnlinkChunk(pChunk); pChunk->cFree = GMM_CHUNK_NUM_PAGES; gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk); } } /* * Look for a mapping belonging to the terminating VM. */ GMMR0CHUNKMTXSTATE MtxState; gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT); unsigned cMappings = pChunk->cMappingsX; for (unsigned i = 0; i < cMappings; i++) if (pChunk->paMappingsX[i].pGVM == pGVM) { gmmR0ChunkMutexDropGiant(&MtxState); RTR0MEMOBJ hMemObj = pChunk->paMappingsX[i].hMapObj; cMappings--; if (i < cMappings) pChunk->paMappingsX[i] = pChunk->paMappingsX[cMappings]; pChunk->paMappingsX[cMappings].pGVM = NULL; pChunk->paMappingsX[cMappings].hMapObj = NIL_RTR0MEMOBJ; Assert(pChunk->cMappingsX - 1U == cMappings); pChunk->cMappingsX = cMappings; int rc = RTR0MemObjFree(hMemObj, false /* fFreeMappings (NA) */); if (RT_FAILURE(rc)) { SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: mapping #%x: RTRMemObjFree(%p,false) -> %d \n", pChunk, pChunk->Core.Key, i, hMemObj, rc); AssertRC(rc); } gmmR0ChunkMutexRelease(&MtxState, pChunk); return true; } gmmR0ChunkMutexRelease(&MtxState, pChunk); return false; } /** * The initial resource reservations. * * This will make memory reservations according to policy and priority. If there aren't * sufficient resources available to sustain the VM this function will fail and all * future allocations requests will fail as well. * * These are just the initial reservations made very very early during the VM creation * process and will be adjusted later in the GMMR0UpdateReservation call after the * ring-3 init has completed. * * @returns VBox status code. * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED * @retval VERR_GMM_ * * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs. * This does not include MMIO2 and similar. * @param cShadowPages The number of pages that may be allocated for shadow paging structures. * @param cFixedPages The number of pages that may be allocated for fixed objects like the * hyper heap, MMIO2 and similar. * @param enmPolicy The OC policy to use on this VM. * @param enmPriority The priority in an out-of-memory situation. * * @thread The creator thread / EMT. */ GMMR0DECL(int) GMMR0InitialReservation(PVM pVM, VMCPUID idCpu, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages, GMMOCPOLICY enmPolicy, GMMPRIORITY enmPriority) { LogFlow(("GMMR0InitialReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x enmPolicy=%d enmPriority=%d\n", pVM, cBasePages, cShadowPages, cFixedPages, enmPolicy, enmPriority)); /* * Validate, get basics and take the semaphore. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; AssertReturn(cBasePages, VERR_INVALID_PARAMETER); AssertReturn(cShadowPages, VERR_INVALID_PARAMETER); AssertReturn(cFixedPages, VERR_INVALID_PARAMETER); AssertReturn(enmPolicy > GMMOCPOLICY_INVALID && enmPolicy < GMMOCPOLICY_END, VERR_INVALID_PARAMETER); AssertReturn(enmPriority > GMMPRIORITY_INVALID && enmPriority < GMMPRIORITY_END, VERR_INVALID_PARAMETER); gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { if ( !pGVM->gmm.s.Reserved.cBasePages && !pGVM->gmm.s.Reserved.cFixedPages && !pGVM->gmm.s.Reserved.cShadowPages) { /* * Check if we can accommodate this. */ /* ... later ... */ if (RT_SUCCESS(rc)) { /* * Update the records. */ pGVM->gmm.s.Reserved.cBasePages = cBasePages; pGVM->gmm.s.Reserved.cFixedPages = cFixedPages; pGVM->gmm.s.Reserved.cShadowPages = cShadowPages; pGVM->gmm.s.enmPolicy = enmPolicy; pGVM->gmm.s.enmPriority = enmPriority; pGVM->gmm.s.fMayAllocate = true; pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages; pGMM->cRegisteredVMs++; } } else rc = VERR_WRONG_ORDER; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR0InitialReservation: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0InitialReservation. * * @returns see GMMR0InitialReservation. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param pReq The request packet. */ GMMR0DECL(int) GMMR0InitialReservationReq(PVM pVM, VMCPUID idCpu, PGMMINITIALRESERVATIONREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); return GMMR0InitialReservation(pVM, idCpu, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages, pReq->enmPolicy, pReq->enmPriority); } /** * This updates the memory reservation with the additional MMIO2 and ROM pages. * * @returns VBox status code. * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED * * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs. * This does not include MMIO2 and similar. * @param cShadowPages The number of pages that may be allocated for shadow paging structures. * @param cFixedPages The number of pages that may be allocated for fixed objects like the * hyper heap, MMIO2 and similar. * * @thread EMT. */ GMMR0DECL(int) GMMR0UpdateReservation(PVM pVM, VMCPUID idCpu, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages) { LogFlow(("GMMR0UpdateReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x\n", pVM, cBasePages, cShadowPages, cFixedPages)); /* * Validate, get basics and take the semaphore. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; AssertReturn(cBasePages, VERR_INVALID_PARAMETER); AssertReturn(cShadowPages, VERR_INVALID_PARAMETER); AssertReturn(cFixedPages, VERR_INVALID_PARAMETER); gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { if ( pGVM->gmm.s.Reserved.cBasePages && pGVM->gmm.s.Reserved.cFixedPages && pGVM->gmm.s.Reserved.cShadowPages) { /* * Check if we can accommodate this. */ /* ... later ... */ if (RT_SUCCESS(rc)) { /* * Update the records. */ pGMM->cReservedPages -= pGVM->gmm.s.Reserved.cBasePages + pGVM->gmm.s.Reserved.cFixedPages + pGVM->gmm.s.Reserved.cShadowPages; pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages; pGVM->gmm.s.Reserved.cBasePages = cBasePages; pGVM->gmm.s.Reserved.cFixedPages = cFixedPages; pGVM->gmm.s.Reserved.cShadowPages = cShadowPages; } } else rc = VERR_WRONG_ORDER; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0UpdateReservation. * * @returns see GMMR0UpdateReservation. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param pReq The request packet. */ GMMR0DECL(int) GMMR0UpdateReservationReq(PVM pVM, VMCPUID idCpu, PGMMUPDATERESERVATIONREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); return GMMR0UpdateReservation(pVM, idCpu, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages); } /** * Performs sanity checks on a free set. * * @returns Error count. * * @param pGMM Pointer to the GMM instance. * @param pSet Pointer to the set. * @param pszSetName The set name. * @param pszFunction The function from which it was called. * @param uLine The line number. */ static uint32_t gmmR0SanityCheckSet(PGMM pGMM, PGMMCHUNKFREESET pSet, const char *pszSetName, const char *pszFunction, unsigned uLineNo) { uint32_t cErrors = 0; /* * Count the free pages in all the chunks and match it against pSet->cFreePages. */ uint32_t cPages = 0; for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists); i++) { for (PGMMCHUNK pCur = pSet->apLists[i]; pCur; pCur = pCur->pFreeNext) { /** @todo check that the chunk is hash into the right set. */ cPages += pCur->cFree; } } if (RT_UNLIKELY(cPages != pSet->cFreePages)) { SUPR0Printf("GMM insanity: found %#x pages in the %s set, expected %#x. (%s, line %u)\n", cPages, pszSetName, pSet->cFreePages, pszFunction, uLineNo); cErrors++; } return cErrors; } /** * Performs some sanity checks on the GMM while owning lock. * * @returns Error count. * * @param pGMM Pointer to the GMM instance. * @param pszFunction The function from which it is called. * @param uLineNo The line number. */ static uint32_t gmmR0SanityCheck(PGMM pGMM, const char *pszFunction, unsigned uLineNo) { uint32_t cErrors = 0; cErrors += gmmR0SanityCheckSet(pGMM, &pGMM->PrivateX, "private", pszFunction, uLineNo); cErrors += gmmR0SanityCheckSet(pGMM, &pGMM->Shared, "shared", pszFunction, uLineNo); /** @todo add more sanity checks. */ return cErrors; } /** * Looks up a chunk in the tree and fill in the TLB entry for it. * * This is not expected to fail and will bitch if it does. * * @returns Pointer to the allocation chunk, NULL if not found. * @param pGMM Pointer to the GMM instance. * @param idChunk The ID of the chunk to find. * @param pTlbe Pointer to the TLB entry. */ static PGMMCHUNK gmmR0GetChunkSlow(PGMM pGMM, uint32_t idChunk, PGMMCHUNKTLBE pTlbe) { PGMMCHUNK pChunk = (PGMMCHUNK)RTAvlU32Get(&pGMM->pChunks, idChunk); AssertMsgReturn(pChunk, ("Chunk %#x not found!\n", idChunk), NULL); pTlbe->idChunk = idChunk; pTlbe->pChunk = pChunk; return pChunk; } /** * Finds a allocation chunk. * * This is not expected to fail and will bitch if it does. * * @returns Pointer to the allocation chunk, NULL if not found. * @param pGMM Pointer to the GMM instance. * @param idChunk The ID of the chunk to find. */ DECLINLINE(PGMMCHUNK) gmmR0GetChunk(PGMM pGMM, uint32_t idChunk) { /* * Do a TLB lookup, branch if not in the TLB. */ PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(idChunk)]; if ( pTlbe->idChunk != idChunk || !pTlbe->pChunk) return gmmR0GetChunkSlow(pGMM, idChunk, pTlbe); return pTlbe->pChunk; } /** * Finds a page. * * This is not expected to fail and will bitch if it does. * * @returns Pointer to the page, NULL if not found. * @param pGMM Pointer to the GMM instance. * @param idPage The ID of the page to find. */ DECLINLINE(PGMMPAGE) gmmR0GetPage(PGMM pGMM, uint32_t idPage) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); if (RT_LIKELY(pChunk)) return &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK]; return NULL; } /** * Gets the host physical address for a page given by it's ID. * * @returns The host physical address or NIL_RTHCPHYS. * @param pGMM Pointer to the GMM instance. * @param idPage The ID of the page to find. */ DECLINLINE(RTHCPHYS) gmmR0GetPageHCPhys(PGMM pGMM, uint32_t idPage) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); if (RT_LIKELY(pChunk)) return RTR0MemObjGetPagePhysAddr(pChunk->hMemObj, idPage & GMM_PAGEID_IDX_MASK); return NIL_RTHCPHYS; } /** * Selects the appropriate free list given the number of free pages. * * @returns Free list index. * @param cFree The number of free pages in the chunk. */ DECLINLINE(unsigned) gmmR0SelectFreeSetList(unsigned cFree) { unsigned iList = cFree >> GMM_CHUNK_FREE_SET_SHIFT; AssertMsg(iList < RT_SIZEOFMEMB(GMMCHUNKFREESET, apLists) / RT_SIZEOFMEMB(GMMCHUNKFREESET, apLists[0]), ("%d (%u)\n", iList, cFree)); return iList; } /** * Unlinks the chunk from the free list it's currently on (if any). * * @param pChunk The allocation chunk. */ DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk) { PGMMCHUNKFREESET pSet = pChunk->pSet; if (RT_LIKELY(pSet)) { pSet->cFreePages -= pChunk->cFree; pSet->idGeneration++; PGMMCHUNK pPrev = pChunk->pFreePrev; PGMMCHUNK pNext = pChunk->pFreeNext; if (pPrev) pPrev->pFreeNext = pNext; else pSet->apLists[gmmR0SelectFreeSetList(pChunk->cFree)] = pNext; if (pNext) pNext->pFreePrev = pPrev; pChunk->pSet = NULL; pChunk->pFreeNext = NULL; pChunk->pFreePrev = NULL; } else { Assert(!pChunk->pFreeNext); Assert(!pChunk->pFreePrev); Assert(!pChunk->cFree); } } /** * Links the chunk onto the appropriate free list in the specified free set. * * If no free entries, it's not linked into any list. * * @param pChunk The allocation chunk. * @param pSet The free set. */ DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet) { Assert(!pChunk->pSet); Assert(!pChunk->pFreeNext); Assert(!pChunk->pFreePrev); if (pChunk->cFree > 0) { pChunk->pSet = pSet; pChunk->pFreePrev = NULL; unsigned const iList = gmmR0SelectFreeSetList(pChunk->cFree); pChunk->pFreeNext = pSet->apLists[iList]; if (pChunk->pFreeNext) pChunk->pFreeNext->pFreePrev = pChunk; pSet->apLists[iList] = pChunk; pSet->cFreePages += pChunk->cFree; pSet->idGeneration++; } } /** * Links the chunk onto the appropriate free list in the specified free set. * * If no free entries, it's not linked into any list. * * @param pChunk The allocation chunk. */ DECLINLINE(void) gmmR0SelectSetAndLinkChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk) { PGMMCHUNKFREESET pSet; if (pGMM->fBoundMemoryMode) pSet = &pGVM->gmm.s.Private; else if (pChunk->cShared) pSet = &pGMM->Shared; else pSet = &pGMM->PrivateX; gmmR0LinkChunk(pChunk, pSet); } /** * Frees a Chunk ID. * * @param pGMM Pointer to the GMM instance. * @param idChunk The Chunk ID to free. */ static void gmmR0FreeChunkId(PGMM pGMM, uint32_t idChunk) { AssertReturnVoid(idChunk != NIL_GMM_CHUNKID); AssertMsg(ASMBitTest(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk)); ASMAtomicBitClear(&pGMM->bmChunkId[0], idChunk); } /** * Allocates a new Chunk ID. * * @returns The Chunk ID. * @param pGMM Pointer to the GMM instance. */ static uint32_t gmmR0AllocateChunkId(PGMM pGMM) { AssertCompile(!((GMM_CHUNKID_LAST + 1) & 31)); /* must be a multiple of 32 */ AssertCompile(NIL_GMM_CHUNKID == 0); /* * Try the next sequential one. */ int32_t idChunk = ++pGMM->idChunkPrev; #if 0 /** @todo enable this code */ if ( idChunk <= GMM_CHUNKID_LAST && idChunk > NIL_GMM_CHUNKID && !ASMAtomicBitTestAndSet(&pVMM->bmChunkId[0], idChunk)) return idChunk; #endif /* * Scan sequentially from the last one. */ if ( (uint32_t)idChunk < GMM_CHUNKID_LAST && idChunk > NIL_GMM_CHUNKID) { idChunk = ASMBitNextClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1, idChunk); if (idChunk > NIL_GMM_CHUNKID) { AssertMsgReturn(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk), NIL_GMM_CHUNKID); return pGMM->idChunkPrev = idChunk; } } /* * Ok, scan from the start. * We're not racing anyone, so there is no need to expect failures or have restart loops. */ idChunk = ASMBitFirstClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1); AssertMsgReturn(idChunk > NIL_GMM_CHUNKID, ("%#x\n", idChunk), NIL_GVM_HANDLE); AssertMsgReturn(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk), NIL_GMM_CHUNKID); return pGMM->idChunkPrev = idChunk; } /** * Allocates one private page. * * Worker for gmmR0AllocatePages. * * @param pGMM Pointer to the GMM instance data. * @param hGVM The GVM handle of the VM requesting memory. * @param pChunk The chunk to allocate it from. * @param pPageDesc The page descriptor. */ static void gmmR0AllocatePage(PGMM pGMM, uint32_t hGVM, PGMMCHUNK pChunk, PGMMPAGEDESC pPageDesc) { /* update the chunk stats. */ if (pChunk->hGVM == NIL_GVM_HANDLE) pChunk->hGVM = hGVM; Assert(pChunk->cFree); pChunk->cFree--; pChunk->cPrivate++; /* unlink the first free page. */ const uint32_t iPage = pChunk->iFreeHead; AssertReleaseMsg(iPage < RT_ELEMENTS(pChunk->aPages), ("%d\n", iPage)); PGMMPAGE pPage = &pChunk->aPages[iPage]; Assert(GMM_PAGE_IS_FREE(pPage)); pChunk->iFreeHead = pPage->Free.iNext; Log3(("A pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x iNext=%#x\n", pPage, iPage, (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage, pPage->Common.u2State, pChunk->iFreeHead, pPage->Free.iNext)); /* make the page private. */ pPage->u = 0; AssertCompile(GMM_PAGE_STATE_PRIVATE == 0); pPage->Private.hGVM = hGVM; AssertCompile(NIL_RTHCPHYS >= GMM_GCPHYS_LAST); AssertCompile(GMM_GCPHYS_UNSHAREABLE >= GMM_GCPHYS_LAST); if (pPageDesc->HCPhysGCPhys <= GMM_GCPHYS_LAST) pPage->Private.pfn = pPageDesc->HCPhysGCPhys >> PAGE_SHIFT; else pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */ /* update the page descriptor. */ pPageDesc->HCPhysGCPhys = RTR0MemObjGetPagePhysAddr(pChunk->hMemObj, iPage); Assert(pPageDesc->HCPhysGCPhys != NIL_RTHCPHYS); pPageDesc->idPage = (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage; pPageDesc->idSharedPage = NIL_GMM_PAGEID; } /** * Picks the free pages from a chunk. * * @returns The new page descriptor table index. * @param pGMM Pointer to the GMM instance data. * @param hGVM The VM handle. * @param pChunk The chunk. * @param iPage The current page descriptor table index. * @param cPages The total number of pages to allocate. * @param paPages The page descriptor table (input + ouput). */ static uint32_t gmmR0AllocatePagesFromChunk(PGMM pGMM, uint16_t const hGVM, PGMMCHUNK pChunk, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) { PGMMCHUNKFREESET pSet = pChunk->pSet; Assert(pSet); gmmR0UnlinkChunk(pChunk); for (; pChunk->cFree && iPage < cPages; iPage++) gmmR0AllocatePage(pGMM, hGVM, pChunk, &paPages[iPage]); gmmR0LinkChunk(pChunk, pSet); return iPage; } /** * Registers a new chunk of memory. * * This is called by both gmmR0AllocateOneChunk and GMMR0SeedChunk. * * @returns VBox status code. On success, the giant GMM lock will be held, the * caller must release it (ugly). * @param pGMM Pointer to the GMM instance. * @param pSet Pointer to the set. * @param MemObj The memory object for the chunk. * @param hGVM The affinity of the chunk. NIL_GVM_HANDLE for no * affinity. * @param fChunkFlags The chunk flags, GMM_CHUNK_FLAGS_XXX. * @param ppChunk Chunk address (out). Optional. * * @remarks The caller must not own the giant GMM mutex. * The giant GMM mutex will be acquired and returned acquired in * the success path. On failure, no locks will be held. */ static int gmmR0RegisterChunk(PGMM pGMM, PGMMCHUNKFREESET pSet, RTR0MEMOBJ MemObj, uint16_t hGVM, uint16_t fChunkFlags, PGMMCHUNK *ppChunk) { Assert(pGMM->hMtxOwner != RTThreadNativeSelf()); Assert(hGVM != NIL_GVM_HANDLE || pGMM->fBoundMemoryMode); Assert(fChunkFlags == 0 || fChunkFlags == GMM_CHUNK_FLAGS_LARGE_PAGE); int rc; PGMMCHUNK pChunk = (PGMMCHUNK)RTMemAllocZ(sizeof(*pChunk)); if (pChunk) { /* * Initialize it. */ pChunk->hMemObj = MemObj; pChunk->cFree = GMM_CHUNK_NUM_PAGES; pChunk->hGVM = hGVM; /*pChunk->iFreeHead = 0;*/ pChunk->idNumaNode = gmmR0GetCurrentNumaNodeId(); pChunk->iChunkMtx = UINT8_MAX; pChunk->fFlags = fChunkFlags; for (unsigned iPage = 0; iPage < RT_ELEMENTS(pChunk->aPages) - 1; iPage++) { pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE; pChunk->aPages[iPage].Free.iNext = iPage + 1; } pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.u2State = GMM_PAGE_STATE_FREE; pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.iNext = UINT16_MAX; /* * Allocate a Chunk ID and insert it into the tree. * This has to be done behind the mutex of course. */ rc = gmmR0MutexAcquire(pGMM); if (RT_SUCCESS(rc)) { if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { pChunk->Core.Key = gmmR0AllocateChunkId(pGMM); if ( pChunk->Core.Key != NIL_GMM_CHUNKID && pChunk->Core.Key <= GMM_CHUNKID_LAST && RTAvlU32Insert(&pGMM->pChunks, &pChunk->Core)) { pGMM->cChunks++; RTListAppend(&pGMM->ChunkList, &pChunk->ListNode); gmmR0LinkChunk(pChunk, pSet); LogFlow(("gmmR0RegisterChunk: pChunk=%p id=%#x cChunks=%d\n", pChunk, pChunk->Core.Key, pGMM->cChunks)); if (ppChunk) *ppChunk = pChunk; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); return VINF_SUCCESS; } /* bail out */ rc = VERR_INTERNAL_ERROR; } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); } RTMemFree(pChunk); } else rc = VERR_NO_MEMORY; return rc; } /** * Allocate a new chunk, immediately pick the requested pages from it, and adds * what's remaining to the specified free set. * * @note This will leave the giant mutex while allocating the new chunk! * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the kernel-only VM instace data. * @param pSet Pointer to the free set. * @param cPages The number of pages requested. * @param paPages The page descriptor table (input + output). * @param piPage The pointer to the page descriptor table index * variable. This will be updated. */ static int gmmR0AllocateChunkNew(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, uint32_t cPages, PGMMPAGEDESC paPages, uint32_t *piPage) { gmmR0MutexRelease(pGMM); RTR0MEMOBJ hMemObj; int rc = RTR0MemObjAllocPhysNC(&hMemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS); if (RT_SUCCESS(rc)) { /** @todo Duplicate gmmR0RegisterChunk here so we can avoid chaining up the * free pages first and then unchaining them right afterwards. Instead * do as much work as possible without holding the giant lock. */ PGMMCHUNK pChunk; rc = gmmR0RegisterChunk(pGMM, pSet, hMemObj, pGVM->hSelf, 0 /*fChunkFlags*/, &pChunk); if (RT_SUCCESS(rc)) { *piPage = gmmR0AllocatePagesFromChunk(pGMM, pGVM->hSelf, pChunk, *piPage, cPages, paPages); return VINF_SUCCESS; } /* bail out */ RTR0MemObjFree(hMemObj, false /* fFreeMappings */); } int rc2 = gmmR0MutexAcquire(pGMM); AssertRCReturn(rc2, RT_FAILURE(rc) ? rc : rc2); return rc; } /** * As a last restort we'll pick any page we can get. * * @returns The new page descriptor table index. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the global VM structure. * @param pSet The set to pick from. * @param iPage The current page descriptor table index. * @param cPages The total number of pages to allocate. * @param paPages The page descriptor table (input + ouput). */ static uint32_t gmmR0AllocatePagesIndiscriminately(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) { unsigned iList = RT_ELEMENTS(pSet->apLists); while (iList-- > 0) { PGMMCHUNK pChunk = pSet->apLists[iList]; while (pChunk) { PGMMCHUNK pNext = pChunk->pFreeNext; iPage = gmmR0AllocatePagesFromChunk(pGMM, pGVM->hSelf, pChunk, iPage, cPages, paPages); if (iPage >= cPages) return iPage; pChunk = pNext; } } return iPage; } /** * Pick pages from empty chunks on the same NUMA node. * * @returns The new page descriptor table index. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the global VM structure. * @param pSet The set to pick from. * @param iPage The current page descriptor table index. * @param cPages The total number of pages to allocate. * @param paPages The page descriptor table (input + ouput). */ static uint32_t gmmR0AllocatePagesFromEmptyChunksOnSameNode(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) { PGMMCHUNK pChunk = pSet->apLists[GMM_CHUNK_FREE_SET_UNUSED_LIST]; if (pChunk) { uint16_t const idNumaNode = gmmR0GetCurrentNumaNodeId(); while (pChunk) { PGMMCHUNK pNext = pChunk->pFreeNext; if (pChunk->idNumaNode == idNumaNode) { pChunk->hGVM = pGVM->hSelf; iPage = gmmR0AllocatePagesFromChunk(pGMM, pGVM->hSelf, pChunk, iPage, cPages, paPages); if (iPage >= cPages) { pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID; return iPage; } } pChunk = pNext; } } return iPage; } /** * Pick pages from non-empty chunks on the same NUMA node. * * @returns The new page descriptor table index. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the global VM structure. * @param pSet The set to pick from. * @param iPage The current page descriptor table index. * @param cPages The total number of pages to allocate. * @param paPages The page descriptor table (input + ouput). */ static uint32_t gmmR0AllocatePagesFromSameNode(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) { /** @todo start by picking from chunks with about the right size first? */ uint16_t const idNumaNode = gmmR0GetCurrentNumaNodeId(); unsigned iList = GMM_CHUNK_FREE_SET_UNUSED_LIST; while (iList-- > 0) { PGMMCHUNK pChunk = pSet->apLists[iList]; while (pChunk) { PGMMCHUNK pNext = pChunk->pFreeNext; if (pChunk->idNumaNode == idNumaNode) { iPage = gmmR0AllocatePagesFromChunk(pGMM, pGVM->hSelf, pChunk, iPage, cPages, paPages); if (iPage >= cPages) { pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID; return iPage; } } pChunk = pNext; } } return iPage; } /** * Pick pages that are in chunks already associated with the VM. * * @returns The new page descriptor table index. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the global VM structure. * @param pSet The set to pick from. * @param iPage The current page descriptor table index. * @param cPages The total number of pages to allocate. * @param paPages The page descriptor table (input + ouput). */ static uint32_t gmmR0AllocatePagesAssociatedWithVM(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) { uint16_t const hGVM = pGVM->hSelf; /* Hint. */ if (pGVM->gmm.s.idLastChunkHint != NIL_GMM_CHUNKID) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pGVM->gmm.s.idLastChunkHint); if (pChunk && pChunk->cFree) { iPage = gmmR0AllocatePagesFromChunk(pGMM, hGVM, pChunk, iPage, cPages, paPages); if (iPage >= cPages) return iPage; } } /* Scan. */ for (unsigned iList = 0; iList < RT_ELEMENTS(pSet->apLists); iList++) { PGMMCHUNK pChunk = pSet->apLists[iList]; while (pChunk) { PGMMCHUNK pNext = pChunk->pFreeNext; if (pChunk->hGVM == hGVM) { iPage = gmmR0AllocatePagesFromChunk(pGMM, hGVM, pChunk, iPage, cPages, paPages); if (iPage >= cPages) { pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID; return iPage; } } pChunk = pNext; } } return iPage; } /** * Pick pages in bound memory mode. * * @returns The new page descriptor table index. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the global VM structure. * @param iPage The current page descriptor table index. * @param cPages The total number of pages to allocate. * @param paPages The page descriptor table (input + ouput). */ static uint32_t gmmR0AllocatePagesInBoundMode(PGMM pGMM, PGVM pGVM, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages) { for (unsigned iList = 0; iList < RT_ELEMENTS(pGVM->gmm.s.Private.apLists); iList++) { PGMMCHUNK pChunk = pGVM->gmm.s.Private.apLists[iList]; while (pChunk) { Assert(pChunk->hGVM == pGVM->hSelf); PGMMCHUNK pNext = pChunk->pFreeNext; iPage = gmmR0AllocatePagesFromChunk(pGMM, pGVM->hSelf, pChunk, iPage, cPages, paPages); if (iPage >= cPages) return iPage; pChunk = pNext; } } return iPage; } /** * Checks if we should start picking pages from chunks of other VMs. * * @returns @c true if we should, @c false if we should first try allocate more * chunks. */ static bool gmmR0ShouldAllocatePagesInOtherChunks(PGVM pGVM) { /* * Don't allocate a new chunk if we're */ uint64_t cPgReserved = pGVM->gmm.s.Reserved.cBasePages + pGVM->gmm.s.Reserved.cFixedPages - pGVM->gmm.s.cBalloonedPages /** @todo what about shared pages? */; uint64_t cPgAllocated = pGVM->gmm.s.Allocated.cBasePages + pGVM->gmm.s.Allocated.cFixedPages; uint64_t cPgDelta = cPgReserved - cPgAllocated; if (cPgDelta < GMM_CHUNK_NUM_PAGES * 4) return true; /** @todo make the threshold configurable, also test the code to see if * this ever kicks in (we might be reserving too much or smth). */ /* * Check how close we're to the max memory limit and how many fragments * there are?... */ /** @todo. */ return false; } /** * Common worker for GMMR0AllocateHandyPages and GMMR0AllocatePages. * * @returns VBox status code: * @retval VINF_SUCCESS on success. * @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk or * gmmR0AllocateMoreChunks is necessary. * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages. * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit, * that is we're trying to allocate more than we've reserved. * * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the shared VM structure. * @param cPages The number of pages to allocate. * @param paPages Pointer to the page descriptors. * See GMMPAGEDESC for details on what is expected on input. * @param enmAccount The account to charge. * * @remarks Call takes the giant GMM lock. */ static int gmmR0AllocatePagesNew(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount) { Assert(pGMM->hMtxOwner == RTThreadNativeSelf()); /* * Check allocation limits. */ if (RT_UNLIKELY(pGMM->cAllocatedPages + cPages > pGMM->cMaxPages)) return VERR_GMM_HIT_GLOBAL_LIMIT; switch (enmAccount) { case GMMACCOUNT_BASE: if (RT_UNLIKELY( pGVM->gmm.s.Allocated.cBasePages + pGVM->gmm.s.cBalloonedPages + cPages > pGVM->gmm.s.Reserved.cBasePages)) { Log(("gmmR0AllocatePages:Base: Reserved=%#llx Allocated+Ballooned+Requested=%#llx+%#llx+%#x!\n", pGVM->gmm.s.Reserved.cBasePages, pGVM->gmm.s.Allocated.cBasePages, pGVM->gmm.s.cBalloonedPages, cPages)); return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; } break; case GMMACCOUNT_SHADOW: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cShadowPages + cPages > pGVM->gmm.s.Reserved.cShadowPages)) { Log(("gmmR0AllocatePages:Shadow: Reserved=%#x Allocated+Requested=%#x+%#x!\n", pGVM->gmm.s.Reserved.cShadowPages, pGVM->gmm.s.Allocated.cShadowPages, cPages)); return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; } break; case GMMACCOUNT_FIXED: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cFixedPages + cPages > pGVM->gmm.s.Reserved.cFixedPages)) { Log(("gmmR0AllocatePages:Fixed: Reserved=%#x Allocated+Requested=%#x+%#x!\n", pGVM->gmm.s.Reserved.cFixedPages, pGVM->gmm.s.Allocated.cFixedPages, cPages)); return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; } break; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } /* * If we're in legacy memory mode, it's easy to figure if we have * sufficient number of pages up-front. */ if ( pGMM->fLegacyAllocationMode && pGVM->gmm.s.Private.cFreePages < cPages) { Assert(pGMM->fBoundMemoryMode); return VERR_GMM_SEED_ME; } /* * Update the accounts before we proceed because we might be leaving the * protection of the global mutex and thus run the risk of permitting * too much memory to be allocated. */ switch (enmAccount) { case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages += cPages; break; case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages += cPages; break; case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages += cPages; break; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } pGVM->gmm.s.cPrivatePages += cPages; pGMM->cAllocatedPages += cPages; /* * Part two of it's-easy-in-legacy-memory-mode. */ uint32_t iPage = 0; if (pGMM->fLegacyAllocationMode) { iPage = gmmR0AllocatePagesInBoundMode(pGMM, pGVM, iPage, cPages, paPages); AssertReleaseReturn(iPage == cPages, VERR_INTERNAL_ERROR_3); return VINF_SUCCESS; } /* * Bound mode is also relatively straightforward. */ int rc = VINF_SUCCESS; if (pGMM->fBoundMemoryMode) { iPage = gmmR0AllocatePagesInBoundMode(pGMM, pGVM, iPage, cPages, paPages); if (iPage < cPages) do rc = gmmR0AllocateChunkNew(pGMM, pGVM, &pGVM->gmm.s.Private, cPages, paPages, &iPage); while (iPage < cPages && RT_SUCCESS(rc)); } /* * Shared mode is trickier as we should try archive the same locality as * in bound mode, but smartly make use of non-full chunks allocated by * other VMs if we're low on memory. */ else { /* Pick the most optimal pages first. */ iPage = gmmR0AllocatePagesAssociatedWithVM(pGMM, pGVM, &pGMM->PrivateX, iPage, cPages, paPages); if (iPage < cPages) { /* Maybe we should try getting pages from chunks "belonging" to other VMs before allocating more chunks? */ if (gmmR0ShouldAllocatePagesInOtherChunks(pGVM)) iPage = gmmR0AllocatePagesFromSameNode(pGMM, pGVM, &pGMM->PrivateX, iPage, cPages, paPages); /* Allocate memory from empty chunks. */ if (iPage < cPages) iPage = gmmR0AllocatePagesFromEmptyChunksOnSameNode(pGMM, pGVM, &pGMM->PrivateX, iPage, cPages, paPages); /* Grab empty shared chunks. */ if (iPage < cPages) iPage = gmmR0AllocatePagesFromEmptyChunksOnSameNode(pGMM, pGVM, &pGMM->Shared, iPage, cPages, paPages); /* * Ok, try allocate new chunks. */ if (iPage < cPages) { do rc = gmmR0AllocateChunkNew(pGMM, pGVM, &pGMM->PrivateX, cPages, paPages, &iPage); while (iPage < cPages && RT_SUCCESS(rc)); /* If the host is out of memory, take whatever we can get. */ if ( rc == VERR_NO_MEMORY && pGMM->PrivateX.cFreePages + pGMM->Shared.cFreePages >= cPages - iPage) { iPage = gmmR0AllocatePagesIndiscriminately(pGMM, pGVM, &pGMM->PrivateX, iPage, cPages, paPages); if (iPage < cPages) iPage = gmmR0AllocatePagesIndiscriminately(pGMM, pGVM, &pGMM->Shared, iPage, cPages, paPages); AssertRelease(iPage == cPages); rc = VINF_SUCCESS; } } } } /* * Clean up on failure. Since this is bound to be a low-memory condition * we will give back any empty chunks that might be hanging around. */ if (RT_FAILURE(rc)) { /* Update the statistics. */ pGVM->gmm.s.cPrivatePages -= cPages; pGMM->cAllocatedPages -= cPages - iPage; switch (enmAccount) { case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages -= cPages; break; case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages -= cPages; break; case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages -= cPages; break; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } /* Release the pages. */ while (iPage-- > 0) { uint32_t idPage = paPages[iPage].idPage; PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage); if (RT_LIKELY(pPage)) { Assert(GMM_PAGE_IS_PRIVATE(pPage)); Assert(pPage->Private.hGVM == pGVM->hSelf); gmmR0FreePrivatePage(pGMM, pGVM, idPage, pPage); } else AssertMsgFailed(("idPage=%#x\n", idPage)); } /* Free empty chunks. */ /** @todo */ } return VINF_SUCCESS; } /** * Updates the previous allocations and allocates more pages. * * The handy pages are always taken from the 'base' memory account. * The allocated pages are not cleared and will contains random garbage. * * @returns VBox status code: * @retval VINF_SUCCESS on success. * @retval VERR_NOT_OWNER if the caller is not an EMT. * @retval VERR_GMM_PAGE_NOT_FOUND if one of the pages to update wasn't found. * @retval VERR_GMM_PAGE_NOT_PRIVATE if one of the pages to update wasn't a * private page. * @retval VERR_GMM_PAGE_NOT_SHARED if one of the pages to update wasn't a * shared page. * @retval VERR_GMM_NOT_PAGE_OWNER if one of the pages to be updated wasn't * owned by the VM. * @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary. * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages. * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit, * that is we're trying to allocate more than we've reserved. * * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param cPagesToUpdate The number of pages to update (starting from the head). * @param cPagesToAlloc The number of pages to allocate (starting from the head). * @param paPages The array of page descriptors. * See GMMPAGEDESC for details on what is expected on input. * @thread EMT. */ GMMR0DECL(int) GMMR0AllocateHandyPages(PVM pVM, VMCPUID idCpu, uint32_t cPagesToUpdate, uint32_t cPagesToAlloc, PGMMPAGEDESC paPages) { LogFlow(("GMMR0AllocateHandyPages: pVM=%p cPagesToUpdate=%#x cPagesToAlloc=%#x paPages=%p\n", pVM, cPagesToUpdate, cPagesToAlloc, paPages)); /* * Validate, get basics and take the semaphore. * (This is a relatively busy path, so make predictions where possible.) */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); AssertMsgReturn( (cPagesToUpdate && cPagesToUpdate < 1024) || (cPagesToAlloc && cPagesToAlloc < 1024), ("cPagesToUpdate=%#x cPagesToAlloc=%#x\n", cPagesToUpdate, cPagesToAlloc), VERR_INVALID_PARAMETER); unsigned iPage = 0; for (; iPage < cPagesToUpdate; iPage++) { AssertMsgReturn( ( paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST && !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK)) || paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER); AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST /*|| paPages[iPage].idSharedPage == NIL_GMM_PAGEID*/, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); } for (; iPage < cPagesToAlloc; iPage++) { AssertMsgReturn(paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER); AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); } gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { /* No allocations before the initial reservation has been made! */ if (RT_LIKELY( pGVM->gmm.s.Reserved.cBasePages && pGVM->gmm.s.Reserved.cFixedPages && pGVM->gmm.s.Reserved.cShadowPages)) { /* * Perform the updates. * Stop on the first error. */ for (iPage = 0; iPage < cPagesToUpdate; iPage++) { if (paPages[iPage].idPage != NIL_GMM_PAGEID) { PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idPage); if (RT_LIKELY(pPage)) { if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage))) { if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf)) { AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST); if (RT_LIKELY(paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST)) pPage->Private.pfn = paPages[iPage].HCPhysGCPhys >> PAGE_SHIFT; else if (paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE) pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* else: NIL_RTHCPHYS nothing */ paPages[iPage].idPage = NIL_GMM_PAGEID; paPages[iPage].HCPhysGCPhys = NIL_RTHCPHYS; } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not owner! hGVM=%#x hSelf=%#x\n", iPage, paPages[iPage].idPage, pPage->Private.hGVM, pGVM->hSelf)); rc = VERR_GMM_NOT_PAGE_OWNER; break; } } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not private! %.*Rhxs (type %d)\n", iPage, paPages[iPage].idPage, sizeof(*pPage), pPage, pPage->Common.u2State)); rc = VERR_GMM_PAGE_NOT_PRIVATE; break; } } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (private)\n", iPage, paPages[iPage].idPage)); rc = VERR_GMM_PAGE_NOT_FOUND; break; } } if (paPages[iPage].idSharedPage != NIL_GMM_PAGEID) { PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idSharedPage); if (RT_LIKELY(pPage)) { if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage))) { AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST); Assert(pPage->Shared.cRefs); Assert(pGVM->gmm.s.cSharedPages); Assert(pGVM->gmm.s.Allocated.cBasePages); Log(("GMMR0AllocateHandyPages: free shared page %x cRefs=%d\n", paPages[iPage].idSharedPage, pPage->Shared.cRefs)); pGVM->gmm.s.cSharedPages--; pGVM->gmm.s.Allocated.cBasePages--; if (!--pPage->Shared.cRefs) gmmR0FreeSharedPage(pGMM, pGVM, paPages[iPage].idSharedPage, pPage); else { Assert(pGMM->cDuplicatePages); pGMM->cDuplicatePages--; } paPages[iPage].idSharedPage = NIL_GMM_PAGEID; } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not shared!\n", iPage, paPages[iPage].idSharedPage)); rc = VERR_GMM_PAGE_NOT_SHARED; break; } } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (shared)\n", iPage, paPages[iPage].idSharedPage)); rc = VERR_GMM_PAGE_NOT_FOUND; break; } } } /* * Join paths with GMMR0AllocatePages for the allocation. * Note! gmmR0AllocateMoreChunks may leave the protection of the mutex! */ rc = gmmR0AllocatePagesNew(pGMM, pGVM, cPagesToAlloc, paPages, GMMACCOUNT_BASE); } else rc = VERR_WRONG_ORDER; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR0AllocateHandyPages: returns %Rrc\n", rc)); return rc; } /** * Allocate one or more pages. * * This is typically used for ROMs and MMIO2 (VRAM) during VM creation. * The allocated pages are not cleared and will contains random garbage. * * @returns VBox status code: * @retval VINF_SUCCESS on success. * @retval VERR_NOT_OWNER if the caller is not an EMT. * @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary. * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages. * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit, * that is we're trying to allocate more than we've reserved. * * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param cPages The number of pages to allocate. * @param paPages Pointer to the page descriptors. * See GMMPAGEDESC for details on what is expected on input. * @param enmAccount The account to charge. * * @thread EMT. */ GMMR0DECL(int) GMMR0AllocatePages(PVM pVM, VMCPUID idCpu, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount) { LogFlow(("GMMR0AllocatePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount)); /* * Validate, get basics and take the semaphore. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER); AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER); for (unsigned iPage = 0; iPage < cPages; iPage++) { AssertMsgReturn( paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE || ( enmAccount == GMMACCOUNT_BASE && paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST && !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK)), ("#%#x: %RHp enmAccount=%d\n", iPage, paPages[iPage].HCPhysGCPhys, enmAccount), VERR_INVALID_PARAMETER); AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); } gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { /* No allocations before the initial reservation has been made! */ if (RT_LIKELY( pGVM->gmm.s.Reserved.cBasePages && pGVM->gmm.s.Reserved.cFixedPages && pGVM->gmm.s.Reserved.cShadowPages)) rc = gmmR0AllocatePagesNew(pGMM, pGVM, cPages, paPages, enmAccount); else rc = VERR_WRONG_ORDER; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR0AllocatePages: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0AllocatePages. * * @returns see GMMR0AllocatePages. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param pReq The request packet. */ GMMR0DECL(int) GMMR0AllocatePagesReq(PVM pVM, VMCPUID idCpu, PGMMALLOCATEPAGESREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0]), ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0])), VERR_INVALID_PARAMETER); AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages]), ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages])), VERR_INVALID_PARAMETER); return GMMR0AllocatePages(pVM, idCpu, pReq->cPages, &pReq->aPages[0], pReq->enmAccount); } /** * Allocate a large page to represent guest RAM * * The allocated pages are not cleared and will contains random garbage. * * @returns VBox status code: * @retval VINF_SUCCESS on success. * @retval VERR_NOT_OWNER if the caller is not an EMT. * @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary. * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages. * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit, * that is we're trying to allocate more than we've reserved. * @returns see GMMR0AllocatePages. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param cbPage Large page size */ GMMR0DECL(int) GMMR0AllocateLargePage(PVM pVM, VMCPUID idCpu, uint32_t cbPage, uint32_t *pIdPage, RTHCPHYS *pHCPhys) { LogFlow(("GMMR0AllocateLargePage: pVM=%p cbPage=%x\n", pVM, cbPage)); AssertReturn(cbPage == GMM_CHUNK_SIZE, VERR_INVALID_PARAMETER); AssertPtrReturn(pIdPage, VERR_INVALID_PARAMETER); AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER); /* * Validate, get basics and take the semaphore. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; /* Not supported in legacy mode where we allocate the memory in ring 3 and lock it in ring 0. */ if (pGMM->fLegacyAllocationMode) return VERR_NOT_SUPPORTED; *pHCPhys = NIL_RTHCPHYS; *pIdPage = NIL_GMM_PAGEID; gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { const unsigned cPages = (GMM_CHUNK_SIZE >> PAGE_SHIFT); if (RT_UNLIKELY( pGVM->gmm.s.Allocated.cBasePages + pGVM->gmm.s.cBalloonedPages + cPages > pGVM->gmm.s.Reserved.cBasePages)) { Log(("GMMR0AllocateLargePage: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n", pGVM->gmm.s.Reserved.cBasePages, pGVM->gmm.s.Allocated.cBasePages, cPages)); gmmR0MutexRelease(pGMM); return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; } /* * Allocate a new large page chunk. * * Note! We leave the giant GMM lock temporarily as the allocation might * take a long time. gmmR0RegisterChunk will retake it (ugly). */ AssertCompile(GMM_CHUNK_SIZE == _2M); gmmR0MutexRelease(pGMM); RTR0MEMOBJ hMemObj; rc = RTR0MemObjAllocPhysEx(&hMemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS, GMM_CHUNK_SIZE); if (RT_SUCCESS(rc)) { PGMMCHUNKFREESET pSet = pGMM->fBoundMemoryMode ? &pGVM->gmm.s.Private : &pGMM->PrivateX; PGMMCHUNK pChunk; rc = gmmR0RegisterChunk(pGMM, pSet, hMemObj, pGVM->hSelf, GMM_CHUNK_FLAGS_LARGE_PAGE, &pChunk); if (RT_SUCCESS(rc)) { /* * Allocate all the pages in the chunk. */ /* Unlink the new chunk from the free list. */ gmmR0UnlinkChunk(pChunk); /** @todo rewrite this to skip the looping. */ /* Allocate all pages. */ GMMPAGEDESC PageDesc; gmmR0AllocatePage(pGMM, pGVM->hSelf, pChunk, &PageDesc); /* Return the first page as we'll use the whole chunk as one big page. */ *pIdPage = PageDesc.idPage; *pHCPhys = PageDesc.HCPhysGCPhys; for (unsigned i = 1; i < cPages; i++) gmmR0AllocatePage(pGMM, pGVM->hSelf, pChunk, &PageDesc); /* Update accounting. */ pGVM->gmm.s.Allocated.cBasePages += cPages; pGVM->gmm.s.cPrivatePages += cPages; pGMM->cAllocatedPages += cPages; gmmR0LinkChunk(pChunk, pSet); gmmR0MutexRelease(pGMM); } else RTR0MemObjFree(hMemObj, false /* fFreeMappings */); } } else { gmmR0MutexRelease(pGMM); rc = VERR_INTERNAL_ERROR_5; } LogFlow(("GMMR0AllocateLargePage: returns %Rrc\n", rc)); return rc; } /** * Free a large page * * @returns VBox status code: * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param idPage Large page id */ GMMR0DECL(int) GMMR0FreeLargePage(PVM pVM, VMCPUID idCpu, uint32_t idPage) { LogFlow(("GMMR0FreeLargePage: pVM=%p idPage=%x\n", pVM, idPage)); /* * Validate, get basics and take the semaphore. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; /* Not supported in legacy mode where we allocate the memory in ring 3 and lock it in ring 0. */ if (pGMM->fLegacyAllocationMode) return VERR_NOT_SUPPORTED; gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { const unsigned cPages = (GMM_CHUNK_SIZE >> PAGE_SHIFT); if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cBasePages < cPages)) { Log(("GMMR0FreeLargePage: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cBasePages, cPages)); gmmR0MutexRelease(pGMM); return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage); if (RT_LIKELY( pPage && GMM_PAGE_IS_PRIVATE(pPage))) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); Assert(pChunk); Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); Assert(pChunk->cPrivate > 0); /* Release the memory immediately. */ gmmR0FreeChunk(pGMM, NULL, pChunk, false /*fRelaxedSem*/); /** @todo this can be relaxed too! */ /* Update accounting. */ pGVM->gmm.s.Allocated.cBasePages -= cPages; pGVM->gmm.s.cPrivatePages -= cPages; pGMM->cAllocatedPages -= cPages; } else rc = VERR_GMM_PAGE_NOT_FOUND; } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR0FreeLargePage: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0FreeLargePage. * * @returns see GMMR0FreeLargePage. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param pReq The request packet. */ GMMR0DECL(int) GMMR0FreeLargePageReq(PVM pVM, VMCPUID idCpu, PGMMFREELARGEPAGEREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMFREEPAGESREQ), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(GMMFREEPAGESREQ)), VERR_INVALID_PARAMETER); return GMMR0FreeLargePage(pVM, idCpu, pReq->idPage); } /** * Frees a chunk, giving it back to the host OS. * * @param pGMM Pointer to the GMM instance. * @param pGVM This is set when called from GMMR0CleanupVM so we can * unmap and free the chunk in one go. * @param pChunk The chunk to free. * @param fRelaxedSem Whether we can release the semaphore while doing the * freeing (@c true) or not. */ static bool gmmR0FreeChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem) { Assert(pChunk->Core.Key != NIL_GMM_CHUNKID); GMMR0CHUNKMTXSTATE MtxState; gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT); /* * Cleanup hack! Unmap the chunk from the callers address space. * This shouldn't happen, so screw lock contention... */ if ( pChunk->cMappingsX && !pGMM->fLegacyAllocationMode && pGVM) gmmR0UnmapChunkLocked(pGMM, pGVM, pChunk); /* * If there are current mappings of the chunk, then request the * VMs to unmap them. Reposition the chunk in the free list so * it won't be a likely candidate for allocations. */ if (pChunk->cMappingsX) { /** @todo R0 -> VM request */ /* The chunk can be mapped by more than one VM if fBoundMemoryMode is false! */ Log(("gmmR0FreeChunk: chunk still has %d/%d mappings; don't free!\n", pChunk->cMappingsX)); gmmR0ChunkMutexRelease(&MtxState, pChunk); return false; } /* * Save and trash the handle. */ RTR0MEMOBJ const hMemObj = pChunk->hMemObj; pChunk->hMemObj = NIL_RTR0MEMOBJ; /* * Unlink it from everywhere. */ gmmR0UnlinkChunk(pChunk); RTListNodeRemove(&pChunk->ListNode); PAVLU32NODECORE pCore = RTAvlU32Remove(&pGMM->pChunks, pChunk->Core.Key); Assert(pCore == &pChunk->Core); NOREF(pCore); PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(pChunk->Core.Key)]; if (pTlbe->pChunk == pChunk) { pTlbe->idChunk = NIL_GMM_CHUNKID; pTlbe->pChunk = NULL; } Assert(pGMM->cChunks > 0); pGMM->cChunks--; /* * Free the Chunk ID before dropping the locks and freeing the rest. */ gmmR0FreeChunkId(pGMM, pChunk->Core.Key); pChunk->Core.Key = NIL_GMM_CHUNKID; pGMM->cFreedChunks++; gmmR0ChunkMutexRelease(&MtxState, NULL); if (fRelaxedSem) gmmR0MutexRelease(pGMM); RTMemFree(pChunk->paMappingsX); pChunk->paMappingsX = NULL; RTMemFree(pChunk); int rc = RTR0MemObjFree(hMemObj, false /* fFreeMappings */); AssertLogRelRC(rc); if (fRelaxedSem) gmmR0MutexAcquire(pGMM); return fRelaxedSem; } /** * Free page worker. * * The caller does all the statistic decrementing, we do all the incrementing. * * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the GVM instance. * @param pChunk Pointer to the chunk this page belongs to. * @param idPage The Page ID. * @param pPage Pointer to the page. */ static void gmmR0FreePageWorker(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, uint32_t idPage, PGMMPAGE pPage) { Log3(("F pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x\n", pPage, pPage - &pChunk->aPages[0], idPage, pPage->Common.u2State, pChunk->iFreeHead)); NOREF(idPage); /* * Put the page on the free list. */ pPage->u = 0; pPage->Free.u2State = GMM_PAGE_STATE_FREE; Assert(pChunk->iFreeHead < RT_ELEMENTS(pChunk->aPages) || pChunk->iFreeHead == UINT16_MAX); pPage->Free.iNext = pChunk->iFreeHead; pChunk->iFreeHead = pPage - &pChunk->aPages[0]; /* * Update statistics (the cShared/cPrivate stats are up to date already), * and relink the chunk if necessary. */ unsigned const cFree = pChunk->cFree; if ( !cFree || gmmR0SelectFreeSetList(cFree) != gmmR0SelectFreeSetList(cFree + 1)) { gmmR0UnlinkChunk(pChunk); pChunk->cFree++; gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk); } else { pChunk->cFree = cFree + 1; pChunk->pSet->cFreePages++; } /* * If the chunk becomes empty, consider giving memory back to the host OS. * * The current strategy is to try give it back if there are other chunks * in this free list, meaning if there are at least 240 free pages in this * category. Note that since there are probably mappings of the chunk, * it won't be freed up instantly, which probably screws up this logic * a bit... */ /** @todo Do this on the way out. */ if (RT_UNLIKELY( pChunk->cFree == GMM_CHUNK_NUM_PAGES && pChunk->pFreeNext && pChunk->pFreePrev /** @todo this is probably misfiring, see reset... */ && !pGMM->fLegacyAllocationMode)) gmmR0FreeChunk(pGMM, NULL, pChunk, false); } /** * Frees a shared page, the page is known to exist and be valid and such. * * @param pGMM Pointer to the GMM instance. * @param pGVM Pointer to the GVM instance. * @param idPage The Page ID * @param pPage The page structure. */ DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); Assert(pChunk); Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); Assert(pChunk->cShared > 0); Assert(pGMM->cSharedPages > 0); Assert(pGMM->cAllocatedPages > 0); Assert(!pPage->Shared.cRefs); pChunk->cShared--; pGMM->cAllocatedPages--; pGMM->cSharedPages--; gmmR0FreePageWorker(pGMM, pGVM, pChunk, idPage, pPage); } /** * Frees a private page, the page is known to exist and be valid and such. * * @param pGMM Pointer to the GMM instance. * @param pGVM Pointer to the GVM instance. * @param idPage The Page ID * @param pPage The page structure. */ DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); Assert(pChunk); Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); Assert(pChunk->cPrivate > 0); Assert(pGMM->cAllocatedPages > 0); pChunk->cPrivate--; pGMM->cAllocatedPages--; gmmR0FreePageWorker(pGMM, pGVM, pChunk, idPage, pPage); } /** * Common worker for GMMR0FreePages and GMMR0BalloonedPages. * * @returns VBox status code: * @retval xxx * * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the shared VM structure. * @param cPages The number of pages to free. * @param paPages Pointer to the page descriptors. * @param enmAccount The account this relates to. */ static int gmmR0FreePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount) { /* * Check that the request isn't impossible wrt to the account status. */ switch (enmAccount) { case GMMACCOUNT_BASE: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cBasePages < cPages)) { Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cBasePages, cPages)); return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } break; case GMMACCOUNT_SHADOW: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cShadowPages < cPages)) { Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cShadowPages, cPages)); return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } break; case GMMACCOUNT_FIXED: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cFixedPages < cPages)) { Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cFixedPages, cPages)); return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } break; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } /* * Walk the descriptors and free the pages. * * Statistics (except the account) are being updated as we go along, * unlike the alloc code. Also, stop on the first error. */ int rc = VINF_SUCCESS; uint32_t iPage; for (iPage = 0; iPage < cPages; iPage++) { uint32_t idPage = paPages[iPage].idPage; PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage); if (RT_LIKELY(pPage)) { if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage))) { if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf)) { Assert(pGVM->gmm.s.cPrivatePages); pGVM->gmm.s.cPrivatePages--; gmmR0FreePrivatePage(pGMM, pGVM, idPage, pPage); } else { Log(("gmmR0AllocatePages: #%#x/%#x: not owner! hGVM=%#x hSelf=%#x\n", iPage, idPage, pPage->Private.hGVM, pGVM->hSelf)); rc = VERR_GMM_NOT_PAGE_OWNER; break; } } else if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage))) { Assert(pGVM->gmm.s.cSharedPages); pGVM->gmm.s.cSharedPages--; Assert(pPage->Shared.cRefs); if (!--pPage->Shared.cRefs) gmmR0FreeSharedPage(pGMM, pGVM, idPage, pPage); else { Assert(pGMM->cDuplicatePages); pGMM->cDuplicatePages--; } } else { Log(("gmmR0AllocatePages: #%#x/%#x: already free!\n", iPage, idPage)); rc = VERR_GMM_PAGE_ALREADY_FREE; break; } } else { Log(("gmmR0AllocatePages: #%#x/%#x: not found!\n", iPage, idPage)); rc = VERR_GMM_PAGE_NOT_FOUND; break; } paPages[iPage].idPage = NIL_GMM_PAGEID; } /* * Update the account. */ switch (enmAccount) { case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages -= iPage; break; case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages -= iPage; break; case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages -= iPage; break; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } /* * Any threshold stuff to be done here? */ return rc; } /** * Free one or more pages. * * This is typically used at reset time or power off. * * @returns VBox status code: * @retval xxx * * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param cPages The number of pages to allocate. * @param paPages Pointer to the page descriptors containing the Page IDs for each page. * @param enmAccount The account this relates to. * @thread EMT. */ GMMR0DECL(int) GMMR0FreePages(PVM pVM, VMCPUID idCpu, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount) { LogFlow(("GMMR0FreePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount)); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER); AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER); for (unsigned iPage = 0; iPage < cPages; iPage++) AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); /* * Take the semaphore and call the worker function. */ gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { rc = gmmR0FreePages(pGMM, pGVM, cPages, paPages, enmAccount); GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR0FreePages: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0FreePages. * * @returns see GMMR0FreePages. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param pReq The request packet. */ GMMR0DECL(int) GMMR0FreePagesReq(PVM pVM, VMCPUID idCpu, PGMMFREEPAGESREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0]), ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0])), VERR_INVALID_PARAMETER); AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages]), ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages])), VERR_INVALID_PARAMETER); return GMMR0FreePages(pVM, idCpu, pReq->cPages, &pReq->aPages[0], pReq->enmAccount); } /** * Report back on a memory ballooning request. * * The request may or may not have been initiated by the GMM. If it was initiated * by the GMM it is important that this function is called even if no pages were * ballooned. * * @returns VBox status code: * @retval VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH * @retval VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH * @retval VERR_GMM_OVERCOMMITTED_TRY_AGAIN_IN_A_BIT - reset condition * indicating that we won't necessarily have sufficient RAM to boot * the VM again and that it should pause until this changes (we'll try * balloon some other VM). (For standard deflate we have little choice * but to hope the VM won't use the memory that was returned to it.) * * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param enmAction Inflate/deflate/reset * @param cBalloonedPages The number of pages that was ballooned. * * @thread EMT. */ GMMR0DECL(int) GMMR0BalloonedPages(PVM pVM, VMCPUID idCpu, GMMBALLOONACTION enmAction, uint32_t cBalloonedPages) { LogFlow(("GMMR0BalloonedPages: pVM=%p enmAction=%d cBalloonedPages=%#x\n", pVM, enmAction, cBalloonedPages)); AssertMsgReturn(cBalloonedPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cBalloonedPages), VERR_INVALID_PARAMETER); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; /* * Take the semaphore and do some more validations. */ gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { switch (enmAction) { case GMMBALLOONACTION_INFLATE: { if (RT_LIKELY(pGVM->gmm.s.Allocated.cBasePages + pGVM->gmm.s.cBalloonedPages + cBalloonedPages <= pGVM->gmm.s.Reserved.cBasePages)) { /* * Record the ballooned memory. */ pGMM->cBalloonedPages += cBalloonedPages; if (pGVM->gmm.s.cReqBalloonedPages) { /* Codepath never taken. Might be interesting in the future to request ballooned memory from guests in low memory conditions.. */ AssertFailed(); pGVM->gmm.s.cBalloonedPages += cBalloonedPages; pGVM->gmm.s.cReqActuallyBalloonedPages += cBalloonedPages; Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx Req=%#llx Actual=%#llx (pending)\n", cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqBalloonedPages, pGVM->gmm.s.cReqActuallyBalloonedPages)); } else { pGVM->gmm.s.cBalloonedPages += cBalloonedPages; Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx (user)\n", cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages)); } } else { Log(("GMMR0BalloonedPages: cBasePages=%#llx Total=%#llx cBalloonedPages=%#llx Reserved=%#llx\n", pGVM->gmm.s.Allocated.cBasePages, pGVM->gmm.s.cBalloonedPages, cBalloonedPages, pGVM->gmm.s.Reserved.cBasePages)); rc = VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } break; } case GMMBALLOONACTION_DEFLATE: { /* Deflate. */ if (pGVM->gmm.s.cBalloonedPages >= cBalloonedPages) { /* * Record the ballooned memory. */ Assert(pGMM->cBalloonedPages >= cBalloonedPages); pGMM->cBalloonedPages -= cBalloonedPages; pGVM->gmm.s.cBalloonedPages -= cBalloonedPages; if (pGVM->gmm.s.cReqDeflatePages) { AssertFailed(); /* This is path is for later. */ Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx Req=%#llx\n", cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqDeflatePages)); /* * Anything we need to do here now when the request has been completed? */ pGVM->gmm.s.cReqDeflatePages = 0; } else Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx (user)\n", cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages)); } else { Log(("GMMR0BalloonedPages: Total=%#llx cBalloonedPages=%#llx\n", pGVM->gmm.s.cBalloonedPages, cBalloonedPages)); rc = VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH; } break; } case GMMBALLOONACTION_RESET: { /* Reset to an empty balloon. */ Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.cBalloonedPages); pGMM->cBalloonedPages -= pGVM->gmm.s.cBalloonedPages; pGVM->gmm.s.cBalloonedPages = 0; break; } default: rc = VERR_INVALID_PARAMETER; break; } GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0BalloonedPages. * * @returns see GMMR0BalloonedPages. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param pReq The request packet. */ GMMR0DECL(int) GMMR0BalloonedPagesReq(PVM pVM, VMCPUID idCpu, PGMMBALLOONEDPAGESREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMBALLOONEDPAGESREQ), ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMBALLOONEDPAGESREQ)), VERR_INVALID_PARAMETER); return GMMR0BalloonedPages(pVM, idCpu, pReq->enmAction, pReq->cBalloonedPages); } /** * Return memory statistics for the hypervisor * * @returns VBox status code: * @param pVM Pointer to the shared VM structure. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0QueryHypervisorMemoryStatsReq(PVM pVM, PGMMMEMSTATSREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMMEMSTATSREQ), ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMMEMSTATSREQ)), VERR_INVALID_PARAMETER); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); pReq->cAllocPages = pGMM->cAllocatedPages; pReq->cFreePages = (pGMM->cChunks << (GMM_CHUNK_SHIFT- PAGE_SHIFT)) - pGMM->cAllocatedPages; pReq->cBalloonedPages = pGMM->cBalloonedPages; pReq->cMaxPages = pGMM->cMaxPages; pReq->cSharedPages = pGMM->cDuplicatePages; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); return VINF_SUCCESS; } /** * Return memory statistics for the VM * * @returns VBox status code: * @param pVM Pointer to the shared VM structure. * @parma idCpu Cpu id. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0QueryMemoryStatsReq(PVM pVM, VMCPUID idCpu, PGMMMEMSTATSREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMMEMSTATSREQ), ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMMEMSTATSREQ)), VERR_INVALID_PARAMETER); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; /* * Take the semaphore and do some more validations. */ gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { pReq->cAllocPages = pGVM->gmm.s.Allocated.cBasePages; pReq->cBalloonedPages = pGVM->gmm.s.cBalloonedPages; pReq->cMaxPages = pGVM->gmm.s.Reserved.cBasePages; pReq->cFreePages = pReq->cMaxPages - pReq->cAllocPages; } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR3QueryVMMemoryStats: returns %Rrc\n", rc)); return rc; } /** * Worker for gmmR0UnmapChunk and gmmr0FreeChunk. * * Don't call this in legacy allocation mode! * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the Global VM structure. * @param pChunk Pointer to the chunk to be unmapped. */ static int gmmR0UnmapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk) { Assert(!pGMM->fLegacyAllocationMode); /* * Find the mapping and try unmapping it. */ uint32_t cMappings = pChunk->cMappingsX; for (uint32_t i = 0; i < cMappings; i++) { Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ); if (pChunk->paMappingsX[i].pGVM == pGVM) { /* unmap */ int rc = RTR0MemObjFree(pChunk->paMappingsX[i].hMapObj, false /* fFreeMappings (NA) */); if (RT_SUCCESS(rc)) { /* update the record. */ cMappings--; if (i < cMappings) pChunk->paMappingsX[i] = pChunk->paMappingsX[cMappings]; pChunk->paMappingsX[cMappings].hMapObj = NIL_RTR0MEMOBJ; pChunk->paMappingsX[cMappings].pGVM = NULL; Assert(pChunk->cMappingsX - 1U == cMappings); pChunk->cMappingsX = cMappings; } return rc; } } Log(("gmmR0UnmapChunk: Chunk %#x is not mapped into pGVM=%p/%#x\n", pChunk->Core.Key, pGVM, pGVM->hSelf)); return VERR_GMM_CHUNK_NOT_MAPPED; } /** * Unmaps a chunk previously mapped into the address space of the current process. * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the Global VM structure. * @param pChunk Pointer to the chunk to be unmapped. */ static int gmmR0UnmapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem) { if (!pGMM->fLegacyAllocationMode) { /* * Lock the chunk and if possible leave the giant GMM lock. */ GMMR0CHUNKMTXSTATE MtxState; int rc = gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, fRelaxedSem ? GMMR0CHUNK_MTX_RETAKE_GIANT : GMMR0CHUNK_MTX_KEEP_GIANT); if (RT_SUCCESS(rc)) { rc = gmmR0UnmapChunkLocked(pGMM, pGVM, pChunk); gmmR0ChunkMutexRelease(&MtxState, pChunk); } return rc; } if (pChunk->hGVM == pGVM->hSelf) return VINF_SUCCESS; Log(("gmmR0UnmapChunk: Chunk %#x is not mapped into pGVM=%p/%#x (legacy)\n", pChunk->Core.Key, pGVM, pGVM->hSelf)); return VERR_GMM_CHUNK_NOT_MAPPED; } /** * Worker for gmmR0MapChunk. * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the Global VM structure. * @param pChunk Pointer to the chunk to be mapped. * @param ppvR3 Where to store the ring-3 address of the mapping. * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be * contain the address of the existing mapping. */ static int gmmR0MapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3) { /* * If we're in legacy mode this is simple. */ if (pGMM->fLegacyAllocationMode) { if (pChunk->hGVM != pGVM->hSelf) { Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3)); return VERR_GMM_CHUNK_NOT_FOUND; } *ppvR3 = RTR0MemObjAddressR3(pChunk->hMemObj); return VINF_SUCCESS; } /* * Check to see if the chunk is already mapped. */ for (uint32_t i = 0; i < pChunk->cMappingsX; i++) { Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ); if (pChunk->paMappingsX[i].pGVM == pGVM) { *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappingsX[i].hMapObj); Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3)); #ifdef VBOX_WITH_PAGE_SHARING /* The ring-3 chunk cache can be out of sync; don't fail. */ return VINF_SUCCESS; #else return VERR_GMM_CHUNK_ALREADY_MAPPED; #endif } } /* * Do the mapping. */ RTR0MEMOBJ hMapObj; int rc = RTR0MemObjMapUser(&hMapObj, pChunk->hMemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS); if (RT_SUCCESS(rc)) { /* reallocate the array? assumes few users per chunk (usually one). */ unsigned iMapping = pChunk->cMappingsX; if ( iMapping <= 3 || (iMapping & 3) == 0) { unsigned cNewSize = iMapping <= 3 ? iMapping + 1 : iMapping + 4; Assert(cNewSize < 4 || RT_ALIGN_32(cNewSize, 4) == cNewSize); if (RT_UNLIKELY(cNewSize > UINT16_MAX)) { rc = RTR0MemObjFree(hMapObj, false /* fFreeMappings (NA) */); AssertRC(rc); return VERR_GMM_TOO_MANY_CHUNK_MAPPINGS; } void *pvMappings = RTMemRealloc(pChunk->paMappingsX, cNewSize * sizeof(pChunk->paMappingsX[0])); if (RT_UNLIKELY(!pvMappings)) { rc = RTR0MemObjFree(hMapObj, false /* fFreeMappings (NA) */); AssertRC(rc); return VERR_NO_MEMORY; } pChunk->paMappingsX = (PGMMCHUNKMAP)pvMappings; } /* insert new entry */ pChunk->paMappingsX[iMapping].hMapObj = hMapObj; pChunk->paMappingsX[iMapping].pGVM = pGVM; Assert(pChunk->cMappingsX == iMapping); pChunk->cMappingsX = iMapping + 1; *ppvR3 = RTR0MemObjAddressR3(hMapObj); } return rc; } /** * Maps a chunk into the user address space of the current process. * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the Global VM structure. * @param pChunk Pointer to the chunk to be mapped. * @param fRelaxedSem Whether we can release the semaphore while doing the * mapping (@c true) or not. * @param ppvR3 Where to store the ring-3 address of the mapping. * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be * contain the address of the existing mapping. */ static int gmmR0MapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem, PRTR3PTR ppvR3) { /* * Take the chunk lock and leave the giant GMM lock when possible, then * call the worker function. */ GMMR0CHUNKMTXSTATE MtxState; int rc = gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, fRelaxedSem ? GMMR0CHUNK_MTX_RETAKE_GIANT : GMMR0CHUNK_MTX_KEEP_GIANT); if (RT_SUCCESS(rc)) { rc = gmmR0MapChunkLocked(pGMM, pGVM, pChunk, ppvR3); gmmR0ChunkMutexRelease(&MtxState, pChunk); } return rc; } /** * Check if a chunk is mapped into the specified VM * * @returns mapped yes/no * @param pGMM Pointer to the GMM instance. * @param pGVM Pointer to the Global VM structure. * @param pChunk Pointer to the chunk to be mapped. * @param ppvR3 Where to store the ring-3 address of the mapping. */ static int gmmR0IsChunkMapped(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3) { GMMR0CHUNKMTXSTATE MtxState; gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT); for (uint32_t i = 0; i < pChunk->cMappingsX; i++) { Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ); if (pChunk->paMappingsX[i].pGVM == pGVM) { *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappingsX[i].hMapObj); gmmR0ChunkMutexRelease(&MtxState, pChunk); return true; } } *ppvR3 = NULL; gmmR0ChunkMutexRelease(&MtxState, pChunk); return false; } /** * Map a chunk and/or unmap another chunk. * * The mapping and unmapping applies to the current process. * * This API does two things because it saves a kernel call per mapping when * when the ring-3 mapping cache is full. * * @returns VBox status code. * @param pVM The VM. * @param idChunkMap The chunk to map. NIL_GMM_CHUNKID if nothing to map. * @param idChunkUnmap The chunk to unmap. NIL_GMM_CHUNKID if nothing to unmap. * @param ppvR3 Where to store the address of the mapped chunk. NULL is ok if nothing to map. * @thread EMT */ GMMR0DECL(int) GMMR0MapUnmapChunk(PVM pVM, uint32_t idChunkMap, uint32_t idChunkUnmap, PRTR3PTR ppvR3) { LogFlow(("GMMR0MapUnmapChunk: pVM=%p idChunkMap=%#x idChunkUnmap=%#x ppvR3=%p\n", pVM, idChunkMap, idChunkUnmap, ppvR3)); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVM(pVM, &pGVM); if (RT_FAILURE(rc)) return rc; AssertCompile(NIL_GMM_CHUNKID == 0); AssertMsgReturn(idChunkMap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkMap), VERR_INVALID_PARAMETER); AssertMsgReturn(idChunkUnmap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkUnmap), VERR_INVALID_PARAMETER); if ( idChunkMap == NIL_GMM_CHUNKID && idChunkUnmap == NIL_GMM_CHUNKID) return VERR_INVALID_PARAMETER; if (idChunkMap != NIL_GMM_CHUNKID) { AssertPtrReturn(ppvR3, VERR_INVALID_POINTER); *ppvR3 = NIL_RTR3PTR; } /* * Take the semaphore and do the work. * * The unmapping is done last since it's easier to undo a mapping than * undoing an unmapping. The ring-3 mapping cache cannot not be so big * that it pushes the user virtual address space to within a chunk of * it it's limits, so, no problem here. */ gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { PGMMCHUNK pMap = NULL; if (idChunkMap != NIL_GVM_HANDLE) { pMap = gmmR0GetChunk(pGMM, idChunkMap); if (RT_LIKELY(pMap)) rc = gmmR0MapChunk(pGMM, pGVM, pMap, true /*fRelaxedSem*/, ppvR3); else { Log(("GMMR0MapUnmapChunk: idChunkMap=%#x\n", idChunkMap)); rc = VERR_GMM_CHUNK_NOT_FOUND; } } /** @todo split this operation, the bail out might (theoretcially) not be * entirely safe. */ if ( idChunkUnmap != NIL_GMM_CHUNKID && RT_SUCCESS(rc)) { PGMMCHUNK pUnmap = gmmR0GetChunk(pGMM, idChunkUnmap); if (RT_LIKELY(pUnmap)) rc = gmmR0UnmapChunk(pGMM, pGVM, pUnmap, true /*fRelaxedSem*/); else { Log(("GMMR0MapUnmapChunk: idChunkUnmap=%#x\n", idChunkUnmap)); rc = VERR_GMM_CHUNK_NOT_FOUND; } if (RT_FAILURE(rc) && pMap) gmmR0UnmapChunk(pGMM, pGVM, pMap, false /*fRelaxedSem*/); } GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); LogFlow(("GMMR0MapUnmapChunk: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0MapUnmapChunk. * * @returns see GMMR0MapUnmapChunk. * @param pVM Pointer to the shared VM structure. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0MapUnmapChunkReq(PVM pVM, PGMMMAPUNMAPCHUNKREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); return GMMR0MapUnmapChunk(pVM, pReq->idChunkMap, pReq->idChunkUnmap, &pReq->pvR3); } /** * Legacy mode API for supplying pages. * * The specified user address points to a allocation chunk sized block that * will be locked down and used by the GMM when the GM asks for pages. * * @returns VBox status code. * @param pVM The VM. * @param idCpu VCPU id * @param pvR3 Pointer to the chunk size memory block to lock down. */ GMMR0DECL(int) GMMR0SeedChunk(PVM pVM, VMCPUID idCpu, RTR3PTR pvR3) { /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; AssertPtrReturn(pvR3, VERR_INVALID_POINTER); AssertReturn(!(PAGE_OFFSET_MASK & pvR3), VERR_INVALID_POINTER); if (!pGMM->fLegacyAllocationMode) { Log(("GMMR0SeedChunk: not in legacy allocation mode!\n")); return VERR_NOT_SUPPORTED; } /* * Lock the memory and add it as new chunk with our hGVM. * (The GMM locking is done inside gmmR0RegisterChunk.) */ RTR0MEMOBJ MemObj; rc = RTR0MemObjLockUser(&MemObj, pvR3, GMM_CHUNK_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS); if (RT_SUCCESS(rc)) { rc = gmmR0RegisterChunk(pGMM, &pGVM->gmm.s.Private, MemObj, pGVM->hSelf, 0 /*fChunkFlags*/, NULL); if (RT_SUCCESS(rc)) gmmR0MutexRelease(pGMM); else RTR0MemObjFree(MemObj, false /* fFreeMappings */); } LogFlow(("GMMR0SeedChunk: rc=%d (pvR3=%p)\n", rc, pvR3)); return rc; } typedef struct { PAVLGCPTRNODECORE pNode; char *pszModuleName; char *pszVersion; VBOXOSFAMILY enmGuestOS; } GMMFINDMODULEBYNAME, *PGMMFINDMODULEBYNAME; /** * Tree enumeration callback for finding identical modules by name and version */ DECLCALLBACK(int) gmmR0CheckForIdenticalModule(PAVLGCPTRNODECORE pNode, void *pvUser) { PGMMFINDMODULEBYNAME pInfo = (PGMMFINDMODULEBYNAME)pvUser; PGMMSHAREDMODULE pModule = (PGMMSHAREDMODULE)pNode; if ( pInfo && pInfo->enmGuestOS == pModule->enmGuestOS /** @todo replace with RTStrNCmp */ && !strcmp(pModule->szName, pInfo->pszModuleName) && !strcmp(pModule->szVersion, pInfo->pszVersion)) { pInfo->pNode = pNode; return 1; /* stop search */ } return 0; } /** * Registers a new shared module for the VM * * @returns VBox status code. * @param pVM VM handle * @param idCpu VCPU id * @param enmGuestOS Guest OS type * @param pszModuleName Module name * @param pszVersion Module version * @param GCBaseAddr Module base address * @param cbModule Module size * @param cRegions Number of shared region descriptors * @param pRegions Shared region(s) */ GMMR0DECL(int) GMMR0RegisterSharedModule(PVM pVM, VMCPUID idCpu, VBOXOSFAMILY enmGuestOS, char *pszModuleName, char *pszVersion, RTGCPTR GCBaseAddr, uint32_t cbModule, unsigned cRegions, VMMDEVSHAREDREGIONDESC *pRegions) { #ifdef VBOX_WITH_PAGE_SHARING /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; Log(("GMMR0RegisterSharedModule %s %s base %RGv size %x\n", pszModuleName, pszVersion, GCBaseAddr, cbModule)); /* * Take the semaphore and do some more validations. */ gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { bool fNewModule = false; /* Check if this module is already locally registered. */ PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)RTAvlGCPtrGet(&pGVM->gmm.s.pSharedModuleTree, GCBaseAddr); if (!pRecVM) { pRecVM = (PGMMSHAREDMODULEPERVM)RTMemAllocZ(RT_OFFSETOF(GMMSHAREDMODULEPERVM, aRegions[cRegions])); if (!pRecVM) { AssertFailed(); rc = VERR_NO_MEMORY; goto end; } pRecVM->Core.Key = GCBaseAddr; pRecVM->cRegions = cRegions; /* Save the region data as they can differ between VMs (address space scrambling or simply different loading order) */ for (unsigned i = 0; i < cRegions; i++) { pRecVM->aRegions[i].GCRegionAddr = pRegions[i].GCRegionAddr; pRecVM->aRegions[i].cbRegion = RT_ALIGN_T(pRegions[i].cbRegion, PAGE_SIZE, uint32_t); pRecVM->aRegions[i].u32Alignment = 0; pRecVM->aRegions[i].paHCPhysPageID = NULL; /* unused */ } bool ret = RTAvlGCPtrInsert(&pGVM->gmm.s.pSharedModuleTree, &pRecVM->Core); Assert(ret); Log(("GMMR0RegisterSharedModule: new local module %s\n", pszModuleName)); fNewModule = true; } else rc = VINF_PGM_SHARED_MODULE_ALREADY_REGISTERED; /* Check if this module is already globally registered. */ PGMMSHAREDMODULE pGlobalModule = (PGMMSHAREDMODULE)RTAvlGCPtrGet(&pGMM->pGlobalSharedModuleTree, GCBaseAddr); if ( !pGlobalModule && enmGuestOS == VBOXOSFAMILY_Windows64) { /* Two identical copies of e.g. Win7 x64 will typically not have a similar virtual address space layout for dlls or kernel modules. * Try to find identical binaries based on name and version. */ GMMFINDMODULEBYNAME Info; Info.pNode = NULL; Info.pszVersion = pszVersion; Info.pszModuleName = pszModuleName; Info.enmGuestOS = enmGuestOS; Log(("Try to find identical module %s\n", pszModuleName)); int ret = RTAvlGCPtrDoWithAll(&pGMM->pGlobalSharedModuleTree, true /* fFromLeft */, gmmR0CheckForIdenticalModule, &Info); if (ret == 1) { Assert(Info.pNode); pGlobalModule = (PGMMSHAREDMODULE)Info.pNode; Log(("Found identical module at %RGv\n", pGlobalModule->Core.Key)); } } if (!pGlobalModule) { Assert(fNewModule); Assert(!pRecVM->fCollision); pGlobalModule = (PGMMSHAREDMODULE)RTMemAllocZ(RT_OFFSETOF(GMMSHAREDMODULE, aRegions[cRegions])); if (!pGlobalModule) { AssertFailed(); rc = VERR_NO_MEMORY; goto end; } pGlobalModule->Core.Key = GCBaseAddr; pGlobalModule->cbModule = cbModule; /* Input limit already safe; no need to check again. */ /** @todo replace with RTStrCopy */ strcpy(pGlobalModule->szName, pszModuleName); strcpy(pGlobalModule->szVersion, pszVersion); pGlobalModule->enmGuestOS = enmGuestOS; pGlobalModule->cRegions = cRegions; for (unsigned i = 0; i < cRegions; i++) { Log(("New region %d base=%RGv size %x\n", i, pRegions[i].GCRegionAddr, pRegions[i].cbRegion)); pGlobalModule->aRegions[i].GCRegionAddr = pRegions[i].GCRegionAddr; pGlobalModule->aRegions[i].cbRegion = RT_ALIGN_T(pRegions[i].cbRegion, PAGE_SIZE, uint32_t); pGlobalModule->aRegions[i].u32Alignment = 0; pGlobalModule->aRegions[i].paHCPhysPageID = NULL; /* uninitialized. */ } /* Save reference. */ pRecVM->pGlobalModule = pGlobalModule; pRecVM->fCollision = false; pGlobalModule->cUsers++; rc = VINF_SUCCESS; bool ret = RTAvlGCPtrInsert(&pGMM->pGlobalSharedModuleTree, &pGlobalModule->Core); Assert(ret); Log(("GMMR0RegisterSharedModule: new global module %s\n", pszModuleName)); } else { Assert(pGlobalModule->cUsers > 0); /* Make sure the name and version are identical. */ /** @todo replace with RTStrNCmp */ if ( !strcmp(pGlobalModule->szName, pszModuleName) && !strcmp(pGlobalModule->szVersion, pszVersion)) { /* Save reference. */ pRecVM->pGlobalModule = pGlobalModule; if ( fNewModule || pRecVM->fCollision == true) /* colliding module unregistered and new one registered since the last check */ { pGlobalModule->cUsers++; Log(("GMMR0RegisterSharedModule: using existing module %s cUser=%d!\n", pszModuleName, pGlobalModule->cUsers)); } pRecVM->fCollision = false; rc = VINF_SUCCESS; } else { Log(("GMMR0RegisterSharedModule: module %s collision!\n", pszModuleName)); pRecVM->fCollision = true; rc = VINF_PGM_SHARED_MODULE_COLLISION; goto end; } } GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; end: gmmR0MutexRelease(pGMM); return rc; #else return VERR_NOT_IMPLEMENTED; #endif } /** * VMMR0 request wrapper for GMMR0RegisterSharedModule. * * @returns see GMMR0RegisterSharedModule. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param pReq The request packet. */ GMMR0DECL(int) GMMR0RegisterSharedModuleReq(PVM pVM, VMCPUID idCpu, PGMMREGISTERSHAREDMODULEREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq >= sizeof(*pReq) && pReq->Hdr.cbReq == RT_UOFFSETOF(GMMREGISTERSHAREDMODULEREQ, aRegions[pReq->cRegions]), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); /* Pass back return code in the request packet to preserve informational codes. (VMMR3CallR0 chokes on them) */ pReq->rc = GMMR0RegisterSharedModule(pVM, idCpu, pReq->enmGuestOS, pReq->szName, pReq->szVersion, pReq->GCBaseAddr, pReq->cbModule, pReq->cRegions, pReq->aRegions); return VINF_SUCCESS; } /** * Unregisters a shared module for the VM * * @returns VBox status code. * @param pVM VM handle * @param idCpu VCPU id * @param pszModuleName Module name * @param pszVersion Module version * @param GCBaseAddr Module base address * @param cbModule Module size */ GMMR0DECL(int) GMMR0UnregisterSharedModule(PVM pVM, VMCPUID idCpu, char *pszModuleName, char *pszVersion, RTGCPTR GCBaseAddr, uint32_t cbModule) { #ifdef VBOX_WITH_PAGE_SHARING /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; Log(("GMMR0UnregisterSharedModule %s %s base=%RGv size %x\n", pszModuleName, pszVersion, GCBaseAddr, cbModule)); /* * Take the semaphore and do some more validations. */ gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)RTAvlGCPtrGet(&pGVM->gmm.s.pSharedModuleTree, GCBaseAddr); if (pRecVM) { /* Remove reference to global shared module. */ if (!pRecVM->fCollision) { PGMMSHAREDMODULE pRec = pRecVM->pGlobalModule; Assert(pRec); if (pRec) /* paranoia */ { Assert(pRec->cUsers); pRec->cUsers--; if (pRec->cUsers == 0) { /* Free the ranges, but leave the pages intact as there might still be references; they will be cleared by the COW mechanism. */ for (unsigned i = 0; i < pRec->cRegions; i++) if (pRec->aRegions[i].paHCPhysPageID) RTMemFree(pRec->aRegions[i].paHCPhysPageID); Assert(pRec->Core.Key == GCBaseAddr || pRec->enmGuestOS == VBOXOSFAMILY_Windows64); Assert(pRec->cRegions == pRecVM->cRegions); #ifdef VBOX_STRICT for (unsigned i = 0; i < pRecVM->cRegions; i++) { Assert(pRecVM->aRegions[i].GCRegionAddr == pRec->aRegions[i].GCRegionAddr); Assert(pRecVM->aRegions[i].cbRegion == pRec->aRegions[i].cbRegion); } #endif /* Remove from the tree and free memory. */ RTAvlGCPtrRemove(&pGMM->pGlobalSharedModuleTree, pRec->Core.Key); RTMemFree(pRec); } } else rc = VERR_PGM_SHARED_MODULE_REGISTRATION_INCONSISTENCY; } else Assert(!pRecVM->pGlobalModule); /* Remove from the tree and free memory. */ RTAvlGCPtrRemove(&pGVM->gmm.s.pSharedModuleTree, GCBaseAddr); RTMemFree(pRecVM); } else rc = VERR_PGM_SHARED_MODULE_NOT_FOUND; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); return rc; #else return VERR_NOT_IMPLEMENTED; #endif } /** * VMMR0 request wrapper for GMMR0UnregisterSharedModule. * * @returns see GMMR0UnregisterSharedModule. * @param pVM Pointer to the shared VM structure. * @param idCpu VCPU id * @param pReq The request packet. */ GMMR0DECL(int) GMMR0UnregisterSharedModuleReq(PVM pVM, VMCPUID idCpu, PGMMUNREGISTERSHAREDMODULEREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); return GMMR0UnregisterSharedModule(pVM, idCpu, pReq->szName, pReq->szVersion, pReq->GCBaseAddr, pReq->cbModule); } #ifdef VBOX_WITH_PAGE_SHARING /** * Increase the use count of a shared page, the page is known to exist and be valid and such. * * @param pGMM Pointer to the GMM instance. * @param pGVM Pointer to the GVM instance. * @param pPage The page structure. */ DECLINLINE(void) gmmR0UseSharedPage(PGMM pGMM, PGVM pGVM, PGMMPAGE pPage) { Assert(pGMM->cSharedPages > 0); Assert(pGMM->cAllocatedPages > 0); pGMM->cDuplicatePages++; pPage->Shared.cRefs++; pGVM->gmm.s.cSharedPages++; pGVM->gmm.s.Allocated.cBasePages++; } /** * Converts a private page to a shared page, the page is known to exist and be valid and such. * * @param pGMM Pointer to the GMM instance. * @param pGVM Pointer to the GVM instance. * @param HCPhys Host physical address * @param idPage The Page ID * @param pPage The page structure. */ DECLINLINE(void) gmmR0ConvertToSharedPage(PGMM pGMM, PGVM pGVM, RTHCPHYS HCPhys, uint32_t idPage, PGMMPAGE pPage) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); Assert(pChunk); Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); Assert(GMM_PAGE_IS_PRIVATE(pPage)); pChunk->cPrivate--; pChunk->cShared++; pGMM->cSharedPages++; pGVM->gmm.s.cSharedPages++; pGVM->gmm.s.cPrivatePages--; /* Modify the page structure. */ pPage->Shared.pfn = (uint32_t)(uint64_t)(HCPhys >> PAGE_SHIFT); pPage->Shared.cRefs = 1; pPage->Common.u2State = GMM_PAGE_STATE_SHARED; } /** * Checks specified shared module range for changes * * Performs the following tasks: * - If a shared page is new, then it changes the GMM page type to shared and * returns it in the pPageDesc descriptor. * - If a shared page already exists, then it checks if the VM page is * identical and if so frees the VM page and returns the shared page in * pPageDesc descriptor. * * @remarks ASSUMES the caller has acquired the GMM semaphore!! * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the GVM instance data. * @param pModule Module description * @param idxRegion Region index * @param idxPage Page index * @param paPageDesc Page descriptor */ GMMR0DECL(int) GMMR0SharedModuleCheckPage(PGVM pGVM, PGMMSHAREDMODULE pModule, unsigned idxRegion, unsigned idxPage, PGMMSHAREDPAGEDESC pPageDesc) { int rc = VINF_SUCCESS; PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); unsigned cPages = pModule->aRegions[idxRegion].cbRegion >> PAGE_SHIFT; AssertReturn(idxRegion < pModule->cRegions, VERR_INVALID_PARAMETER); AssertReturn(idxPage < cPages, VERR_INVALID_PARAMETER); LogFlow(("GMMR0SharedModuleCheckRange %s base %RGv region %d idxPage %d\n", pModule->szName, pModule->Core.Key, idxRegion, idxPage)); PGMMSHAREDREGIONDESC pGlobalRegion = &pModule->aRegions[idxRegion]; if (!pGlobalRegion->paHCPhysPageID) { /* First time; create a page descriptor array. */ Log(("Allocate page descriptor array for %d pages\n", cPages)); pGlobalRegion->paHCPhysPageID = (uint32_t *)RTMemAlloc(cPages * sizeof(*pGlobalRegion->paHCPhysPageID)); if (!pGlobalRegion->paHCPhysPageID) { AssertFailed(); rc = VERR_NO_MEMORY; goto end; } /* Invalidate all descriptors. */ for (unsigned i = 0; i < cPages; i++) pGlobalRegion->paHCPhysPageID[i] = NIL_GMM_PAGEID; } /* We've seen this shared page for the first time? */ if (pGlobalRegion->paHCPhysPageID[idxPage] == NIL_GMM_PAGEID) { new_shared_page: Log(("New shared page guest %RGp host %RHp\n", pPageDesc->GCPhys, pPageDesc->HCPhys)); /* Easy case: just change the internal page type. */ PGMMPAGE pPage = gmmR0GetPage(pGMM, pPageDesc->uHCPhysPageId); if (!pPage) { Log(("GMMR0SharedModuleCheckPage: Invalid idPage=%#x #1 (GCPhys=%RGp HCPhys=%RHp idxRegion=%#x idxPage=%#x)\n", pPageDesc->uHCPhysPageId, pPageDesc->GCPhys, pPageDesc->HCPhys, idxRegion, idxPage)); AssertFailed(); rc = VERR_PGM_PHYS_INVALID_PAGE_ID; goto end; } AssertMsg(pPageDesc->GCPhys == (pPage->Private.pfn << 12), ("desc %RGp gmm %RGp\n", pPageDesc->HCPhys, (pPage->Private.pfn << 12))); gmmR0ConvertToSharedPage(pGMM, pGVM, pPageDesc->HCPhys, pPageDesc->uHCPhysPageId, pPage); /* Keep track of these references. */ pGlobalRegion->paHCPhysPageID[idxPage] = pPageDesc->uHCPhysPageId; } else { uint8_t *pbLocalPage, *pbSharedPage; uint8_t *pbChunk; PGMMCHUNK pChunk; Assert(pPageDesc->uHCPhysPageId != pGlobalRegion->paHCPhysPageID[idxPage]); Log(("Replace existing page guest %RGp host %RHp id %x -> id %x\n", pPageDesc->GCPhys, pPageDesc->HCPhys, pPageDesc->uHCPhysPageId, pGlobalRegion->paHCPhysPageID[idxPage])); /* Get the shared page source. */ PGMMPAGE pPage = gmmR0GetPage(pGMM, pGlobalRegion->paHCPhysPageID[idxPage]); if (!pPage) { Log(("GMMR0SharedModuleCheckPage: Invalid idPage=%#x #2 (idxRegion=%#x idxPage=%#x)\n", pPageDesc->uHCPhysPageId, idxRegion, idxPage)); AssertFailed(); rc = VERR_PGM_PHYS_INVALID_PAGE_ID; goto end; } if (pPage->Common.u2State != GMM_PAGE_STATE_SHARED) { /* Page was freed at some point; invalidate this entry. */ /** @todo this isn't really bullet proof. */ Log(("Old shared page was freed -> create a new one\n")); pGlobalRegion->paHCPhysPageID[idxPage] = NIL_GMM_PAGEID; goto new_shared_page; /* ugly goto */ } Log(("Replace existing page guest host %RHp -> %RHp\n", pPageDesc->HCPhys, ((uint64_t)pPage->Shared.pfn) << PAGE_SHIFT)); /* Calculate the virtual address of the local page. */ pChunk = gmmR0GetChunk(pGMM, pPageDesc->uHCPhysPageId >> GMM_CHUNKID_SHIFT); if (pChunk) { if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk)) { Log(("GMMR0SharedModuleCheckPage: Invalid idPage=%#x #3\n", pPageDesc->uHCPhysPageId)); AssertFailed(); rc = VERR_PGM_PHYS_INVALID_PAGE_ID; goto end; } pbLocalPage = pbChunk + ((pPageDesc->uHCPhysPageId & GMM_PAGEID_IDX_MASK) << PAGE_SHIFT); } else { Log(("GMMR0SharedModuleCheckPage: Invalid idPage=%#x #4\n", pPageDesc->uHCPhysPageId)); AssertFailed(); rc = VERR_PGM_PHYS_INVALID_PAGE_ID; goto end; } /* Calculate the virtual address of the shared page. */ pChunk = gmmR0GetChunk(pGMM, pGlobalRegion->paHCPhysPageID[idxPage] >> GMM_CHUNKID_SHIFT); Assert(pChunk); /* can't fail as gmmR0GetPage succeeded. */ /* Get the virtual address of the physical page; map the chunk into the VM process if not already done. */ if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk)) { Log(("Map chunk into process!\n")); rc = gmmR0MapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/, (PRTR3PTR)&pbChunk); if (rc != VINF_SUCCESS) { AssertRC(rc); goto end; } } pbSharedPage = pbChunk + ((pGlobalRegion->paHCPhysPageID[idxPage] & GMM_PAGEID_IDX_MASK) << PAGE_SHIFT); /** @todo write ASMMemComparePage. */ if (memcmp(pbSharedPage, pbLocalPage, PAGE_SIZE)) { Log(("Unexpected differences found between local and shared page; skip\n")); /* Signal to the caller that this one hasn't changed. */ pPageDesc->uHCPhysPageId = NIL_GMM_PAGEID; goto end; } /* Free the old local page. */ GMMFREEPAGEDESC PageDesc; PageDesc.idPage = pPageDesc->uHCPhysPageId; rc = gmmR0FreePages(pGMM, pGVM, 1, &PageDesc, GMMACCOUNT_BASE); AssertRCReturn(rc, rc); gmmR0UseSharedPage(pGMM, pGVM, pPage); /* Pass along the new physical address & page id. */ pPageDesc->HCPhys = ((uint64_t)pPage->Shared.pfn) << PAGE_SHIFT; pPageDesc->uHCPhysPageId = pGlobalRegion->paHCPhysPageID[idxPage]; } end: return rc; } /** * RTAvlGCPtrDestroy callback. * * @returns 0 or VERR_INTERNAL_ERROR. * @param pNode The node to destroy. * @param pvGVM The GVM handle. */ static DECLCALLBACK(int) gmmR0CleanupSharedModule(PAVLGCPTRNODECORE pNode, void *pvGVM) { PGVM pGVM = (PGVM)pvGVM; PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)pNode; Assert(pRecVM->pGlobalModule || pRecVM->fCollision); if (pRecVM->pGlobalModule) { PGMMSHAREDMODULE pRec = pRecVM->pGlobalModule; AssertPtr(pRec); Assert(pRec->cUsers); Log(("gmmR0CleanupSharedModule: %s %s cUsers=%d\n", pRec->szName, pRec->szVersion, pRec->cUsers)); pRec->cUsers--; if (pRec->cUsers == 0) { for (uint32_t i = 0; i < pRec->cRegions; i++) if (pRec->aRegions[i].paHCPhysPageID) RTMemFree(pRec->aRegions[i].paHCPhysPageID); /* Remove from the tree and free memory. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); RTAvlGCPtrRemove(&pGMM->pGlobalSharedModuleTree, pRec->Core.Key); RTMemFree(pRec); } } RTMemFree(pRecVM); return 0; } /** * Used by GMMR0CleanupVM to clean up shared modules. * * This is called without taking the GMM lock so that it can be yielded as * needed here. * * @param pGMM The GMM handle. * @param pGVM The global VM handle. */ static void gmmR0SharedModuleCleanup(PGMM pGMM, PGVM pGVM) { gmmR0MutexAcquire(pGMM); GMM_CHECK_SANITY_UPON_ENTERING(pGMM); RTAvlGCPtrDestroy(&pGVM->gmm.s.pSharedModuleTree, gmmR0CleanupSharedModule, pGVM); gmmR0MutexRelease(pGMM); } #endif /* VBOX_WITH_PAGE_SHARING */ /** * Removes all shared modules for the specified VM * * @returns VBox status code. * @param pVM VM handle * @param idCpu VCPU id */ GMMR0DECL(int) GMMR0ResetSharedModules(PVM pVM, VMCPUID idCpu) { #ifdef VBOX_WITH_PAGE_SHARING /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; /* * Take the semaphore and do some more validations. */ gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { Log(("GMMR0ResetSharedModules\n")); RTAvlGCPtrDestroy(&pGVM->gmm.s.pSharedModuleTree, gmmR0CleanupSharedModule, pGVM); rc = VINF_SUCCESS; GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); return rc; #else return VERR_NOT_IMPLEMENTED; #endif } #ifdef VBOX_WITH_PAGE_SHARING typedef struct { PGVM pGVM; VMCPUID idCpu; int rc; } GMMCHECKSHAREDMODULEINFO, *PGMMCHECKSHAREDMODULEINFO; /** * Tree enumeration callback for checking a shared module. */ DECLCALLBACK(int) gmmR0CheckSharedModule(PAVLGCPTRNODECORE pNode, void *pvUser) { PGMMCHECKSHAREDMODULEINFO pInfo = (PGMMCHECKSHAREDMODULEINFO)pvUser; PGMMSHAREDMODULEPERVM pLocalModule = (PGMMSHAREDMODULEPERVM)pNode; PGMMSHAREDMODULE pGlobalModule = pLocalModule->pGlobalModule; if ( !pLocalModule->fCollision && pGlobalModule) { Log(("gmmR0CheckSharedModule: check %s %s base=%RGv size=%x collision=%d\n", pGlobalModule->szName, pGlobalModule->szVersion, pGlobalModule->Core.Key, pGlobalModule->cbModule, pLocalModule->fCollision)); pInfo->rc = PGMR0SharedModuleCheck(pInfo->pGVM->pVM, pInfo->pGVM, pInfo->idCpu, pGlobalModule, pLocalModule->cRegions, pLocalModule->aRegions); if (RT_FAILURE(pInfo->rc)) return 1; /* stop enumeration. */ } return 0; } #endif /* VBOX_WITH_PAGE_SHARING */ #ifdef DEBUG_sandervl /** * Setup for a GMMR0CheckSharedModules call (to allow log flush jumps back to ring 3) * * @returns VBox status code. * @param pVM VM handle */ GMMR0DECL(int) GMMR0CheckSharedModulesStart(PVM pVM) { /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); /* * Take the semaphore and do some more validations. */ gmmR0MutexAcquire(pGMM); if (!GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) rc = VERR_INTERNAL_ERROR_5; else rc = VINF_SUCCESS; return rc; } /** * Clean up after a GMMR0CheckSharedModules call (to allow log flush jumps back to ring 3) * * @returns VBox status code. * @param pVM VM handle */ GMMR0DECL(int) GMMR0CheckSharedModulesEnd(PVM pVM) { /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); gmmR0MutexRelease(pGMM); return VINF_SUCCESS; } #endif /* DEBUG_sandervl */ /** * Check all shared modules for the specified VM * * @returns VBox status code. * @param pVM VM handle * @param pVCpu VMCPU handle */ GMMR0DECL(int) GMMR0CheckSharedModules(PVM pVM, PVMCPU pVCpu) { #ifdef VBOX_WITH_PAGE_SHARING /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVMAndEMT(pVM, pVCpu->idCpu, &pGVM); if (RT_FAILURE(rc)) return rc; # ifndef DEBUG_sandervl /* * Take the semaphore and do some more validations. */ gmmR0MutexAcquire(pGMM); # endif if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { GMMCHECKSHAREDMODULEINFO Info; Log(("GMMR0CheckSharedModules\n")); Info.pGVM = pGVM; Info.idCpu = pVCpu->idCpu; Info.rc = VINF_SUCCESS; RTAvlGCPtrDoWithAll(&pGVM->gmm.s.pSharedModuleTree, true /* fFromLeft */, gmmR0CheckSharedModule, &Info); rc = Info.rc; Log(("GMMR0CheckSharedModules done!\n")); GMM_CHECK_SANITY_UPON_LEAVING(pGMM); } else rc = VERR_INTERNAL_ERROR_5; # ifndef DEBUG_sandervl gmmR0MutexRelease(pGMM); # endif return rc; #else return VERR_NOT_IMPLEMENTED; #endif } #if defined(VBOX_STRICT) && HC_ARCH_BITS == 64 typedef struct { PGVM pGVM; PGMM pGMM; uint8_t *pSourcePage; bool fFoundDuplicate; } GMMFINDDUPPAGEINFO, *PGMMFINDDUPPAGEINFO; /** * RTAvlU32DoWithAll callback. * * @returns 0 * @param pNode The node to search. * @param pvInfo Pointer to the input parameters */ static DECLCALLBACK(int) gmmR0FindDupPageInChunk(PAVLU32NODECORE pNode, void *pvInfo) { PGMMCHUNK pChunk = (PGMMCHUNK)pNode; PGMMFINDDUPPAGEINFO pInfo = (PGMMFINDDUPPAGEINFO)pvInfo; PGVM pGVM = pInfo->pGVM; PGMM pGMM = pInfo->pGMM; uint8_t *pbChunk; /* Only take chunks not mapped into this VM process; not entirely correct. */ if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk)) { int rc = gmmR0MapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/, (PRTR3PTR)&pbChunk); if (RT_SUCCESS(rc)) { /* * Look for duplicate pages */ unsigned iPage = (GMM_CHUNK_SIZE >> PAGE_SHIFT); while (iPage-- > 0) { if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage])) { uint8_t *pbDestPage = pbChunk + (iPage << PAGE_SHIFT); if (!memcmp(pInfo->pSourcePage, pbDestPage, PAGE_SIZE)) { pInfo->fFoundDuplicate = true; break; } } } gmmR0UnmapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/); } } return pInfo->fFoundDuplicate; /* (stops search if true) */ } /** * Find a duplicate of the specified page in other active VMs * * @returns VBox status code. * @param pVM VM handle * @param pReq Request packet */ GMMR0DECL(int) GMMR0FindDuplicatePageReq(PVM pVM, PGMMFINDDUPLICATEPAGEREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM; int rc = GVMMR0ByVM(pVM, &pGVM); if (RT_FAILURE(rc)) return rc; /* * Take the semaphore and do some more validations. */ rc = gmmR0MutexAcquire(pGMM); if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM)) { uint8_t *pbChunk; PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pReq->idPage >> GMM_CHUNKID_SHIFT); if (pChunk) { if (gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk)) { uint8_t *pbSourcePage = pbChunk + ((pReq->idPage & GMM_PAGEID_IDX_MASK) << PAGE_SHIFT); PGMMPAGE pPage = gmmR0GetPage(pGMM, pReq->idPage); if (pPage) { GMMFINDDUPPAGEINFO Info; Info.pGVM = pGVM; Info.pGMM = pGMM; Info.pSourcePage = pbSourcePage; Info.fFoundDuplicate = false; RTAvlU32DoWithAll(&pGMM->pChunks, true /* fFromLeft */, gmmR0FindDupPageInChunk, &Info); pReq->fDuplicate = Info.fFoundDuplicate; } else { AssertFailed(); rc = VERR_PGM_PHYS_INVALID_PAGE_ID; } } else AssertFailed(); } else AssertFailed(); } else rc = VERR_INTERNAL_ERROR_5; gmmR0MutexRelease(pGMM); return rc; } #endif /* VBOX_STRICT && HC_ARCH_BITS == 64 */