VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/GVMMR0.cpp@ 67988

Last change on this file since 67988 was 67988, checked in by vboxsync, 7 years ago

GVMMR0: Moved the VMMR0ThreadCtxHookDestroyForEmt calls to the right place so we don't leak this on abends.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 104.2 KB
Line 
1/* $Id: GVMMR0.cpp 67988 2017-07-17 11:30:28Z vboxsync $ */
2/** @file
3 * GVMM - Global VM Manager.
4 */
5
6/*
7 * Copyright (C) 2007-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_gvmm GVMM - The Global VM Manager
20 *
21 * The Global VM Manager lives in ring-0. Its main function at the moment is
22 * to manage a list of all running VMs, keep a ring-0 only structure (GVM) for
23 * each of them, and assign them unique identifiers (so GMM can track page
24 * owners). The GVMM also manage some of the host CPU resources, like the
25 * periodic preemption timer.
26 *
27 * The GVMM will create a ring-0 object for each VM when it is registered, this
28 * is both for session cleanup purposes and for having a point where it is
29 * possible to implement usage polices later (in SUPR0ObjRegister).
30 *
31 *
32 * @section sec_gvmm_ppt Periodic Preemption Timer (PPT)
33 *
34 * On system that sports a high resolution kernel timer API, we use per-cpu
35 * timers to generate interrupts that preempts VT-x, AMD-V and raw-mode guest
36 * execution. The timer frequency is calculating by taking the max
37 * TMCalcHostTimerFrequency for all VMs running on a CPU for the last ~160 ms
38 * (RT_ELEMENTS((PGVMMHOSTCPU)0, Ppt.aHzHistory) *
39 * GVMMHOSTCPU_PPT_HIST_INTERVAL_NS).
40 *
41 * The TMCalcHostTimerFrequency() part of the things gets its takes the max
42 * TMTimerSetFrequencyHint() value and adjusts by the current catch-up percent,
43 * warp drive percent and some fudge factors. VMMR0.cpp reports the result via
44 * GVMMR0SchedUpdatePeriodicPreemptionTimer() before switching to the VT-x,
45 * AMD-V and raw-mode execution environments.
46 */
47
48
49/*********************************************************************************************************************************
50* Header Files *
51*********************************************************************************************************************************/
52#define LOG_GROUP LOG_GROUP_GVMM
53#include <VBox/vmm/gvmm.h>
54#include <VBox/vmm/gmm.h>
55#include "GVMMR0Internal.h"
56#include <VBox/vmm/gvm.h>
57#include <VBox/vmm/vm.h>
58#include <VBox/vmm/vmcpuset.h>
59#include <VBox/vmm/vmm.h>
60#include <VBox/param.h>
61#include <VBox/err.h>
62
63#include <iprt/asm.h>
64#include <iprt/asm-amd64-x86.h>
65#include <iprt/critsect.h>
66#include <iprt/mem.h>
67#include <iprt/semaphore.h>
68#include <iprt/time.h>
69#include <VBox/log.h>
70#include <iprt/thread.h>
71#include <iprt/process.h>
72#include <iprt/param.h>
73#include <iprt/string.h>
74#include <iprt/assert.h>
75#include <iprt/mem.h>
76#include <iprt/memobj.h>
77#include <iprt/mp.h>
78#include <iprt/cpuset.h>
79#include <iprt/spinlock.h>
80#include <iprt/timer.h>
81
82#include "dtrace/VBoxVMM.h"
83
84
85/*********************************************************************************************************************************
86* Defined Constants And Macros *
87*********************************************************************************************************************************/
88#if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS) || defined(DOXYGEN_RUNNING)
89/** Define this to enable the periodic preemption timer. */
90# define GVMM_SCHED_WITH_PPT
91#endif
92
93
94/** @def GVMM_CHECK_SMAP_SETUP
95 * SMAP check setup. */
96/** @def GVMM_CHECK_SMAP_CHECK
97 * Checks that the AC flag is set if SMAP is enabled. If AC is not set,
98 * it will be logged and @a a_BadExpr is executed. */
99/** @def GVMM_CHECK_SMAP_CHECK2
100 * Checks that the AC flag is set if SMAP is enabled. If AC is not set, it will
101 * be logged, written to the VMs assertion text buffer, and @a a_BadExpr is
102 * executed. */
103#if defined(VBOX_STRICT) || 1
104# define GVMM_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = SUPR0GetKernelFeatures()
105# define GVMM_CHECK_SMAP_CHECK(a_BadExpr) \
106 do { \
107 if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
108 { \
109 RTCCUINTREG fEflCheck = ASMGetFlags(); \
110 if (RT_LIKELY(fEflCheck & X86_EFL_AC)) \
111 { /* likely */ } \
112 else \
113 { \
114 SUPR0Printf("%s, line %d: EFLAGS.AC is clear! (%#x)\n", __FUNCTION__, __LINE__, (uint32_t)fEflCheck); \
115 a_BadExpr; \
116 } \
117 } \
118 } while (0)
119# define GVMM_CHECK_SMAP_CHECK2(a_pVM, a_BadExpr) \
120 do { \
121 if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
122 { \
123 RTCCUINTREG fEflCheck = ASMGetFlags(); \
124 if (RT_LIKELY(fEflCheck & X86_EFL_AC)) \
125 { /* likely */ } \
126 else \
127 { \
128 SUPR0BadContext((a_pVM) ? (a_pVM)->pSession : NULL, __FILE__, __LINE__, "EFLAGS.AC is zero!"); \
129 a_BadExpr; \
130 } \
131 } \
132 } while (0)
133#else
134# define GVMM_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = 0
135# define GVMM_CHECK_SMAP_CHECK(a_BadExpr) NOREF(fKernelFeatures)
136# define GVMM_CHECK_SMAP_CHECK2(a_pVM, a_BadExpr) NOREF(fKernelFeatures)
137#endif
138
139
140
141/*********************************************************************************************************************************
142* Structures and Typedefs *
143*********************************************************************************************************************************/
144
145/**
146 * Global VM handle.
147 */
148typedef struct GVMHANDLE
149{
150 /** The index of the next handle in the list (free or used). (0 is nil.) */
151 uint16_t volatile iNext;
152 /** Our own index / handle value. */
153 uint16_t iSelf;
154 /** The process ID of the handle owner.
155 * This is used for access checks. */
156 RTPROCESS ProcId;
157 /** The pointer to the ring-0 only (aka global) VM structure. */
158 PGVM pGVM;
159 /** The ring-0 mapping of the shared VM instance data. */
160 PVM pVM;
161 /** The virtual machine object. */
162 void *pvObj;
163 /** The session this VM is associated with. */
164 PSUPDRVSESSION pSession;
165 /** The ring-0 handle of the EMT0 thread.
166 * This is used for ownership checks as well as looking up a VM handle by thread
167 * at times like assertions. */
168 RTNATIVETHREAD hEMT0;
169} GVMHANDLE;
170/** Pointer to a global VM handle. */
171typedef GVMHANDLE *PGVMHANDLE;
172
173/** Number of GVM handles (including the NIL handle). */
174#if HC_ARCH_BITS == 64
175# define GVMM_MAX_HANDLES 8192
176#else
177# define GVMM_MAX_HANDLES 128
178#endif
179
180/**
181 * Per host CPU GVMM data.
182 */
183typedef struct GVMMHOSTCPU
184{
185 /** Magic number (GVMMHOSTCPU_MAGIC). */
186 uint32_t volatile u32Magic;
187 /** The CPU ID. */
188 RTCPUID idCpu;
189 /** The CPU set index. */
190 uint32_t idxCpuSet;
191
192#ifdef GVMM_SCHED_WITH_PPT
193 /** Periodic preemption timer data. */
194 struct
195 {
196 /** The handle to the periodic preemption timer. */
197 PRTTIMER pTimer;
198 /** Spinlock protecting the data below. */
199 RTSPINLOCK hSpinlock;
200 /** The smalles Hz that we need to care about. (static) */
201 uint32_t uMinHz;
202 /** The number of ticks between each historization. */
203 uint32_t cTicksHistoriziationInterval;
204 /** The current historization tick (counting up to
205 * cTicksHistoriziationInterval and then resetting). */
206 uint32_t iTickHistorization;
207 /** The current timer interval. This is set to 0 when inactive. */
208 uint32_t cNsInterval;
209 /** The current timer frequency. This is set to 0 when inactive. */
210 uint32_t uTimerHz;
211 /** The current max frequency reported by the EMTs.
212 * This gets historicize and reset by the timer callback. This is
213 * read without holding the spinlock, so needs atomic updating. */
214 uint32_t volatile uDesiredHz;
215 /** Whether the timer was started or not. */
216 bool volatile fStarted;
217 /** Set if we're starting timer. */
218 bool volatile fStarting;
219 /** The index of the next history entry (mod it). */
220 uint32_t iHzHistory;
221 /** Historicized uDesiredHz values. The array wraps around, new entries
222 * are added at iHzHistory. This is updated approximately every
223 * GVMMHOSTCPU_PPT_HIST_INTERVAL_NS by the timer callback. */
224 uint32_t aHzHistory[8];
225 /** Statistics counter for recording the number of interval changes. */
226 uint32_t cChanges;
227 /** Statistics counter for recording the number of timer starts. */
228 uint32_t cStarts;
229 } Ppt;
230#endif /* GVMM_SCHED_WITH_PPT */
231
232} GVMMHOSTCPU;
233/** Pointer to the per host CPU GVMM data. */
234typedef GVMMHOSTCPU *PGVMMHOSTCPU;
235/** The GVMMHOSTCPU::u32Magic value (Petra, Tanya & Rachel Haden). */
236#define GVMMHOSTCPU_MAGIC UINT32_C(0x19711011)
237/** The interval on history entry should cover (approximately) give in
238 * nanoseconds. */
239#define GVMMHOSTCPU_PPT_HIST_INTERVAL_NS UINT32_C(20000000)
240
241
242/**
243 * The GVMM instance data.
244 */
245typedef struct GVMM
246{
247 /** Eyecatcher / magic. */
248 uint32_t u32Magic;
249 /** The index of the head of the free handle chain. (0 is nil.) */
250 uint16_t volatile iFreeHead;
251 /** The index of the head of the active handle chain. (0 is nil.) */
252 uint16_t volatile iUsedHead;
253 /** The number of VMs. */
254 uint16_t volatile cVMs;
255 /** Alignment padding. */
256 uint16_t u16Reserved;
257 /** The number of EMTs. */
258 uint32_t volatile cEMTs;
259 /** The number of EMTs that have halted in GVMMR0SchedHalt. */
260 uint32_t volatile cHaltedEMTs;
261 /** Mini lock for restricting early wake-ups to one thread. */
262 bool volatile fDoingEarlyWakeUps;
263 bool afPadding[3]; /**< explicit alignment padding. */
264 /** When the next halted or sleeping EMT will wake up.
265 * This is set to 0 when it needs recalculating and to UINT64_MAX when
266 * there are no halted or sleeping EMTs in the GVMM. */
267 uint64_t uNsNextEmtWakeup;
268 /** The lock used to serialize VM creation, destruction and associated events that
269 * isn't performance critical. Owners may acquire the list lock. */
270 RTCRITSECT CreateDestroyLock;
271 /** The lock used to serialize used list updates and accesses.
272 * This indirectly includes scheduling since the scheduler will have to walk the
273 * used list to examin running VMs. Owners may not acquire any other locks. */
274 RTCRITSECTRW UsedLock;
275 /** The handle array.
276 * The size of this array defines the maximum number of currently running VMs.
277 * The first entry is unused as it represents the NIL handle. */
278 GVMHANDLE aHandles[GVMM_MAX_HANDLES];
279
280 /** @gcfgm{/GVMM/cEMTsMeansCompany, 32-bit, 0, UINT32_MAX, 1}
281 * The number of EMTs that means we no longer consider ourselves alone on a
282 * CPU/Core.
283 */
284 uint32_t cEMTsMeansCompany;
285 /** @gcfgm{/GVMM/MinSleepAlone,32-bit, 0, 100000000, 750000, ns}
286 * The minimum sleep time for when we're alone, in nano seconds.
287 */
288 uint32_t nsMinSleepAlone;
289 /** @gcfgm{/GVMM/MinSleepCompany,32-bit,0, 100000000, 15000, ns}
290 * The minimum sleep time for when we've got company, in nano seconds.
291 */
292 uint32_t nsMinSleepCompany;
293 /** @gcfgm{/GVMM/EarlyWakeUp1, 32-bit, 0, 100000000, 25000, ns}
294 * The limit for the first round of early wake-ups, given in nano seconds.
295 */
296 uint32_t nsEarlyWakeUp1;
297 /** @gcfgm{/GVMM/EarlyWakeUp2, 32-bit, 0, 100000000, 50000, ns}
298 * The limit for the second round of early wake-ups, given in nano seconds.
299 */
300 uint32_t nsEarlyWakeUp2;
301
302 /** Set if we're doing early wake-ups.
303 * This reflects nsEarlyWakeUp1 and nsEarlyWakeUp2. */
304 bool volatile fDoEarlyWakeUps;
305
306 /** The number of entries in the host CPU array (aHostCpus). */
307 uint32_t cHostCpus;
308 /** Per host CPU data (variable length). */
309 GVMMHOSTCPU aHostCpus[1];
310} GVMM;
311AssertCompileMemberAlignment(GVMM, CreateDestroyLock, 8);
312AssertCompileMemberAlignment(GVMM, UsedLock, 8);
313AssertCompileMemberAlignment(GVMM, uNsNextEmtWakeup, 8);
314/** Pointer to the GVMM instance data. */
315typedef GVMM *PGVMM;
316
317/** The GVMM::u32Magic value (Charlie Haden). */
318#define GVMM_MAGIC UINT32_C(0x19370806)
319
320
321
322/*********************************************************************************************************************************
323* Global Variables *
324*********************************************************************************************************************************/
325/** Pointer to the GVMM instance data.
326 * (Just my general dislike for global variables.) */
327static PGVMM g_pGVMM = NULL;
328
329/** Macro for obtaining and validating the g_pGVMM pointer.
330 * On failure it will return from the invoking function with the specified return value.
331 *
332 * @param pGVMM The name of the pGVMM variable.
333 * @param rc The return value on failure. Use VERR_GVMM_INSTANCE for VBox
334 * status codes.
335 */
336#define GVMM_GET_VALID_INSTANCE(pGVMM, rc) \
337 do { \
338 (pGVMM) = g_pGVMM;\
339 AssertPtrReturn((pGVMM), (rc)); \
340 AssertMsgReturn((pGVMM)->u32Magic == GVMM_MAGIC, ("%p - %#x\n", (pGVMM), (pGVMM)->u32Magic), (rc)); \
341 } while (0)
342
343/** Macro for obtaining and validating the g_pGVMM pointer, void function variant.
344 * On failure it will return from the invoking function.
345 *
346 * @param pGVMM The name of the pGVMM variable.
347 */
348#define GVMM_GET_VALID_INSTANCE_VOID(pGVMM) \
349 do { \
350 (pGVMM) = g_pGVMM;\
351 AssertPtrReturnVoid((pGVMM)); \
352 AssertMsgReturnVoid((pGVMM)->u32Magic == GVMM_MAGIC, ("%p - %#x\n", (pGVMM), (pGVMM)->u32Magic)); \
353 } while (0)
354
355
356/*********************************************************************************************************************************
357* Internal Functions *
358*********************************************************************************************************************************/
359static void gvmmR0InitPerVMData(PGVM pGVM);
360static DECLCALLBACK(void) gvmmR0HandleObjDestructor(void *pvObj, void *pvGVMM, void *pvHandle);
361static int gvmmR0ByVM(PVM pVM, PGVM *ppGVM, PGVMM *ppGVMM, bool fTakeUsedLock);
362static int gvmmR0ByVMAndEMT(PVM pVM, VMCPUID idCpu, PGVM *ppGVM, PGVMM *ppGVMM);
363static int gvmmR0ByGVMandVM(PGVM pGVM, PVM pVM, PGVMM *ppGVMM, bool fTakeUsedLock);
364static int gvmmR0ByGVMandVMandEMT(PGVM pGVM, PVM pVM, VMCPUID idCpu, PGVMM *ppGVMM);
365
366#ifdef GVMM_SCHED_WITH_PPT
367static DECLCALLBACK(void) gvmmR0SchedPeriodicPreemptionTimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
368#endif
369
370
371/**
372 * Initializes the GVMM.
373 *
374 * This is called while owning the loader semaphore (see supdrvIOCtl_LdrLoad()).
375 *
376 * @returns VBox status code.
377 */
378GVMMR0DECL(int) GVMMR0Init(void)
379{
380 LogFlow(("GVMMR0Init:\n"));
381
382 /*
383 * Allocate and initialize the instance data.
384 */
385 uint32_t cHostCpus = RTMpGetArraySize();
386 AssertMsgReturn(cHostCpus > 0 && cHostCpus < _64K, ("%d", (int)cHostCpus), VERR_GVMM_HOST_CPU_RANGE);
387
388 PGVMM pGVMM = (PGVMM)RTMemAllocZ(RT_UOFFSETOF(GVMM, aHostCpus[cHostCpus]));
389 if (!pGVMM)
390 return VERR_NO_MEMORY;
391 int rc = RTCritSectInitEx(&pGVMM->CreateDestroyLock, 0, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE,
392 "GVMM-CreateDestroyLock");
393 if (RT_SUCCESS(rc))
394 {
395 rc = RTCritSectRwInitEx(&pGVMM->UsedLock, 0, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, "GVMM-UsedLock");
396 if (RT_SUCCESS(rc))
397 {
398 pGVMM->u32Magic = GVMM_MAGIC;
399 pGVMM->iUsedHead = 0;
400 pGVMM->iFreeHead = 1;
401
402 /* the nil handle */
403 pGVMM->aHandles[0].iSelf = 0;
404 pGVMM->aHandles[0].iNext = 0;
405
406 /* the tail */
407 unsigned i = RT_ELEMENTS(pGVMM->aHandles) - 1;
408 pGVMM->aHandles[i].iSelf = i;
409 pGVMM->aHandles[i].iNext = 0; /* nil */
410
411 /* the rest */
412 while (i-- > 1)
413 {
414 pGVMM->aHandles[i].iSelf = i;
415 pGVMM->aHandles[i].iNext = i + 1;
416 }
417
418 /* The default configuration values. */
419 uint32_t cNsResolution = RTSemEventMultiGetResolution();
420 pGVMM->cEMTsMeansCompany = 1; /** @todo should be adjusted to relative to the cpu count or something... */
421 if (cNsResolution >= 5*RT_NS_100US)
422 {
423 pGVMM->nsMinSleepAlone = 750000 /* ns (0.750 ms) */; /** @todo this should be adjusted to be 75% (or something) of the scheduler granularity... */
424 pGVMM->nsMinSleepCompany = 15000 /* ns (0.015 ms) */;
425 pGVMM->nsEarlyWakeUp1 = 25000 /* ns (0.025 ms) */;
426 pGVMM->nsEarlyWakeUp2 = 50000 /* ns (0.050 ms) */;
427 }
428 else if (cNsResolution > RT_NS_100US)
429 {
430 pGVMM->nsMinSleepAlone = cNsResolution / 2;
431 pGVMM->nsMinSleepCompany = cNsResolution / 4;
432 pGVMM->nsEarlyWakeUp1 = 0;
433 pGVMM->nsEarlyWakeUp2 = 0;
434 }
435 else
436 {
437 pGVMM->nsMinSleepAlone = 2000;
438 pGVMM->nsMinSleepCompany = 2000;
439 pGVMM->nsEarlyWakeUp1 = 0;
440 pGVMM->nsEarlyWakeUp2 = 0;
441 }
442 pGVMM->fDoEarlyWakeUps = pGVMM->nsEarlyWakeUp1 > 0 && pGVMM->nsEarlyWakeUp2 > 0;
443
444 /* The host CPU data. */
445 pGVMM->cHostCpus = cHostCpus;
446 uint32_t iCpu = cHostCpus;
447 RTCPUSET PossibleSet;
448 RTMpGetSet(&PossibleSet);
449 while (iCpu-- > 0)
450 {
451 pGVMM->aHostCpus[iCpu].idxCpuSet = iCpu;
452#ifdef GVMM_SCHED_WITH_PPT
453 pGVMM->aHostCpus[iCpu].Ppt.pTimer = NULL;
454 pGVMM->aHostCpus[iCpu].Ppt.hSpinlock = NIL_RTSPINLOCK;
455 pGVMM->aHostCpus[iCpu].Ppt.uMinHz = 5; /** @todo Add some API which figures this one out. (not *that* important) */
456 pGVMM->aHostCpus[iCpu].Ppt.cTicksHistoriziationInterval = 1;
457 //pGVMM->aHostCpus[iCpu].Ppt.iTickHistorization = 0;
458 //pGVMM->aHostCpus[iCpu].Ppt.cNsInterval = 0;
459 //pGVMM->aHostCpus[iCpu].Ppt.uTimerHz = 0;
460 //pGVMM->aHostCpus[iCpu].Ppt.uDesiredHz = 0;
461 //pGVMM->aHostCpus[iCpu].Ppt.fStarted = false;
462 //pGVMM->aHostCpus[iCpu].Ppt.fStarting = false;
463 //pGVMM->aHostCpus[iCpu].Ppt.iHzHistory = 0;
464 //pGVMM->aHostCpus[iCpu].Ppt.aHzHistory = {0};
465#endif
466
467 if (RTCpuSetIsMember(&PossibleSet, iCpu))
468 {
469 pGVMM->aHostCpus[iCpu].idCpu = RTMpCpuIdFromSetIndex(iCpu);
470 pGVMM->aHostCpus[iCpu].u32Magic = GVMMHOSTCPU_MAGIC;
471
472#ifdef GVMM_SCHED_WITH_PPT
473 rc = RTTimerCreateEx(&pGVMM->aHostCpus[iCpu].Ppt.pTimer,
474 50*1000*1000 /* whatever */,
475 RTTIMER_FLAGS_CPU(iCpu) | RTTIMER_FLAGS_HIGH_RES,
476 gvmmR0SchedPeriodicPreemptionTimerCallback,
477 &pGVMM->aHostCpus[iCpu]);
478 if (RT_SUCCESS(rc))
479 rc = RTSpinlockCreate(&pGVMM->aHostCpus[iCpu].Ppt.hSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "GVMM/CPU");
480 if (RT_FAILURE(rc))
481 {
482 while (iCpu < cHostCpus)
483 {
484 RTTimerDestroy(pGVMM->aHostCpus[iCpu].Ppt.pTimer);
485 RTSpinlockDestroy(pGVMM->aHostCpus[iCpu].Ppt.hSpinlock);
486 pGVMM->aHostCpus[iCpu].Ppt.hSpinlock = NIL_RTSPINLOCK;
487 iCpu++;
488 }
489 break;
490 }
491#endif
492 }
493 else
494 {
495 pGVMM->aHostCpus[iCpu].idCpu = NIL_RTCPUID;
496 pGVMM->aHostCpus[iCpu].u32Magic = 0;
497 }
498 }
499 if (RT_SUCCESS(rc))
500 {
501 g_pGVMM = pGVMM;
502 LogFlow(("GVMMR0Init: pGVMM=%p cHostCpus=%u\n", pGVMM, cHostCpus));
503 return VINF_SUCCESS;
504 }
505
506 /* bail out. */
507 RTCritSectRwDelete(&pGVMM->UsedLock);
508 }
509 RTCritSectDelete(&pGVMM->CreateDestroyLock);
510 }
511
512 RTMemFree(pGVMM);
513 return rc;
514}
515
516
517/**
518 * Terminates the GVM.
519 *
520 * This is called while owning the loader semaphore (see supdrvLdrFree()).
521 * And unless something is wrong, there should be absolutely no VMs
522 * registered at this point.
523 */
524GVMMR0DECL(void) GVMMR0Term(void)
525{
526 LogFlow(("GVMMR0Term:\n"));
527
528 PGVMM pGVMM = g_pGVMM;
529 g_pGVMM = NULL;
530 if (RT_UNLIKELY(!VALID_PTR(pGVMM)))
531 {
532 SUPR0Printf("GVMMR0Term: pGVMM=%RKv\n", pGVMM);
533 return;
534 }
535
536 /*
537 * First of all, stop all active timers.
538 */
539 uint32_t cActiveTimers = 0;
540 uint32_t iCpu = pGVMM->cHostCpus;
541 while (iCpu-- > 0)
542 {
543 ASMAtomicWriteU32(&pGVMM->aHostCpus[iCpu].u32Magic, ~GVMMHOSTCPU_MAGIC);
544#ifdef GVMM_SCHED_WITH_PPT
545 if ( pGVMM->aHostCpus[iCpu].Ppt.pTimer != NULL
546 && RT_SUCCESS(RTTimerStop(pGVMM->aHostCpus[iCpu].Ppt.pTimer)))
547 cActiveTimers++;
548#endif
549 }
550 if (cActiveTimers)
551 RTThreadSleep(1); /* fudge */
552
553 /*
554 * Invalidate the and free resources.
555 */
556 pGVMM->u32Magic = ~GVMM_MAGIC;
557 RTCritSectRwDelete(&pGVMM->UsedLock);
558 RTCritSectDelete(&pGVMM->CreateDestroyLock);
559
560 pGVMM->iFreeHead = 0;
561 if (pGVMM->iUsedHead)
562 {
563 SUPR0Printf("GVMMR0Term: iUsedHead=%#x! (cVMs=%#x cEMTs=%#x)\n", pGVMM->iUsedHead, pGVMM->cVMs, pGVMM->cEMTs);
564 pGVMM->iUsedHead = 0;
565 }
566
567#ifdef GVMM_SCHED_WITH_PPT
568 iCpu = pGVMM->cHostCpus;
569 while (iCpu-- > 0)
570 {
571 RTTimerDestroy(pGVMM->aHostCpus[iCpu].Ppt.pTimer);
572 pGVMM->aHostCpus[iCpu].Ppt.pTimer = NULL;
573 RTSpinlockDestroy(pGVMM->aHostCpus[iCpu].Ppt.hSpinlock);
574 pGVMM->aHostCpus[iCpu].Ppt.hSpinlock = NIL_RTSPINLOCK;
575 }
576#endif
577
578 RTMemFree(pGVMM);
579}
580
581
582/**
583 * A quick hack for setting global config values.
584 *
585 * @returns VBox status code.
586 *
587 * @param pSession The session handle. Used for authentication.
588 * @param pszName The variable name.
589 * @param u64Value The new value.
590 */
591GVMMR0DECL(int) GVMMR0SetConfig(PSUPDRVSESSION pSession, const char *pszName, uint64_t u64Value)
592{
593 /*
594 * Validate input.
595 */
596 PGVMM pGVMM;
597 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
598 AssertPtrReturn(pSession, VERR_INVALID_HANDLE);
599 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
600
601 /*
602 * String switch time!
603 */
604 if (strncmp(pszName, RT_STR_TUPLE("/GVMM/")))
605 return VERR_CFGM_VALUE_NOT_FOUND; /* borrow status codes from CFGM... */
606 int rc = VINF_SUCCESS;
607 pszName += sizeof("/GVMM/") - 1;
608 if (!strcmp(pszName, "cEMTsMeansCompany"))
609 {
610 if (u64Value <= UINT32_MAX)
611 pGVMM->cEMTsMeansCompany = u64Value;
612 else
613 rc = VERR_OUT_OF_RANGE;
614 }
615 else if (!strcmp(pszName, "MinSleepAlone"))
616 {
617 if (u64Value <= RT_NS_100MS)
618 pGVMM->nsMinSleepAlone = u64Value;
619 else
620 rc = VERR_OUT_OF_RANGE;
621 }
622 else if (!strcmp(pszName, "MinSleepCompany"))
623 {
624 if (u64Value <= RT_NS_100MS)
625 pGVMM->nsMinSleepCompany = u64Value;
626 else
627 rc = VERR_OUT_OF_RANGE;
628 }
629 else if (!strcmp(pszName, "EarlyWakeUp1"))
630 {
631 if (u64Value <= RT_NS_100MS)
632 {
633 pGVMM->nsEarlyWakeUp1 = u64Value;
634 pGVMM->fDoEarlyWakeUps = pGVMM->nsEarlyWakeUp1 > 0 && pGVMM->nsEarlyWakeUp2 > 0;
635 }
636 else
637 rc = VERR_OUT_OF_RANGE;
638 }
639 else if (!strcmp(pszName, "EarlyWakeUp2"))
640 {
641 if (u64Value <= RT_NS_100MS)
642 {
643 pGVMM->nsEarlyWakeUp2 = u64Value;
644 pGVMM->fDoEarlyWakeUps = pGVMM->nsEarlyWakeUp1 > 0 && pGVMM->nsEarlyWakeUp2 > 0;
645 }
646 else
647 rc = VERR_OUT_OF_RANGE;
648 }
649 else
650 rc = VERR_CFGM_VALUE_NOT_FOUND;
651 return rc;
652}
653
654
655/**
656 * A quick hack for getting global config values.
657 *
658 * @returns VBox status code.
659 *
660 * @param pSession The session handle. Used for authentication.
661 * @param pszName The variable name.
662 * @param pu64Value Where to return the value.
663 */
664GVMMR0DECL(int) GVMMR0QueryConfig(PSUPDRVSESSION pSession, const char *pszName, uint64_t *pu64Value)
665{
666 /*
667 * Validate input.
668 */
669 PGVMM pGVMM;
670 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
671 AssertPtrReturn(pSession, VERR_INVALID_HANDLE);
672 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
673 AssertPtrReturn(pu64Value, VERR_INVALID_POINTER);
674
675 /*
676 * String switch time!
677 */
678 if (strncmp(pszName, RT_STR_TUPLE("/GVMM/")))
679 return VERR_CFGM_VALUE_NOT_FOUND; /* borrow status codes from CFGM... */
680 int rc = VINF_SUCCESS;
681 pszName += sizeof("/GVMM/") - 1;
682 if (!strcmp(pszName, "cEMTsMeansCompany"))
683 *pu64Value = pGVMM->cEMTsMeansCompany;
684 else if (!strcmp(pszName, "MinSleepAlone"))
685 *pu64Value = pGVMM->nsMinSleepAlone;
686 else if (!strcmp(pszName, "MinSleepCompany"))
687 *pu64Value = pGVMM->nsMinSleepCompany;
688 else if (!strcmp(pszName, "EarlyWakeUp1"))
689 *pu64Value = pGVMM->nsEarlyWakeUp1;
690 else if (!strcmp(pszName, "EarlyWakeUp2"))
691 *pu64Value = pGVMM->nsEarlyWakeUp2;
692 else
693 rc = VERR_CFGM_VALUE_NOT_FOUND;
694 return rc;
695}
696
697
698/**
699 * Acquire the 'used' lock in shared mode.
700 *
701 * This prevents destruction of the VM while we're in ring-0.
702 *
703 * @returns IPRT status code, see RTSemFastMutexRequest.
704 * @param a_pGVMM The GVMM instance data.
705 * @sa GVMMR0_USED_SHARED_UNLOCK, GVMMR0_USED_EXCLUSIVE_LOCK
706 */
707#define GVMMR0_USED_SHARED_LOCK(a_pGVMM) RTCritSectRwEnterShared(&(a_pGVMM)->UsedLock)
708
709/**
710 * Release the 'used' lock in when owning it in shared mode.
711 *
712 * @returns IPRT status code, see RTSemFastMutexRequest.
713 * @param a_pGVMM The GVMM instance data.
714 * @sa GVMMR0_USED_SHARED_LOCK
715 */
716#define GVMMR0_USED_SHARED_UNLOCK(a_pGVMM) RTCritSectRwLeaveShared(&(a_pGVMM)->UsedLock)
717
718/**
719 * Acquire the 'used' lock in exclusive mode.
720 *
721 * Only use this function when making changes to the used list.
722 *
723 * @returns IPRT status code, see RTSemFastMutexRequest.
724 * @param a_pGVMM The GVMM instance data.
725 * @sa GVMMR0_USED_EXCLUSIVE_UNLOCK
726 */
727#define GVMMR0_USED_EXCLUSIVE_LOCK(a_pGVMM) RTCritSectRwEnterExcl(&(a_pGVMM)->UsedLock)
728
729/**
730 * Release the 'used' lock when owning it in exclusive mode.
731 *
732 * @returns IPRT status code, see RTSemFastMutexRelease.
733 * @param a_pGVMM The GVMM instance data.
734 * @sa GVMMR0_USED_EXCLUSIVE_LOCK, GVMMR0_USED_SHARED_UNLOCK
735 */
736#define GVMMR0_USED_EXCLUSIVE_UNLOCK(a_pGVMM) RTCritSectRwLeaveExcl(&(a_pGVMM)->UsedLock)
737
738
739/**
740 * Try acquire the 'create & destroy' lock.
741 *
742 * @returns IPRT status code, see RTSemFastMutexRequest.
743 * @param pGVMM The GVMM instance data.
744 */
745DECLINLINE(int) gvmmR0CreateDestroyLock(PGVMM pGVMM)
746{
747 LogFlow(("++gvmmR0CreateDestroyLock(%p)\n", pGVMM));
748 int rc = RTCritSectEnter(&pGVMM->CreateDestroyLock);
749 LogFlow(("gvmmR0CreateDestroyLock(%p)->%Rrc\n", pGVMM, rc));
750 return rc;
751}
752
753
754/**
755 * Release the 'create & destroy' lock.
756 *
757 * @returns IPRT status code, see RTSemFastMutexRequest.
758 * @param pGVMM The GVMM instance data.
759 */
760DECLINLINE(int) gvmmR0CreateDestroyUnlock(PGVMM pGVMM)
761{
762 LogFlow(("--gvmmR0CreateDestroyUnlock(%p)\n", pGVMM));
763 int rc = RTCritSectLeave(&pGVMM->CreateDestroyLock);
764 AssertRC(rc);
765 return rc;
766}
767
768
769/**
770 * Request wrapper for the GVMMR0CreateVM API.
771 *
772 * @returns VBox status code.
773 * @param pReq The request buffer.
774 * @param pSession The session handle. The VM will be associated with this.
775 */
776GVMMR0DECL(int) GVMMR0CreateVMReq(PGVMMCREATEVMREQ pReq, PSUPDRVSESSION pSession)
777{
778 /*
779 * Validate the request.
780 */
781 if (!VALID_PTR(pReq))
782 return VERR_INVALID_POINTER;
783 if (pReq->Hdr.cbReq != sizeof(*pReq))
784 return VERR_INVALID_PARAMETER;
785 if (pReq->pSession != pSession)
786 return VERR_INVALID_POINTER;
787
788 /*
789 * Execute it.
790 */
791 PVM pVM;
792 pReq->pVMR0 = NULL;
793 pReq->pVMR3 = NIL_RTR3PTR;
794 int rc = GVMMR0CreateVM(pSession, pReq->cCpus, &pVM);
795 if (RT_SUCCESS(rc))
796 {
797 pReq->pVMR0 = pVM;
798 pReq->pVMR3 = pVM->pVMR3;
799 }
800 return rc;
801}
802
803
804/**
805 * Allocates the VM structure and registers it with GVM.
806 *
807 * The caller will become the VM owner and there by the EMT.
808 *
809 * @returns VBox status code.
810 * @param pSession The support driver session.
811 * @param cCpus Number of virtual CPUs for the new VM.
812 * @param ppVM Where to store the pointer to the VM structure.
813 *
814 * @thread EMT.
815 */
816GVMMR0DECL(int) GVMMR0CreateVM(PSUPDRVSESSION pSession, uint32_t cCpus, PVM *ppVM)
817{
818 LogFlow(("GVMMR0CreateVM: pSession=%p\n", pSession));
819 PGVMM pGVMM;
820 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
821
822 AssertPtrReturn(ppVM, VERR_INVALID_POINTER);
823 *ppVM = NULL;
824
825 if ( cCpus == 0
826 || cCpus > VMM_MAX_CPU_COUNT)
827 return VERR_INVALID_PARAMETER;
828
829 RTNATIVETHREAD hEMT0 = RTThreadNativeSelf();
830 AssertReturn(hEMT0 != NIL_RTNATIVETHREAD, VERR_GVMM_BROKEN_IPRT);
831 RTPROCESS ProcId = RTProcSelf();
832 AssertReturn(ProcId != NIL_RTPROCESS, VERR_GVMM_BROKEN_IPRT);
833
834 /*
835 * The whole allocation process is protected by the lock.
836 */
837 int rc = gvmmR0CreateDestroyLock(pGVMM);
838 AssertRCReturn(rc, rc);
839
840 /*
841 * Only one VM per session.
842 */
843 if (SUPR0GetSessionVM(pSession) != NULL)
844 {
845 gvmmR0CreateDestroyUnlock(pGVMM);
846 SUPR0Printf("GVMMR0CreateVM: The session %p already got a VM: %p\n", pSession, SUPR0GetSessionVM(pSession));
847 return VERR_ALREADY_EXISTS;
848 }
849
850 /*
851 * Allocate a handle first so we don't waste resources unnecessarily.
852 */
853 uint16_t iHandle = pGVMM->iFreeHead;
854 if (iHandle)
855 {
856 PGVMHANDLE pHandle = &pGVMM->aHandles[iHandle];
857
858 /* consistency checks, a bit paranoid as always. */
859 if ( !pHandle->pVM
860 && !pHandle->pGVM
861 && !pHandle->pvObj
862 && pHandle->iSelf == iHandle)
863 {
864 pHandle->pvObj = SUPR0ObjRegister(pSession, SUPDRVOBJTYPE_VM, gvmmR0HandleObjDestructor, pGVMM, pHandle);
865 if (pHandle->pvObj)
866 {
867 /*
868 * Move the handle from the free to used list and perform permission checks.
869 */
870 rc = GVMMR0_USED_EXCLUSIVE_LOCK(pGVMM);
871 AssertRC(rc);
872
873 pGVMM->iFreeHead = pHandle->iNext;
874 pHandle->iNext = pGVMM->iUsedHead;
875 pGVMM->iUsedHead = iHandle;
876 pGVMM->cVMs++;
877
878 pHandle->pVM = NULL;
879 pHandle->pGVM = NULL;
880 pHandle->pSession = pSession;
881 pHandle->hEMT0 = NIL_RTNATIVETHREAD;
882 pHandle->ProcId = NIL_RTPROCESS;
883
884 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
885
886 rc = SUPR0ObjVerifyAccess(pHandle->pvObj, pSession, NULL);
887 if (RT_SUCCESS(rc))
888 {
889 /*
890 * Allocate the global VM structure (GVM) and initialize it.
891 */
892 PGVM pGVM = (PGVM)RTMemAllocZ(RT_UOFFSETOF(GVM, aCpus[cCpus]));
893 if (pGVM)
894 {
895 pGVM->u32Magic = GVM_MAGIC;
896 pGVM->hSelf = iHandle;
897 pGVM->pVM = NULL;
898 pGVM->cCpus = cCpus;
899 pGVM->pSession = pSession;
900
901 gvmmR0InitPerVMData(pGVM);
902 GMMR0InitPerVMData(pGVM);
903
904 /*
905 * Allocate the shared VM structure and associated page array.
906 */
907 const uint32_t cbVM = RT_UOFFSETOF(VM, aCpus[cCpus]);
908 const uint32_t cPages = RT_ALIGN_32(cbVM, PAGE_SIZE) >> PAGE_SHIFT;
909 rc = RTR0MemObjAllocLow(&pGVM->gvmm.s.VMMemObj, cPages << PAGE_SHIFT, false /* fExecutable */);
910 if (RT_SUCCESS(rc))
911 {
912 PVM pVM = (PVM)RTR0MemObjAddress(pGVM->gvmm.s.VMMemObj); AssertPtr(pVM);
913 memset(pVM, 0, cPages << PAGE_SHIFT);
914 pVM->enmVMState = VMSTATE_CREATING;
915 pVM->pVMR0 = pVM;
916 pVM->pSession = pSession;
917 pVM->hSelf = iHandle;
918 pVM->cbSelf = cbVM;
919 pVM->cCpus = cCpus;
920 pVM->uCpuExecutionCap = 100; /* default is no cap. */
921 pVM->offVMCPU = RT_UOFFSETOF(VM, aCpus);
922 AssertCompileMemberAlignment(VM, cpum, 64);
923 AssertCompileMemberAlignment(VM, tm, 64);
924 AssertCompileMemberAlignment(VM, aCpus, PAGE_SIZE);
925
926 rc = RTR0MemObjAllocPage(&pGVM->gvmm.s.VMPagesMemObj, cPages * sizeof(SUPPAGE), false /* fExecutable */);
927 if (RT_SUCCESS(rc))
928 {
929 PSUPPAGE paPages = (PSUPPAGE)RTR0MemObjAddress(pGVM->gvmm.s.VMPagesMemObj); AssertPtr(paPages);
930 for (uint32_t iPage = 0; iPage < cPages; iPage++)
931 {
932 paPages[iPage].uReserved = 0;
933 paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(pGVM->gvmm.s.VMMemObj, iPage);
934 Assert(paPages[iPage].Phys != NIL_RTHCPHYS);
935 }
936
937 /*
938 * Map them into ring-3.
939 */
940 rc = RTR0MemObjMapUser(&pGVM->gvmm.s.VMMapObj, pGVM->gvmm.s.VMMemObj, (RTR3PTR)-1, 0,
941 RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
942 if (RT_SUCCESS(rc))
943 {
944 pVM->pVMR3 = RTR0MemObjAddressR3(pGVM->gvmm.s.VMMapObj);
945 AssertPtr((void *)pVM->pVMR3);
946
947 /* Initialize all the VM pointers. */
948 for (uint32_t i = 0; i < cCpus; i++)
949 {
950 pVM->aCpus[i].pVMR0 = pVM;
951 pVM->aCpus[i].pVMR3 = pVM->pVMR3;
952 pVM->aCpus[i].idHostCpu = NIL_RTCPUID;
953 pVM->aCpus[i].hNativeThreadR0 = NIL_RTNATIVETHREAD;
954 }
955
956 rc = RTR0MemObjMapUser(&pGVM->gvmm.s.VMPagesMapObj, pGVM->gvmm.s.VMPagesMemObj, (RTR3PTR)-1,
957 0 /* uAlignment */, RTMEM_PROT_READ | RTMEM_PROT_WRITE,
958 NIL_RTR0PROCESS);
959 if (RT_SUCCESS(rc))
960 {
961 pVM->paVMPagesR3 = RTR0MemObjAddressR3(pGVM->gvmm.s.VMPagesMapObj);
962 AssertPtr((void *)pVM->paVMPagesR3);
963
964 /* complete the handle - take the UsedLock sem just to be careful. */
965 rc = GVMMR0_USED_EXCLUSIVE_LOCK(pGVMM);
966 AssertRC(rc);
967
968 pHandle->pVM = pVM;
969 pHandle->pGVM = pGVM;
970 pHandle->hEMT0 = hEMT0;
971 pHandle->ProcId = ProcId;
972 pGVM->pVM = pVM;
973 pGVM->aCpus[0].hEMT = hEMT0;
974 pVM->aCpus[0].hNativeThreadR0 = hEMT0;
975 pGVMM->cEMTs += cCpus;
976
977 /* Associate it with the session and create the context hook for EMT0. */
978 rc = SUPR0SetSessionVM(pSession, pGVM, pVM);
979 if (RT_SUCCESS(rc))
980 {
981 rc = VMMR0ThreadCtxHookCreateForEmt(&pVM->aCpus[0]);
982 if (RT_SUCCESS(rc))
983 {
984 /*
985 * Done!
986 */
987 VBOXVMM_R0_GVMM_VM_CREATED(pGVM, pVM, ProcId, (void *)hEMT0, cCpus);
988
989 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
990 gvmmR0CreateDestroyUnlock(pGVMM);
991
992 CPUMR0RegisterVCpuThread(&pVM->aCpus[0]);
993
994 *ppVM = pVM;
995 Log(("GVMMR0CreateVM: pVM=%p pVMR3=%p pGVM=%p hGVM=%d\n", pVM, pVM->pVMR3, pGVM, iHandle));
996 return VINF_SUCCESS;
997 }
998
999 SUPR0SetSessionVM(pSession, NULL, NULL);
1000 }
1001 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1002 }
1003
1004 RTR0MemObjFree(pGVM->gvmm.s.VMMapObj, false /* fFreeMappings */);
1005 pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
1006 }
1007 RTR0MemObjFree(pGVM->gvmm.s.VMPagesMemObj, false /* fFreeMappings */);
1008 pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
1009 }
1010 RTR0MemObjFree(pGVM->gvmm.s.VMMemObj, false /* fFreeMappings */);
1011 pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
1012 }
1013 }
1014 }
1015 /* else: The user wasn't permitted to create this VM. */
1016
1017 /*
1018 * The handle will be freed by gvmmR0HandleObjDestructor as we release the
1019 * object reference here. A little extra mess because of non-recursive lock.
1020 */
1021 void *pvObj = pHandle->pvObj;
1022 pHandle->pvObj = NULL;
1023 gvmmR0CreateDestroyUnlock(pGVMM);
1024
1025 SUPR0ObjRelease(pvObj, pSession);
1026
1027 SUPR0Printf("GVMMR0CreateVM: failed, rc=%d\n", rc);
1028 return rc;
1029 }
1030
1031 rc = VERR_NO_MEMORY;
1032 }
1033 else
1034 rc = VERR_GVMM_IPE_1;
1035 }
1036 else
1037 rc = VERR_GVM_TOO_MANY_VMS;
1038
1039 gvmmR0CreateDestroyUnlock(pGVMM);
1040 return rc;
1041}
1042
1043
1044/**
1045 * Initializes the per VM data belonging to GVMM.
1046 *
1047 * @param pGVM Pointer to the global VM structure.
1048 */
1049static void gvmmR0InitPerVMData(PGVM pGVM)
1050{
1051 AssertCompile(RT_SIZEOFMEMB(GVM,gvmm.s) <= RT_SIZEOFMEMB(GVM,gvmm.padding));
1052 AssertCompile(RT_SIZEOFMEMB(GVMCPU,gvmm.s) <= RT_SIZEOFMEMB(GVMCPU,gvmm.padding));
1053 pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
1054 pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
1055 pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
1056 pGVM->gvmm.s.VMPagesMapObj = NIL_RTR0MEMOBJ;
1057 pGVM->gvmm.s.fDoneVMMR0Init = false;
1058 pGVM->gvmm.s.fDoneVMMR0Term = false;
1059
1060 for (VMCPUID i = 0; i < pGVM->cCpus; i++)
1061 {
1062 pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
1063 pGVM->aCpus[i].hEMT = NIL_RTNATIVETHREAD;
1064 }
1065}
1066
1067
1068/**
1069 * Does the VM initialization.
1070 *
1071 * @returns VBox status code.
1072 * @param pVM The cross context VM structure.
1073 */
1074GVMMR0DECL(int) GVMMR0InitVM(PVM pVM)
1075{
1076 LogFlow(("GVMMR0InitVM: pVM=%p\n", pVM));
1077
1078 /*
1079 * Validate the VM structure, state and handle.
1080 */
1081 PGVM pGVM;
1082 PGVMM pGVMM;
1083 int rc = gvmmR0ByVMAndEMT(pVM, 0 /* idCpu */, &pGVM, &pGVMM);
1084 if (RT_SUCCESS(rc))
1085 {
1086 if ( !pGVM->gvmm.s.fDoneVMMR0Init
1087 && pGVM->aCpus[0].gvmm.s.HaltEventMulti == NIL_RTSEMEVENTMULTI)
1088 {
1089 for (VMCPUID i = 0; i < pGVM->cCpus; i++)
1090 {
1091 rc = RTSemEventMultiCreate(&pGVM->aCpus[i].gvmm.s.HaltEventMulti);
1092 if (RT_FAILURE(rc))
1093 {
1094 pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
1095 break;
1096 }
1097 }
1098 }
1099 else
1100 rc = VERR_WRONG_ORDER;
1101 }
1102
1103 LogFlow(("GVMMR0InitVM: returns %Rrc\n", rc));
1104 return rc;
1105}
1106
1107
1108/**
1109 * Indicates that we're done with the ring-0 initialization
1110 * of the VM.
1111 *
1112 * @param pVM The cross context VM structure.
1113 * @thread EMT(0)
1114 */
1115GVMMR0DECL(void) GVMMR0DoneInitVM(PVM pVM)
1116{
1117 /* Validate the VM structure, state and handle. */
1118 PGVM pGVM;
1119 PGVMM pGVMM;
1120 int rc = gvmmR0ByVMAndEMT(pVM, 0 /* idCpu */, &pGVM, &pGVMM);
1121 AssertRCReturnVoid(rc);
1122
1123 /* Set the indicator. */
1124 pGVM->gvmm.s.fDoneVMMR0Init = true;
1125}
1126
1127
1128/**
1129 * Indicates that we're doing the ring-0 termination of the VM.
1130 *
1131 * @returns true if termination hasn't been done already, false if it has.
1132 * @param pVM The cross context VM structure.
1133 * @param pGVM Pointer to the global VM structure. Optional.
1134 * @thread EMT(0)
1135 */
1136GVMMR0DECL(bool) GVMMR0DoingTermVM(PVM pVM, PGVM pGVM)
1137{
1138 /* Validate the VM structure, state and handle. */
1139 AssertPtrNullReturn(pGVM, false);
1140 AssertReturn(!pGVM || pGVM->u32Magic == GVM_MAGIC, false);
1141 if (!pGVM)
1142 {
1143 PGVMM pGVMM;
1144 int rc = gvmmR0ByVMAndEMT(pVM, 0 /* idCpu */, &pGVM, &pGVMM);
1145 AssertRCReturn(rc, false);
1146 }
1147
1148 /* Set the indicator. */
1149 if (pGVM->gvmm.s.fDoneVMMR0Term)
1150 return false;
1151 pGVM->gvmm.s.fDoneVMMR0Term = true;
1152 return true;
1153}
1154
1155
1156/**
1157 * Destroys the VM, freeing all associated resources (the ring-0 ones anyway).
1158 *
1159 * This is call from the vmR3DestroyFinalBit and from a error path in VMR3Create,
1160 * and the caller is not the EMT thread, unfortunately. For security reasons, it
1161 * would've been nice if the caller was actually the EMT thread or that we somehow
1162 * could've associated the calling thread with the VM up front.
1163 *
1164 * @returns VBox status code.
1165 * @param pGVM The global (ring-0) VM structure.
1166 * @param pVM The cross context VM structure.
1167 *
1168 * @thread EMT(0) if it's associated with the VM, otherwise any thread.
1169 */
1170GVMMR0DECL(int) GVMMR0DestroyVM(PGVM pGVM, PVM pVM)
1171{
1172 LogFlow(("GVMMR0DestroyVM: pGVM=%p pVM=%p\n", pGVM, pVM));
1173 PGVMM pGVMM;
1174 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1175
1176 /*
1177 * Validate the VM structure, state and caller.
1178 */
1179 AssertPtrReturn(pGVM, VERR_INVALID_POINTER);
1180 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1181 AssertReturn(!((uintptr_t)pVM & PAGE_OFFSET_MASK), VERR_INVALID_POINTER);
1182 AssertReturn(pGVM->pVM == pVM, VERR_INVALID_POINTER);
1183 AssertMsgReturn(pVM->enmVMState >= VMSTATE_CREATING && pVM->enmVMState <= VMSTATE_TERMINATED, ("%d\n", pVM->enmVMState),
1184 VERR_WRONG_ORDER);
1185
1186 uint32_t hGVM = pGVM->hSelf;
1187 AssertReturn(hGVM != NIL_GVM_HANDLE, VERR_INVALID_VM_HANDLE);
1188 AssertReturn(hGVM < RT_ELEMENTS(pGVMM->aHandles), VERR_INVALID_VM_HANDLE);
1189
1190 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1191 AssertReturn(pHandle->pVM == pVM, VERR_NOT_OWNER);
1192
1193 RTPROCESS ProcId = RTProcSelf();
1194 RTNATIVETHREAD hSelf = RTThreadNativeSelf();
1195 AssertReturn( ( pHandle->hEMT0 == hSelf
1196 && pHandle->ProcId == ProcId)
1197 || pHandle->hEMT0 == NIL_RTNATIVETHREAD, VERR_NOT_OWNER);
1198
1199 /*
1200 * Lookup the handle and destroy the object.
1201 * Since the lock isn't recursive and we'll have to leave it before dereferencing the
1202 * object, we take some precautions against racing callers just in case...
1203 */
1204 int rc = gvmmR0CreateDestroyLock(pGVMM);
1205 AssertRC(rc);
1206
1207 /* Be careful here because we might theoretically be racing someone else cleaning up. */
1208 if ( pHandle->pVM == pVM
1209 && ( ( pHandle->hEMT0 == hSelf
1210 && pHandle->ProcId == ProcId)
1211 || pHandle->hEMT0 == NIL_RTNATIVETHREAD)
1212 && VALID_PTR(pHandle->pvObj)
1213 && VALID_PTR(pHandle->pSession)
1214 && VALID_PTR(pHandle->pGVM)
1215 && pHandle->pGVM->u32Magic == GVM_MAGIC)
1216 {
1217 /* Check that other EMTs have deregistered. */
1218 uint32_t cNotDeregistered = 0;
1219 for (VMCPUID idCpu = 1; idCpu < pGVM->cCpus; idCpu++)
1220 cNotDeregistered += pGVM->aCpus[idCpu].hEMT != ~(RTNATIVETHREAD)1; /* see GVMMR0DeregisterVCpu for the value */
1221 if (cNotDeregistered == 0)
1222 {
1223 /* Grab the object pointer. */
1224 void *pvObj = pHandle->pvObj;
1225 pHandle->pvObj = NULL;
1226 gvmmR0CreateDestroyUnlock(pGVMM);
1227
1228 SUPR0ObjRelease(pvObj, pHandle->pSession);
1229 }
1230 else
1231 {
1232 gvmmR0CreateDestroyUnlock(pGVMM);
1233 rc = VERR_GVMM_NOT_ALL_EMTS_DEREGISTERED;
1234 }
1235 }
1236 else
1237 {
1238 SUPR0Printf("GVMMR0DestroyVM: pHandle=%RKv:{.pVM=%p, .hEMT0=%p, .ProcId=%u, .pvObj=%p} pVM=%p hSelf=%p\n",
1239 pHandle, pHandle->pVM, pHandle->hEMT0, pHandle->ProcId, pHandle->pvObj, pVM, hSelf);
1240 gvmmR0CreateDestroyUnlock(pGVMM);
1241 rc = VERR_GVMM_IPE_2;
1242 }
1243
1244 return rc;
1245}
1246
1247
1248/**
1249 * Performs VM cleanup task as part of object destruction.
1250 *
1251 * @param pGVM The GVM pointer.
1252 */
1253static void gvmmR0CleanupVM(PGVM pGVM)
1254{
1255 if ( pGVM->gvmm.s.fDoneVMMR0Init
1256 && !pGVM->gvmm.s.fDoneVMMR0Term)
1257 {
1258 if ( pGVM->gvmm.s.VMMemObj != NIL_RTR0MEMOBJ
1259 && RTR0MemObjAddress(pGVM->gvmm.s.VMMemObj) == pGVM->pVM)
1260 {
1261 LogFlow(("gvmmR0CleanupVM: Calling VMMR0TermVM\n"));
1262 VMMR0TermVM(pGVM->pVM, pGVM);
1263 }
1264 else
1265 AssertMsgFailed(("gvmmR0CleanupVM: VMMemObj=%p pVM=%p\n", pGVM->gvmm.s.VMMemObj, pGVM->pVM));
1266 }
1267
1268 GMMR0CleanupVM(pGVM);
1269
1270 AssertCompile((uintptr_t)NIL_RTTHREADCTXHOOK == 0); /* Depends on zero initialized memory working for NIL at the moment. */
1271 for (VMCPUID idCpu = 0; idCpu < pGVM->cCpus; idCpu++)
1272 {
1273 /** @todo Can we busy wait here for all thread-context hooks to be
1274 * deregistered before releasing (destroying) it? Only until we find a
1275 * solution for not deregistering hooks everytime we're leaving HMR0
1276 * context. */
1277 VMMR0ThreadCtxHookDestroyForEmt(&pGVM->pVM->aCpus[idCpu]);
1278 }
1279}
1280
1281
1282/**
1283 * @callback_method_impl{FNSUPDRVDESTRUCTOR,VM handle destructor}
1284 *
1285 * pvUser1 is the GVM instance pointer.
1286 * pvUser2 is the handle pointer.
1287 */
1288static DECLCALLBACK(void) gvmmR0HandleObjDestructor(void *pvObj, void *pvUser1, void *pvUser2)
1289{
1290 LogFlow(("gvmmR0HandleObjDestructor: %p %p %p\n", pvObj, pvUser1, pvUser2));
1291
1292 NOREF(pvObj);
1293
1294 /*
1295 * Some quick, paranoid, input validation.
1296 */
1297 PGVMHANDLE pHandle = (PGVMHANDLE)pvUser2;
1298 AssertPtr(pHandle);
1299 PGVMM pGVMM = (PGVMM)pvUser1;
1300 Assert(pGVMM == g_pGVMM);
1301 const uint16_t iHandle = pHandle - &pGVMM->aHandles[0];
1302 if ( !iHandle
1303 || iHandle >= RT_ELEMENTS(pGVMM->aHandles)
1304 || iHandle != pHandle->iSelf)
1305 {
1306 SUPR0Printf("GVM: handle %d is out of range or corrupt (iSelf=%d)!\n", iHandle, pHandle->iSelf);
1307 return;
1308 }
1309
1310 int rc = gvmmR0CreateDestroyLock(pGVMM);
1311 AssertRC(rc);
1312 rc = GVMMR0_USED_EXCLUSIVE_LOCK(pGVMM);
1313 AssertRC(rc);
1314
1315 /*
1316 * This is a tad slow but a doubly linked list is too much hassle.
1317 */
1318 if (RT_UNLIKELY(pHandle->iNext >= RT_ELEMENTS(pGVMM->aHandles)))
1319 {
1320 SUPR0Printf("GVM: used list index %d is out of range!\n", pHandle->iNext);
1321 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1322 gvmmR0CreateDestroyUnlock(pGVMM);
1323 return;
1324 }
1325
1326 if (pGVMM->iUsedHead == iHandle)
1327 pGVMM->iUsedHead = pHandle->iNext;
1328 else
1329 {
1330 uint16_t iPrev = pGVMM->iUsedHead;
1331 int c = RT_ELEMENTS(pGVMM->aHandles) + 2;
1332 while (iPrev)
1333 {
1334 if (RT_UNLIKELY(iPrev >= RT_ELEMENTS(pGVMM->aHandles)))
1335 {
1336 SUPR0Printf("GVM: used list index %d is out of range!\n", iPrev);
1337 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1338 gvmmR0CreateDestroyUnlock(pGVMM);
1339 return;
1340 }
1341 if (RT_UNLIKELY(c-- <= 0))
1342 {
1343 iPrev = 0;
1344 break;
1345 }
1346
1347 if (pGVMM->aHandles[iPrev].iNext == iHandle)
1348 break;
1349 iPrev = pGVMM->aHandles[iPrev].iNext;
1350 }
1351 if (!iPrev)
1352 {
1353 SUPR0Printf("GVM: can't find the handle previous previous of %d!\n", pHandle->iSelf);
1354 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1355 gvmmR0CreateDestroyUnlock(pGVMM);
1356 return;
1357 }
1358
1359 Assert(pGVMM->aHandles[iPrev].iNext == iHandle);
1360 pGVMM->aHandles[iPrev].iNext = pHandle->iNext;
1361 }
1362 pHandle->iNext = 0;
1363 pGVMM->cVMs--;
1364
1365 /*
1366 * Do the global cleanup round.
1367 */
1368 PGVM pGVM = pHandle->pGVM;
1369 if ( VALID_PTR(pGVM)
1370 && pGVM->u32Magic == GVM_MAGIC)
1371 {
1372 pGVMM->cEMTs -= pGVM->cCpus;
1373
1374 if (pGVM->pSession)
1375 SUPR0SetSessionVM(pGVM->pSession, NULL, NULL);
1376
1377 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1378
1379 gvmmR0CleanupVM(pGVM);
1380
1381 /*
1382 * Do the GVMM cleanup - must be done last.
1383 */
1384 /* The VM and VM pages mappings/allocations. */
1385 if (pGVM->gvmm.s.VMPagesMapObj != NIL_RTR0MEMOBJ)
1386 {
1387 rc = RTR0MemObjFree(pGVM->gvmm.s.VMPagesMapObj, false /* fFreeMappings */); AssertRC(rc);
1388 pGVM->gvmm.s.VMPagesMapObj = NIL_RTR0MEMOBJ;
1389 }
1390
1391 if (pGVM->gvmm.s.VMMapObj != NIL_RTR0MEMOBJ)
1392 {
1393 rc = RTR0MemObjFree(pGVM->gvmm.s.VMMapObj, false /* fFreeMappings */); AssertRC(rc);
1394 pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
1395 }
1396
1397 if (pGVM->gvmm.s.VMPagesMemObj != NIL_RTR0MEMOBJ)
1398 {
1399 rc = RTR0MemObjFree(pGVM->gvmm.s.VMPagesMemObj, false /* fFreeMappings */); AssertRC(rc);
1400 pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
1401 }
1402
1403 if (pGVM->gvmm.s.VMMemObj != NIL_RTR0MEMOBJ)
1404 {
1405 rc = RTR0MemObjFree(pGVM->gvmm.s.VMMemObj, false /* fFreeMappings */); AssertRC(rc);
1406 pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
1407 }
1408
1409 for (VMCPUID i = 0; i < pGVM->cCpus; i++)
1410 {
1411 if (pGVM->aCpus[i].gvmm.s.HaltEventMulti != NIL_RTSEMEVENTMULTI)
1412 {
1413 rc = RTSemEventMultiDestroy(pGVM->aCpus[i].gvmm.s.HaltEventMulti); AssertRC(rc);
1414 pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
1415 }
1416 }
1417
1418 /* the GVM structure itself. */
1419 pGVM->u32Magic |= UINT32_C(0x80000000);
1420 RTMemFree(pGVM);
1421
1422 /* Re-acquire the UsedLock before freeing the handle since we're updating handle fields. */
1423 rc = GVMMR0_USED_EXCLUSIVE_LOCK(pGVMM);
1424 AssertRC(rc);
1425 }
1426 /* else: GVMMR0CreateVM cleanup. */
1427
1428 /*
1429 * Free the handle.
1430 */
1431 pHandle->iNext = pGVMM->iFreeHead;
1432 pGVMM->iFreeHead = iHandle;
1433 ASMAtomicWriteNullPtr(&pHandle->pGVM);
1434 ASMAtomicWriteNullPtr(&pHandle->pVM);
1435 ASMAtomicWriteNullPtr(&pHandle->pvObj);
1436 ASMAtomicWriteNullPtr(&pHandle->pSession);
1437 ASMAtomicWriteHandle(&pHandle->hEMT0, NIL_RTNATIVETHREAD);
1438 ASMAtomicWriteU32(&pHandle->ProcId, NIL_RTPROCESS);
1439
1440 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1441 gvmmR0CreateDestroyUnlock(pGVMM);
1442 LogFlow(("gvmmR0HandleObjDestructor: returns\n"));
1443}
1444
1445
1446/**
1447 * Registers the calling thread as the EMT of a Virtual CPU.
1448 *
1449 * Note that VCPU 0 is automatically registered during VM creation.
1450 *
1451 * @returns VBox status code
1452 * @param pGVM The global (ring-0) VM structure.
1453 * @param pVM The cross context VM structure.
1454 * @param idCpu VCPU id to register the current thread as.
1455 */
1456GVMMR0DECL(int) GVMMR0RegisterVCpu(PGVM pGVM, PVM pVM, VMCPUID idCpu)
1457{
1458 AssertReturn(idCpu != 0, VERR_INVALID_FUNCTION);
1459
1460 /*
1461 * Validate the VM structure, state and handle.
1462 */
1463 PGVMM pGVMM;
1464 int rc = gvmmR0ByGVMandVM(pGVM, pVM, &pGVMM, false /* fTakeUsedLock */); /** @todo take lock here. */
1465 if (RT_SUCCESS(rc))
1466 {
1467 if (idCpu < pGVM->cCpus)
1468 {
1469 /* Check that the EMT isn't already assigned to a thread. */
1470 if (pGVM->aCpus[idCpu].hEMT == NIL_RTNATIVETHREAD)
1471 {
1472 Assert(pVM->aCpus[idCpu].hNativeThreadR0 == NIL_RTNATIVETHREAD);
1473
1474 /* A thread may only be one EMT. */
1475 RTNATIVETHREAD const hNativeSelf = RTThreadNativeSelf();
1476 for (VMCPUID iCpu = 0; iCpu < pGVM->cCpus; iCpu++)
1477 AssertBreakStmt(pGVM->aCpus[iCpu].hEMT != hNativeSelf, rc = VERR_INVALID_PARAMETER);
1478 if (RT_SUCCESS(rc))
1479 {
1480 /*
1481 * Do the assignment, then try setup the hook. Undo if that fails.
1482 */
1483 pVM->aCpus[idCpu].hNativeThreadR0 = pGVM->aCpus[idCpu].hEMT = RTThreadNativeSelf();
1484
1485 rc = VMMR0ThreadCtxHookCreateForEmt(&pVM->aCpus[idCpu]);
1486 if (RT_SUCCESS(rc))
1487 CPUMR0RegisterVCpuThread(&pVM->aCpus[idCpu]);
1488 else
1489 pVM->aCpus[idCpu].hNativeThreadR0 = pGVM->aCpus[idCpu].hEMT = NIL_RTNATIVETHREAD;
1490 }
1491 }
1492 else
1493 rc = VERR_ACCESS_DENIED;
1494 }
1495 else
1496 rc = VERR_INVALID_CPU_ID;
1497 }
1498 return rc;
1499}
1500
1501
1502/**
1503 * Deregisters the calling thread as the EMT of a Virtual CPU.
1504 *
1505 * Note that VCPU 0 shall call GVMMR0DestroyVM intead of this API.
1506 *
1507 * @returns VBox status code
1508 * @param pGVM The global (ring-0) VM structure.
1509 * @param pVM The cross context VM structure.
1510 * @param idCpu VCPU id to register the current thread as.
1511 */
1512GVMMR0DECL(int) GVMMR0DeregisterVCpu(PGVM pGVM, PVM pVM, VMCPUID idCpu)
1513{
1514 AssertReturn(idCpu != 0, VERR_INVALID_FUNCTION);
1515
1516 /*
1517 * Validate the VM structure, state and handle.
1518 */
1519 PGVMM pGVMM;
1520 int rc = gvmmR0ByGVMandVMandEMT(pGVM, pVM, idCpu, &pGVMM);
1521 if (RT_SUCCESS(rc))
1522 {
1523 /*
1524 * Take the destruction lock and recheck the handle state to
1525 * prevent racing GVMMR0DestroyVM.
1526 */
1527 gvmmR0CreateDestroyLock(pGVMM);
1528 uint32_t hSelf = pGVM->hSelf;
1529 if ( hSelf < RT_ELEMENTS(pGVMM->aHandles)
1530 && pGVMM->aHandles[hSelf].pvObj != NULL
1531 && pGVMM->aHandles[hSelf].pGVM == pGVM)
1532 {
1533 /*
1534 * Do per-EMT cleanups.
1535 */
1536 VMMR0ThreadCtxHookDestroyForEmt(&pVM->aCpus[idCpu]);
1537
1538 /*
1539 * Invalidate hEMT. We don't use NIL here as that would allow
1540 * GVMMR0RegisterVCpu to be called again, and we don't want that.
1541 */
1542 AssertCompile(~(RTNATIVETHREAD)1 != NIL_RTNATIVETHREAD);
1543 pGVM->aCpus[idCpu].hEMT = ~(RTNATIVETHREAD)1;
1544 pVM->aCpus[idCpu].hNativeThreadR0 = NIL_RTNATIVETHREAD;
1545 }
1546
1547 gvmmR0CreateDestroyUnlock(pGVMM);
1548 }
1549 return rc;
1550}
1551
1552
1553/**
1554 * Lookup a GVM structure by its handle.
1555 *
1556 * @returns The GVM pointer on success, NULL on failure.
1557 * @param hGVM The global VM handle. Asserts on bad handle.
1558 */
1559GVMMR0DECL(PGVM) GVMMR0ByHandle(uint32_t hGVM)
1560{
1561 PGVMM pGVMM;
1562 GVMM_GET_VALID_INSTANCE(pGVMM, NULL);
1563
1564 /*
1565 * Validate.
1566 */
1567 AssertReturn(hGVM != NIL_GVM_HANDLE, NULL);
1568 AssertReturn(hGVM < RT_ELEMENTS(pGVMM->aHandles), NULL);
1569
1570 /*
1571 * Look it up.
1572 */
1573 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1574 AssertPtrReturn(pHandle->pVM, NULL);
1575 AssertPtrReturn(pHandle->pvObj, NULL);
1576 PGVM pGVM = pHandle->pGVM;
1577 AssertPtrReturn(pGVM, NULL);
1578 AssertReturn(pGVM->pVM == pHandle->pVM, NULL);
1579
1580 return pHandle->pGVM;
1581}
1582
1583
1584/**
1585 * Lookup a GVM structure by the shared VM structure.
1586 *
1587 * The calling thread must be in the same process as the VM. All current lookups
1588 * are by threads inside the same process, so this will not be an issue.
1589 *
1590 * @returns VBox status code.
1591 * @param pVM The cross context VM structure.
1592 * @param ppGVM Where to store the GVM pointer.
1593 * @param ppGVMM Where to store the pointer to the GVMM instance data.
1594 * @param fTakeUsedLock Whether to take the used lock or not. We take it in
1595 * shared mode when requested.
1596 *
1597 * Be very careful if not taking the lock as it's
1598 * possible that the VM will disappear then!
1599 *
1600 * @remark This will not assert on an invalid pVM but try return silently.
1601 */
1602static int gvmmR0ByVM(PVM pVM, PGVM *ppGVM, PGVMM *ppGVMM, bool fTakeUsedLock)
1603{
1604 RTPROCESS ProcId = RTProcSelf();
1605 PGVMM pGVMM;
1606 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1607
1608 /*
1609 * Validate.
1610 */
1611 if (RT_UNLIKELY( !VALID_PTR(pVM)
1612 || ((uintptr_t)pVM & PAGE_OFFSET_MASK)))
1613 return VERR_INVALID_POINTER;
1614 if (RT_UNLIKELY( pVM->enmVMState < VMSTATE_CREATING
1615 || pVM->enmVMState >= VMSTATE_TERMINATED))
1616 return VERR_INVALID_POINTER;
1617
1618 uint16_t hGVM = pVM->hSelf;
1619 if (RT_UNLIKELY( hGVM == NIL_GVM_HANDLE
1620 || hGVM >= RT_ELEMENTS(pGVMM->aHandles)))
1621 return VERR_INVALID_HANDLE;
1622
1623 /*
1624 * Look it up.
1625 */
1626 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1627 PGVM pGVM;
1628 if (fTakeUsedLock)
1629 {
1630 int rc = GVMMR0_USED_SHARED_LOCK(pGVMM);
1631 AssertRCReturn(rc, rc);
1632
1633 pGVM = pHandle->pGVM;
1634 if (RT_UNLIKELY( pHandle->pVM != pVM
1635 || pHandle->ProcId != ProcId
1636 || !VALID_PTR(pHandle->pvObj)
1637 || !VALID_PTR(pGVM)
1638 || pGVM->pVM != pVM))
1639 {
1640 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
1641 return VERR_INVALID_HANDLE;
1642 }
1643 }
1644 else
1645 {
1646 if (RT_UNLIKELY(pHandle->pVM != pVM))
1647 return VERR_INVALID_HANDLE;
1648 if (RT_UNLIKELY(pHandle->ProcId != ProcId))
1649 return VERR_INVALID_HANDLE;
1650 if (RT_UNLIKELY(!VALID_PTR(pHandle->pvObj)))
1651 return VERR_INVALID_HANDLE;
1652
1653 pGVM = pHandle->pGVM;
1654 if (RT_UNLIKELY(!VALID_PTR(pGVM)))
1655 return VERR_INVALID_HANDLE;
1656 if (RT_UNLIKELY(pGVM->pVM != pVM))
1657 return VERR_INVALID_HANDLE;
1658 }
1659
1660 *ppGVM = pGVM;
1661 *ppGVMM = pGVMM;
1662 return VINF_SUCCESS;
1663}
1664
1665
1666/**
1667 * Check that the given GVM and VM structures match up.
1668 *
1669 * The calling thread must be in the same process as the VM. All current lookups
1670 * are by threads inside the same process, so this will not be an issue.
1671 *
1672 * @returns VBox status code.
1673 * @param pGVM The global (ring-0) VM structure.
1674 * @param pVM The cross context VM structure.
1675 * @param ppGVMM Where to store the pointer to the GVMM instance data.
1676 * @param fTakeUsedLock Whether to take the used lock or not. We take it in
1677 * shared mode when requested.
1678 *
1679 * Be very careful if not taking the lock as it's
1680 * possible that the VM will disappear then!
1681 *
1682 * @remark This will not assert on an invalid pVM but try return silently.
1683 */
1684static int gvmmR0ByGVMandVM(PGVM pGVM, PVM pVM, PGVMM *ppGVMM, bool fTakeUsedLock)
1685{
1686 /*
1687 * Check the pointers.
1688 */
1689 int rc;
1690 if (RT_LIKELY(RT_VALID_PTR(pGVM)))
1691 {
1692 if (RT_LIKELY( RT_VALID_PTR(pVM)
1693 && ((uintptr_t)pVM & PAGE_OFFSET_MASK) == 0))
1694 {
1695 if (RT_LIKELY(pGVM->pVM == pVM))
1696 {
1697 /*
1698 * Get the pGVMM instance and check the VM handle.
1699 */
1700 PGVMM pGVMM;
1701 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1702
1703 uint16_t hGVM = pGVM->hSelf;
1704 if (RT_LIKELY( hGVM != NIL_GVM_HANDLE
1705 && hGVM < RT_ELEMENTS(pGVMM->aHandles)))
1706 {
1707 RTPROCESS const pidSelf = RTProcSelf();
1708 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1709 if (fTakeUsedLock)
1710 {
1711 rc = GVMMR0_USED_SHARED_LOCK(pGVMM);
1712 AssertRCReturn(rc, rc);
1713 }
1714
1715 if (RT_LIKELY( pHandle->pGVM == pGVM
1716 && pHandle->pVM == pVM
1717 && pHandle->ProcId == pidSelf
1718 && RT_VALID_PTR(pHandle->pvObj)))
1719 {
1720 /*
1721 * Some more VM data consistency checks.
1722 */
1723 if (RT_LIKELY( pVM->cCpus == pGVM->cCpus
1724 && pVM->hSelf == hGVM
1725 && pVM->enmVMState >= VMSTATE_CREATING
1726 && pVM->enmVMState <= VMSTATE_TERMINATED
1727 && pVM->pVMR0 == pVM))
1728 {
1729 *ppGVMM = pGVMM;
1730 return VINF_SUCCESS;
1731 }
1732 }
1733
1734 if (fTakeUsedLock)
1735 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
1736 }
1737 }
1738 rc = VERR_INVALID_VM_HANDLE;
1739 }
1740 else
1741 rc = VERR_INVALID_POINTER;
1742 }
1743 else
1744 rc = VERR_INVALID_POINTER;
1745 return rc;
1746}
1747
1748
1749/**
1750 * Lookup a GVM structure by the shared VM structure.
1751 *
1752 * @returns VBox status code.
1753 * @param pVM The cross context VM structure.
1754 * @param ppGVM Where to store the GVM pointer.
1755 *
1756 * @remark This will not take the 'used'-lock because it doesn't do
1757 * nesting and this function will be used from under the lock.
1758 * Update: This is no longer true. Consider taking the lock in shared
1759 * mode!
1760 */
1761GVMMR0DECL(int) GVMMR0ByVM(PVM pVM, PGVM *ppGVM)
1762{
1763 PGVMM pGVMM;
1764 return gvmmR0ByVM(pVM, ppGVM, &pGVMM, false /* fTakeUsedLock */);
1765}
1766
1767
1768/**
1769 * Lookup a GVM structure by the shared VM structure and ensuring that the
1770 * caller is an EMT thread.
1771 *
1772 * @returns VBox status code.
1773 * @param pVM The cross context VM structure.
1774 * @param idCpu The Virtual CPU ID of the calling EMT.
1775 * @param ppGVM Where to store the GVM pointer.
1776 * @param ppGVMM Where to store the pointer to the GVMM instance data.
1777 * @thread EMT
1778 *
1779 * @remarks This will assert in all failure paths.
1780 */
1781static int gvmmR0ByVMAndEMT(PVM pVM, VMCPUID idCpu, PGVM *ppGVM, PGVMM *ppGVMM)
1782{
1783 PGVMM pGVMM;
1784 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1785
1786 /*
1787 * Validate.
1788 */
1789 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1790 AssertReturn(!((uintptr_t)pVM & PAGE_OFFSET_MASK), VERR_INVALID_POINTER);
1791
1792 uint16_t hGVM = pVM->hSelf;
1793 AssertReturn(hGVM != NIL_GVM_HANDLE, VERR_INVALID_HANDLE);
1794 AssertReturn(hGVM < RT_ELEMENTS(pGVMM->aHandles), VERR_INVALID_HANDLE);
1795
1796 /*
1797 * Look it up.
1798 */
1799 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1800 AssertReturn(pHandle->pVM == pVM, VERR_NOT_OWNER);
1801 RTPROCESS ProcId = RTProcSelf();
1802 AssertReturn(pHandle->ProcId == ProcId, VERR_NOT_OWNER);
1803 AssertPtrReturn(pHandle->pvObj, VERR_NOT_OWNER);
1804
1805 PGVM pGVM = pHandle->pGVM;
1806 AssertPtrReturn(pGVM, VERR_NOT_OWNER);
1807 AssertReturn(pGVM->pVM == pVM, VERR_NOT_OWNER);
1808 RTNATIVETHREAD hAllegedEMT = RTThreadNativeSelf();
1809 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
1810 AssertReturn(pGVM->aCpus[idCpu].hEMT == hAllegedEMT, VERR_NOT_OWNER);
1811
1812 *ppGVM = pGVM;
1813 *ppGVMM = pGVMM;
1814 return VINF_SUCCESS;
1815}
1816
1817
1818/**
1819 * Check that the given GVM and VM structures match up.
1820 *
1821 * The calling thread must be in the same process as the VM. All current lookups
1822 * are by threads inside the same process, so this will not be an issue.
1823 *
1824 * @returns VBox status code.
1825 * @param pGVM The global (ring-0) VM structure.
1826 * @param pVM The cross context VM structure.
1827 * @param idCpu The (alleged) Virtual CPU ID of the calling EMT.
1828 * @param ppGVMM Where to store the pointer to the GVMM instance data.
1829 * @thread EMT
1830 *
1831 * @remarks This will assert in all failure paths.
1832 */
1833static int gvmmR0ByGVMandVMandEMT(PGVM pGVM, PVM pVM, VMCPUID idCpu, PGVMM *ppGVMM)
1834{
1835 /*
1836 * Check the pointers.
1837 */
1838 AssertPtrReturn(pGVM, VERR_INVALID_POINTER);
1839
1840 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1841 AssertReturn(((uintptr_t)pVM & PAGE_OFFSET_MASK) == 0, VERR_INVALID_POINTER);
1842 AssertReturn(pGVM->pVM == pVM, VERR_INVALID_VM_HANDLE);
1843
1844
1845 /*
1846 * Get the pGVMM instance and check the VM handle.
1847 */
1848 PGVMM pGVMM;
1849 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1850
1851 uint16_t hGVM = pGVM->hSelf;
1852 AssertReturn( hGVM != NIL_GVM_HANDLE
1853 && hGVM < RT_ELEMENTS(pGVMM->aHandles), VERR_INVALID_VM_HANDLE);
1854
1855 RTPROCESS const pidSelf = RTProcSelf();
1856 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1857 AssertReturn( pHandle->pGVM == pGVM
1858 && pHandle->pVM == pVM
1859 && pHandle->ProcId == pidSelf
1860 && RT_VALID_PTR(pHandle->pvObj),
1861 VERR_INVALID_HANDLE);
1862
1863 /*
1864 * Check the EMT claim.
1865 */
1866 RTNATIVETHREAD const hAllegedEMT = RTThreadNativeSelf();
1867 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
1868 AssertReturn(pGVM->aCpus[idCpu].hEMT == hAllegedEMT, VERR_NOT_OWNER);
1869
1870 /*
1871 * Some more VM data consistency checks.
1872 */
1873 AssertReturn(pVM->cCpus == pGVM->cCpus, VERR_INCONSISTENT_VM_HANDLE);
1874 AssertReturn(pVM->hSelf == hGVM, VERR_INCONSISTENT_VM_HANDLE);
1875 AssertReturn(pVM->pVMR0 == pVM, VERR_INCONSISTENT_VM_HANDLE);
1876 AssertReturn( pVM->enmVMState >= VMSTATE_CREATING
1877 && pVM->enmVMState <= VMSTATE_TERMINATED, VERR_INCONSISTENT_VM_HANDLE);
1878
1879 *ppGVMM = pGVMM;
1880 return VINF_SUCCESS;
1881}
1882
1883/**
1884 * Lookup a GVM structure by the shared VM structure
1885 * and ensuring that the caller is the EMT thread.
1886 *
1887 * @returns VBox status code.
1888 * @param pVM The cross context VM structure.
1889 * @param idCpu The Virtual CPU ID of the calling EMT.
1890 * @param ppGVM Where to store the GVM pointer.
1891 * @thread EMT
1892 */
1893GVMMR0DECL(int) GVMMR0ByVMAndEMT(PVM pVM, VMCPUID idCpu, PGVM *ppGVM)
1894{
1895 AssertPtrReturn(ppGVM, VERR_INVALID_POINTER);
1896 PGVMM pGVMM;
1897 return gvmmR0ByVMAndEMT(pVM, idCpu, ppGVM, &pGVMM);
1898}
1899
1900
1901/**
1902 * Lookup a VM by its global handle.
1903 *
1904 * @returns Pointer to the VM on success, NULL on failure.
1905 * @param hGVM The global VM handle. Asserts on bad handle.
1906 */
1907GVMMR0DECL(PVM) GVMMR0GetVMByHandle(uint32_t hGVM)
1908{
1909 PGVM pGVM = GVMMR0ByHandle(hGVM);
1910 return pGVM ? pGVM->pVM : NULL;
1911}
1912
1913
1914/**
1915 * Looks up the VM belonging to the specified EMT thread.
1916 *
1917 * This is used by the assertion machinery in VMMR0.cpp to avoid causing
1918 * unnecessary kernel panics when the EMT thread hits an assertion. The
1919 * call may or not be an EMT thread.
1920 *
1921 * @returns Pointer to the VM on success, NULL on failure.
1922 * @param hEMT The native thread handle of the EMT.
1923 * NIL_RTNATIVETHREAD means the current thread
1924 */
1925GVMMR0DECL(PVM) GVMMR0GetVMByEMT(RTNATIVETHREAD hEMT)
1926{
1927 /*
1928 * No Assertions here as we're usually called in a AssertMsgN or
1929 * RTAssert* context.
1930 */
1931 PGVMM pGVMM = g_pGVMM;
1932 if ( !VALID_PTR(pGVMM)
1933 || pGVMM->u32Magic != GVMM_MAGIC)
1934 return NULL;
1935
1936 if (hEMT == NIL_RTNATIVETHREAD)
1937 hEMT = RTThreadNativeSelf();
1938 RTPROCESS ProcId = RTProcSelf();
1939
1940 /*
1941 * Search the handles in a linear fashion as we don't dare to take the lock (assert).
1942 */
1943 for (unsigned i = 1; i < RT_ELEMENTS(pGVMM->aHandles); i++)
1944 {
1945 if ( pGVMM->aHandles[i].iSelf == i
1946 && pGVMM->aHandles[i].ProcId == ProcId
1947 && VALID_PTR(pGVMM->aHandles[i].pvObj)
1948 && VALID_PTR(pGVMM->aHandles[i].pVM)
1949 && VALID_PTR(pGVMM->aHandles[i].pGVM))
1950 {
1951 if (pGVMM->aHandles[i].hEMT0 == hEMT)
1952 return pGVMM->aHandles[i].pVM;
1953
1954 /* This is fearly safe with the current process per VM approach. */
1955 PGVM pGVM = pGVMM->aHandles[i].pGVM;
1956 VMCPUID const cCpus = pGVM->cCpus;
1957 if ( cCpus < 1
1958 || cCpus > VMM_MAX_CPU_COUNT)
1959 continue;
1960 for (VMCPUID idCpu = 1; idCpu < cCpus; idCpu++)
1961 if (pGVM->aCpus[idCpu].hEMT == hEMT)
1962 return pGVMM->aHandles[i].pVM;
1963 }
1964 }
1965 return NULL;
1966}
1967
1968
1969/**
1970 * This is will wake up expired and soon-to-be expired VMs.
1971 *
1972 * @returns Number of VMs that has been woken up.
1973 * @param pGVMM Pointer to the GVMM instance data.
1974 * @param u64Now The current time.
1975 */
1976static unsigned gvmmR0SchedDoWakeUps(PGVMM pGVMM, uint64_t u64Now)
1977{
1978 /*
1979 * Skip this if we've got disabled because of high resolution wakeups or by
1980 * the user.
1981 */
1982 if (!pGVMM->fDoEarlyWakeUps)
1983 return 0;
1984
1985/** @todo Rewrite this algorithm. See performance defect XYZ. */
1986
1987 /*
1988 * A cheap optimization to stop wasting so much time here on big setups.
1989 */
1990 const uint64_t uNsEarlyWakeUp2 = u64Now + pGVMM->nsEarlyWakeUp2;
1991 if ( pGVMM->cHaltedEMTs == 0
1992 || uNsEarlyWakeUp2 > pGVMM->uNsNextEmtWakeup)
1993 return 0;
1994
1995 /*
1996 * Only one thread doing this at a time.
1997 */
1998 if (!ASMAtomicCmpXchgBool(&pGVMM->fDoingEarlyWakeUps, true, false))
1999 return 0;
2000
2001 /*
2002 * The first pass will wake up VMs which have actually expired
2003 * and look for VMs that should be woken up in the 2nd and 3rd passes.
2004 */
2005 const uint64_t uNsEarlyWakeUp1 = u64Now + pGVMM->nsEarlyWakeUp1;
2006 uint64_t u64Min = UINT64_MAX;
2007 unsigned cWoken = 0;
2008 unsigned cHalted = 0;
2009 unsigned cTodo2nd = 0;
2010 unsigned cTodo3rd = 0;
2011 for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
2012 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
2013 i = pGVMM->aHandles[i].iNext)
2014 {
2015 PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
2016 if ( VALID_PTR(pCurGVM)
2017 && pCurGVM->u32Magic == GVM_MAGIC)
2018 {
2019 for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
2020 {
2021 PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
2022 uint64_t u64 = ASMAtomicUoReadU64(&pCurGVCpu->gvmm.s.u64HaltExpire);
2023 if (u64)
2024 {
2025 if (u64 <= u64Now)
2026 {
2027 if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
2028 {
2029 int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
2030 AssertRC(rc);
2031 cWoken++;
2032 }
2033 }
2034 else
2035 {
2036 cHalted++;
2037 if (u64 <= uNsEarlyWakeUp1)
2038 cTodo2nd++;
2039 else if (u64 <= uNsEarlyWakeUp2)
2040 cTodo3rd++;
2041 else if (u64 < u64Min)
2042 u64 = u64Min;
2043 }
2044 }
2045 }
2046 }
2047 AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
2048 }
2049
2050 if (cTodo2nd)
2051 {
2052 for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
2053 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
2054 i = pGVMM->aHandles[i].iNext)
2055 {
2056 PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
2057 if ( VALID_PTR(pCurGVM)
2058 && pCurGVM->u32Magic == GVM_MAGIC)
2059 {
2060 for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
2061 {
2062 PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
2063 uint64_t u64 = ASMAtomicUoReadU64(&pCurGVCpu->gvmm.s.u64HaltExpire);
2064 if ( u64
2065 && u64 <= uNsEarlyWakeUp1)
2066 {
2067 if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
2068 {
2069 int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
2070 AssertRC(rc);
2071 cWoken++;
2072 }
2073 }
2074 }
2075 }
2076 AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
2077 }
2078 }
2079
2080 if (cTodo3rd)
2081 {
2082 for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
2083 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
2084 i = pGVMM->aHandles[i].iNext)
2085 {
2086 PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
2087 if ( VALID_PTR(pCurGVM)
2088 && pCurGVM->u32Magic == GVM_MAGIC)
2089 {
2090 for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
2091 {
2092 PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
2093 uint64_t u64 = ASMAtomicUoReadU64(&pCurGVCpu->gvmm.s.u64HaltExpire);
2094 if ( u64
2095 && u64 <= uNsEarlyWakeUp2)
2096 {
2097 if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
2098 {
2099 int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
2100 AssertRC(rc);
2101 cWoken++;
2102 }
2103 }
2104 }
2105 }
2106 AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
2107 }
2108 }
2109
2110 /*
2111 * Set the minimum value.
2112 */
2113 pGVMM->uNsNextEmtWakeup = u64Min;
2114
2115 ASMAtomicWriteBool(&pGVMM->fDoingEarlyWakeUps, false);
2116 return cWoken;
2117}
2118
2119
2120/**
2121 * Halt the EMT thread.
2122 *
2123 * @returns VINF_SUCCESS normal wakeup (timeout or kicked by other thread).
2124 * VERR_INTERRUPTED if a signal was scheduled for the thread.
2125 * @param pVM The cross context VM structure.
2126 * @param idCpu The Virtual CPU ID of the calling EMT.
2127 * @param u64ExpireGipTime The time for the sleep to expire expressed as GIP time.
2128 * @thread EMT(idCpu).
2129 */
2130GVMMR0DECL(int) GVMMR0SchedHalt(PVM pVM, VMCPUID idCpu, uint64_t u64ExpireGipTime)
2131{
2132 LogFlow(("GVMMR0SchedHalt: pVM=%p\n", pVM));
2133 GVMM_CHECK_SMAP_SETUP();
2134 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2135
2136 /*
2137 * Validate the VM structure, state and handle.
2138 */
2139 PGVM pGVM;
2140 PGVMM pGVMM;
2141 int rc = gvmmR0ByVMAndEMT(pVM, idCpu, &pGVM, &pGVMM);
2142 if (RT_FAILURE(rc))
2143 return rc;
2144 pGVM->gvmm.s.StatsSched.cHaltCalls++;
2145 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2146
2147 PGVMCPU pCurGVCpu = &pGVM->aCpus[idCpu];
2148 Assert(!pCurGVCpu->gvmm.s.u64HaltExpire);
2149
2150 /*
2151 * If we're doing early wake-ups, we must take the UsedList lock before we
2152 * start querying the current time.
2153 * Note! Interrupts must NOT be disabled at this point because we ask for GIP time!
2154 */
2155 bool const fDoEarlyWakeUps = pGVMM->fDoEarlyWakeUps;
2156 if (fDoEarlyWakeUps)
2157 {
2158 rc = GVMMR0_USED_SHARED_LOCK(pGVMM); AssertRC(rc);
2159 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2160 }
2161
2162 pCurGVCpu->gvmm.s.iCpuEmt = ASMGetApicId();
2163
2164 /* GIP hack: We might are frequently sleeping for short intervals where the
2165 difference between GIP and system time matters on systems with high resolution
2166 system time. So, convert the input from GIP to System time in that case. */
2167 Assert(ASMGetFlags() & X86_EFL_IF);
2168 const uint64_t u64NowSys = RTTimeSystemNanoTS();
2169 const uint64_t u64NowGip = RTTimeNanoTS();
2170 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2171
2172 if (fDoEarlyWakeUps)
2173 {
2174 pGVM->gvmm.s.StatsSched.cHaltWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64NowGip);
2175 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2176 }
2177
2178 /*
2179 * Go to sleep if we must...
2180 * Cap the sleep time to 1 second to be on the safe side.
2181 */
2182 uint64_t cNsInterval = u64ExpireGipTime - u64NowGip;
2183 if ( u64NowGip < u64ExpireGipTime
2184 && cNsInterval >= (pGVMM->cEMTs > pGVMM->cEMTsMeansCompany
2185 ? pGVMM->nsMinSleepCompany
2186 : pGVMM->nsMinSleepAlone))
2187 {
2188 pGVM->gvmm.s.StatsSched.cHaltBlocking++;
2189 if (cNsInterval > RT_NS_1SEC)
2190 u64ExpireGipTime = u64NowGip + RT_NS_1SEC;
2191 ASMAtomicWriteU64(&pCurGVCpu->gvmm.s.u64HaltExpire, u64ExpireGipTime);
2192 ASMAtomicIncU32(&pGVMM->cHaltedEMTs);
2193 if (fDoEarlyWakeUps)
2194 {
2195 if (u64ExpireGipTime < pGVMM->uNsNextEmtWakeup)
2196 pGVMM->uNsNextEmtWakeup = u64ExpireGipTime;
2197 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2198 }
2199 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2200
2201 rc = RTSemEventMultiWaitEx(pCurGVCpu->gvmm.s.HaltEventMulti,
2202 RTSEMWAIT_FLAGS_ABSOLUTE | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_INTERRUPTIBLE,
2203 u64NowGip > u64NowSys ? u64ExpireGipTime : u64NowSys + cNsInterval);
2204 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2205
2206 ASMAtomicWriteU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0);
2207 ASMAtomicDecU32(&pGVMM->cHaltedEMTs);
2208
2209 /* Reset the semaphore to try prevent a few false wake-ups. */
2210 if (rc == VINF_SUCCESS)
2211 {
2212 RTSemEventMultiReset(pCurGVCpu->gvmm.s.HaltEventMulti);
2213 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2214 }
2215 else if (rc == VERR_TIMEOUT)
2216 {
2217 pGVM->gvmm.s.StatsSched.cHaltTimeouts++;
2218 rc = VINF_SUCCESS;
2219 }
2220 }
2221 else
2222 {
2223 pGVM->gvmm.s.StatsSched.cHaltNotBlocking++;
2224 if (fDoEarlyWakeUps)
2225 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2226 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2227 RTSemEventMultiReset(pCurGVCpu->gvmm.s.HaltEventMulti);
2228 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2229 }
2230
2231 return rc;
2232}
2233
2234
2235/**
2236 * Worker for GVMMR0SchedWakeUp and GVMMR0SchedWakeUpAndPokeCpus that wakes up
2237 * the a sleeping EMT.
2238 *
2239 * @retval VINF_SUCCESS if successfully woken up.
2240 * @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
2241 *
2242 * @param pGVM The global (ring-0) VM structure.
2243 * @param pGVCpu The global (ring-0) VCPU structure.
2244 */
2245DECLINLINE(int) gvmmR0SchedWakeUpOne(PGVM pGVM, PGVMCPU pGVCpu)
2246{
2247 pGVM->gvmm.s.StatsSched.cWakeUpCalls++;
2248
2249 /*
2250 * Signal the semaphore regardless of whether it's current blocked on it.
2251 *
2252 * The reason for this is that there is absolutely no way we can be 100%
2253 * certain that it isn't *about* go to go to sleep on it and just got
2254 * delayed a bit en route. So, we will always signal the semaphore when
2255 * the it is flagged as halted in the VMM.
2256 */
2257/** @todo we can optimize some of that by means of the pVCpu->enmState now. */
2258 int rc;
2259 if (pGVCpu->gvmm.s.u64HaltExpire)
2260 {
2261 rc = VINF_SUCCESS;
2262 ASMAtomicWriteU64(&pGVCpu->gvmm.s.u64HaltExpire, 0);
2263 }
2264 else
2265 {
2266 rc = VINF_GVM_NOT_BLOCKED;
2267 pGVM->gvmm.s.StatsSched.cWakeUpNotHalted++;
2268 }
2269
2270 int rc2 = RTSemEventMultiSignal(pGVCpu->gvmm.s.HaltEventMulti);
2271 AssertRC(rc2);
2272
2273 return rc;
2274}
2275
2276
2277/**
2278 * Wakes up the halted EMT thread so it can service a pending request.
2279 *
2280 * @returns VBox status code.
2281 * @retval VINF_SUCCESS if successfully woken up.
2282 * @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
2283 *
2284 * @param pVM The cross context VM structure.
2285 * @param idCpu The Virtual CPU ID of the EMT to wake up.
2286 * @param fTakeUsedLock Take the used lock or not
2287 * @thread Any but EMT.
2288 */
2289GVMMR0DECL(int) GVMMR0SchedWakeUpEx(PVM pVM, VMCPUID idCpu, bool fTakeUsedLock)
2290{
2291 GVMM_CHECK_SMAP_SETUP();
2292 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2293
2294 /*
2295 * Validate input and take the UsedLock.
2296 */
2297 PGVM pGVM;
2298 PGVMM pGVMM;
2299 int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, fTakeUsedLock);
2300 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2301 if (RT_SUCCESS(rc))
2302 {
2303 if (idCpu < pGVM->cCpus)
2304 {
2305 /*
2306 * Do the actual job.
2307 */
2308 rc = gvmmR0SchedWakeUpOne(pGVM, &pGVM->aCpus[idCpu]);
2309 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2310
2311 if (fTakeUsedLock && pGVMM->fDoEarlyWakeUps)
2312 {
2313 /*
2314 * While we're here, do a round of scheduling.
2315 */
2316 Assert(ASMGetFlags() & X86_EFL_IF);
2317 const uint64_t u64Now = RTTimeNanoTS(); /* (GIP time) */
2318 pGVM->gvmm.s.StatsSched.cWakeUpWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64Now);
2319 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2320 }
2321 }
2322 else
2323 rc = VERR_INVALID_CPU_ID;
2324
2325 if (fTakeUsedLock)
2326 {
2327 int rc2 = GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2328 AssertRC(rc2);
2329 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2330 }
2331 }
2332
2333 LogFlow(("GVMMR0SchedWakeUp: returns %Rrc\n", rc));
2334 return rc;
2335}
2336
2337
2338/**
2339 * Wakes up the halted EMT thread so it can service a pending request.
2340 *
2341 * @returns VBox status code.
2342 * @retval VINF_SUCCESS if successfully woken up.
2343 * @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
2344 *
2345 * @param pVM The cross context VM structure.
2346 * @param idCpu The Virtual CPU ID of the EMT to wake up.
2347 * @thread Any but EMT.
2348 */
2349GVMMR0DECL(int) GVMMR0SchedWakeUp(PVM pVM, VMCPUID idCpu)
2350{
2351 return GVMMR0SchedWakeUpEx(pVM, idCpu, true /* fTakeUsedLock */);
2352}
2353
2354/**
2355 * Worker common to GVMMR0SchedPoke and GVMMR0SchedWakeUpAndPokeCpus that pokes
2356 * the Virtual CPU if it's still busy executing guest code.
2357 *
2358 * @returns VBox status code.
2359 * @retval VINF_SUCCESS if poked successfully.
2360 * @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
2361 *
2362 * @param pGVM The global (ring-0) VM structure.
2363 * @param pVCpu The cross context virtual CPU structure.
2364 */
2365DECLINLINE(int) gvmmR0SchedPokeOne(PGVM pGVM, PVMCPU pVCpu)
2366{
2367 pGVM->gvmm.s.StatsSched.cPokeCalls++;
2368
2369 RTCPUID idHostCpu = pVCpu->idHostCpu;
2370 if ( idHostCpu == NIL_RTCPUID
2371 || VMCPU_GET_STATE(pVCpu) != VMCPUSTATE_STARTED_EXEC)
2372 {
2373 pGVM->gvmm.s.StatsSched.cPokeNotBusy++;
2374 return VINF_GVM_NOT_BUSY_IN_GC;
2375 }
2376
2377 /* Note: this function is not implemented on Darwin and Linux (kernel < 2.6.19) */
2378 RTMpPokeCpu(idHostCpu);
2379 return VINF_SUCCESS;
2380}
2381
2382/**
2383 * Pokes an EMT if it's still busy running guest code.
2384 *
2385 * @returns VBox status code.
2386 * @retval VINF_SUCCESS if poked successfully.
2387 * @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
2388 *
2389 * @param pVM The cross context VM structure.
2390 * @param idCpu The ID of the virtual CPU to poke.
2391 * @param fTakeUsedLock Take the used lock or not
2392 */
2393GVMMR0DECL(int) GVMMR0SchedPokeEx(PVM pVM, VMCPUID idCpu, bool fTakeUsedLock)
2394{
2395 /*
2396 * Validate input and take the UsedLock.
2397 */
2398 PGVM pGVM;
2399 PGVMM pGVMM;
2400 int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, fTakeUsedLock);
2401 if (RT_SUCCESS(rc))
2402 {
2403 if (idCpu < pGVM->cCpus)
2404 rc = gvmmR0SchedPokeOne(pGVM, &pVM->aCpus[idCpu]);
2405 else
2406 rc = VERR_INVALID_CPU_ID;
2407
2408 if (fTakeUsedLock)
2409 {
2410 int rc2 = GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2411 AssertRC(rc2);
2412 }
2413 }
2414
2415 LogFlow(("GVMMR0SchedWakeUpAndPokeCpus: returns %Rrc\n", rc));
2416 return rc;
2417}
2418
2419
2420/**
2421 * Pokes an EMT if it's still busy running guest code.
2422 *
2423 * @returns VBox status code.
2424 * @retval VINF_SUCCESS if poked successfully.
2425 * @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
2426 *
2427 * @param pVM The cross context VM structure.
2428 * @param idCpu The ID of the virtual CPU to poke.
2429 */
2430GVMMR0DECL(int) GVMMR0SchedPoke(PVM pVM, VMCPUID idCpu)
2431{
2432 return GVMMR0SchedPokeEx(pVM, idCpu, true /* fTakeUsedLock */);
2433}
2434
2435
2436/**
2437 * Wakes up a set of halted EMT threads so they can service pending request.
2438 *
2439 * @returns VBox status code, no informational stuff.
2440 *
2441 * @param pVM The cross context VM structure.
2442 * @param pSleepSet The set of sleepers to wake up.
2443 * @param pPokeSet The set of CPUs to poke.
2444 */
2445GVMMR0DECL(int) GVMMR0SchedWakeUpAndPokeCpus(PVM pVM, PCVMCPUSET pSleepSet, PCVMCPUSET pPokeSet)
2446{
2447 AssertPtrReturn(pSleepSet, VERR_INVALID_POINTER);
2448 AssertPtrReturn(pPokeSet, VERR_INVALID_POINTER);
2449 GVMM_CHECK_SMAP_SETUP();
2450 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2451 RTNATIVETHREAD hSelf = RTThreadNativeSelf();
2452
2453 /*
2454 * Validate input and take the UsedLock.
2455 */
2456 PGVM pGVM;
2457 PGVMM pGVMM;
2458 int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, true /* fTakeUsedLock */);
2459 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2460 if (RT_SUCCESS(rc))
2461 {
2462 rc = VINF_SUCCESS;
2463 VMCPUID idCpu = pGVM->cCpus;
2464 while (idCpu-- > 0)
2465 {
2466 /* Don't try poke or wake up ourselves. */
2467 if (pGVM->aCpus[idCpu].hEMT == hSelf)
2468 continue;
2469
2470 /* just ignore errors for now. */
2471 if (VMCPUSET_IS_PRESENT(pSleepSet, idCpu))
2472 {
2473 gvmmR0SchedWakeUpOne(pGVM, &pGVM->aCpus[idCpu]);
2474 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2475 }
2476 else if (VMCPUSET_IS_PRESENT(pPokeSet, idCpu))
2477 {
2478 gvmmR0SchedPokeOne(pGVM, &pVM->aCpus[idCpu]);
2479 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2480 }
2481 }
2482
2483 int rc2 = GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2484 AssertRC(rc2);
2485 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2486 }
2487
2488 LogFlow(("GVMMR0SchedWakeUpAndPokeCpus: returns %Rrc\n", rc));
2489 return rc;
2490}
2491
2492
2493/**
2494 * VMMR0 request wrapper for GVMMR0SchedWakeUpAndPokeCpus.
2495 *
2496 * @returns see GVMMR0SchedWakeUpAndPokeCpus.
2497 * @param pVM The cross context VM structure.
2498 * @param pReq Pointer to the request packet.
2499 */
2500GVMMR0DECL(int) GVMMR0SchedWakeUpAndPokeCpusReq(PVM pVM, PGVMMSCHEDWAKEUPANDPOKECPUSREQ pReq)
2501{
2502 /*
2503 * Validate input and pass it on.
2504 */
2505 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2506 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
2507
2508 return GVMMR0SchedWakeUpAndPokeCpus(pVM, &pReq->SleepSet, &pReq->PokeSet);
2509}
2510
2511
2512
2513/**
2514 * Poll the schedule to see if someone else should get a chance to run.
2515 *
2516 * This is a bit hackish and will not work too well if the machine is
2517 * under heavy load from non-VM processes.
2518 *
2519 * @returns VINF_SUCCESS if not yielded.
2520 * VINF_GVM_YIELDED if an attempt to switch to a different VM task was made.
2521 * @param pVM The cross context VM structure.
2522 * @param idCpu The Virtual CPU ID of the calling EMT.
2523 * @param fYield Whether to yield or not.
2524 * This is for when we're spinning in the halt loop.
2525 * @thread EMT(idCpu).
2526 */
2527GVMMR0DECL(int) GVMMR0SchedPoll(PVM pVM, VMCPUID idCpu, bool fYield)
2528{
2529 /*
2530 * Validate input.
2531 */
2532 PGVM pGVM;
2533 PGVMM pGVMM;
2534 int rc = gvmmR0ByVMAndEMT(pVM, idCpu, &pGVM, &pGVMM);
2535 if (RT_SUCCESS(rc))
2536 {
2537 /*
2538 * We currently only implement helping doing wakeups (fYield = false), so don't
2539 * bother taking the lock if gvmmR0SchedDoWakeUps is not going to do anything.
2540 */
2541 if (!fYield && pGVMM->fDoEarlyWakeUps)
2542 {
2543 rc = GVMMR0_USED_SHARED_LOCK(pGVMM); AssertRC(rc);
2544 pGVM->gvmm.s.StatsSched.cPollCalls++;
2545
2546 Assert(ASMGetFlags() & X86_EFL_IF);
2547 const uint64_t u64Now = RTTimeNanoTS(); /* (GIP time) */
2548
2549 pGVM->gvmm.s.StatsSched.cPollWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64Now);
2550
2551 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2552 }
2553 /*
2554 * Not quite sure what we could do here...
2555 */
2556 else if (fYield)
2557 rc = VERR_NOT_IMPLEMENTED; /** @todo implement this... */
2558 else
2559 rc = VINF_SUCCESS;
2560 }
2561
2562 LogFlow(("GVMMR0SchedWakeUp: returns %Rrc\n", rc));
2563 return rc;
2564}
2565
2566
2567#ifdef GVMM_SCHED_WITH_PPT
2568/**
2569 * Timer callback for the periodic preemption timer.
2570 *
2571 * @param pTimer The timer handle.
2572 * @param pvUser Pointer to the per cpu structure.
2573 * @param iTick The current tick.
2574 */
2575static DECLCALLBACK(void) gvmmR0SchedPeriodicPreemptionTimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2576{
2577 PGVMMHOSTCPU pCpu = (PGVMMHOSTCPU)pvUser;
2578 NOREF(pTimer); NOREF(iTick);
2579
2580 /*
2581 * Termination check
2582 */
2583 if (pCpu->u32Magic != GVMMHOSTCPU_MAGIC)
2584 return;
2585
2586 /*
2587 * Do the house keeping.
2588 */
2589 RTSpinlockAcquire(pCpu->Ppt.hSpinlock);
2590
2591 if (++pCpu->Ppt.iTickHistorization >= pCpu->Ppt.cTicksHistoriziationInterval)
2592 {
2593 /*
2594 * Historicize the max frequency.
2595 */
2596 uint32_t iHzHistory = ++pCpu->Ppt.iHzHistory % RT_ELEMENTS(pCpu->Ppt.aHzHistory);
2597 pCpu->Ppt.aHzHistory[iHzHistory] = pCpu->Ppt.uDesiredHz;
2598 pCpu->Ppt.iTickHistorization = 0;
2599 pCpu->Ppt.uDesiredHz = 0;
2600
2601 /*
2602 * Check if the current timer frequency.
2603 */
2604 uint32_t uHistMaxHz = 0;
2605 for (uint32_t i = 0; i < RT_ELEMENTS(pCpu->Ppt.aHzHistory); i++)
2606 if (pCpu->Ppt.aHzHistory[i] > uHistMaxHz)
2607 uHistMaxHz = pCpu->Ppt.aHzHistory[i];
2608 if (uHistMaxHz == pCpu->Ppt.uTimerHz)
2609 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2610 else if (uHistMaxHz)
2611 {
2612 /*
2613 * Reprogram it.
2614 */
2615 pCpu->Ppt.cChanges++;
2616 pCpu->Ppt.iTickHistorization = 0;
2617 pCpu->Ppt.uTimerHz = uHistMaxHz;
2618 uint32_t const cNsInterval = RT_NS_1SEC / uHistMaxHz;
2619 pCpu->Ppt.cNsInterval = cNsInterval;
2620 if (cNsInterval < GVMMHOSTCPU_PPT_HIST_INTERVAL_NS)
2621 pCpu->Ppt.cTicksHistoriziationInterval = ( GVMMHOSTCPU_PPT_HIST_INTERVAL_NS
2622 + GVMMHOSTCPU_PPT_HIST_INTERVAL_NS / 2 - 1)
2623 / cNsInterval;
2624 else
2625 pCpu->Ppt.cTicksHistoriziationInterval = 1;
2626 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2627
2628 /*SUPR0Printf("Cpu%u: change to %u Hz / %u ns\n", pCpu->idxCpuSet, uHistMaxHz, cNsInterval);*/
2629 RTTimerChangeInterval(pTimer, cNsInterval);
2630 }
2631 else
2632 {
2633 /*
2634 * Stop it.
2635 */
2636 pCpu->Ppt.fStarted = false;
2637 pCpu->Ppt.uTimerHz = 0;
2638 pCpu->Ppt.cNsInterval = 0;
2639 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2640
2641 /*SUPR0Printf("Cpu%u: stopping (%u Hz)\n", pCpu->idxCpuSet, uHistMaxHz);*/
2642 RTTimerStop(pTimer);
2643 }
2644 }
2645 else
2646 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2647}
2648#endif /* GVMM_SCHED_WITH_PPT */
2649
2650
2651/**
2652 * Updates the periodic preemption timer for the calling CPU.
2653 *
2654 * The caller must have disabled preemption!
2655 * The caller must check that the host can do high resolution timers.
2656 *
2657 * @param pVM The cross context VM structure.
2658 * @param idHostCpu The current host CPU id.
2659 * @param uHz The desired frequency.
2660 */
2661GVMMR0DECL(void) GVMMR0SchedUpdatePeriodicPreemptionTimer(PVM pVM, RTCPUID idHostCpu, uint32_t uHz)
2662{
2663 NOREF(pVM);
2664#ifdef GVMM_SCHED_WITH_PPT
2665 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2666 Assert(RTTimerCanDoHighResolution());
2667
2668 /*
2669 * Resolve the per CPU data.
2670 */
2671 uint32_t iCpu = RTMpCpuIdToSetIndex(idHostCpu);
2672 PGVMM pGVMM = g_pGVMM;
2673 if ( !VALID_PTR(pGVMM)
2674 || pGVMM->u32Magic != GVMM_MAGIC)
2675 return;
2676 AssertMsgReturnVoid(iCpu < pGVMM->cHostCpus, ("iCpu=%d cHostCpus=%d\n", iCpu, pGVMM->cHostCpus));
2677 PGVMMHOSTCPU pCpu = &pGVMM->aHostCpus[iCpu];
2678 AssertMsgReturnVoid( pCpu->u32Magic == GVMMHOSTCPU_MAGIC
2679 && pCpu->idCpu == idHostCpu,
2680 ("u32Magic=%#x idCpu=% idHostCpu=%d\n", pCpu->u32Magic, pCpu->idCpu, idHostCpu));
2681
2682 /*
2683 * Check whether we need to do anything about the timer.
2684 * We have to be a little bit careful since we might be race the timer
2685 * callback here.
2686 */
2687 if (uHz > 16384)
2688 uHz = 16384; /** @todo add a query method for this! */
2689 if (RT_UNLIKELY( uHz > ASMAtomicReadU32(&pCpu->Ppt.uDesiredHz)
2690 && uHz >= pCpu->Ppt.uMinHz
2691 && !pCpu->Ppt.fStarting /* solaris paranoia */))
2692 {
2693 RTSpinlockAcquire(pCpu->Ppt.hSpinlock);
2694
2695 pCpu->Ppt.uDesiredHz = uHz;
2696 uint32_t cNsInterval = 0;
2697 if (!pCpu->Ppt.fStarted)
2698 {
2699 pCpu->Ppt.cStarts++;
2700 pCpu->Ppt.fStarted = true;
2701 pCpu->Ppt.fStarting = true;
2702 pCpu->Ppt.iTickHistorization = 0;
2703 pCpu->Ppt.uTimerHz = uHz;
2704 pCpu->Ppt.cNsInterval = cNsInterval = RT_NS_1SEC / uHz;
2705 if (cNsInterval < GVMMHOSTCPU_PPT_HIST_INTERVAL_NS)
2706 pCpu->Ppt.cTicksHistoriziationInterval = ( GVMMHOSTCPU_PPT_HIST_INTERVAL_NS
2707 + GVMMHOSTCPU_PPT_HIST_INTERVAL_NS / 2 - 1)
2708 / cNsInterval;
2709 else
2710 pCpu->Ppt.cTicksHistoriziationInterval = 1;
2711 }
2712
2713 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2714
2715 if (cNsInterval)
2716 {
2717 RTTimerChangeInterval(pCpu->Ppt.pTimer, cNsInterval);
2718 int rc = RTTimerStart(pCpu->Ppt.pTimer, cNsInterval);
2719 AssertRC(rc);
2720
2721 RTSpinlockAcquire(pCpu->Ppt.hSpinlock);
2722 if (RT_FAILURE(rc))
2723 pCpu->Ppt.fStarted = false;
2724 pCpu->Ppt.fStarting = false;
2725 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2726 }
2727 }
2728#else /* !GVMM_SCHED_WITH_PPT */
2729 NOREF(idHostCpu); NOREF(uHz);
2730#endif /* !GVMM_SCHED_WITH_PPT */
2731}
2732
2733
2734/**
2735 * Retrieves the GVMM statistics visible to the caller.
2736 *
2737 * @returns VBox status code.
2738 *
2739 * @param pStats Where to put the statistics.
2740 * @param pSession The current session.
2741 * @param pVM The VM to obtain statistics for. Optional.
2742 */
2743GVMMR0DECL(int) GVMMR0QueryStatistics(PGVMMSTATS pStats, PSUPDRVSESSION pSession, PVM pVM)
2744{
2745 LogFlow(("GVMMR0QueryStatistics: pStats=%p pSession=%p pVM=%p\n", pStats, pSession, pVM));
2746
2747 /*
2748 * Validate input.
2749 */
2750 AssertPtrReturn(pSession, VERR_INVALID_POINTER);
2751 AssertPtrReturn(pStats, VERR_INVALID_POINTER);
2752 pStats->cVMs = 0; /* (crash before taking the sem...) */
2753
2754 /*
2755 * Take the lock and get the VM statistics.
2756 */
2757 PGVMM pGVMM;
2758 if (pVM)
2759 {
2760 PGVM pGVM;
2761 int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, true /*fTakeUsedLock*/);
2762 if (RT_FAILURE(rc))
2763 return rc;
2764 pStats->SchedVM = pGVM->gvmm.s.StatsSched;
2765 }
2766 else
2767 {
2768 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
2769 memset(&pStats->SchedVM, 0, sizeof(pStats->SchedVM));
2770
2771 int rc = GVMMR0_USED_SHARED_LOCK(pGVMM);
2772 AssertRCReturn(rc, rc);
2773 }
2774
2775 /*
2776 * Enumerate the VMs and add the ones visible to the statistics.
2777 */
2778 pStats->cVMs = 0;
2779 pStats->cEMTs = 0;
2780 memset(&pStats->SchedSum, 0, sizeof(pStats->SchedSum));
2781
2782 for (unsigned i = pGVMM->iUsedHead;
2783 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
2784 i = pGVMM->aHandles[i].iNext)
2785 {
2786 PGVM pGVM = pGVMM->aHandles[i].pGVM;
2787 void *pvObj = pGVMM->aHandles[i].pvObj;
2788 if ( VALID_PTR(pvObj)
2789 && VALID_PTR(pGVM)
2790 && pGVM->u32Magic == GVM_MAGIC
2791 && RT_SUCCESS(SUPR0ObjVerifyAccess(pvObj, pSession, NULL)))
2792 {
2793 pStats->cVMs++;
2794 pStats->cEMTs += pGVM->cCpus;
2795
2796 pStats->SchedSum.cHaltCalls += pGVM->gvmm.s.StatsSched.cHaltCalls;
2797 pStats->SchedSum.cHaltBlocking += pGVM->gvmm.s.StatsSched.cHaltBlocking;
2798 pStats->SchedSum.cHaltTimeouts += pGVM->gvmm.s.StatsSched.cHaltTimeouts;
2799 pStats->SchedSum.cHaltNotBlocking += pGVM->gvmm.s.StatsSched.cHaltNotBlocking;
2800 pStats->SchedSum.cHaltWakeUps += pGVM->gvmm.s.StatsSched.cHaltWakeUps;
2801
2802 pStats->SchedSum.cWakeUpCalls += pGVM->gvmm.s.StatsSched.cWakeUpCalls;
2803 pStats->SchedSum.cWakeUpNotHalted += pGVM->gvmm.s.StatsSched.cWakeUpNotHalted;
2804 pStats->SchedSum.cWakeUpWakeUps += pGVM->gvmm.s.StatsSched.cWakeUpWakeUps;
2805
2806 pStats->SchedSum.cPokeCalls += pGVM->gvmm.s.StatsSched.cPokeCalls;
2807 pStats->SchedSum.cPokeNotBusy += pGVM->gvmm.s.StatsSched.cPokeNotBusy;
2808
2809 pStats->SchedSum.cPollCalls += pGVM->gvmm.s.StatsSched.cPollCalls;
2810 pStats->SchedSum.cPollHalts += pGVM->gvmm.s.StatsSched.cPollHalts;
2811 pStats->SchedSum.cPollWakeUps += pGVM->gvmm.s.StatsSched.cPollWakeUps;
2812 }
2813 }
2814
2815 /*
2816 * Copy out the per host CPU statistics.
2817 */
2818 uint32_t iDstCpu = 0;
2819 uint32_t cSrcCpus = pGVMM->cHostCpus;
2820 for (uint32_t iSrcCpu = 0; iSrcCpu < cSrcCpus; iSrcCpu++)
2821 {
2822 if (pGVMM->aHostCpus[iSrcCpu].idCpu != NIL_RTCPUID)
2823 {
2824 pStats->aHostCpus[iDstCpu].idCpu = pGVMM->aHostCpus[iSrcCpu].idCpu;
2825 pStats->aHostCpus[iDstCpu].idxCpuSet = pGVMM->aHostCpus[iSrcCpu].idxCpuSet;
2826#ifdef GVMM_SCHED_WITH_PPT
2827 pStats->aHostCpus[iDstCpu].uDesiredHz = pGVMM->aHostCpus[iSrcCpu].Ppt.uDesiredHz;
2828 pStats->aHostCpus[iDstCpu].uTimerHz = pGVMM->aHostCpus[iSrcCpu].Ppt.uTimerHz;
2829 pStats->aHostCpus[iDstCpu].cChanges = pGVMM->aHostCpus[iSrcCpu].Ppt.cChanges;
2830 pStats->aHostCpus[iDstCpu].cStarts = pGVMM->aHostCpus[iSrcCpu].Ppt.cStarts;
2831#else
2832 pStats->aHostCpus[iDstCpu].uDesiredHz = 0;
2833 pStats->aHostCpus[iDstCpu].uTimerHz = 0;
2834 pStats->aHostCpus[iDstCpu].cChanges = 0;
2835 pStats->aHostCpus[iDstCpu].cStarts = 0;
2836#endif
2837 iDstCpu++;
2838 if (iDstCpu >= RT_ELEMENTS(pStats->aHostCpus))
2839 break;
2840 }
2841 }
2842 pStats->cHostCpus = iDstCpu;
2843
2844 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2845
2846 return VINF_SUCCESS;
2847}
2848
2849
2850/**
2851 * VMMR0 request wrapper for GVMMR0QueryStatistics.
2852 *
2853 * @returns see GVMMR0QueryStatistics.
2854 * @param pVM The cross context VM structure. Optional.
2855 * @param pReq Pointer to the request packet.
2856 * @param pSession The current session.
2857 */
2858GVMMR0DECL(int) GVMMR0QueryStatisticsReq(PVM pVM, PGVMMQUERYSTATISTICSSREQ pReq, PSUPDRVSESSION pSession)
2859{
2860 /*
2861 * Validate input and pass it on.
2862 */
2863 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2864 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
2865 AssertReturn(pReq->pSession == pSession, VERR_INVALID_PARAMETER);
2866
2867 return GVMMR0QueryStatistics(&pReq->Stats, pSession, pVM);
2868}
2869
2870
2871/**
2872 * Resets the specified GVMM statistics.
2873 *
2874 * @returns VBox status code.
2875 *
2876 * @param pStats Which statistics to reset, that is, non-zero fields indicates which to reset.
2877 * @param pSession The current session.
2878 * @param pVM The VM to reset statistics for. Optional.
2879 */
2880GVMMR0DECL(int) GVMMR0ResetStatistics(PCGVMMSTATS pStats, PSUPDRVSESSION pSession, PVM pVM)
2881{
2882 LogFlow(("GVMMR0ResetStatistics: pStats=%p pSession=%p pVM=%p\n", pStats, pSession, pVM));
2883
2884 /*
2885 * Validate input.
2886 */
2887 AssertPtrReturn(pSession, VERR_INVALID_POINTER);
2888 AssertPtrReturn(pStats, VERR_INVALID_POINTER);
2889
2890 /*
2891 * Take the lock and get the VM statistics.
2892 */
2893 PGVMM pGVMM;
2894 if (pVM)
2895 {
2896 PGVM pGVM;
2897 int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, true /*fTakeUsedLock*/);
2898 if (RT_FAILURE(rc))
2899 return rc;
2900# define MAYBE_RESET_FIELD(field) \
2901 do { if (pStats->SchedVM. field ) { pGVM->gvmm.s.StatsSched. field = 0; } } while (0)
2902 MAYBE_RESET_FIELD(cHaltCalls);
2903 MAYBE_RESET_FIELD(cHaltBlocking);
2904 MAYBE_RESET_FIELD(cHaltTimeouts);
2905 MAYBE_RESET_FIELD(cHaltNotBlocking);
2906 MAYBE_RESET_FIELD(cHaltWakeUps);
2907 MAYBE_RESET_FIELD(cWakeUpCalls);
2908 MAYBE_RESET_FIELD(cWakeUpNotHalted);
2909 MAYBE_RESET_FIELD(cWakeUpWakeUps);
2910 MAYBE_RESET_FIELD(cPokeCalls);
2911 MAYBE_RESET_FIELD(cPokeNotBusy);
2912 MAYBE_RESET_FIELD(cPollCalls);
2913 MAYBE_RESET_FIELD(cPollHalts);
2914 MAYBE_RESET_FIELD(cPollWakeUps);
2915# undef MAYBE_RESET_FIELD
2916 }
2917 else
2918 {
2919 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
2920
2921 int rc = GVMMR0_USED_SHARED_LOCK(pGVMM);
2922 AssertRCReturn(rc, rc);
2923 }
2924
2925 /*
2926 * Enumerate the VMs and add the ones visible to the statistics.
2927 */
2928 if (!ASMMemIsZero(&pStats->SchedSum, sizeof(pStats->SchedSum)))
2929 {
2930 for (unsigned i = pGVMM->iUsedHead;
2931 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
2932 i = pGVMM->aHandles[i].iNext)
2933 {
2934 PGVM pGVM = pGVMM->aHandles[i].pGVM;
2935 void *pvObj = pGVMM->aHandles[i].pvObj;
2936 if ( VALID_PTR(pvObj)
2937 && VALID_PTR(pGVM)
2938 && pGVM->u32Magic == GVM_MAGIC
2939 && RT_SUCCESS(SUPR0ObjVerifyAccess(pvObj, pSession, NULL)))
2940 {
2941# define MAYBE_RESET_FIELD(field) \
2942 do { if (pStats->SchedSum. field ) { pGVM->gvmm.s.StatsSched. field = 0; } } while (0)
2943 MAYBE_RESET_FIELD(cHaltCalls);
2944 MAYBE_RESET_FIELD(cHaltBlocking);
2945 MAYBE_RESET_FIELD(cHaltTimeouts);
2946 MAYBE_RESET_FIELD(cHaltNotBlocking);
2947 MAYBE_RESET_FIELD(cHaltWakeUps);
2948 MAYBE_RESET_FIELD(cWakeUpCalls);
2949 MAYBE_RESET_FIELD(cWakeUpNotHalted);
2950 MAYBE_RESET_FIELD(cWakeUpWakeUps);
2951 MAYBE_RESET_FIELD(cPokeCalls);
2952 MAYBE_RESET_FIELD(cPokeNotBusy);
2953 MAYBE_RESET_FIELD(cPollCalls);
2954 MAYBE_RESET_FIELD(cPollHalts);
2955 MAYBE_RESET_FIELD(cPollWakeUps);
2956# undef MAYBE_RESET_FIELD
2957 }
2958 }
2959 }
2960
2961 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2962
2963 return VINF_SUCCESS;
2964}
2965
2966
2967/**
2968 * VMMR0 request wrapper for GVMMR0ResetStatistics.
2969 *
2970 * @returns see GVMMR0ResetStatistics.
2971 * @param pVM The cross context VM structure. Optional.
2972 * @param pReq Pointer to the request packet.
2973 * @param pSession The current session.
2974 */
2975GVMMR0DECL(int) GVMMR0ResetStatisticsReq(PVM pVM, PGVMMRESETSTATISTICSSREQ pReq, PSUPDRVSESSION pSession)
2976{
2977 /*
2978 * Validate input and pass it on.
2979 */
2980 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2981 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
2982 AssertReturn(pReq->pSession == pSession, VERR_INVALID_PARAMETER);
2983
2984 return GVMMR0ResetStatistics(&pReq->Stats, pSession, pVM);
2985}
2986
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette