VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/GMMR0.cpp@ 48366

Last change on this file since 48366 was 44716, checked in by vboxsync, 12 years ago

GMMR0: Adjusting the allocation strategy to go look for foreign memory if there are enough free pages around (>= 32 MB).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 188.3 KB
Line 
1/* $Id: GMMR0.cpp 44716 2013-02-15 14:38:53Z vboxsync $ */
2/** @file
3 * GMM - Global Memory Manager.
4 */
5
6/*
7 * Copyright (C) 2007-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_gmm GMM - The Global Memory Manager
20 *
21 * As the name indicates, this component is responsible for global memory
22 * management. Currently only guest RAM is allocated from the GMM, but this
23 * may change to include shadow page tables and other bits later.
24 *
25 * Guest RAM is managed as individual pages, but allocated from the host OS
26 * in chunks for reasons of portability / efficiency. To minimize the memory
27 * footprint all tracking structure must be as small as possible without
28 * unnecessary performance penalties.
29 *
30 * The allocation chunks has fixed sized, the size defined at compile time
31 * by the #GMM_CHUNK_SIZE \#define.
32 *
33 * Each chunk is given an unique ID. Each page also has a unique ID. The
34 * relation ship between the two IDs is:
35 * @code
36 * GMM_CHUNK_SHIFT = log2(GMM_CHUNK_SIZE / PAGE_SIZE);
37 * idPage = (idChunk << GMM_CHUNK_SHIFT) | iPage;
38 * @endcode
39 * Where iPage is the index of the page within the chunk. This ID scheme
40 * permits for efficient chunk and page lookup, but it relies on the chunk size
41 * to be set at compile time. The chunks are organized in an AVL tree with their
42 * IDs being the keys.
43 *
44 * The physical address of each page in an allocation chunk is maintained by
45 * the #RTR0MEMOBJ and obtained using #RTR0MemObjGetPagePhysAddr. There is no
46 * need to duplicate this information (it'll cost 8-bytes per page if we did).
47 *
48 * So what do we need to track per page? Most importantly we need to know
49 * which state the page is in:
50 * - Private - Allocated for (eventually) backing one particular VM page.
51 * - Shared - Readonly page that is used by one or more VMs and treated
52 * as COW by PGM.
53 * - Free - Not used by anyone.
54 *
55 * For the page replacement operations (sharing, defragmenting and freeing)
56 * to be somewhat efficient, private pages needs to be associated with a
57 * particular page in a particular VM.
58 *
59 * Tracking the usage of shared pages is impractical and expensive, so we'll
60 * settle for a reference counting system instead.
61 *
62 * Free pages will be chained on LIFOs
63 *
64 * On 64-bit systems we will use a 64-bit bitfield per page, while on 32-bit
65 * systems a 32-bit bitfield will have to suffice because of address space
66 * limitations. The #GMMPAGE structure shows the details.
67 *
68 *
69 * @section sec_gmm_alloc_strat Page Allocation Strategy
70 *
71 * The strategy for allocating pages has to take fragmentation and shared
72 * pages into account, or we may end up with with 2000 chunks with only
73 * a few pages in each. Shared pages cannot easily be reallocated because
74 * of the inaccurate usage accounting (see above). Private pages can be
75 * reallocated by a defragmentation thread in the same manner that sharing
76 * is done.
77 *
78 * The first approach is to manage the free pages in two sets depending on
79 * whether they are mainly for the allocation of shared or private pages.
80 * In the initial implementation there will be almost no possibility for
81 * mixing shared and private pages in the same chunk (only if we're really
82 * stressed on memory), but when we implement forking of VMs and have to
83 * deal with lots of COW pages it'll start getting kind of interesting.
84 *
85 * The sets are lists of chunks with approximately the same number of
86 * free pages. Say the chunk size is 1MB, meaning 256 pages, and a set
87 * consists of 16 lists. So, the first list will contain the chunks with
88 * 1-7 free pages, the second covers 8-15, and so on. The chunks will be
89 * moved between the lists as pages are freed up or allocated.
90 *
91 *
92 * @section sec_gmm_costs Costs
93 *
94 * The per page cost in kernel space is 32-bit plus whatever RTR0MEMOBJ
95 * entails. In addition there is the chunk cost of approximately
96 * (sizeof(RT0MEMOBJ) + sizeof(CHUNK)) / 2^CHUNK_SHIFT bytes per page.
97 *
98 * On Windows the per page #RTR0MEMOBJ cost is 32-bit on 32-bit windows
99 * and 64-bit on 64-bit windows (a PFN_NUMBER in the MDL). So, 64-bit per page.
100 * The cost on Linux is identical, but here it's because of sizeof(struct page *).
101 *
102 *
103 * @section sec_gmm_legacy Legacy Mode for Non-Tier-1 Platforms
104 *
105 * In legacy mode the page source is locked user pages and not
106 * #RTR0MemObjAllocPhysNC, this means that a page can only be allocated
107 * by the VM that locked it. We will make no attempt at implementing
108 * page sharing on these systems, just do enough to make it all work.
109 *
110 *
111 * @subsection sub_gmm_locking Serializing
112 *
113 * One simple fast mutex will be employed in the initial implementation, not
114 * two as mentioned in @ref subsec_pgmPhys_Serializing.
115 *
116 * @see @ref subsec_pgmPhys_Serializing
117 *
118 *
119 * @section sec_gmm_overcommit Memory Over-Commitment Management
120 *
121 * The GVM will have to do the system wide memory over-commitment
122 * management. My current ideas are:
123 * - Per VM oc policy that indicates how much to initially commit
124 * to it and what to do in a out-of-memory situation.
125 * - Prevent overtaxing the host.
126 *
127 * There are some challenges here, the main ones are configurability and
128 * security. Should we for instance permit anyone to request 100% memory
129 * commitment? Who should be allowed to do runtime adjustments of the
130 * config. And how to prevent these settings from being lost when the last
131 * VM process exits? The solution is probably to have an optional root
132 * daemon the will keep VMMR0.r0 in memory and enable the security measures.
133 *
134 *
135 *
136 * @section sec_gmm_numa NUMA
137 *
138 * NUMA considerations will be designed and implemented a bit later.
139 *
140 * The preliminary guesses is that we will have to try allocate memory as
141 * close as possible to the CPUs the VM is executed on (EMT and additional CPU
142 * threads). Which means it's mostly about allocation and sharing policies.
143 * Both the scheduler and allocator interface will to supply some NUMA info
144 * and we'll need to have a way to calc access costs.
145 *
146 */
147
148
149/*******************************************************************************
150* Header Files *
151*******************************************************************************/
152#define LOG_GROUP LOG_GROUP_GMM
153#include <VBox/rawpci.h>
154#include <VBox/vmm/vm.h>
155#include <VBox/vmm/gmm.h>
156#include "GMMR0Internal.h"
157#include <VBox/vmm/gvm.h>
158#include <VBox/vmm/pgm.h>
159#include <VBox/log.h>
160#include <VBox/param.h>
161#include <VBox/err.h>
162#include <iprt/asm.h>
163#include <iprt/avl.h>
164#ifdef VBOX_STRICT
165# include <iprt/crc.h>
166#endif
167#include <iprt/list.h>
168#include <iprt/mem.h>
169#include <iprt/memobj.h>
170#include <iprt/mp.h>
171#include <iprt/semaphore.h>
172#include <iprt/string.h>
173#include <iprt/time.h>
174
175
176/*******************************************************************************
177* Structures and Typedefs *
178*******************************************************************************/
179/** Pointer to set of free chunks. */
180typedef struct GMMCHUNKFREESET *PGMMCHUNKFREESET;
181
182/**
183 * The per-page tracking structure employed by the GMM.
184 *
185 * On 32-bit hosts we'll some trickery is necessary to compress all
186 * the information into 32-bits. When the fSharedFree member is set,
187 * the 30th bit decides whether it's a free page or not.
188 *
189 * Because of the different layout on 32-bit and 64-bit hosts, macros
190 * are used to get and set some of the data.
191 */
192typedef union GMMPAGE
193{
194#if HC_ARCH_BITS == 64
195 /** Unsigned integer view. */
196 uint64_t u;
197
198 /** The common view. */
199 struct GMMPAGECOMMON
200 {
201 uint32_t uStuff1 : 32;
202 uint32_t uStuff2 : 30;
203 /** The page state. */
204 uint32_t u2State : 2;
205 } Common;
206
207 /** The view of a private page. */
208 struct GMMPAGEPRIVATE
209 {
210 /** The guest page frame number. (Max addressable: 2 ^ 44 - 16) */
211 uint32_t pfn;
212 /** The GVM handle. (64K VMs) */
213 uint32_t hGVM : 16;
214 /** Reserved. */
215 uint32_t u16Reserved : 14;
216 /** The page state. */
217 uint32_t u2State : 2;
218 } Private;
219
220 /** The view of a shared page. */
221 struct GMMPAGESHARED
222 {
223 /** The host page frame number. (Max addressable: 2 ^ 44 - 16) */
224 uint32_t pfn;
225 /** The reference count (64K VMs). */
226 uint32_t cRefs : 16;
227 /** Used for debug checksumming. */
228 uint32_t u14Checksum : 14;
229 /** The page state. */
230 uint32_t u2State : 2;
231 } Shared;
232
233 /** The view of a free page. */
234 struct GMMPAGEFREE
235 {
236 /** The index of the next page in the free list. UINT16_MAX is NIL. */
237 uint16_t iNext;
238 /** Reserved. Checksum or something? */
239 uint16_t u16Reserved0;
240 /** Reserved. Checksum or something? */
241 uint32_t u30Reserved1 : 30;
242 /** The page state. */
243 uint32_t u2State : 2;
244 } Free;
245
246#else /* 32-bit */
247 /** Unsigned integer view. */
248 uint32_t u;
249
250 /** The common view. */
251 struct GMMPAGECOMMON
252 {
253 uint32_t uStuff : 30;
254 /** The page state. */
255 uint32_t u2State : 2;
256 } Common;
257
258 /** The view of a private page. */
259 struct GMMPAGEPRIVATE
260 {
261 /** The guest page frame number. (Max addressable: 2 ^ 36) */
262 uint32_t pfn : 24;
263 /** The GVM handle. (127 VMs) */
264 uint32_t hGVM : 7;
265 /** The top page state bit, MBZ. */
266 uint32_t fZero : 1;
267 } Private;
268
269 /** The view of a shared page. */
270 struct GMMPAGESHARED
271 {
272 /** The reference count. */
273 uint32_t cRefs : 30;
274 /** The page state. */
275 uint32_t u2State : 2;
276 } Shared;
277
278 /** The view of a free page. */
279 struct GMMPAGEFREE
280 {
281 /** The index of the next page in the free list. UINT16_MAX is NIL. */
282 uint32_t iNext : 16;
283 /** Reserved. Checksum or something? */
284 uint32_t u14Reserved : 14;
285 /** The page state. */
286 uint32_t u2State : 2;
287 } Free;
288#endif
289} GMMPAGE;
290AssertCompileSize(GMMPAGE, sizeof(RTHCUINTPTR));
291/** Pointer to a GMMPAGE. */
292typedef GMMPAGE *PGMMPAGE;
293
294
295/** @name The Page States.
296 * @{ */
297/** A private page. */
298#define GMM_PAGE_STATE_PRIVATE 0
299/** A private page - alternative value used on the 32-bit implementation.
300 * This will never be used on 64-bit hosts. */
301#define GMM_PAGE_STATE_PRIVATE_32 1
302/** A shared page. */
303#define GMM_PAGE_STATE_SHARED 2
304/** A free page. */
305#define GMM_PAGE_STATE_FREE 3
306/** @} */
307
308
309/** @def GMM_PAGE_IS_PRIVATE
310 *
311 * @returns true if private, false if not.
312 * @param pPage The GMM page.
313 */
314#if HC_ARCH_BITS == 64
315# define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_PRIVATE )
316#else
317# define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Private.fZero == 0 )
318#endif
319
320/** @def GMM_PAGE_IS_SHARED
321 *
322 * @returns true if shared, false if not.
323 * @param pPage The GMM page.
324 */
325#define GMM_PAGE_IS_SHARED(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_SHARED )
326
327/** @def GMM_PAGE_IS_FREE
328 *
329 * @returns true if free, false if not.
330 * @param pPage The GMM page.
331 */
332#define GMM_PAGE_IS_FREE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_FREE )
333
334/** @def GMM_PAGE_PFN_LAST
335 * The last valid guest pfn range.
336 * @remark Some of the values outside the range has special meaning,
337 * see GMM_PAGE_PFN_UNSHAREABLE.
338 */
339#if HC_ARCH_BITS == 64
340# define GMM_PAGE_PFN_LAST UINT32_C(0xfffffff0)
341#else
342# define GMM_PAGE_PFN_LAST UINT32_C(0x00fffff0)
343#endif
344AssertCompile(GMM_PAGE_PFN_LAST == (GMM_GCPHYS_LAST >> PAGE_SHIFT));
345
346/** @def GMM_PAGE_PFN_UNSHAREABLE
347 * Indicates that this page isn't used for normal guest memory and thus isn't shareable.
348 */
349#if HC_ARCH_BITS == 64
350# define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0xfffffff1)
351#else
352# define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0x00fffff1)
353#endif
354AssertCompile(GMM_PAGE_PFN_UNSHAREABLE == (GMM_GCPHYS_UNSHAREABLE >> PAGE_SHIFT));
355
356
357/**
358 * A GMM allocation chunk ring-3 mapping record.
359 *
360 * This should really be associated with a session and not a VM, but
361 * it's simpler to associated with a VM and cleanup with the VM object
362 * is destroyed.
363 */
364typedef struct GMMCHUNKMAP
365{
366 /** The mapping object. */
367 RTR0MEMOBJ hMapObj;
368 /** The VM owning the mapping. */
369 PGVM pGVM;
370} GMMCHUNKMAP;
371/** Pointer to a GMM allocation chunk mapping. */
372typedef struct GMMCHUNKMAP *PGMMCHUNKMAP;
373
374
375/**
376 * A GMM allocation chunk.
377 */
378typedef struct GMMCHUNK
379{
380 /** The AVL node core.
381 * The Key is the chunk ID. (Giant mtx.) */
382 AVLU32NODECORE Core;
383 /** The memory object.
384 * Either from RTR0MemObjAllocPhysNC or RTR0MemObjLockUser depending on
385 * what the host can dish up with. (Chunk mtx protects mapping accesses
386 * and related frees.) */
387 RTR0MEMOBJ hMemObj;
388 /** Pointer to the next chunk in the free list. (Giant mtx.) */
389 PGMMCHUNK pFreeNext;
390 /** Pointer to the previous chunk in the free list. (Giant mtx.) */
391 PGMMCHUNK pFreePrev;
392 /** Pointer to the free set this chunk belongs to. NULL for
393 * chunks with no free pages. (Giant mtx.) */
394 PGMMCHUNKFREESET pSet;
395 /** List node in the chunk list (GMM::ChunkList). (Giant mtx.) */
396 RTLISTNODE ListNode;
397 /** Pointer to an array of mappings. (Chunk mtx.) */
398 PGMMCHUNKMAP paMappingsX;
399 /** The number of mappings. (Chunk mtx.) */
400 uint16_t cMappingsX;
401 /** The mapping lock this chunk is using using. UINT16_MAX if nobody is
402 * mapping or freeing anything. (Giant mtx.) */
403 uint8_t volatile iChunkMtx;
404 /** Flags field reserved for future use (like eliminating enmType).
405 * (Giant mtx.) */
406 uint8_t fFlags;
407 /** The head of the list of free pages. UINT16_MAX is the NIL value.
408 * (Giant mtx.) */
409 uint16_t iFreeHead;
410 /** The number of free pages. (Giant mtx.) */
411 uint16_t cFree;
412 /** The GVM handle of the VM that first allocated pages from this chunk, this
413 * is used as a preference when there are several chunks to choose from.
414 * When in bound memory mode this isn't a preference any longer. (Giant
415 * mtx.) */
416 uint16_t hGVM;
417 /** The ID of the NUMA node the memory mostly resides on. (Reserved for
418 * future use.) (Giant mtx.) */
419 uint16_t idNumaNode;
420 /** The number of private pages. (Giant mtx.) */
421 uint16_t cPrivate;
422 /** The number of shared pages. (Giant mtx.) */
423 uint16_t cShared;
424 /** The pages. (Giant mtx.) */
425 GMMPAGE aPages[GMM_CHUNK_SIZE >> PAGE_SHIFT];
426} GMMCHUNK;
427
428/** Indicates that the NUMA properies of the memory is unknown. */
429#define GMM_CHUNK_NUMA_ID_UNKNOWN UINT16_C(0xfffe)
430
431/** @name GMM_CHUNK_FLAGS_XXX - chunk flags.
432 * @{ */
433/** Indicates that the chunk is a large page (2MB). */
434#define GMM_CHUNK_FLAGS_LARGE_PAGE UINT16_C(0x0001)
435/** @} */
436
437
438/**
439 * An allocation chunk TLB entry.
440 */
441typedef struct GMMCHUNKTLBE
442{
443 /** The chunk id. */
444 uint32_t idChunk;
445 /** Pointer to the chunk. */
446 PGMMCHUNK pChunk;
447} GMMCHUNKTLBE;
448/** Pointer to an allocation chunk TLB entry. */
449typedef GMMCHUNKTLBE *PGMMCHUNKTLBE;
450
451
452/** The number of entries tin the allocation chunk TLB. */
453#define GMM_CHUNKTLB_ENTRIES 32
454/** Gets the TLB entry index for the given Chunk ID. */
455#define GMM_CHUNKTLB_IDX(idChunk) ( (idChunk) & (GMM_CHUNKTLB_ENTRIES - 1) )
456
457/**
458 * An allocation chunk TLB.
459 */
460typedef struct GMMCHUNKTLB
461{
462 /** The TLB entries. */
463 GMMCHUNKTLBE aEntries[GMM_CHUNKTLB_ENTRIES];
464} GMMCHUNKTLB;
465/** Pointer to an allocation chunk TLB. */
466typedef GMMCHUNKTLB *PGMMCHUNKTLB;
467
468
469/**
470 * The GMM instance data.
471 */
472typedef struct GMM
473{
474 /** Magic / eye catcher. GMM_MAGIC */
475 uint32_t u32Magic;
476 /** The number of threads waiting on the mutex. */
477 uint32_t cMtxContenders;
478 /** The fast mutex protecting the GMM.
479 * More fine grained locking can be implemented later if necessary. */
480 RTSEMFASTMUTEX hMtx;
481#ifdef VBOX_STRICT
482 /** The current mutex owner. */
483 RTNATIVETHREAD hMtxOwner;
484#endif
485 /** The chunk tree. */
486 PAVLU32NODECORE pChunks;
487 /** The chunk TLB. */
488 GMMCHUNKTLB ChunkTLB;
489 /** The private free set. */
490 GMMCHUNKFREESET PrivateX;
491 /** The shared free set. */
492 GMMCHUNKFREESET Shared;
493
494 /** Shared module tree (global).
495 * @todo separate trees for distinctly different guest OSes. */
496 PAVLLU32NODECORE pGlobalSharedModuleTree;
497 /** Sharable modules (count of nodes in pGlobalSharedModuleTree). */
498 uint32_t cShareableModules;
499
500 /** The chunk list. For simplifying the cleanup process. */
501 RTLISTANCHOR ChunkList;
502
503 /** The maximum number of pages we're allowed to allocate.
504 * @gcfgm 64-bit GMM/MaxPages Direct.
505 * @gcfgm 32-bit GMM/PctPages Relative to the number of host pages. */
506 uint64_t cMaxPages;
507 /** The number of pages that has been reserved.
508 * The deal is that cReservedPages - cOverCommittedPages <= cMaxPages. */
509 uint64_t cReservedPages;
510 /** The number of pages that we have over-committed in reservations. */
511 uint64_t cOverCommittedPages;
512 /** The number of actually allocated (committed if you like) pages. */
513 uint64_t cAllocatedPages;
514 /** The number of pages that are shared. A subset of cAllocatedPages. */
515 uint64_t cSharedPages;
516 /** The number of pages that are actually shared between VMs. */
517 uint64_t cDuplicatePages;
518 /** The number of pages that are shared that has been left behind by
519 * VMs not doing proper cleanups. */
520 uint64_t cLeftBehindSharedPages;
521 /** The number of allocation chunks.
522 * (The number of pages we've allocated from the host can be derived from this.) */
523 uint32_t cChunks;
524 /** The number of current ballooned pages. */
525 uint64_t cBalloonedPages;
526
527 /** The legacy allocation mode indicator.
528 * This is determined at initialization time. */
529 bool fLegacyAllocationMode;
530 /** The bound memory mode indicator.
531 * When set, the memory will be bound to a specific VM and never
532 * shared. This is always set if fLegacyAllocationMode is set.
533 * (Also determined at initialization time.) */
534 bool fBoundMemoryMode;
535 /** The number of registered VMs. */
536 uint16_t cRegisteredVMs;
537
538 /** The number of freed chunks ever. This is used a list generation to
539 * avoid restarting the cleanup scanning when the list wasn't modified. */
540 uint32_t cFreedChunks;
541 /** The previous allocated Chunk ID.
542 * Used as a hint to avoid scanning the whole bitmap. */
543 uint32_t idChunkPrev;
544 /** Chunk ID allocation bitmap.
545 * Bits of allocated IDs are set, free ones are clear.
546 * The NIL id (0) is marked allocated. */
547 uint32_t bmChunkId[(GMM_CHUNKID_LAST + 1 + 31) / 32];
548
549 /** The index of the next mutex to use. */
550 uint32_t iNextChunkMtx;
551 /** Chunk locks for reducing lock contention without having to allocate
552 * one lock per chunk. */
553 struct
554 {
555 /** The mutex */
556 RTSEMFASTMUTEX hMtx;
557 /** The number of threads currently using this mutex. */
558 uint32_t volatile cUsers;
559 } aChunkMtx[64];
560} GMM;
561/** Pointer to the GMM instance. */
562typedef GMM *PGMM;
563
564/** The value of GMM::u32Magic (Katsuhiro Otomo). */
565#define GMM_MAGIC UINT32_C(0x19540414)
566
567
568/**
569 * GMM chunk mutex state.
570 *
571 * This is returned by gmmR0ChunkMutexAcquire and is used by the other
572 * gmmR0ChunkMutex* methods.
573 */
574typedef struct GMMR0CHUNKMTXSTATE
575{
576 PGMM pGMM;
577 /** The index of the chunk mutex. */
578 uint8_t iChunkMtx;
579 /** The relevant flags (GMMR0CHUNK_MTX_XXX). */
580 uint8_t fFlags;
581} GMMR0CHUNKMTXSTATE;
582/** Pointer to a chunk mutex state. */
583typedef GMMR0CHUNKMTXSTATE *PGMMR0CHUNKMTXSTATE;
584
585/** @name GMMR0CHUNK_MTX_XXX
586 * @{ */
587#define GMMR0CHUNK_MTX_INVALID UINT32_C(0)
588#define GMMR0CHUNK_MTX_KEEP_GIANT UINT32_C(1)
589#define GMMR0CHUNK_MTX_RETAKE_GIANT UINT32_C(2)
590#define GMMR0CHUNK_MTX_DROP_GIANT UINT32_C(3)
591#define GMMR0CHUNK_MTX_END UINT32_C(4)
592/** @} */
593
594
595/** The maximum number of shared modules per-vm. */
596#define GMM_MAX_SHARED_PER_VM_MODULES 2048
597/** The maximum number of shared modules GMM is allowed to track. */
598#define GMM_MAX_SHARED_GLOBAL_MODULES 16834
599
600
601/**
602 * Argument packet for gmmR0SharedModuleCleanup.
603 */
604typedef struct GMMR0SHMODPERVMDTORARGS
605{
606 PGVM pGVM;
607 PGMM pGMM;
608} GMMR0SHMODPERVMDTORARGS;
609
610/**
611 * Argument packet for gmmR0CheckSharedModule.
612 */
613typedef struct GMMCHECKSHAREDMODULEINFO
614{
615 PGVM pGVM;
616 VMCPUID idCpu;
617} GMMCHECKSHAREDMODULEINFO;
618
619/**
620 * Argument packet for gmmR0FindDupPageInChunk by GMMR0FindDuplicatePage.
621 */
622typedef struct GMMFINDDUPPAGEINFO
623{
624 PGVM pGVM;
625 PGMM pGMM;
626 uint8_t *pSourcePage;
627 bool fFoundDuplicate;
628} GMMFINDDUPPAGEINFO;
629
630
631/*******************************************************************************
632* Global Variables *
633*******************************************************************************/
634/** Pointer to the GMM instance data. */
635static PGMM g_pGMM = NULL;
636
637/** Macro for obtaining and validating the g_pGMM pointer.
638 *
639 * On failure it will return from the invoking function with the specified
640 * return value.
641 *
642 * @param pGMM The name of the pGMM variable.
643 * @param rc The return value on failure. Use VERR_GMM_INSTANCE for VBox
644 * status codes.
645 */
646#define GMM_GET_VALID_INSTANCE(pGMM, rc) \
647 do { \
648 (pGMM) = g_pGMM; \
649 AssertPtrReturn((pGMM), (rc)); \
650 AssertMsgReturn((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic), (rc)); \
651 } while (0)
652
653/** Macro for obtaining and validating the g_pGMM pointer, void function
654 * variant.
655 *
656 * On failure it will return from the invoking function.
657 *
658 * @param pGMM The name of the pGMM variable.
659 */
660#define GMM_GET_VALID_INSTANCE_VOID(pGMM) \
661 do { \
662 (pGMM) = g_pGMM; \
663 AssertPtrReturnVoid((pGMM)); \
664 AssertMsgReturnVoid((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic)); \
665 } while (0)
666
667
668/** @def GMM_CHECK_SANITY_UPON_ENTERING
669 * Checks the sanity of the GMM instance data before making changes.
670 *
671 * This is macro is a stub by default and must be enabled manually in the code.
672 *
673 * @returns true if sane, false if not.
674 * @param pGMM The name of the pGMM variable.
675 */
676#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0
677# define GMM_CHECK_SANITY_UPON_ENTERING(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0)
678#else
679# define GMM_CHECK_SANITY_UPON_ENTERING(pGMM) (true)
680#endif
681
682/** @def GMM_CHECK_SANITY_UPON_LEAVING
683 * Checks the sanity of the GMM instance data after making changes.
684 *
685 * This is macro is a stub by default and must be enabled manually in the code.
686 *
687 * @returns true if sane, false if not.
688 * @param pGMM The name of the pGMM variable.
689 */
690#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0
691# define GMM_CHECK_SANITY_UPON_LEAVING(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0)
692#else
693# define GMM_CHECK_SANITY_UPON_LEAVING(pGMM) (true)
694#endif
695
696/** @def GMM_CHECK_SANITY_IN_LOOPS
697 * Checks the sanity of the GMM instance in the allocation loops.
698 *
699 * This is macro is a stub by default and must be enabled manually in the code.
700 *
701 * @returns true if sane, false if not.
702 * @param pGMM The name of the pGMM variable.
703 */
704#if defined(VBOX_STRICT) && defined(GMMR0_WITH_SANITY_CHECK) && 0
705# define GMM_CHECK_SANITY_IN_LOOPS(pGMM) (gmmR0SanityCheck((pGMM), __PRETTY_FUNCTION__, __LINE__) == 0)
706#else
707# define GMM_CHECK_SANITY_IN_LOOPS(pGMM) (true)
708#endif
709
710
711/*******************************************************************************
712* Internal Functions *
713*******************************************************************************/
714static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM);
715static bool gmmR0CleanupVMScanChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk);
716DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk);
717DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet);
718DECLINLINE(void) gmmR0SelectSetAndLinkChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk);
719#ifdef GMMR0_WITH_SANITY_CHECK
720static uint32_t gmmR0SanityCheck(PGMM pGMM, const char *pszFunction, unsigned uLineNo);
721#endif
722static bool gmmR0FreeChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem);
723DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage);
724DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage);
725static int gmmR0UnmapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk);
726#ifdef VBOX_WITH_PAGE_SHARING
727static void gmmR0SharedModuleCleanup(PGMM pGMM, PGVM pGVM);
728# ifdef VBOX_STRICT
729static uint32_t gmmR0StrictPageChecksum(PGMM pGMM, PGVM pGVM, uint32_t idPage);
730# endif
731#endif
732
733
734
735/**
736 * Initializes the GMM component.
737 *
738 * This is called when the VMMR0.r0 module is loaded and protected by the
739 * loader semaphore.
740 *
741 * @returns VBox status code.
742 */
743GMMR0DECL(int) GMMR0Init(void)
744{
745 LogFlow(("GMMInit:\n"));
746
747 /*
748 * Allocate the instance data and the locks.
749 */
750 PGMM pGMM = (PGMM)RTMemAllocZ(sizeof(*pGMM));
751 if (!pGMM)
752 return VERR_NO_MEMORY;
753
754 pGMM->u32Magic = GMM_MAGIC;
755 for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++)
756 pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID;
757 RTListInit(&pGMM->ChunkList);
758 ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID);
759
760 int rc = RTSemFastMutexCreate(&pGMM->hMtx);
761 if (RT_SUCCESS(rc))
762 {
763 unsigned iMtx;
764 for (iMtx = 0; iMtx < RT_ELEMENTS(pGMM->aChunkMtx); iMtx++)
765 {
766 rc = RTSemFastMutexCreate(&pGMM->aChunkMtx[iMtx].hMtx);
767 if (RT_FAILURE(rc))
768 break;
769 }
770 if (RT_SUCCESS(rc))
771 {
772 /*
773 * Check and see if RTR0MemObjAllocPhysNC works.
774 */
775#if 0 /* later, see @bufref{3170}. */
776 RTR0MEMOBJ MemObj;
777 rc = RTR0MemObjAllocPhysNC(&MemObj, _64K, NIL_RTHCPHYS);
778 if (RT_SUCCESS(rc))
779 {
780 rc = RTR0MemObjFree(MemObj, true);
781 AssertRC(rc);
782 }
783 else if (rc == VERR_NOT_SUPPORTED)
784 pGMM->fLegacyAllocationMode = pGMM->fBoundMemoryMode = true;
785 else
786 SUPR0Printf("GMMR0Init: RTR0MemObjAllocPhysNC(,64K,Any) -> %d!\n", rc);
787#else
788# if defined(RT_OS_WINDOWS) || (defined(RT_OS_SOLARIS) && ARCH_BITS == 64) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD)
789 pGMM->fLegacyAllocationMode = false;
790# if ARCH_BITS == 32
791 /* Don't reuse possibly partial chunks because of the virtual
792 address space limitation. */
793 pGMM->fBoundMemoryMode = true;
794# else
795 pGMM->fBoundMemoryMode = false;
796# endif
797# else
798 pGMM->fLegacyAllocationMode = true;
799 pGMM->fBoundMemoryMode = true;
800# endif
801#endif
802
803 /*
804 * Query system page count and guess a reasonable cMaxPages value.
805 */
806 pGMM->cMaxPages = UINT32_MAX; /** @todo IPRT function for query ram size and such. */
807
808 g_pGMM = pGMM;
809 LogFlow(("GMMInit: pGMM=%p fLegacyAllocationMode=%RTbool fBoundMemoryMode=%RTbool\n", pGMM, pGMM->fLegacyAllocationMode, pGMM->fBoundMemoryMode));
810 return VINF_SUCCESS;
811 }
812
813 /*
814 * Bail out.
815 */
816 while (iMtx-- > 0)
817 RTSemFastMutexDestroy(pGMM->aChunkMtx[iMtx].hMtx);
818 RTSemFastMutexDestroy(pGMM->hMtx);
819 }
820
821 pGMM->u32Magic = 0;
822 RTMemFree(pGMM);
823 SUPR0Printf("GMMR0Init: failed! rc=%d\n", rc);
824 return rc;
825}
826
827
828/**
829 * Terminates the GMM component.
830 */
831GMMR0DECL(void) GMMR0Term(void)
832{
833 LogFlow(("GMMTerm:\n"));
834
835 /*
836 * Take care / be paranoid...
837 */
838 PGMM pGMM = g_pGMM;
839 if (!VALID_PTR(pGMM))
840 return;
841 if (pGMM->u32Magic != GMM_MAGIC)
842 {
843 SUPR0Printf("GMMR0Term: u32Magic=%#x\n", pGMM->u32Magic);
844 return;
845 }
846
847 /*
848 * Undo what init did and free all the resources we've acquired.
849 */
850 /* Destroy the fundamentals. */
851 g_pGMM = NULL;
852 pGMM->u32Magic = ~GMM_MAGIC;
853 RTSemFastMutexDestroy(pGMM->hMtx);
854 pGMM->hMtx = NIL_RTSEMFASTMUTEX;
855
856 /* Free any chunks still hanging around. */
857 RTAvlU32Destroy(&pGMM->pChunks, gmmR0TermDestroyChunk, pGMM);
858
859 /* Destroy the chunk locks. */
860 for (unsigned iMtx = 0; iMtx < RT_ELEMENTS(pGMM->aChunkMtx); iMtx++)
861 {
862 Assert(pGMM->aChunkMtx[iMtx].cUsers == 0);
863 RTSemFastMutexDestroy(pGMM->aChunkMtx[iMtx].hMtx);
864 pGMM->aChunkMtx[iMtx].hMtx = NIL_RTSEMFASTMUTEX;
865 }
866
867 /* Finally the instance data itself. */
868 RTMemFree(pGMM);
869 LogFlow(("GMMTerm: done\n"));
870}
871
872
873/**
874 * RTAvlU32Destroy callback.
875 *
876 * @returns 0
877 * @param pNode The node to destroy.
878 * @param pvGMM The GMM handle.
879 */
880static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM)
881{
882 PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
883
884 if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT))
885 SUPR0Printf("GMMR0Term: %p/%#x: cFree=%d cPrivate=%d cShared=%d cMappings=%d\n", pChunk,
886 pChunk->Core.Key, pChunk->cFree, pChunk->cPrivate, pChunk->cShared, pChunk->cMappingsX);
887
888 int rc = RTR0MemObjFree(pChunk->hMemObj, true /* fFreeMappings */);
889 if (RT_FAILURE(rc))
890 {
891 SUPR0Printf("GMMR0Term: %p/%#x: RTRMemObjFree(%p,true) -> %d (cMappings=%d)\n", pChunk,
892 pChunk->Core.Key, pChunk->hMemObj, rc, pChunk->cMappingsX);
893 AssertRC(rc);
894 }
895 pChunk->hMemObj = NIL_RTR0MEMOBJ;
896
897 RTMemFree(pChunk->paMappingsX);
898 pChunk->paMappingsX = NULL;
899
900 RTMemFree(pChunk);
901 NOREF(pvGMM);
902 return 0;
903}
904
905
906/**
907 * Initializes the per-VM data for the GMM.
908 *
909 * This is called from within the GVMM lock (from GVMMR0CreateVM)
910 * and should only initialize the data members so GMMR0CleanupVM
911 * can deal with them. We reserve no memory or anything here,
912 * that's done later in GMMR0InitVM.
913 *
914 * @param pGVM Pointer to the Global VM structure.
915 */
916GMMR0DECL(void) GMMR0InitPerVMData(PGVM pGVM)
917{
918 AssertCompile(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding));
919
920 pGVM->gmm.s.Stats.enmPolicy = GMMOCPOLICY_INVALID;
921 pGVM->gmm.s.Stats.enmPriority = GMMPRIORITY_INVALID;
922 pGVM->gmm.s.Stats.fMayAllocate = false;
923}
924
925
926/**
927 * Acquires the GMM giant lock.
928 *
929 * @returns Assert status code from RTSemFastMutexRequest.
930 * @param pGMM Pointer to the GMM instance.
931 */
932static int gmmR0MutexAcquire(PGMM pGMM)
933{
934 ASMAtomicIncU32(&pGMM->cMtxContenders);
935 int rc = RTSemFastMutexRequest(pGMM->hMtx);
936 ASMAtomicDecU32(&pGMM->cMtxContenders);
937 AssertRC(rc);
938#ifdef VBOX_STRICT
939 pGMM->hMtxOwner = RTThreadNativeSelf();
940#endif
941 return rc;
942}
943
944
945/**
946 * Releases the GMM giant lock.
947 *
948 * @returns Assert status code from RTSemFastMutexRequest.
949 * @param pGMM Pointer to the GMM instance.
950 */
951static int gmmR0MutexRelease(PGMM pGMM)
952{
953#ifdef VBOX_STRICT
954 pGMM->hMtxOwner = NIL_RTNATIVETHREAD;
955#endif
956 int rc = RTSemFastMutexRelease(pGMM->hMtx);
957 AssertRC(rc);
958 return rc;
959}
960
961
962/**
963 * Yields the GMM giant lock if there is contention and a certain minimum time
964 * has elapsed since we took it.
965 *
966 * @returns @c true if the mutex was yielded, @c false if not.
967 * @param pGMM Pointer to the GMM instance.
968 * @param puLockNanoTS Where the lock acquisition time stamp is kept
969 * (in/out).
970 */
971static bool gmmR0MutexYield(PGMM pGMM, uint64_t *puLockNanoTS)
972{
973 /*
974 * If nobody is contending the mutex, don't bother checking the time.
975 */
976 if (ASMAtomicReadU32(&pGMM->cMtxContenders) == 0)
977 return false;
978
979 /*
980 * Don't yield if we haven't executed for at least 2 milliseconds.
981 */
982 uint64_t uNanoNow = RTTimeSystemNanoTS();
983 if (uNanoNow - *puLockNanoTS < UINT32_C(2000000))
984 return false;
985
986 /*
987 * Yield the mutex.
988 */
989#ifdef VBOX_STRICT
990 pGMM->hMtxOwner = NIL_RTNATIVETHREAD;
991#endif
992 ASMAtomicIncU32(&pGMM->cMtxContenders);
993 int rc1 = RTSemFastMutexRelease(pGMM->hMtx); AssertRC(rc1);
994
995 RTThreadYield();
996
997 int rc2 = RTSemFastMutexRequest(pGMM->hMtx); AssertRC(rc2);
998 *puLockNanoTS = RTTimeSystemNanoTS();
999 ASMAtomicDecU32(&pGMM->cMtxContenders);
1000#ifdef VBOX_STRICT
1001 pGMM->hMtxOwner = RTThreadNativeSelf();
1002#endif
1003
1004 return true;
1005}
1006
1007
1008/**
1009 * Acquires a chunk lock.
1010 *
1011 * The caller must own the giant lock.
1012 *
1013 * @returns Assert status code from RTSemFastMutexRequest.
1014 * @param pMtxState The chunk mutex state info. (Avoids
1015 * passing the same flags and stuff around
1016 * for subsequent release and drop-giant
1017 * calls.)
1018 * @param pGMM Pointer to the GMM instance.
1019 * @param pChunk Pointer to the chunk.
1020 * @param fFlags Flags regarding the giant lock, GMMR0CHUNK_MTX_XXX.
1021 */
1022static int gmmR0ChunkMutexAcquire(PGMMR0CHUNKMTXSTATE pMtxState, PGMM pGMM, PGMMCHUNK pChunk, uint32_t fFlags)
1023{
1024 Assert(fFlags > GMMR0CHUNK_MTX_INVALID && fFlags < GMMR0CHUNK_MTX_END);
1025 Assert(pGMM->hMtxOwner == RTThreadNativeSelf());
1026
1027 pMtxState->pGMM = pGMM;
1028 pMtxState->fFlags = (uint8_t)fFlags;
1029
1030 /*
1031 * Get the lock index and reference the lock.
1032 */
1033 Assert(pGMM->hMtxOwner == RTThreadNativeSelf());
1034 uint32_t iChunkMtx = pChunk->iChunkMtx;
1035 if (iChunkMtx == UINT8_MAX)
1036 {
1037 iChunkMtx = pGMM->iNextChunkMtx++;
1038 iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx);
1039
1040 /* Try get an unused one... */
1041 if (pGMM->aChunkMtx[iChunkMtx].cUsers)
1042 {
1043 iChunkMtx = pGMM->iNextChunkMtx++;
1044 iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx);
1045 if (pGMM->aChunkMtx[iChunkMtx].cUsers)
1046 {
1047 iChunkMtx = pGMM->iNextChunkMtx++;
1048 iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx);
1049 if (pGMM->aChunkMtx[iChunkMtx].cUsers)
1050 {
1051 iChunkMtx = pGMM->iNextChunkMtx++;
1052 iChunkMtx %= RT_ELEMENTS(pGMM->aChunkMtx);
1053 }
1054 }
1055 }
1056
1057 pChunk->iChunkMtx = iChunkMtx;
1058 }
1059 AssertCompile(RT_ELEMENTS(pGMM->aChunkMtx) < UINT8_MAX);
1060 pMtxState->iChunkMtx = (uint8_t)iChunkMtx;
1061 ASMAtomicIncU32(&pGMM->aChunkMtx[iChunkMtx].cUsers);
1062
1063 /*
1064 * Drop the giant?
1065 */
1066 if (fFlags != GMMR0CHUNK_MTX_KEEP_GIANT)
1067 {
1068 /** @todo GMM life cycle cleanup (we may race someone
1069 * destroying and cleaning up GMM)? */
1070 gmmR0MutexRelease(pGMM);
1071 }
1072
1073 /*
1074 * Take the chunk mutex.
1075 */
1076 int rc = RTSemFastMutexRequest(pGMM->aChunkMtx[iChunkMtx].hMtx);
1077 AssertRC(rc);
1078 return rc;
1079}
1080
1081
1082/**
1083 * Releases the GMM giant lock.
1084 *
1085 * @returns Assert status code from RTSemFastMutexRequest.
1086 * @param pGMM Pointer to the GMM instance.
1087 * @param pChunk Pointer to the chunk if it's still
1088 * alive, NULL if it isn't. This is used to deassociate
1089 * the chunk from the mutex on the way out so a new one
1090 * can be selected next time, thus avoiding contented
1091 * mutexes.
1092 */
1093static int gmmR0ChunkMutexRelease(PGMMR0CHUNKMTXSTATE pMtxState, PGMMCHUNK pChunk)
1094{
1095 PGMM pGMM = pMtxState->pGMM;
1096
1097 /*
1098 * Release the chunk mutex and reacquire the giant if requested.
1099 */
1100 int rc = RTSemFastMutexRelease(pGMM->aChunkMtx[pMtxState->iChunkMtx].hMtx);
1101 AssertRC(rc);
1102 if (pMtxState->fFlags == GMMR0CHUNK_MTX_RETAKE_GIANT)
1103 rc = gmmR0MutexAcquire(pGMM);
1104 else
1105 Assert((pMtxState->fFlags != GMMR0CHUNK_MTX_DROP_GIANT) == (pGMM->hMtxOwner == RTThreadNativeSelf()));
1106
1107 /*
1108 * Drop the chunk mutex user reference and deassociate it from the chunk
1109 * when possible.
1110 */
1111 if ( ASMAtomicDecU32(&pGMM->aChunkMtx[pMtxState->iChunkMtx].cUsers) == 0
1112 && pChunk
1113 && RT_SUCCESS(rc) )
1114 {
1115 if (pMtxState->fFlags != GMMR0CHUNK_MTX_DROP_GIANT)
1116 pChunk->iChunkMtx = UINT8_MAX;
1117 else
1118 {
1119 rc = gmmR0MutexAcquire(pGMM);
1120 if (RT_SUCCESS(rc))
1121 {
1122 if (pGMM->aChunkMtx[pMtxState->iChunkMtx].cUsers == 0)
1123 pChunk->iChunkMtx = UINT8_MAX;
1124 rc = gmmR0MutexRelease(pGMM);
1125 }
1126 }
1127 }
1128
1129 pMtxState->pGMM = NULL;
1130 return rc;
1131}
1132
1133
1134/**
1135 * Drops the giant GMM lock we kept in gmmR0ChunkMutexAcquire while keeping the
1136 * chunk locked.
1137 *
1138 * This only works if gmmR0ChunkMutexAcquire was called with
1139 * GMMR0CHUNK_MTX_KEEP_GIANT. gmmR0ChunkMutexRelease will retake the giant
1140 * mutex, i.e. behave as if GMMR0CHUNK_MTX_RETAKE_GIANT was used.
1141 *
1142 * @returns VBox status code (assuming success is ok).
1143 * @param pMtxState Pointer to the chunk mutex state.
1144 */
1145static int gmmR0ChunkMutexDropGiant(PGMMR0CHUNKMTXSTATE pMtxState)
1146{
1147 AssertReturn(pMtxState->fFlags == GMMR0CHUNK_MTX_KEEP_GIANT, VERR_GMM_MTX_FLAGS);
1148 Assert(pMtxState->pGMM->hMtxOwner == RTThreadNativeSelf());
1149 pMtxState->fFlags = GMMR0CHUNK_MTX_RETAKE_GIANT;
1150 /** @todo GMM life cycle cleanup (we may race someone
1151 * destroying and cleaning up GMM)? */
1152 return gmmR0MutexRelease(pMtxState->pGMM);
1153}
1154
1155
1156/**
1157 * For experimenting with NUMA affinity and such.
1158 *
1159 * @returns The current NUMA Node ID.
1160 */
1161static uint16_t gmmR0GetCurrentNumaNodeId(void)
1162{
1163#if 1
1164 return GMM_CHUNK_NUMA_ID_UNKNOWN;
1165#else
1166 return RTMpCpuId() / 16;
1167#endif
1168}
1169
1170
1171
1172/**
1173 * Cleans up when a VM is terminating.
1174 *
1175 * @param pGVM Pointer to the Global VM structure.
1176 */
1177GMMR0DECL(void) GMMR0CleanupVM(PGVM pGVM)
1178{
1179 LogFlow(("GMMR0CleanupVM: pGVM=%p:{.pVM=%p, .hSelf=%#x}\n", pGVM, pGVM->pVM, pGVM->hSelf));
1180
1181 PGMM pGMM;
1182 GMM_GET_VALID_INSTANCE_VOID(pGMM);
1183
1184#ifdef VBOX_WITH_PAGE_SHARING
1185 /*
1186 * Clean up all registered shared modules first.
1187 */
1188 gmmR0SharedModuleCleanup(pGMM, pGVM);
1189#endif
1190
1191 gmmR0MutexAcquire(pGMM);
1192 uint64_t uLockNanoTS = RTTimeSystemNanoTS();
1193 GMM_CHECK_SANITY_UPON_ENTERING(pGMM);
1194
1195 /*
1196 * The policy is 'INVALID' until the initial reservation
1197 * request has been serviced.
1198 */
1199 if ( pGVM->gmm.s.Stats.enmPolicy > GMMOCPOLICY_INVALID
1200 && pGVM->gmm.s.Stats.enmPolicy < GMMOCPOLICY_END)
1201 {
1202 /*
1203 * If it's the last VM around, we can skip walking all the chunk looking
1204 * for the pages owned by this VM and instead flush the whole shebang.
1205 *
1206 * This takes care of the eventuality that a VM has left shared page
1207 * references behind (shouldn't happen of course, but you never know).
1208 */
1209 Assert(pGMM->cRegisteredVMs);
1210 pGMM->cRegisteredVMs--;
1211
1212 /*
1213 * Walk the entire pool looking for pages that belong to this VM
1214 * and leftover mappings. (This'll only catch private pages,
1215 * shared pages will be 'left behind'.)
1216 */
1217 /** @todo r=bird: This scanning+freeing could be optimized in bound mode! */
1218 uint64_t cPrivatePages = pGVM->gmm.s.Stats.cPrivatePages; /* save */
1219
1220 unsigned iCountDown = 64;
1221 bool fRedoFromStart;
1222 PGMMCHUNK pChunk;
1223 do
1224 {
1225 fRedoFromStart = false;
1226 RTListForEachReverse(&pGMM->ChunkList, pChunk, GMMCHUNK, ListNode)
1227 {
1228 uint32_t const cFreeChunksOld = pGMM->cFreedChunks;
1229 if ( ( !pGMM->fBoundMemoryMode
1230 || pChunk->hGVM == pGVM->hSelf)
1231 && gmmR0CleanupVMScanChunk(pGMM, pGVM, pChunk))
1232 {
1233 /* We left the giant mutex, so reset the yield counters. */
1234 uLockNanoTS = RTTimeSystemNanoTS();
1235 iCountDown = 64;
1236 }
1237 else
1238 {
1239 /* Didn't leave it, so do normal yielding. */
1240 if (!iCountDown)
1241 gmmR0MutexYield(pGMM, &uLockNanoTS);
1242 else
1243 iCountDown--;
1244 }
1245 if (pGMM->cFreedChunks != cFreeChunksOld)
1246 {
1247 fRedoFromStart = true;
1248 break;
1249 }
1250 }
1251 } while (fRedoFromStart);
1252
1253 if (pGVM->gmm.s.Stats.cPrivatePages)
1254 SUPR0Printf("GMMR0CleanupVM: hGVM=%#x has %#x private pages that cannot be found!\n", pGVM->hSelf, pGVM->gmm.s.Stats.cPrivatePages);
1255
1256 pGMM->cAllocatedPages -= cPrivatePages;
1257
1258 /*
1259 * Free empty chunks.
1260 */
1261 PGMMCHUNKFREESET pPrivateSet = pGMM->fBoundMemoryMode ? &pGVM->gmm.s.Private : &pGMM->PrivateX;
1262 do
1263 {
1264 fRedoFromStart = false;
1265 iCountDown = 10240;
1266 pChunk = pPrivateSet->apLists[GMM_CHUNK_FREE_SET_UNUSED_LIST];
1267 while (pChunk)
1268 {
1269 PGMMCHUNK pNext = pChunk->pFreeNext;
1270 Assert(pChunk->cFree == GMM_CHUNK_NUM_PAGES);
1271 if ( !pGMM->fBoundMemoryMode
1272 || pChunk->hGVM == pGVM->hSelf)
1273 {
1274 uint64_t const idGenerationOld = pPrivateSet->idGeneration;
1275 if (gmmR0FreeChunk(pGMM, pGVM, pChunk, true /*fRelaxedSem*/))
1276 {
1277 /* We've left the giant mutex, restart? (+1 for our unlink) */
1278 fRedoFromStart = pPrivateSet->idGeneration != idGenerationOld + 1;
1279 if (fRedoFromStart)
1280 break;
1281 uLockNanoTS = RTTimeSystemNanoTS();
1282 iCountDown = 10240;
1283 }
1284 }
1285
1286 /* Advance and maybe yield the lock. */
1287 pChunk = pNext;
1288 if (--iCountDown == 0)
1289 {
1290 uint64_t const idGenerationOld = pPrivateSet->idGeneration;
1291 fRedoFromStart = gmmR0MutexYield(pGMM, &uLockNanoTS)
1292 && pPrivateSet->idGeneration != idGenerationOld;
1293 if (fRedoFromStart)
1294 break;
1295 iCountDown = 10240;
1296 }
1297 }
1298 } while (fRedoFromStart);
1299
1300 /*
1301 * Account for shared pages that weren't freed.
1302 */
1303 if (pGVM->gmm.s.Stats.cSharedPages)
1304 {
1305 Assert(pGMM->cSharedPages >= pGVM->gmm.s.Stats.cSharedPages);
1306 SUPR0Printf("GMMR0CleanupVM: hGVM=%#x left %#x shared pages behind!\n", pGVM->hSelf, pGVM->gmm.s.Stats.cSharedPages);
1307 pGMM->cLeftBehindSharedPages += pGVM->gmm.s.Stats.cSharedPages;
1308 }
1309
1310 /*
1311 * Clean up balloon statistics in case the VM process crashed.
1312 */
1313 Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.Stats.cBalloonedPages);
1314 pGMM->cBalloonedPages -= pGVM->gmm.s.Stats.cBalloonedPages;
1315
1316 /*
1317 * Update the over-commitment management statistics.
1318 */
1319 pGMM->cReservedPages -= pGVM->gmm.s.Stats.Reserved.cBasePages
1320 + pGVM->gmm.s.Stats.Reserved.cFixedPages
1321 + pGVM->gmm.s.Stats.Reserved.cShadowPages;
1322 switch (pGVM->gmm.s.Stats.enmPolicy)
1323 {
1324 case GMMOCPOLICY_NO_OC:
1325 break;
1326 default:
1327 /** @todo Update GMM->cOverCommittedPages */
1328 break;
1329 }
1330 }
1331
1332 /* zap the GVM data. */
1333 pGVM->gmm.s.Stats.enmPolicy = GMMOCPOLICY_INVALID;
1334 pGVM->gmm.s.Stats.enmPriority = GMMPRIORITY_INVALID;
1335 pGVM->gmm.s.Stats.fMayAllocate = false;
1336
1337 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
1338 gmmR0MutexRelease(pGMM);
1339
1340 LogFlow(("GMMR0CleanupVM: returns\n"));
1341}
1342
1343
1344/**
1345 * Scan one chunk for private pages belonging to the specified VM.
1346 *
1347 * @note This function may drop the giant mutex!
1348 *
1349 * @returns @c true if we've temporarily dropped the giant mutex, @c false if
1350 * we didn't.
1351 * @param pGMM Pointer to the GMM instance.
1352 * @param pGVM The global VM handle.
1353 * @param pChunk The chunk to scan.
1354 */
1355static bool gmmR0CleanupVMScanChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk)
1356{
1357 Assert(!pGMM->fBoundMemoryMode || pChunk->hGVM == pGVM->hSelf);
1358
1359 /*
1360 * Look for pages belonging to the VM.
1361 * (Perform some internal checks while we're scanning.)
1362 */
1363#ifndef VBOX_STRICT
1364 if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT))
1365#endif
1366 {
1367 unsigned cPrivate = 0;
1368 unsigned cShared = 0;
1369 unsigned cFree = 0;
1370
1371 gmmR0UnlinkChunk(pChunk); /* avoiding cFreePages updates. */
1372
1373 uint16_t hGVM = pGVM->hSelf;
1374 unsigned iPage = (GMM_CHUNK_SIZE >> PAGE_SHIFT);
1375 while (iPage-- > 0)
1376 if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage]))
1377 {
1378 if (pChunk->aPages[iPage].Private.hGVM == hGVM)
1379 {
1380 /*
1381 * Free the page.
1382 *
1383 * The reason for not using gmmR0FreePrivatePage here is that we
1384 * must *not* cause the chunk to be freed from under us - we're in
1385 * an AVL tree walk here.
1386 */
1387 pChunk->aPages[iPage].u = 0;
1388 pChunk->aPages[iPage].Free.iNext = pChunk->iFreeHead;
1389 pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE;
1390 pChunk->iFreeHead = iPage;
1391 pChunk->cPrivate--;
1392 pChunk->cFree++;
1393 pGVM->gmm.s.Stats.cPrivatePages--;
1394 cFree++;
1395 }
1396 else
1397 cPrivate++;
1398 }
1399 else if (GMM_PAGE_IS_FREE(&pChunk->aPages[iPage]))
1400 cFree++;
1401 else
1402 cShared++;
1403
1404 gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk);
1405
1406 /*
1407 * Did it add up?
1408 */
1409 if (RT_UNLIKELY( pChunk->cFree != cFree
1410 || pChunk->cPrivate != cPrivate
1411 || pChunk->cShared != cShared))
1412 {
1413 SUPR0Printf("gmmR0CleanupVMScanChunk: Chunk %p/%#x has bogus stats - free=%d/%d private=%d/%d shared=%d/%d\n",
1414 pChunk->cFree, cFree, pChunk->cPrivate, cPrivate, pChunk->cShared, cShared);
1415 pChunk->cFree = cFree;
1416 pChunk->cPrivate = cPrivate;
1417 pChunk->cShared = cShared;
1418 }
1419 }
1420
1421 /*
1422 * If not in bound memory mode, we should reset the hGVM field
1423 * if it has our handle in it.
1424 */
1425 if (pChunk->hGVM == pGVM->hSelf)
1426 {
1427 if (!g_pGMM->fBoundMemoryMode)
1428 pChunk->hGVM = NIL_GVM_HANDLE;
1429 else if (pChunk->cFree != GMM_CHUNK_NUM_PAGES)
1430 {
1431 SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: cFree=%#x - it should be 0 in bound mode!\n",
1432 pChunk, pChunk->Core.Key, pChunk->cFree);
1433 AssertMsgFailed(("%p/%#x: cFree=%#x - it should be 0 in bound mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree));
1434
1435 gmmR0UnlinkChunk(pChunk);
1436 pChunk->cFree = GMM_CHUNK_NUM_PAGES;
1437 gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk);
1438 }
1439 }
1440
1441 /*
1442 * Look for a mapping belonging to the terminating VM.
1443 */
1444 GMMR0CHUNKMTXSTATE MtxState;
1445 gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT);
1446 unsigned cMappings = pChunk->cMappingsX;
1447 for (unsigned i = 0; i < cMappings; i++)
1448 if (pChunk->paMappingsX[i].pGVM == pGVM)
1449 {
1450 gmmR0ChunkMutexDropGiant(&MtxState);
1451
1452 RTR0MEMOBJ hMemObj = pChunk->paMappingsX[i].hMapObj;
1453
1454 cMappings--;
1455 if (i < cMappings)
1456 pChunk->paMappingsX[i] = pChunk->paMappingsX[cMappings];
1457 pChunk->paMappingsX[cMappings].pGVM = NULL;
1458 pChunk->paMappingsX[cMappings].hMapObj = NIL_RTR0MEMOBJ;
1459 Assert(pChunk->cMappingsX - 1U == cMappings);
1460 pChunk->cMappingsX = cMappings;
1461
1462 int rc = RTR0MemObjFree(hMemObj, false /* fFreeMappings (NA) */);
1463 if (RT_FAILURE(rc))
1464 {
1465 SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: mapping #%x: RTRMemObjFree(%p,false) -> %d \n",
1466 pChunk, pChunk->Core.Key, i, hMemObj, rc);
1467 AssertRC(rc);
1468 }
1469
1470 gmmR0ChunkMutexRelease(&MtxState, pChunk);
1471 return true;
1472 }
1473
1474 gmmR0ChunkMutexRelease(&MtxState, pChunk);
1475 return false;
1476}
1477
1478
1479/**
1480 * The initial resource reservations.
1481 *
1482 * This will make memory reservations according to policy and priority. If there aren't
1483 * sufficient resources available to sustain the VM this function will fail and all
1484 * future allocations requests will fail as well.
1485 *
1486 * These are just the initial reservations made very very early during the VM creation
1487 * process and will be adjusted later in the GMMR0UpdateReservation call after the
1488 * ring-3 init has completed.
1489 *
1490 * @returns VBox status code.
1491 * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED
1492 * @retval VERR_GMM_
1493 *
1494 * @param pVM Pointer to the VM.
1495 * @param idCpu The VCPU id.
1496 * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs.
1497 * This does not include MMIO2 and similar.
1498 * @param cShadowPages The number of pages that may be allocated for shadow paging structures.
1499 * @param cFixedPages The number of pages that may be allocated for fixed objects like the
1500 * hyper heap, MMIO2 and similar.
1501 * @param enmPolicy The OC policy to use on this VM.
1502 * @param enmPriority The priority in an out-of-memory situation.
1503 *
1504 * @thread The creator thread / EMT.
1505 */
1506GMMR0DECL(int) GMMR0InitialReservation(PVM pVM, VMCPUID idCpu, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages,
1507 GMMOCPOLICY enmPolicy, GMMPRIORITY enmPriority)
1508{
1509 LogFlow(("GMMR0InitialReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x enmPolicy=%d enmPriority=%d\n",
1510 pVM, cBasePages, cShadowPages, cFixedPages, enmPolicy, enmPriority));
1511
1512 /*
1513 * Validate, get basics and take the semaphore.
1514 */
1515 PGMM pGMM;
1516 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
1517 PGVM pGVM;
1518 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
1519 if (RT_FAILURE(rc))
1520 return rc;
1521
1522 AssertReturn(cBasePages, VERR_INVALID_PARAMETER);
1523 AssertReturn(cShadowPages, VERR_INVALID_PARAMETER);
1524 AssertReturn(cFixedPages, VERR_INVALID_PARAMETER);
1525 AssertReturn(enmPolicy > GMMOCPOLICY_INVALID && enmPolicy < GMMOCPOLICY_END, VERR_INVALID_PARAMETER);
1526 AssertReturn(enmPriority > GMMPRIORITY_INVALID && enmPriority < GMMPRIORITY_END, VERR_INVALID_PARAMETER);
1527
1528 gmmR0MutexAcquire(pGMM);
1529 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
1530 {
1531 if ( !pGVM->gmm.s.Stats.Reserved.cBasePages
1532 && !pGVM->gmm.s.Stats.Reserved.cFixedPages
1533 && !pGVM->gmm.s.Stats.Reserved.cShadowPages)
1534 {
1535 /*
1536 * Check if we can accommodate this.
1537 */
1538 /* ... later ... */
1539 if (RT_SUCCESS(rc))
1540 {
1541 /*
1542 * Update the records.
1543 */
1544 pGVM->gmm.s.Stats.Reserved.cBasePages = cBasePages;
1545 pGVM->gmm.s.Stats.Reserved.cFixedPages = cFixedPages;
1546 pGVM->gmm.s.Stats.Reserved.cShadowPages = cShadowPages;
1547 pGVM->gmm.s.Stats.enmPolicy = enmPolicy;
1548 pGVM->gmm.s.Stats.enmPriority = enmPriority;
1549 pGVM->gmm.s.Stats.fMayAllocate = true;
1550
1551 pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages;
1552 pGMM->cRegisteredVMs++;
1553 }
1554 }
1555 else
1556 rc = VERR_WRONG_ORDER;
1557 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
1558 }
1559 else
1560 rc = VERR_GMM_IS_NOT_SANE;
1561 gmmR0MutexRelease(pGMM);
1562 LogFlow(("GMMR0InitialReservation: returns %Rrc\n", rc));
1563 return rc;
1564}
1565
1566
1567/**
1568 * VMMR0 request wrapper for GMMR0InitialReservation.
1569 *
1570 * @returns see GMMR0InitialReservation.
1571 * @param pVM Pointer to the VM.
1572 * @param idCpu The VCPU id.
1573 * @param pReq Pointer to the request packet.
1574 */
1575GMMR0DECL(int) GMMR0InitialReservationReq(PVM pVM, VMCPUID idCpu, PGMMINITIALRESERVATIONREQ pReq)
1576{
1577 /*
1578 * Validate input and pass it on.
1579 */
1580 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1581 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
1582 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
1583
1584 return GMMR0InitialReservation(pVM, idCpu, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages, pReq->enmPolicy, pReq->enmPriority);
1585}
1586
1587
1588/**
1589 * This updates the memory reservation with the additional MMIO2 and ROM pages.
1590 *
1591 * @returns VBox status code.
1592 * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED
1593 *
1594 * @param pVM Pointer to the VM.
1595 * @param idCpu The VCPU id.
1596 * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs.
1597 * This does not include MMIO2 and similar.
1598 * @param cShadowPages The number of pages that may be allocated for shadow paging structures.
1599 * @param cFixedPages The number of pages that may be allocated for fixed objects like the
1600 * hyper heap, MMIO2 and similar.
1601 *
1602 * @thread EMT.
1603 */
1604GMMR0DECL(int) GMMR0UpdateReservation(PVM pVM, VMCPUID idCpu, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages)
1605{
1606 LogFlow(("GMMR0UpdateReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x\n",
1607 pVM, cBasePages, cShadowPages, cFixedPages));
1608
1609 /*
1610 * Validate, get basics and take the semaphore.
1611 */
1612 PGMM pGMM;
1613 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
1614 PGVM pGVM;
1615 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
1616 if (RT_FAILURE(rc))
1617 return rc;
1618
1619 AssertReturn(cBasePages, VERR_INVALID_PARAMETER);
1620 AssertReturn(cShadowPages, VERR_INVALID_PARAMETER);
1621 AssertReturn(cFixedPages, VERR_INVALID_PARAMETER);
1622
1623 gmmR0MutexAcquire(pGMM);
1624 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
1625 {
1626 if ( pGVM->gmm.s.Stats.Reserved.cBasePages
1627 && pGVM->gmm.s.Stats.Reserved.cFixedPages
1628 && pGVM->gmm.s.Stats.Reserved.cShadowPages)
1629 {
1630 /*
1631 * Check if we can accommodate this.
1632 */
1633 /* ... later ... */
1634 if (RT_SUCCESS(rc))
1635 {
1636 /*
1637 * Update the records.
1638 */
1639 pGMM->cReservedPages -= pGVM->gmm.s.Stats.Reserved.cBasePages
1640 + pGVM->gmm.s.Stats.Reserved.cFixedPages
1641 + pGVM->gmm.s.Stats.Reserved.cShadowPages;
1642 pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages;
1643
1644 pGVM->gmm.s.Stats.Reserved.cBasePages = cBasePages;
1645 pGVM->gmm.s.Stats.Reserved.cFixedPages = cFixedPages;
1646 pGVM->gmm.s.Stats.Reserved.cShadowPages = cShadowPages;
1647 }
1648 }
1649 else
1650 rc = VERR_WRONG_ORDER;
1651 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
1652 }
1653 else
1654 rc = VERR_GMM_IS_NOT_SANE;
1655 gmmR0MutexRelease(pGMM);
1656 LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc));
1657 return rc;
1658}
1659
1660
1661/**
1662 * VMMR0 request wrapper for GMMR0UpdateReservation.
1663 *
1664 * @returns see GMMR0UpdateReservation.
1665 * @param pVM Pointer to the VM.
1666 * @param idCpu The VCPU id.
1667 * @param pReq Pointer to the request packet.
1668 */
1669GMMR0DECL(int) GMMR0UpdateReservationReq(PVM pVM, VMCPUID idCpu, PGMMUPDATERESERVATIONREQ pReq)
1670{
1671 /*
1672 * Validate input and pass it on.
1673 */
1674 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1675 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
1676 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
1677
1678 return GMMR0UpdateReservation(pVM, idCpu, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages);
1679}
1680
1681#ifdef GMMR0_WITH_SANITY_CHECK
1682
1683/**
1684 * Performs sanity checks on a free set.
1685 *
1686 * @returns Error count.
1687 *
1688 * @param pGMM Pointer to the GMM instance.
1689 * @param pSet Pointer to the set.
1690 * @param pszSetName The set name.
1691 * @param pszFunction The function from which it was called.
1692 * @param uLine The line number.
1693 */
1694static uint32_t gmmR0SanityCheckSet(PGMM pGMM, PGMMCHUNKFREESET pSet, const char *pszSetName,
1695 const char *pszFunction, unsigned uLineNo)
1696{
1697 uint32_t cErrors = 0;
1698
1699 /*
1700 * Count the free pages in all the chunks and match it against pSet->cFreePages.
1701 */
1702 uint32_t cPages = 0;
1703 for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists); i++)
1704 {
1705 for (PGMMCHUNK pCur = pSet->apLists[i]; pCur; pCur = pCur->pFreeNext)
1706 {
1707 /** @todo check that the chunk is hash into the right set. */
1708 cPages += pCur->cFree;
1709 }
1710 }
1711 if (RT_UNLIKELY(cPages != pSet->cFreePages))
1712 {
1713 SUPR0Printf("GMM insanity: found %#x pages in the %s set, expected %#x. (%s, line %u)\n",
1714 cPages, pszSetName, pSet->cFreePages, pszFunction, uLineNo);
1715 cErrors++;
1716 }
1717
1718 return cErrors;
1719}
1720
1721
1722/**
1723 * Performs some sanity checks on the GMM while owning lock.
1724 *
1725 * @returns Error count.
1726 *
1727 * @param pGMM Pointer to the GMM instance.
1728 * @param pszFunction The function from which it is called.
1729 * @param uLineNo The line number.
1730 */
1731static uint32_t gmmR0SanityCheck(PGMM pGMM, const char *pszFunction, unsigned uLineNo)
1732{
1733 uint32_t cErrors = 0;
1734
1735 cErrors += gmmR0SanityCheckSet(pGMM, &pGMM->PrivateX, "private", pszFunction, uLineNo);
1736 cErrors += gmmR0SanityCheckSet(pGMM, &pGMM->Shared, "shared", pszFunction, uLineNo);
1737 /** @todo add more sanity checks. */
1738
1739 return cErrors;
1740}
1741
1742#endif /* GMMR0_WITH_SANITY_CHECK */
1743
1744/**
1745 * Looks up a chunk in the tree and fill in the TLB entry for it.
1746 *
1747 * This is not expected to fail and will bitch if it does.
1748 *
1749 * @returns Pointer to the allocation chunk, NULL if not found.
1750 * @param pGMM Pointer to the GMM instance.
1751 * @param idChunk The ID of the chunk to find.
1752 * @param pTlbe Pointer to the TLB entry.
1753 */
1754static PGMMCHUNK gmmR0GetChunkSlow(PGMM pGMM, uint32_t idChunk, PGMMCHUNKTLBE pTlbe)
1755{
1756 PGMMCHUNK pChunk = (PGMMCHUNK)RTAvlU32Get(&pGMM->pChunks, idChunk);
1757 AssertMsgReturn(pChunk, ("Chunk %#x not found!\n", idChunk), NULL);
1758 pTlbe->idChunk = idChunk;
1759 pTlbe->pChunk = pChunk;
1760 return pChunk;
1761}
1762
1763
1764/**
1765 * Finds a allocation chunk.
1766 *
1767 * This is not expected to fail and will bitch if it does.
1768 *
1769 * @returns Pointer to the allocation chunk, NULL if not found.
1770 * @param pGMM Pointer to the GMM instance.
1771 * @param idChunk The ID of the chunk to find.
1772 */
1773DECLINLINE(PGMMCHUNK) gmmR0GetChunk(PGMM pGMM, uint32_t idChunk)
1774{
1775 /*
1776 * Do a TLB lookup, branch if not in the TLB.
1777 */
1778 PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(idChunk)];
1779 if ( pTlbe->idChunk != idChunk
1780 || !pTlbe->pChunk)
1781 return gmmR0GetChunkSlow(pGMM, idChunk, pTlbe);
1782 return pTlbe->pChunk;
1783}
1784
1785
1786/**
1787 * Finds a page.
1788 *
1789 * This is not expected to fail and will bitch if it does.
1790 *
1791 * @returns Pointer to the page, NULL if not found.
1792 * @param pGMM Pointer to the GMM instance.
1793 * @param idPage The ID of the page to find.
1794 */
1795DECLINLINE(PGMMPAGE) gmmR0GetPage(PGMM pGMM, uint32_t idPage)
1796{
1797 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
1798 if (RT_LIKELY(pChunk))
1799 return &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK];
1800 return NULL;
1801}
1802
1803
1804/**
1805 * Gets the host physical address for a page given by it's ID.
1806 *
1807 * @returns The host physical address or NIL_RTHCPHYS.
1808 * @param pGMM Pointer to the GMM instance.
1809 * @param idPage The ID of the page to find.
1810 */
1811DECLINLINE(RTHCPHYS) gmmR0GetPageHCPhys(PGMM pGMM, uint32_t idPage)
1812{
1813 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
1814 if (RT_LIKELY(pChunk))
1815 return RTR0MemObjGetPagePhysAddr(pChunk->hMemObj, idPage & GMM_PAGEID_IDX_MASK);
1816 return NIL_RTHCPHYS;
1817}
1818
1819
1820/**
1821 * Selects the appropriate free list given the number of free pages.
1822 *
1823 * @returns Free list index.
1824 * @param cFree The number of free pages in the chunk.
1825 */
1826DECLINLINE(unsigned) gmmR0SelectFreeSetList(unsigned cFree)
1827{
1828 unsigned iList = cFree >> GMM_CHUNK_FREE_SET_SHIFT;
1829 AssertMsg(iList < RT_SIZEOFMEMB(GMMCHUNKFREESET, apLists) / RT_SIZEOFMEMB(GMMCHUNKFREESET, apLists[0]),
1830 ("%d (%u)\n", iList, cFree));
1831 return iList;
1832}
1833
1834
1835/**
1836 * Unlinks the chunk from the free list it's currently on (if any).
1837 *
1838 * @param pChunk The allocation chunk.
1839 */
1840DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk)
1841{
1842 PGMMCHUNKFREESET pSet = pChunk->pSet;
1843 if (RT_LIKELY(pSet))
1844 {
1845 pSet->cFreePages -= pChunk->cFree;
1846 pSet->idGeneration++;
1847
1848 PGMMCHUNK pPrev = pChunk->pFreePrev;
1849 PGMMCHUNK pNext = pChunk->pFreeNext;
1850 if (pPrev)
1851 pPrev->pFreeNext = pNext;
1852 else
1853 pSet->apLists[gmmR0SelectFreeSetList(pChunk->cFree)] = pNext;
1854 if (pNext)
1855 pNext->pFreePrev = pPrev;
1856
1857 pChunk->pSet = NULL;
1858 pChunk->pFreeNext = NULL;
1859 pChunk->pFreePrev = NULL;
1860 }
1861 else
1862 {
1863 Assert(!pChunk->pFreeNext);
1864 Assert(!pChunk->pFreePrev);
1865 Assert(!pChunk->cFree);
1866 }
1867}
1868
1869
1870/**
1871 * Links the chunk onto the appropriate free list in the specified free set.
1872 *
1873 * If no free entries, it's not linked into any list.
1874 *
1875 * @param pChunk The allocation chunk.
1876 * @param pSet The free set.
1877 */
1878DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet)
1879{
1880 Assert(!pChunk->pSet);
1881 Assert(!pChunk->pFreeNext);
1882 Assert(!pChunk->pFreePrev);
1883
1884 if (pChunk->cFree > 0)
1885 {
1886 pChunk->pSet = pSet;
1887 pChunk->pFreePrev = NULL;
1888 unsigned const iList = gmmR0SelectFreeSetList(pChunk->cFree);
1889 pChunk->pFreeNext = pSet->apLists[iList];
1890 if (pChunk->pFreeNext)
1891 pChunk->pFreeNext->pFreePrev = pChunk;
1892 pSet->apLists[iList] = pChunk;
1893
1894 pSet->cFreePages += pChunk->cFree;
1895 pSet->idGeneration++;
1896 }
1897}
1898
1899
1900/**
1901 * Links the chunk onto the appropriate free list in the specified free set.
1902 *
1903 * If no free entries, it's not linked into any list.
1904 *
1905 * @param pChunk The allocation chunk.
1906 */
1907DECLINLINE(void) gmmR0SelectSetAndLinkChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk)
1908{
1909 PGMMCHUNKFREESET pSet;
1910 if (pGMM->fBoundMemoryMode)
1911 pSet = &pGVM->gmm.s.Private;
1912 else if (pChunk->cShared)
1913 pSet = &pGMM->Shared;
1914 else
1915 pSet = &pGMM->PrivateX;
1916 gmmR0LinkChunk(pChunk, pSet);
1917}
1918
1919
1920/**
1921 * Frees a Chunk ID.
1922 *
1923 * @param pGMM Pointer to the GMM instance.
1924 * @param idChunk The Chunk ID to free.
1925 */
1926static void gmmR0FreeChunkId(PGMM pGMM, uint32_t idChunk)
1927{
1928 AssertReturnVoid(idChunk != NIL_GMM_CHUNKID);
1929 AssertMsg(ASMBitTest(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk));
1930 ASMAtomicBitClear(&pGMM->bmChunkId[0], idChunk);
1931}
1932
1933
1934/**
1935 * Allocates a new Chunk ID.
1936 *
1937 * @returns The Chunk ID.
1938 * @param pGMM Pointer to the GMM instance.
1939 */
1940static uint32_t gmmR0AllocateChunkId(PGMM pGMM)
1941{
1942 AssertCompile(!((GMM_CHUNKID_LAST + 1) & 31)); /* must be a multiple of 32 */
1943 AssertCompile(NIL_GMM_CHUNKID == 0);
1944
1945 /*
1946 * Try the next sequential one.
1947 */
1948 int32_t idChunk = ++pGMM->idChunkPrev;
1949#if 0 /** @todo enable this code */
1950 if ( idChunk <= GMM_CHUNKID_LAST
1951 && idChunk > NIL_GMM_CHUNKID
1952 && !ASMAtomicBitTestAndSet(&pVMM->bmChunkId[0], idChunk))
1953 return idChunk;
1954#endif
1955
1956 /*
1957 * Scan sequentially from the last one.
1958 */
1959 if ( (uint32_t)idChunk < GMM_CHUNKID_LAST
1960 && idChunk > NIL_GMM_CHUNKID)
1961 {
1962 idChunk = ASMBitNextClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1, idChunk - 1);
1963 if (idChunk > NIL_GMM_CHUNKID)
1964 {
1965 AssertMsgReturn(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk), NIL_GMM_CHUNKID);
1966 return pGMM->idChunkPrev = idChunk;
1967 }
1968 }
1969
1970 /*
1971 * Ok, scan from the start.
1972 * We're not racing anyone, so there is no need to expect failures or have restart loops.
1973 */
1974 idChunk = ASMBitFirstClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1);
1975 AssertMsgReturn(idChunk > NIL_GMM_CHUNKID, ("%#x\n", idChunk), NIL_GVM_HANDLE);
1976 AssertMsgReturn(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%#x\n", idChunk), NIL_GMM_CHUNKID);
1977
1978 return pGMM->idChunkPrev = idChunk;
1979}
1980
1981
1982/**
1983 * Allocates one private page.
1984 *
1985 * Worker for gmmR0AllocatePages.
1986 *
1987 * @param pChunk The chunk to allocate it from.
1988 * @param hGVM The GVM handle of the VM requesting memory.
1989 * @param pPageDesc The page descriptor.
1990 */
1991static void gmmR0AllocatePage(PGMMCHUNK pChunk, uint32_t hGVM, PGMMPAGEDESC pPageDesc)
1992{
1993 /* update the chunk stats. */
1994 if (pChunk->hGVM == NIL_GVM_HANDLE)
1995 pChunk->hGVM = hGVM;
1996 Assert(pChunk->cFree);
1997 pChunk->cFree--;
1998 pChunk->cPrivate++;
1999
2000 /* unlink the first free page. */
2001 const uint32_t iPage = pChunk->iFreeHead;
2002 AssertReleaseMsg(iPage < RT_ELEMENTS(pChunk->aPages), ("%d\n", iPage));
2003 PGMMPAGE pPage = &pChunk->aPages[iPage];
2004 Assert(GMM_PAGE_IS_FREE(pPage));
2005 pChunk->iFreeHead = pPage->Free.iNext;
2006 Log3(("A pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x iNext=%#x\n",
2007 pPage, iPage, (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage,
2008 pPage->Common.u2State, pChunk->iFreeHead, pPage->Free.iNext));
2009
2010 /* make the page private. */
2011 pPage->u = 0;
2012 AssertCompile(GMM_PAGE_STATE_PRIVATE == 0);
2013 pPage->Private.hGVM = hGVM;
2014 AssertCompile(NIL_RTHCPHYS >= GMM_GCPHYS_LAST);
2015 AssertCompile(GMM_GCPHYS_UNSHAREABLE >= GMM_GCPHYS_LAST);
2016 if (pPageDesc->HCPhysGCPhys <= GMM_GCPHYS_LAST)
2017 pPage->Private.pfn = pPageDesc->HCPhysGCPhys >> PAGE_SHIFT;
2018 else
2019 pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */
2020
2021 /* update the page descriptor. */
2022 pPageDesc->HCPhysGCPhys = RTR0MemObjGetPagePhysAddr(pChunk->hMemObj, iPage);
2023 Assert(pPageDesc->HCPhysGCPhys != NIL_RTHCPHYS);
2024 pPageDesc->idPage = (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage;
2025 pPageDesc->idSharedPage = NIL_GMM_PAGEID;
2026}
2027
2028
2029/**
2030 * Picks the free pages from a chunk.
2031 *
2032 * @returns The new page descriptor table index.
2033 * @param pGMM Pointer to the GMM instance data.
2034 * @param hGVM The global VM handle.
2035 * @param pChunk The chunk.
2036 * @param iPage The current page descriptor table index.
2037 * @param cPages The total number of pages to allocate.
2038 * @param paPages The page descriptor table (input + ouput).
2039 */
2040static uint32_t gmmR0AllocatePagesFromChunk(PGMMCHUNK pChunk, uint16_t const hGVM, uint32_t iPage, uint32_t cPages,
2041 PGMMPAGEDESC paPages)
2042{
2043 PGMMCHUNKFREESET pSet = pChunk->pSet; Assert(pSet);
2044 gmmR0UnlinkChunk(pChunk);
2045
2046 for (; pChunk->cFree && iPage < cPages; iPage++)
2047 gmmR0AllocatePage(pChunk, hGVM, &paPages[iPage]);
2048
2049 gmmR0LinkChunk(pChunk, pSet);
2050 return iPage;
2051}
2052
2053
2054/**
2055 * Registers a new chunk of memory.
2056 *
2057 * This is called by both gmmR0AllocateOneChunk and GMMR0SeedChunk.
2058 *
2059 * @returns VBox status code. On success, the giant GMM lock will be held, the
2060 * caller must release it (ugly).
2061 * @param pGMM Pointer to the GMM instance.
2062 * @param pSet Pointer to the set.
2063 * @param MemObj The memory object for the chunk.
2064 * @param hGVM The affinity of the chunk. NIL_GVM_HANDLE for no
2065 * affinity.
2066 * @param fChunkFlags The chunk flags, GMM_CHUNK_FLAGS_XXX.
2067 * @param ppChunk Chunk address (out). Optional.
2068 *
2069 * @remarks The caller must not own the giant GMM mutex.
2070 * The giant GMM mutex will be acquired and returned acquired in
2071 * the success path. On failure, no locks will be held.
2072 */
2073static int gmmR0RegisterChunk(PGMM pGMM, PGMMCHUNKFREESET pSet, RTR0MEMOBJ MemObj, uint16_t hGVM, uint16_t fChunkFlags,
2074 PGMMCHUNK *ppChunk)
2075{
2076 Assert(pGMM->hMtxOwner != RTThreadNativeSelf());
2077 Assert(hGVM != NIL_GVM_HANDLE || pGMM->fBoundMemoryMode);
2078 Assert(fChunkFlags == 0 || fChunkFlags == GMM_CHUNK_FLAGS_LARGE_PAGE);
2079
2080 int rc;
2081 PGMMCHUNK pChunk = (PGMMCHUNK)RTMemAllocZ(sizeof(*pChunk));
2082 if (pChunk)
2083 {
2084 /*
2085 * Initialize it.
2086 */
2087 pChunk->hMemObj = MemObj;
2088 pChunk->cFree = GMM_CHUNK_NUM_PAGES;
2089 pChunk->hGVM = hGVM;
2090 /*pChunk->iFreeHead = 0;*/
2091 pChunk->idNumaNode = gmmR0GetCurrentNumaNodeId();
2092 pChunk->iChunkMtx = UINT8_MAX;
2093 pChunk->fFlags = fChunkFlags;
2094 for (unsigned iPage = 0; iPage < RT_ELEMENTS(pChunk->aPages) - 1; iPage++)
2095 {
2096 pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE;
2097 pChunk->aPages[iPage].Free.iNext = iPage + 1;
2098 }
2099 pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.u2State = GMM_PAGE_STATE_FREE;
2100 pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.iNext = UINT16_MAX;
2101
2102 /*
2103 * Allocate a Chunk ID and insert it into the tree.
2104 * This has to be done behind the mutex of course.
2105 */
2106 rc = gmmR0MutexAcquire(pGMM);
2107 if (RT_SUCCESS(rc))
2108 {
2109 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
2110 {
2111 pChunk->Core.Key = gmmR0AllocateChunkId(pGMM);
2112 if ( pChunk->Core.Key != NIL_GMM_CHUNKID
2113 && pChunk->Core.Key <= GMM_CHUNKID_LAST
2114 && RTAvlU32Insert(&pGMM->pChunks, &pChunk->Core))
2115 {
2116 pGMM->cChunks++;
2117 RTListAppend(&pGMM->ChunkList, &pChunk->ListNode);
2118 gmmR0LinkChunk(pChunk, pSet);
2119 LogFlow(("gmmR0RegisterChunk: pChunk=%p id=%#x cChunks=%d\n", pChunk, pChunk->Core.Key, pGMM->cChunks));
2120
2121 if (ppChunk)
2122 *ppChunk = pChunk;
2123 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
2124 return VINF_SUCCESS;
2125 }
2126
2127 /* bail out */
2128 rc = VERR_GMM_CHUNK_INSERT;
2129 }
2130 else
2131 rc = VERR_GMM_IS_NOT_SANE;
2132 gmmR0MutexRelease(pGMM);
2133 }
2134
2135 RTMemFree(pChunk);
2136 }
2137 else
2138 rc = VERR_NO_MEMORY;
2139 return rc;
2140}
2141
2142
2143/**
2144 * Allocate a new chunk, immediately pick the requested pages from it, and adds
2145 * what's remaining to the specified free set.
2146 *
2147 * @note This will leave the giant mutex while allocating the new chunk!
2148 *
2149 * @returns VBox status code.
2150 * @param pGMM Pointer to the GMM instance data.
2151 * @param pGVM Pointer to the kernel-only VM instace data.
2152 * @param pSet Pointer to the free set.
2153 * @param cPages The number of pages requested.
2154 * @param paPages The page descriptor table (input + output).
2155 * @param piPage The pointer to the page descriptor table index
2156 * variable. This will be updated.
2157 */
2158static int gmmR0AllocateChunkNew(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet, uint32_t cPages,
2159 PGMMPAGEDESC paPages, uint32_t *piPage)
2160{
2161 gmmR0MutexRelease(pGMM);
2162
2163 RTR0MEMOBJ hMemObj;
2164 int rc = RTR0MemObjAllocPhysNC(&hMemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS);
2165 if (RT_SUCCESS(rc))
2166 {
2167/** @todo Duplicate gmmR0RegisterChunk here so we can avoid chaining up the
2168 * free pages first and then unchaining them right afterwards. Instead
2169 * do as much work as possible without holding the giant lock. */
2170 PGMMCHUNK pChunk;
2171 rc = gmmR0RegisterChunk(pGMM, pSet, hMemObj, pGVM->hSelf, 0 /*fChunkFlags*/, &pChunk);
2172 if (RT_SUCCESS(rc))
2173 {
2174 *piPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, *piPage, cPages, paPages);
2175 return VINF_SUCCESS;
2176 }
2177
2178 /* bail out */
2179 RTR0MemObjFree(hMemObj, false /* fFreeMappings */);
2180 }
2181
2182 int rc2 = gmmR0MutexAcquire(pGMM);
2183 AssertRCReturn(rc2, RT_FAILURE(rc) ? rc : rc2);
2184 return rc;
2185
2186}
2187
2188
2189/**
2190 * As a last restort we'll pick any page we can get.
2191 *
2192 * @returns The new page descriptor table index.
2193 * @param pSet The set to pick from.
2194 * @param pGVM Pointer to the global VM structure.
2195 * @param iPage The current page descriptor table index.
2196 * @param cPages The total number of pages to allocate.
2197 * @param paPages The page descriptor table (input + ouput).
2198 */
2199static uint32_t gmmR0AllocatePagesIndiscriminately(PGMMCHUNKFREESET pSet, PGVM pGVM,
2200 uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
2201{
2202 unsigned iList = RT_ELEMENTS(pSet->apLists);
2203 while (iList-- > 0)
2204 {
2205 PGMMCHUNK pChunk = pSet->apLists[iList];
2206 while (pChunk)
2207 {
2208 PGMMCHUNK pNext = pChunk->pFreeNext;
2209
2210 iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages);
2211 if (iPage >= cPages)
2212 return iPage;
2213
2214 pChunk = pNext;
2215 }
2216 }
2217 return iPage;
2218}
2219
2220
2221/**
2222 * Pick pages from empty chunks on the same NUMA node.
2223 *
2224 * @returns The new page descriptor table index.
2225 * @param pSet The set to pick from.
2226 * @param pGVM Pointer to the global VM structure.
2227 * @param iPage The current page descriptor table index.
2228 * @param cPages The total number of pages to allocate.
2229 * @param paPages The page descriptor table (input + ouput).
2230 */
2231static uint32_t gmmR0AllocatePagesFromEmptyChunksOnSameNode(PGMMCHUNKFREESET pSet, PGVM pGVM,
2232 uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
2233{
2234 PGMMCHUNK pChunk = pSet->apLists[GMM_CHUNK_FREE_SET_UNUSED_LIST];
2235 if (pChunk)
2236 {
2237 uint16_t const idNumaNode = gmmR0GetCurrentNumaNodeId();
2238 while (pChunk)
2239 {
2240 PGMMCHUNK pNext = pChunk->pFreeNext;
2241
2242 if (pChunk->idNumaNode == idNumaNode)
2243 {
2244 pChunk->hGVM = pGVM->hSelf;
2245 iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages);
2246 if (iPage >= cPages)
2247 {
2248 pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID;
2249 return iPage;
2250 }
2251 }
2252
2253 pChunk = pNext;
2254 }
2255 }
2256 return iPage;
2257}
2258
2259
2260/**
2261 * Pick pages from non-empty chunks on the same NUMA node.
2262 *
2263 * @returns The new page descriptor table index.
2264 * @param pSet The set to pick from.
2265 * @param pGVM Pointer to the global VM structure.
2266 * @param iPage The current page descriptor table index.
2267 * @param cPages The total number of pages to allocate.
2268 * @param paPages The page descriptor table (input + ouput).
2269 */
2270static uint32_t gmmR0AllocatePagesFromSameNode(PGMMCHUNKFREESET pSet, PGVM pGVM,
2271 uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
2272{
2273 /** @todo start by picking from chunks with about the right size first? */
2274 uint16_t const idNumaNode = gmmR0GetCurrentNumaNodeId();
2275 unsigned iList = GMM_CHUNK_FREE_SET_UNUSED_LIST;
2276 while (iList-- > 0)
2277 {
2278 PGMMCHUNK pChunk = pSet->apLists[iList];
2279 while (pChunk)
2280 {
2281 PGMMCHUNK pNext = pChunk->pFreeNext;
2282
2283 if (pChunk->idNumaNode == idNumaNode)
2284 {
2285 iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages);
2286 if (iPage >= cPages)
2287 {
2288 pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID;
2289 return iPage;
2290 }
2291 }
2292
2293 pChunk = pNext;
2294 }
2295 }
2296 return iPage;
2297}
2298
2299
2300/**
2301 * Pick pages that are in chunks already associated with the VM.
2302 *
2303 * @returns The new page descriptor table index.
2304 * @param pGMM Pointer to the GMM instance data.
2305 * @param pGVM Pointer to the global VM structure.
2306 * @param pSet The set to pick from.
2307 * @param iPage The current page descriptor table index.
2308 * @param cPages The total number of pages to allocate.
2309 * @param paPages The page descriptor table (input + ouput).
2310 */
2311static uint32_t gmmR0AllocatePagesAssociatedWithVM(PGMM pGMM, PGVM pGVM, PGMMCHUNKFREESET pSet,
2312 uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
2313{
2314 uint16_t const hGVM = pGVM->hSelf;
2315
2316 /* Hint. */
2317 if (pGVM->gmm.s.idLastChunkHint != NIL_GMM_CHUNKID)
2318 {
2319 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pGVM->gmm.s.idLastChunkHint);
2320 if (pChunk && pChunk->cFree)
2321 {
2322 iPage = gmmR0AllocatePagesFromChunk(pChunk, hGVM, iPage, cPages, paPages);
2323 if (iPage >= cPages)
2324 return iPage;
2325 }
2326 }
2327
2328 /* Scan. */
2329 for (unsigned iList = 0; iList < RT_ELEMENTS(pSet->apLists); iList++)
2330 {
2331 PGMMCHUNK pChunk = pSet->apLists[iList];
2332 while (pChunk)
2333 {
2334 PGMMCHUNK pNext = pChunk->pFreeNext;
2335
2336 if (pChunk->hGVM == hGVM)
2337 {
2338 iPage = gmmR0AllocatePagesFromChunk(pChunk, hGVM, iPage, cPages, paPages);
2339 if (iPage >= cPages)
2340 {
2341 pGVM->gmm.s.idLastChunkHint = pChunk->cFree ? pChunk->Core.Key : NIL_GMM_CHUNKID;
2342 return iPage;
2343 }
2344 }
2345
2346 pChunk = pNext;
2347 }
2348 }
2349 return iPage;
2350}
2351
2352
2353
2354/**
2355 * Pick pages in bound memory mode.
2356 *
2357 * @returns The new page descriptor table index.
2358 * @param pGVM Pointer to the global VM structure.
2359 * @param iPage The current page descriptor table index.
2360 * @param cPages The total number of pages to allocate.
2361 * @param paPages The page descriptor table (input + ouput).
2362 */
2363static uint32_t gmmR0AllocatePagesInBoundMode(PGVM pGVM, uint32_t iPage, uint32_t cPages, PGMMPAGEDESC paPages)
2364{
2365 for (unsigned iList = 0; iList < RT_ELEMENTS(pGVM->gmm.s.Private.apLists); iList++)
2366 {
2367 PGMMCHUNK pChunk = pGVM->gmm.s.Private.apLists[iList];
2368 while (pChunk)
2369 {
2370 Assert(pChunk->hGVM == pGVM->hSelf);
2371 PGMMCHUNK pNext = pChunk->pFreeNext;
2372 iPage = gmmR0AllocatePagesFromChunk(pChunk, pGVM->hSelf, iPage, cPages, paPages);
2373 if (iPage >= cPages)
2374 return iPage;
2375 pChunk = pNext;
2376 }
2377 }
2378 return iPage;
2379}
2380
2381
2382/**
2383 * Checks if we should start picking pages from chunks of other VMs because
2384 * we're getting close to the system memory or reserved limit.
2385 *
2386 * @returns @c true if we should, @c false if we should first try allocate more
2387 * chunks.
2388 */
2389static bool gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLimits(PGVM pGVM)
2390{
2391 /*
2392 * Don't allocate a new chunk if we're
2393 */
2394 uint64_t cPgReserved = pGVM->gmm.s.Stats.Reserved.cBasePages
2395 + pGVM->gmm.s.Stats.Reserved.cFixedPages
2396 - pGVM->gmm.s.Stats.cBalloonedPages
2397 /** @todo what about shared pages? */;
2398 uint64_t cPgAllocated = pGVM->gmm.s.Stats.Allocated.cBasePages
2399 + pGVM->gmm.s.Stats.Allocated.cFixedPages;
2400 uint64_t cPgDelta = cPgReserved - cPgAllocated;
2401 if (cPgDelta < GMM_CHUNK_NUM_PAGES * 4)
2402 return true;
2403 /** @todo make the threshold configurable, also test the code to see if
2404 * this ever kicks in (we might be reserving too much or smth). */
2405
2406 /*
2407 * Check how close we're to the max memory limit and how many fragments
2408 * there are?...
2409 */
2410 /** @todo. */
2411
2412 return false;
2413}
2414
2415
2416/**
2417 * Checks if we should start picking pages from chunks of other VMs because
2418 * there is a lot of free pages around.
2419 *
2420 * @returns @c true if we should, @c false if we should first try allocate more
2421 * chunks.
2422 */
2423static bool gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLotsFree(PGMM pGMM)
2424{
2425 /*
2426 * Setting the limit at 16 chunks (32 MB) at the moment.
2427 */
2428 if (pGMM->PrivateX.cFreePages >= GMM_CHUNK_NUM_PAGES * 16)
2429 return true;
2430 return false;
2431}
2432
2433
2434/**
2435 * Common worker for GMMR0AllocateHandyPages and GMMR0AllocatePages.
2436 *
2437 * @returns VBox status code:
2438 * @retval VINF_SUCCESS on success.
2439 * @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk or
2440 * gmmR0AllocateMoreChunks is necessary.
2441 * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
2442 * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
2443 * that is we're trying to allocate more than we've reserved.
2444 *
2445 * @param pGMM Pointer to the GMM instance data.
2446 * @param pGVM Pointer to the VM.
2447 * @param cPages The number of pages to allocate.
2448 * @param paPages Pointer to the page descriptors.
2449 * See GMMPAGEDESC for details on what is expected on input.
2450 * @param enmAccount The account to charge.
2451 *
2452 * @remarks Call takes the giant GMM lock.
2453 */
2454static int gmmR0AllocatePagesNew(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount)
2455{
2456 Assert(pGMM->hMtxOwner == RTThreadNativeSelf());
2457
2458 /*
2459 * Check allocation limits.
2460 */
2461 if (RT_UNLIKELY(pGMM->cAllocatedPages + cPages > pGMM->cMaxPages))
2462 return VERR_GMM_HIT_GLOBAL_LIMIT;
2463
2464 switch (enmAccount)
2465 {
2466 case GMMACCOUNT_BASE:
2467 if (RT_UNLIKELY( pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + cPages
2468 > pGVM->gmm.s.Stats.Reserved.cBasePages))
2469 {
2470 Log(("gmmR0AllocatePages:Base: Reserved=%#llx Allocated+Ballooned+Requested=%#llx+%#llx+%#x!\n",
2471 pGVM->gmm.s.Stats.Reserved.cBasePages, pGVM->gmm.s.Stats.Allocated.cBasePages,
2472 pGVM->gmm.s.Stats.cBalloonedPages, cPages));
2473 return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
2474 }
2475 break;
2476 case GMMACCOUNT_SHADOW:
2477 if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cShadowPages + cPages > pGVM->gmm.s.Stats.Reserved.cShadowPages))
2478 {
2479 Log(("gmmR0AllocatePages:Shadow: Reserved=%#x Allocated+Requested=%#x+%#x!\n",
2480 pGVM->gmm.s.Stats.Reserved.cShadowPages, pGVM->gmm.s.Stats.Allocated.cShadowPages, cPages));
2481 return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
2482 }
2483 break;
2484 case GMMACCOUNT_FIXED:
2485 if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cFixedPages + cPages > pGVM->gmm.s.Stats.Reserved.cFixedPages))
2486 {
2487 Log(("gmmR0AllocatePages:Fixed: Reserved=%#x Allocated+Requested=%#x+%#x!\n",
2488 pGVM->gmm.s.Stats.Reserved.cFixedPages, pGVM->gmm.s.Stats.Allocated.cFixedPages, cPages));
2489 return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
2490 }
2491 break;
2492 default:
2493 AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
2494 }
2495
2496 /*
2497 * If we're in legacy memory mode, it's easy to figure if we have
2498 * sufficient number of pages up-front.
2499 */
2500 if ( pGMM->fLegacyAllocationMode
2501 && pGVM->gmm.s.Private.cFreePages < cPages)
2502 {
2503 Assert(pGMM->fBoundMemoryMode);
2504 return VERR_GMM_SEED_ME;
2505 }
2506
2507 /*
2508 * Update the accounts before we proceed because we might be leaving the
2509 * protection of the global mutex and thus run the risk of permitting
2510 * too much memory to be allocated.
2511 */
2512 switch (enmAccount)
2513 {
2514 case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages += cPages; break;
2515 case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages += cPages; break;
2516 case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages += cPages; break;
2517 default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
2518 }
2519 pGVM->gmm.s.Stats.cPrivatePages += cPages;
2520 pGMM->cAllocatedPages += cPages;
2521
2522 /*
2523 * Part two of it's-easy-in-legacy-memory-mode.
2524 */
2525 uint32_t iPage = 0;
2526 if (pGMM->fLegacyAllocationMode)
2527 {
2528 iPage = gmmR0AllocatePagesInBoundMode(pGVM, iPage, cPages, paPages);
2529 AssertReleaseReturn(iPage == cPages, VERR_GMM_ALLOC_PAGES_IPE);
2530 return VINF_SUCCESS;
2531 }
2532
2533 /*
2534 * Bound mode is also relatively straightforward.
2535 */
2536 int rc = VINF_SUCCESS;
2537 if (pGMM->fBoundMemoryMode)
2538 {
2539 iPage = gmmR0AllocatePagesInBoundMode(pGVM, iPage, cPages, paPages);
2540 if (iPage < cPages)
2541 do
2542 rc = gmmR0AllocateChunkNew(pGMM, pGVM, &pGVM->gmm.s.Private, cPages, paPages, &iPage);
2543 while (iPage < cPages && RT_SUCCESS(rc));
2544 }
2545 /*
2546 * Shared mode is trickier as we should try archive the same locality as
2547 * in bound mode, but smartly make use of non-full chunks allocated by
2548 * other VMs if we're low on memory.
2549 */
2550 else
2551 {
2552 /* Pick the most optimal pages first. */
2553 iPage = gmmR0AllocatePagesAssociatedWithVM(pGMM, pGVM, &pGMM->PrivateX, iPage, cPages, paPages);
2554 if (iPage < cPages)
2555 {
2556 /* Maybe we should try getting pages from chunks "belonging" to
2557 other VMs before allocating more chunks? */
2558 bool fTriedOnSameAlready = false;
2559 if (gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLimits(pGVM))
2560 {
2561 iPage = gmmR0AllocatePagesFromSameNode(&pGMM->PrivateX, pGVM, iPage, cPages, paPages);
2562 fTriedOnSameAlready = true;
2563 }
2564
2565 /* Allocate memory from empty chunks. */
2566 if (iPage < cPages)
2567 iPage = gmmR0AllocatePagesFromEmptyChunksOnSameNode(&pGMM->PrivateX, pGVM, iPage, cPages, paPages);
2568
2569 /* Grab empty shared chunks. */
2570 if (iPage < cPages)
2571 iPage = gmmR0AllocatePagesFromEmptyChunksOnSameNode(&pGMM->Shared, pGVM, iPage, cPages, paPages);
2572
2573 /* If there is a lof of free pages spread around, try not waste
2574 system memory on more chunks. (Should trigger defragmentation.) */
2575 if ( !fTriedOnSameAlready
2576 && gmmR0ShouldAllocatePagesInOtherChunksBecauseOfLotsFree(pGMM))
2577 {
2578 iPage = gmmR0AllocatePagesFromSameNode(&pGMM->PrivateX, pGVM, iPage, cPages, paPages);
2579 if (iPage < cPages)
2580 iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->PrivateX, pGVM, iPage, cPages, paPages);
2581 }
2582
2583 /*
2584 * Ok, try allocate new chunks.
2585 */
2586 if (iPage < cPages)
2587 {
2588 do
2589 rc = gmmR0AllocateChunkNew(pGMM, pGVM, &pGMM->PrivateX, cPages, paPages, &iPage);
2590 while (iPage < cPages && RT_SUCCESS(rc));
2591
2592 /* If the host is out of memory, take whatever we can get. */
2593 if ( (rc == VERR_NO_MEMORY || rc == VERR_NO_PHYS_MEMORY)
2594 && pGMM->PrivateX.cFreePages + pGMM->Shared.cFreePages >= cPages - iPage)
2595 {
2596 iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->PrivateX, pGVM, iPage, cPages, paPages);
2597 if (iPage < cPages)
2598 iPage = gmmR0AllocatePagesIndiscriminately(&pGMM->Shared, pGVM, iPage, cPages, paPages);
2599 AssertRelease(iPage == cPages);
2600 rc = VINF_SUCCESS;
2601 }
2602 }
2603 }
2604 }
2605
2606 /*
2607 * Clean up on failure. Since this is bound to be a low-memory condition
2608 * we will give back any empty chunks that might be hanging around.
2609 */
2610 if (RT_FAILURE(rc))
2611 {
2612 /* Update the statistics. */
2613 pGVM->gmm.s.Stats.cPrivatePages -= cPages;
2614 pGMM->cAllocatedPages -= cPages - iPage;
2615 switch (enmAccount)
2616 {
2617 case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages -= cPages; break;
2618 case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages -= cPages; break;
2619 case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages -= cPages; break;
2620 default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
2621 }
2622
2623 /* Release the pages. */
2624 while (iPage-- > 0)
2625 {
2626 uint32_t idPage = paPages[iPage].idPage;
2627 PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage);
2628 if (RT_LIKELY(pPage))
2629 {
2630 Assert(GMM_PAGE_IS_PRIVATE(pPage));
2631 Assert(pPage->Private.hGVM == pGVM->hSelf);
2632 gmmR0FreePrivatePage(pGMM, pGVM, idPage, pPage);
2633 }
2634 else
2635 AssertMsgFailed(("idPage=%#x\n", idPage));
2636
2637 paPages[iPage].idPage = NIL_GMM_PAGEID;
2638 paPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2639 paPages[iPage].HCPhysGCPhys = NIL_RTHCPHYS;
2640 }
2641
2642 /* Free empty chunks. */
2643 /** @todo */
2644
2645 /* return the fail status on failure */
2646 return rc;
2647 }
2648 return VINF_SUCCESS;
2649}
2650
2651
2652/**
2653 * Updates the previous allocations and allocates more pages.
2654 *
2655 * The handy pages are always taken from the 'base' memory account.
2656 * The allocated pages are not cleared and will contains random garbage.
2657 *
2658 * @returns VBox status code:
2659 * @retval VINF_SUCCESS on success.
2660 * @retval VERR_NOT_OWNER if the caller is not an EMT.
2661 * @retval VERR_GMM_PAGE_NOT_FOUND if one of the pages to update wasn't found.
2662 * @retval VERR_GMM_PAGE_NOT_PRIVATE if one of the pages to update wasn't a
2663 * private page.
2664 * @retval VERR_GMM_PAGE_NOT_SHARED if one of the pages to update wasn't a
2665 * shared page.
2666 * @retval VERR_GMM_NOT_PAGE_OWNER if one of the pages to be updated wasn't
2667 * owned by the VM.
2668 * @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary.
2669 * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
2670 * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
2671 * that is we're trying to allocate more than we've reserved.
2672 *
2673 * @param pVM Pointer to the VM.
2674 * @param idCpu The VCPU id.
2675 * @param cPagesToUpdate The number of pages to update (starting from the head).
2676 * @param cPagesToAlloc The number of pages to allocate (starting from the head).
2677 * @param paPages The array of page descriptors.
2678 * See GMMPAGEDESC for details on what is expected on input.
2679 * @thread EMT.
2680 */
2681GMMR0DECL(int) GMMR0AllocateHandyPages(PVM pVM, VMCPUID idCpu, uint32_t cPagesToUpdate, uint32_t cPagesToAlloc, PGMMPAGEDESC paPages)
2682{
2683 LogFlow(("GMMR0AllocateHandyPages: pVM=%p cPagesToUpdate=%#x cPagesToAlloc=%#x paPages=%p\n",
2684 pVM, cPagesToUpdate, cPagesToAlloc, paPages));
2685
2686 /*
2687 * Validate, get basics and take the semaphore.
2688 * (This is a relatively busy path, so make predictions where possible.)
2689 */
2690 PGMM pGMM;
2691 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
2692 PGVM pGVM;
2693 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
2694 if (RT_FAILURE(rc))
2695 return rc;
2696
2697 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
2698 AssertMsgReturn( (cPagesToUpdate && cPagesToUpdate < 1024)
2699 || (cPagesToAlloc && cPagesToAlloc < 1024),
2700 ("cPagesToUpdate=%#x cPagesToAlloc=%#x\n", cPagesToUpdate, cPagesToAlloc),
2701 VERR_INVALID_PARAMETER);
2702
2703 unsigned iPage = 0;
2704 for (; iPage < cPagesToUpdate; iPage++)
2705 {
2706 AssertMsgReturn( ( paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST
2707 && !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK))
2708 || paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS
2709 || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE,
2710 ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys),
2711 VERR_INVALID_PARAMETER);
2712 AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
2713 /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
2714 ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
2715 AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
2716 /*|| paPages[iPage].idSharedPage == NIL_GMM_PAGEID*/,
2717 ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
2718 }
2719
2720 for (; iPage < cPagesToAlloc; iPage++)
2721 {
2722 AssertMsgReturn(paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER);
2723 AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
2724 AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
2725 }
2726
2727 gmmR0MutexAcquire(pGMM);
2728 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
2729 {
2730 /* No allocations before the initial reservation has been made! */
2731 if (RT_LIKELY( pGVM->gmm.s.Stats.Reserved.cBasePages
2732 && pGVM->gmm.s.Stats.Reserved.cFixedPages
2733 && pGVM->gmm.s.Stats.Reserved.cShadowPages))
2734 {
2735 /*
2736 * Perform the updates.
2737 * Stop on the first error.
2738 */
2739 for (iPage = 0; iPage < cPagesToUpdate; iPage++)
2740 {
2741 if (paPages[iPage].idPage != NIL_GMM_PAGEID)
2742 {
2743 PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idPage);
2744 if (RT_LIKELY(pPage))
2745 {
2746 if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage)))
2747 {
2748 if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf))
2749 {
2750 AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST);
2751 if (RT_LIKELY(paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST))
2752 pPage->Private.pfn = paPages[iPage].HCPhysGCPhys >> PAGE_SHIFT;
2753 else if (paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE)
2754 pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE;
2755 /* else: NIL_RTHCPHYS nothing */
2756
2757 paPages[iPage].idPage = NIL_GMM_PAGEID;
2758 paPages[iPage].HCPhysGCPhys = NIL_RTHCPHYS;
2759 }
2760 else
2761 {
2762 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not owner! hGVM=%#x hSelf=%#x\n",
2763 iPage, paPages[iPage].idPage, pPage->Private.hGVM, pGVM->hSelf));
2764 rc = VERR_GMM_NOT_PAGE_OWNER;
2765 break;
2766 }
2767 }
2768 else
2769 {
2770 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not private! %.*Rhxs (type %d)\n", iPage, paPages[iPage].idPage, sizeof(*pPage), pPage, pPage->Common.u2State));
2771 rc = VERR_GMM_PAGE_NOT_PRIVATE;
2772 break;
2773 }
2774 }
2775 else
2776 {
2777 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (private)\n", iPage, paPages[iPage].idPage));
2778 rc = VERR_GMM_PAGE_NOT_FOUND;
2779 break;
2780 }
2781 }
2782
2783 if (paPages[iPage].idSharedPage != NIL_GMM_PAGEID)
2784 {
2785 PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idSharedPage);
2786 if (RT_LIKELY(pPage))
2787 {
2788 if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage)))
2789 {
2790 AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_LAST && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_LAST);
2791 Assert(pPage->Shared.cRefs);
2792 Assert(pGVM->gmm.s.Stats.cSharedPages);
2793 Assert(pGVM->gmm.s.Stats.Allocated.cBasePages);
2794
2795 Log(("GMMR0AllocateHandyPages: free shared page %x cRefs=%d\n", paPages[iPage].idSharedPage, pPage->Shared.cRefs));
2796 pGVM->gmm.s.Stats.cSharedPages--;
2797 pGVM->gmm.s.Stats.Allocated.cBasePages--;
2798 if (!--pPage->Shared.cRefs)
2799 gmmR0FreeSharedPage(pGMM, pGVM, paPages[iPage].idSharedPage, pPage);
2800 else
2801 {
2802 Assert(pGMM->cDuplicatePages);
2803 pGMM->cDuplicatePages--;
2804 }
2805
2806 paPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2807 }
2808 else
2809 {
2810 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not shared!\n", iPage, paPages[iPage].idSharedPage));
2811 rc = VERR_GMM_PAGE_NOT_SHARED;
2812 break;
2813 }
2814 }
2815 else
2816 {
2817 Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (shared)\n", iPage, paPages[iPage].idSharedPage));
2818 rc = VERR_GMM_PAGE_NOT_FOUND;
2819 break;
2820 }
2821 }
2822 } /* for each page to update */
2823
2824 if (RT_SUCCESS(rc) && cPagesToAlloc > 0)
2825 {
2826#if defined(VBOX_STRICT) && 0 /** @todo re-test this later. Appeared to be a PGM init bug. */
2827 for (iPage = 0; iPage < cPagesToAlloc; iPage++)
2828 {
2829 Assert(paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS);
2830 Assert(paPages[iPage].idPage == NIL_GMM_PAGEID);
2831 Assert(paPages[iPage].idSharedPage == NIL_GMM_PAGEID);
2832 }
2833#endif
2834
2835 /*
2836 * Join paths with GMMR0AllocatePages for the allocation.
2837 * Note! gmmR0AllocateMoreChunks may leave the protection of the mutex!
2838 */
2839 rc = gmmR0AllocatePagesNew(pGMM, pGVM, cPagesToAlloc, paPages, GMMACCOUNT_BASE);
2840 }
2841 }
2842 else
2843 rc = VERR_WRONG_ORDER;
2844 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
2845 }
2846 else
2847 rc = VERR_GMM_IS_NOT_SANE;
2848 gmmR0MutexRelease(pGMM);
2849 LogFlow(("GMMR0AllocateHandyPages: returns %Rrc\n", rc));
2850 return rc;
2851}
2852
2853
2854/**
2855 * Allocate one or more pages.
2856 *
2857 * This is typically used for ROMs and MMIO2 (VRAM) during VM creation.
2858 * The allocated pages are not cleared and will contain random garbage.
2859 *
2860 * @returns VBox status code:
2861 * @retval VINF_SUCCESS on success.
2862 * @retval VERR_NOT_OWNER if the caller is not an EMT.
2863 * @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary.
2864 * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
2865 * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
2866 * that is we're trying to allocate more than we've reserved.
2867 *
2868 * @param pVM Pointer to the VM.
2869 * @param idCpu The VCPU id.
2870 * @param cPages The number of pages to allocate.
2871 * @param paPages Pointer to the page descriptors.
2872 * See GMMPAGEDESC for details on what is expected on input.
2873 * @param enmAccount The account to charge.
2874 *
2875 * @thread EMT.
2876 */
2877GMMR0DECL(int) GMMR0AllocatePages(PVM pVM, VMCPUID idCpu, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount)
2878{
2879 LogFlow(("GMMR0AllocatePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount));
2880
2881 /*
2882 * Validate, get basics and take the semaphore.
2883 */
2884 PGMM pGMM;
2885 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
2886 PGVM pGVM;
2887 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
2888 if (RT_FAILURE(rc))
2889 return rc;
2890
2891 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
2892 AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER);
2893 AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
2894
2895 for (unsigned iPage = 0; iPage < cPages; iPage++)
2896 {
2897 AssertMsgReturn( paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS
2898 || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE
2899 || ( enmAccount == GMMACCOUNT_BASE
2900 && paPages[iPage].HCPhysGCPhys <= GMM_GCPHYS_LAST
2901 && !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK)),
2902 ("#%#x: %RHp enmAccount=%d\n", iPage, paPages[iPage].HCPhysGCPhys, enmAccount),
2903 VERR_INVALID_PARAMETER);
2904 AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
2905 AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER);
2906 }
2907
2908 gmmR0MutexAcquire(pGMM);
2909 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
2910 {
2911
2912 /* No allocations before the initial reservation has been made! */
2913 if (RT_LIKELY( pGVM->gmm.s.Stats.Reserved.cBasePages
2914 && pGVM->gmm.s.Stats.Reserved.cFixedPages
2915 && pGVM->gmm.s.Stats.Reserved.cShadowPages))
2916 rc = gmmR0AllocatePagesNew(pGMM, pGVM, cPages, paPages, enmAccount);
2917 else
2918 rc = VERR_WRONG_ORDER;
2919 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
2920 }
2921 else
2922 rc = VERR_GMM_IS_NOT_SANE;
2923 gmmR0MutexRelease(pGMM);
2924 LogFlow(("GMMR0AllocatePages: returns %Rrc\n", rc));
2925 return rc;
2926}
2927
2928
2929/**
2930 * VMMR0 request wrapper for GMMR0AllocatePages.
2931 *
2932 * @returns see GMMR0AllocatePages.
2933 * @param pVM Pointer to the VM.
2934 * @param idCpu The VCPU id.
2935 * @param pReq Pointer to the request packet.
2936 */
2937GMMR0DECL(int) GMMR0AllocatePagesReq(PVM pVM, VMCPUID idCpu, PGMMALLOCATEPAGESREQ pReq)
2938{
2939 /*
2940 * Validate input and pass it on.
2941 */
2942 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
2943 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2944 AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0]),
2945 ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0])),
2946 VERR_INVALID_PARAMETER);
2947 AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages]),
2948 ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages])),
2949 VERR_INVALID_PARAMETER);
2950
2951 return GMMR0AllocatePages(pVM, idCpu, pReq->cPages, &pReq->aPages[0], pReq->enmAccount);
2952}
2953
2954
2955/**
2956 * Allocate a large page to represent guest RAM
2957 *
2958 * The allocated pages are not cleared and will contains random garbage.
2959 *
2960 * @returns VBox status code:
2961 * @retval VINF_SUCCESS on success.
2962 * @retval VERR_NOT_OWNER if the caller is not an EMT.
2963 * @retval VERR_GMM_SEED_ME if seeding via GMMR0SeedChunk is necessary.
2964 * @retval VERR_GMM_HIT_GLOBAL_LIMIT if we've exhausted the available pages.
2965 * @retval VERR_GMM_HIT_VM_ACCOUNT_LIMIT if we've hit the VM account limit,
2966 * that is we're trying to allocate more than we've reserved.
2967 * @returns see GMMR0AllocatePages.
2968 * @param pVM Pointer to the VM.
2969 * @param idCpu The VCPU id.
2970 * @param cbPage Large page size.
2971 */
2972GMMR0DECL(int) GMMR0AllocateLargePage(PVM pVM, VMCPUID idCpu, uint32_t cbPage, uint32_t *pIdPage, RTHCPHYS *pHCPhys)
2973{
2974 LogFlow(("GMMR0AllocateLargePage: pVM=%p cbPage=%x\n", pVM, cbPage));
2975
2976 AssertReturn(cbPage == GMM_CHUNK_SIZE, VERR_INVALID_PARAMETER);
2977 AssertPtrReturn(pIdPage, VERR_INVALID_PARAMETER);
2978 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
2979
2980 /*
2981 * Validate, get basics and take the semaphore.
2982 */
2983 PGMM pGMM;
2984 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
2985 PGVM pGVM;
2986 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
2987 if (RT_FAILURE(rc))
2988 return rc;
2989
2990 /* Not supported in legacy mode where we allocate the memory in ring 3 and lock it in ring 0. */
2991 if (pGMM->fLegacyAllocationMode)
2992 return VERR_NOT_SUPPORTED;
2993
2994 *pHCPhys = NIL_RTHCPHYS;
2995 *pIdPage = NIL_GMM_PAGEID;
2996
2997 gmmR0MutexAcquire(pGMM);
2998 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
2999 {
3000 const unsigned cPages = (GMM_CHUNK_SIZE >> PAGE_SHIFT);
3001 if (RT_UNLIKELY( pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + cPages
3002 > pGVM->gmm.s.Stats.Reserved.cBasePages))
3003 {
3004 Log(("GMMR0AllocateLargePage: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n",
3005 pGVM->gmm.s.Stats.Reserved.cBasePages, pGVM->gmm.s.Stats.Allocated.cBasePages, cPages));
3006 gmmR0MutexRelease(pGMM);
3007 return VERR_GMM_HIT_VM_ACCOUNT_LIMIT;
3008 }
3009
3010 /*
3011 * Allocate a new large page chunk.
3012 *
3013 * Note! We leave the giant GMM lock temporarily as the allocation might
3014 * take a long time. gmmR0RegisterChunk will retake it (ugly).
3015 */
3016 AssertCompile(GMM_CHUNK_SIZE == _2M);
3017 gmmR0MutexRelease(pGMM);
3018
3019 RTR0MEMOBJ hMemObj;
3020 rc = RTR0MemObjAllocPhysEx(&hMemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS, GMM_CHUNK_SIZE);
3021 if (RT_SUCCESS(rc))
3022 {
3023 PGMMCHUNKFREESET pSet = pGMM->fBoundMemoryMode ? &pGVM->gmm.s.Private : &pGMM->PrivateX;
3024 PGMMCHUNK pChunk;
3025 rc = gmmR0RegisterChunk(pGMM, pSet, hMemObj, pGVM->hSelf, GMM_CHUNK_FLAGS_LARGE_PAGE, &pChunk);
3026 if (RT_SUCCESS(rc))
3027 {
3028 /*
3029 * Allocate all the pages in the chunk.
3030 */
3031 /* Unlink the new chunk from the free list. */
3032 gmmR0UnlinkChunk(pChunk);
3033
3034 /** @todo rewrite this to skip the looping. */
3035 /* Allocate all pages. */
3036 GMMPAGEDESC PageDesc;
3037 gmmR0AllocatePage(pChunk, pGVM->hSelf, &PageDesc);
3038
3039 /* Return the first page as we'll use the whole chunk as one big page. */
3040 *pIdPage = PageDesc.idPage;
3041 *pHCPhys = PageDesc.HCPhysGCPhys;
3042
3043 for (unsigned i = 1; i < cPages; i++)
3044 gmmR0AllocatePage(pChunk, pGVM->hSelf, &PageDesc);
3045
3046 /* Update accounting. */
3047 pGVM->gmm.s.Stats.Allocated.cBasePages += cPages;
3048 pGVM->gmm.s.Stats.cPrivatePages += cPages;
3049 pGMM->cAllocatedPages += cPages;
3050
3051 gmmR0LinkChunk(pChunk, pSet);
3052 gmmR0MutexRelease(pGMM);
3053 }
3054 else
3055 RTR0MemObjFree(hMemObj, false /* fFreeMappings */);
3056 }
3057 }
3058 else
3059 {
3060 gmmR0MutexRelease(pGMM);
3061 rc = VERR_GMM_IS_NOT_SANE;
3062 }
3063
3064 LogFlow(("GMMR0AllocateLargePage: returns %Rrc\n", rc));
3065 return rc;
3066}
3067
3068
3069/**
3070 * Free a large page.
3071 *
3072 * @returns VBox status code:
3073 * @param pVM Pointer to the VM.
3074 * @param idCpu The VCPU id.
3075 * @param idPage The large page id.
3076 */
3077GMMR0DECL(int) GMMR0FreeLargePage(PVM pVM, VMCPUID idCpu, uint32_t idPage)
3078{
3079 LogFlow(("GMMR0FreeLargePage: pVM=%p idPage=%x\n", pVM, idPage));
3080
3081 /*
3082 * Validate, get basics and take the semaphore.
3083 */
3084 PGMM pGMM;
3085 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
3086 PGVM pGVM;
3087 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
3088 if (RT_FAILURE(rc))
3089 return rc;
3090
3091 /* Not supported in legacy mode where we allocate the memory in ring 3 and lock it in ring 0. */
3092 if (pGMM->fLegacyAllocationMode)
3093 return VERR_NOT_SUPPORTED;
3094
3095 gmmR0MutexAcquire(pGMM);
3096 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
3097 {
3098 const unsigned cPages = (GMM_CHUNK_SIZE >> PAGE_SHIFT);
3099
3100 if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages < cPages))
3101 {
3102 Log(("GMMR0FreeLargePage: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cBasePages, cPages));
3103 gmmR0MutexRelease(pGMM);
3104 return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
3105 }
3106
3107 PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage);
3108 if (RT_LIKELY( pPage
3109 && GMM_PAGE_IS_PRIVATE(pPage)))
3110 {
3111 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
3112 Assert(pChunk);
3113 Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
3114 Assert(pChunk->cPrivate > 0);
3115
3116 /* Release the memory immediately. */
3117 gmmR0FreeChunk(pGMM, NULL, pChunk, false /*fRelaxedSem*/); /** @todo this can be relaxed too! */
3118
3119 /* Update accounting. */
3120 pGVM->gmm.s.Stats.Allocated.cBasePages -= cPages;
3121 pGVM->gmm.s.Stats.cPrivatePages -= cPages;
3122 pGMM->cAllocatedPages -= cPages;
3123 }
3124 else
3125 rc = VERR_GMM_PAGE_NOT_FOUND;
3126 }
3127 else
3128 rc = VERR_GMM_IS_NOT_SANE;
3129
3130 gmmR0MutexRelease(pGMM);
3131 LogFlow(("GMMR0FreeLargePage: returns %Rrc\n", rc));
3132 return rc;
3133}
3134
3135
3136/**
3137 * VMMR0 request wrapper for GMMR0FreeLargePage.
3138 *
3139 * @returns see GMMR0FreeLargePage.
3140 * @param pVM Pointer to the VM.
3141 * @param idCpu The VCPU id.
3142 * @param pReq Pointer to the request packet.
3143 */
3144GMMR0DECL(int) GMMR0FreeLargePageReq(PVM pVM, VMCPUID idCpu, PGMMFREELARGEPAGEREQ pReq)
3145{
3146 /*
3147 * Validate input and pass it on.
3148 */
3149 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
3150 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
3151 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMFREEPAGESREQ),
3152 ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(GMMFREEPAGESREQ)),
3153 VERR_INVALID_PARAMETER);
3154
3155 return GMMR0FreeLargePage(pVM, idCpu, pReq->idPage);
3156}
3157
3158
3159/**
3160 * Frees a chunk, giving it back to the host OS.
3161 *
3162 * @param pGMM Pointer to the GMM instance.
3163 * @param pGVM This is set when called from GMMR0CleanupVM so we can
3164 * unmap and free the chunk in one go.
3165 * @param pChunk The chunk to free.
3166 * @param fRelaxedSem Whether we can release the semaphore while doing the
3167 * freeing (@c true) or not.
3168 */
3169static bool gmmR0FreeChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem)
3170{
3171 Assert(pChunk->Core.Key != NIL_GMM_CHUNKID);
3172
3173 GMMR0CHUNKMTXSTATE MtxState;
3174 gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT);
3175
3176 /*
3177 * Cleanup hack! Unmap the chunk from the callers address space.
3178 * This shouldn't happen, so screw lock contention...
3179 */
3180 if ( pChunk->cMappingsX
3181 && !pGMM->fLegacyAllocationMode
3182 && pGVM)
3183 gmmR0UnmapChunkLocked(pGMM, pGVM, pChunk);
3184
3185 /*
3186 * If there are current mappings of the chunk, then request the
3187 * VMs to unmap them. Reposition the chunk in the free list so
3188 * it won't be a likely candidate for allocations.
3189 */
3190 if (pChunk->cMappingsX)
3191 {
3192 /** @todo R0 -> VM request */
3193 /* The chunk can be mapped by more than one VM if fBoundMemoryMode is false! */
3194 Log(("gmmR0FreeChunk: chunk still has %d/%d mappings; don't free!\n", pChunk->cMappingsX));
3195 gmmR0ChunkMutexRelease(&MtxState, pChunk);
3196 return false;
3197 }
3198
3199
3200 /*
3201 * Save and trash the handle.
3202 */
3203 RTR0MEMOBJ const hMemObj = pChunk->hMemObj;
3204 pChunk->hMemObj = NIL_RTR0MEMOBJ;
3205
3206 /*
3207 * Unlink it from everywhere.
3208 */
3209 gmmR0UnlinkChunk(pChunk);
3210
3211 RTListNodeRemove(&pChunk->ListNode);
3212
3213 PAVLU32NODECORE pCore = RTAvlU32Remove(&pGMM->pChunks, pChunk->Core.Key);
3214 Assert(pCore == &pChunk->Core); NOREF(pCore);
3215
3216 PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(pChunk->Core.Key)];
3217 if (pTlbe->pChunk == pChunk)
3218 {
3219 pTlbe->idChunk = NIL_GMM_CHUNKID;
3220 pTlbe->pChunk = NULL;
3221 }
3222
3223 Assert(pGMM->cChunks > 0);
3224 pGMM->cChunks--;
3225
3226 /*
3227 * Free the Chunk ID before dropping the locks and freeing the rest.
3228 */
3229 gmmR0FreeChunkId(pGMM, pChunk->Core.Key);
3230 pChunk->Core.Key = NIL_GMM_CHUNKID;
3231
3232 pGMM->cFreedChunks++;
3233
3234 gmmR0ChunkMutexRelease(&MtxState, NULL);
3235 if (fRelaxedSem)
3236 gmmR0MutexRelease(pGMM);
3237
3238 RTMemFree(pChunk->paMappingsX);
3239 pChunk->paMappingsX = NULL;
3240
3241 RTMemFree(pChunk);
3242
3243 int rc = RTR0MemObjFree(hMemObj, false /* fFreeMappings */);
3244 AssertLogRelRC(rc);
3245
3246 if (fRelaxedSem)
3247 gmmR0MutexAcquire(pGMM);
3248 return fRelaxedSem;
3249}
3250
3251
3252/**
3253 * Free page worker.
3254 *
3255 * The caller does all the statistic decrementing, we do all the incrementing.
3256 *
3257 * @param pGMM Pointer to the GMM instance data.
3258 * @param pGVM Pointer to the GVM instance.
3259 * @param pChunk Pointer to the chunk this page belongs to.
3260 * @param idPage The Page ID.
3261 * @param pPage Pointer to the page.
3262 */
3263static void gmmR0FreePageWorker(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, uint32_t idPage, PGMMPAGE pPage)
3264{
3265 Log3(("F pPage=%p iPage=%#x/%#x u2State=%d iFreeHead=%#x\n",
3266 pPage, pPage - &pChunk->aPages[0], idPage, pPage->Common.u2State, pChunk->iFreeHead)); NOREF(idPage);
3267
3268 /*
3269 * Put the page on the free list.
3270 */
3271 pPage->u = 0;
3272 pPage->Free.u2State = GMM_PAGE_STATE_FREE;
3273 Assert(pChunk->iFreeHead < RT_ELEMENTS(pChunk->aPages) || pChunk->iFreeHead == UINT16_MAX);
3274 pPage->Free.iNext = pChunk->iFreeHead;
3275 pChunk->iFreeHead = pPage - &pChunk->aPages[0];
3276
3277 /*
3278 * Update statistics (the cShared/cPrivate stats are up to date already),
3279 * and relink the chunk if necessary.
3280 */
3281 unsigned const cFree = pChunk->cFree;
3282 if ( !cFree
3283 || gmmR0SelectFreeSetList(cFree) != gmmR0SelectFreeSetList(cFree + 1))
3284 {
3285 gmmR0UnlinkChunk(pChunk);
3286 pChunk->cFree++;
3287 gmmR0SelectSetAndLinkChunk(pGMM, pGVM, pChunk);
3288 }
3289 else
3290 {
3291 pChunk->cFree = cFree + 1;
3292 pChunk->pSet->cFreePages++;
3293 }
3294
3295 /*
3296 * If the chunk becomes empty, consider giving memory back to the host OS.
3297 *
3298 * The current strategy is to try give it back if there are other chunks
3299 * in this free list, meaning if there are at least 240 free pages in this
3300 * category. Note that since there are probably mappings of the chunk,
3301 * it won't be freed up instantly, which probably screws up this logic
3302 * a bit...
3303 */
3304 /** @todo Do this on the way out. */
3305 if (RT_UNLIKELY( pChunk->cFree == GMM_CHUNK_NUM_PAGES
3306 && pChunk->pFreeNext
3307 && pChunk->pFreePrev /** @todo this is probably misfiring, see reset... */
3308 && !pGMM->fLegacyAllocationMode))
3309 gmmR0FreeChunk(pGMM, NULL, pChunk, false);
3310
3311}
3312
3313
3314/**
3315 * Frees a shared page, the page is known to exist and be valid and such.
3316 *
3317 * @param pGMM Pointer to the GMM instance.
3318 * @param pGVM Pointer to the GVM instance.
3319 * @param idPage The page id.
3320 * @param pPage The page structure.
3321 */
3322DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage)
3323{
3324 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
3325 Assert(pChunk);
3326 Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
3327 Assert(pChunk->cShared > 0);
3328 Assert(pGMM->cSharedPages > 0);
3329 Assert(pGMM->cAllocatedPages > 0);
3330 Assert(!pPage->Shared.cRefs);
3331
3332 pChunk->cShared--;
3333 pGMM->cAllocatedPages--;
3334 pGMM->cSharedPages--;
3335 gmmR0FreePageWorker(pGMM, pGVM, pChunk, idPage, pPage);
3336}
3337
3338
3339/**
3340 * Frees a private page, the page is known to exist and be valid and such.
3341 *
3342 * @param pGMM Pointer to the GMM instance.
3343 * @param pGVM Pointer to the GVM instance.
3344 * @param idPage The page id.
3345 * @param pPage The page structure.
3346 */
3347DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, PGVM pGVM, uint32_t idPage, PGMMPAGE pPage)
3348{
3349 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
3350 Assert(pChunk);
3351 Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
3352 Assert(pChunk->cPrivate > 0);
3353 Assert(pGMM->cAllocatedPages > 0);
3354
3355 pChunk->cPrivate--;
3356 pGMM->cAllocatedPages--;
3357 gmmR0FreePageWorker(pGMM, pGVM, pChunk, idPage, pPage);
3358}
3359
3360
3361/**
3362 * Common worker for GMMR0FreePages and GMMR0BalloonedPages.
3363 *
3364 * @returns VBox status code:
3365 * @retval xxx
3366 *
3367 * @param pGMM Pointer to the GMM instance data.
3368 * @param pGVM Pointer to the VM.
3369 * @param cPages The number of pages to free.
3370 * @param paPages Pointer to the page descriptors.
3371 * @param enmAccount The account this relates to.
3372 */
3373static int gmmR0FreePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount)
3374{
3375 /*
3376 * Check that the request isn't impossible wrt to the account status.
3377 */
3378 switch (enmAccount)
3379 {
3380 case GMMACCOUNT_BASE:
3381 if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages < cPages))
3382 {
3383 Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cBasePages, cPages));
3384 return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
3385 }
3386 break;
3387 case GMMACCOUNT_SHADOW:
3388 if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cShadowPages < cPages))
3389 {
3390 Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cShadowPages, cPages));
3391 return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
3392 }
3393 break;
3394 case GMMACCOUNT_FIXED:
3395 if (RT_UNLIKELY(pGVM->gmm.s.Stats.Allocated.cFixedPages < cPages))
3396 {
3397 Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Stats.Allocated.cFixedPages, cPages));
3398 return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
3399 }
3400 break;
3401 default:
3402 AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
3403 }
3404
3405 /*
3406 * Walk the descriptors and free the pages.
3407 *
3408 * Statistics (except the account) are being updated as we go along,
3409 * unlike the alloc code. Also, stop on the first error.
3410 */
3411 int rc = VINF_SUCCESS;
3412 uint32_t iPage;
3413 for (iPage = 0; iPage < cPages; iPage++)
3414 {
3415 uint32_t idPage = paPages[iPage].idPage;
3416 PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage);
3417 if (RT_LIKELY(pPage))
3418 {
3419 if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage)))
3420 {
3421 if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf))
3422 {
3423 Assert(pGVM->gmm.s.Stats.cPrivatePages);
3424 pGVM->gmm.s.Stats.cPrivatePages--;
3425 gmmR0FreePrivatePage(pGMM, pGVM, idPage, pPage);
3426 }
3427 else
3428 {
3429 Log(("gmmR0AllocatePages: #%#x/%#x: not owner! hGVM=%#x hSelf=%#x\n", iPage, idPage,
3430 pPage->Private.hGVM, pGVM->hSelf));
3431 rc = VERR_GMM_NOT_PAGE_OWNER;
3432 break;
3433 }
3434 }
3435 else if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage)))
3436 {
3437 Assert(pGVM->gmm.s.Stats.cSharedPages);
3438 Assert(pPage->Shared.cRefs);
3439#if defined(VBOX_WITH_PAGE_SHARING) && defined(VBOX_STRICT) && HC_ARCH_BITS == 64
3440 if (pPage->Shared.u14Checksum)
3441 {
3442 uint32_t uChecksum = gmmR0StrictPageChecksum(pGMM, pGVM, idPage);
3443 uChecksum &= UINT32_C(0x00003fff);
3444 AssertMsg(!uChecksum || uChecksum == pPage->Shared.u14Checksum,
3445 ("%#x vs %#x - idPage=%#x\n", uChecksum, pPage->Shared.u14Checksum, idPage));
3446 }
3447#endif
3448 pGVM->gmm.s.Stats.cSharedPages--;
3449 if (!--pPage->Shared.cRefs)
3450 gmmR0FreeSharedPage(pGMM, pGVM, idPage, pPage);
3451 else
3452 {
3453 Assert(pGMM->cDuplicatePages);
3454 pGMM->cDuplicatePages--;
3455 }
3456 }
3457 else
3458 {
3459 Log(("gmmR0AllocatePages: #%#x/%#x: already free!\n", iPage, idPage));
3460 rc = VERR_GMM_PAGE_ALREADY_FREE;
3461 break;
3462 }
3463 }
3464 else
3465 {
3466 Log(("gmmR0AllocatePages: #%#x/%#x: not found!\n", iPage, idPage));
3467 rc = VERR_GMM_PAGE_NOT_FOUND;
3468 break;
3469 }
3470 paPages[iPage].idPage = NIL_GMM_PAGEID;
3471 }
3472
3473 /*
3474 * Update the account.
3475 */
3476 switch (enmAccount)
3477 {
3478 case GMMACCOUNT_BASE: pGVM->gmm.s.Stats.Allocated.cBasePages -= iPage; break;
3479 case GMMACCOUNT_SHADOW: pGVM->gmm.s.Stats.Allocated.cShadowPages -= iPage; break;
3480 case GMMACCOUNT_FIXED: pGVM->gmm.s.Stats.Allocated.cFixedPages -= iPage; break;
3481 default:
3482 AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_IPE_NOT_REACHED_DEFAULT_CASE);
3483 }
3484
3485 /*
3486 * Any threshold stuff to be done here?
3487 */
3488
3489 return rc;
3490}
3491
3492
3493/**
3494 * Free one or more pages.
3495 *
3496 * This is typically used at reset time or power off.
3497 *
3498 * @returns VBox status code:
3499 * @retval xxx
3500 *
3501 * @param pVM Pointer to the VM.
3502 * @param idCpu The VCPU id.
3503 * @param cPages The number of pages to allocate.
3504 * @param paPages Pointer to the page descriptors containing the Page IDs for each page.
3505 * @param enmAccount The account this relates to.
3506 * @thread EMT.
3507 */
3508GMMR0DECL(int) GMMR0FreePages(PVM pVM, VMCPUID idCpu, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount)
3509{
3510 LogFlow(("GMMR0FreePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount));
3511
3512 /*
3513 * Validate input and get the basics.
3514 */
3515 PGMM pGMM;
3516 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
3517 PGVM pGVM;
3518 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
3519 if (RT_FAILURE(rc))
3520 return rc;
3521
3522 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
3523 AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER);
3524 AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER);
3525
3526 for (unsigned iPage = 0; iPage < cPages; iPage++)
3527 AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST
3528 /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/,
3529 ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER);
3530
3531 /*
3532 * Take the semaphore and call the worker function.
3533 */
3534 gmmR0MutexAcquire(pGMM);
3535 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
3536 {
3537 rc = gmmR0FreePages(pGMM, pGVM, cPages, paPages, enmAccount);
3538 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
3539 }
3540 else
3541 rc = VERR_GMM_IS_NOT_SANE;
3542 gmmR0MutexRelease(pGMM);
3543 LogFlow(("GMMR0FreePages: returns %Rrc\n", rc));
3544 return rc;
3545}
3546
3547
3548/**
3549 * VMMR0 request wrapper for GMMR0FreePages.
3550 *
3551 * @returns see GMMR0FreePages.
3552 * @param pVM Pointer to the VM.
3553 * @param idCpu The VCPU id.
3554 * @param pReq Pointer to the request packet.
3555 */
3556GMMR0DECL(int) GMMR0FreePagesReq(PVM pVM, VMCPUID idCpu, PGMMFREEPAGESREQ pReq)
3557{
3558 /*
3559 * Validate input and pass it on.
3560 */
3561 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
3562 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
3563 AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0]),
3564 ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0])),
3565 VERR_INVALID_PARAMETER);
3566 AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages]),
3567 ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages])),
3568 VERR_INVALID_PARAMETER);
3569
3570 return GMMR0FreePages(pVM, idCpu, pReq->cPages, &pReq->aPages[0], pReq->enmAccount);
3571}
3572
3573
3574/**
3575 * Report back on a memory ballooning request.
3576 *
3577 * The request may or may not have been initiated by the GMM. If it was initiated
3578 * by the GMM it is important that this function is called even if no pages were
3579 * ballooned.
3580 *
3581 * @returns VBox status code:
3582 * @retval VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH
3583 * @retval VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH
3584 * @retval VERR_GMM_OVERCOMMITTED_TRY_AGAIN_IN_A_BIT - reset condition
3585 * indicating that we won't necessarily have sufficient RAM to boot
3586 * the VM again and that it should pause until this changes (we'll try
3587 * balloon some other VM). (For standard deflate we have little choice
3588 * but to hope the VM won't use the memory that was returned to it.)
3589 *
3590 * @param pVM Pointer to the VM.
3591 * @param idCpu The VCPU id.
3592 * @param enmAction Inflate/deflate/reset.
3593 * @param cBalloonedPages The number of pages that was ballooned.
3594 *
3595 * @thread EMT.
3596 */
3597GMMR0DECL(int) GMMR0BalloonedPages(PVM pVM, VMCPUID idCpu, GMMBALLOONACTION enmAction, uint32_t cBalloonedPages)
3598{
3599 LogFlow(("GMMR0BalloonedPages: pVM=%p enmAction=%d cBalloonedPages=%#x\n",
3600 pVM, enmAction, cBalloonedPages));
3601
3602 AssertMsgReturn(cBalloonedPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cBalloonedPages), VERR_INVALID_PARAMETER);
3603
3604 /*
3605 * Validate input and get the basics.
3606 */
3607 PGMM pGMM;
3608 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
3609 PGVM pGVM;
3610 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
3611 if (RT_FAILURE(rc))
3612 return rc;
3613
3614 /*
3615 * Take the semaphore and do some more validations.
3616 */
3617 gmmR0MutexAcquire(pGMM);
3618 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
3619 {
3620 switch (enmAction)
3621 {
3622 case GMMBALLOONACTION_INFLATE:
3623 {
3624 if (RT_LIKELY(pGVM->gmm.s.Stats.Allocated.cBasePages + pGVM->gmm.s.Stats.cBalloonedPages + cBalloonedPages
3625 <= pGVM->gmm.s.Stats.Reserved.cBasePages))
3626 {
3627 /*
3628 * Record the ballooned memory.
3629 */
3630 pGMM->cBalloonedPages += cBalloonedPages;
3631 if (pGVM->gmm.s.Stats.cReqBalloonedPages)
3632 {
3633 /* Codepath never taken. Might be interesting in the future to request ballooned memory from guests in low memory conditions.. */
3634 AssertFailed();
3635
3636 pGVM->gmm.s.Stats.cBalloonedPages += cBalloonedPages;
3637 pGVM->gmm.s.Stats.cReqActuallyBalloonedPages += cBalloonedPages;
3638 Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx Req=%#llx Actual=%#llx (pending)\n",
3639 cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages,
3640 pGVM->gmm.s.Stats.cReqBalloonedPages, pGVM->gmm.s.Stats.cReqActuallyBalloonedPages));
3641 }
3642 else
3643 {
3644 pGVM->gmm.s.Stats.cBalloonedPages += cBalloonedPages;
3645 Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx (user)\n",
3646 cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages));
3647 }
3648 }
3649 else
3650 {
3651 Log(("GMMR0BalloonedPages: cBasePages=%#llx Total=%#llx cBalloonedPages=%#llx Reserved=%#llx\n",
3652 pGVM->gmm.s.Stats.Allocated.cBasePages, pGVM->gmm.s.Stats.cBalloonedPages, cBalloonedPages,
3653 pGVM->gmm.s.Stats.Reserved.cBasePages));
3654 rc = VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH;
3655 }
3656 break;
3657 }
3658
3659 case GMMBALLOONACTION_DEFLATE:
3660 {
3661 /* Deflate. */
3662 if (pGVM->gmm.s.Stats.cBalloonedPages >= cBalloonedPages)
3663 {
3664 /*
3665 * Record the ballooned memory.
3666 */
3667 Assert(pGMM->cBalloonedPages >= cBalloonedPages);
3668 pGMM->cBalloonedPages -= cBalloonedPages;
3669 pGVM->gmm.s.Stats.cBalloonedPages -= cBalloonedPages;
3670 if (pGVM->gmm.s.Stats.cReqDeflatePages)
3671 {
3672 AssertFailed(); /* This is path is for later. */
3673 Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx Req=%#llx\n",
3674 cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages, pGVM->gmm.s.Stats.cReqDeflatePages));
3675
3676 /*
3677 * Anything we need to do here now when the request has been completed?
3678 */
3679 pGVM->gmm.s.Stats.cReqDeflatePages = 0;
3680 }
3681 else
3682 Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx (user)\n",
3683 cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.Stats.cBalloonedPages));
3684 }
3685 else
3686 {
3687 Log(("GMMR0BalloonedPages: Total=%#llx cBalloonedPages=%#llx\n", pGVM->gmm.s.Stats.cBalloonedPages, cBalloonedPages));
3688 rc = VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH;
3689 }
3690 break;
3691 }
3692
3693 case GMMBALLOONACTION_RESET:
3694 {
3695 /* Reset to an empty balloon. */
3696 Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.Stats.cBalloonedPages);
3697
3698 pGMM->cBalloonedPages -= pGVM->gmm.s.Stats.cBalloonedPages;
3699 pGVM->gmm.s.Stats.cBalloonedPages = 0;
3700 break;
3701 }
3702
3703 default:
3704 rc = VERR_INVALID_PARAMETER;
3705 break;
3706 }
3707 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
3708 }
3709 else
3710 rc = VERR_GMM_IS_NOT_SANE;
3711
3712 gmmR0MutexRelease(pGMM);
3713 LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc));
3714 return rc;
3715}
3716
3717
3718/**
3719 * VMMR0 request wrapper for GMMR0BalloonedPages.
3720 *
3721 * @returns see GMMR0BalloonedPages.
3722 * @param pVM Pointer to the VM.
3723 * @param idCpu The VCPU id.
3724 * @param pReq Pointer to the request packet.
3725 */
3726GMMR0DECL(int) GMMR0BalloonedPagesReq(PVM pVM, VMCPUID idCpu, PGMMBALLOONEDPAGESREQ pReq)
3727{
3728 /*
3729 * Validate input and pass it on.
3730 */
3731 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
3732 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
3733 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMBALLOONEDPAGESREQ),
3734 ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMBALLOONEDPAGESREQ)),
3735 VERR_INVALID_PARAMETER);
3736
3737 return GMMR0BalloonedPages(pVM, idCpu, pReq->enmAction, pReq->cBalloonedPages);
3738}
3739
3740/**
3741 * Return memory statistics for the hypervisor
3742 *
3743 * @returns VBox status code:
3744 * @param pVM Pointer to the VM.
3745 * @param pReq Pointer to the request packet.
3746 */
3747GMMR0DECL(int) GMMR0QueryHypervisorMemoryStatsReq(PVM pVM, PGMMMEMSTATSREQ pReq)
3748{
3749 /*
3750 * Validate input and pass it on.
3751 */
3752 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
3753 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
3754 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMMEMSTATSREQ),
3755 ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMMEMSTATSREQ)),
3756 VERR_INVALID_PARAMETER);
3757
3758 /*
3759 * Validate input and get the basics.
3760 */
3761 PGMM pGMM;
3762 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
3763 pReq->cAllocPages = pGMM->cAllocatedPages;
3764 pReq->cFreePages = (pGMM->cChunks << (GMM_CHUNK_SHIFT- PAGE_SHIFT)) - pGMM->cAllocatedPages;
3765 pReq->cBalloonedPages = pGMM->cBalloonedPages;
3766 pReq->cMaxPages = pGMM->cMaxPages;
3767 pReq->cSharedPages = pGMM->cDuplicatePages;
3768 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
3769
3770 return VINF_SUCCESS;
3771}
3772
3773/**
3774 * Return memory statistics for the VM
3775 *
3776 * @returns VBox status code:
3777 * @param pVM Pointer to the VM.
3778 * @parma idCpu Cpu id.
3779 * @param pReq Pointer to the request packet.
3780 */
3781GMMR0DECL(int) GMMR0QueryMemoryStatsReq(PVM pVM, VMCPUID idCpu, PGMMMEMSTATSREQ pReq)
3782{
3783 /*
3784 * Validate input and pass it on.
3785 */
3786 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
3787 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
3788 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(GMMMEMSTATSREQ),
3789 ("%#x < %#x\n", pReq->Hdr.cbReq, sizeof(GMMMEMSTATSREQ)),
3790 VERR_INVALID_PARAMETER);
3791
3792 /*
3793 * Validate input and get the basics.
3794 */
3795 PGMM pGMM;
3796 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
3797 PGVM pGVM;
3798 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
3799 if (RT_FAILURE(rc))
3800 return rc;
3801
3802 /*
3803 * Take the semaphore and do some more validations.
3804 */
3805 gmmR0MutexAcquire(pGMM);
3806 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
3807 {
3808 pReq->cAllocPages = pGVM->gmm.s.Stats.Allocated.cBasePages;
3809 pReq->cBalloonedPages = pGVM->gmm.s.Stats.cBalloonedPages;
3810 pReq->cMaxPages = pGVM->gmm.s.Stats.Reserved.cBasePages;
3811 pReq->cFreePages = pReq->cMaxPages - pReq->cAllocPages;
3812 }
3813 else
3814 rc = VERR_GMM_IS_NOT_SANE;
3815
3816 gmmR0MutexRelease(pGMM);
3817 LogFlow(("GMMR3QueryVMMemoryStats: returns %Rrc\n", rc));
3818 return rc;
3819}
3820
3821
3822/**
3823 * Worker for gmmR0UnmapChunk and gmmr0FreeChunk.
3824 *
3825 * Don't call this in legacy allocation mode!
3826 *
3827 * @returns VBox status code.
3828 * @param pGMM Pointer to the GMM instance data.
3829 * @param pGVM Pointer to the Global VM structure.
3830 * @param pChunk Pointer to the chunk to be unmapped.
3831 */
3832static int gmmR0UnmapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk)
3833{
3834 Assert(!pGMM->fLegacyAllocationMode);
3835
3836 /*
3837 * Find the mapping and try unmapping it.
3838 */
3839 uint32_t cMappings = pChunk->cMappingsX;
3840 for (uint32_t i = 0; i < cMappings; i++)
3841 {
3842 Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ);
3843 if (pChunk->paMappingsX[i].pGVM == pGVM)
3844 {
3845 /* unmap */
3846 int rc = RTR0MemObjFree(pChunk->paMappingsX[i].hMapObj, false /* fFreeMappings (NA) */);
3847 if (RT_SUCCESS(rc))
3848 {
3849 /* update the record. */
3850 cMappings--;
3851 if (i < cMappings)
3852 pChunk->paMappingsX[i] = pChunk->paMappingsX[cMappings];
3853 pChunk->paMappingsX[cMappings].hMapObj = NIL_RTR0MEMOBJ;
3854 pChunk->paMappingsX[cMappings].pGVM = NULL;
3855 Assert(pChunk->cMappingsX - 1U == cMappings);
3856 pChunk->cMappingsX = cMappings;
3857 }
3858
3859 return rc;
3860 }
3861 }
3862
3863 Log(("gmmR0UnmapChunk: Chunk %#x is not mapped into pGVM=%p/%#x\n", pChunk->Core.Key, pGVM, pGVM->hSelf));
3864 return VERR_GMM_CHUNK_NOT_MAPPED;
3865}
3866
3867
3868/**
3869 * Unmaps a chunk previously mapped into the address space of the current process.
3870 *
3871 * @returns VBox status code.
3872 * @param pGMM Pointer to the GMM instance data.
3873 * @param pGVM Pointer to the Global VM structure.
3874 * @param pChunk Pointer to the chunk to be unmapped.
3875 */
3876static int gmmR0UnmapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem)
3877{
3878 if (!pGMM->fLegacyAllocationMode)
3879 {
3880 /*
3881 * Lock the chunk and if possible leave the giant GMM lock.
3882 */
3883 GMMR0CHUNKMTXSTATE MtxState;
3884 int rc = gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk,
3885 fRelaxedSem ? GMMR0CHUNK_MTX_RETAKE_GIANT : GMMR0CHUNK_MTX_KEEP_GIANT);
3886 if (RT_SUCCESS(rc))
3887 {
3888 rc = gmmR0UnmapChunkLocked(pGMM, pGVM, pChunk);
3889 gmmR0ChunkMutexRelease(&MtxState, pChunk);
3890 }
3891 return rc;
3892 }
3893
3894 if (pChunk->hGVM == pGVM->hSelf)
3895 return VINF_SUCCESS;
3896
3897 Log(("gmmR0UnmapChunk: Chunk %#x is not mapped into pGVM=%p/%#x (legacy)\n", pChunk->Core.Key, pGVM, pGVM->hSelf));
3898 return VERR_GMM_CHUNK_NOT_MAPPED;
3899}
3900
3901
3902/**
3903 * Worker for gmmR0MapChunk.
3904 *
3905 * @returns VBox status code.
3906 * @param pGMM Pointer to the GMM instance data.
3907 * @param pGVM Pointer to the Global VM structure.
3908 * @param pChunk Pointer to the chunk to be mapped.
3909 * @param ppvR3 Where to store the ring-3 address of the mapping.
3910 * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be
3911 * contain the address of the existing mapping.
3912 */
3913static int gmmR0MapChunkLocked(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3)
3914{
3915 /*
3916 * If we're in legacy mode this is simple.
3917 */
3918 if (pGMM->fLegacyAllocationMode)
3919 {
3920 if (pChunk->hGVM != pGVM->hSelf)
3921 {
3922 Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3));
3923 return VERR_GMM_CHUNK_NOT_FOUND;
3924 }
3925
3926 *ppvR3 = RTR0MemObjAddressR3(pChunk->hMemObj);
3927 return VINF_SUCCESS;
3928 }
3929
3930 /*
3931 * Check to see if the chunk is already mapped.
3932 */
3933 for (uint32_t i = 0; i < pChunk->cMappingsX; i++)
3934 {
3935 Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ);
3936 if (pChunk->paMappingsX[i].pGVM == pGVM)
3937 {
3938 *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappingsX[i].hMapObj);
3939 Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3));
3940#ifdef VBOX_WITH_PAGE_SHARING
3941 /* The ring-3 chunk cache can be out of sync; don't fail. */
3942 return VINF_SUCCESS;
3943#else
3944 return VERR_GMM_CHUNK_ALREADY_MAPPED;
3945#endif
3946 }
3947 }
3948
3949 /*
3950 * Do the mapping.
3951 */
3952 RTR0MEMOBJ hMapObj;
3953 int rc = RTR0MemObjMapUser(&hMapObj, pChunk->hMemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
3954 if (RT_SUCCESS(rc))
3955 {
3956 /* reallocate the array? assumes few users per chunk (usually one). */
3957 unsigned iMapping = pChunk->cMappingsX;
3958 if ( iMapping <= 3
3959 || (iMapping & 3) == 0)
3960 {
3961 unsigned cNewSize = iMapping <= 3
3962 ? iMapping + 1
3963 : iMapping + 4;
3964 Assert(cNewSize < 4 || RT_ALIGN_32(cNewSize, 4) == cNewSize);
3965 if (RT_UNLIKELY(cNewSize > UINT16_MAX))
3966 {
3967 rc = RTR0MemObjFree(hMapObj, false /* fFreeMappings (NA) */); AssertRC(rc);
3968 return VERR_GMM_TOO_MANY_CHUNK_MAPPINGS;
3969 }
3970
3971 void *pvMappings = RTMemRealloc(pChunk->paMappingsX, cNewSize * sizeof(pChunk->paMappingsX[0]));
3972 if (RT_UNLIKELY(!pvMappings))
3973 {
3974 rc = RTR0MemObjFree(hMapObj, false /* fFreeMappings (NA) */); AssertRC(rc);
3975 return VERR_NO_MEMORY;
3976 }
3977 pChunk->paMappingsX = (PGMMCHUNKMAP)pvMappings;
3978 }
3979
3980 /* insert new entry */
3981 pChunk->paMappingsX[iMapping].hMapObj = hMapObj;
3982 pChunk->paMappingsX[iMapping].pGVM = pGVM;
3983 Assert(pChunk->cMappingsX == iMapping);
3984 pChunk->cMappingsX = iMapping + 1;
3985
3986 *ppvR3 = RTR0MemObjAddressR3(hMapObj);
3987 }
3988
3989 return rc;
3990}
3991
3992
3993/**
3994 * Maps a chunk into the user address space of the current process.
3995 *
3996 * @returns VBox status code.
3997 * @param pGMM Pointer to the GMM instance data.
3998 * @param pGVM Pointer to the Global VM structure.
3999 * @param pChunk Pointer to the chunk to be mapped.
4000 * @param fRelaxedSem Whether we can release the semaphore while doing the
4001 * mapping (@c true) or not.
4002 * @param ppvR3 Where to store the ring-3 address of the mapping.
4003 * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be
4004 * contain the address of the existing mapping.
4005 */
4006static int gmmR0MapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, bool fRelaxedSem, PRTR3PTR ppvR3)
4007{
4008 /*
4009 * Take the chunk lock and leave the giant GMM lock when possible, then
4010 * call the worker function.
4011 */
4012 GMMR0CHUNKMTXSTATE MtxState;
4013 int rc = gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk,
4014 fRelaxedSem ? GMMR0CHUNK_MTX_RETAKE_GIANT : GMMR0CHUNK_MTX_KEEP_GIANT);
4015 if (RT_SUCCESS(rc))
4016 {
4017 rc = gmmR0MapChunkLocked(pGMM, pGVM, pChunk, ppvR3);
4018 gmmR0ChunkMutexRelease(&MtxState, pChunk);
4019 }
4020
4021 return rc;
4022}
4023
4024
4025
4026#if defined(VBOX_WITH_PAGE_SHARING) || (defined(VBOX_STRICT) && HC_ARCH_BITS == 64)
4027/**
4028 * Check if a chunk is mapped into the specified VM
4029 *
4030 * @returns mapped yes/no
4031 * @param pGMM Pointer to the GMM instance.
4032 * @param pGVM Pointer to the Global VM structure.
4033 * @param pChunk Pointer to the chunk to be mapped.
4034 * @param ppvR3 Where to store the ring-3 address of the mapping.
4035 */
4036static bool gmmR0IsChunkMapped(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3)
4037{
4038 GMMR0CHUNKMTXSTATE MtxState;
4039 gmmR0ChunkMutexAcquire(&MtxState, pGMM, pChunk, GMMR0CHUNK_MTX_KEEP_GIANT);
4040 for (uint32_t i = 0; i < pChunk->cMappingsX; i++)
4041 {
4042 Assert(pChunk->paMappingsX[i].pGVM && pChunk->paMappingsX[i].hMapObj != NIL_RTR0MEMOBJ);
4043 if (pChunk->paMappingsX[i].pGVM == pGVM)
4044 {
4045 *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappingsX[i].hMapObj);
4046 gmmR0ChunkMutexRelease(&MtxState, pChunk);
4047 return true;
4048 }
4049 }
4050 *ppvR3 = NULL;
4051 gmmR0ChunkMutexRelease(&MtxState, pChunk);
4052 return false;
4053}
4054#endif /* VBOX_WITH_PAGE_SHARING || (VBOX_STRICT && 64-BIT) */
4055
4056
4057/**
4058 * Map a chunk and/or unmap another chunk.
4059 *
4060 * The mapping and unmapping applies to the current process.
4061 *
4062 * This API does two things because it saves a kernel call per mapping when
4063 * when the ring-3 mapping cache is full.
4064 *
4065 * @returns VBox status code.
4066 * @param pVM The VM.
4067 * @param idChunkMap The chunk to map. NIL_GMM_CHUNKID if nothing to map.
4068 * @param idChunkUnmap The chunk to unmap. NIL_GMM_CHUNKID if nothing to unmap.
4069 * @param ppvR3 Where to store the address of the mapped chunk. NULL is ok if nothing to map.
4070 * @thread EMT
4071 */
4072GMMR0DECL(int) GMMR0MapUnmapChunk(PVM pVM, uint32_t idChunkMap, uint32_t idChunkUnmap, PRTR3PTR ppvR3)
4073{
4074 LogFlow(("GMMR0MapUnmapChunk: pVM=%p idChunkMap=%#x idChunkUnmap=%#x ppvR3=%p\n",
4075 pVM, idChunkMap, idChunkUnmap, ppvR3));
4076
4077 /*
4078 * Validate input and get the basics.
4079 */
4080 PGMM pGMM;
4081 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
4082 PGVM pGVM;
4083 int rc = GVMMR0ByVM(pVM, &pGVM);
4084 if (RT_FAILURE(rc))
4085 return rc;
4086
4087 AssertCompile(NIL_GMM_CHUNKID == 0);
4088 AssertMsgReturn(idChunkMap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkMap), VERR_INVALID_PARAMETER);
4089 AssertMsgReturn(idChunkUnmap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkUnmap), VERR_INVALID_PARAMETER);
4090
4091 if ( idChunkMap == NIL_GMM_CHUNKID
4092 && idChunkUnmap == NIL_GMM_CHUNKID)
4093 return VERR_INVALID_PARAMETER;
4094
4095 if (idChunkMap != NIL_GMM_CHUNKID)
4096 {
4097 AssertPtrReturn(ppvR3, VERR_INVALID_POINTER);
4098 *ppvR3 = NIL_RTR3PTR;
4099 }
4100
4101 /*
4102 * Take the semaphore and do the work.
4103 *
4104 * The unmapping is done last since it's easier to undo a mapping than
4105 * undoing an unmapping. The ring-3 mapping cache cannot not be so big
4106 * that it pushes the user virtual address space to within a chunk of
4107 * it it's limits, so, no problem here.
4108 */
4109 gmmR0MutexAcquire(pGMM);
4110 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
4111 {
4112 PGMMCHUNK pMap = NULL;
4113 if (idChunkMap != NIL_GVM_HANDLE)
4114 {
4115 pMap = gmmR0GetChunk(pGMM, idChunkMap);
4116 if (RT_LIKELY(pMap))
4117 rc = gmmR0MapChunk(pGMM, pGVM, pMap, true /*fRelaxedSem*/, ppvR3);
4118 else
4119 {
4120 Log(("GMMR0MapUnmapChunk: idChunkMap=%#x\n", idChunkMap));
4121 rc = VERR_GMM_CHUNK_NOT_FOUND;
4122 }
4123 }
4124/** @todo split this operation, the bail out might (theoretcially) not be
4125 * entirely safe. */
4126
4127 if ( idChunkUnmap != NIL_GMM_CHUNKID
4128 && RT_SUCCESS(rc))
4129 {
4130 PGMMCHUNK pUnmap = gmmR0GetChunk(pGMM, idChunkUnmap);
4131 if (RT_LIKELY(pUnmap))
4132 rc = gmmR0UnmapChunk(pGMM, pGVM, pUnmap, true /*fRelaxedSem*/);
4133 else
4134 {
4135 Log(("GMMR0MapUnmapChunk: idChunkUnmap=%#x\n", idChunkUnmap));
4136 rc = VERR_GMM_CHUNK_NOT_FOUND;
4137 }
4138
4139 if (RT_FAILURE(rc) && pMap)
4140 gmmR0UnmapChunk(pGMM, pGVM, pMap, false /*fRelaxedSem*/);
4141 }
4142
4143 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
4144 }
4145 else
4146 rc = VERR_GMM_IS_NOT_SANE;
4147 gmmR0MutexRelease(pGMM);
4148
4149 LogFlow(("GMMR0MapUnmapChunk: returns %Rrc\n", rc));
4150 return rc;
4151}
4152
4153
4154/**
4155 * VMMR0 request wrapper for GMMR0MapUnmapChunk.
4156 *
4157 * @returns see GMMR0MapUnmapChunk.
4158 * @param pVM Pointer to the VM.
4159 * @param pReq Pointer to the request packet.
4160 */
4161GMMR0DECL(int) GMMR0MapUnmapChunkReq(PVM pVM, PGMMMAPUNMAPCHUNKREQ pReq)
4162{
4163 /*
4164 * Validate input and pass it on.
4165 */
4166 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
4167 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
4168 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
4169
4170 return GMMR0MapUnmapChunk(pVM, pReq->idChunkMap, pReq->idChunkUnmap, &pReq->pvR3);
4171}
4172
4173
4174/**
4175 * Legacy mode API for supplying pages.
4176 *
4177 * The specified user address points to a allocation chunk sized block that
4178 * will be locked down and used by the GMM when the GM asks for pages.
4179 *
4180 * @returns VBox status code.
4181 * @param pVM Pointer to the VM.
4182 * @param idCpu The VCPU id.
4183 * @param pvR3 Pointer to the chunk size memory block to lock down.
4184 */
4185GMMR0DECL(int) GMMR0SeedChunk(PVM pVM, VMCPUID idCpu, RTR3PTR pvR3)
4186{
4187 /*
4188 * Validate input and get the basics.
4189 */
4190 PGMM pGMM;
4191 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
4192 PGVM pGVM;
4193 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
4194 if (RT_FAILURE(rc))
4195 return rc;
4196
4197 AssertPtrReturn(pvR3, VERR_INVALID_POINTER);
4198 AssertReturn(!(PAGE_OFFSET_MASK & pvR3), VERR_INVALID_POINTER);
4199
4200 if (!pGMM->fLegacyAllocationMode)
4201 {
4202 Log(("GMMR0SeedChunk: not in legacy allocation mode!\n"));
4203 return VERR_NOT_SUPPORTED;
4204 }
4205
4206 /*
4207 * Lock the memory and add it as new chunk with our hGVM.
4208 * (The GMM locking is done inside gmmR0RegisterChunk.)
4209 */
4210 RTR0MEMOBJ MemObj;
4211 rc = RTR0MemObjLockUser(&MemObj, pvR3, GMM_CHUNK_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
4212 if (RT_SUCCESS(rc))
4213 {
4214 rc = gmmR0RegisterChunk(pGMM, &pGVM->gmm.s.Private, MemObj, pGVM->hSelf, 0 /*fChunkFlags*/, NULL);
4215 if (RT_SUCCESS(rc))
4216 gmmR0MutexRelease(pGMM);
4217 else
4218 RTR0MemObjFree(MemObj, false /* fFreeMappings */);
4219 }
4220
4221 LogFlow(("GMMR0SeedChunk: rc=%d (pvR3=%p)\n", rc, pvR3));
4222 return rc;
4223}
4224
4225#ifdef VBOX_WITH_PAGE_SHARING
4226
4227# ifdef VBOX_STRICT
4228/**
4229 * For checksumming shared pages in strict builds.
4230 *
4231 * The purpose is making sure that a page doesn't change.
4232 *
4233 * @returns Checksum, 0 on failure.
4234 * @param GMM The GMM instance data.
4235 * @param idPage The page ID.
4236 */
4237static uint32_t gmmR0StrictPageChecksum(PGMM pGMM, PGVM pGVM, uint32_t idPage)
4238{
4239 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
4240 AssertMsgReturn(pChunk, ("idPage=%#x\n", idPage), 0);
4241
4242 uint8_t *pbChunk;
4243 if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk))
4244 return 0;
4245 uint8_t const *pbPage = pbChunk + ((idPage & GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
4246
4247 return RTCrc32(pbPage, PAGE_SIZE);
4248}
4249# endif /* VBOX_STRICT */
4250
4251
4252/**
4253 * Calculates the module hash value.
4254 *
4255 * @returns Hash value.
4256 * @param pszModuleName The module name.
4257 * @param pszVersion The module version string.
4258 */
4259static uint32_t gmmR0ShModCalcHash(const char *pszModuleName, const char *pszVersion)
4260{
4261 return RTStrHash1ExN(3, pszModuleName, RTSTR_MAX, "::", (size_t)2, pszVersion, RTSTR_MAX);
4262}
4263
4264
4265/**
4266 * Finds a global module.
4267 *
4268 * @returns Pointer to the global module on success, NULL if not found.
4269 * @param pGMM The GMM instance data.
4270 * @param uHash The hash as calculated by gmmR0ShModCalcHash.
4271 * @param cbModule The module size.
4272 * @param enmGuestOS The guest OS type.
4273 * @param pszModuleName The module name.
4274 * @param pszVersion The module version.
4275 */
4276static PGMMSHAREDMODULE gmmR0ShModFindGlobal(PGMM pGMM, uint32_t uHash, uint32_t cbModule, VBOXOSFAMILY enmGuestOS,
4277 uint32_t cRegions, const char *pszModuleName, const char *pszVersion,
4278 struct VMMDEVSHAREDREGIONDESC const *paRegions)
4279{
4280 for (PGMMSHAREDMODULE pGblMod = (PGMMSHAREDMODULE)RTAvllU32Get(&pGMM->pGlobalSharedModuleTree, uHash);
4281 pGblMod;
4282 pGblMod = (PGMMSHAREDMODULE)pGblMod->Core.pList)
4283 {
4284 if (pGblMod->cbModule != cbModule)
4285 continue;
4286 if (pGblMod->enmGuestOS != enmGuestOS)
4287 continue;
4288 if (pGblMod->cRegions != cRegions)
4289 continue;
4290 if (strcmp(pGblMod->szName, pszModuleName))
4291 continue;
4292 if (strcmp(pGblMod->szVersion, pszVersion))
4293 continue;
4294
4295 uint32_t i;
4296 for (i = 0; i < cRegions; i++)
4297 {
4298 uint32_t off = paRegions[i].GCRegionAddr & PAGE_OFFSET_MASK;
4299 if (pGblMod->aRegions[i].off != off)
4300 break;
4301
4302 uint32_t cb = RT_ALIGN_32(paRegions[i].cbRegion + off, PAGE_SIZE);
4303 if (pGblMod->aRegions[i].cb != cb)
4304 break;
4305 }
4306
4307 if (i == cRegions)
4308 return pGblMod;
4309 }
4310
4311 return NULL;
4312}
4313
4314
4315/**
4316 * Creates a new global module.
4317 *
4318 * @returns VBox status code.
4319 * @param pGMM The GMM instance data.
4320 * @param uHash The hash as calculated by gmmR0ShModCalcHash.
4321 * @param cbModule The module size.
4322 * @param enmGuestOS The guest OS type.
4323 * @param cRegions The number of regions.
4324 * @param pszModuleName The module name.
4325 * @param pszVersion The module version.
4326 * @param paRegions The region descriptions.
4327 * @param ppGblMod Where to return the new module on success.
4328 */
4329static int gmmR0ShModNewGlobal(PGMM pGMM, uint32_t uHash, uint32_t cbModule, VBOXOSFAMILY enmGuestOS,
4330 uint32_t cRegions, const char *pszModuleName, const char *pszVersion,
4331 struct VMMDEVSHAREDREGIONDESC const *paRegions, PGMMSHAREDMODULE *ppGblMod)
4332{
4333 Log(("gmmR0ShModNewGlobal: %s %s size %#x os %u rgn %u\n", pszModuleName, pszVersion, cbModule, cRegions));
4334 if (pGMM->cShareableModules >= GMM_MAX_SHARED_GLOBAL_MODULES)
4335 {
4336 Log(("gmmR0ShModNewGlobal: Too many modules\n"));
4337 return VERR_GMM_TOO_MANY_GLOBAL_MODULES;
4338 }
4339
4340 PGMMSHAREDMODULE pGblMod = (PGMMSHAREDMODULE)RTMemAllocZ(RT_OFFSETOF(GMMSHAREDMODULE, aRegions[cRegions]));
4341 if (!pGblMod)
4342 {
4343 Log(("gmmR0ShModNewGlobal: No memory\n"));
4344 return VERR_NO_MEMORY;
4345 }
4346
4347 pGblMod->Core.Key = uHash;
4348 pGblMod->cbModule = cbModule;
4349 pGblMod->cRegions = cRegions;
4350 pGblMod->cUsers = 1;
4351 pGblMod->enmGuestOS = enmGuestOS;
4352 strcpy(pGblMod->szName, pszModuleName);
4353 strcpy(pGblMod->szVersion, pszVersion);
4354
4355 for (uint32_t i = 0; i < cRegions; i++)
4356 {
4357 Log(("gmmR0ShModNewGlobal: rgn[%u]=%RGvLB%#x\n", i, paRegions[i].GCRegionAddr, paRegions[i].cbRegion));
4358 pGblMod->aRegions[i].off = paRegions[i].GCRegionAddr & PAGE_OFFSET_MASK;
4359 pGblMod->aRegions[i].cb = paRegions[i].cbRegion + pGblMod->aRegions[i].off;
4360 pGblMod->aRegions[i].cb = RT_ALIGN_32(pGblMod->aRegions[i].cb, PAGE_SIZE);
4361 pGblMod->aRegions[i].paidPages = NULL; /* allocated when needed. */
4362 }
4363
4364 bool fInsert = RTAvllU32Insert(&pGMM->pGlobalSharedModuleTree, &pGblMod->Core);
4365 Assert(fInsert); NOREF(fInsert);
4366 pGMM->cShareableModules++;
4367
4368 *ppGblMod = pGblMod;
4369 return VINF_SUCCESS;
4370}
4371
4372
4373/**
4374 * Deletes a global module which is no longer referenced by anyone.
4375 *
4376 * @param pGMM The GMM instance data.
4377 * @param pGblMod The module to delete.
4378 */
4379static void gmmR0ShModDeleteGlobal(PGMM pGMM, PGMMSHAREDMODULE pGblMod)
4380{
4381 Assert(pGblMod->cUsers == 0);
4382 Assert(pGMM->cShareableModules > 0 && pGMM->cShareableModules <= GMM_MAX_SHARED_GLOBAL_MODULES);
4383
4384 void *pvTest = RTAvllU32RemoveNode(&pGMM->pGlobalSharedModuleTree, &pGblMod->Core);
4385 Assert(pvTest == pGblMod); NOREF(pvTest);
4386 pGMM->cShareableModules--;
4387
4388 uint32_t i = pGblMod->cRegions;
4389 while (i-- > 0)
4390 {
4391 if (pGblMod->aRegions[i].paidPages)
4392 {
4393 /* We don't doing anything to the pages as they are handled by the
4394 copy-on-write mechanism in PGM. */
4395 RTMemFree(pGblMod->aRegions[i].paidPages);
4396 pGblMod->aRegions[i].paidPages = NULL;
4397 }
4398 }
4399 RTMemFree(pGblMod);
4400}
4401
4402
4403static int gmmR0ShModNewPerVM(PGVM pGVM, RTGCPTR GCBaseAddr, uint32_t cRegions, const VMMDEVSHAREDREGIONDESC *paRegions,
4404 PGMMSHAREDMODULEPERVM *ppRecVM)
4405{
4406 if (pGVM->gmm.s.Stats.cShareableModules >= GMM_MAX_SHARED_PER_VM_MODULES)
4407 return VERR_GMM_TOO_MANY_PER_VM_MODULES;
4408
4409 PGMMSHAREDMODULEPERVM pRecVM;
4410 pRecVM = (PGMMSHAREDMODULEPERVM)RTMemAllocZ(RT_OFFSETOF(GMMSHAREDMODULEPERVM, aRegionsGCPtrs[cRegions]));
4411 if (!pRecVM)
4412 return VERR_NO_MEMORY;
4413
4414 pRecVM->Core.Key = GCBaseAddr;
4415 for (uint32_t i = 0; i < cRegions; i++)
4416 pRecVM->aRegionsGCPtrs[i] = paRegions[i].GCRegionAddr;
4417
4418 bool fInsert = RTAvlGCPtrInsert(&pGVM->gmm.s.pSharedModuleTree, &pRecVM->Core);
4419 Assert(fInsert); NOREF(fInsert);
4420 pGVM->gmm.s.Stats.cShareableModules++;
4421
4422 *ppRecVM = pRecVM;
4423 return VINF_SUCCESS;
4424}
4425
4426
4427static void gmmR0ShModDeletePerVM(PGMM pGMM, PGVM pGVM, PGMMSHAREDMODULEPERVM pRecVM, bool fRemove)
4428{
4429 /*
4430 * Free the per-VM module.
4431 */
4432 PGMMSHAREDMODULE pGblMod = pRecVM->pGlobalModule;
4433 pRecVM->pGlobalModule = NULL;
4434
4435 if (fRemove)
4436 {
4437 void *pvTest = RTAvlGCPtrRemove(&pGVM->gmm.s.pSharedModuleTree, pRecVM->Core.Key);
4438 Assert(pvTest == &pRecVM->Core);
4439 }
4440
4441 RTMemFree(pRecVM);
4442
4443 /*
4444 * Release the global module.
4445 * (In the registration bailout case, it might not be.)
4446 */
4447 if (pGblMod)
4448 {
4449 Assert(pGblMod->cUsers > 0);
4450 pGblMod->cUsers--;
4451 if (pGblMod->cUsers == 0)
4452 gmmR0ShModDeleteGlobal(pGMM, pGblMod);
4453 }
4454}
4455
4456#endif /* VBOX_WITH_PAGE_SHARING */
4457
4458/**
4459 * Registers a new shared module for the VM.
4460 *
4461 * @returns VBox status code.
4462 * @param pVM Pointer to the VM.
4463 * @param idCpu The VCPU id.
4464 * @param enmGuestOS The guest OS type.
4465 * @param pszModuleName The module name.
4466 * @param pszVersion The module version.
4467 * @param GCPtrModBase The module base address.
4468 * @param cbModule The module size.
4469 * @param cRegions The mumber of shared region descriptors.
4470 * @param paRegions Pointer to an array of shared region(s).
4471 */
4472GMMR0DECL(int) GMMR0RegisterSharedModule(PVM pVM, VMCPUID idCpu, VBOXOSFAMILY enmGuestOS, char *pszModuleName,
4473 char *pszVersion, RTGCPTR GCPtrModBase, uint32_t cbModule,
4474 uint32_t cRegions, struct VMMDEVSHAREDREGIONDESC const *paRegions)
4475{
4476#ifdef VBOX_WITH_PAGE_SHARING
4477 /*
4478 * Validate input and get the basics.
4479 *
4480 * Note! Turns out the module size does necessarily match the size of the
4481 * regions. (iTunes on XP)
4482 */
4483 PGMM pGMM;
4484 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
4485 PGVM pGVM;
4486 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
4487 if (RT_FAILURE(rc))
4488 return rc;
4489
4490 if (RT_UNLIKELY(cRegions > VMMDEVSHAREDREGIONDESC_MAX))
4491 return VERR_GMM_TOO_MANY_REGIONS;
4492
4493 if (RT_UNLIKELY(cbModule == 0 || cbModule > _1G))
4494 return VERR_GMM_BAD_SHARED_MODULE_SIZE;
4495
4496 uint32_t cbTotal = 0;
4497 for (uint32_t i = 0; i < cRegions; i++)
4498 {
4499 if (RT_UNLIKELY(paRegions[i].cbRegion == 0 || paRegions[i].cbRegion > _1G))
4500 return VERR_GMM_SHARED_MODULE_BAD_REGIONS_SIZE;
4501
4502 cbTotal += paRegions[i].cbRegion;
4503 if (RT_UNLIKELY(cbTotal > _1G))
4504 return VERR_GMM_SHARED_MODULE_BAD_REGIONS_SIZE;
4505 }
4506
4507 AssertPtrReturn(pszModuleName, VERR_INVALID_POINTER);
4508 if (RT_UNLIKELY(!memchr(pszModuleName, '\0', GMM_SHARED_MODULE_MAX_NAME_STRING)))
4509 return VERR_GMM_MODULE_NAME_TOO_LONG;
4510
4511 AssertPtrReturn(pszVersion, VERR_INVALID_POINTER);
4512 if (RT_UNLIKELY(!memchr(pszVersion, '\0', GMM_SHARED_MODULE_MAX_VERSION_STRING)))
4513 return VERR_GMM_MODULE_NAME_TOO_LONG;
4514
4515 uint32_t const uHash = gmmR0ShModCalcHash(pszModuleName, pszVersion);
4516 Log(("GMMR0RegisterSharedModule %s %s base %RGv size %x hash %x\n", pszModuleName, pszVersion, GCPtrModBase, cbModule, uHash));
4517
4518 /*
4519 * Take the semaphore and do some more validations.
4520 */
4521 gmmR0MutexAcquire(pGMM);
4522 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
4523 {
4524 /*
4525 * Check if this module is already locally registered and register
4526 * it if it isn't. The base address is a unique module identifier
4527 * locally.
4528 */
4529 PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)RTAvlGCPtrGet(&pGVM->gmm.s.pSharedModuleTree, GCPtrModBase);
4530 bool fNewModule = pRecVM == NULL;
4531 if (fNewModule)
4532 {
4533 rc = gmmR0ShModNewPerVM(pGVM, GCPtrModBase, cRegions, paRegions, &pRecVM);
4534 if (RT_SUCCESS(rc))
4535 {
4536 /*
4537 * Find a matching global module, register a new one if needed.
4538 */
4539 PGMMSHAREDMODULE pGblMod = gmmR0ShModFindGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions,
4540 pszModuleName, pszVersion, paRegions);
4541 if (!pGblMod)
4542 {
4543 Assert(fNewModule);
4544 rc = gmmR0ShModNewGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions,
4545 pszModuleName, pszVersion, paRegions, &pGblMod);
4546 if (RT_SUCCESS(rc))
4547 {
4548 pRecVM->pGlobalModule = pGblMod; /* (One referenced returned by gmmR0ShModNewGlobal.) */
4549 Log(("GMMR0RegisterSharedModule: new module %s %s\n", pszModuleName, pszVersion));
4550 }
4551 else
4552 gmmR0ShModDeletePerVM(pGMM, pGVM, pRecVM, true /*fRemove*/);
4553 }
4554 else
4555 {
4556 Assert(pGblMod->cUsers > 0 && pGblMod->cUsers < UINT32_MAX / 2);
4557 pGblMod->cUsers++;
4558 pRecVM->pGlobalModule = pGblMod;
4559
4560 Log(("GMMR0RegisterSharedModule: new per vm module %s %s, gbl users %d\n", pszModuleName, pszVersion, pGblMod->cUsers));
4561 }
4562 }
4563 }
4564 else
4565 {
4566 /*
4567 * Attempt to re-register an existing module.
4568 */
4569 PGMMSHAREDMODULE pGblMod = gmmR0ShModFindGlobal(pGMM, uHash, cbModule, enmGuestOS, cRegions,
4570 pszModuleName, pszVersion, paRegions);
4571 if (pRecVM->pGlobalModule == pGblMod)
4572 {
4573 Log(("GMMR0RegisterSharedModule: already registered %s %s, gbl users %d\n", pszModuleName, pszVersion, pGblMod->cUsers));
4574 rc = VINF_GMM_SHARED_MODULE_ALREADY_REGISTERED;
4575 }
4576 else
4577 {
4578 /** @todo may have to unregister+register when this happens in case it's caused
4579 * by VBoxService crashing and being restarted... */
4580 Log(("GMMR0RegisterSharedModule: Address clash!\n"
4581 " incoming at %RGvLB%#x %s %s rgns %u\n"
4582 " existing at %RGvLB%#x %s %s rgns %u\n",
4583 GCPtrModBase, cbModule, pszModuleName, pszVersion, cRegions,
4584 pRecVM->Core.Key, pRecVM->pGlobalModule->cbModule, pRecVM->pGlobalModule->szName,
4585 pRecVM->pGlobalModule->szVersion, pRecVM->pGlobalModule->cRegions));
4586 rc = VERR_GMM_SHARED_MODULE_ADDRESS_CLASH;
4587 }
4588 }
4589 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
4590 }
4591 else
4592 rc = VERR_GMM_IS_NOT_SANE;
4593
4594 gmmR0MutexRelease(pGMM);
4595 return rc;
4596#else
4597
4598 NOREF(pVM); NOREF(idCpu); NOREF(enmGuestOS); NOREF(pszModuleName); NOREF(pszVersion);
4599 NOREF(GCPtrModBase); NOREF(cbModule); NOREF(cRegions); NOREF(paRegions);
4600 return VERR_NOT_IMPLEMENTED;
4601#endif
4602}
4603
4604
4605/**
4606 * VMMR0 request wrapper for GMMR0RegisterSharedModule.
4607 *
4608 * @returns see GMMR0RegisterSharedModule.
4609 * @param pVM Pointer to the VM.
4610 * @param idCpu The VCPU id.
4611 * @param pReq Pointer to the request packet.
4612 */
4613GMMR0DECL(int) GMMR0RegisterSharedModuleReq(PVM pVM, VMCPUID idCpu, PGMMREGISTERSHAREDMODULEREQ pReq)
4614{
4615 /*
4616 * Validate input and pass it on.
4617 */
4618 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
4619 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
4620 AssertMsgReturn(pReq->Hdr.cbReq >= sizeof(*pReq) && pReq->Hdr.cbReq == RT_UOFFSETOF(GMMREGISTERSHAREDMODULEREQ, aRegions[pReq->cRegions]), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
4621
4622 /* Pass back return code in the request packet to preserve informational codes. (VMMR3CallR0 chokes on them) */
4623 pReq->rc = GMMR0RegisterSharedModule(pVM, idCpu, pReq->enmGuestOS, pReq->szName, pReq->szVersion,
4624 pReq->GCBaseAddr, pReq->cbModule, pReq->cRegions, pReq->aRegions);
4625 return VINF_SUCCESS;
4626}
4627
4628
4629/**
4630 * Unregisters a shared module for the VM
4631 *
4632 * @returns VBox status code.
4633 * @param pVM Pointer to the VM.
4634 * @param idCpu The VCPU id.
4635 * @param pszModuleName The module name.
4636 * @param pszVersion The module version.
4637 * @param GCPtrModBase The module base address.
4638 * @param cbModule The module size.
4639 */
4640GMMR0DECL(int) GMMR0UnregisterSharedModule(PVM pVM, VMCPUID idCpu, char *pszModuleName, char *pszVersion,
4641 RTGCPTR GCPtrModBase, uint32_t cbModule)
4642{
4643#ifdef VBOX_WITH_PAGE_SHARING
4644 /*
4645 * Validate input and get the basics.
4646 */
4647 PGMM pGMM;
4648 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
4649 PGVM pGVM;
4650 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
4651 if (RT_FAILURE(rc))
4652 return rc;
4653
4654 AssertPtrReturn(pszModuleName, VERR_INVALID_POINTER);
4655 AssertPtrReturn(pszVersion, VERR_INVALID_POINTER);
4656 if (RT_UNLIKELY(!memchr(pszModuleName, '\0', GMM_SHARED_MODULE_MAX_NAME_STRING)))
4657 return VERR_GMM_MODULE_NAME_TOO_LONG;
4658 if (RT_UNLIKELY(!memchr(pszVersion, '\0', GMM_SHARED_MODULE_MAX_VERSION_STRING)))
4659 return VERR_GMM_MODULE_NAME_TOO_LONG;
4660
4661 Log(("GMMR0UnregisterSharedModule %s %s base=%RGv size %x\n", pszModuleName, pszVersion, GCPtrModBase, cbModule));
4662
4663 /*
4664 * Take the semaphore and do some more validations.
4665 */
4666 gmmR0MutexAcquire(pGMM);
4667 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
4668 {
4669 /*
4670 * Locate and remove the specified module.
4671 */
4672 PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)RTAvlGCPtrGet(&pGVM->gmm.s.pSharedModuleTree, GCPtrModBase);
4673 if (pRecVM)
4674 {
4675 /** @todo Do we need to do more validations here, like that the
4676 * name + version + cbModule matches? */
4677 Assert(pRecVM->pGlobalModule);
4678 gmmR0ShModDeletePerVM(pGMM, pGVM, pRecVM, true /*fRemove*/);
4679 }
4680 else
4681 rc = VERR_GMM_SHARED_MODULE_NOT_FOUND;
4682
4683 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
4684 }
4685 else
4686 rc = VERR_GMM_IS_NOT_SANE;
4687
4688 gmmR0MutexRelease(pGMM);
4689 return rc;
4690#else
4691
4692 NOREF(pVM); NOREF(idCpu); NOREF(pszModuleName); NOREF(pszVersion); NOREF(GCPtrModBase); NOREF(cbModule);
4693 return VERR_NOT_IMPLEMENTED;
4694#endif
4695}
4696
4697
4698/**
4699 * VMMR0 request wrapper for GMMR0UnregisterSharedModule.
4700 *
4701 * @returns see GMMR0UnregisterSharedModule.
4702 * @param pVM Pointer to the VM.
4703 * @param idCpu The VCPU id.
4704 * @param pReq Pointer to the request packet.
4705 */
4706GMMR0DECL(int) GMMR0UnregisterSharedModuleReq(PVM pVM, VMCPUID idCpu, PGMMUNREGISTERSHAREDMODULEREQ pReq)
4707{
4708 /*
4709 * Validate input and pass it on.
4710 */
4711 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
4712 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
4713 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
4714
4715 return GMMR0UnregisterSharedModule(pVM, idCpu, pReq->szName, pReq->szVersion, pReq->GCBaseAddr, pReq->cbModule);
4716}
4717
4718#ifdef VBOX_WITH_PAGE_SHARING
4719
4720/**
4721 * Increase the use count of a shared page, the page is known to exist and be valid and such.
4722 *
4723 * @param pGMM Pointer to the GMM instance.
4724 * @param pGVM Pointer to the GVM instance.
4725 * @param pPage The page structure.
4726 */
4727DECLINLINE(void) gmmR0UseSharedPage(PGMM pGMM, PGVM pGVM, PGMMPAGE pPage)
4728{
4729 Assert(pGMM->cSharedPages > 0);
4730 Assert(pGMM->cAllocatedPages > 0);
4731
4732 pGMM->cDuplicatePages++;
4733
4734 pPage->Shared.cRefs++;
4735 pGVM->gmm.s.Stats.cSharedPages++;
4736 pGVM->gmm.s.Stats.Allocated.cBasePages++;
4737}
4738
4739
4740/**
4741 * Converts a private page to a shared page, the page is known to exist and be valid and such.
4742 *
4743 * @param pGMM Pointer to the GMM instance.
4744 * @param pGVM Pointer to the GVM instance.
4745 * @param HCPhys Host physical address
4746 * @param idPage The Page ID
4747 * @param pPage The page structure.
4748 */
4749DECLINLINE(void) gmmR0ConvertToSharedPage(PGMM pGMM, PGVM pGVM, RTHCPHYS HCPhys, uint32_t idPage, PGMMPAGE pPage,
4750 PGMMSHAREDPAGEDESC pPageDesc)
4751{
4752 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT);
4753 Assert(pChunk);
4754 Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES);
4755 Assert(GMM_PAGE_IS_PRIVATE(pPage));
4756
4757 pChunk->cPrivate--;
4758 pChunk->cShared++;
4759
4760 pGMM->cSharedPages++;
4761
4762 pGVM->gmm.s.Stats.cSharedPages++;
4763 pGVM->gmm.s.Stats.cPrivatePages--;
4764
4765 /* Modify the page structure. */
4766 pPage->Shared.pfn = (uint32_t)(uint64_t)(HCPhys >> PAGE_SHIFT);
4767 pPage->Shared.cRefs = 1;
4768#ifdef VBOX_STRICT
4769 pPageDesc->u32StrictChecksum = gmmR0StrictPageChecksum(pGMM, pGVM, idPage);
4770 pPage->Shared.u14Checksum = pPageDesc->u32StrictChecksum;
4771#else
4772 pPage->Shared.u14Checksum = 0;
4773#endif
4774 pPage->Shared.u2State = GMM_PAGE_STATE_SHARED;
4775}
4776
4777
4778static int gmmR0SharedModuleCheckPageFirstTime(PGMM pGMM, PGVM pGVM, PGMMSHAREDMODULE pModule,
4779 unsigned idxRegion, unsigned idxPage,
4780 PGMMSHAREDPAGEDESC pPageDesc, PGMMSHAREDREGIONDESC pGlobalRegion)
4781{
4782 /* Easy case: just change the internal page type. */
4783 PGMMPAGE pPage = gmmR0GetPage(pGMM, pPageDesc->idPage);
4784 AssertMsgReturn(pPage, ("idPage=%#x (GCPhys=%RGp HCPhys=%RHp idxRegion=%#x idxPage=%#x) #1\n",
4785 pPageDesc->idPage, pPageDesc->GCPhys, pPageDesc->HCPhys, idxRegion, idxPage),
4786 VERR_PGM_PHYS_INVALID_PAGE_ID);
4787
4788 AssertMsg(pPageDesc->GCPhys == (pPage->Private.pfn << 12), ("desc %RGp gmm %RGp\n", pPageDesc->HCPhys, (pPage->Private.pfn << 12)));
4789
4790 gmmR0ConvertToSharedPage(pGMM, pGVM, pPageDesc->HCPhys, pPageDesc->idPage, pPage, pPageDesc);
4791
4792 /* Keep track of these references. */
4793 pGlobalRegion->paidPages[idxPage] = pPageDesc->idPage;
4794
4795 return VINF_SUCCESS;
4796}
4797
4798/**
4799 * Checks specified shared module range for changes
4800 *
4801 * Performs the following tasks:
4802 * - If a shared page is new, then it changes the GMM page type to shared and
4803 * returns it in the pPageDesc descriptor.
4804 * - If a shared page already exists, then it checks if the VM page is
4805 * identical and if so frees the VM page and returns the shared page in
4806 * pPageDesc descriptor.
4807 *
4808 * @remarks ASSUMES the caller has acquired the GMM semaphore!!
4809 *
4810 * @returns VBox status code.
4811 * @param pGMM Pointer to the GMM instance data.
4812 * @param pGVM Pointer to the GVM instance data.
4813 * @param pModule Module description
4814 * @param idxRegion Region index
4815 * @param idxPage Page index
4816 * @param paPageDesc Page descriptor
4817 */
4818GMMR0DECL(int) GMMR0SharedModuleCheckPage(PGVM pGVM, PGMMSHAREDMODULE pModule, uint32_t idxRegion, uint32_t idxPage,
4819 PGMMSHAREDPAGEDESC pPageDesc)
4820{
4821 int rc;
4822 PGMM pGMM;
4823 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
4824 pPageDesc->u32StrictChecksum = 0;
4825
4826 AssertMsgReturn(idxRegion < pModule->cRegions,
4827 ("idxRegion=%#x cRegions=%#x %s %s\n", idxRegion, pModule->cRegions, pModule->szName, pModule->szVersion),
4828 VERR_INVALID_PARAMETER);
4829
4830 uint32_t const cPages = pModule->aRegions[idxRegion].cb >> PAGE_SHIFT;
4831 AssertMsgReturn(idxPage < cPages,
4832 ("idxRegion=%#x cRegions=%#x %s %s\n", idxRegion, pModule->cRegions, pModule->szName, pModule->szVersion),
4833 VERR_INVALID_PARAMETER);
4834
4835 LogFlow(("GMMR0SharedModuleCheckRange %s base %RGv region %d idxPage %d\n", pModule->szName, pModule->Core.Key, idxRegion, idxPage));
4836
4837 /*
4838 * First time; create a page descriptor array.
4839 */
4840 PGMMSHAREDREGIONDESC pGlobalRegion = &pModule->aRegions[idxRegion];
4841 if (!pGlobalRegion->paidPages)
4842 {
4843 Log(("Allocate page descriptor array for %d pages\n", cPages));
4844 pGlobalRegion->paidPages = (uint32_t *)RTMemAlloc(cPages * sizeof(pGlobalRegion->paidPages[0]));
4845 AssertReturn(pGlobalRegion->paidPages, VERR_NO_MEMORY);
4846
4847 /* Invalidate all descriptors. */
4848 uint32_t i = cPages;
4849 while (i-- > 0)
4850 pGlobalRegion->paidPages[i] = NIL_GMM_PAGEID;
4851 }
4852
4853 /*
4854 * We've seen this shared page for the first time?
4855 */
4856 if (pGlobalRegion->paidPages[idxPage] == NIL_GMM_PAGEID)
4857 {
4858 Log(("New shared page guest %RGp host %RHp\n", pPageDesc->GCPhys, pPageDesc->HCPhys));
4859 return gmmR0SharedModuleCheckPageFirstTime(pGMM, pGVM, pModule, idxRegion, idxPage, pPageDesc, pGlobalRegion);
4860 }
4861
4862 /*
4863 * We've seen it before...
4864 */
4865 Log(("Replace existing page guest %RGp host %RHp id %#x -> id %#x\n",
4866 pPageDesc->GCPhys, pPageDesc->HCPhys, pPageDesc->idPage, pGlobalRegion->paidPages[idxPage]));
4867 Assert(pPageDesc->idPage != pGlobalRegion->paidPages[idxPage]);
4868
4869 /*
4870 * Get the shared page source.
4871 */
4872 PGMMPAGE pPage = gmmR0GetPage(pGMM, pGlobalRegion->paidPages[idxPage]);
4873 AssertMsgReturn(pPage, ("idPage=%#x (idxRegion=%#x idxPage=%#x) #2\n", pPageDesc->idPage, idxRegion, idxPage),
4874 VERR_PGM_PHYS_INVALID_PAGE_ID);
4875
4876 if (pPage->Common.u2State != GMM_PAGE_STATE_SHARED)
4877 {
4878 /*
4879 * Page was freed at some point; invalidate this entry.
4880 */
4881 /** @todo this isn't really bullet proof. */
4882 Log(("Old shared page was freed -> create a new one\n"));
4883 pGlobalRegion->paidPages[idxPage] = NIL_GMM_PAGEID;
4884 return gmmR0SharedModuleCheckPageFirstTime(pGMM, pGVM, pModule, idxRegion, idxPage, pPageDesc, pGlobalRegion);
4885 }
4886
4887 Log(("Replace existing page guest host %RHp -> %RHp\n", pPageDesc->HCPhys, ((uint64_t)pPage->Shared.pfn) << PAGE_SHIFT));
4888
4889 /*
4890 * Calculate the virtual address of the local page.
4891 */
4892 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pPageDesc->idPage >> GMM_CHUNKID_SHIFT);
4893 AssertMsgReturn(pChunk, ("idPage=%#x (idxRegion=%#x idxPage=%#x) #4\n", pPageDesc->idPage, idxRegion, idxPage),
4894 VERR_PGM_PHYS_INVALID_PAGE_ID);
4895
4896 uint8_t *pbChunk;
4897 AssertMsgReturn(gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk),
4898 ("idPage=%#x (idxRegion=%#x idxPage=%#x) #3\n", pPageDesc->idPage, idxRegion, idxPage),
4899 VERR_PGM_PHYS_INVALID_PAGE_ID);
4900 uint8_t *pbLocalPage = pbChunk + ((pPageDesc->idPage & GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
4901
4902 /*
4903 * Calculate the virtual address of the shared page.
4904 */
4905 pChunk = gmmR0GetChunk(pGMM, pGlobalRegion->paidPages[idxPage] >> GMM_CHUNKID_SHIFT);
4906 Assert(pChunk); /* can't fail as gmmR0GetPage succeeded. */
4907
4908 /*
4909 * Get the virtual address of the physical page; map the chunk into the VM
4910 * process if not already done.
4911 */
4912 if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk))
4913 {
4914 Log(("Map chunk into process!\n"));
4915 rc = gmmR0MapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/, (PRTR3PTR)&pbChunk);
4916 AssertRCReturn(rc, rc);
4917 }
4918 uint8_t *pbSharedPage = pbChunk + ((pGlobalRegion->paidPages[idxPage] & GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
4919
4920#ifdef VBOX_STRICT
4921 pPageDesc->u32StrictChecksum = RTCrc32(pbSharedPage, PAGE_SIZE);
4922 uint32_t uChecksum = pPageDesc->u32StrictChecksum & UINT32_C(0x00003fff);
4923 AssertMsg(!uChecksum || uChecksum == pPage->Shared.u14Checksum || !pPage->Shared.u14Checksum,
4924 ("%#x vs %#x - idPage=%# - %s %s\n", uChecksum, pPage->Shared.u14Checksum,
4925 pGlobalRegion->paidPages[idxPage], pModule->szName, pModule->szVersion));
4926#endif
4927
4928 /** @todo write ASMMemComparePage. */
4929 if (memcmp(pbSharedPage, pbLocalPage, PAGE_SIZE))
4930 {
4931 Log(("Unexpected differences found between local and shared page; skip\n"));
4932 /* Signal to the caller that this one hasn't changed. */
4933 pPageDesc->idPage = NIL_GMM_PAGEID;
4934 return VINF_SUCCESS;
4935 }
4936
4937 /*
4938 * Free the old local page.
4939 */
4940 GMMFREEPAGEDESC PageDesc;
4941 PageDesc.idPage = pPageDesc->idPage;
4942 rc = gmmR0FreePages(pGMM, pGVM, 1, &PageDesc, GMMACCOUNT_BASE);
4943 AssertRCReturn(rc, rc);
4944
4945 gmmR0UseSharedPage(pGMM, pGVM, pPage);
4946
4947 /*
4948 * Pass along the new physical address & page id.
4949 */
4950 pPageDesc->HCPhys = ((uint64_t)pPage->Shared.pfn) << PAGE_SHIFT;
4951 pPageDesc->idPage = pGlobalRegion->paidPages[idxPage];
4952
4953 return VINF_SUCCESS;
4954}
4955
4956
4957/**
4958 * RTAvlGCPtrDestroy callback.
4959 *
4960 * @returns 0 or VERR_GMM_INSTANCE.
4961 * @param pNode The node to destroy.
4962 * @param pvArgs Pointer to an argument packet.
4963 */
4964static DECLCALLBACK(int) gmmR0CleanupSharedModule(PAVLGCPTRNODECORE pNode, void *pvArgs)
4965{
4966 gmmR0ShModDeletePerVM(((GMMR0SHMODPERVMDTORARGS *)pvArgs)->pGMM,
4967 ((GMMR0SHMODPERVMDTORARGS *)pvArgs)->pGVM,
4968 (PGMMSHAREDMODULEPERVM)pNode,
4969 false /*fRemove*/);
4970 return VINF_SUCCESS;
4971}
4972
4973
4974/**
4975 * Used by GMMR0CleanupVM to clean up shared modules.
4976 *
4977 * This is called without taking the GMM lock so that it can be yielded as
4978 * needed here.
4979 *
4980 * @param pGMM The GMM handle.
4981 * @param pGVM The global VM handle.
4982 */
4983static void gmmR0SharedModuleCleanup(PGMM pGMM, PGVM pGVM)
4984{
4985 gmmR0MutexAcquire(pGMM);
4986 GMM_CHECK_SANITY_UPON_ENTERING(pGMM);
4987
4988 GMMR0SHMODPERVMDTORARGS Args;
4989 Args.pGVM = pGVM;
4990 Args.pGMM = pGMM;
4991 RTAvlGCPtrDestroy(&pGVM->gmm.s.pSharedModuleTree, gmmR0CleanupSharedModule, &Args);
4992
4993 AssertMsg(pGVM->gmm.s.Stats.cShareableModules == 0, ("%d\n", pGVM->gmm.s.Stats.cShareableModules));
4994 pGVM->gmm.s.Stats.cShareableModules = 0;
4995
4996 gmmR0MutexRelease(pGMM);
4997}
4998
4999#endif /* VBOX_WITH_PAGE_SHARING */
5000
5001/**
5002 * Removes all shared modules for the specified VM
5003 *
5004 * @returns VBox status code.
5005 * @param pVM Pointer to the VM.
5006 * @param idCpu The VCPU id.
5007 */
5008GMMR0DECL(int) GMMR0ResetSharedModules(PVM pVM, VMCPUID idCpu)
5009{
5010#ifdef VBOX_WITH_PAGE_SHARING
5011 /*
5012 * Validate input and get the basics.
5013 */
5014 PGMM pGMM;
5015 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
5016 PGVM pGVM;
5017 int rc = GVMMR0ByVMAndEMT(pVM, idCpu, &pGVM);
5018 if (RT_FAILURE(rc))
5019 return rc;
5020
5021 /*
5022 * Take the semaphore and do some more validations.
5023 */
5024 gmmR0MutexAcquire(pGMM);
5025 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
5026 {
5027 Log(("GMMR0ResetSharedModules\n"));
5028 GMMR0SHMODPERVMDTORARGS Args;
5029 Args.pGVM = pGVM;
5030 Args.pGMM = pGMM;
5031 RTAvlGCPtrDestroy(&pGVM->gmm.s.pSharedModuleTree, gmmR0CleanupSharedModule, &Args);
5032 pGVM->gmm.s.Stats.cShareableModules = 0;
5033
5034 rc = VINF_SUCCESS;
5035 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
5036 }
5037 else
5038 rc = VERR_GMM_IS_NOT_SANE;
5039
5040 gmmR0MutexRelease(pGMM);
5041 return rc;
5042#else
5043 NOREF(pVM); NOREF(idCpu);
5044 return VERR_NOT_IMPLEMENTED;
5045#endif
5046}
5047
5048#ifdef VBOX_WITH_PAGE_SHARING
5049
5050/**
5051 * Tree enumeration callback for checking a shared module.
5052 */
5053static DECLCALLBACK(int) gmmR0CheckSharedModule(PAVLGCPTRNODECORE pNode, void *pvUser)
5054{
5055 GMMCHECKSHAREDMODULEINFO *pArgs = (GMMCHECKSHAREDMODULEINFO*)pvUser;
5056 PGMMSHAREDMODULEPERVM pRecVM = (PGMMSHAREDMODULEPERVM)pNode;
5057 PGMMSHAREDMODULE pGblMod = pRecVM->pGlobalModule;
5058
5059 Log(("gmmR0CheckSharedModule: check %s %s base=%RGv size=%x\n",
5060 pGblMod->szName, pGblMod->szVersion, pGblMod->Core.Key, pGblMod->cbModule));
5061
5062 int rc = PGMR0SharedModuleCheck(pArgs->pGVM->pVM, pArgs->pGVM, pArgs->idCpu, pGblMod, pRecVM->aRegionsGCPtrs);
5063 if (RT_FAILURE(rc))
5064 return rc;
5065 return VINF_SUCCESS;
5066}
5067
5068#endif /* VBOX_WITH_PAGE_SHARING */
5069#ifdef DEBUG_sandervl
5070
5071/**
5072 * Setup for a GMMR0CheckSharedModules call (to allow log flush jumps back to ring 3)
5073 *
5074 * @returns VBox status code.
5075 * @param pVM Pointer to the VM.
5076 */
5077GMMR0DECL(int) GMMR0CheckSharedModulesStart(PVM pVM)
5078{
5079 /*
5080 * Validate input and get the basics.
5081 */
5082 PGMM pGMM;
5083 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
5084
5085 /*
5086 * Take the semaphore and do some more validations.
5087 */
5088 gmmR0MutexAcquire(pGMM);
5089 if (!GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
5090 rc = VERR_GMM_IS_NOT_SANE;
5091 else
5092 rc = VINF_SUCCESS;
5093
5094 return rc;
5095}
5096
5097/**
5098 * Clean up after a GMMR0CheckSharedModules call (to allow log flush jumps back to ring 3)
5099 *
5100 * @returns VBox status code.
5101 * @param pVM Pointer to the VM.
5102 */
5103GMMR0DECL(int) GMMR0CheckSharedModulesEnd(PVM pVM)
5104{
5105 /*
5106 * Validate input and get the basics.
5107 */
5108 PGMM pGMM;
5109 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
5110
5111 gmmR0MutexRelease(pGMM);
5112 return VINF_SUCCESS;
5113}
5114
5115#endif /* DEBUG_sandervl */
5116
5117/**
5118 * Check all shared modules for the specified VM.
5119 *
5120 * @returns VBox status code.
5121 * @param pVM Pointer to the VM.
5122 * @param pVCpu Pointer to the VMCPU.
5123 */
5124GMMR0DECL(int) GMMR0CheckSharedModules(PVM pVM, PVMCPU pVCpu)
5125{
5126#ifdef VBOX_WITH_PAGE_SHARING
5127 /*
5128 * Validate input and get the basics.
5129 */
5130 PGMM pGMM;
5131 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
5132 PGVM pGVM;
5133 int rc = GVMMR0ByVMAndEMT(pVM, pVCpu->idCpu, &pGVM);
5134 if (RT_FAILURE(rc))
5135 return rc;
5136
5137# ifndef DEBUG_sandervl
5138 /*
5139 * Take the semaphore and do some more validations.
5140 */
5141 gmmR0MutexAcquire(pGMM);
5142# endif
5143 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
5144 {
5145 /*
5146 * Walk the tree, checking each module.
5147 */
5148 Log(("GMMR0CheckSharedModules\n"));
5149
5150 GMMCHECKSHAREDMODULEINFO Args;
5151 Args.pGVM = pGVM;
5152 Args.idCpu = pVCpu->idCpu;
5153 rc = RTAvlGCPtrDoWithAll(&pGVM->gmm.s.pSharedModuleTree, true /* fFromLeft */, gmmR0CheckSharedModule, &Args);
5154
5155 Log(("GMMR0CheckSharedModules done!\n"));
5156 GMM_CHECK_SANITY_UPON_LEAVING(pGMM);
5157 }
5158 else
5159 rc = VERR_GMM_IS_NOT_SANE;
5160
5161# ifndef DEBUG_sandervl
5162 gmmR0MutexRelease(pGMM);
5163# endif
5164 return rc;
5165#else
5166 NOREF(pVM); NOREF(pVCpu);
5167 return VERR_NOT_IMPLEMENTED;
5168#endif
5169}
5170
5171#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
5172
5173/**
5174 * RTAvlU32DoWithAll callback.
5175 *
5176 * @returns 0
5177 * @param pNode The node to search.
5178 * @param pvUser Pointer to the input argument packet.
5179 */
5180static DECLCALLBACK(int) gmmR0FindDupPageInChunk(PAVLU32NODECORE pNode, void *pvUser)
5181{
5182 PGMMCHUNK pChunk = (PGMMCHUNK)pNode;
5183 GMMFINDDUPPAGEINFO *pArgs = (GMMFINDDUPPAGEINFO *)pvUser;
5184 PGVM pGVM = pArgs->pGVM;
5185 PGMM pGMM = pArgs->pGMM;
5186 uint8_t *pbChunk;
5187
5188 /* Only take chunks not mapped into this VM process; not entirely correct. */
5189 if (!gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk))
5190 {
5191 int rc = gmmR0MapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/, (PRTR3PTR)&pbChunk);
5192 if (RT_SUCCESS(rc))
5193 {
5194 /*
5195 * Look for duplicate pages
5196 */
5197 unsigned iPage = (GMM_CHUNK_SIZE >> PAGE_SHIFT);
5198 while (iPage-- > 0)
5199 {
5200 if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage]))
5201 {
5202 uint8_t *pbDestPage = pbChunk + (iPage << PAGE_SHIFT);
5203
5204 if (!memcmp(pArgs->pSourcePage, pbDestPage, PAGE_SIZE))
5205 {
5206 pArgs->fFoundDuplicate = true;
5207 break;
5208 }
5209 }
5210 }
5211 gmmR0UnmapChunk(pGMM, pGVM, pChunk, false /*fRelaxedSem*/);
5212 }
5213 }
5214 return pArgs->fFoundDuplicate; /* (stops search if true) */
5215}
5216
5217
5218/**
5219 * Find a duplicate of the specified page in other active VMs
5220 *
5221 * @returns VBox status code.
5222 * @param pVM Pointer to the VM.
5223 * @param pReq Pointer to the request packet.
5224 */
5225GMMR0DECL(int) GMMR0FindDuplicatePageReq(PVM pVM, PGMMFINDDUPLICATEPAGEREQ pReq)
5226{
5227 /*
5228 * Validate input and pass it on.
5229 */
5230 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
5231 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
5232 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
5233
5234 PGMM pGMM;
5235 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
5236
5237 PGVM pGVM;
5238 int rc = GVMMR0ByVM(pVM, &pGVM);
5239 if (RT_FAILURE(rc))
5240 return rc;
5241
5242 /*
5243 * Take the semaphore and do some more validations.
5244 */
5245 rc = gmmR0MutexAcquire(pGMM);
5246 if (GMM_CHECK_SANITY_UPON_ENTERING(pGMM))
5247 {
5248 uint8_t *pbChunk;
5249 PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, pReq->idPage >> GMM_CHUNKID_SHIFT);
5250 if (pChunk)
5251 {
5252 if (gmmR0IsChunkMapped(pGMM, pGVM, pChunk, (PRTR3PTR)&pbChunk))
5253 {
5254 uint8_t *pbSourcePage = pbChunk + ((pReq->idPage & GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
5255 PGMMPAGE pPage = gmmR0GetPage(pGMM, pReq->idPage);
5256 if (pPage)
5257 {
5258 GMMFINDDUPPAGEINFO Args;
5259 Args.pGVM = pGVM;
5260 Args.pGMM = pGMM;
5261 Args.pSourcePage = pbSourcePage;
5262 Args.fFoundDuplicate = false;
5263 RTAvlU32DoWithAll(&pGMM->pChunks, true /* fFromLeft */, gmmR0FindDupPageInChunk, &Args);
5264
5265 pReq->fDuplicate = Args.fFoundDuplicate;
5266 }
5267 else
5268 {
5269 AssertFailed();
5270 rc = VERR_PGM_PHYS_INVALID_PAGE_ID;
5271 }
5272 }
5273 else
5274 AssertFailed();
5275 }
5276 else
5277 AssertFailed();
5278 }
5279 else
5280 rc = VERR_GMM_IS_NOT_SANE;
5281
5282 gmmR0MutexRelease(pGMM);
5283 return rc;
5284}
5285
5286#endif /* VBOX_STRICT && HC_ARCH_BITS == 64 */
5287
5288
5289/**
5290 * Retrieves the GMM statistics visible to the caller.
5291 *
5292 * @returns VBox status code.
5293 *
5294 * @param pStats Where to put the statistics.
5295 * @param pSession The current session.
5296 * @param pVM Pointer to the VM to obtain statistics for. Optional.
5297 */
5298GMMR0DECL(int) GMMR0QueryStatistics(PGMMSTATS pStats, PSUPDRVSESSION pSession, PVM pVM)
5299{
5300 LogFlow(("GVMMR0QueryStatistics: pStats=%p pSession=%p pVM=%p\n", pStats, pSession, pVM));
5301
5302 /*
5303 * Validate input.
5304 */
5305 AssertPtrReturn(pSession, VERR_INVALID_POINTER);
5306 AssertPtrReturn(pStats, VERR_INVALID_POINTER);
5307 pStats->cMaxPages = 0; /* (crash before taking the mutex...) */
5308
5309 PGMM pGMM;
5310 GMM_GET_VALID_INSTANCE(pGMM, VERR_GMM_INSTANCE);
5311
5312 /*
5313 * Resolve the VM handle, if not NULL, and lock the GMM.
5314 */
5315 int rc;
5316 PGVM pGVM;
5317 if (pVM)
5318 {
5319 rc = GVMMR0ByVM(pVM, &pGVM);
5320 if (RT_FAILURE(rc))
5321 return rc;
5322 }
5323 else
5324 pGVM = NULL;
5325
5326 rc = gmmR0MutexAcquire(pGMM);
5327 if (RT_FAILURE(rc))
5328 return rc;
5329
5330 /*
5331 * Copy out the GMM statistics.
5332 */
5333 pStats->cMaxPages = pGMM->cMaxPages;
5334 pStats->cReservedPages = pGMM->cReservedPages;
5335 pStats->cOverCommittedPages = pGMM->cOverCommittedPages;
5336 pStats->cAllocatedPages = pGMM->cAllocatedPages;
5337 pStats->cSharedPages = pGMM->cSharedPages;
5338 pStats->cDuplicatePages = pGMM->cDuplicatePages;
5339 pStats->cLeftBehindSharedPages = pGMM->cLeftBehindSharedPages;
5340 pStats->cBalloonedPages = pGMM->cBalloonedPages;
5341 pStats->cChunks = pGMM->cChunks;
5342 pStats->cFreedChunks = pGMM->cFreedChunks;
5343 pStats->cShareableModules = pGMM->cShareableModules;
5344 RT_ZERO(pStats->au64Reserved);
5345
5346 /*
5347 * Copy out the VM statistics.
5348 */
5349 if (pGVM)
5350 pStats->VMStats = pGVM->gmm.s.Stats;
5351 else
5352 RT_ZERO(pStats->VMStats);
5353
5354 gmmR0MutexRelease(pGMM);
5355 return rc;
5356}
5357
5358
5359/**
5360 * VMMR0 request wrapper for GMMR0QueryStatistics.
5361 *
5362 * @returns see GMMR0QueryStatistics.
5363 * @param pVM Pointer to the VM. Optional.
5364 * @param pReq Pointer to the request packet.
5365 */
5366GMMR0DECL(int) GMMR0QueryStatisticsReq(PVM pVM, PGMMQUERYSTATISTICSSREQ pReq)
5367{
5368 /*
5369 * Validate input and pass it on.
5370 */
5371 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
5372 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
5373
5374 return GMMR0QueryStatistics(&pReq->Stats, pReq->pSession, pVM);
5375}
5376
5377
5378/**
5379 * Resets the specified GMM statistics.
5380 *
5381 * @returns VBox status code.
5382 *
5383 * @param pStats Which statistics to reset, that is, non-zero fields
5384 * indicates which to reset.
5385 * @param pSession The current session.
5386 * @param pVM The VM to reset statistics for. Optional.
5387 */
5388GMMR0DECL(int) GMMR0ResetStatistics(PCGMMSTATS pStats, PSUPDRVSESSION pSession, PVM pVM)
5389{
5390 /* Currently nothing we can reset at the moment. */
5391 return VINF_SUCCESS;
5392}
5393
5394
5395/**
5396 * VMMR0 request wrapper for GMMR0ResetStatistics.
5397 *
5398 * @returns see GMMR0ResetStatistics.
5399 * @param pVM Pointer to the VM. Optional.
5400 * @param pReq Pointer to the request packet.
5401 */
5402GMMR0DECL(int) GMMR0ResetStatisticsReq(PVM pVM, PGMMRESETSTATISTICSSREQ pReq)
5403{
5404 /*
5405 * Validate input and pass it on.
5406 */
5407 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
5408 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
5409
5410 return GMMR0ResetStatistics(&pReq->Stats, pReq->pSession, pVM);
5411}
5412
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette