VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 72466

Last change on this file since 72466 was 72208, checked in by vboxsync, 7 years ago

VMM: VBOX_WITH_NESTED_HWVIRT_SVM.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 74.2 KB
Line 
1/* $Id: HMR0.cpp 72208 2018-05-15 04:11:35Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/vmm/gim.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/cpuset.h>
36#include <iprt/mem.h>
37#include <iprt/memobj.h>
38#include <iprt/once.h>
39#include <iprt/param.h>
40#include <iprt/power.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43#include <iprt/x86.h>
44#include "HMVMXR0.h"
45#include "HMSVMR0.h"
46
47
48/*********************************************************************************************************************************
49* Internal Functions *
50*********************************************************************************************************************************/
51static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
55static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
56static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
57
58
59/*********************************************************************************************************************************
60* Structures and Typedefs *
61*********************************************************************************************************************************/
62/**
63 * This is used to manage the status code of a RTMpOnAll in HM.
64 */
65typedef struct HMR0FIRSTRC
66{
67 /** The status code. */
68 int32_t volatile rc;
69 /** The ID of the CPU reporting the first failure. */
70 RTCPUID volatile idCpu;
71} HMR0FIRSTRC;
72/** Pointer to a first return code structure. */
73typedef HMR0FIRSTRC *PHMR0FIRSTRC;
74
75
76/*********************************************************************************************************************************
77* Global Variables *
78*********************************************************************************************************************************/
79/**
80 * Global data.
81 */
82static struct
83{
84 /** Per CPU globals. */
85 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
86
87 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
88 * @{ */
89 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
90 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
91 DECLR0CALLBACKMEMBER(int, pfnSaveHostState, (PVM pVM, PVMCPU pVCpu));
92 DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
93 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
94 bool fEnabledByHost, void *pvArg));
95 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
96 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVM pVM));
98 DECLR0CALLBACKMEMBER(int, pfnSetupVM ,(PVM pVM));
99 /** @} */
100
101 /** Maximum ASID allowed. */
102 uint32_t uMaxAsid;
103
104 /** VT-x data. */
105 struct
106 {
107 /** Set to by us to indicate VMX is supported by the CPU. */
108 bool fSupported;
109 /** Whether we're using SUPR0EnableVTx or not. */
110 bool fUsingSUPR0EnableVTx;
111 /** Whether we're using the preemption timer or not. */
112 bool fUsePreemptTimer;
113 /** The shift mask employed by the VMX-Preemption timer. */
114 uint8_t cPreemptTimerShift;
115
116 /** Host CR4 value (set by ring-0 VMX init) */
117 uint64_t u64HostCr4;
118
119 /** Host EFER value (set by ring-0 VMX init) */
120 uint64_t u64HostEfer;
121
122 /** Host SMM monitor control (used for logging/diagnostics) */
123 uint64_t u64HostSmmMonitorCtl;
124
125 /** VMX MSR values */
126 VMXMSRS Msrs;
127
128 /** Last instruction error. */
129 uint32_t ulLastInstrError;
130
131 /** Set if we've called SUPR0EnableVTx(true) and should disable it during
132 * module termination. */
133 bool fCalledSUPR0EnableVTx;
134 } vmx;
135
136 /** AMD-V information. */
137 struct
138 {
139 /* HWCR MSR (for diagnostics) */
140 uint64_t u64MsrHwcr;
141
142 /** SVM revision. */
143 uint32_t u32Rev;
144
145 /** SVM feature bits from cpuid 0x8000000a */
146 uint32_t u32Features;
147
148 /** Set by us to indicate SVM is supported by the CPU. */
149 bool fSupported;
150 } svm;
151 /** Saved error from detection */
152 int32_t lLastError;
153
154 /** CPUID 0x80000001 ecx:edx features */
155 struct
156 {
157 uint32_t u32AMDFeatureECX;
158 uint32_t u32AMDFeatureEDX;
159 } cpuid;
160
161 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
162 * enabled and disabled each time it's used to execute guest code. */
163 bool fGlobalInit;
164 /** Indicates whether the host is suspending or not. We'll refuse a few
165 * actions when the host is being suspended to speed up the suspending and
166 * avoid trouble. */
167 volatile bool fSuspended;
168
169 /** Whether we've already initialized all CPUs.
170 * @remarks We could check the EnableAllCpusOnce state, but this is
171 * simpler and hopefully easier to understand. */
172 bool fEnabled;
173 /** Serialize initialization in HMR0EnableAllCpus. */
174 RTONCE EnableAllCpusOnce;
175} g_HmR0;
176
177
178
179/**
180 * Initializes a first return code structure.
181 *
182 * @param pFirstRc The structure to init.
183 */
184static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
185{
186 pFirstRc->rc = VINF_SUCCESS;
187 pFirstRc->idCpu = NIL_RTCPUID;
188}
189
190
191/**
192 * Try set the status code (success ignored).
193 *
194 * @param pFirstRc The first return code structure.
195 * @param rc The status code.
196 */
197static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
198{
199 if ( RT_FAILURE(rc)
200 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
201 pFirstRc->idCpu = RTMpCpuId();
202}
203
204
205/**
206 * Get the status code of a first return code structure.
207 *
208 * @returns The status code; VINF_SUCCESS or error status, no informational or
209 * warning errors.
210 * @param pFirstRc The first return code structure.
211 */
212static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
213{
214 return pFirstRc->rc;
215}
216
217
218#ifdef VBOX_STRICT
219# ifndef DEBUG_bird
220/**
221 * Get the CPU ID on which the failure status code was reported.
222 *
223 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
224 * @param pFirstRc The first return code structure.
225 */
226static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
227{
228 return pFirstRc->idCpu;
229}
230# endif
231#endif /* VBOX_STRICT */
232
233
234/** @name Dummy callback handlers.
235 * @{ */
236
237static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
238{
239 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
240 return VINF_SUCCESS;
241}
242
243static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
244{
245 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
246}
247
248static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
249 bool fEnabledBySystem, void *pvArg)
250{
251 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem); NOREF(pvArg);
252 return VINF_SUCCESS;
253}
254
255static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
256{
257 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
258 return VINF_SUCCESS;
259}
260
261static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
262{
263 NOREF(pVM);
264 return VINF_SUCCESS;
265}
266
267static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
268{
269 NOREF(pVM);
270 return VINF_SUCCESS;
271}
272
273static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
274{
275 NOREF(pVM);
276 return VINF_SUCCESS;
277}
278
279static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
280{
281 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
282 return VINF_SUCCESS;
283}
284
285static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
286{
287 NOREF(pVM); NOREF(pVCpu);
288 return VINF_SUCCESS;
289}
290
291/** @} */
292
293
294/**
295 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
296 * Down at the Rate Specified" erratum.
297 *
298 * Errata names and related steppings:
299 * - BA86 - D0.
300 * - AAX65 - C2.
301 * - AAU65 - C2, K0.
302 * - AAO95 - B1.
303 * - AAT59 - C2.
304 * - AAK139 - D0.
305 * - AAM126 - C0, C1, D0.
306 * - AAN92 - B1.
307 * - AAJ124 - C0, D0.
308 *
309 * - AAP86 - B1.
310 *
311 * Steppings: B1, C0, C1, C2, D0, K0.
312 *
313 * @returns true if subject to it, false if not.
314 */
315static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
316{
317 uint32_t u = ASMCpuId_EAX(1);
318 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
319 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
320 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
321 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
322 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
323 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
324 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
325 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
326 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
327 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
328 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
329 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
330 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
331 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
332 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
333 )
334 return true;
335 return false;
336}
337
338
339/**
340 * Intel specific initialization code.
341 *
342 * @returns VBox status code (will only fail if out of memory).
343 */
344static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
345{
346 /*
347 * Check that all the required VT-x features are present.
348 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
349 */
350 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
351 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
352 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
353 )
354 {
355 /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */
356 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
357
358 /*
359 * First try use native kernel API for controlling VT-x.
360 * (This is only supported by some Mac OS X kernels atm.)
361 */
362 int rc = g_HmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
363 g_HmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
364 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
365 {
366 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
367 if (RT_SUCCESS(rc))
368 {
369 g_HmR0.vmx.fSupported = true;
370 rc = SUPR0EnableVTx(false /* fEnable */);
371 AssertLogRelRC(rc);
372 }
373 }
374 else
375 {
376 HMR0FIRSTRC FirstRc;
377 hmR0FirstRcInit(&FirstRc);
378 g_HmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
379 if (RT_SUCCESS(g_HmR0.lLastError))
380 g_HmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
381 }
382 if (RT_SUCCESS(g_HmR0.lLastError))
383 {
384 /* Reread in case it was changed by SUPR0GetVmxUsability(). */
385 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
386
387 /*
388 * Read all relevant registers and MSRs.
389 */
390 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
391 g_HmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
392 g_HmR0.vmx.Msrs.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
393 /* KVM workaround: Intel SDM section 34.15.5 describes that MSR_IA32_SMM_MONITOR_CTL
394 * depends on bit 49 of MSR_IA32_VMX_BASIC_INFO while table 35-2 says that this MSR
395 * is available if either VMX or SMX is supported. */
396 if (MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(g_HmR0.vmx.Msrs.u64BasicInfo))
397 g_HmR0.vmx.u64HostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL);
398 g_HmR0.vmx.Msrs.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
399 g_HmR0.vmx.Msrs.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
400 g_HmR0.vmx.Msrs.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
401 g_HmR0.vmx.Msrs.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
402 g_HmR0.vmx.Msrs.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
403 g_HmR0.vmx.Msrs.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
404 g_HmR0.vmx.Msrs.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
405 g_HmR0.vmx.Msrs.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
406 g_HmR0.vmx.Msrs.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
407 g_HmR0.vmx.Msrs.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
408 /* VPID 16 bits ASID. */
409 g_HmR0.uMaxAsid = 0x10000; /* exclusive */
410
411 if (g_HmR0.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
412 {
413 g_HmR0.vmx.Msrs.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
414 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
415 g_HmR0.vmx.Msrs.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
416
417 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
418 g_HmR0.vmx.Msrs.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
419 }
420
421 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
422 {
423 /*
424 * Enter root mode
425 */
426 RTR0MEMOBJ hScatchMemObj;
427 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
428 if (RT_FAILURE(rc))
429 {
430 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,false) -> %Rrc\n", rc));
431 return rc;
432 }
433
434 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
435 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
436 ASMMemZeroPage(pvScatchPage);
437
438 /* Set revision dword at the beginning of the structure. */
439 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HmR0.vmx.Msrs.u64BasicInfo);
440
441 /* Make sure we don't get rescheduled to another cpu during this probe. */
442 RTCCUINTREG fFlags = ASMIntDisableFlags();
443
444 /*
445 * Check CR4.VMXE
446 */
447 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
448 if (!(g_HmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
449 {
450 /* In theory this bit could be cleared behind our back. Which would cause
451 #UD faults when we try to execute the VMX instructions... */
452 ASMSetCR4(g_HmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
453 }
454
455 /*
456 * The only way of checking if we're in VMX root mode or not is to try and enter it.
457 * There is no instruction or control bit that tells us if we're in VMX root mode.
458 * Therefore, try and enter VMX root mode here.
459 */
460 rc = VMXEnable(HCPhysScratchPage);
461 if (RT_SUCCESS(rc))
462 {
463 g_HmR0.vmx.fSupported = true;
464 VMXDisable();
465 }
466 else
467 {
468 /*
469 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
470 * it will crash the host when we enter raw mode, because:
471 *
472 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
473 * this bit), and
474 * (b) turning off paging causes a #GP (unavoidable when switching
475 * from long to 32 bits mode or 32 bits to PAE).
476 *
477 * They should fix their code, but until they do we simply refuse to run.
478 */
479 g_HmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
480 Assert(g_HmR0.vmx.fSupported == false);
481 }
482
483 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
484 if it wasn't so before (some software could incorrectly
485 think it's in VMX mode). */
486 ASMSetCR4(g_HmR0.vmx.u64HostCr4);
487 ASMSetFlags(fFlags);
488
489 RTR0MemObjFree(hScatchMemObj, false);
490 }
491
492 if (g_HmR0.vmx.fSupported)
493 {
494 rc = VMXR0GlobalInit();
495 if (RT_FAILURE(rc))
496 g_HmR0.lLastError = rc;
497
498 /*
499 * Install the VT-x methods.
500 */
501 g_HmR0.pfnEnterSession = VMXR0Enter;
502 g_HmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
503 g_HmR0.pfnSaveHostState = VMXR0SaveHostState;
504 g_HmR0.pfnRunGuestCode = VMXR0RunGuestCode;
505 g_HmR0.pfnEnableCpu = VMXR0EnableCpu;
506 g_HmR0.pfnDisableCpu = VMXR0DisableCpu;
507 g_HmR0.pfnInitVM = VMXR0InitVM;
508 g_HmR0.pfnTermVM = VMXR0TermVM;
509 g_HmR0.pfnSetupVM = VMXR0SetupVM;
510
511 /*
512 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
513 * Timer Does Not Count Down at the Rate Specified" erratum.
514 */
515 if (g_HmR0.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
516 {
517 g_HmR0.vmx.fUsePreemptTimer = true;
518 g_HmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HmR0.vmx.Msrs.u64Misc);
519 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
520 g_HmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
521 }
522 }
523 }
524#ifdef LOG_ENABLED
525 else
526 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HmR0.lLastError);
527#endif
528 }
529 else
530 g_HmR0.lLastError = VERR_VMX_NO_VMX;
531 return VINF_SUCCESS;
532}
533
534
535/**
536 * AMD-specific initialization code.
537 *
538 * @returns VBox status code.
539 */
540static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
541{
542 /*
543 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
544 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
545 */
546 int rc;
547 if ( (g_HmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
548 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
549 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
550 && ASMIsValidExtRange(uMaxExtLeaf)
551 && uMaxExtLeaf >= 0x8000000a
552 )
553 {
554 /* Call the global AMD-V initialization routine. */
555 rc = SVMR0GlobalInit();
556 if (RT_FAILURE(rc))
557 {
558 g_HmR0.lLastError = rc;
559 return rc;
560 }
561
562 /*
563 * Install the AMD-V methods.
564 */
565 g_HmR0.pfnEnterSession = SVMR0Enter;
566 g_HmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
567 g_HmR0.pfnSaveHostState = SVMR0SaveHostState;
568 g_HmR0.pfnRunGuestCode = SVMR0RunGuestCode;
569 g_HmR0.pfnEnableCpu = SVMR0EnableCpu;
570 g_HmR0.pfnDisableCpu = SVMR0DisableCpu;
571 g_HmR0.pfnInitVM = SVMR0InitVM;
572 g_HmR0.pfnTermVM = SVMR0TermVM;
573 g_HmR0.pfnSetupVM = SVMR0SetupVM;
574
575 /* Query AMD features. */
576 uint32_t u32Dummy;
577 ASMCpuId(0x8000000a, &g_HmR0.svm.u32Rev, &g_HmR0.uMaxAsid, &u32Dummy, &g_HmR0.svm.u32Features);
578
579 /*
580 * We need to check if AMD-V has been properly initialized on all CPUs.
581 * Some BIOSes might do a poor job.
582 */
583 HMR0FIRSTRC FirstRc;
584 hmR0FirstRcInit(&FirstRc);
585 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
586 AssertRC(rc);
587 if (RT_SUCCESS(rc))
588 rc = hmR0FirstRcGetStatus(&FirstRc);
589#ifndef DEBUG_bird
590 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
591 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
592#endif
593 if (RT_SUCCESS(rc))
594 {
595 /* Read the HWCR MSR for diagnostics. */
596 g_HmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
597 g_HmR0.svm.fSupported = true;
598 }
599 else
600 {
601 g_HmR0.lLastError = rc;
602 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
603 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
604 }
605 }
606 else
607 {
608 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
609 g_HmR0.lLastError = VERR_SVM_NO_SVM;
610 }
611 return rc;
612}
613
614
615/**
616 * Does global Ring-0 HM initialization (at module init).
617 *
618 * @returns VBox status code.
619 */
620VMMR0_INT_DECL(int) HMR0Init(void)
621{
622 /*
623 * Initialize the globals.
624 */
625 g_HmR0.fEnabled = false;
626 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
627 g_HmR0.EnableAllCpusOnce = s_OnceInit;
628 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
629 {
630 g_HmR0.aCpuInfo[i].idCpu = NIL_RTCPUID;
631 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
632 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
633 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
634#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
635 g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
636 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
637 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
638#endif
639 }
640
641 /* Fill in all callbacks with placeholders. */
642 g_HmR0.pfnEnterSession = hmR0DummyEnter;
643 g_HmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
644 g_HmR0.pfnSaveHostState = hmR0DummySaveHostState;
645 g_HmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
646 g_HmR0.pfnEnableCpu = hmR0DummyEnableCpu;
647 g_HmR0.pfnDisableCpu = hmR0DummyDisableCpu;
648 g_HmR0.pfnInitVM = hmR0DummyInitVM;
649 g_HmR0.pfnTermVM = hmR0DummyTermVM;
650 g_HmR0.pfnSetupVM = hmR0DummySetupVM;
651
652 /* Default is global VT-x/AMD-V init. */
653 g_HmR0.fGlobalInit = true;
654
655 /*
656 * Make sure aCpuInfo is big enough for all the CPUs on this system.
657 */
658 if (RTMpGetArraySize() > RT_ELEMENTS(g_HmR0.aCpuInfo))
659 {
660 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HmR0.aCpuInfo)));
661 return VERR_TOO_MANY_CPUS;
662 }
663
664 /*
665 * Check for VT-x and AMD-V capabilities.
666 */
667 int rc;
668 if (ASMHasCpuId())
669 {
670 /* Standard features. */
671 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
672 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
673 if (ASMIsValidStdRange(uMaxLeaf))
674 {
675 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
676 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
677
678 /* Query AMD features. */
679 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
680 if (ASMIsValidExtRange(uMaxExtLeaf))
681 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
682 &g_HmR0.cpuid.u32AMDFeatureECX,
683 &g_HmR0.cpuid.u32AMDFeatureEDX);
684 else
685 g_HmR0.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureEDX = 0;
686
687 /* Go to CPU specific initialization code. */
688 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
689 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
690 {
691 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
692 if (RT_FAILURE(rc))
693 return rc;
694 }
695 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
696 {
697 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
698 if (RT_FAILURE(rc))
699 return rc;
700 }
701 else
702 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
703 }
704 else
705 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
706 }
707 else
708 g_HmR0.lLastError = VERR_HM_NO_CPUID;
709
710 /*
711 * Register notification callbacks that we can use to disable/enable CPUs
712 * when brought offline/online or suspending/resuming.
713 */
714 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
715 {
716 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
717 AssertRC(rc);
718
719 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
720 AssertRC(rc);
721 }
722
723 /* We return success here because module init shall not fail if HM
724 fails to initialize. */
725 return VINF_SUCCESS;
726}
727
728
729/**
730 * Does global Ring-0 HM termination (at module termination).
731 *
732 * @returns VBox status code.
733 */
734VMMR0_INT_DECL(int) HMR0Term(void)
735{
736 int rc;
737 if ( g_HmR0.vmx.fSupported
738 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
739 {
740 /*
741 * Simple if the host OS manages VT-x.
742 */
743 Assert(g_HmR0.fGlobalInit);
744
745 if (g_HmR0.vmx.fCalledSUPR0EnableVTx)
746 {
747 rc = SUPR0EnableVTx(false /* fEnable */);
748 g_HmR0.vmx.fCalledSUPR0EnableVTx = false;
749 }
750 else
751 rc = VINF_SUCCESS;
752
753 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HmR0.aCpuInfo); iCpu++)
754 {
755 g_HmR0.aCpuInfo[iCpu].fConfigured = false;
756 Assert(g_HmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
757 }
758 }
759 else
760 {
761 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
762
763 /* Doesn't really matter if this fails. */
764 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
765 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
766
767 /*
768 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
769 */
770 if (g_HmR0.fGlobalInit)
771 {
772 HMR0FIRSTRC FirstRc;
773 hmR0FirstRcInit(&FirstRc);
774 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
775 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
776 if (RT_SUCCESS(rc))
777 rc = hmR0FirstRcGetStatus(&FirstRc);
778 }
779
780 /*
781 * Free the per-cpu pages used for VT-x and AMD-V.
782 */
783 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
784 {
785 if (g_HmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
786 {
787 RTR0MemObjFree(g_HmR0.aCpuInfo[i].hMemObj, false);
788 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
789 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
790 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
791 }
792#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
793 if (g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm != NIL_RTR0MEMOBJ)
794 {
795 RTR0MemObjFree(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, false);
796 g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
797 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
798 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
799 }
800#endif
801 }
802 }
803
804 /** @todo This needs cleaning up. There's no matching
805 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
806 * should move into their respective modules. */
807 /* Finally, call global VT-x/AMD-V termination. */
808 if (g_HmR0.vmx.fSupported)
809 VMXR0GlobalTerm();
810 else if (g_HmR0.svm.fSupported)
811 SVMR0GlobalTerm();
812
813 return rc;
814}
815
816
817/**
818 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
819 * on a CPU.
820 *
821 * @param idCpu The identifier for the CPU the function is called on.
822 * @param pvUser1 Pointer to the first RC structure.
823 * @param pvUser2 Ignored.
824 */
825static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
826{
827 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
828 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
829 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
830 NOREF(idCpu); NOREF(pvUser2);
831
832 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
833 hmR0FirstRcSetStatus(pFirstRc, rc);
834}
835
836
837/**
838 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
839 * on a CPU.
840 *
841 * @param idCpu The identifier for the CPU the function is called on.
842 * @param pvUser1 Pointer to the first RC structure.
843 * @param pvUser2 Ignored.
844 */
845static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
846{
847 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
848 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
849 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
850 NOREF(idCpu); NOREF(pvUser2);
851
852 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
853 hmR0FirstRcSetStatus(pFirstRc, rc);
854}
855
856
857/**
858 * Enable VT-x or AMD-V on the current CPU
859 *
860 * @returns VBox status code.
861 * @param pVM The cross context VM structure. Can be NULL.
862 * @param idCpu The identifier for the CPU the function is called on.
863 *
864 * @remarks Maybe called with interrupts disabled!
865 */
866static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
867{
868 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
869
870 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
871 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
872 Assert(!pCpu->fConfigured);
873 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
874
875 pCpu->idCpu = idCpu;
876 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
877
878 int rc;
879 if (g_HmR0.vmx.fSupported && g_HmR0.vmx.fUsingSUPR0EnableVTx)
880 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmR0.vmx.Msrs);
881 else
882 {
883 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
884 if (g_HmR0.vmx.fSupported)
885 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
886 else
887 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, NULL /* pvArg */);
888 }
889 if (RT_SUCCESS(rc))
890 pCpu->fConfigured = true;
891
892 return rc;
893}
894
895
896/**
897 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
898 *
899 * @param idCpu The identifier for the CPU the function is called on.
900 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
901 * @param pvUser2 The 2nd user argument.
902 */
903static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
904{
905 PVM pVM = (PVM)pvUser1; /* can be NULL! */
906 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
907 AssertReturnVoid(g_HmR0.fGlobalInit);
908 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
909 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
910}
911
912
913/**
914 * RTOnce callback employed by HMR0EnableAllCpus.
915 *
916 * @returns VBox status code.
917 * @param pvUser Pointer to the VM.
918 */
919static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
920{
921 PVM pVM = (PVM)pvUser;
922
923 /*
924 * Indicate that we've initialized.
925 *
926 * Note! There is a potential race between this function and the suspend
927 * notification. Kind of unlikely though, so ignored for now.
928 */
929 AssertReturn(!g_HmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
930 ASMAtomicWriteBool(&g_HmR0.fEnabled, true);
931
932 /*
933 * The global init variable is set by the first VM.
934 */
935 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
936
937#ifdef VBOX_STRICT
938 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
939 {
940 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
941 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS);
942 Assert(g_HmR0.aCpuInfo[i].pvMemObj == NULL);
943 Assert(!g_HmR0.aCpuInfo[i].fConfigured);
944 Assert(!g_HmR0.aCpuInfo[i].cTlbFlushes);
945 Assert(!g_HmR0.aCpuInfo[i].uCurrentAsid);
946# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
947 Assert(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
948 Assert(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm == NIL_RTHCPHYS);
949 Assert(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm == NULL);
950# endif
951 }
952#endif
953
954 int rc;
955 if ( g_HmR0.vmx.fSupported
956 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
957 {
958 /*
959 * Global VT-x initialization API (only darwin for now).
960 */
961 rc = SUPR0EnableVTx(true /* fEnable */);
962 if (RT_SUCCESS(rc))
963 {
964 g_HmR0.vmx.fCalledSUPR0EnableVTx = true;
965 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
966 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
967 }
968 else
969 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
970 }
971 else
972 {
973 /*
974 * We're doing the job ourselves.
975 */
976 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
977 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
978 {
979 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
980#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
981 Assert(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
982#endif
983 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
984 {
985 /** @todo NUMA */
986 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, false /* executable R0 mapping */);
987 AssertLogRelRCReturn(rc, rc);
988
989 g_HmR0.aCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].hMemObj, 0);
990 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS);
991 Assert(!(g_HmR0.aCpuInfo[i].HCPhysMemObj & PAGE_OFFSET_MASK));
992
993 g_HmR0.aCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].hMemObj);
994 AssertPtr(g_HmR0.aCpuInfo[i].pvMemObj);
995 ASMMemZeroPage(g_HmR0.aCpuInfo[i].pvMemObj);
996
997#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
998 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
999 false /* executable R0 mapping */);
1000 AssertLogRelRCReturn(rc, rc);
1001
1002 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, 0);
1003 Assert(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm != NIL_RTHCPHYS);
1004 Assert(!(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm & PAGE_OFFSET_MASK));
1005
1006 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm);
1007 AssertPtr(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm);
1008 ASMMemFill32(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
1009#endif
1010 }
1011 }
1012
1013 rc = VINF_SUCCESS;
1014 }
1015
1016 if ( RT_SUCCESS(rc)
1017 && g_HmR0.fGlobalInit)
1018 {
1019 /* First time, so initialize each cpu/core. */
1020 HMR0FIRSTRC FirstRc;
1021 hmR0FirstRcInit(&FirstRc);
1022 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
1023 if (RT_SUCCESS(rc))
1024 rc = hmR0FirstRcGetStatus(&FirstRc);
1025 }
1026
1027 return rc;
1028}
1029
1030
1031/**
1032 * Sets up HM on all cpus.
1033 *
1034 * @returns VBox status code.
1035 * @param pVM The cross context VM structure.
1036 */
1037VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
1038{
1039 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1040 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1041 return VERR_HM_SUSPEND_PENDING;
1042
1043 return RTOnce(&g_HmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1044}
1045
1046
1047/**
1048 * Disable VT-x or AMD-V on the current CPU.
1049 *
1050 * @returns VBox status code.
1051 * @param idCpu The identifier for the CPU this function is called on.
1052 *
1053 * @remarks Must be called with preemption disabled.
1054 */
1055static int hmR0DisableCpu(RTCPUID idCpu)
1056{
1057 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1058
1059 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1060 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1061 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
1062 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1063 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1064 AssertRelease(idCpu == RTMpCpuId());
1065
1066 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1067 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1068 AssertPtr(pCpu->pvMemObj);
1069 Assert(pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1070
1071 int rc;
1072 if (pCpu->fConfigured)
1073 {
1074 rc = g_HmR0.pfnDisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1075 AssertRCReturn(rc, rc);
1076
1077 pCpu->fConfigured = false;
1078 pCpu->idCpu = NIL_RTCPUID;
1079 }
1080 else
1081 rc = VINF_SUCCESS; /* nothing to do */
1082 return rc;
1083}
1084
1085
1086/**
1087 * Worker function passed to RTMpOnAll() that is to be called on the target
1088 * CPUs.
1089 *
1090 * @param idCpu The identifier for the CPU the function is called on.
1091 * @param pvUser1 The 1st user argument.
1092 * @param pvUser2 Opaque pointer to the FirstRc.
1093 */
1094static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1095{
1096 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1097 AssertReturnVoid(g_HmR0.fGlobalInit);
1098 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1099}
1100
1101
1102/**
1103 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1104 * CPU.
1105 *
1106 * @param idCpu The identifier for the CPU the function is called on.
1107 * @param pvUser1 Null, not used.
1108 * @param pvUser2 Null, not used.
1109 */
1110static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1111{
1112 NOREF(pvUser1);
1113 NOREF(pvUser2);
1114 hmR0DisableCpu(idCpu);
1115}
1116
1117
1118/**
1119 * Callback function invoked when a cpu goes online or offline.
1120 *
1121 * @param enmEvent The Mp event.
1122 * @param idCpu The identifier for the CPU the function is called on.
1123 * @param pvData Opaque data (PVM pointer).
1124 */
1125static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1126{
1127 NOREF(pvData);
1128 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1129
1130 /*
1131 * We only care about uninitializing a CPU that is going offline. When a
1132 * CPU comes online, the initialization is done lazily in HMR0Enter().
1133 */
1134 switch (enmEvent)
1135 {
1136 case RTMPEVENT_OFFLINE:
1137 {
1138 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1139 RTThreadPreemptDisable(&PreemptState);
1140 if (idCpu == RTMpCpuId())
1141 {
1142 int rc = hmR0DisableCpu(idCpu);
1143 AssertRC(rc);
1144 RTThreadPreemptRestore(&PreemptState);
1145 }
1146 else
1147 {
1148 RTThreadPreemptRestore(&PreemptState);
1149 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1150 }
1151 break;
1152 }
1153
1154 default:
1155 break;
1156 }
1157}
1158
1159
1160/**
1161 * Called whenever a system power state change occurs.
1162 *
1163 * @param enmEvent The Power event.
1164 * @param pvUser User argument.
1165 */
1166static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1167{
1168 NOREF(pvUser);
1169 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1170
1171#ifdef LOG_ENABLED
1172 if (enmEvent == RTPOWEREVENT_SUSPEND)
1173 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1174 else
1175 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1176#endif
1177
1178 if (enmEvent == RTPOWEREVENT_SUSPEND)
1179 ASMAtomicWriteBool(&g_HmR0.fSuspended, true);
1180
1181 if (g_HmR0.fEnabled)
1182 {
1183 int rc;
1184 HMR0FIRSTRC FirstRc;
1185 hmR0FirstRcInit(&FirstRc);
1186
1187 if (enmEvent == RTPOWEREVENT_SUSPEND)
1188 {
1189 if (g_HmR0.fGlobalInit)
1190 {
1191 /* Turn off VT-x or AMD-V on all CPUs. */
1192 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1193 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1194 }
1195 /* else nothing to do here for the local init case */
1196 }
1197 else
1198 {
1199 /* Reinit the CPUs from scratch as the suspend state might have
1200 messed with the MSRs. (lousy BIOSes as usual) */
1201 if (g_HmR0.vmx.fSupported)
1202 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1203 else
1204 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1205 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1206 if (RT_SUCCESS(rc))
1207 rc = hmR0FirstRcGetStatus(&FirstRc);
1208#ifdef LOG_ENABLED
1209 if (RT_FAILURE(rc))
1210 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1211#endif
1212 if (g_HmR0.fGlobalInit)
1213 {
1214 /* Turn VT-x or AMD-V back on on all CPUs. */
1215 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1216 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1217 }
1218 /* else nothing to do here for the local init case */
1219 }
1220 }
1221
1222 if (enmEvent == RTPOWEREVENT_RESUME)
1223 ASMAtomicWriteBool(&g_HmR0.fSuspended, false);
1224}
1225
1226
1227/**
1228 * Does ring-0 per-VM HM initialization.
1229 *
1230 * This will copy HM global into the VM structure and call the CPU specific
1231 * init routine which will allocate resources for each virtual CPU and such.
1232 *
1233 * @returns VBox status code.
1234 * @param pVM The cross context VM structure.
1235 *
1236 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1237 * vmR3InitRing3().
1238 */
1239VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1240{
1241 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1242
1243#ifdef LOG_ENABLED
1244 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1245#endif
1246
1247 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1248 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1249 return VERR_HM_SUSPEND_PENDING;
1250
1251 /*
1252 * Copy globals to the VM structure.
1253 */
1254 pVM->hm.s.vmx.fSupported = g_HmR0.vmx.fSupported;
1255 pVM->hm.s.svm.fSupported = g_HmR0.svm.fSupported;
1256
1257 pVM->hm.s.vmx.fUsePreemptTimer &= g_HmR0.vmx.fUsePreemptTimer; /* Can be overridden by CFGM. See HMR3Init(). */
1258 pVM->hm.s.vmx.cPreemptTimerShift = g_HmR0.vmx.cPreemptTimerShift;
1259 pVM->hm.s.vmx.u64HostCr4 = g_HmR0.vmx.u64HostCr4;
1260 pVM->hm.s.vmx.u64HostEfer = g_HmR0.vmx.u64HostEfer;
1261 pVM->hm.s.vmx.u64HostSmmMonitorCtl = g_HmR0.vmx.u64HostSmmMonitorCtl;
1262 pVM->hm.s.vmx.Msrs = g_HmR0.vmx.Msrs;
1263 pVM->hm.s.svm.u64MsrHwcr = g_HmR0.svm.u64MsrHwcr;
1264 pVM->hm.s.svm.u32Rev = g_HmR0.svm.u32Rev;
1265 pVM->hm.s.svm.u32Features = g_HmR0.svm.u32Features;
1266 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureECX;
1267 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HmR0.cpuid.u32AMDFeatureEDX;
1268 pVM->hm.s.lLastError = g_HmR0.lLastError;
1269 pVM->hm.s.uMaxAsid = g_HmR0.uMaxAsid;
1270
1271 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1272 {
1273 pVM->hm.s.cMaxResumeLoops = 1024;
1274 if (RTThreadPreemptIsPendingTrusty())
1275 pVM->hm.s.cMaxResumeLoops = 8192;
1276 }
1277
1278 /*
1279 * Initialize some per-VCPU fields.
1280 */
1281 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1282 {
1283 PVMCPU pVCpu = &pVM->aCpus[i];
1284 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1285 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1286 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu);
1287
1288 /* We'll aways increment this the first time (host uses ASID 0). */
1289 AssertReturn(!pVCpu->hm.s.uCurrentAsid, VERR_HM_IPE_3);
1290 }
1291
1292 pVM->hm.s.fHostKernelFeatures = SUPR0GetKernelFeatures();
1293
1294 /*
1295 * Call the hardware specific initialization method.
1296 */
1297 return g_HmR0.pfnInitVM(pVM);
1298}
1299
1300
1301/**
1302 * Does ring-0 per VM HM termination.
1303 *
1304 * @returns VBox status code.
1305 * @param pVM The cross context VM structure.
1306 */
1307VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1308{
1309 Log(("HMR0TermVM: %p\n", pVM));
1310 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1311
1312 /*
1313 * Call the hardware specific method.
1314 *
1315 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1316 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1317 */
1318 return g_HmR0.pfnTermVM(pVM);
1319}
1320
1321
1322/**
1323 * Sets up a VT-x or AMD-V session.
1324 *
1325 * This is mostly about setting up the hardware VM state.
1326 *
1327 * @returns VBox status code.
1328 * @param pVM The cross context VM structure.
1329 */
1330VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1331{
1332 Log(("HMR0SetupVM: %p\n", pVM));
1333 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1334
1335 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1336 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1337
1338 /* On first entry we'll sync everything. */
1339 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1340 HMCPU_CF_RESET_TO(&pVM->aCpus[i], HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1341
1342 /*
1343 * Call the hardware specific setup VM method. This requires the CPU to be
1344 * enabled for AMD-V/VT-x and preemption to be prevented.
1345 */
1346 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1347 RTThreadPreemptDisable(&PreemptState);
1348 RTCPUID idCpu = RTMpCpuId();
1349
1350 /* Enable VT-x or AMD-V if local init is required. */
1351 int rc;
1352 if (!g_HmR0.fGlobalInit)
1353 {
1354 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1355 rc = hmR0EnableCpu(pVM, idCpu);
1356 if (RT_FAILURE(rc))
1357 {
1358 RTThreadPreemptRestore(&PreemptState);
1359 return rc;
1360 }
1361 }
1362
1363 /* Setup VT-x or AMD-V. */
1364 rc = g_HmR0.pfnSetupVM(pVM);
1365
1366 /* Disable VT-x or AMD-V if local init was done before. */
1367 if (!g_HmR0.fGlobalInit)
1368 {
1369 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1370 int rc2 = hmR0DisableCpu(idCpu);
1371 AssertRC(rc2);
1372 }
1373
1374 RTThreadPreemptRestore(&PreemptState);
1375 return rc;
1376}
1377
1378
1379/**
1380 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1381 * required for entering HM context.
1382 *
1383 * @returns VBox status code.
1384 * @param pVCpu The cross context virtual CPU structure.
1385 *
1386 * @remarks No-long-jump zone!!!
1387 */
1388VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1389{
1390 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1391
1392 int rc = VINF_SUCCESS;
1393 RTCPUID idCpu = RTMpCpuId();
1394 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1395 AssertPtr(pCpu);
1396
1397 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1398 if (!pCpu->fConfigured)
1399 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1400
1401 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1402 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE);
1403
1404 Assert(pCpu->idCpu == idCpu && pCpu->idCpu != NIL_RTCPUID);
1405 pVCpu->hm.s.idEnteredCpu = idCpu;
1406 return rc;
1407}
1408
1409
1410/**
1411 * Enters the VT-x or AMD-V session.
1412 *
1413 * @returns VBox status code.
1414 * @param pVM The cross context VM structure.
1415 * @param pVCpu The cross context virtual CPU structure.
1416 *
1417 * @remarks This is called with preemption disabled.
1418 */
1419VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1420{
1421 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1422 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1423 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1424
1425 /* Load the bare minimum state required for entering HM. */
1426 int rc = HMR0EnterCpu(pVCpu);
1427 AssertRCReturn(rc, rc);
1428
1429#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1430 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_5);
1431 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1432#endif
1433
1434 RTCPUID idCpu = RTMpCpuId();
1435 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1436 Assert(pCpu);
1437 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1438
1439 rc = g_HmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1440 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1441
1442 /* Load the host-state as we may be resuming code after a longjmp and quite
1443 possibly now be scheduled on a different CPU. */
1444 rc = g_HmR0.pfnSaveHostState(pVM, pVCpu);
1445 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1446
1447#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1448 if (fStartedSet)
1449 PGMRZDynMapReleaseAutoSet(pVCpu);
1450#endif
1451
1452 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1453 if (RT_FAILURE(rc))
1454 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1455 return rc;
1456}
1457
1458
1459/**
1460 * Deinitializes the bare minimum state used for HM context and if necessary
1461 * disable HM on the CPU.
1462 *
1463 * @returns VBox status code.
1464 * @param pVCpu The cross context virtual CPU structure.
1465 *
1466 * @remarks No-long-jump zone!!!
1467 */
1468VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1469{
1470 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1471 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1472
1473 RTCPUID idCpu = RTMpCpuId();
1474 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1475
1476 if ( !g_HmR0.fGlobalInit
1477 && pCpu->fConfigured)
1478 {
1479 int rc = hmR0DisableCpu(idCpu);
1480 AssertRCReturn(rc, rc);
1481 Assert(!pCpu->fConfigured);
1482 Assert(pCpu->idCpu == NIL_RTCPUID);
1483
1484 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1485 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1486 }
1487
1488 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1489 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1490
1491 return VINF_SUCCESS;
1492}
1493
1494
1495/**
1496 * Thread-context hook for HM.
1497 *
1498 * @param enmEvent The thread-context event.
1499 * @param pvUser Opaque pointer to the VMCPU.
1500 */
1501VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1502{
1503 PVMCPU pVCpu = (PVMCPU)pvUser;
1504 Assert(pVCpu);
1505 Assert(g_HmR0.pfnThreadCtxCallback);
1506
1507 g_HmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HmR0.fGlobalInit);
1508}
1509
1510
1511/**
1512 * Runs guest code in a hardware accelerated VM.
1513 *
1514 * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's
1515 * called from setjmp assembly.)
1516 * @param pVM The cross context VM structure.
1517 * @param pVCpu The cross context virtual CPU structure.
1518 *
1519 * @remarks Can be called with preemption enabled if thread-context hooks are
1520 * used!!!
1521 */
1522VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1523{
1524#ifdef VBOX_STRICT
1525 /* With thread-context hooks we would be running this code with preemption enabled. */
1526 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1527 {
1528 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[RTMpCpuId()];
1529 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1530 Assert(pCpu->fConfigured);
1531 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1532 }
1533#endif
1534
1535#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1536 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_4);
1537 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1538 PGMRZDynMapStartAutoSet(pVCpu);
1539#endif
1540
1541 VBOXSTRICTRC rcStrict = g_HmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1542
1543#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1544 PGMRZDynMapReleaseAutoSet(pVCpu);
1545#endif
1546 return VBOXSTRICTRC_VAL(rcStrict);
1547}
1548
1549
1550/**
1551 * Notification from CPUM that it has unloaded the guest FPU/SSE/AVX state from
1552 * the host CPU and that guest access to it must be intercepted.
1553 *
1554 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1555 */
1556VMMR0_INT_DECL(void) HMR0NotifyCpumUnloadedGuestFpuState(PVMCPU pVCpu)
1557{
1558 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
1559}
1560
1561
1562/**
1563 * Notification from CPUM that it has modified the host CR0 (because of FPU).
1564 *
1565 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1566 */
1567VMMR0_INT_DECL(void) HMR0NotifyCpumModifiedHostCr0(PVMCPU pVCpu)
1568{
1569 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
1570}
1571
1572
1573#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1574
1575/**
1576 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1577 *
1578 * @returns VBox status code.
1579 * @param pVM The cross context VM structure.
1580 * @param pVCpu The cross context virtual CPU structure.
1581 * @param pCtx Pointer to the guest CPU context.
1582 */
1583VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1584{
1585 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1586 if (pVM->hm.s.vmx.fSupported)
1587 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1588 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1589}
1590
1591
1592/**
1593 * Save guest debug state (64 bits guest mode & 32 bits host only)
1594 *
1595 * @returns VBox status code.
1596 * @param pVM The cross context VM structure.
1597 * @param pVCpu The cross context virtual CPU structure.
1598 * @param pCtx Pointer to the guest CPU context.
1599 */
1600VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1601{
1602 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1603 if (pVM->hm.s.vmx.fSupported)
1604 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1605 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1606}
1607
1608
1609/**
1610 * Test the 32->64 bits switcher.
1611 *
1612 * @returns VBox status code.
1613 * @param pVM The cross context VM structure.
1614 */
1615VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1616{
1617 PVMCPU pVCpu = &pVM->aCpus[0];
1618 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1619 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1620 int rc;
1621
1622 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1623 if (pVM->hm.s.vmx.fSupported)
1624 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1625 else
1626 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1627 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1628
1629 return rc;
1630}
1631
1632#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) */
1633
1634/**
1635 * Returns suspend status of the host.
1636 *
1637 * @returns Suspend pending or not.
1638 */
1639VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1640{
1641 return ASMAtomicReadBool(&g_HmR0.fSuspended);
1642}
1643
1644
1645/**
1646 * Returns the cpu structure for the current cpu.
1647 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1648 *
1649 * @returns The cpu structure pointer.
1650 */
1651VMMR0_INT_DECL(PHMGLOBALCPUINFO) hmR0GetCurrentCpu(void)
1652{
1653 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1654 RTCPUID idCpu = RTMpCpuId();
1655 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1656 return &g_HmR0.aCpuInfo[idCpu];
1657}
1658
1659
1660/**
1661 * Save a pending IO read.
1662 *
1663 * @param pVCpu The cross context virtual CPU structure.
1664 * @param GCPtrRip Address of IO instruction.
1665 * @param GCPtrRipNext Address of the next instruction.
1666 * @param uPort Port address.
1667 * @param uAndVal AND mask for saving the result in eax.
1668 * @param cbSize Read size.
1669 */
1670VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1671 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1672{
1673 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1674 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1675 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1676 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1677 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1678 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1679 return;
1680}
1681
1682#ifdef VBOX_WITH_RAW_MODE
1683
1684/**
1685 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1686 * switcher turns off paging.
1687 *
1688 * @returns VBox status code.
1689 * @param pVM The cross context VM structure.
1690 * @param enmSwitcher The switcher we're about to use.
1691 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1692 */
1693VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1694{
1695 NOREF(pVM);
1696
1697 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1698
1699 *pfVTxDisabled = false;
1700
1701 /* No such issues with AMD-V */
1702 if (!g_HmR0.vmx.fSupported)
1703 return VINF_SUCCESS;
1704
1705 /* Check if the switching we're up to is safe. */
1706 switch (enmSwitcher)
1707 {
1708 case VMMSWITCHER_32_TO_32:
1709 case VMMSWITCHER_PAE_TO_PAE:
1710 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1711
1712 case VMMSWITCHER_32_TO_PAE:
1713 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1714 case VMMSWITCHER_AMD64_TO_32:
1715 case VMMSWITCHER_AMD64_TO_PAE:
1716 break; /* unsafe switchers */
1717
1718 default:
1719 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1720 }
1721
1722 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1723 regardless of whether we're currently using VT-x or not. */
1724 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1725 {
1726 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1727 return VINF_SUCCESS;
1728 }
1729
1730 /** @todo Check if this code is presumptive wrt other VT-x users on the
1731 * system... */
1732
1733 /* Nothing to do if we haven't enabled VT-x. */
1734 if (!g_HmR0.fEnabled)
1735 return VINF_SUCCESS;
1736
1737 /* Local init implies the CPU is currently not in VMX root mode. */
1738 if (!g_HmR0.fGlobalInit)
1739 return VINF_SUCCESS;
1740
1741 /* Ok, disable VT-x. */
1742 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
1743 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS, VERR_HM_IPE_2);
1744
1745 *pfVTxDisabled = true;
1746 return VMXR0DisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1747}
1748
1749
1750/**
1751 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1752 * switcher turned off paging.
1753 *
1754 * @param pVM The cross context VM structure.
1755 * @param fVTxDisabled Whether VT-x was disabled or not.
1756 */
1757VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1758{
1759 Assert(!ASMIntAreEnabled());
1760
1761 if (!fVTxDisabled)
1762 return; /* nothing to do */
1763
1764 Assert(g_HmR0.vmx.fSupported);
1765 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1766 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1767 else
1768 {
1769 Assert(g_HmR0.fEnabled);
1770 Assert(g_HmR0.fGlobalInit);
1771
1772 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
1773 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1774
1775 VMXR0EnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
1776 }
1777}
1778
1779#endif /* VBOX_WITH_RAW_MODE */
1780#ifdef VBOX_STRICT
1781
1782/**
1783 * Dumps a descriptor.
1784 *
1785 * @param pDesc Descriptor to dump.
1786 * @param Sel Selector number.
1787 * @param pszMsg Message to prepend the log entry with.
1788 */
1789VMMR0_INT_DECL(void) hmR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1790{
1791 /*
1792 * Make variable description string.
1793 */
1794 static struct
1795 {
1796 unsigned cch;
1797 const char *psz;
1798 } const s_aTypes[32] =
1799 {
1800# define STRENTRY(str) { sizeof(str) - 1, str }
1801
1802 /* system */
1803# if HC_ARCH_BITS == 64
1804 STRENTRY("Reserved0 "), /* 0x00 */
1805 STRENTRY("Reserved1 "), /* 0x01 */
1806 STRENTRY("LDT "), /* 0x02 */
1807 STRENTRY("Reserved3 "), /* 0x03 */
1808 STRENTRY("Reserved4 "), /* 0x04 */
1809 STRENTRY("Reserved5 "), /* 0x05 */
1810 STRENTRY("Reserved6 "), /* 0x06 */
1811 STRENTRY("Reserved7 "), /* 0x07 */
1812 STRENTRY("Reserved8 "), /* 0x08 */
1813 STRENTRY("TSS64Avail "), /* 0x09 */
1814 STRENTRY("ReservedA "), /* 0x0a */
1815 STRENTRY("TSS64Busy "), /* 0x0b */
1816 STRENTRY("Call64 "), /* 0x0c */
1817 STRENTRY("ReservedD "), /* 0x0d */
1818 STRENTRY("Int64 "), /* 0x0e */
1819 STRENTRY("Trap64 "), /* 0x0f */
1820# else
1821 STRENTRY("Reserved0 "), /* 0x00 */
1822 STRENTRY("TSS16Avail "), /* 0x01 */
1823 STRENTRY("LDT "), /* 0x02 */
1824 STRENTRY("TSS16Busy "), /* 0x03 */
1825 STRENTRY("Call16 "), /* 0x04 */
1826 STRENTRY("Task "), /* 0x05 */
1827 STRENTRY("Int16 "), /* 0x06 */
1828 STRENTRY("Trap16 "), /* 0x07 */
1829 STRENTRY("Reserved8 "), /* 0x08 */
1830 STRENTRY("TSS32Avail "), /* 0x09 */
1831 STRENTRY("ReservedA "), /* 0x0a */
1832 STRENTRY("TSS32Busy "), /* 0x0b */
1833 STRENTRY("Call32 "), /* 0x0c */
1834 STRENTRY("ReservedD "), /* 0x0d */
1835 STRENTRY("Int32 "), /* 0x0e */
1836 STRENTRY("Trap32 "), /* 0x0f */
1837# endif
1838 /* non system */
1839 STRENTRY("DataRO "), /* 0x10 */
1840 STRENTRY("DataRO Accessed "), /* 0x11 */
1841 STRENTRY("DataRW "), /* 0x12 */
1842 STRENTRY("DataRW Accessed "), /* 0x13 */
1843 STRENTRY("DataDownRO "), /* 0x14 */
1844 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1845 STRENTRY("DataDownRW "), /* 0x16 */
1846 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1847 STRENTRY("CodeEO "), /* 0x18 */
1848 STRENTRY("CodeEO Accessed "), /* 0x19 */
1849 STRENTRY("CodeER "), /* 0x1a */
1850 STRENTRY("CodeER Accessed "), /* 0x1b */
1851 STRENTRY("CodeConfEO "), /* 0x1c */
1852 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1853 STRENTRY("CodeConfER "), /* 0x1e */
1854 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1855# undef SYSENTRY
1856 };
1857# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1858 char szMsg[128];
1859 char *psz = &szMsg[0];
1860 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1861 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1862 psz += s_aTypes[i].cch;
1863
1864 if (pDesc->Gen.u1Present)
1865 ADD_STR(psz, "Present ");
1866 else
1867 ADD_STR(psz, "Not-Present ");
1868# if HC_ARCH_BITS == 64
1869 if (pDesc->Gen.u1Long)
1870 ADD_STR(psz, "64-bit ");
1871 else
1872 ADD_STR(psz, "Comp ");
1873# else
1874 if (pDesc->Gen.u1Granularity)
1875 ADD_STR(psz, "Page ");
1876 if (pDesc->Gen.u1DefBig)
1877 ADD_STR(psz, "32-bit ");
1878 else
1879 ADD_STR(psz, "16-bit ");
1880# endif
1881# undef ADD_STR
1882 *psz = '\0';
1883
1884 /*
1885 * Limit and Base and format the output.
1886 */
1887#ifdef LOG_ENABLED
1888 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1889
1890# if HC_ARCH_BITS == 64
1891 uint64_t u32Base = X86DESC64_BASE(pDesc);
1892 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1893 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1894# else
1895 uint32_t u32Base = X86DESC_BASE(pDesc);
1896 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1897 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1898# endif
1899#else
1900 NOREF(Sel); NOREF(pszMsg);
1901#endif
1902}
1903
1904
1905/**
1906 * Formats a full register dump.
1907 *
1908 * @param pVM The cross context VM structure.
1909 * @param pVCpu The cross context virtual CPU structure.
1910 * @param pCtx Pointer to the CPU context.
1911 */
1912VMMR0_INT_DECL(void) hmR0DumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1913{
1914 NOREF(pVM);
1915
1916 /*
1917 * Format the flags.
1918 */
1919 static struct
1920 {
1921 const char *pszSet; const char *pszClear; uint32_t fFlag;
1922 } const s_aFlags[] =
1923 {
1924 { "vip", NULL, X86_EFL_VIP },
1925 { "vif", NULL, X86_EFL_VIF },
1926 { "ac", NULL, X86_EFL_AC },
1927 { "vm", NULL, X86_EFL_VM },
1928 { "rf", NULL, X86_EFL_RF },
1929 { "nt", NULL, X86_EFL_NT },
1930 { "ov", "nv", X86_EFL_OF },
1931 { "dn", "up", X86_EFL_DF },
1932 { "ei", "di", X86_EFL_IF },
1933 { "tf", NULL, X86_EFL_TF },
1934 { "nt", "pl", X86_EFL_SF },
1935 { "nz", "zr", X86_EFL_ZF },
1936 { "ac", "na", X86_EFL_AF },
1937 { "po", "pe", X86_EFL_PF },
1938 { "cy", "nc", X86_EFL_CF },
1939 };
1940 char szEFlags[80];
1941 char *psz = szEFlags;
1942 uint32_t uEFlags = pCtx->eflags.u32;
1943 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1944 {
1945 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1946 if (pszAdd)
1947 {
1948 strcpy(psz, pszAdd);
1949 psz += strlen(pszAdd);
1950 *psz++ = ' ';
1951 }
1952 }
1953 psz[-1] = '\0';
1954
1955
1956 /*
1957 * Format the registers.
1958 */
1959 if (CPUMIsGuestIn64BitCode(pVCpu))
1960 {
1961 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1962 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1963 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1964 "r14=%016RX64 r15=%016RX64\n"
1965 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1966 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1967 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1968 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1969 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1970 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1971 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1972 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1973 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1974 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1975 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1976 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1977 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1978 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1979 ,
1980 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1981 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1982 pCtx->r14, pCtx->r15,
1983 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1984 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1985 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1986 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1987 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1988 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1989 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1990 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1991 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1992 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1993 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1994 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1995 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1996 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1997 }
1998 else
1999 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
2000 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
2001 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
2002 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
2003 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
2004 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
2005 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
2006 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
2007 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
2008 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2009 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2010 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2011 ,
2012 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
2013 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
2014 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
2015 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
2016 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
2017 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
2018 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
2019 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
2020 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
2021 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2022 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2023 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2024
2025 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2026 Log(("FPU:\n"
2027 "FCW=%04x FSW=%04x FTW=%02x\n"
2028 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
2029 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
2030 ,
2031 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
2032 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
2033 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
2034 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
2035
2036 Log(("MSR:\n"
2037 "EFER =%016RX64\n"
2038 "PAT =%016RX64\n"
2039 "STAR =%016RX64\n"
2040 "CSTAR =%016RX64\n"
2041 "LSTAR =%016RX64\n"
2042 "SFMASK =%016RX64\n"
2043 "KERNELGSBASE =%016RX64\n",
2044 pCtx->msrEFER,
2045 pCtx->msrPAT,
2046 pCtx->msrSTAR,
2047 pCtx->msrCSTAR,
2048 pCtx->msrLSTAR,
2049 pCtx->msrSFMASK,
2050 pCtx->msrKERNELGSBASE));
2051
2052 NOREF(pFpuCtx);
2053}
2054
2055#endif /* VBOX_STRICT */
2056
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette