/* $Id: HMR0.cpp 93655 2022-02-08 13:56:01Z vboxsync $ */ /** @file * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0. */ /* * Copyright (C) 2006-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_HM #define VMCPU_INCL_CPUM_GST_CTX #include #include #include "HMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "HMVMXR0.h" #include "HMSVMR0.h" /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2); static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2); static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser); static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData); /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * This is used to manage the status code of a RTMpOnAll in HM. */ typedef struct HMR0FIRSTRC { /** The status code. */ int32_t volatile rc; /** The ID of the CPU reporting the first failure. */ RTCPUID volatile idCpu; } HMR0FIRSTRC; /** Pointer to a first return code structure. */ typedef HMR0FIRSTRC *PHMR0FIRSTRC; /** * Ring-0 method table for AMD-V and VT-x specific operations. */ typedef struct HMR0VTABLE { DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVMCPUCC pVCpu)); DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)); DECLR0CALLBACKMEMBER(int, pfnAssertionCallback, (PVMCPUCC pVCpu)); DECLR0CALLBACKMEMBER(int, pfnExportHostState, (PVMCPUCC pVCpu)); DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVMCPUCC pVCpu)); DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost, PCSUPHWVIRTMSRS pHwvirtMsrs)); DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)); DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVMCC pVM)); DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVMCC pVM)); DECLR0CALLBACKMEMBER(int, pfnSetupVM, (PVMCC pVM)); } HMR0VTABLE; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** The active ring-0 HM operations (copied from one of the table at init). */ static HMR0VTABLE g_HmR0Ops; /** Indicates whether the host is suspending or not. We'll refuse a few * actions when the host is being suspended to speed up the suspending and * avoid trouble. */ static bool volatile g_fHmSuspended; /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's * enabled and disabled each time it's used to execute guest code. */ static bool g_fHmGlobalInit; /** Host kernel flags that HM might need to know (SUPKERNELFEATURES_XXX). */ uint32_t g_fHmHostKernelFeatures; /** Maximum allowed ASID/VPID (inclusive). * @todo r=bird: This is exclusive for VT-x according to source code comment. * Couldn't immediately find any docs on AMD-V, but suspect it is * exclusive there as well given how hmR0SvmFlushTaggedTlb() use it. */ uint32_t g_uHmMaxAsid; /** Set if VT-x (VMX) is supported by the CPU. */ bool g_fHmVmxSupported = false; /** VMX: Whether we're using the preemption timer or not. */ bool g_fHmVmxUsePreemptTimer; /** VMX: The shift mask employed by the VMX-Preemption timer. */ uint8_t g_cHmVmxPreemptTimerShift; /** VMX: Set if swapping EFER is supported. */ bool g_fHmVmxSupportsVmcsEfer = false; /** VMX: Whether we're using SUPR0EnableVTx or not. */ static bool g_fHmVmxUsingSUPR0EnableVTx = false; /** VMX: Set if we've called SUPR0EnableVTx(true) and should disable it during * module termination. */ static bool g_fHmVmxCalledSUPR0EnableVTx = false; /** VMX: Host CR4 value (set by ring-0 VMX init) */ uint64_t g_uHmVmxHostCr4; /** VMX: Host EFER value (set by ring-0 VMX init) */ uint64_t g_uHmVmxHostMsrEfer; /** VMX: Host SMM monitor control (used for logging/diagnostics) */ uint64_t g_uHmVmxHostSmmMonitorCtl; /** Set if AMD-V is supported by the CPU. */ bool g_fHmSvmSupported = false; /** SVM revision. */ uint32_t g_uHmSvmRev; /** SVM feature bits from cpuid 0x8000000a */ uint32_t g_fHmSvmFeatures; /** MSRs. */ SUPHWVIRTMSRS g_HmMsrs; /** Last recorded error code during HM ring-0 init. */ static int32_t g_rcHmInit = VINF_SUCCESS; /** Per CPU globals. */ static HMPHYSCPU g_aHmCpuInfo[RTCPUSET_MAX_CPUS]; /** Whether we've already initialized all CPUs. * @remarks We could check the EnableAllCpusOnce state, but this is * simpler and hopefully easier to understand. */ static bool g_fHmEnabled = false; /** Serialize initialization in HMR0EnableAllCpus. */ static RTONCE g_HmEnableAllCpusOnce = RTONCE_INITIALIZER; /** HM ring-0 operations for VT-x. */ static HMR0VTABLE const g_HmR0OpsVmx = { /* .pfnEnterSession = */ VMXR0Enter, /* .pfnThreadCtxCallback = */ VMXR0ThreadCtxCallback, /* .pfnAssertionCallback = */ VMXR0AssertionCallback, /* .pfnExportHostState = */ VMXR0ExportHostState, /* .pfnRunGuestCode = */ VMXR0RunGuestCode, /* .pfnEnableCpu = */ VMXR0EnableCpu, /* .pfnDisableCpu = */ VMXR0DisableCpu, /* .pfnInitVM = */ VMXR0InitVM, /* .pfnTermVM = */ VMXR0TermVM, /* .pfnSetupVM = */ VMXR0SetupVM, }; /** HM ring-0 operations for AMD-V. */ static HMR0VTABLE const g_HmR0OpsSvm = { /* .pfnEnterSession = */ SVMR0Enter, /* .pfnThreadCtxCallback = */ SVMR0ThreadCtxCallback, /* .pfnAssertionCallback = */ SVMR0AssertionCallback, /* .pfnExportHostState = */ SVMR0ExportHostState, /* .pfnRunGuestCode = */ SVMR0RunGuestCode, /* .pfnEnableCpu = */ SVMR0EnableCpu, /* .pfnDisableCpu = */ SVMR0DisableCpu, /* .pfnInitVM = */ SVMR0InitVM, /* .pfnTermVM = */ SVMR0TermVM, /* .pfnSetupVM = */ SVMR0SetupVM, }; /** @name Dummy callback handlers for when neither VT-x nor AMD-V is supported. * @{ */ static DECLCALLBACK(int) hmR0DummyEnter(PVMCPUCC pVCpu) { RT_NOREF(pVCpu); return VINF_SUCCESS; } static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit) { RT_NOREF(enmEvent, pVCpu, fGlobalInit); } static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledBySystem, PCSUPHWVIRTMSRS pHwvirtMsrs) { RT_NOREF(pHostCpu, pVM, pvCpuPage, HCPhysCpuPage, fEnabledBySystem, pHwvirtMsrs); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage) { RT_NOREF(pHostCpu, pvCpuPage, HCPhysCpuPage); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyInitVM(PVMCC pVM) { RT_NOREF(pVM); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyTermVM(PVMCC pVM) { RT_NOREF(pVM); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummySetupVM(PVMCC pVM) { RT_NOREF(pVM); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyAssertionCallback(PVMCPUCC pVCpu) { RT_NOREF(pVCpu); return VINF_SUCCESS; } static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVMCPUCC pVCpu) { RT_NOREF(pVCpu); return VERR_NOT_SUPPORTED; } static DECLCALLBACK(int) hmR0DummyExportHostState(PVMCPUCC pVCpu) { RT_NOREF(pVCpu); return VINF_SUCCESS; } /** Dummy ops. */ static HMR0VTABLE const g_HmR0OpsDummy = { /* .pfnEnterSession = */ hmR0DummyEnter, /* .pfnThreadCtxCallback = */ hmR0DummyThreadCtxCallback, /* .pfnAssertionCallback = */ hmR0DummyAssertionCallback, /* .pfnExportHostState = */ hmR0DummyExportHostState, /* .pfnRunGuestCode = */ hmR0DummyRunGuestCode, /* .pfnEnableCpu = */ hmR0DummyEnableCpu, /* .pfnDisableCpu = */ hmR0DummyDisableCpu, /* .pfnInitVM = */ hmR0DummyInitVM, /* .pfnTermVM = */ hmR0DummyTermVM, /* .pfnSetupVM = */ hmR0DummySetupVM, }; /** @} */ /** * Initializes a first return code structure. * * @param pFirstRc The structure to init. */ static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc) { pFirstRc->rc = VINF_SUCCESS; pFirstRc->idCpu = NIL_RTCPUID; } /** * Try set the status code (success ignored). * * @param pFirstRc The first return code structure. * @param rc The status code. */ static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc) { if ( RT_FAILURE(rc) && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS)) pFirstRc->idCpu = RTMpCpuId(); } /** * Get the status code of a first return code structure. * * @returns The status code; VINF_SUCCESS or error status, no informational or * warning errors. * @param pFirstRc The first return code structure. */ static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc) { return pFirstRc->rc; } #ifdef VBOX_STRICT # ifndef DEBUG_bird /** * Get the CPU ID on which the failure status code was reported. * * @returns The CPU ID, NIL_RTCPUID if no failure was reported. * @param pFirstRc The first return code structure. */ static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc) { return pFirstRc->idCpu; } # endif #endif /* VBOX_STRICT */ /** * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x * on a CPU. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 Pointer to the first RC structure. * @param pvUser2 Ignored. */ static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1; Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */ NOREF(idCpu); NOREF(pvUser2); int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */); hmR0FirstRcSetStatus(pFirstRc, rc); } /** * Intel specific initialization code. * * @returns VBox status code (will only fail if out of memory). */ static int hmR0InitIntel(void) { /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */ g_HmMsrs.u.vmx.u64FeatCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL); /* * First try use native kernel API for controlling VT-x. * (This is only supported by some Mac OS X kernels atm.) */ int rc; g_rcHmInit = rc = SUPR0EnableVTx(true /* fEnable */); g_fHmVmxUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED; if (g_fHmVmxUsingSUPR0EnableVTx) { AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc)); if (RT_SUCCESS(rc)) { g_fHmVmxSupported = true; rc = SUPR0EnableVTx(false /* fEnable */); AssertLogRelRC(rc); rc = VINF_SUCCESS; } } else { HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); g_rcHmInit = rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL); if (RT_SUCCESS(rc)) g_rcHmInit = rc = hmR0FirstRcGetStatus(&FirstRc); } if (RT_SUCCESS(rc)) { /* Read CR4 and EFER for logging/diagnostic purposes. */ g_uHmVmxHostCr4 = ASMGetCR4(); g_uHmVmxHostMsrEfer = ASMRdMsr(MSR_K6_EFER); /* Get VMX MSRs (and feature control MSR) for determining VMX features we can ultimately use. */ SUPR0GetHwvirtMsrs(&g_HmMsrs, SUPVTCAPS_VT_X, false /* fForce */); /* * Nested KVM workaround: Intel SDM section 34.15.5 describes that * MSR_IA32_SMM_MONITOR_CTL depends on bit 49 of MSR_IA32_VMX_BASIC while * table 35-2 says that this MSR is available if either VMX or SMX is supported. */ uint64_t const uVmxBasicMsr = g_HmMsrs.u.vmx.u64Basic; if (RT_BF_GET(uVmxBasicMsr, VMX_BF_BASIC_DUAL_MON)) g_uHmVmxHostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL); /* Initialize VPID - 16 bits ASID. */ g_uHmMaxAsid = 0x10000; /* exclusive */ /* * If the host OS has not enabled VT-x for us, try enter VMX root mode * to really verify if VT-x is usable. */ if (!g_fHmVmxUsingSUPR0EnableVTx) { /* Allocate a temporary VMXON region. */ RTR0MEMOBJ hScatchMemObj; rc = RTR0MemObjAllocCont(&hScatchMemObj, HOST_PAGE_SIZE, false /* fExecutable */); if (RT_FAILURE(rc)) { LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,HOST_PAGE_SIZE,false) -> %Rrc\n", rc)); return rc; } void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj); RTHCPHYS const HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0); RT_BZERO(pvScatchPage, HOST_PAGE_SIZE); /* Set revision dword at the beginning of the VMXON structure. */ *(uint32_t *)pvScatchPage = RT_BF_GET(uVmxBasicMsr, VMX_BF_BASIC_VMCS_ID); /* Make sure we don't get rescheduled to another CPU during this probe. */ RTCCUINTREG const fEFlags = ASMIntDisableFlags(); /* Enable CR4.VMXE if it isn't already set. */ RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX); /* * The only way of checking if we're in VMX root mode or not is to try and enter it. * There is no instruction or control bit that tells us if we're in VMX root mode. * Therefore, try and enter VMX root mode here. */ rc = VMXEnable(HCPhysScratchPage); if (RT_SUCCESS(rc)) { g_fHmVmxSupported = true; VMXDisable(); } else { /* * KVM leaves the CPU in VMX root mode. Not only is this not allowed, * it will crash the host when we enter raw mode, because: * * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify * this bit), and * (b) turning off paging causes a #GP (unavoidable when switching * from long to 32 bits mode or 32 bits to PAE). * * They should fix their code, but until they do we simply refuse to run. */ g_rcHmInit = VERR_VMX_IN_VMX_ROOT_MODE; Assert(g_fHmVmxSupported == false); } /* Restore CR4.VMXE if it wasn't set prior to us setting it above. */ if (!(uOldCr4 & X86_CR4_VMXE)) SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE); /* Restore interrupts. */ ASMSetFlags(fEFlags); RTR0MemObjFree(hScatchMemObj, false); } if (g_fHmVmxSupported) { rc = VMXR0GlobalInit(); if (RT_SUCCESS(rc)) { /* * Install the VT-x methods. */ g_HmR0Ops = g_HmR0OpsVmx; /* * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption * Timer Does Not Count Down at the Rate Specified" CPU erratum. */ if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER) { g_fHmVmxUsePreemptTimer = true; g_cHmVmxPreemptTimerShift = RT_BF_GET(g_HmMsrs.u.vmx.u64Misc, VMX_BF_MISC_PREEMPT_TIMER_TSC); if (HMIsSubjectToVmxPreemptTimerErratum()) g_cHmVmxPreemptTimerShift = 0; /* This is about right most of the time here. */ } else g_fHmVmxUsePreemptTimer = false; /* * Check for EFER swapping support. */ g_fHmVmxSupportsVmcsEfer = (g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR) && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR) && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR); } else { g_rcHmInit = rc; g_fHmVmxSupported = false; } } } #ifdef LOG_ENABLED else SUPR0Printf("hmR0InitIntelCpu failed with rc=%Rrc\n", g_rcHmInit); #endif return VINF_SUCCESS; } /** * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V * on a CPU. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 Pointer to the first RC structure. * @param pvUser2 Ignored. */ static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1; Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */ NOREF(idCpu); NOREF(pvUser2); int rc = SUPR0GetSvmUsability(true /* fInitSvm */); hmR0FirstRcSetStatus(pFirstRc, rc); } /** * AMD-specific initialization code. * * @returns VBox status code (will only fail if out of memory). */ static int hmR0InitAmd(void) { /* Call the global AMD-V initialization routine (should only fail in out-of-memory situations). */ int rc = SVMR0GlobalInit(); if (RT_SUCCESS(rc)) { /* * Install the AMD-V methods. */ g_HmR0Ops = g_HmR0OpsSvm; /* Query AMD features. */ uint32_t u32Dummy; ASMCpuId(0x8000000a, &g_uHmSvmRev, &g_uHmMaxAsid, &u32Dummy, &g_fHmSvmFeatures); /* * We need to check if AMD-V has been properly initialized on all CPUs. * Some BIOSes might do a poor job. */ HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL); AssertRC(rc); if (RT_SUCCESS(rc)) rc = hmR0FirstRcGetStatus(&FirstRc); #ifndef DEBUG_bird AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE, ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc)); #endif if (RT_SUCCESS(rc)) { SUPR0GetHwvirtMsrs(&g_HmMsrs, SUPVTCAPS_AMD_V, false /* fForce */); g_fHmSvmSupported = true; } else { g_rcHmInit = rc; if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE) rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */ } } else g_rcHmInit = rc; return rc; } /** * Does global Ring-0 HM initialization (at module init). * * @returns VBox status code. */ VMMR0_INT_DECL(int) HMR0Init(void) { /* * Initialize the globals. */ g_fHmEnabled = false; for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++) { g_aHmCpuInfo[i].idCpu = NIL_RTCPUID; g_aHmCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ; g_aHmCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS; g_aHmCpuInfo[i].pvMemObj = NULL; #ifdef VBOX_WITH_NESTED_HWVIRT_SVM g_aHmCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ; g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS; g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = NULL; #endif } /* Fill in all callbacks with placeholders. */ g_HmR0Ops = g_HmR0OpsDummy; /* Default is global VT-x/AMD-V init. */ g_fHmGlobalInit = true; g_fHmVmxSupported = false; g_fHmSvmSupported = false; g_uHmMaxAsid = 0; /* * Get host kernel features that HM might need to know in order * to co-operate and function properly with the host OS (e.g. SMAP). */ g_fHmHostKernelFeatures = SUPR0GetKernelFeatures(); /* * Make sure aCpuInfo is big enough for all the CPUs on this system. */ if (RTMpGetArraySize() > RT_ELEMENTS(g_aHmCpuInfo)) { LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_aHmCpuInfo))); return VERR_TOO_MANY_CPUS; } /* * Check for VT-x or AMD-V support. * Return failure only in out-of-memory situations. */ uint32_t fCaps = 0; int rc = SUPR0GetVTSupport(&fCaps); if (RT_SUCCESS(rc)) { if (fCaps & SUPVTCAPS_VT_X) rc = hmR0InitIntel(); else { Assert(fCaps & SUPVTCAPS_AMD_V); rc = hmR0InitAmd(); } if (RT_SUCCESS(rc)) { /* * Register notification callbacks that we can use to disable/enable CPUs * when brought offline/online or suspending/resuming. */ if (!g_fHmVmxUsingSUPR0EnableVTx) { rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL); if (RT_SUCCESS(rc)) { rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL); if (RT_FAILURE(rc)) RTMpNotificationDeregister(hmR0MpEventCallback, NULL); } if (RT_FAILURE(rc)) { /* There shouldn't be any per-cpu allocations at this point, so just have to call SVMR0GlobalTerm and VMXR0GlobalTerm. */ if (fCaps & SUPVTCAPS_VT_X) VMXR0GlobalTerm(); else SVMR0GlobalTerm(); g_HmR0Ops = g_HmR0OpsDummy; g_rcHmInit = rc; g_fHmSvmSupported = false; g_fHmVmxSupported = false; } } } } else { g_rcHmInit = rc; rc = VINF_SUCCESS; /* We return success here because module init shall not fail if HM fails to initialize. */ } return rc; } /** * Does global Ring-0 HM termination (at module termination). * * @returns VBox status code (ignored). */ VMMR0_INT_DECL(int) HMR0Term(void) { int rc; if ( g_fHmVmxSupported && g_fHmVmxUsingSUPR0EnableVTx) { /* * Simple if the host OS manages VT-x. */ Assert(g_fHmGlobalInit); if (g_fHmVmxCalledSUPR0EnableVTx) { rc = SUPR0EnableVTx(false /* fEnable */); g_fHmVmxCalledSUPR0EnableVTx = false; } else rc = VINF_SUCCESS; for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_aHmCpuInfo); iCpu++) { g_aHmCpuInfo[iCpu].fConfigured = false; Assert(g_aHmCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ); } } else { Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx); /* Doesn't really matter if this fails. */ RTMpNotificationDeregister(hmR0MpEventCallback, NULL); RTPowerNotificationDeregister(hmR0PowerCallback, NULL); rc = VINF_SUCCESS; /* * Disable VT-x/AMD-V on all CPUs if we enabled it before. */ if (g_fHmGlobalInit) { HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc); Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED); if (RT_SUCCESS(rc)) rc = hmR0FirstRcGetStatus(&FirstRc); } /* * Free the per-cpu pages used for VT-x and AMD-V. */ for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++) { if (g_aHmCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ) { RTR0MemObjFree(g_aHmCpuInfo[i].hMemObj, false); g_aHmCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ; g_aHmCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS; g_aHmCpuInfo[i].pvMemObj = NULL; } #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (g_aHmCpuInfo[i].n.svm.hNstGstMsrpm != NIL_RTR0MEMOBJ) { RTR0MemObjFree(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, false); g_aHmCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ; g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS; g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = NULL; } #endif } } /** @todo This needs cleaning up. There's no matching * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits * should move into their respective modules. */ /* Finally, call global VT-x/AMD-V termination. */ if (g_fHmVmxSupported) VMXR0GlobalTerm(); else if (g_fHmSvmSupported) SVMR0GlobalTerm(); return rc; } /** * Enable VT-x or AMD-V on the current CPU * * @returns VBox status code. * @param pVM The cross context VM structure. Can be NULL. * @param idCpu The identifier for the CPU the function is called on. * * @remarks Maybe called with interrupts disabled! */ static int hmR0EnableCpu(PVMCC pVM, RTCPUID idCpu) { PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu]; Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */ Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo)); Assert(!pHostCpu->fConfigured); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); pHostCpu->idCpu = idCpu; /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */ int rc; if ( g_fHmVmxSupported && g_fHmVmxUsingSUPR0EnableVTx) rc = g_HmR0Ops.pfnEnableCpu(pHostCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmMsrs); else { AssertLogRelMsgReturn(pHostCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1); rc = g_HmR0Ops.pfnEnableCpu(pHostCpu, pVM, pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj, false, &g_HmMsrs); } if (RT_SUCCESS(rc)) pHostCpu->fConfigured = true; return rc; } /** * Worker function passed to RTMpOnAll() that is to be called on all CPUs. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 Opaque pointer to the VM (can be NULL!). * @param pvUser2 The 2nd user argument. */ static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PVMCC pVM = (PVMCC)pvUser1; /* can be NULL! */ PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; AssertReturnVoid(g_fHmGlobalInit); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu)); } /** * RTOnce callback employed by HMR0EnableAllCpus. * * @returns VBox status code. * @param pvUser Pointer to the VM. */ static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser) { PVMCC pVM = (PVMCC)pvUser; /* * Indicate that we've initialized. * * Note! There is a potential race between this function and the suspend * notification. Kind of unlikely though, so ignored for now. */ AssertReturn(!g_fHmEnabled, VERR_HM_ALREADY_ENABLED_IPE); ASMAtomicWriteBool(&g_fHmEnabled, true); /* * The global init variable is set by the first VM. */ g_fHmGlobalInit = pVM->hm.s.fGlobalInit; #ifdef VBOX_STRICT for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++) { Assert(g_aHmCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ); Assert(g_aHmCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS); Assert(g_aHmCpuInfo[i].pvMemObj == NULL); Assert(!g_aHmCpuInfo[i].fConfigured); Assert(!g_aHmCpuInfo[i].cTlbFlushes); Assert(!g_aHmCpuInfo[i].uCurrentAsid); # ifdef VBOX_WITH_NESTED_HWVIRT_SVM Assert(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ); Assert(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm == NIL_RTHCPHYS); Assert(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm == NULL); # endif } #endif int rc; if ( g_fHmVmxSupported && g_fHmVmxUsingSUPR0EnableVTx) { /* * Global VT-x initialization API (only darwin for now). */ rc = SUPR0EnableVTx(true /* fEnable */); if (RT_SUCCESS(rc)) { g_fHmVmxCalledSUPR0EnableVTx = true; /* If the host provides a VT-x init API, then we'll rely on that for global init. */ g_fHmGlobalInit = pVM->hm.s.fGlobalInit = true; } else AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc)); } else { /* * We're doing the job ourselves. */ /* Allocate one page per cpu for the global VT-x and AMD-V pages */ for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++) { Assert(g_aHmCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM Assert(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ); #endif if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i))) { /** @todo NUMA */ rc = RTR0MemObjAllocCont(&g_aHmCpuInfo[i].hMemObj, HOST_PAGE_SIZE, false /* executable R0 mapping */); AssertLogRelRCReturn(rc, rc); g_aHmCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_aHmCpuInfo[i].hMemObj, 0); Assert(g_aHmCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS); Assert(!(g_aHmCpuInfo[i].HCPhysMemObj & HOST_PAGE_OFFSET_MASK)); g_aHmCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_aHmCpuInfo[i].hMemObj); AssertPtr(g_aHmCpuInfo[i].pvMemObj); RT_BZERO(g_aHmCpuInfo[i].pvMemObj, HOST_PAGE_SIZE); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM rc = RTR0MemObjAllocCont(&g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, false /* executable R0 mapping */); AssertLogRelRCReturn(rc, rc); g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = RTR0MemObjGetPagePhysAddr(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, 0); Assert(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm != NIL_RTHCPHYS); Assert(!(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm & HOST_PAGE_OFFSET_MASK)); g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = RTR0MemObjAddress(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm); AssertPtr(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm); ASMMemFill32(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff)); #endif } } rc = VINF_SUCCESS; } if ( RT_SUCCESS(rc) && g_fHmGlobalInit) { /* First time, so initialize each cpu/core. */ HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc); if (RT_SUCCESS(rc)) rc = hmR0FirstRcGetStatus(&FirstRc); } return rc; } /** * Sets up HM on all cpus. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVMCC pVM) { /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */ if (ASMAtomicReadBool(&g_fHmSuspended)) return VERR_HM_SUSPEND_PENDING; return RTOnce(&g_HmEnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM); } /** * Disable VT-x or AMD-V on the current CPU. * * @returns VBox status code. * @param idCpu The identifier for the CPU this function is called on. * * @remarks Must be called with preemption disabled. */ static int hmR0DisableCpu(RTCPUID idCpu) { PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu]; Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */ Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo)); Assert(!pHostCpu->fConfigured || pHostCpu->hMemObj != NIL_RTR0MEMOBJ); AssertRelease(idCpu == RTMpCpuId()); if (pHostCpu->hMemObj == NIL_RTR0MEMOBJ) return pHostCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */; AssertPtr(pHostCpu->pvMemObj); Assert(pHostCpu->HCPhysMemObj != NIL_RTHCPHYS); int rc; if (pHostCpu->fConfigured) { rc = g_HmR0Ops.pfnDisableCpu(pHostCpu, pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj); AssertRCReturn(rc, rc); pHostCpu->fConfigured = false; pHostCpu->idCpu = NIL_RTCPUID; } else rc = VINF_SUCCESS; /* nothing to do */ return rc; } /** * Worker function passed to RTMpOnAll() that is to be called on the target * CPUs. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 The 1st user argument. * @param pvUser2 Opaque pointer to the FirstRc. */ static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1); AssertReturnVoid(g_fHmGlobalInit); hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu)); } /** * Worker function passed to RTMpOnSpecific() that is to be called on the target * CPU. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 Null, not used. * @param pvUser2 Null, not used. */ static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { NOREF(pvUser1); NOREF(pvUser2); hmR0DisableCpu(idCpu); } /** * Callback function invoked when a cpu goes online or offline. * * @param enmEvent The Mp event. * @param idCpu The identifier for the CPU the function is called on. * @param pvData Opaque data (PVMCC pointer). */ static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData) { NOREF(pvData); Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx); /* * We only care about uninitializing a CPU that is going offline. When a * CPU comes online, the initialization is done lazily in HMR0Enter(). */ switch (enmEvent) { case RTMPEVENT_OFFLINE: { RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; RTThreadPreemptDisable(&PreemptState); if (idCpu == RTMpCpuId()) { int rc = hmR0DisableCpu(idCpu); AssertRC(rc); RTThreadPreemptRestore(&PreemptState); } else { RTThreadPreemptRestore(&PreemptState); RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */); } break; } default: break; } } /** * Called whenever a system power state change occurs. * * @param enmEvent The Power event. * @param pvUser User argument. */ static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser) { NOREF(pvUser); Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx); #ifdef LOG_ENABLED if (enmEvent == RTPOWEREVENT_SUSPEND) SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n"); else SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n"); #endif if (enmEvent == RTPOWEREVENT_SUSPEND) ASMAtomicWriteBool(&g_fHmSuspended, true); if (g_fHmEnabled) { int rc; HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); if (enmEvent == RTPOWEREVENT_SUSPEND) { if (g_fHmGlobalInit) { /* Turn off VT-x or AMD-V on all CPUs. */ rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc); Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED); } /* else nothing to do here for the local init case */ } else { /* Reinit the CPUs from scratch as the suspend state might have messed with the MSRs. (lousy BIOSes as usual) */ if (g_fHmVmxSupported) rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL); else rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL); Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED); if (RT_SUCCESS(rc)) rc = hmR0FirstRcGetStatus(&FirstRc); #ifdef LOG_ENABLED if (RT_FAILURE(rc)) SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc); #endif if (g_fHmGlobalInit) { /* Turn VT-x or AMD-V back on on all CPUs. */ rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */); Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED); } /* else nothing to do here for the local init case */ } } if (enmEvent == RTPOWEREVENT_RESUME) ASMAtomicWriteBool(&g_fHmSuspended, false); } /** * Does ring-0 per-VM HM initialization. * * This will call the CPU specific init. routine which may initialize and allocate * resources for virtual CPUs. * * @returns VBox status code. * @param pVM The cross context VM structure. * * @remarks This is called after HMR3Init(), see vmR3CreateU() and * vmR3InitRing3(). */ VMMR0_INT_DECL(int) HMR0InitVM(PVMCC pVM) { AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding)); AssertCompile(sizeof(pVM->hmr0.s) <= sizeof(pVM->hmr0.padding)); AssertCompile(sizeof(pVM->aCpus[0].hm.s) <= sizeof(pVM->aCpus[0].hm.padding)); AssertCompile(sizeof(pVM->aCpus[0].hmr0.s) <= sizeof(pVM->aCpus[0].hmr0.padding)); AssertReturn(pVM, VERR_INVALID_PARAMETER); /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */ if (ASMAtomicReadBool(&g_fHmSuspended)) return VERR_HM_SUSPEND_PENDING; /* * Copy globals to the VM structure. */ Assert(!(pVM->hm.s.vmx.fSupported && pVM->hm.s.svm.fSupported)); if (pVM->hm.s.vmx.fSupported) { pVM->hmr0.s.vmx.fUsePreemptTimer = pVM->hm.s.vmx.fUsePreemptTimerCfg && g_fHmVmxUsePreemptTimer; pVM->hm.s.vmx.fUsePreemptTimerCfg = pVM->hmr0.s.vmx.fUsePreemptTimer; pVM->hm.s.vmx.cPreemptTimerShift = g_cHmVmxPreemptTimerShift; pVM->hm.s.ForR3.vmx.u64HostCr4 = g_uHmVmxHostCr4; pVM->hm.s.ForR3.vmx.u64HostMsrEfer = g_uHmVmxHostMsrEfer; pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl = g_uHmVmxHostSmmMonitorCtl; pVM->hm.s.ForR3.vmx.u64HostFeatCtrl = g_HmMsrs.u.vmx.u64FeatCtrl; HMGetVmxMsrsFromHwvirtMsrs(&g_HmMsrs, &pVM->hm.s.ForR3.vmx.Msrs); /* If you need to tweak host MSRs for testing VMX R0 code, do it here. */ /* Enable VPID if supported and configured. */ if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VPID) pVM->hm.s.ForR3.vmx.fVpid = pVM->hmr0.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid; /* Can be overridden by CFGM in HMR3Init(). */ /* Use VMCS shadowing if supported. */ pVM->hmr0.s.vmx.fUseVmcsShadowing = pVM->cpum.ro.GuestFeatures.fVmx && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VMCS_SHADOWING); pVM->hm.s.ForR3.vmx.fUseVmcsShadowing = pVM->hmr0.s.vmx.fUseVmcsShadowing; /* Use the VMCS controls for swapping the EFER MSR if supported. */ pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer = g_fHmVmxSupportsVmcsEfer; #if 0 /* Enable APIC register virtualization and virtual-interrupt delivery if supported. */ if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT) && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY)) pVM->hm.s.fVirtApicRegs = true; /* Enable posted-interrupt processing if supported. */ /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI * here. */ if ( (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT) && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT)) pVM->hm.s.fPostedIntrs = true; #endif } else if (pVM->hm.s.svm.fSupported) { pVM->hm.s.ForR3.svm.u32Rev = g_uHmSvmRev; pVM->hm.s.ForR3.svm.fFeatures = g_fHmSvmFeatures; pVM->hm.s.ForR3.svm.u64MsrHwcr = g_HmMsrs.u.svm.u64MsrHwcr; /* If you need to tweak host MSRs for testing SVM R0 code, do it here. */ } pVM->hm.s.ForR3.rcInit = g_rcHmInit; pVM->hm.s.ForR3.uMaxAsid = g_uHmMaxAsid; /* * Set default maximum inner loops in ring-0 before returning to ring-3. * Can be overriden using CFGM. */ uint32_t cMaxResumeLoops = pVM->hm.s.cMaxResumeLoopsCfg; if (!cMaxResumeLoops) { cMaxResumeLoops = 1024; if (RTThreadPreemptIsPendingTrusty()) cMaxResumeLoops = 8192; } else if (cMaxResumeLoops > 16384) cMaxResumeLoops = 16384; else if (cMaxResumeLoops < 32) cMaxResumeLoops = 32; pVM->hm.s.cMaxResumeLoopsCfg = pVM->hmr0.s.cMaxResumeLoops = cMaxResumeLoops; /* * Initialize some per-VCPU fields. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu); pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID; pVCpu->hmr0.s.idLastCpu = NIL_RTCPUID; /* We'll aways increment this the first time (host uses ASID 0). */ AssertReturn(!pVCpu->hmr0.s.uCurrentAsid, VERR_HM_IPE_3); } /* * Configure defences against spectre and other CPU bugs. */ uint32_t fWorldSwitcher = 0; uint32_t cLastStdLeaf = ASMCpuId_EAX(0); if (cLastStdLeaf >= 0x00000007 && RTX86IsValidStdRange(cLastStdLeaf)) { uint32_t uEdx = 0; ASMCpuIdExSlow(0x00000007, 0, 0, 0, NULL, NULL, NULL, &uEdx); if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB) { if (pVM->hm.s.fIbpbOnVmExit) fWorldSwitcher |= HM_WSF_IBPB_EXIT; if (pVM->hm.s.fIbpbOnVmEntry) fWorldSwitcher |= HM_WSF_IBPB_ENTRY; } if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD) { if (pVM->hm.s.fL1dFlushOnVmEntry) fWorldSwitcher |= HM_WSF_L1D_ENTRY; else if (pVM->hm.s.fL1dFlushOnSched) fWorldSwitcher |= HM_WSF_L1D_SCHED; } if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR) { if (pVM->hm.s.fMdsClearOnVmEntry) fWorldSwitcher |= HM_WSF_MDS_ENTRY; else if (pVM->hm.s.fMdsClearOnSched) fWorldSwitcher |= HM_WSF_MDS_SCHED; } } for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu); pVCpu->hmr0.s.fWorldSwitcher = fWorldSwitcher; } pVM->hm.s.ForR3.fWorldSwitcher = fWorldSwitcher; /* * Call the hardware specific initialization method. */ return g_HmR0Ops.pfnInitVM(pVM); } /** * Does ring-0 per VM HM termination. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR0_INT_DECL(int) HMR0TermVM(PVMCC pVM) { Log(("HMR0TermVM: %p\n", pVM)); AssertReturn(pVM, VERR_INVALID_PARAMETER); /* * Call the hardware specific method. * * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe. */ return g_HmR0Ops.pfnTermVM(pVM); } /** * Sets up a VT-x or AMD-V session. * * This is mostly about setting up the hardware VM state. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR0_INT_DECL(int) HMR0SetupVM(PVMCC pVM) { Log(("HMR0SetupVM: %p\n", pVM)); AssertReturn(pVM, VERR_INVALID_PARAMETER); /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */ AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING); /* On first entry we'll sync everything. */ VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST); /* * Call the hardware specific setup VM method. This requires the CPU to be * enabled for AMD-V/VT-x and preemption to be prevented. */ RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; RTThreadPreemptDisable(&PreemptState); RTCPUID const idCpu = RTMpCpuId(); /* Enable VT-x or AMD-V if local init is required. */ int rc; if (!g_fHmGlobalInit) { Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx); rc = hmR0EnableCpu(pVM, idCpu); if (RT_FAILURE(rc)) { RTThreadPreemptRestore(&PreemptState); return rc; } } /* Setup VT-x or AMD-V. */ rc = g_HmR0Ops.pfnSetupVM(pVM); /* Disable VT-x or AMD-V if local init was done before. */ if (!g_fHmGlobalInit) { Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx); int rc2 = hmR0DisableCpu(idCpu); AssertRC(rc2); } RTThreadPreemptRestore(&PreemptState); return rc; } /** * Notification callback before an assertion longjump and guru mediation. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pvUser User argument, currently unused, NULL. */ static DECLCALLBACK(int) hmR0AssertionCallback(PVMCPUCC pVCpu, void *pvUser) { RT_NOREF(pvUser); Assert(pVCpu); Assert(g_HmR0Ops.pfnAssertionCallback); return g_HmR0Ops.pfnAssertionCallback(pVCpu); } /** * Turns on HM on the CPU if necessary and initializes the bare minimum state * required for entering HM context. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * * @remarks No-long-jump zone!!! */ VMMR0_INT_DECL(int) hmR0EnterCpu(PVMCPUCC pVCpu) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); int rc = VINF_SUCCESS; RTCPUID const idCpu = RTMpCpuId(); PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu]; AssertPtr(pHostCpu); /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */ if (!pHostCpu->fConfigured) rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu); /* Register a callback to fire prior to performing a longjmp to ring-3 so HM can disable VT-x/AMD-V if needed. */ VMMR0AssertionSetNotification(pVCpu, hmR0AssertionCallback, NULL /*pvUser*/); /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */ if (g_fHmVmxSupported) pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE; else pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE; Assert(pHostCpu->idCpu == idCpu && pHostCpu->idCpu != NIL_RTCPUID); pVCpu->hmr0.s.idEnteredCpu = idCpu; return rc; } /** * Enters the VT-x or AMD-V session. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * * @remarks This is called with preemption disabled. */ VMMR0_INT_DECL(int) HMR0Enter(PVMCPUCC pVCpu) { /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */ AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); /* Load the bare minimum state required for entering HM. */ int rc = hmR0EnterCpu(pVCpu); if (RT_SUCCESS(rc)) { if (g_fHmVmxSupported) Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)); else Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)) == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)); /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */ rc = g_HmR0Ops.pfnEnterSession(pVCpu); AssertMsgRCReturnStmt(rc, ("rc=%Rrc pVCpu=%p\n", rc, pVCpu), pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID, rc); /* Exports the host-state as we may be resuming code after a longjmp and quite possibly now be scheduled on a different CPU. */ rc = g_HmR0Ops.pfnExportHostState(pVCpu); AssertMsgRCReturnStmt(rc, ("rc=%Rrc pVCpu=%p\n", rc, pVCpu), pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID, rc); } return rc; } /** * Deinitializes the bare minimum state used for HM context and if necessary * disable HM on the CPU. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * * @remarks No-long-jump zone!!! */ VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPUCC pVCpu) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU); RTCPUID const idCpu = RTMpCpuId(); PCHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu]; if ( !g_fHmGlobalInit && pHostCpu->fConfigured) { int rc = hmR0DisableCpu(idCpu); AssertRCReturn(rc, rc); Assert(!pHostCpu->fConfigured); Assert(pHostCpu->idCpu == NIL_RTCPUID); /* For obtaining a non-zero ASID/VPID on next re-entry. */ pVCpu->hmr0.s.idLastCpu = NIL_RTCPUID; } /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */ pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID; /* De-register the longjmp-to-ring 3 callback now that we have reliquished hardware resources. */ VMMR0AssertionRemoveNotification(pVCpu); return VINF_SUCCESS; } /** * Thread-context hook for HM. * * This is used together with RTThreadCtxHookCreate() on platforms which * supports it, and directly from VMMR0EmtPrepareForBlocking() and * VMMR0EmtResumeAfterBlocking() on platforms which don't. * * @param enmEvent The thread-context event. * @param pvUser Opaque pointer to the VMCPU. */ VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser) { PVMCPUCC pVCpu = (PVMCPUCC)pvUser; Assert(pVCpu); Assert(g_HmR0Ops.pfnThreadCtxCallback); g_HmR0Ops.pfnThreadCtxCallback(enmEvent, pVCpu, g_fHmGlobalInit); } /** * Runs guest code in a hardware accelerated VM. * * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's * called from setjmp assembly.) * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * * @remarks Can be called with preemption enabled if thread-context hooks are * used!!! */ VMMR0_INT_DECL(int) HMR0RunGuestCode(PVMCC pVM, PVMCPUCC pVCpu) { RT_NOREF(pVM); #ifdef VBOX_STRICT /* With thread-context hooks we would be running this code with preemption enabled. */ if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD)) { PCHMPHYSCPU pHostCpu = &g_aHmCpuInfo[RTMpCpuId()]; Assert(!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)); Assert(pHostCpu->fConfigured); AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING); } #endif VBOXSTRICTRC rcStrict = g_HmR0Ops.pfnRunGuestCode(pVCpu); return VBOXSTRICTRC_VAL(rcStrict); } /** * Notification from CPUM that it has unloaded the guest FPU/SSE/AVX state from * the host CPU and that guest access to it must be intercepted. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMR0_INT_DECL(void) HMR0NotifyCpumUnloadedGuestFpuState(PVMCPUCC pVCpu) { ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0); } /** * Notification from CPUM that it has modified the host CR0 (because of FPU). * * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMR0_INT_DECL(void) HMR0NotifyCpumModifiedHostCr0(PVMCPUCC pVCpu) { ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT); } /** * Returns suspend status of the host. * * @returns Suspend pending or not. */ VMMR0_INT_DECL(bool) HMR0SuspendPending(void) { return ASMAtomicReadBool(&g_fHmSuspended); } /** * Invalidates a guest page from the host TLB. * * @param pVCpu The cross context virtual CPU structure. * @param GCVirt Page to invalidate. */ VMMR0_INT_DECL(int) HMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); if (pVM->hm.s.vmx.fSupported) return VMXR0InvalidatePage(pVCpu, GCVirt); return SVMR0InvalidatePage(pVCpu, GCVirt); } /** * Returns the cpu structure for the current cpu. * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!). * * @returns The cpu structure pointer. */ VMMR0_INT_DECL(PHMPHYSCPU) hmR0GetCurrentCpu(void) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); RTCPUID const idCpu = RTMpCpuId(); Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo)); return &g_aHmCpuInfo[idCpu]; } /** * Interface for importing state on demand (used by IEM). * * @returns VBox status code. * @param pVCpu The cross context CPU structure. * @param fWhat What to import, CPUMCTX_EXTRN_XXX. */ VMMR0_INT_DECL(int) HMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat) { if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported) return VMXR0ImportStateOnDemand(pVCpu, fWhat); return SVMR0ImportStateOnDemand(pVCpu, fWhat); } #ifdef VBOX_STRICT /** * Dumps a descriptor. * * @param pDesc Descriptor to dump. * @param Sel The selector. * @param pszSel The name of the selector. */ VMMR0_INT_DECL(void) hmR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszSel) { /* * Make variable description string. */ static struct { unsigned cch; const char *psz; } const s_aTypes[32] = { # define STRENTRY(str) { sizeof(str) - 1, str } /* system */ # if HC_ARCH_BITS == 64 STRENTRY("Reserved0 "), /* 0x00 */ STRENTRY("Reserved1 "), /* 0x01 */ STRENTRY("LDT "), /* 0x02 */ STRENTRY("Reserved3 "), /* 0x03 */ STRENTRY("Reserved4 "), /* 0x04 */ STRENTRY("Reserved5 "), /* 0x05 */ STRENTRY("Reserved6 "), /* 0x06 */ STRENTRY("Reserved7 "), /* 0x07 */ STRENTRY("Reserved8 "), /* 0x08 */ STRENTRY("TSS64Avail "), /* 0x09 */ STRENTRY("ReservedA "), /* 0x0a */ STRENTRY("TSS64Busy "), /* 0x0b */ STRENTRY("Call64 "), /* 0x0c */ STRENTRY("ReservedD "), /* 0x0d */ STRENTRY("Int64 "), /* 0x0e */ STRENTRY("Trap64 "), /* 0x0f */ # else STRENTRY("Reserved0 "), /* 0x00 */ STRENTRY("TSS16Avail "), /* 0x01 */ STRENTRY("LDT "), /* 0x02 */ STRENTRY("TSS16Busy "), /* 0x03 */ STRENTRY("Call16 "), /* 0x04 */ STRENTRY("Task "), /* 0x05 */ STRENTRY("Int16 "), /* 0x06 */ STRENTRY("Trap16 "), /* 0x07 */ STRENTRY("Reserved8 "), /* 0x08 */ STRENTRY("TSS32Avail "), /* 0x09 */ STRENTRY("ReservedA "), /* 0x0a */ STRENTRY("TSS32Busy "), /* 0x0b */ STRENTRY("Call32 "), /* 0x0c */ STRENTRY("ReservedD "), /* 0x0d */ STRENTRY("Int32 "), /* 0x0e */ STRENTRY("Trap32 "), /* 0x0f */ # endif /* non system */ STRENTRY("DataRO "), /* 0x10 */ STRENTRY("DataRO Accessed "), /* 0x11 */ STRENTRY("DataRW "), /* 0x12 */ STRENTRY("DataRW Accessed "), /* 0x13 */ STRENTRY("DataDownRO "), /* 0x14 */ STRENTRY("DataDownRO Accessed "), /* 0x15 */ STRENTRY("DataDownRW "), /* 0x16 */ STRENTRY("DataDownRW Accessed "), /* 0x17 */ STRENTRY("CodeEO "), /* 0x18 */ STRENTRY("CodeEO Accessed "), /* 0x19 */ STRENTRY("CodeER "), /* 0x1a */ STRENTRY("CodeER Accessed "), /* 0x1b */ STRENTRY("CodeConfEO "), /* 0x1c */ STRENTRY("CodeConfEO Accessed "), /* 0x1d */ STRENTRY("CodeConfER "), /* 0x1e */ STRENTRY("CodeConfER Accessed ") /* 0x1f */ # undef SYSENTRY }; # define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0) char szMsg[128]; char *psz = &szMsg[0]; unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type; memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch); psz += s_aTypes[i].cch; if (pDesc->Gen.u1Present) ADD_STR(psz, "Present "); else ADD_STR(psz, "Not-Present "); # if HC_ARCH_BITS == 64 if (pDesc->Gen.u1Long) ADD_STR(psz, "64-bit "); else ADD_STR(psz, "Comp "); # else if (pDesc->Gen.u1Granularity) ADD_STR(psz, "Page "); if (pDesc->Gen.u1DefBig) ADD_STR(psz, "32-bit "); else ADD_STR(psz, "16-bit "); # endif # undef ADD_STR *psz = '\0'; /* * Limit and Base and format the output. */ #ifdef LOG_ENABLED uint32_t u32Limit = X86DESC_LIMIT_G(pDesc); # if HC_ARCH_BITS == 64 uint64_t const u64Base = X86DESC64_BASE(pDesc); Log((" %s { %#04x - %#RX64 %#RX64 - base=%#RX64 limit=%#08x dpl=%d } %s\n", pszSel, Sel, pDesc->au64[0], pDesc->au64[1], u64Base, u32Limit, pDesc->Gen.u2Dpl, szMsg)); # else uint32_t const u32Base = X86DESC_BASE(pDesc); Log((" %s { %#04x - %#08x %#08x - base=%#08x limit=%#08x dpl=%d } %s\n", pszSel, Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg)); # endif #else NOREF(Sel); NOREF(pszSel); #endif } /** * Formats a full register dump. * * @param pVCpu The cross context virtual CPU structure. * @param fFlags The dumping flags (HM_DUMP_REG_FLAGS_XXX). */ VMMR0_INT_DECL(void) hmR0DumpRegs(PVMCPUCC pVCpu, uint32_t fFlags) { /* * Format the flags. */ static struct { const char *pszSet; const char *pszClear; uint32_t fFlag; } const s_aFlags[] = { { "vip", NULL, X86_EFL_VIP }, { "vif", NULL, X86_EFL_VIF }, { "ac", NULL, X86_EFL_AC }, { "vm", NULL, X86_EFL_VM }, { "rf", NULL, X86_EFL_RF }, { "nt", NULL, X86_EFL_NT }, { "ov", "nv", X86_EFL_OF }, { "dn", "up", X86_EFL_DF }, { "ei", "di", X86_EFL_IF }, { "tf", NULL, X86_EFL_TF }, { "nt", "pl", X86_EFL_SF }, { "nz", "zr", X86_EFL_ZF }, { "ac", "na", X86_EFL_AF }, { "po", "pe", X86_EFL_PF }, { "cy", "nc", X86_EFL_CF }, }; char szEFlags[80]; char *psz = szEFlags; PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; uint32_t uEFlags = pCtx->eflags.u32; for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++) { const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear; if (pszAdd) { strcpy(psz, pszAdd); psz += strlen(pszAdd); *psz++ = ' '; } } psz[-1] = '\0'; if (fFlags & HM_DUMP_REG_FLAGS_GPRS) { /* * Format the registers. */ if (CPUMIsGuestIn64BitCode(pVCpu)) { Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n" "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n" "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n" "r14=%016RX64 r15=%016RX64\n" "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n" "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n" "es={%04x base=%016RX64 limit=%08x flags=%08x}\n" "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n" "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n" "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n" "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n" "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n" "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n" "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n" "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n" , pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi, pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13, pCtx->r14, pCtx->r15, pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4, pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3], pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7], pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp)); } else Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n" "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n" "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n" "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n" "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n" "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n" "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n" "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n" "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n" "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n" "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n" "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n" , pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi, pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1], pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3], pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5], pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7], pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp)); } if (fFlags & HM_DUMP_REG_FLAGS_FPU) { PCX86FXSTATE pFpuCtx = &pCtx->XState.x87; Log(("FPU:\n" "FCW=%04x FSW=%04x FTW=%02x\n" "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n" "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n" , pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW, pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1, pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK)); NOREF(pFpuCtx); } if (fFlags & HM_DUMP_REG_FLAGS_MSRS) { Log(("MSR:\n" "EFER =%016RX64\n" "PAT =%016RX64\n" "STAR =%016RX64\n" "CSTAR =%016RX64\n" "LSTAR =%016RX64\n" "SFMASK =%016RX64\n" "KERNELGSBASE =%016RX64\n", pCtx->msrEFER, pCtx->msrPAT, pCtx->msrSTAR, pCtx->msrCSTAR, pCtx->msrLSTAR, pCtx->msrSFMASK, pCtx->msrKERNELGSBASE)); } } #endif /* VBOX_STRICT */