VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/GVMMR0.cpp@ 71075

Last change on this file since 71075 was 71075, checked in by vboxsync, 7 years ago

VMM,SUPDrv: More NEM/win experimentation. bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 104.1 KB
Line 
1/* $Id: GVMMR0.cpp 71075 2018-02-20 21:10:45Z vboxsync $ */
2/** @file
3 * GVMM - Global VM Manager.
4 */
5
6/*
7 * Copyright (C) 2007-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_gvmm GVMM - The Global VM Manager
20 *
21 * The Global VM Manager lives in ring-0. Its main function at the moment is
22 * to manage a list of all running VMs, keep a ring-0 only structure (GVM) for
23 * each of them, and assign them unique identifiers (so GMM can track page
24 * owners). The GVMM also manage some of the host CPU resources, like the
25 * periodic preemption timer.
26 *
27 * The GVMM will create a ring-0 object for each VM when it is registered, this
28 * is both for session cleanup purposes and for having a point where it is
29 * possible to implement usage polices later (in SUPR0ObjRegister).
30 *
31 *
32 * @section sec_gvmm_ppt Periodic Preemption Timer (PPT)
33 *
34 * On system that sports a high resolution kernel timer API, we use per-cpu
35 * timers to generate interrupts that preempts VT-x, AMD-V and raw-mode guest
36 * execution. The timer frequency is calculating by taking the max
37 * TMCalcHostTimerFrequency for all VMs running on a CPU for the last ~160 ms
38 * (RT_ELEMENTS((PGVMMHOSTCPU)0, Ppt.aHzHistory) *
39 * GVMMHOSTCPU_PPT_HIST_INTERVAL_NS).
40 *
41 * The TMCalcHostTimerFrequency() part of the things gets its takes the max
42 * TMTimerSetFrequencyHint() value and adjusts by the current catch-up percent,
43 * warp drive percent and some fudge factors. VMMR0.cpp reports the result via
44 * GVMMR0SchedUpdatePeriodicPreemptionTimer() before switching to the VT-x,
45 * AMD-V and raw-mode execution environments.
46 */
47
48
49/*********************************************************************************************************************************
50* Header Files *
51*********************************************************************************************************************************/
52#define LOG_GROUP LOG_GROUP_GVMM
53#include <VBox/vmm/gvmm.h>
54#include <VBox/vmm/gmm.h>
55#include "GVMMR0Internal.h"
56#include <VBox/vmm/gvm.h>
57#include <VBox/vmm/vm.h>
58#include <VBox/vmm/vmcpuset.h>
59#include <VBox/vmm/vmm.h>
60#ifdef VBOX_WITH_NEM_R0
61# include <VBox/vmm/nem.h>
62#endif
63#include <VBox/param.h>
64#include <VBox/err.h>
65
66#include <iprt/asm.h>
67#include <iprt/asm-amd64-x86.h>
68#include <iprt/critsect.h>
69#include <iprt/mem.h>
70#include <iprt/semaphore.h>
71#include <iprt/time.h>
72#include <VBox/log.h>
73#include <iprt/thread.h>
74#include <iprt/process.h>
75#include <iprt/param.h>
76#include <iprt/string.h>
77#include <iprt/assert.h>
78#include <iprt/mem.h>
79#include <iprt/memobj.h>
80#include <iprt/mp.h>
81#include <iprt/cpuset.h>
82#include <iprt/spinlock.h>
83#include <iprt/timer.h>
84
85#include "dtrace/VBoxVMM.h"
86
87
88/*********************************************************************************************************************************
89* Defined Constants And Macros *
90*********************************************************************************************************************************/
91#if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS) || defined(DOXYGEN_RUNNING)
92/** Define this to enable the periodic preemption timer. */
93# define GVMM_SCHED_WITH_PPT
94#endif
95
96
97/** @def GVMM_CHECK_SMAP_SETUP
98 * SMAP check setup. */
99/** @def GVMM_CHECK_SMAP_CHECK
100 * Checks that the AC flag is set if SMAP is enabled. If AC is not set,
101 * it will be logged and @a a_BadExpr is executed. */
102/** @def GVMM_CHECK_SMAP_CHECK2
103 * Checks that the AC flag is set if SMAP is enabled. If AC is not set, it will
104 * be logged, written to the VMs assertion text buffer, and @a a_BadExpr is
105 * executed. */
106#if defined(VBOX_STRICT) || 1
107# define GVMM_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = SUPR0GetKernelFeatures()
108# define GVMM_CHECK_SMAP_CHECK(a_BadExpr) \
109 do { \
110 if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
111 { \
112 RTCCUINTREG fEflCheck = ASMGetFlags(); \
113 if (RT_LIKELY(fEflCheck & X86_EFL_AC)) \
114 { /* likely */ } \
115 else \
116 { \
117 SUPR0Printf("%s, line %d: EFLAGS.AC is clear! (%#x)\n", __FUNCTION__, __LINE__, (uint32_t)fEflCheck); \
118 a_BadExpr; \
119 } \
120 } \
121 } while (0)
122# define GVMM_CHECK_SMAP_CHECK2(a_pVM, a_BadExpr) \
123 do { \
124 if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
125 { \
126 RTCCUINTREG fEflCheck = ASMGetFlags(); \
127 if (RT_LIKELY(fEflCheck & X86_EFL_AC)) \
128 { /* likely */ } \
129 else \
130 { \
131 SUPR0BadContext((a_pVM) ? (a_pVM)->pSession : NULL, __FILE__, __LINE__, "EFLAGS.AC is zero!"); \
132 a_BadExpr; \
133 } \
134 } \
135 } while (0)
136#else
137# define GVMM_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = 0
138# define GVMM_CHECK_SMAP_CHECK(a_BadExpr) NOREF(fKernelFeatures)
139# define GVMM_CHECK_SMAP_CHECK2(a_pVM, a_BadExpr) NOREF(fKernelFeatures)
140#endif
141
142
143
144/*********************************************************************************************************************************
145* Structures and Typedefs *
146*********************************************************************************************************************************/
147
148/**
149 * Global VM handle.
150 */
151typedef struct GVMHANDLE
152{
153 /** The index of the next handle in the list (free or used). (0 is nil.) */
154 uint16_t volatile iNext;
155 /** Our own index / handle value. */
156 uint16_t iSelf;
157 /** The process ID of the handle owner.
158 * This is used for access checks. */
159 RTPROCESS ProcId;
160 /** The pointer to the ring-0 only (aka global) VM structure. */
161 PGVM pGVM;
162 /** The ring-0 mapping of the shared VM instance data. */
163 PVM pVM;
164 /** The virtual machine object. */
165 void *pvObj;
166 /** The session this VM is associated with. */
167 PSUPDRVSESSION pSession;
168 /** The ring-0 handle of the EMT0 thread.
169 * This is used for ownership checks as well as looking up a VM handle by thread
170 * at times like assertions. */
171 RTNATIVETHREAD hEMT0;
172} GVMHANDLE;
173/** Pointer to a global VM handle. */
174typedef GVMHANDLE *PGVMHANDLE;
175
176/** Number of GVM handles (including the NIL handle). */
177#if HC_ARCH_BITS == 64
178# define GVMM_MAX_HANDLES 8192
179#else
180# define GVMM_MAX_HANDLES 128
181#endif
182
183/**
184 * Per host CPU GVMM data.
185 */
186typedef struct GVMMHOSTCPU
187{
188 /** Magic number (GVMMHOSTCPU_MAGIC). */
189 uint32_t volatile u32Magic;
190 /** The CPU ID. */
191 RTCPUID idCpu;
192 /** The CPU set index. */
193 uint32_t idxCpuSet;
194
195#ifdef GVMM_SCHED_WITH_PPT
196 /** Periodic preemption timer data. */
197 struct
198 {
199 /** The handle to the periodic preemption timer. */
200 PRTTIMER pTimer;
201 /** Spinlock protecting the data below. */
202 RTSPINLOCK hSpinlock;
203 /** The smalles Hz that we need to care about. (static) */
204 uint32_t uMinHz;
205 /** The number of ticks between each historization. */
206 uint32_t cTicksHistoriziationInterval;
207 /** The current historization tick (counting up to
208 * cTicksHistoriziationInterval and then resetting). */
209 uint32_t iTickHistorization;
210 /** The current timer interval. This is set to 0 when inactive. */
211 uint32_t cNsInterval;
212 /** The current timer frequency. This is set to 0 when inactive. */
213 uint32_t uTimerHz;
214 /** The current max frequency reported by the EMTs.
215 * This gets historicize and reset by the timer callback. This is
216 * read without holding the spinlock, so needs atomic updating. */
217 uint32_t volatile uDesiredHz;
218 /** Whether the timer was started or not. */
219 bool volatile fStarted;
220 /** Set if we're starting timer. */
221 bool volatile fStarting;
222 /** The index of the next history entry (mod it). */
223 uint32_t iHzHistory;
224 /** Historicized uDesiredHz values. The array wraps around, new entries
225 * are added at iHzHistory. This is updated approximately every
226 * GVMMHOSTCPU_PPT_HIST_INTERVAL_NS by the timer callback. */
227 uint32_t aHzHistory[8];
228 /** Statistics counter for recording the number of interval changes. */
229 uint32_t cChanges;
230 /** Statistics counter for recording the number of timer starts. */
231 uint32_t cStarts;
232 } Ppt;
233#endif /* GVMM_SCHED_WITH_PPT */
234
235} GVMMHOSTCPU;
236/** Pointer to the per host CPU GVMM data. */
237typedef GVMMHOSTCPU *PGVMMHOSTCPU;
238/** The GVMMHOSTCPU::u32Magic value (Petra, Tanya & Rachel Haden). */
239#define GVMMHOSTCPU_MAGIC UINT32_C(0x19711011)
240/** The interval on history entry should cover (approximately) give in
241 * nanoseconds. */
242#define GVMMHOSTCPU_PPT_HIST_INTERVAL_NS UINT32_C(20000000)
243
244
245/**
246 * The GVMM instance data.
247 */
248typedef struct GVMM
249{
250 /** Eyecatcher / magic. */
251 uint32_t u32Magic;
252 /** The index of the head of the free handle chain. (0 is nil.) */
253 uint16_t volatile iFreeHead;
254 /** The index of the head of the active handle chain. (0 is nil.) */
255 uint16_t volatile iUsedHead;
256 /** The number of VMs. */
257 uint16_t volatile cVMs;
258 /** Alignment padding. */
259 uint16_t u16Reserved;
260 /** The number of EMTs. */
261 uint32_t volatile cEMTs;
262 /** The number of EMTs that have halted in GVMMR0SchedHalt. */
263 uint32_t volatile cHaltedEMTs;
264 /** Mini lock for restricting early wake-ups to one thread. */
265 bool volatile fDoingEarlyWakeUps;
266 bool afPadding[3]; /**< explicit alignment padding. */
267 /** When the next halted or sleeping EMT will wake up.
268 * This is set to 0 when it needs recalculating and to UINT64_MAX when
269 * there are no halted or sleeping EMTs in the GVMM. */
270 uint64_t uNsNextEmtWakeup;
271 /** The lock used to serialize VM creation, destruction and associated events that
272 * isn't performance critical. Owners may acquire the list lock. */
273 RTCRITSECT CreateDestroyLock;
274 /** The lock used to serialize used list updates and accesses.
275 * This indirectly includes scheduling since the scheduler will have to walk the
276 * used list to examin running VMs. Owners may not acquire any other locks. */
277 RTCRITSECTRW UsedLock;
278 /** The handle array.
279 * The size of this array defines the maximum number of currently running VMs.
280 * The first entry is unused as it represents the NIL handle. */
281 GVMHANDLE aHandles[GVMM_MAX_HANDLES];
282
283 /** @gcfgm{/GVMM/cEMTsMeansCompany, 32-bit, 0, UINT32_MAX, 1}
284 * The number of EMTs that means we no longer consider ourselves alone on a
285 * CPU/Core.
286 */
287 uint32_t cEMTsMeansCompany;
288 /** @gcfgm{/GVMM/MinSleepAlone,32-bit, 0, 100000000, 750000, ns}
289 * The minimum sleep time for when we're alone, in nano seconds.
290 */
291 uint32_t nsMinSleepAlone;
292 /** @gcfgm{/GVMM/MinSleepCompany,32-bit,0, 100000000, 15000, ns}
293 * The minimum sleep time for when we've got company, in nano seconds.
294 */
295 uint32_t nsMinSleepCompany;
296 /** @gcfgm{/GVMM/EarlyWakeUp1, 32-bit, 0, 100000000, 25000, ns}
297 * The limit for the first round of early wake-ups, given in nano seconds.
298 */
299 uint32_t nsEarlyWakeUp1;
300 /** @gcfgm{/GVMM/EarlyWakeUp2, 32-bit, 0, 100000000, 50000, ns}
301 * The limit for the second round of early wake-ups, given in nano seconds.
302 */
303 uint32_t nsEarlyWakeUp2;
304
305 /** Set if we're doing early wake-ups.
306 * This reflects nsEarlyWakeUp1 and nsEarlyWakeUp2. */
307 bool volatile fDoEarlyWakeUps;
308
309 /** The number of entries in the host CPU array (aHostCpus). */
310 uint32_t cHostCpus;
311 /** Per host CPU data (variable length). */
312 GVMMHOSTCPU aHostCpus[1];
313} GVMM;
314AssertCompileMemberAlignment(GVMM, CreateDestroyLock, 8);
315AssertCompileMemberAlignment(GVMM, UsedLock, 8);
316AssertCompileMemberAlignment(GVMM, uNsNextEmtWakeup, 8);
317/** Pointer to the GVMM instance data. */
318typedef GVMM *PGVMM;
319
320/** The GVMM::u32Magic value (Charlie Haden). */
321#define GVMM_MAGIC UINT32_C(0x19370806)
322
323
324
325/*********************************************************************************************************************************
326* Global Variables *
327*********************************************************************************************************************************/
328/** Pointer to the GVMM instance data.
329 * (Just my general dislike for global variables.) */
330static PGVMM g_pGVMM = NULL;
331
332/** Macro for obtaining and validating the g_pGVMM pointer.
333 * On failure it will return from the invoking function with the specified return value.
334 *
335 * @param pGVMM The name of the pGVMM variable.
336 * @param rc The return value on failure. Use VERR_GVMM_INSTANCE for VBox
337 * status codes.
338 */
339#define GVMM_GET_VALID_INSTANCE(pGVMM, rc) \
340 do { \
341 (pGVMM) = g_pGVMM;\
342 AssertPtrReturn((pGVMM), (rc)); \
343 AssertMsgReturn((pGVMM)->u32Magic == GVMM_MAGIC, ("%p - %#x\n", (pGVMM), (pGVMM)->u32Magic), (rc)); \
344 } while (0)
345
346/** Macro for obtaining and validating the g_pGVMM pointer, void function variant.
347 * On failure it will return from the invoking function.
348 *
349 * @param pGVMM The name of the pGVMM variable.
350 */
351#define GVMM_GET_VALID_INSTANCE_VOID(pGVMM) \
352 do { \
353 (pGVMM) = g_pGVMM;\
354 AssertPtrReturnVoid((pGVMM)); \
355 AssertMsgReturnVoid((pGVMM)->u32Magic == GVMM_MAGIC, ("%p - %#x\n", (pGVMM), (pGVMM)->u32Magic)); \
356 } while (0)
357
358
359/*********************************************************************************************************************************
360* Internal Functions *
361*********************************************************************************************************************************/
362static void gvmmR0InitPerVMData(PGVM pGVM);
363static DECLCALLBACK(void) gvmmR0HandleObjDestructor(void *pvObj, void *pvGVMM, void *pvHandle);
364static int gvmmR0ByGVMandVM(PGVM pGVM, PVM pVM, PGVMM *ppGVMM, bool fTakeUsedLock);
365static int gvmmR0ByGVMandVMandEMT(PGVM pGVM, PVM pVM, VMCPUID idCpu, PGVMM *ppGVMM);
366
367#ifdef GVMM_SCHED_WITH_PPT
368static DECLCALLBACK(void) gvmmR0SchedPeriodicPreemptionTimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
369#endif
370
371
372/**
373 * Initializes the GVMM.
374 *
375 * This is called while owning the loader semaphore (see supdrvIOCtl_LdrLoad()).
376 *
377 * @returns VBox status code.
378 */
379GVMMR0DECL(int) GVMMR0Init(void)
380{
381 LogFlow(("GVMMR0Init:\n"));
382
383 /*
384 * Allocate and initialize the instance data.
385 */
386 uint32_t cHostCpus = RTMpGetArraySize();
387 AssertMsgReturn(cHostCpus > 0 && cHostCpus < _64K, ("%d", (int)cHostCpus), VERR_GVMM_HOST_CPU_RANGE);
388
389 PGVMM pGVMM = (PGVMM)RTMemAllocZ(RT_UOFFSETOF(GVMM, aHostCpus[cHostCpus]));
390 if (!pGVMM)
391 return VERR_NO_MEMORY;
392 int rc = RTCritSectInitEx(&pGVMM->CreateDestroyLock, 0, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE,
393 "GVMM-CreateDestroyLock");
394 if (RT_SUCCESS(rc))
395 {
396 rc = RTCritSectRwInitEx(&pGVMM->UsedLock, 0, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, "GVMM-UsedLock");
397 if (RT_SUCCESS(rc))
398 {
399 pGVMM->u32Magic = GVMM_MAGIC;
400 pGVMM->iUsedHead = 0;
401 pGVMM->iFreeHead = 1;
402
403 /* the nil handle */
404 pGVMM->aHandles[0].iSelf = 0;
405 pGVMM->aHandles[0].iNext = 0;
406
407 /* the tail */
408 unsigned i = RT_ELEMENTS(pGVMM->aHandles) - 1;
409 pGVMM->aHandles[i].iSelf = i;
410 pGVMM->aHandles[i].iNext = 0; /* nil */
411
412 /* the rest */
413 while (i-- > 1)
414 {
415 pGVMM->aHandles[i].iSelf = i;
416 pGVMM->aHandles[i].iNext = i + 1;
417 }
418
419 /* The default configuration values. */
420 uint32_t cNsResolution = RTSemEventMultiGetResolution();
421 pGVMM->cEMTsMeansCompany = 1; /** @todo should be adjusted to relative to the cpu count or something... */
422 if (cNsResolution >= 5*RT_NS_100US)
423 {
424 pGVMM->nsMinSleepAlone = 750000 /* ns (0.750 ms) */; /** @todo this should be adjusted to be 75% (or something) of the scheduler granularity... */
425 pGVMM->nsMinSleepCompany = 15000 /* ns (0.015 ms) */;
426 pGVMM->nsEarlyWakeUp1 = 25000 /* ns (0.025 ms) */;
427 pGVMM->nsEarlyWakeUp2 = 50000 /* ns (0.050 ms) */;
428 }
429 else if (cNsResolution > RT_NS_100US)
430 {
431 pGVMM->nsMinSleepAlone = cNsResolution / 2;
432 pGVMM->nsMinSleepCompany = cNsResolution / 4;
433 pGVMM->nsEarlyWakeUp1 = 0;
434 pGVMM->nsEarlyWakeUp2 = 0;
435 }
436 else
437 {
438 pGVMM->nsMinSleepAlone = 2000;
439 pGVMM->nsMinSleepCompany = 2000;
440 pGVMM->nsEarlyWakeUp1 = 0;
441 pGVMM->nsEarlyWakeUp2 = 0;
442 }
443 pGVMM->fDoEarlyWakeUps = pGVMM->nsEarlyWakeUp1 > 0 && pGVMM->nsEarlyWakeUp2 > 0;
444
445 /* The host CPU data. */
446 pGVMM->cHostCpus = cHostCpus;
447 uint32_t iCpu = cHostCpus;
448 RTCPUSET PossibleSet;
449 RTMpGetSet(&PossibleSet);
450 while (iCpu-- > 0)
451 {
452 pGVMM->aHostCpus[iCpu].idxCpuSet = iCpu;
453#ifdef GVMM_SCHED_WITH_PPT
454 pGVMM->aHostCpus[iCpu].Ppt.pTimer = NULL;
455 pGVMM->aHostCpus[iCpu].Ppt.hSpinlock = NIL_RTSPINLOCK;
456 pGVMM->aHostCpus[iCpu].Ppt.uMinHz = 5; /** @todo Add some API which figures this one out. (not *that* important) */
457 pGVMM->aHostCpus[iCpu].Ppt.cTicksHistoriziationInterval = 1;
458 //pGVMM->aHostCpus[iCpu].Ppt.iTickHistorization = 0;
459 //pGVMM->aHostCpus[iCpu].Ppt.cNsInterval = 0;
460 //pGVMM->aHostCpus[iCpu].Ppt.uTimerHz = 0;
461 //pGVMM->aHostCpus[iCpu].Ppt.uDesiredHz = 0;
462 //pGVMM->aHostCpus[iCpu].Ppt.fStarted = false;
463 //pGVMM->aHostCpus[iCpu].Ppt.fStarting = false;
464 //pGVMM->aHostCpus[iCpu].Ppt.iHzHistory = 0;
465 //pGVMM->aHostCpus[iCpu].Ppt.aHzHistory = {0};
466#endif
467
468 if (RTCpuSetIsMember(&PossibleSet, iCpu))
469 {
470 pGVMM->aHostCpus[iCpu].idCpu = RTMpCpuIdFromSetIndex(iCpu);
471 pGVMM->aHostCpus[iCpu].u32Magic = GVMMHOSTCPU_MAGIC;
472
473#ifdef GVMM_SCHED_WITH_PPT
474 rc = RTTimerCreateEx(&pGVMM->aHostCpus[iCpu].Ppt.pTimer,
475 50*1000*1000 /* whatever */,
476 RTTIMER_FLAGS_CPU(iCpu) | RTTIMER_FLAGS_HIGH_RES,
477 gvmmR0SchedPeriodicPreemptionTimerCallback,
478 &pGVMM->aHostCpus[iCpu]);
479 if (RT_SUCCESS(rc))
480 rc = RTSpinlockCreate(&pGVMM->aHostCpus[iCpu].Ppt.hSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "GVMM/CPU");
481 if (RT_FAILURE(rc))
482 {
483 while (iCpu < cHostCpus)
484 {
485 RTTimerDestroy(pGVMM->aHostCpus[iCpu].Ppt.pTimer);
486 RTSpinlockDestroy(pGVMM->aHostCpus[iCpu].Ppt.hSpinlock);
487 pGVMM->aHostCpus[iCpu].Ppt.hSpinlock = NIL_RTSPINLOCK;
488 iCpu++;
489 }
490 break;
491 }
492#endif
493 }
494 else
495 {
496 pGVMM->aHostCpus[iCpu].idCpu = NIL_RTCPUID;
497 pGVMM->aHostCpus[iCpu].u32Magic = 0;
498 }
499 }
500 if (RT_SUCCESS(rc))
501 {
502 g_pGVMM = pGVMM;
503 LogFlow(("GVMMR0Init: pGVMM=%p cHostCpus=%u\n", pGVMM, cHostCpus));
504 return VINF_SUCCESS;
505 }
506
507 /* bail out. */
508 RTCritSectRwDelete(&pGVMM->UsedLock);
509 }
510 RTCritSectDelete(&pGVMM->CreateDestroyLock);
511 }
512
513 RTMemFree(pGVMM);
514 return rc;
515}
516
517
518/**
519 * Terminates the GVM.
520 *
521 * This is called while owning the loader semaphore (see supdrvLdrFree()).
522 * And unless something is wrong, there should be absolutely no VMs
523 * registered at this point.
524 */
525GVMMR0DECL(void) GVMMR0Term(void)
526{
527 LogFlow(("GVMMR0Term:\n"));
528
529 PGVMM pGVMM = g_pGVMM;
530 g_pGVMM = NULL;
531 if (RT_UNLIKELY(!VALID_PTR(pGVMM)))
532 {
533 SUPR0Printf("GVMMR0Term: pGVMM=%RKv\n", pGVMM);
534 return;
535 }
536
537 /*
538 * First of all, stop all active timers.
539 */
540 uint32_t cActiveTimers = 0;
541 uint32_t iCpu = pGVMM->cHostCpus;
542 while (iCpu-- > 0)
543 {
544 ASMAtomicWriteU32(&pGVMM->aHostCpus[iCpu].u32Magic, ~GVMMHOSTCPU_MAGIC);
545#ifdef GVMM_SCHED_WITH_PPT
546 if ( pGVMM->aHostCpus[iCpu].Ppt.pTimer != NULL
547 && RT_SUCCESS(RTTimerStop(pGVMM->aHostCpus[iCpu].Ppt.pTimer)))
548 cActiveTimers++;
549#endif
550 }
551 if (cActiveTimers)
552 RTThreadSleep(1); /* fudge */
553
554 /*
555 * Invalidate the and free resources.
556 */
557 pGVMM->u32Magic = ~GVMM_MAGIC;
558 RTCritSectRwDelete(&pGVMM->UsedLock);
559 RTCritSectDelete(&pGVMM->CreateDestroyLock);
560
561 pGVMM->iFreeHead = 0;
562 if (pGVMM->iUsedHead)
563 {
564 SUPR0Printf("GVMMR0Term: iUsedHead=%#x! (cVMs=%#x cEMTs=%#x)\n", pGVMM->iUsedHead, pGVMM->cVMs, pGVMM->cEMTs);
565 pGVMM->iUsedHead = 0;
566 }
567
568#ifdef GVMM_SCHED_WITH_PPT
569 iCpu = pGVMM->cHostCpus;
570 while (iCpu-- > 0)
571 {
572 RTTimerDestroy(pGVMM->aHostCpus[iCpu].Ppt.pTimer);
573 pGVMM->aHostCpus[iCpu].Ppt.pTimer = NULL;
574 RTSpinlockDestroy(pGVMM->aHostCpus[iCpu].Ppt.hSpinlock);
575 pGVMM->aHostCpus[iCpu].Ppt.hSpinlock = NIL_RTSPINLOCK;
576 }
577#endif
578
579 RTMemFree(pGVMM);
580}
581
582
583/**
584 * A quick hack for setting global config values.
585 *
586 * @returns VBox status code.
587 *
588 * @param pSession The session handle. Used for authentication.
589 * @param pszName The variable name.
590 * @param u64Value The new value.
591 */
592GVMMR0DECL(int) GVMMR0SetConfig(PSUPDRVSESSION pSession, const char *pszName, uint64_t u64Value)
593{
594 /*
595 * Validate input.
596 */
597 PGVMM pGVMM;
598 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
599 AssertPtrReturn(pSession, VERR_INVALID_HANDLE);
600 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
601
602 /*
603 * String switch time!
604 */
605 if (strncmp(pszName, RT_STR_TUPLE("/GVMM/")))
606 return VERR_CFGM_VALUE_NOT_FOUND; /* borrow status codes from CFGM... */
607 int rc = VINF_SUCCESS;
608 pszName += sizeof("/GVMM/") - 1;
609 if (!strcmp(pszName, "cEMTsMeansCompany"))
610 {
611 if (u64Value <= UINT32_MAX)
612 pGVMM->cEMTsMeansCompany = u64Value;
613 else
614 rc = VERR_OUT_OF_RANGE;
615 }
616 else if (!strcmp(pszName, "MinSleepAlone"))
617 {
618 if (u64Value <= RT_NS_100MS)
619 pGVMM->nsMinSleepAlone = u64Value;
620 else
621 rc = VERR_OUT_OF_RANGE;
622 }
623 else if (!strcmp(pszName, "MinSleepCompany"))
624 {
625 if (u64Value <= RT_NS_100MS)
626 pGVMM->nsMinSleepCompany = u64Value;
627 else
628 rc = VERR_OUT_OF_RANGE;
629 }
630 else if (!strcmp(pszName, "EarlyWakeUp1"))
631 {
632 if (u64Value <= RT_NS_100MS)
633 {
634 pGVMM->nsEarlyWakeUp1 = u64Value;
635 pGVMM->fDoEarlyWakeUps = pGVMM->nsEarlyWakeUp1 > 0 && pGVMM->nsEarlyWakeUp2 > 0;
636 }
637 else
638 rc = VERR_OUT_OF_RANGE;
639 }
640 else if (!strcmp(pszName, "EarlyWakeUp2"))
641 {
642 if (u64Value <= RT_NS_100MS)
643 {
644 pGVMM->nsEarlyWakeUp2 = u64Value;
645 pGVMM->fDoEarlyWakeUps = pGVMM->nsEarlyWakeUp1 > 0 && pGVMM->nsEarlyWakeUp2 > 0;
646 }
647 else
648 rc = VERR_OUT_OF_RANGE;
649 }
650 else
651 rc = VERR_CFGM_VALUE_NOT_FOUND;
652 return rc;
653}
654
655
656/**
657 * A quick hack for getting global config values.
658 *
659 * @returns VBox status code.
660 *
661 * @param pSession The session handle. Used for authentication.
662 * @param pszName The variable name.
663 * @param pu64Value Where to return the value.
664 */
665GVMMR0DECL(int) GVMMR0QueryConfig(PSUPDRVSESSION pSession, const char *pszName, uint64_t *pu64Value)
666{
667 /*
668 * Validate input.
669 */
670 PGVMM pGVMM;
671 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
672 AssertPtrReturn(pSession, VERR_INVALID_HANDLE);
673 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
674 AssertPtrReturn(pu64Value, VERR_INVALID_POINTER);
675
676 /*
677 * String switch time!
678 */
679 if (strncmp(pszName, RT_STR_TUPLE("/GVMM/")))
680 return VERR_CFGM_VALUE_NOT_FOUND; /* borrow status codes from CFGM... */
681 int rc = VINF_SUCCESS;
682 pszName += sizeof("/GVMM/") - 1;
683 if (!strcmp(pszName, "cEMTsMeansCompany"))
684 *pu64Value = pGVMM->cEMTsMeansCompany;
685 else if (!strcmp(pszName, "MinSleepAlone"))
686 *pu64Value = pGVMM->nsMinSleepAlone;
687 else if (!strcmp(pszName, "MinSleepCompany"))
688 *pu64Value = pGVMM->nsMinSleepCompany;
689 else if (!strcmp(pszName, "EarlyWakeUp1"))
690 *pu64Value = pGVMM->nsEarlyWakeUp1;
691 else if (!strcmp(pszName, "EarlyWakeUp2"))
692 *pu64Value = pGVMM->nsEarlyWakeUp2;
693 else
694 rc = VERR_CFGM_VALUE_NOT_FOUND;
695 return rc;
696}
697
698
699/**
700 * Acquire the 'used' lock in shared mode.
701 *
702 * This prevents destruction of the VM while we're in ring-0.
703 *
704 * @returns IPRT status code, see RTSemFastMutexRequest.
705 * @param a_pGVMM The GVMM instance data.
706 * @sa GVMMR0_USED_SHARED_UNLOCK, GVMMR0_USED_EXCLUSIVE_LOCK
707 */
708#define GVMMR0_USED_SHARED_LOCK(a_pGVMM) RTCritSectRwEnterShared(&(a_pGVMM)->UsedLock)
709
710/**
711 * Release the 'used' lock in when owning it in shared mode.
712 *
713 * @returns IPRT status code, see RTSemFastMutexRequest.
714 * @param a_pGVMM The GVMM instance data.
715 * @sa GVMMR0_USED_SHARED_LOCK
716 */
717#define GVMMR0_USED_SHARED_UNLOCK(a_pGVMM) RTCritSectRwLeaveShared(&(a_pGVMM)->UsedLock)
718
719/**
720 * Acquire the 'used' lock in exclusive mode.
721 *
722 * Only use this function when making changes to the used list.
723 *
724 * @returns IPRT status code, see RTSemFastMutexRequest.
725 * @param a_pGVMM The GVMM instance data.
726 * @sa GVMMR0_USED_EXCLUSIVE_UNLOCK
727 */
728#define GVMMR0_USED_EXCLUSIVE_LOCK(a_pGVMM) RTCritSectRwEnterExcl(&(a_pGVMM)->UsedLock)
729
730/**
731 * Release the 'used' lock when owning it in exclusive mode.
732 *
733 * @returns IPRT status code, see RTSemFastMutexRelease.
734 * @param a_pGVMM The GVMM instance data.
735 * @sa GVMMR0_USED_EXCLUSIVE_LOCK, GVMMR0_USED_SHARED_UNLOCK
736 */
737#define GVMMR0_USED_EXCLUSIVE_UNLOCK(a_pGVMM) RTCritSectRwLeaveExcl(&(a_pGVMM)->UsedLock)
738
739
740/**
741 * Try acquire the 'create & destroy' lock.
742 *
743 * @returns IPRT status code, see RTSemFastMutexRequest.
744 * @param pGVMM The GVMM instance data.
745 */
746DECLINLINE(int) gvmmR0CreateDestroyLock(PGVMM pGVMM)
747{
748 LogFlow(("++gvmmR0CreateDestroyLock(%p)\n", pGVMM));
749 int rc = RTCritSectEnter(&pGVMM->CreateDestroyLock);
750 LogFlow(("gvmmR0CreateDestroyLock(%p)->%Rrc\n", pGVMM, rc));
751 return rc;
752}
753
754
755/**
756 * Release the 'create & destroy' lock.
757 *
758 * @returns IPRT status code, see RTSemFastMutexRequest.
759 * @param pGVMM The GVMM instance data.
760 */
761DECLINLINE(int) gvmmR0CreateDestroyUnlock(PGVMM pGVMM)
762{
763 LogFlow(("--gvmmR0CreateDestroyUnlock(%p)\n", pGVMM));
764 int rc = RTCritSectLeave(&pGVMM->CreateDestroyLock);
765 AssertRC(rc);
766 return rc;
767}
768
769
770/**
771 * Request wrapper for the GVMMR0CreateVM API.
772 *
773 * @returns VBox status code.
774 * @param pReq The request buffer.
775 * @param pSession The session handle. The VM will be associated with this.
776 */
777GVMMR0DECL(int) GVMMR0CreateVMReq(PGVMMCREATEVMREQ pReq, PSUPDRVSESSION pSession)
778{
779 /*
780 * Validate the request.
781 */
782 if (!VALID_PTR(pReq))
783 return VERR_INVALID_POINTER;
784 if (pReq->Hdr.cbReq != sizeof(*pReq))
785 return VERR_INVALID_PARAMETER;
786 if (pReq->pSession != pSession)
787 return VERR_INVALID_POINTER;
788
789 /*
790 * Execute it.
791 */
792 PVM pVM;
793 pReq->pVMR0 = NULL;
794 pReq->pVMR3 = NIL_RTR3PTR;
795 int rc = GVMMR0CreateVM(pSession, pReq->cCpus, &pVM);
796 if (RT_SUCCESS(rc))
797 {
798 pReq->pVMR0 = pVM;
799 pReq->pVMR3 = pVM->pVMR3;
800 }
801 return rc;
802}
803
804
805/**
806 * Allocates the VM structure and registers it with GVM.
807 *
808 * The caller will become the VM owner and there by the EMT.
809 *
810 * @returns VBox status code.
811 * @param pSession The support driver session.
812 * @param cCpus Number of virtual CPUs for the new VM.
813 * @param ppVM Where to store the pointer to the VM structure.
814 *
815 * @thread EMT.
816 */
817GVMMR0DECL(int) GVMMR0CreateVM(PSUPDRVSESSION pSession, uint32_t cCpus, PVM *ppVM)
818{
819 LogFlow(("GVMMR0CreateVM: pSession=%p\n", pSession));
820 PGVMM pGVMM;
821 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
822
823 AssertPtrReturn(ppVM, VERR_INVALID_POINTER);
824 *ppVM = NULL;
825
826 if ( cCpus == 0
827 || cCpus > VMM_MAX_CPU_COUNT)
828 return VERR_INVALID_PARAMETER;
829
830 RTNATIVETHREAD hEMT0 = RTThreadNativeSelf();
831 AssertReturn(hEMT0 != NIL_RTNATIVETHREAD, VERR_GVMM_BROKEN_IPRT);
832 RTPROCESS ProcId = RTProcSelf();
833 AssertReturn(ProcId != NIL_RTPROCESS, VERR_GVMM_BROKEN_IPRT);
834
835 /*
836 * The whole allocation process is protected by the lock.
837 */
838 int rc = gvmmR0CreateDestroyLock(pGVMM);
839 AssertRCReturn(rc, rc);
840
841 /*
842 * Only one VM per session.
843 */
844 if (SUPR0GetSessionVM(pSession) != NULL)
845 {
846 gvmmR0CreateDestroyUnlock(pGVMM);
847 SUPR0Printf("GVMMR0CreateVM: The session %p already got a VM: %p\n", pSession, SUPR0GetSessionVM(pSession));
848 return VERR_ALREADY_EXISTS;
849 }
850
851 /*
852 * Allocate a handle first so we don't waste resources unnecessarily.
853 */
854 uint16_t iHandle = pGVMM->iFreeHead;
855 if (iHandle)
856 {
857 PGVMHANDLE pHandle = &pGVMM->aHandles[iHandle];
858
859 /* consistency checks, a bit paranoid as always. */
860 if ( !pHandle->pVM
861 && !pHandle->pGVM
862 && !pHandle->pvObj
863 && pHandle->iSelf == iHandle)
864 {
865 pHandle->pvObj = SUPR0ObjRegister(pSession, SUPDRVOBJTYPE_VM, gvmmR0HandleObjDestructor, pGVMM, pHandle);
866 if (pHandle->pvObj)
867 {
868 /*
869 * Move the handle from the free to used list and perform permission checks.
870 */
871 rc = GVMMR0_USED_EXCLUSIVE_LOCK(pGVMM);
872 AssertRC(rc);
873
874 pGVMM->iFreeHead = pHandle->iNext;
875 pHandle->iNext = pGVMM->iUsedHead;
876 pGVMM->iUsedHead = iHandle;
877 pGVMM->cVMs++;
878
879 pHandle->pVM = NULL;
880 pHandle->pGVM = NULL;
881 pHandle->pSession = pSession;
882 pHandle->hEMT0 = NIL_RTNATIVETHREAD;
883 pHandle->ProcId = NIL_RTPROCESS;
884
885 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
886
887 rc = SUPR0ObjVerifyAccess(pHandle->pvObj, pSession, NULL);
888 if (RT_SUCCESS(rc))
889 {
890 /*
891 * Allocate the global VM structure (GVM) and initialize it.
892 */
893 PGVM pGVM = (PGVM)RTMemAllocZ(RT_UOFFSETOF(GVM, aCpus[cCpus]));
894 if (pGVM)
895 {
896 pGVM->u32Magic = GVM_MAGIC;
897 pGVM->hSelf = iHandle;
898 pGVM->pVM = NULL;
899 pGVM->cCpus = cCpus;
900 pGVM->pSession = pSession;
901
902 gvmmR0InitPerVMData(pGVM);
903 GMMR0InitPerVMData(pGVM);
904
905 /*
906 * Allocate the shared VM structure and associated page array.
907 */
908 const uint32_t cbVM = RT_UOFFSETOF(VM, aCpus[cCpus]);
909 const uint32_t cPages = RT_ALIGN_32(cbVM, PAGE_SIZE) >> PAGE_SHIFT;
910 rc = RTR0MemObjAllocLow(&pGVM->gvmm.s.VMMemObj, cPages << PAGE_SHIFT, false /* fExecutable */);
911 if (RT_SUCCESS(rc))
912 {
913 PVM pVM = (PVM)RTR0MemObjAddress(pGVM->gvmm.s.VMMemObj); AssertPtr(pVM);
914 memset(pVM, 0, cPages << PAGE_SHIFT);
915 pVM->enmVMState = VMSTATE_CREATING;
916 pVM->pVMR0 = pVM;
917 pVM->pSession = pSession;
918 pVM->hSelf = iHandle;
919 pVM->cbSelf = cbVM;
920 pVM->cCpus = cCpus;
921 pVM->uCpuExecutionCap = 100; /* default is no cap. */
922 pVM->offVMCPU = RT_UOFFSETOF(VM, aCpus);
923 AssertCompileMemberAlignment(VM, cpum, 64);
924 AssertCompileMemberAlignment(VM, tm, 64);
925 AssertCompileMemberAlignment(VM, aCpus, PAGE_SIZE);
926
927 rc = RTR0MemObjAllocPage(&pGVM->gvmm.s.VMPagesMemObj, cPages * sizeof(SUPPAGE), false /* fExecutable */);
928 if (RT_SUCCESS(rc))
929 {
930 PSUPPAGE paPages = (PSUPPAGE)RTR0MemObjAddress(pGVM->gvmm.s.VMPagesMemObj); AssertPtr(paPages);
931 for (uint32_t iPage = 0; iPage < cPages; iPage++)
932 {
933 paPages[iPage].uReserved = 0;
934 paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(pGVM->gvmm.s.VMMemObj, iPage);
935 Assert(paPages[iPage].Phys != NIL_RTHCPHYS);
936 }
937
938 /*
939 * Map them into ring-3.
940 */
941 rc = RTR0MemObjMapUser(&pGVM->gvmm.s.VMMapObj, pGVM->gvmm.s.VMMemObj, (RTR3PTR)-1, 0,
942 RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
943 if (RT_SUCCESS(rc))
944 {
945 pVM->pVMR3 = RTR0MemObjAddressR3(pGVM->gvmm.s.VMMapObj);
946 AssertPtr((void *)pVM->pVMR3);
947
948 /* Initialize all the VM pointers. */
949 for (uint32_t i = 0; i < cCpus; i++)
950 {
951 pVM->aCpus[i].pVMR0 = pVM;
952 pVM->aCpus[i].pVMR3 = pVM->pVMR3;
953 pVM->aCpus[i].idHostCpu = NIL_RTCPUID;
954 pVM->aCpus[i].hNativeThreadR0 = NIL_RTNATIVETHREAD;
955 }
956
957 rc = RTR0MemObjMapUser(&pGVM->gvmm.s.VMPagesMapObj, pGVM->gvmm.s.VMPagesMemObj, (RTR3PTR)-1,
958 0 /* uAlignment */, RTMEM_PROT_READ | RTMEM_PROT_WRITE,
959 NIL_RTR0PROCESS);
960 if (RT_SUCCESS(rc))
961 {
962 pVM->paVMPagesR3 = RTR0MemObjAddressR3(pGVM->gvmm.s.VMPagesMapObj);
963 AssertPtr((void *)pVM->paVMPagesR3);
964
965 /* complete the handle - take the UsedLock sem just to be careful. */
966 rc = GVMMR0_USED_EXCLUSIVE_LOCK(pGVMM);
967 AssertRC(rc);
968
969 pHandle->pVM = pVM;
970 pHandle->pGVM = pGVM;
971 pHandle->hEMT0 = hEMT0;
972 pHandle->ProcId = ProcId;
973 pGVM->pVM = pVM;
974 pGVM->aCpus[0].hEMT = hEMT0;
975 pVM->aCpus[0].hNativeThreadR0 = hEMT0;
976 pGVMM->cEMTs += cCpus;
977
978 /* Associate it with the session and create the context hook for EMT0. */
979 rc = SUPR0SetSessionVM(pSession, pGVM, pVM);
980 if (RT_SUCCESS(rc))
981 {
982 rc = VMMR0ThreadCtxHookCreateForEmt(&pVM->aCpus[0]);
983 if (RT_SUCCESS(rc))
984 {
985 /*
986 * Done!
987 */
988 VBOXVMM_R0_GVMM_VM_CREATED(pGVM, pVM, ProcId, (void *)hEMT0, cCpus);
989
990 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
991 gvmmR0CreateDestroyUnlock(pGVMM);
992
993 CPUMR0RegisterVCpuThread(&pVM->aCpus[0]);
994
995 *ppVM = pVM;
996 Log(("GVMMR0CreateVM: pVM=%p pVMR3=%p pGVM=%p hGVM=%d\n", pVM, pVM->pVMR3, pGVM, iHandle));
997 return VINF_SUCCESS;
998 }
999
1000 SUPR0SetSessionVM(pSession, NULL, NULL);
1001 }
1002 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1003 }
1004
1005 RTR0MemObjFree(pGVM->gvmm.s.VMMapObj, false /* fFreeMappings */);
1006 pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
1007 }
1008 RTR0MemObjFree(pGVM->gvmm.s.VMPagesMemObj, false /* fFreeMappings */);
1009 pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
1010 }
1011 RTR0MemObjFree(pGVM->gvmm.s.VMMemObj, false /* fFreeMappings */);
1012 pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
1013 }
1014 }
1015 }
1016 /* else: The user wasn't permitted to create this VM. */
1017
1018 /*
1019 * The handle will be freed by gvmmR0HandleObjDestructor as we release the
1020 * object reference here. A little extra mess because of non-recursive lock.
1021 */
1022 void *pvObj = pHandle->pvObj;
1023 pHandle->pvObj = NULL;
1024 gvmmR0CreateDestroyUnlock(pGVMM);
1025
1026 SUPR0ObjRelease(pvObj, pSession);
1027
1028 SUPR0Printf("GVMMR0CreateVM: failed, rc=%d\n", rc);
1029 return rc;
1030 }
1031
1032 rc = VERR_NO_MEMORY;
1033 }
1034 else
1035 rc = VERR_GVMM_IPE_1;
1036 }
1037 else
1038 rc = VERR_GVM_TOO_MANY_VMS;
1039
1040 gvmmR0CreateDestroyUnlock(pGVMM);
1041 return rc;
1042}
1043
1044
1045/**
1046 * Initializes the per VM data belonging to GVMM.
1047 *
1048 * @param pGVM Pointer to the global VM structure.
1049 */
1050static void gvmmR0InitPerVMData(PGVM pGVM)
1051{
1052 AssertCompile(RT_SIZEOFMEMB(GVM,gvmm.s) <= RT_SIZEOFMEMB(GVM,gvmm.padding));
1053 AssertCompile(RT_SIZEOFMEMB(GVMCPU,gvmm.s) <= RT_SIZEOFMEMB(GVMCPU,gvmm.padding));
1054 pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
1055 pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
1056 pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
1057 pGVM->gvmm.s.VMPagesMapObj = NIL_RTR0MEMOBJ;
1058 pGVM->gvmm.s.fDoneVMMR0Init = false;
1059 pGVM->gvmm.s.fDoneVMMR0Term = false;
1060
1061 for (VMCPUID i = 0; i < pGVM->cCpus; i++)
1062 {
1063 pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
1064 pGVM->aCpus[i].hEMT = NIL_RTNATIVETHREAD;
1065 }
1066}
1067
1068
1069/**
1070 * Does the VM initialization.
1071 *
1072 * @returns VBox status code.
1073 * @param pGVM The global (ring-0) VM structure.
1074 */
1075GVMMR0DECL(int) GVMMR0InitVM(PGVM pGVM)
1076{
1077 LogFlow(("GVMMR0InitVM: pGVM=%p\n", pGVM));
1078
1079 int rc = VERR_INTERNAL_ERROR_3;
1080 if ( !pGVM->gvmm.s.fDoneVMMR0Init
1081 && pGVM->aCpus[0].gvmm.s.HaltEventMulti == NIL_RTSEMEVENTMULTI)
1082 {
1083 for (VMCPUID i = 0; i < pGVM->cCpus; i++)
1084 {
1085 rc = RTSemEventMultiCreate(&pGVM->aCpus[i].gvmm.s.HaltEventMulti);
1086 if (RT_FAILURE(rc))
1087 {
1088 pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
1089 break;
1090 }
1091 }
1092 }
1093 else
1094 rc = VERR_WRONG_ORDER;
1095
1096 LogFlow(("GVMMR0InitVM: returns %Rrc\n", rc));
1097 return rc;
1098}
1099
1100
1101/**
1102 * Indicates that we're done with the ring-0 initialization
1103 * of the VM.
1104 *
1105 * @param pGVM The global (ring-0) VM structure.
1106 * @thread EMT(0)
1107 */
1108GVMMR0DECL(void) GVMMR0DoneInitVM(PGVM pGVM)
1109{
1110 /* Set the indicator. */
1111 pGVM->gvmm.s.fDoneVMMR0Init = true;
1112}
1113
1114
1115/**
1116 * Indicates that we're doing the ring-0 termination of the VM.
1117 *
1118 * @returns true if termination hasn't been done already, false if it has.
1119 * @param pGVM Pointer to the global VM structure. Optional.
1120 * @thread EMT(0) or session cleanup thread.
1121 */
1122GVMMR0DECL(bool) GVMMR0DoingTermVM(PGVM pGVM)
1123{
1124 /* Validate the VM structure, state and handle. */
1125 AssertPtrReturn(pGVM, false);
1126
1127 /* Set the indicator. */
1128 if (pGVM->gvmm.s.fDoneVMMR0Term)
1129 return false;
1130 pGVM->gvmm.s.fDoneVMMR0Term = true;
1131 return true;
1132}
1133
1134
1135/**
1136 * Destroys the VM, freeing all associated resources (the ring-0 ones anyway).
1137 *
1138 * This is call from the vmR3DestroyFinalBit and from a error path in VMR3Create,
1139 * and the caller is not the EMT thread, unfortunately. For security reasons, it
1140 * would've been nice if the caller was actually the EMT thread or that we somehow
1141 * could've associated the calling thread with the VM up front.
1142 *
1143 * @returns VBox status code.
1144 * @param pGVM The global (ring-0) VM structure.
1145 * @param pVM The cross context VM structure.
1146 *
1147 * @thread EMT(0) if it's associated with the VM, otherwise any thread.
1148 */
1149GVMMR0DECL(int) GVMMR0DestroyVM(PGVM pGVM, PVM pVM)
1150{
1151 LogFlow(("GVMMR0DestroyVM: pGVM=%p pVM=%p\n", pGVM, pVM));
1152 PGVMM pGVMM;
1153 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1154
1155 /*
1156 * Validate the VM structure, state and caller.
1157 */
1158 AssertPtrReturn(pGVM, VERR_INVALID_POINTER);
1159 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1160 AssertReturn(!((uintptr_t)pVM & PAGE_OFFSET_MASK), VERR_INVALID_POINTER);
1161 AssertReturn(pGVM->pVM == pVM, VERR_INVALID_POINTER);
1162 AssertMsgReturn(pVM->enmVMState >= VMSTATE_CREATING && pVM->enmVMState <= VMSTATE_TERMINATED, ("%d\n", pVM->enmVMState),
1163 VERR_WRONG_ORDER);
1164
1165 uint32_t hGVM = pGVM->hSelf;
1166 AssertReturn(hGVM != NIL_GVM_HANDLE, VERR_INVALID_VM_HANDLE);
1167 AssertReturn(hGVM < RT_ELEMENTS(pGVMM->aHandles), VERR_INVALID_VM_HANDLE);
1168
1169 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1170 AssertReturn(pHandle->pVM == pVM, VERR_NOT_OWNER);
1171
1172 RTPROCESS ProcId = RTProcSelf();
1173 RTNATIVETHREAD hSelf = RTThreadNativeSelf();
1174 AssertReturn( ( pHandle->hEMT0 == hSelf
1175 && pHandle->ProcId == ProcId)
1176 || pHandle->hEMT0 == NIL_RTNATIVETHREAD, VERR_NOT_OWNER);
1177
1178 /*
1179 * Lookup the handle and destroy the object.
1180 * Since the lock isn't recursive and we'll have to leave it before dereferencing the
1181 * object, we take some precautions against racing callers just in case...
1182 */
1183 int rc = gvmmR0CreateDestroyLock(pGVMM);
1184 AssertRC(rc);
1185
1186 /* Be careful here because we might theoretically be racing someone else cleaning up. */
1187 if ( pHandle->pVM == pVM
1188 && ( ( pHandle->hEMT0 == hSelf
1189 && pHandle->ProcId == ProcId)
1190 || pHandle->hEMT0 == NIL_RTNATIVETHREAD)
1191 && VALID_PTR(pHandle->pvObj)
1192 && VALID_PTR(pHandle->pSession)
1193 && VALID_PTR(pHandle->pGVM)
1194 && pHandle->pGVM->u32Magic == GVM_MAGIC)
1195 {
1196 /* Check that other EMTs have deregistered. */
1197 uint32_t cNotDeregistered = 0;
1198 for (VMCPUID idCpu = 1; idCpu < pGVM->cCpus; idCpu++)
1199 cNotDeregistered += pGVM->aCpus[idCpu].hEMT != ~(RTNATIVETHREAD)1; /* see GVMMR0DeregisterVCpu for the value */
1200 if (cNotDeregistered == 0)
1201 {
1202 /* Grab the object pointer. */
1203 void *pvObj = pHandle->pvObj;
1204 pHandle->pvObj = NULL;
1205 gvmmR0CreateDestroyUnlock(pGVMM);
1206
1207 SUPR0ObjRelease(pvObj, pHandle->pSession);
1208 }
1209 else
1210 {
1211 gvmmR0CreateDestroyUnlock(pGVMM);
1212 rc = VERR_GVMM_NOT_ALL_EMTS_DEREGISTERED;
1213 }
1214 }
1215 else
1216 {
1217 SUPR0Printf("GVMMR0DestroyVM: pHandle=%RKv:{.pVM=%p, .hEMT0=%p, .ProcId=%u, .pvObj=%p} pVM=%p hSelf=%p\n",
1218 pHandle, pHandle->pVM, pHandle->hEMT0, pHandle->ProcId, pHandle->pvObj, pVM, hSelf);
1219 gvmmR0CreateDestroyUnlock(pGVMM);
1220 rc = VERR_GVMM_IPE_2;
1221 }
1222
1223 return rc;
1224}
1225
1226
1227/**
1228 * Performs VM cleanup task as part of object destruction.
1229 *
1230 * @param pGVM The GVM pointer.
1231 */
1232static void gvmmR0CleanupVM(PGVM pGVM)
1233{
1234 if ( pGVM->gvmm.s.fDoneVMMR0Init
1235 && !pGVM->gvmm.s.fDoneVMMR0Term)
1236 {
1237 if ( pGVM->gvmm.s.VMMemObj != NIL_RTR0MEMOBJ
1238 && RTR0MemObjAddress(pGVM->gvmm.s.VMMemObj) == pGVM->pVM)
1239 {
1240 LogFlow(("gvmmR0CleanupVM: Calling VMMR0TermVM\n"));
1241 VMMR0TermVM(pGVM, pGVM->pVM, NIL_VMCPUID);
1242 }
1243 else
1244 AssertMsgFailed(("gvmmR0CleanupVM: VMMemObj=%p pVM=%p\n", pGVM->gvmm.s.VMMemObj, pGVM->pVM));
1245 }
1246
1247 GMMR0CleanupVM(pGVM);
1248#ifdef VBOX_WITH_NEM_R0
1249 NEMR0CleanupVM(pGVM);
1250#endif
1251
1252 AssertCompile((uintptr_t)NIL_RTTHREADCTXHOOK == 0); /* Depends on zero initialized memory working for NIL at the moment. */
1253 for (VMCPUID idCpu = 0; idCpu < pGVM->cCpus; idCpu++)
1254 {
1255 /** @todo Can we busy wait here for all thread-context hooks to be
1256 * deregistered before releasing (destroying) it? Only until we find a
1257 * solution for not deregistering hooks everytime we're leaving HMR0
1258 * context. */
1259 VMMR0ThreadCtxHookDestroyForEmt(&pGVM->pVM->aCpus[idCpu]);
1260 }
1261}
1262
1263
1264/**
1265 * @callback_method_impl{FNSUPDRVDESTRUCTOR,VM handle destructor}
1266 *
1267 * pvUser1 is the GVM instance pointer.
1268 * pvUser2 is the handle pointer.
1269 */
1270static DECLCALLBACK(void) gvmmR0HandleObjDestructor(void *pvObj, void *pvUser1, void *pvUser2)
1271{
1272 LogFlow(("gvmmR0HandleObjDestructor: %p %p %p\n", pvObj, pvUser1, pvUser2));
1273
1274 NOREF(pvObj);
1275
1276 /*
1277 * Some quick, paranoid, input validation.
1278 */
1279 PGVMHANDLE pHandle = (PGVMHANDLE)pvUser2;
1280 AssertPtr(pHandle);
1281 PGVMM pGVMM = (PGVMM)pvUser1;
1282 Assert(pGVMM == g_pGVMM);
1283 const uint16_t iHandle = pHandle - &pGVMM->aHandles[0];
1284 if ( !iHandle
1285 || iHandle >= RT_ELEMENTS(pGVMM->aHandles)
1286 || iHandle != pHandle->iSelf)
1287 {
1288 SUPR0Printf("GVM: handle %d is out of range or corrupt (iSelf=%d)!\n", iHandle, pHandle->iSelf);
1289 return;
1290 }
1291
1292 int rc = gvmmR0CreateDestroyLock(pGVMM);
1293 AssertRC(rc);
1294 rc = GVMMR0_USED_EXCLUSIVE_LOCK(pGVMM);
1295 AssertRC(rc);
1296
1297 /*
1298 * This is a tad slow but a doubly linked list is too much hassle.
1299 */
1300 if (RT_UNLIKELY(pHandle->iNext >= RT_ELEMENTS(pGVMM->aHandles)))
1301 {
1302 SUPR0Printf("GVM: used list index %d is out of range!\n", pHandle->iNext);
1303 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1304 gvmmR0CreateDestroyUnlock(pGVMM);
1305 return;
1306 }
1307
1308 if (pGVMM->iUsedHead == iHandle)
1309 pGVMM->iUsedHead = pHandle->iNext;
1310 else
1311 {
1312 uint16_t iPrev = pGVMM->iUsedHead;
1313 int c = RT_ELEMENTS(pGVMM->aHandles) + 2;
1314 while (iPrev)
1315 {
1316 if (RT_UNLIKELY(iPrev >= RT_ELEMENTS(pGVMM->aHandles)))
1317 {
1318 SUPR0Printf("GVM: used list index %d is out of range!\n", iPrev);
1319 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1320 gvmmR0CreateDestroyUnlock(pGVMM);
1321 return;
1322 }
1323 if (RT_UNLIKELY(c-- <= 0))
1324 {
1325 iPrev = 0;
1326 break;
1327 }
1328
1329 if (pGVMM->aHandles[iPrev].iNext == iHandle)
1330 break;
1331 iPrev = pGVMM->aHandles[iPrev].iNext;
1332 }
1333 if (!iPrev)
1334 {
1335 SUPR0Printf("GVM: can't find the handle previous previous of %d!\n", pHandle->iSelf);
1336 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1337 gvmmR0CreateDestroyUnlock(pGVMM);
1338 return;
1339 }
1340
1341 Assert(pGVMM->aHandles[iPrev].iNext == iHandle);
1342 pGVMM->aHandles[iPrev].iNext = pHandle->iNext;
1343 }
1344 pHandle->iNext = 0;
1345 pGVMM->cVMs--;
1346
1347 /*
1348 * Do the global cleanup round.
1349 */
1350 PGVM pGVM = pHandle->pGVM;
1351 if ( VALID_PTR(pGVM)
1352 && pGVM->u32Magic == GVM_MAGIC)
1353 {
1354 pGVMM->cEMTs -= pGVM->cCpus;
1355
1356 if (pGVM->pSession)
1357 SUPR0SetSessionVM(pGVM->pSession, NULL, NULL);
1358
1359 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1360
1361 gvmmR0CleanupVM(pGVM);
1362
1363 /*
1364 * Do the GVMM cleanup - must be done last.
1365 */
1366 /* The VM and VM pages mappings/allocations. */
1367 if (pGVM->gvmm.s.VMPagesMapObj != NIL_RTR0MEMOBJ)
1368 {
1369 rc = RTR0MemObjFree(pGVM->gvmm.s.VMPagesMapObj, false /* fFreeMappings */); AssertRC(rc);
1370 pGVM->gvmm.s.VMPagesMapObj = NIL_RTR0MEMOBJ;
1371 }
1372
1373 if (pGVM->gvmm.s.VMMapObj != NIL_RTR0MEMOBJ)
1374 {
1375 rc = RTR0MemObjFree(pGVM->gvmm.s.VMMapObj, false /* fFreeMappings */); AssertRC(rc);
1376 pGVM->gvmm.s.VMMapObj = NIL_RTR0MEMOBJ;
1377 }
1378
1379 if (pGVM->gvmm.s.VMPagesMemObj != NIL_RTR0MEMOBJ)
1380 {
1381 rc = RTR0MemObjFree(pGVM->gvmm.s.VMPagesMemObj, false /* fFreeMappings */); AssertRC(rc);
1382 pGVM->gvmm.s.VMPagesMemObj = NIL_RTR0MEMOBJ;
1383 }
1384
1385 if (pGVM->gvmm.s.VMMemObj != NIL_RTR0MEMOBJ)
1386 {
1387 rc = RTR0MemObjFree(pGVM->gvmm.s.VMMemObj, false /* fFreeMappings */); AssertRC(rc);
1388 pGVM->gvmm.s.VMMemObj = NIL_RTR0MEMOBJ;
1389 }
1390
1391 for (VMCPUID i = 0; i < pGVM->cCpus; i++)
1392 {
1393 if (pGVM->aCpus[i].gvmm.s.HaltEventMulti != NIL_RTSEMEVENTMULTI)
1394 {
1395 rc = RTSemEventMultiDestroy(pGVM->aCpus[i].gvmm.s.HaltEventMulti); AssertRC(rc);
1396 pGVM->aCpus[i].gvmm.s.HaltEventMulti = NIL_RTSEMEVENTMULTI;
1397 }
1398 }
1399
1400 /* the GVM structure itself. */
1401 pGVM->u32Magic |= UINT32_C(0x80000000);
1402 RTMemFree(pGVM);
1403
1404 /* Re-acquire the UsedLock before freeing the handle since we're updating handle fields. */
1405 rc = GVMMR0_USED_EXCLUSIVE_LOCK(pGVMM);
1406 AssertRC(rc);
1407 }
1408 /* else: GVMMR0CreateVM cleanup. */
1409
1410 /*
1411 * Free the handle.
1412 */
1413 pHandle->iNext = pGVMM->iFreeHead;
1414 pGVMM->iFreeHead = iHandle;
1415 ASMAtomicWriteNullPtr(&pHandle->pGVM);
1416 ASMAtomicWriteNullPtr(&pHandle->pVM);
1417 ASMAtomicWriteNullPtr(&pHandle->pvObj);
1418 ASMAtomicWriteNullPtr(&pHandle->pSession);
1419 ASMAtomicWriteHandle(&pHandle->hEMT0, NIL_RTNATIVETHREAD);
1420 ASMAtomicWriteU32(&pHandle->ProcId, NIL_RTPROCESS);
1421
1422 GVMMR0_USED_EXCLUSIVE_UNLOCK(pGVMM);
1423 gvmmR0CreateDestroyUnlock(pGVMM);
1424 LogFlow(("gvmmR0HandleObjDestructor: returns\n"));
1425}
1426
1427
1428/**
1429 * Registers the calling thread as the EMT of a Virtual CPU.
1430 *
1431 * Note that VCPU 0 is automatically registered during VM creation.
1432 *
1433 * @returns VBox status code
1434 * @param pGVM The global (ring-0) VM structure.
1435 * @param pVM The cross context VM structure.
1436 * @param idCpu VCPU id to register the current thread as.
1437 */
1438GVMMR0DECL(int) GVMMR0RegisterVCpu(PGVM pGVM, PVM pVM, VMCPUID idCpu)
1439{
1440 AssertReturn(idCpu != 0, VERR_INVALID_FUNCTION);
1441
1442 /*
1443 * Validate the VM structure, state and handle.
1444 */
1445 PGVMM pGVMM;
1446 int rc = gvmmR0ByGVMandVM(pGVM, pVM, &pGVMM, false /* fTakeUsedLock */); /** @todo take lock here. */
1447 if (RT_SUCCESS(rc))
1448 {
1449 if (idCpu < pGVM->cCpus)
1450 {
1451 /* Check that the EMT isn't already assigned to a thread. */
1452 if (pGVM->aCpus[idCpu].hEMT == NIL_RTNATIVETHREAD)
1453 {
1454 Assert(pVM->aCpus[idCpu].hNativeThreadR0 == NIL_RTNATIVETHREAD);
1455
1456 /* A thread may only be one EMT. */
1457 RTNATIVETHREAD const hNativeSelf = RTThreadNativeSelf();
1458 for (VMCPUID iCpu = 0; iCpu < pGVM->cCpus; iCpu++)
1459 AssertBreakStmt(pGVM->aCpus[iCpu].hEMT != hNativeSelf, rc = VERR_INVALID_PARAMETER);
1460 if (RT_SUCCESS(rc))
1461 {
1462 /*
1463 * Do the assignment, then try setup the hook. Undo if that fails.
1464 */
1465 pVM->aCpus[idCpu].hNativeThreadR0 = pGVM->aCpus[idCpu].hEMT = RTThreadNativeSelf();
1466
1467 rc = VMMR0ThreadCtxHookCreateForEmt(&pVM->aCpus[idCpu]);
1468 if (RT_SUCCESS(rc))
1469 CPUMR0RegisterVCpuThread(&pVM->aCpus[idCpu]);
1470 else
1471 pVM->aCpus[idCpu].hNativeThreadR0 = pGVM->aCpus[idCpu].hEMT = NIL_RTNATIVETHREAD;
1472 }
1473 }
1474 else
1475 rc = VERR_ACCESS_DENIED;
1476 }
1477 else
1478 rc = VERR_INVALID_CPU_ID;
1479 }
1480 return rc;
1481}
1482
1483
1484/**
1485 * Deregisters the calling thread as the EMT of a Virtual CPU.
1486 *
1487 * Note that VCPU 0 shall call GVMMR0DestroyVM intead of this API.
1488 *
1489 * @returns VBox status code
1490 * @param pGVM The global (ring-0) VM structure.
1491 * @param pVM The cross context VM structure.
1492 * @param idCpu VCPU id to register the current thread as.
1493 */
1494GVMMR0DECL(int) GVMMR0DeregisterVCpu(PGVM pGVM, PVM pVM, VMCPUID idCpu)
1495{
1496 AssertReturn(idCpu != 0, VERR_INVALID_FUNCTION);
1497
1498 /*
1499 * Validate the VM structure, state and handle.
1500 */
1501 PGVMM pGVMM;
1502 int rc = gvmmR0ByGVMandVMandEMT(pGVM, pVM, idCpu, &pGVMM);
1503 if (RT_SUCCESS(rc))
1504 {
1505 /*
1506 * Take the destruction lock and recheck the handle state to
1507 * prevent racing GVMMR0DestroyVM.
1508 */
1509 gvmmR0CreateDestroyLock(pGVMM);
1510 uint32_t hSelf = pGVM->hSelf;
1511 if ( hSelf < RT_ELEMENTS(pGVMM->aHandles)
1512 && pGVMM->aHandles[hSelf].pvObj != NULL
1513 && pGVMM->aHandles[hSelf].pGVM == pGVM)
1514 {
1515 /*
1516 * Do per-EMT cleanups.
1517 */
1518 VMMR0ThreadCtxHookDestroyForEmt(&pVM->aCpus[idCpu]);
1519
1520 /*
1521 * Invalidate hEMT. We don't use NIL here as that would allow
1522 * GVMMR0RegisterVCpu to be called again, and we don't want that.
1523 */
1524 AssertCompile(~(RTNATIVETHREAD)1 != NIL_RTNATIVETHREAD);
1525 pGVM->aCpus[idCpu].hEMT = ~(RTNATIVETHREAD)1;
1526 pVM->aCpus[idCpu].hNativeThreadR0 = NIL_RTNATIVETHREAD;
1527 }
1528
1529 gvmmR0CreateDestroyUnlock(pGVMM);
1530 }
1531 return rc;
1532}
1533
1534
1535/**
1536 * Lookup a GVM structure by its handle.
1537 *
1538 * @returns The GVM pointer on success, NULL on failure.
1539 * @param hGVM The global VM handle. Asserts on bad handle.
1540 */
1541GVMMR0DECL(PGVM) GVMMR0ByHandle(uint32_t hGVM)
1542{
1543 PGVMM pGVMM;
1544 GVMM_GET_VALID_INSTANCE(pGVMM, NULL);
1545
1546 /*
1547 * Validate.
1548 */
1549 AssertReturn(hGVM != NIL_GVM_HANDLE, NULL);
1550 AssertReturn(hGVM < RT_ELEMENTS(pGVMM->aHandles), NULL);
1551
1552 /*
1553 * Look it up.
1554 */
1555 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1556 AssertPtrReturn(pHandle->pVM, NULL);
1557 AssertPtrReturn(pHandle->pvObj, NULL);
1558 PGVM pGVM = pHandle->pGVM;
1559 AssertPtrReturn(pGVM, NULL);
1560 AssertReturn(pGVM->pVM == pHandle->pVM, NULL);
1561
1562 return pHandle->pGVM;
1563}
1564
1565
1566/**
1567 * Lookup a GVM structure by the shared VM structure.
1568 *
1569 * The calling thread must be in the same process as the VM. All current lookups
1570 * are by threads inside the same process, so this will not be an issue.
1571 *
1572 * @returns VBox status code.
1573 * @param pVM The cross context VM structure.
1574 * @param ppGVM Where to store the GVM pointer.
1575 * @param ppGVMM Where to store the pointer to the GVMM instance data.
1576 * @param fTakeUsedLock Whether to take the used lock or not. We take it in
1577 * shared mode when requested.
1578 *
1579 * Be very careful if not taking the lock as it's
1580 * possible that the VM will disappear then!
1581 *
1582 * @remark This will not assert on an invalid pVM but try return silently.
1583 */
1584static int gvmmR0ByVM(PVM pVM, PGVM *ppGVM, PGVMM *ppGVMM, bool fTakeUsedLock)
1585{
1586 RTPROCESS ProcId = RTProcSelf();
1587 PGVMM pGVMM;
1588 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1589
1590 /*
1591 * Validate.
1592 */
1593 if (RT_UNLIKELY( !VALID_PTR(pVM)
1594 || ((uintptr_t)pVM & PAGE_OFFSET_MASK)))
1595 return VERR_INVALID_POINTER;
1596 if (RT_UNLIKELY( pVM->enmVMState < VMSTATE_CREATING
1597 || pVM->enmVMState >= VMSTATE_TERMINATED))
1598 return VERR_INVALID_POINTER;
1599
1600 uint16_t hGVM = pVM->hSelf;
1601 if (RT_UNLIKELY( hGVM == NIL_GVM_HANDLE
1602 || hGVM >= RT_ELEMENTS(pGVMM->aHandles)))
1603 return VERR_INVALID_HANDLE;
1604
1605 /*
1606 * Look it up.
1607 */
1608 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1609 PGVM pGVM;
1610 if (fTakeUsedLock)
1611 {
1612 int rc = GVMMR0_USED_SHARED_LOCK(pGVMM);
1613 AssertRCReturn(rc, rc);
1614
1615 pGVM = pHandle->pGVM;
1616 if (RT_UNLIKELY( pHandle->pVM != pVM
1617 || pHandle->ProcId != ProcId
1618 || !VALID_PTR(pHandle->pvObj)
1619 || !VALID_PTR(pGVM)
1620 || pGVM->pVM != pVM))
1621 {
1622 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
1623 return VERR_INVALID_HANDLE;
1624 }
1625 }
1626 else
1627 {
1628 if (RT_UNLIKELY(pHandle->pVM != pVM))
1629 return VERR_INVALID_HANDLE;
1630 if (RT_UNLIKELY(pHandle->ProcId != ProcId))
1631 return VERR_INVALID_HANDLE;
1632 if (RT_UNLIKELY(!VALID_PTR(pHandle->pvObj)))
1633 return VERR_INVALID_HANDLE;
1634
1635 pGVM = pHandle->pGVM;
1636 if (RT_UNLIKELY(!VALID_PTR(pGVM)))
1637 return VERR_INVALID_HANDLE;
1638 if (RT_UNLIKELY(pGVM->pVM != pVM))
1639 return VERR_INVALID_HANDLE;
1640 }
1641
1642 *ppGVM = pGVM;
1643 *ppGVMM = pGVMM;
1644 return VINF_SUCCESS;
1645}
1646
1647
1648/**
1649 * Check that the given GVM and VM structures match up.
1650 *
1651 * The calling thread must be in the same process as the VM. All current lookups
1652 * are by threads inside the same process, so this will not be an issue.
1653 *
1654 * @returns VBox status code.
1655 * @param pGVM The global (ring-0) VM structure.
1656 * @param pVM The cross context VM structure.
1657 * @param ppGVMM Where to store the pointer to the GVMM instance data.
1658 * @param fTakeUsedLock Whether to take the used lock or not. We take it in
1659 * shared mode when requested.
1660 *
1661 * Be very careful if not taking the lock as it's
1662 * possible that the VM will disappear then!
1663 *
1664 * @remark This will not assert on an invalid pVM but try return silently.
1665 */
1666static int gvmmR0ByGVMandVM(PGVM pGVM, PVM pVM, PGVMM *ppGVMM, bool fTakeUsedLock)
1667{
1668 /*
1669 * Check the pointers.
1670 */
1671 int rc;
1672 if (RT_LIKELY(RT_VALID_PTR(pGVM)))
1673 {
1674 if (RT_LIKELY( RT_VALID_PTR(pVM)
1675 && ((uintptr_t)pVM & PAGE_OFFSET_MASK) == 0))
1676 {
1677 if (RT_LIKELY(pGVM->pVM == pVM))
1678 {
1679 /*
1680 * Get the pGVMM instance and check the VM handle.
1681 */
1682 PGVMM pGVMM;
1683 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1684
1685 uint16_t hGVM = pGVM->hSelf;
1686 if (RT_LIKELY( hGVM != NIL_GVM_HANDLE
1687 && hGVM < RT_ELEMENTS(pGVMM->aHandles)))
1688 {
1689 RTPROCESS const pidSelf = RTProcSelf();
1690 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1691 if (fTakeUsedLock)
1692 {
1693 rc = GVMMR0_USED_SHARED_LOCK(pGVMM);
1694 AssertRCReturn(rc, rc);
1695 }
1696
1697 if (RT_LIKELY( pHandle->pGVM == pGVM
1698 && pHandle->pVM == pVM
1699 && pHandle->ProcId == pidSelf
1700 && RT_VALID_PTR(pHandle->pvObj)))
1701 {
1702 /*
1703 * Some more VM data consistency checks.
1704 */
1705 if (RT_LIKELY( pVM->cCpus == pGVM->cCpus
1706 && pVM->hSelf == hGVM
1707 && pVM->enmVMState >= VMSTATE_CREATING
1708 && pVM->enmVMState <= VMSTATE_TERMINATED
1709 && pVM->pVMR0 == pVM))
1710 {
1711 *ppGVMM = pGVMM;
1712 return VINF_SUCCESS;
1713 }
1714 }
1715
1716 if (fTakeUsedLock)
1717 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
1718 }
1719 }
1720 rc = VERR_INVALID_VM_HANDLE;
1721 }
1722 else
1723 rc = VERR_INVALID_POINTER;
1724 }
1725 else
1726 rc = VERR_INVALID_POINTER;
1727 return rc;
1728}
1729
1730
1731/**
1732 * Check that the given GVM and VM structures match up.
1733 *
1734 * The calling thread must be in the same process as the VM. All current lookups
1735 * are by threads inside the same process, so this will not be an issue.
1736 *
1737 * @returns VBox status code.
1738 * @param pGVM The global (ring-0) VM structure.
1739 * @param pVM The cross context VM structure.
1740 * @param idCpu The (alleged) Virtual CPU ID of the calling EMT.
1741 * @param ppGVMM Where to store the pointer to the GVMM instance data.
1742 * @thread EMT
1743 *
1744 * @remarks This will assert in all failure paths.
1745 */
1746static int gvmmR0ByGVMandVMandEMT(PGVM pGVM, PVM pVM, VMCPUID idCpu, PGVMM *ppGVMM)
1747{
1748 /*
1749 * Check the pointers.
1750 */
1751 AssertPtrReturn(pGVM, VERR_INVALID_POINTER);
1752
1753 AssertPtrReturn(pVM, VERR_INVALID_POINTER);
1754 AssertReturn(((uintptr_t)pVM & PAGE_OFFSET_MASK) == 0, VERR_INVALID_POINTER);
1755 AssertReturn(pGVM->pVM == pVM, VERR_INVALID_VM_HANDLE);
1756
1757
1758 /*
1759 * Get the pGVMM instance and check the VM handle.
1760 */
1761 PGVMM pGVMM;
1762 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
1763
1764 uint16_t hGVM = pGVM->hSelf;
1765 AssertReturn( hGVM != NIL_GVM_HANDLE
1766 && hGVM < RT_ELEMENTS(pGVMM->aHandles), VERR_INVALID_VM_HANDLE);
1767
1768 RTPROCESS const pidSelf = RTProcSelf();
1769 PGVMHANDLE pHandle = &pGVMM->aHandles[hGVM];
1770 AssertReturn( pHandle->pGVM == pGVM
1771 && pHandle->pVM == pVM
1772 && pHandle->ProcId == pidSelf
1773 && RT_VALID_PTR(pHandle->pvObj),
1774 VERR_INVALID_HANDLE);
1775
1776 /*
1777 * Check the EMT claim.
1778 */
1779 RTNATIVETHREAD const hAllegedEMT = RTThreadNativeSelf();
1780 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
1781 AssertReturn(pGVM->aCpus[idCpu].hEMT == hAllegedEMT, VERR_NOT_OWNER);
1782
1783 /*
1784 * Some more VM data consistency checks.
1785 */
1786 AssertReturn(pVM->cCpus == pGVM->cCpus, VERR_INCONSISTENT_VM_HANDLE);
1787 AssertReturn(pVM->hSelf == hGVM, VERR_INCONSISTENT_VM_HANDLE);
1788 AssertReturn(pVM->pVMR0 == pVM, VERR_INCONSISTENT_VM_HANDLE);
1789 AssertReturn( pVM->enmVMState >= VMSTATE_CREATING
1790 && pVM->enmVMState <= VMSTATE_TERMINATED, VERR_INCONSISTENT_VM_HANDLE);
1791
1792 *ppGVMM = pGVMM;
1793 return VINF_SUCCESS;
1794}
1795
1796
1797/**
1798 * Validates a GVM/VM pair.
1799 *
1800 * @returns VBox status code.
1801 * @param pGVM The global (ring-0) VM structure.
1802 * @param pVM The cross context VM structure.
1803 */
1804GVMMR0DECL(int) GVMMR0ValidateGVMandVM(PGVM pGVM, PVM pVM)
1805{
1806 PGVMM pGVMM;
1807 return gvmmR0ByGVMandVM(pGVM, pVM, &pGVMM, false /*fTakeUsedLock*/);
1808}
1809
1810
1811
1812/**
1813 * Validates a GVM/VM/EMT combo.
1814 *
1815 * @returns VBox status code.
1816 * @param pGVM The global (ring-0) VM structure.
1817 * @param pVM The cross context VM structure.
1818 * @param idCpu The Virtual CPU ID of the calling EMT.
1819 * @thread EMT(idCpu)
1820 */
1821GVMMR0DECL(int) GVMMR0ValidateGVMandVMandEMT(PGVM pGVM, PVM pVM, VMCPUID idCpu)
1822{
1823 PGVMM pGVMM;
1824 return gvmmR0ByGVMandVMandEMT(pGVM, pVM, idCpu, &pGVMM);
1825}
1826
1827
1828/**
1829 * Looks up the VM belonging to the specified EMT thread.
1830 *
1831 * This is used by the assertion machinery in VMMR0.cpp to avoid causing
1832 * unnecessary kernel panics when the EMT thread hits an assertion. The
1833 * call may or not be an EMT thread.
1834 *
1835 * @returns Pointer to the VM on success, NULL on failure.
1836 * @param hEMT The native thread handle of the EMT.
1837 * NIL_RTNATIVETHREAD means the current thread
1838 */
1839GVMMR0DECL(PVM) GVMMR0GetVMByEMT(RTNATIVETHREAD hEMT)
1840{
1841 /*
1842 * No Assertions here as we're usually called in a AssertMsgN or
1843 * RTAssert* context.
1844 */
1845 PGVMM pGVMM = g_pGVMM;
1846 if ( !VALID_PTR(pGVMM)
1847 || pGVMM->u32Magic != GVMM_MAGIC)
1848 return NULL;
1849
1850 if (hEMT == NIL_RTNATIVETHREAD)
1851 hEMT = RTThreadNativeSelf();
1852 RTPROCESS ProcId = RTProcSelf();
1853
1854 /*
1855 * Search the handles in a linear fashion as we don't dare to take the lock (assert).
1856 */
1857 for (unsigned i = 1; i < RT_ELEMENTS(pGVMM->aHandles); i++)
1858 {
1859 if ( pGVMM->aHandles[i].iSelf == i
1860 && pGVMM->aHandles[i].ProcId == ProcId
1861 && VALID_PTR(pGVMM->aHandles[i].pvObj)
1862 && VALID_PTR(pGVMM->aHandles[i].pVM)
1863 && VALID_PTR(pGVMM->aHandles[i].pGVM))
1864 {
1865 if (pGVMM->aHandles[i].hEMT0 == hEMT)
1866 return pGVMM->aHandles[i].pVM;
1867
1868 /* This is fearly safe with the current process per VM approach. */
1869 PGVM pGVM = pGVMM->aHandles[i].pGVM;
1870 VMCPUID const cCpus = pGVM->cCpus;
1871 if ( cCpus < 1
1872 || cCpus > VMM_MAX_CPU_COUNT)
1873 continue;
1874 for (VMCPUID idCpu = 1; idCpu < cCpus; idCpu++)
1875 if (pGVM->aCpus[idCpu].hEMT == hEMT)
1876 return pGVMM->aHandles[i].pVM;
1877 }
1878 }
1879 return NULL;
1880}
1881
1882
1883/**
1884 * This is will wake up expired and soon-to-be expired VMs.
1885 *
1886 * @returns Number of VMs that has been woken up.
1887 * @param pGVMM Pointer to the GVMM instance data.
1888 * @param u64Now The current time.
1889 */
1890static unsigned gvmmR0SchedDoWakeUps(PGVMM pGVMM, uint64_t u64Now)
1891{
1892 /*
1893 * Skip this if we've got disabled because of high resolution wakeups or by
1894 * the user.
1895 */
1896 if (!pGVMM->fDoEarlyWakeUps)
1897 return 0;
1898
1899/** @todo Rewrite this algorithm. See performance defect XYZ. */
1900
1901 /*
1902 * A cheap optimization to stop wasting so much time here on big setups.
1903 */
1904 const uint64_t uNsEarlyWakeUp2 = u64Now + pGVMM->nsEarlyWakeUp2;
1905 if ( pGVMM->cHaltedEMTs == 0
1906 || uNsEarlyWakeUp2 > pGVMM->uNsNextEmtWakeup)
1907 return 0;
1908
1909 /*
1910 * Only one thread doing this at a time.
1911 */
1912 if (!ASMAtomicCmpXchgBool(&pGVMM->fDoingEarlyWakeUps, true, false))
1913 return 0;
1914
1915 /*
1916 * The first pass will wake up VMs which have actually expired
1917 * and look for VMs that should be woken up in the 2nd and 3rd passes.
1918 */
1919 const uint64_t uNsEarlyWakeUp1 = u64Now + pGVMM->nsEarlyWakeUp1;
1920 uint64_t u64Min = UINT64_MAX;
1921 unsigned cWoken = 0;
1922 unsigned cHalted = 0;
1923 unsigned cTodo2nd = 0;
1924 unsigned cTodo3rd = 0;
1925 for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
1926 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
1927 i = pGVMM->aHandles[i].iNext)
1928 {
1929 PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
1930 if ( VALID_PTR(pCurGVM)
1931 && pCurGVM->u32Magic == GVM_MAGIC)
1932 {
1933 for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
1934 {
1935 PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
1936 uint64_t u64 = ASMAtomicUoReadU64(&pCurGVCpu->gvmm.s.u64HaltExpire);
1937 if (u64)
1938 {
1939 if (u64 <= u64Now)
1940 {
1941 if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
1942 {
1943 int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
1944 AssertRC(rc);
1945 cWoken++;
1946 }
1947 }
1948 else
1949 {
1950 cHalted++;
1951 if (u64 <= uNsEarlyWakeUp1)
1952 cTodo2nd++;
1953 else if (u64 <= uNsEarlyWakeUp2)
1954 cTodo3rd++;
1955 else if (u64 < u64Min)
1956 u64 = u64Min;
1957 }
1958 }
1959 }
1960 }
1961 AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
1962 }
1963
1964 if (cTodo2nd)
1965 {
1966 for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
1967 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
1968 i = pGVMM->aHandles[i].iNext)
1969 {
1970 PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
1971 if ( VALID_PTR(pCurGVM)
1972 && pCurGVM->u32Magic == GVM_MAGIC)
1973 {
1974 for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
1975 {
1976 PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
1977 uint64_t u64 = ASMAtomicUoReadU64(&pCurGVCpu->gvmm.s.u64HaltExpire);
1978 if ( u64
1979 && u64 <= uNsEarlyWakeUp1)
1980 {
1981 if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
1982 {
1983 int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
1984 AssertRC(rc);
1985 cWoken++;
1986 }
1987 }
1988 }
1989 }
1990 AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
1991 }
1992 }
1993
1994 if (cTodo3rd)
1995 {
1996 for (unsigned i = pGVMM->iUsedHead, cGuard = 0;
1997 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
1998 i = pGVMM->aHandles[i].iNext)
1999 {
2000 PGVM pCurGVM = pGVMM->aHandles[i].pGVM;
2001 if ( VALID_PTR(pCurGVM)
2002 && pCurGVM->u32Magic == GVM_MAGIC)
2003 {
2004 for (VMCPUID idCpu = 0; idCpu < pCurGVM->cCpus; idCpu++)
2005 {
2006 PGVMCPU pCurGVCpu = &pCurGVM->aCpus[idCpu];
2007 uint64_t u64 = ASMAtomicUoReadU64(&pCurGVCpu->gvmm.s.u64HaltExpire);
2008 if ( u64
2009 && u64 <= uNsEarlyWakeUp2)
2010 {
2011 if (ASMAtomicXchgU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0))
2012 {
2013 int rc = RTSemEventMultiSignal(pCurGVCpu->gvmm.s.HaltEventMulti);
2014 AssertRC(rc);
2015 cWoken++;
2016 }
2017 }
2018 }
2019 }
2020 AssertLogRelBreak(cGuard++ < RT_ELEMENTS(pGVMM->aHandles));
2021 }
2022 }
2023
2024 /*
2025 * Set the minimum value.
2026 */
2027 pGVMM->uNsNextEmtWakeup = u64Min;
2028
2029 ASMAtomicWriteBool(&pGVMM->fDoingEarlyWakeUps, false);
2030 return cWoken;
2031}
2032
2033
2034/**
2035 * Halt the EMT thread.
2036 *
2037 * @returns VINF_SUCCESS normal wakeup (timeout or kicked by other thread).
2038 * VERR_INTERRUPTED if a signal was scheduled for the thread.
2039 * @param pGVM The global (ring-0) VM structure.
2040 * @param pVM The cross context VM structure.
2041 * @param idCpu The Virtual CPU ID of the calling EMT.
2042 * @param u64ExpireGipTime The time for the sleep to expire expressed as GIP time.
2043 * @thread EMT(idCpu).
2044 */
2045GVMMR0DECL(int) GVMMR0SchedHalt(PGVM pGVM, PVM pVM, VMCPUID idCpu, uint64_t u64ExpireGipTime)
2046{
2047 LogFlow(("GVMMR0SchedHalt: pGVM=%p pVM=%p idCpu=%#x u64ExpireGipTime=%#RX64\n", pGVM, pVM, idCpu, u64ExpireGipTime));
2048 GVMM_CHECK_SMAP_SETUP();
2049 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2050
2051 /*
2052 * Validate the VM structure, state and handle.
2053 */
2054 PGVMM pGVMM;
2055 int rc = gvmmR0ByGVMandVMandEMT(pGVM, pVM, idCpu, &pGVMM);
2056 if (RT_FAILURE(rc))
2057 return rc;
2058 pGVM->gvmm.s.StatsSched.cHaltCalls++;
2059 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2060
2061 PGVMCPU pCurGVCpu = &pGVM->aCpus[idCpu];
2062 Assert(!pCurGVCpu->gvmm.s.u64HaltExpire);
2063
2064 /*
2065 * If we're doing early wake-ups, we must take the UsedList lock before we
2066 * start querying the current time.
2067 * Note! Interrupts must NOT be disabled at this point because we ask for GIP time!
2068 */
2069 bool const fDoEarlyWakeUps = pGVMM->fDoEarlyWakeUps;
2070 if (fDoEarlyWakeUps)
2071 {
2072 rc = GVMMR0_USED_SHARED_LOCK(pGVMM); AssertRC(rc);
2073 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2074 }
2075
2076 pCurGVCpu->gvmm.s.iCpuEmt = ASMGetApicId();
2077
2078 /* GIP hack: We might are frequently sleeping for short intervals where the
2079 difference between GIP and system time matters on systems with high resolution
2080 system time. So, convert the input from GIP to System time in that case. */
2081 Assert(ASMGetFlags() & X86_EFL_IF);
2082 const uint64_t u64NowSys = RTTimeSystemNanoTS();
2083 const uint64_t u64NowGip = RTTimeNanoTS();
2084 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2085
2086 if (fDoEarlyWakeUps)
2087 {
2088 pGVM->gvmm.s.StatsSched.cHaltWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64NowGip);
2089 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2090 }
2091
2092 /*
2093 * Go to sleep if we must...
2094 * Cap the sleep time to 1 second to be on the safe side.
2095 */
2096 uint64_t cNsInterval = u64ExpireGipTime - u64NowGip;
2097 if ( u64NowGip < u64ExpireGipTime
2098 && cNsInterval >= (pGVMM->cEMTs > pGVMM->cEMTsMeansCompany
2099 ? pGVMM->nsMinSleepCompany
2100 : pGVMM->nsMinSleepAlone))
2101 {
2102 pGVM->gvmm.s.StatsSched.cHaltBlocking++;
2103 if (cNsInterval > RT_NS_1SEC)
2104 u64ExpireGipTime = u64NowGip + RT_NS_1SEC;
2105 ASMAtomicWriteU64(&pCurGVCpu->gvmm.s.u64HaltExpire, u64ExpireGipTime);
2106 ASMAtomicIncU32(&pGVMM->cHaltedEMTs);
2107 if (fDoEarlyWakeUps)
2108 {
2109 if (u64ExpireGipTime < pGVMM->uNsNextEmtWakeup)
2110 pGVMM->uNsNextEmtWakeup = u64ExpireGipTime;
2111 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2112 }
2113 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2114
2115 rc = RTSemEventMultiWaitEx(pCurGVCpu->gvmm.s.HaltEventMulti,
2116 RTSEMWAIT_FLAGS_ABSOLUTE | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_INTERRUPTIBLE,
2117 u64NowGip > u64NowSys ? u64ExpireGipTime : u64NowSys + cNsInterval);
2118 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2119
2120 ASMAtomicWriteU64(&pCurGVCpu->gvmm.s.u64HaltExpire, 0);
2121 ASMAtomicDecU32(&pGVMM->cHaltedEMTs);
2122
2123 /* Reset the semaphore to try prevent a few false wake-ups. */
2124 if (rc == VINF_SUCCESS)
2125 {
2126 RTSemEventMultiReset(pCurGVCpu->gvmm.s.HaltEventMulti);
2127 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2128 }
2129 else if (rc == VERR_TIMEOUT)
2130 {
2131 pGVM->gvmm.s.StatsSched.cHaltTimeouts++;
2132 rc = VINF_SUCCESS;
2133 }
2134 }
2135 else
2136 {
2137 pGVM->gvmm.s.StatsSched.cHaltNotBlocking++;
2138 if (fDoEarlyWakeUps)
2139 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2140 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2141 RTSemEventMultiReset(pCurGVCpu->gvmm.s.HaltEventMulti);
2142 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2143 }
2144
2145 return rc;
2146}
2147
2148
2149/**
2150 * Worker for GVMMR0SchedWakeUp and GVMMR0SchedWakeUpAndPokeCpus that wakes up
2151 * the a sleeping EMT.
2152 *
2153 * @retval VINF_SUCCESS if successfully woken up.
2154 * @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
2155 *
2156 * @param pGVM The global (ring-0) VM structure.
2157 * @param pGVCpu The global (ring-0) VCPU structure.
2158 */
2159DECLINLINE(int) gvmmR0SchedWakeUpOne(PGVM pGVM, PGVMCPU pGVCpu)
2160{
2161 pGVM->gvmm.s.StatsSched.cWakeUpCalls++;
2162
2163 /*
2164 * Signal the semaphore regardless of whether it's current blocked on it.
2165 *
2166 * The reason for this is that there is absolutely no way we can be 100%
2167 * certain that it isn't *about* go to go to sleep on it and just got
2168 * delayed a bit en route. So, we will always signal the semaphore when
2169 * the it is flagged as halted in the VMM.
2170 */
2171/** @todo we can optimize some of that by means of the pVCpu->enmState now. */
2172 int rc;
2173 if (pGVCpu->gvmm.s.u64HaltExpire)
2174 {
2175 rc = VINF_SUCCESS;
2176 ASMAtomicWriteU64(&pGVCpu->gvmm.s.u64HaltExpire, 0);
2177 }
2178 else
2179 {
2180 rc = VINF_GVM_NOT_BLOCKED;
2181 pGVM->gvmm.s.StatsSched.cWakeUpNotHalted++;
2182 }
2183
2184 int rc2 = RTSemEventMultiSignal(pGVCpu->gvmm.s.HaltEventMulti);
2185 AssertRC(rc2);
2186
2187 return rc;
2188}
2189
2190
2191/**
2192 * Wakes up the halted EMT thread so it can service a pending request.
2193 *
2194 * @returns VBox status code.
2195 * @retval VINF_SUCCESS if successfully woken up.
2196 * @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
2197 *
2198 * @param pGVM The global (ring-0) VM structure.
2199 * @param pVM The cross context VM structure.
2200 * @param idCpu The Virtual CPU ID of the EMT to wake up.
2201 * @param fTakeUsedLock Take the used lock or not
2202 * @thread Any but EMT(idCpu).
2203 */
2204GVMMR0DECL(int) GVMMR0SchedWakeUpEx(PGVM pGVM, PVM pVM, VMCPUID idCpu, bool fTakeUsedLock)
2205{
2206 GVMM_CHECK_SMAP_SETUP();
2207 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2208
2209 /*
2210 * Validate input and take the UsedLock.
2211 */
2212 PGVMM pGVMM;
2213 int rc = gvmmR0ByGVMandVM(pGVM, pVM, &pGVMM, fTakeUsedLock);
2214 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2215 if (RT_SUCCESS(rc))
2216 {
2217 if (idCpu < pGVM->cCpus)
2218 {
2219 /*
2220 * Do the actual job.
2221 */
2222 rc = gvmmR0SchedWakeUpOne(pGVM, &pGVM->aCpus[idCpu]);
2223 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2224
2225 if (fTakeUsedLock && pGVMM->fDoEarlyWakeUps)
2226 {
2227 /*
2228 * While we're here, do a round of scheduling.
2229 */
2230 Assert(ASMGetFlags() & X86_EFL_IF);
2231 const uint64_t u64Now = RTTimeNanoTS(); /* (GIP time) */
2232 pGVM->gvmm.s.StatsSched.cWakeUpWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64Now);
2233 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2234 }
2235 }
2236 else
2237 rc = VERR_INVALID_CPU_ID;
2238
2239 if (fTakeUsedLock)
2240 {
2241 int rc2 = GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2242 AssertRC(rc2);
2243 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2244 }
2245 }
2246
2247 LogFlow(("GVMMR0SchedWakeUpEx: returns %Rrc\n", rc));
2248 return rc;
2249}
2250
2251
2252/**
2253 * Wakes up the halted EMT thread so it can service a pending request.
2254 *
2255 * @returns VBox status code.
2256 * @retval VINF_SUCCESS if successfully woken up.
2257 * @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
2258 *
2259 * @param pGVM The global (ring-0) VM structure.
2260 * @param pVM The cross context VM structure.
2261 * @param idCpu The Virtual CPU ID of the EMT to wake up.
2262 * @thread Any but EMT(idCpu).
2263 */
2264GVMMR0DECL(int) GVMMR0SchedWakeUp(PGVM pGVM, PVM pVM, VMCPUID idCpu)
2265{
2266 return GVMMR0SchedWakeUpEx(pGVM, pVM, idCpu, true /* fTakeUsedLock */);
2267}
2268
2269
2270/**
2271 * Wakes up the halted EMT thread so it can service a pending request, no GVM
2272 * parameter and no used locking.
2273 *
2274 * @returns VBox status code.
2275 * @retval VINF_SUCCESS if successfully woken up.
2276 * @retval VINF_GVM_NOT_BLOCKED if the EMT wasn't blocked.
2277 *
2278 * @param pVM The cross context VM structure.
2279 * @param idCpu The Virtual CPU ID of the EMT to wake up.
2280 * @thread Any but EMT(idCpu).
2281 * @deprecated Don't use in new code if possible! Use the GVM variant.
2282 */
2283GVMMR0DECL(int) GVMMR0SchedWakeUpNoGVMNoLock(PVM pVM, VMCPUID idCpu)
2284{
2285 GVMM_CHECK_SMAP_SETUP();
2286 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2287 PGVM pGVM;
2288 PGVMM pGVMM;
2289 int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, false /*fTakeUsedLock*/);
2290 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2291 if (RT_SUCCESS(rc))
2292 rc = GVMMR0SchedWakeUpEx(pGVM, pVM, idCpu, false /*fTakeUsedLock*/);
2293 return rc;
2294}
2295
2296
2297/**
2298 * Worker common to GVMMR0SchedPoke and GVMMR0SchedWakeUpAndPokeCpus that pokes
2299 * the Virtual CPU if it's still busy executing guest code.
2300 *
2301 * @returns VBox status code.
2302 * @retval VINF_SUCCESS if poked successfully.
2303 * @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
2304 *
2305 * @param pGVM The global (ring-0) VM structure.
2306 * @param pVCpu The cross context virtual CPU structure.
2307 */
2308DECLINLINE(int) gvmmR0SchedPokeOne(PGVM pGVM, PVMCPU pVCpu)
2309{
2310 pGVM->gvmm.s.StatsSched.cPokeCalls++;
2311
2312 RTCPUID idHostCpu = pVCpu->idHostCpu;
2313 if ( idHostCpu == NIL_RTCPUID
2314 || VMCPU_GET_STATE(pVCpu) != VMCPUSTATE_STARTED_EXEC)
2315 {
2316 pGVM->gvmm.s.StatsSched.cPokeNotBusy++;
2317 return VINF_GVM_NOT_BUSY_IN_GC;
2318 }
2319
2320 /* Note: this function is not implemented on Darwin and Linux (kernel < 2.6.19) */
2321 RTMpPokeCpu(idHostCpu);
2322 return VINF_SUCCESS;
2323}
2324
2325
2326/**
2327 * Pokes an EMT if it's still busy running guest code.
2328 *
2329 * @returns VBox status code.
2330 * @retval VINF_SUCCESS if poked successfully.
2331 * @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
2332 *
2333 * @param pGVM The global (ring-0) VM structure.
2334 * @param pVM The cross context VM structure.
2335 * @param idCpu The ID of the virtual CPU to poke.
2336 * @param fTakeUsedLock Take the used lock or not
2337 */
2338GVMMR0DECL(int) GVMMR0SchedPokeEx(PGVM pGVM, PVM pVM, VMCPUID idCpu, bool fTakeUsedLock)
2339{
2340 /*
2341 * Validate input and take the UsedLock.
2342 */
2343 PGVMM pGVMM;
2344 int rc = gvmmR0ByGVMandVM(pGVM, pVM, &pGVMM, fTakeUsedLock);
2345 if (RT_SUCCESS(rc))
2346 {
2347 if (idCpu < pGVM->cCpus)
2348 rc = gvmmR0SchedPokeOne(pGVM, &pVM->aCpus[idCpu]);
2349 else
2350 rc = VERR_INVALID_CPU_ID;
2351
2352 if (fTakeUsedLock)
2353 {
2354 int rc2 = GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2355 AssertRC(rc2);
2356 }
2357 }
2358
2359 LogFlow(("GVMMR0SchedWakeUpAndPokeCpus: returns %Rrc\n", rc));
2360 return rc;
2361}
2362
2363
2364/**
2365 * Pokes an EMT if it's still busy running guest code.
2366 *
2367 * @returns VBox status code.
2368 * @retval VINF_SUCCESS if poked successfully.
2369 * @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
2370 *
2371 * @param pGVM The global (ring-0) VM structure.
2372 * @param pVM The cross context VM structure.
2373 * @param idCpu The ID of the virtual CPU to poke.
2374 */
2375GVMMR0DECL(int) GVMMR0SchedPoke(PGVM pGVM, PVM pVM, VMCPUID idCpu)
2376{
2377 return GVMMR0SchedPokeEx(pGVM, pVM, idCpu, true /* fTakeUsedLock */);
2378}
2379
2380
2381/**
2382 * Pokes an EMT if it's still busy running guest code, no GVM parameter and no
2383 * used locking.
2384 *
2385 * @returns VBox status code.
2386 * @retval VINF_SUCCESS if poked successfully.
2387 * @retval VINF_GVM_NOT_BUSY_IN_GC if the EMT wasn't busy in GC.
2388 *
2389 * @param pVM The cross context VM structure.
2390 * @param idCpu The ID of the virtual CPU to poke.
2391 *
2392 * @deprecated Don't use in new code if possible! Use the GVM variant.
2393 */
2394GVMMR0DECL(int) GVMMR0SchedPokeNoGVMNoLock(PVM pVM, VMCPUID idCpu)
2395{
2396 PGVM pGVM;
2397 PGVMM pGVMM;
2398 int rc = gvmmR0ByVM(pVM, &pGVM, &pGVMM, false /*fTakeUsedLock*/);
2399 if (RT_SUCCESS(rc))
2400 {
2401 if (idCpu < pGVM->cCpus)
2402 rc = gvmmR0SchedPokeOne(pGVM, &pVM->aCpus[idCpu]);
2403 else
2404 rc = VERR_INVALID_CPU_ID;
2405 }
2406 return rc;
2407}
2408
2409
2410/**
2411 * Wakes up a set of halted EMT threads so they can service pending request.
2412 *
2413 * @returns VBox status code, no informational stuff.
2414 *
2415 * @param pGVM The global (ring-0) VM structure.
2416 * @param pVM The cross context VM structure.
2417 * @param pSleepSet The set of sleepers to wake up.
2418 * @param pPokeSet The set of CPUs to poke.
2419 */
2420GVMMR0DECL(int) GVMMR0SchedWakeUpAndPokeCpus(PGVM pGVM, PVM pVM, PCVMCPUSET pSleepSet, PCVMCPUSET pPokeSet)
2421{
2422 AssertPtrReturn(pSleepSet, VERR_INVALID_POINTER);
2423 AssertPtrReturn(pPokeSet, VERR_INVALID_POINTER);
2424 GVMM_CHECK_SMAP_SETUP();
2425 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2426 RTNATIVETHREAD hSelf = RTThreadNativeSelf();
2427
2428 /*
2429 * Validate input and take the UsedLock.
2430 */
2431 PGVMM pGVMM;
2432 int rc = gvmmR0ByGVMandVM(pGVM, pVM, &pGVMM, true /* fTakeUsedLock */);
2433 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2434 if (RT_SUCCESS(rc))
2435 {
2436 rc = VINF_SUCCESS;
2437 VMCPUID idCpu = pGVM->cCpus;
2438 while (idCpu-- > 0)
2439 {
2440 /* Don't try poke or wake up ourselves. */
2441 if (pGVM->aCpus[idCpu].hEMT == hSelf)
2442 continue;
2443
2444 /* just ignore errors for now. */
2445 if (VMCPUSET_IS_PRESENT(pSleepSet, idCpu))
2446 {
2447 gvmmR0SchedWakeUpOne(pGVM, &pGVM->aCpus[idCpu]);
2448 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2449 }
2450 else if (VMCPUSET_IS_PRESENT(pPokeSet, idCpu))
2451 {
2452 gvmmR0SchedPokeOne(pGVM, &pVM->aCpus[idCpu]);
2453 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2454 }
2455 }
2456
2457 int rc2 = GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2458 AssertRC(rc2);
2459 GVMM_CHECK_SMAP_CHECK2(pVM, RT_NOTHING);
2460 }
2461
2462 LogFlow(("GVMMR0SchedWakeUpAndPokeCpus: returns %Rrc\n", rc));
2463 return rc;
2464}
2465
2466
2467/**
2468 * VMMR0 request wrapper for GVMMR0SchedWakeUpAndPokeCpus.
2469 *
2470 * @returns see GVMMR0SchedWakeUpAndPokeCpus.
2471 * @param pGVM The global (ring-0) VM structure.
2472 * @param pVM The cross context VM structure.
2473 * @param pReq Pointer to the request packet.
2474 */
2475GVMMR0DECL(int) GVMMR0SchedWakeUpAndPokeCpusReq(PGVM pGVM, PVM pVM, PGVMMSCHEDWAKEUPANDPOKECPUSREQ pReq)
2476{
2477 /*
2478 * Validate input and pass it on.
2479 */
2480 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2481 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
2482
2483 return GVMMR0SchedWakeUpAndPokeCpus(pGVM, pVM, &pReq->SleepSet, &pReq->PokeSet);
2484}
2485
2486
2487
2488/**
2489 * Poll the schedule to see if someone else should get a chance to run.
2490 *
2491 * This is a bit hackish and will not work too well if the machine is
2492 * under heavy load from non-VM processes.
2493 *
2494 * @returns VINF_SUCCESS if not yielded.
2495 * VINF_GVM_YIELDED if an attempt to switch to a different VM task was made.
2496 * @param pGVM The global (ring-0) VM structure.
2497 * @param pVM The cross context VM structure.
2498 * @param idCpu The Virtual CPU ID of the calling EMT.
2499 * @param fYield Whether to yield or not.
2500 * This is for when we're spinning in the halt loop.
2501 * @thread EMT(idCpu).
2502 */
2503GVMMR0DECL(int) GVMMR0SchedPoll(PGVM pGVM, PVM pVM, VMCPUID idCpu, bool fYield)
2504{
2505 /*
2506 * Validate input.
2507 */
2508 PGVMM pGVMM;
2509 int rc = gvmmR0ByGVMandVMandEMT(pGVM, pVM, idCpu, &pGVMM);
2510 if (RT_SUCCESS(rc))
2511 {
2512 /*
2513 * We currently only implement helping doing wakeups (fYield = false), so don't
2514 * bother taking the lock if gvmmR0SchedDoWakeUps is not going to do anything.
2515 */
2516 if (!fYield && pGVMM->fDoEarlyWakeUps)
2517 {
2518 rc = GVMMR0_USED_SHARED_LOCK(pGVMM); AssertRC(rc);
2519 pGVM->gvmm.s.StatsSched.cPollCalls++;
2520
2521 Assert(ASMGetFlags() & X86_EFL_IF);
2522 const uint64_t u64Now = RTTimeNanoTS(); /* (GIP time) */
2523
2524 pGVM->gvmm.s.StatsSched.cPollWakeUps += gvmmR0SchedDoWakeUps(pGVMM, u64Now);
2525
2526 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2527 }
2528 /*
2529 * Not quite sure what we could do here...
2530 */
2531 else if (fYield)
2532 rc = VERR_NOT_IMPLEMENTED; /** @todo implement this... */
2533 else
2534 rc = VINF_SUCCESS;
2535 }
2536
2537 LogFlow(("GVMMR0SchedWakeUp: returns %Rrc\n", rc));
2538 return rc;
2539}
2540
2541
2542#ifdef GVMM_SCHED_WITH_PPT
2543/**
2544 * Timer callback for the periodic preemption timer.
2545 *
2546 * @param pTimer The timer handle.
2547 * @param pvUser Pointer to the per cpu structure.
2548 * @param iTick The current tick.
2549 */
2550static DECLCALLBACK(void) gvmmR0SchedPeriodicPreemptionTimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2551{
2552 PGVMMHOSTCPU pCpu = (PGVMMHOSTCPU)pvUser;
2553 NOREF(pTimer); NOREF(iTick);
2554
2555 /*
2556 * Termination check
2557 */
2558 if (pCpu->u32Magic != GVMMHOSTCPU_MAGIC)
2559 return;
2560
2561 /*
2562 * Do the house keeping.
2563 */
2564 RTSpinlockAcquire(pCpu->Ppt.hSpinlock);
2565
2566 if (++pCpu->Ppt.iTickHistorization >= pCpu->Ppt.cTicksHistoriziationInterval)
2567 {
2568 /*
2569 * Historicize the max frequency.
2570 */
2571 uint32_t iHzHistory = ++pCpu->Ppt.iHzHistory % RT_ELEMENTS(pCpu->Ppt.aHzHistory);
2572 pCpu->Ppt.aHzHistory[iHzHistory] = pCpu->Ppt.uDesiredHz;
2573 pCpu->Ppt.iTickHistorization = 0;
2574 pCpu->Ppt.uDesiredHz = 0;
2575
2576 /*
2577 * Check if the current timer frequency.
2578 */
2579 uint32_t uHistMaxHz = 0;
2580 for (uint32_t i = 0; i < RT_ELEMENTS(pCpu->Ppt.aHzHistory); i++)
2581 if (pCpu->Ppt.aHzHistory[i] > uHistMaxHz)
2582 uHistMaxHz = pCpu->Ppt.aHzHistory[i];
2583 if (uHistMaxHz == pCpu->Ppt.uTimerHz)
2584 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2585 else if (uHistMaxHz)
2586 {
2587 /*
2588 * Reprogram it.
2589 */
2590 pCpu->Ppt.cChanges++;
2591 pCpu->Ppt.iTickHistorization = 0;
2592 pCpu->Ppt.uTimerHz = uHistMaxHz;
2593 uint32_t const cNsInterval = RT_NS_1SEC / uHistMaxHz;
2594 pCpu->Ppt.cNsInterval = cNsInterval;
2595 if (cNsInterval < GVMMHOSTCPU_PPT_HIST_INTERVAL_NS)
2596 pCpu->Ppt.cTicksHistoriziationInterval = ( GVMMHOSTCPU_PPT_HIST_INTERVAL_NS
2597 + GVMMHOSTCPU_PPT_HIST_INTERVAL_NS / 2 - 1)
2598 / cNsInterval;
2599 else
2600 pCpu->Ppt.cTicksHistoriziationInterval = 1;
2601 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2602
2603 /*SUPR0Printf("Cpu%u: change to %u Hz / %u ns\n", pCpu->idxCpuSet, uHistMaxHz, cNsInterval);*/
2604 RTTimerChangeInterval(pTimer, cNsInterval);
2605 }
2606 else
2607 {
2608 /*
2609 * Stop it.
2610 */
2611 pCpu->Ppt.fStarted = false;
2612 pCpu->Ppt.uTimerHz = 0;
2613 pCpu->Ppt.cNsInterval = 0;
2614 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2615
2616 /*SUPR0Printf("Cpu%u: stopping (%u Hz)\n", pCpu->idxCpuSet, uHistMaxHz);*/
2617 RTTimerStop(pTimer);
2618 }
2619 }
2620 else
2621 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2622}
2623#endif /* GVMM_SCHED_WITH_PPT */
2624
2625
2626/**
2627 * Updates the periodic preemption timer for the calling CPU.
2628 *
2629 * The caller must have disabled preemption!
2630 * The caller must check that the host can do high resolution timers.
2631 *
2632 * @param pVM The cross context VM structure.
2633 * @param idHostCpu The current host CPU id.
2634 * @param uHz The desired frequency.
2635 */
2636GVMMR0DECL(void) GVMMR0SchedUpdatePeriodicPreemptionTimer(PVM pVM, RTCPUID idHostCpu, uint32_t uHz)
2637{
2638 NOREF(pVM);
2639#ifdef GVMM_SCHED_WITH_PPT
2640 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2641 Assert(RTTimerCanDoHighResolution());
2642
2643 /*
2644 * Resolve the per CPU data.
2645 */
2646 uint32_t iCpu = RTMpCpuIdToSetIndex(idHostCpu);
2647 PGVMM pGVMM = g_pGVMM;
2648 if ( !VALID_PTR(pGVMM)
2649 || pGVMM->u32Magic != GVMM_MAGIC)
2650 return;
2651 AssertMsgReturnVoid(iCpu < pGVMM->cHostCpus, ("iCpu=%d cHostCpus=%d\n", iCpu, pGVMM->cHostCpus));
2652 PGVMMHOSTCPU pCpu = &pGVMM->aHostCpus[iCpu];
2653 AssertMsgReturnVoid( pCpu->u32Magic == GVMMHOSTCPU_MAGIC
2654 && pCpu->idCpu == idHostCpu,
2655 ("u32Magic=%#x idCpu=% idHostCpu=%d\n", pCpu->u32Magic, pCpu->idCpu, idHostCpu));
2656
2657 /*
2658 * Check whether we need to do anything about the timer.
2659 * We have to be a little bit careful since we might be race the timer
2660 * callback here.
2661 */
2662 if (uHz > 16384)
2663 uHz = 16384; /** @todo add a query method for this! */
2664 if (RT_UNLIKELY( uHz > ASMAtomicReadU32(&pCpu->Ppt.uDesiredHz)
2665 && uHz >= pCpu->Ppt.uMinHz
2666 && !pCpu->Ppt.fStarting /* solaris paranoia */))
2667 {
2668 RTSpinlockAcquire(pCpu->Ppt.hSpinlock);
2669
2670 pCpu->Ppt.uDesiredHz = uHz;
2671 uint32_t cNsInterval = 0;
2672 if (!pCpu->Ppt.fStarted)
2673 {
2674 pCpu->Ppt.cStarts++;
2675 pCpu->Ppt.fStarted = true;
2676 pCpu->Ppt.fStarting = true;
2677 pCpu->Ppt.iTickHistorization = 0;
2678 pCpu->Ppt.uTimerHz = uHz;
2679 pCpu->Ppt.cNsInterval = cNsInterval = RT_NS_1SEC / uHz;
2680 if (cNsInterval < GVMMHOSTCPU_PPT_HIST_INTERVAL_NS)
2681 pCpu->Ppt.cTicksHistoriziationInterval = ( GVMMHOSTCPU_PPT_HIST_INTERVAL_NS
2682 + GVMMHOSTCPU_PPT_HIST_INTERVAL_NS / 2 - 1)
2683 / cNsInterval;
2684 else
2685 pCpu->Ppt.cTicksHistoriziationInterval = 1;
2686 }
2687
2688 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2689
2690 if (cNsInterval)
2691 {
2692 RTTimerChangeInterval(pCpu->Ppt.pTimer, cNsInterval);
2693 int rc = RTTimerStart(pCpu->Ppt.pTimer, cNsInterval);
2694 AssertRC(rc);
2695
2696 RTSpinlockAcquire(pCpu->Ppt.hSpinlock);
2697 if (RT_FAILURE(rc))
2698 pCpu->Ppt.fStarted = false;
2699 pCpu->Ppt.fStarting = false;
2700 RTSpinlockRelease(pCpu->Ppt.hSpinlock);
2701 }
2702 }
2703#else /* !GVMM_SCHED_WITH_PPT */
2704 NOREF(idHostCpu); NOREF(uHz);
2705#endif /* !GVMM_SCHED_WITH_PPT */
2706}
2707
2708
2709/**
2710 * Retrieves the GVMM statistics visible to the caller.
2711 *
2712 * @returns VBox status code.
2713 *
2714 * @param pStats Where to put the statistics.
2715 * @param pSession The current session.
2716 * @param pGVM The GVM to obtain statistics for. Optional.
2717 * @param pVM The VM structure corresponding to @a pGVM.
2718 */
2719GVMMR0DECL(int) GVMMR0QueryStatistics(PGVMMSTATS pStats, PSUPDRVSESSION pSession, PGVM pGVM, PVM pVM)
2720{
2721 LogFlow(("GVMMR0QueryStatistics: pStats=%p pSession=%p pGVM=%p pVM=%p\n", pStats, pSession, pGVM, pVM));
2722
2723 /*
2724 * Validate input.
2725 */
2726 AssertPtrReturn(pSession, VERR_INVALID_POINTER);
2727 AssertPtrReturn(pStats, VERR_INVALID_POINTER);
2728 pStats->cVMs = 0; /* (crash before taking the sem...) */
2729
2730 /*
2731 * Take the lock and get the VM statistics.
2732 */
2733 PGVMM pGVMM;
2734 if (pGVM)
2735 {
2736 int rc = gvmmR0ByGVMandVM(pGVM, pVM, &pGVMM, true /*fTakeUsedLock*/);
2737 if (RT_FAILURE(rc))
2738 return rc;
2739 pStats->SchedVM = pGVM->gvmm.s.StatsSched;
2740 }
2741 else
2742 {
2743 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
2744 memset(&pStats->SchedVM, 0, sizeof(pStats->SchedVM));
2745
2746 int rc = GVMMR0_USED_SHARED_LOCK(pGVMM);
2747 AssertRCReturn(rc, rc);
2748 }
2749
2750 /*
2751 * Enumerate the VMs and add the ones visible to the statistics.
2752 */
2753 pStats->cVMs = 0;
2754 pStats->cEMTs = 0;
2755 memset(&pStats->SchedSum, 0, sizeof(pStats->SchedSum));
2756
2757 for (unsigned i = pGVMM->iUsedHead;
2758 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
2759 i = pGVMM->aHandles[i].iNext)
2760 {
2761 PGVM pOtherGVM = pGVMM->aHandles[i].pGVM;
2762 void *pvObj = pGVMM->aHandles[i].pvObj;
2763 if ( VALID_PTR(pvObj)
2764 && VALID_PTR(pOtherGVM)
2765 && pOtherGVM->u32Magic == GVM_MAGIC
2766 && RT_SUCCESS(SUPR0ObjVerifyAccess(pvObj, pSession, NULL)))
2767 {
2768 pStats->cVMs++;
2769 pStats->cEMTs += pOtherGVM->cCpus;
2770
2771 pStats->SchedSum.cHaltCalls += pOtherGVM->gvmm.s.StatsSched.cHaltCalls;
2772 pStats->SchedSum.cHaltBlocking += pOtherGVM->gvmm.s.StatsSched.cHaltBlocking;
2773 pStats->SchedSum.cHaltTimeouts += pOtherGVM->gvmm.s.StatsSched.cHaltTimeouts;
2774 pStats->SchedSum.cHaltNotBlocking += pOtherGVM->gvmm.s.StatsSched.cHaltNotBlocking;
2775 pStats->SchedSum.cHaltWakeUps += pOtherGVM->gvmm.s.StatsSched.cHaltWakeUps;
2776
2777 pStats->SchedSum.cWakeUpCalls += pOtherGVM->gvmm.s.StatsSched.cWakeUpCalls;
2778 pStats->SchedSum.cWakeUpNotHalted += pOtherGVM->gvmm.s.StatsSched.cWakeUpNotHalted;
2779 pStats->SchedSum.cWakeUpWakeUps += pOtherGVM->gvmm.s.StatsSched.cWakeUpWakeUps;
2780
2781 pStats->SchedSum.cPokeCalls += pOtherGVM->gvmm.s.StatsSched.cPokeCalls;
2782 pStats->SchedSum.cPokeNotBusy += pOtherGVM->gvmm.s.StatsSched.cPokeNotBusy;
2783
2784 pStats->SchedSum.cPollCalls += pOtherGVM->gvmm.s.StatsSched.cPollCalls;
2785 pStats->SchedSum.cPollHalts += pOtherGVM->gvmm.s.StatsSched.cPollHalts;
2786 pStats->SchedSum.cPollWakeUps += pOtherGVM->gvmm.s.StatsSched.cPollWakeUps;
2787 }
2788 }
2789
2790 /*
2791 * Copy out the per host CPU statistics.
2792 */
2793 uint32_t iDstCpu = 0;
2794 uint32_t cSrcCpus = pGVMM->cHostCpus;
2795 for (uint32_t iSrcCpu = 0; iSrcCpu < cSrcCpus; iSrcCpu++)
2796 {
2797 if (pGVMM->aHostCpus[iSrcCpu].idCpu != NIL_RTCPUID)
2798 {
2799 pStats->aHostCpus[iDstCpu].idCpu = pGVMM->aHostCpus[iSrcCpu].idCpu;
2800 pStats->aHostCpus[iDstCpu].idxCpuSet = pGVMM->aHostCpus[iSrcCpu].idxCpuSet;
2801#ifdef GVMM_SCHED_WITH_PPT
2802 pStats->aHostCpus[iDstCpu].uDesiredHz = pGVMM->aHostCpus[iSrcCpu].Ppt.uDesiredHz;
2803 pStats->aHostCpus[iDstCpu].uTimerHz = pGVMM->aHostCpus[iSrcCpu].Ppt.uTimerHz;
2804 pStats->aHostCpus[iDstCpu].cChanges = pGVMM->aHostCpus[iSrcCpu].Ppt.cChanges;
2805 pStats->aHostCpus[iDstCpu].cStarts = pGVMM->aHostCpus[iSrcCpu].Ppt.cStarts;
2806#else
2807 pStats->aHostCpus[iDstCpu].uDesiredHz = 0;
2808 pStats->aHostCpus[iDstCpu].uTimerHz = 0;
2809 pStats->aHostCpus[iDstCpu].cChanges = 0;
2810 pStats->aHostCpus[iDstCpu].cStarts = 0;
2811#endif
2812 iDstCpu++;
2813 if (iDstCpu >= RT_ELEMENTS(pStats->aHostCpus))
2814 break;
2815 }
2816 }
2817 pStats->cHostCpus = iDstCpu;
2818
2819 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2820
2821 return VINF_SUCCESS;
2822}
2823
2824
2825/**
2826 * VMMR0 request wrapper for GVMMR0QueryStatistics.
2827 *
2828 * @returns see GVMMR0QueryStatistics.
2829 * @param pGVM The global (ring-0) VM structure. Optional.
2830 * @param pVM The cross context VM structure. Optional.
2831 * @param pReq Pointer to the request packet.
2832 * @param pSession The current session.
2833 */
2834GVMMR0DECL(int) GVMMR0QueryStatisticsReq(PGVM pGVM, PVM pVM, PGVMMQUERYSTATISTICSSREQ pReq, PSUPDRVSESSION pSession)
2835{
2836 /*
2837 * Validate input and pass it on.
2838 */
2839 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2840 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
2841 AssertReturn(pReq->pSession == pSession, VERR_INVALID_PARAMETER);
2842
2843 return GVMMR0QueryStatistics(&pReq->Stats, pSession, pGVM, pVM);
2844}
2845
2846
2847/**
2848 * Resets the specified GVMM statistics.
2849 *
2850 * @returns VBox status code.
2851 *
2852 * @param pStats Which statistics to reset, that is, non-zero fields indicates which to reset.
2853 * @param pSession The current session.
2854 * @param pGVM The GVM to reset statistics for. Optional.
2855 * @param pVM The VM structure corresponding to @a pGVM.
2856 */
2857GVMMR0DECL(int) GVMMR0ResetStatistics(PCGVMMSTATS pStats, PSUPDRVSESSION pSession, PGVM pGVM, PVM pVM)
2858{
2859 LogFlow(("GVMMR0ResetStatistics: pStats=%p pSession=%p pGVM=%p pVM=%p\n", pStats, pSession, pGVM, pVM));
2860
2861 /*
2862 * Validate input.
2863 */
2864 AssertPtrReturn(pSession, VERR_INVALID_POINTER);
2865 AssertPtrReturn(pStats, VERR_INVALID_POINTER);
2866
2867 /*
2868 * Take the lock and get the VM statistics.
2869 */
2870 PGVMM pGVMM;
2871 if (pGVM)
2872 {
2873 int rc = gvmmR0ByGVMandVM(pGVM, pVM, &pGVMM, true /*fTakeUsedLock*/);
2874 if (RT_FAILURE(rc))
2875 return rc;
2876# define MAYBE_RESET_FIELD(field) \
2877 do { if (pStats->SchedVM. field ) { pGVM->gvmm.s.StatsSched. field = 0; } } while (0)
2878 MAYBE_RESET_FIELD(cHaltCalls);
2879 MAYBE_RESET_FIELD(cHaltBlocking);
2880 MAYBE_RESET_FIELD(cHaltTimeouts);
2881 MAYBE_RESET_FIELD(cHaltNotBlocking);
2882 MAYBE_RESET_FIELD(cHaltWakeUps);
2883 MAYBE_RESET_FIELD(cWakeUpCalls);
2884 MAYBE_RESET_FIELD(cWakeUpNotHalted);
2885 MAYBE_RESET_FIELD(cWakeUpWakeUps);
2886 MAYBE_RESET_FIELD(cPokeCalls);
2887 MAYBE_RESET_FIELD(cPokeNotBusy);
2888 MAYBE_RESET_FIELD(cPollCalls);
2889 MAYBE_RESET_FIELD(cPollHalts);
2890 MAYBE_RESET_FIELD(cPollWakeUps);
2891# undef MAYBE_RESET_FIELD
2892 }
2893 else
2894 {
2895 GVMM_GET_VALID_INSTANCE(pGVMM, VERR_GVMM_INSTANCE);
2896
2897 int rc = GVMMR0_USED_SHARED_LOCK(pGVMM);
2898 AssertRCReturn(rc, rc);
2899 }
2900
2901 /*
2902 * Enumerate the VMs and add the ones visible to the statistics.
2903 */
2904 if (!ASMMemIsZero(&pStats->SchedSum, sizeof(pStats->SchedSum)))
2905 {
2906 for (unsigned i = pGVMM->iUsedHead;
2907 i != NIL_GVM_HANDLE && i < RT_ELEMENTS(pGVMM->aHandles);
2908 i = pGVMM->aHandles[i].iNext)
2909 {
2910 PGVM pOtherGVM = pGVMM->aHandles[i].pGVM;
2911 void *pvObj = pGVMM->aHandles[i].pvObj;
2912 if ( VALID_PTR(pvObj)
2913 && VALID_PTR(pOtherGVM)
2914 && pOtherGVM->u32Magic == GVM_MAGIC
2915 && RT_SUCCESS(SUPR0ObjVerifyAccess(pvObj, pSession, NULL)))
2916 {
2917# define MAYBE_RESET_FIELD(field) \
2918 do { if (pStats->SchedSum. field ) { pOtherGVM->gvmm.s.StatsSched. field = 0; } } while (0)
2919 MAYBE_RESET_FIELD(cHaltCalls);
2920 MAYBE_RESET_FIELD(cHaltBlocking);
2921 MAYBE_RESET_FIELD(cHaltTimeouts);
2922 MAYBE_RESET_FIELD(cHaltNotBlocking);
2923 MAYBE_RESET_FIELD(cHaltWakeUps);
2924 MAYBE_RESET_FIELD(cWakeUpCalls);
2925 MAYBE_RESET_FIELD(cWakeUpNotHalted);
2926 MAYBE_RESET_FIELD(cWakeUpWakeUps);
2927 MAYBE_RESET_FIELD(cPokeCalls);
2928 MAYBE_RESET_FIELD(cPokeNotBusy);
2929 MAYBE_RESET_FIELD(cPollCalls);
2930 MAYBE_RESET_FIELD(cPollHalts);
2931 MAYBE_RESET_FIELD(cPollWakeUps);
2932# undef MAYBE_RESET_FIELD
2933 }
2934 }
2935 }
2936
2937 GVMMR0_USED_SHARED_UNLOCK(pGVMM);
2938
2939 return VINF_SUCCESS;
2940}
2941
2942
2943/**
2944 * VMMR0 request wrapper for GVMMR0ResetStatistics.
2945 *
2946 * @returns see GVMMR0ResetStatistics.
2947 * @param pGVM The global (ring-0) VM structure. Optional.
2948 * @param pVM The cross context VM structure. Optional.
2949 * @param pReq Pointer to the request packet.
2950 * @param pSession The current session.
2951 */
2952GVMMR0DECL(int) GVMMR0ResetStatisticsReq(PGVM pGVM, PVM pVM, PGVMMRESETSTATISTICSSREQ pReq, PSUPDRVSESSION pSession)
2953{
2954 /*
2955 * Validate input and pass it on.
2956 */
2957 AssertPtrReturn(pReq, VERR_INVALID_POINTER);
2958 AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER);
2959 AssertReturn(pReq->pSession == pSession, VERR_INVALID_PARAMETER);
2960
2961 return GVMMR0ResetStatistics(&pReq->Stats, pSession, pGVM, pVM);
2962}
2963
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette