VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 48201

Last change on this file since 48201 was 48153, checked in by vboxsync, 11 years ago

VMM/HM: More dead code path elimination.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 73.5 KB
Line 
1/* $Id: HMR0.cpp 48153 2013-08-29 12:57:00Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31#include <iprt/assert.h>
32#include <iprt/asm.h>
33#include <iprt/asm-amd64-x86.h>
34#include <iprt/cpuset.h>
35#include <iprt/mem.h>
36#include <iprt/memobj.h>
37#include <iprt/once.h>
38#include <iprt/param.h>
39#include <iprt/power.h>
40#include <iprt/string.h>
41#include <iprt/thread.h>
42#include <iprt/x86.h>
43#include "HMVMXR0.h"
44#include "HMSVMR0.h"
45
46
47/*******************************************************************************
48* Internal Functions *
49*******************************************************************************/
50static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
51static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
55static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
56
57
58/*******************************************************************************
59* Structures and Typedefs *
60*******************************************************************************/
61/**
62 * This is used to manage the status code of a RTMpOnAll in HM.
63 */
64typedef struct HMR0FIRSTRC
65{
66 /** The status code. */
67 int32_t volatile rc;
68 /** The ID of the CPU reporting the first failure. */
69 RTCPUID volatile idCpu;
70} HMR0FIRSTRC;
71/** Pointer to a first return code structure. */
72typedef HMR0FIRSTRC *PHMR0FIRSTRC;
73
74
75/*******************************************************************************
76* Global Variables *
77*******************************************************************************/
78/**
79 * Global data.
80 */
81static struct
82{
83 /** Per CPU globals. */
84 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
85
86 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
87 * @{ */
88 DECLR0CALLBACKMEMBER(int, pfnEnterSession,(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
89 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback,(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
90 DECLR0CALLBACKMEMBER(int, pfnSaveHostState,(PVM pVM, PVMCPU pVCpu));
91 DECLR0CALLBACKMEMBER(int, pfnRunGuestCode,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
92 DECLR0CALLBACKMEMBER(int, pfnEnableCpu,(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
93 bool fEnabledByHost));
94 DECLR0CALLBACKMEMBER(int, pfnDisableCpu,(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
95 DECLR0CALLBACKMEMBER(int, pfnInitVM,(PVM pVM));
96 DECLR0CALLBACKMEMBER(int, pfnTermVM,(PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnSetupVM,(PVM pVM));
98 /** @} */
99
100 /** Maximum ASID allowed. */
101 uint32_t uMaxAsid;
102
103 /** VT-x data. */
104 struct
105 {
106 /** Set to by us to indicate VMX is supported by the CPU. */
107 bool fSupported;
108 /** Whether we're using SUPR0EnableVTx or not. */
109 bool fUsingSUPR0EnableVTx;
110 /** Whether we're using the preemption timer or not. */
111 bool fUsePreemptTimer;
112 /** The shift mask employed by the VMX-Preemption timer. */
113 uint8_t cPreemptTimerShift;
114
115 /** Host CR4 value (set by ring-0 VMX init) */
116 uint64_t hostCR4;
117
118 /** Host EFER value (set by ring-0 VMX init) */
119 uint64_t hostEFER;
120
121 /** VMX MSR values */
122 struct
123 {
124 uint64_t feature_ctrl;
125 uint64_t vmx_basic_info;
126 VMX_CAPABILITY vmx_pin_ctls;
127 VMX_CAPABILITY vmx_proc_ctls;
128 VMX_CAPABILITY vmx_proc_ctls2;
129 VMX_CAPABILITY vmx_exit;
130 VMX_CAPABILITY vmx_entry;
131 uint64_t vmx_misc;
132 uint64_t vmx_cr0_fixed0;
133 uint64_t vmx_cr0_fixed1;
134 uint64_t vmx_cr4_fixed0;
135 uint64_t vmx_cr4_fixed1;
136 uint64_t vmx_vmcs_enum;
137 uint64_t vmx_vmfunc;
138 uint64_t vmx_ept_vpid_caps;
139 } msr;
140 /* Last instruction error */
141 uint32_t ulLastInstrError;
142 } vmx;
143
144 /** AMD-V information. */
145 struct
146 {
147 /* HWCR MSR (for diagnostics) */
148 uint64_t msrHwcr;
149
150 /** SVM revision. */
151 uint32_t u32Rev;
152
153 /** SVM feature bits from cpuid 0x8000000a */
154 uint32_t u32Features;
155
156 /** Set by us to indicate SVM is supported by the CPU. */
157 bool fSupported;
158 } svm;
159 /** Saved error from detection */
160 int32_t lLastError;
161
162 struct
163 {
164 uint32_t u32AMDFeatureECX;
165 uint32_t u32AMDFeatureEDX;
166 } cpuid;
167
168 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
169 * enabled and disabled each time it's used to execute guest code. */
170 bool fGlobalInit;
171 /** Indicates whether the host is suspending or not. We'll refuse a few
172 * actions when the host is being suspended to speed up the suspending and
173 * avoid trouble. */
174 volatile bool fSuspended;
175
176 /** Whether we've already initialized all CPUs.
177 * @remarks We could check the EnableAllCpusOnce state, but this is
178 * simpler and hopefully easier to understand. */
179 bool fEnabled;
180 /** Serialize initialization in HMR0EnableAllCpus. */
181 RTONCE EnableAllCpusOnce;
182} g_HvmR0;
183
184
185
186/**
187 * Initializes a first return code structure.
188 *
189 * @param pFirstRc The structure to init.
190 */
191static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
192{
193 pFirstRc->rc = VINF_SUCCESS;
194 pFirstRc->idCpu = NIL_RTCPUID;
195}
196
197
198/**
199 * Try set the status code (success ignored).
200 *
201 * @param pFirstRc The first return code structure.
202 * @param rc The status code.
203 */
204static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
205{
206 if ( RT_FAILURE(rc)
207 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
208 pFirstRc->idCpu = RTMpCpuId();
209}
210
211
212/**
213 * Get the status code of a first return code structure.
214 *
215 * @returns The status code; VINF_SUCCESS or error status, no informational or
216 * warning errors.
217 * @param pFirstRc The first return code structure.
218 */
219static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
220{
221 return pFirstRc->rc;
222}
223
224
225#ifdef VBOX_STRICT
226/**
227 * Get the CPU ID on which the failure status code was reported.
228 *
229 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
230 * @param pFirstRc The first return code structure.
231 */
232static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
233{
234 return pFirstRc->idCpu;
235}
236#endif /* VBOX_STRICT */
237
238
239/** @name Dummy callback handlers.
240 * @{ */
241
242static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
243{
244 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
245 return VINF_SUCCESS;
246}
247
248static DECLCALLBACK(int) hmR0DummyLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
249{
250 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
251 return VINF_SUCCESS;
252}
253
254static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
255{
256 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
257}
258
259static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
260 bool fEnabledBySystem)
261{
262 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem);
263 return VINF_SUCCESS;
264}
265
266static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
267{
268 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
269 return VINF_SUCCESS;
270}
271
272static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
273{
274 NOREF(pVM);
275 return VINF_SUCCESS;
276}
277
278static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
279{
280 NOREF(pVM);
281 return VINF_SUCCESS;
282}
283
284static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
285{
286 NOREF(pVM);
287 return VINF_SUCCESS;
288}
289
290static DECLCALLBACK(int) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
291{
292 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
293 return VINF_SUCCESS;
294}
295
296static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
297{
298 NOREF(pVM); NOREF(pVCpu);
299 return VINF_SUCCESS;
300}
301
302static DECLCALLBACK(int) hmR0DummyLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
303{
304 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
305 return VINF_SUCCESS;
306}
307
308/** @} */
309
310
311/**
312 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
313 * Down at the Rate Specified" erratum.
314 *
315 * Errata names and related steppings:
316 * - BA86 - D0.
317 * - AAX65 - C2.
318 * - AAU65 - C2, K0.
319 * - AAO95 - B1.
320 * - AAT59 - C2.
321 * - AAK139 - D0.
322 * - AAM126 - C0, C1, D0.
323 * - AAN92 - B1.
324 * - AAJ124 - C0, D0.
325 *
326 * - AAP86 - B1.
327 *
328 * Steppings: B1, C0, C1, C2, D0, K0.
329 *
330 * @returns true if subject to it, false if not.
331 */
332static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
333{
334 uint32_t u = ASMCpuId_EAX(1);
335 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
336 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
337 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
338 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
339 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
340 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
341 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
342 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
343 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
344 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
345 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
346 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
347 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
348 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
349 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
350 )
351 return true;
352 return false;
353}
354
355
356/**
357 * Intel specific initialization code.
358 *
359 * @returns VBox status code (will only fail if out of memory).
360 */
361static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
362{
363 /*
364 * Check that all the required VT-x features are present.
365 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
366 */
367 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
368 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
369 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
370 )
371 {
372 /** @todo move this into a separate function. */
373 g_HvmR0.vmx.msr.feature_ctrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
374
375 /*
376 * First try use native kernel API for controlling VT-x.
377 * (This is only supported by some Mac OS X kernels atm.)
378 */
379 int rc = g_HvmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
380 g_HvmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
381 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
382 {
383 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
384 if (RT_SUCCESS(rc))
385 {
386 g_HvmR0.vmx.fSupported = true;
387 rc = SUPR0EnableVTx(false /* fEnable */);
388 AssertLogRelRC(rc);
389 }
390 }
391 else
392 {
393 /* We need to check if VT-x has been properly initialized on all
394 CPUs. Some BIOSes do a lousy job. */
395 HMR0FIRSTRC FirstRc;
396 hmR0FirstRcInit(&FirstRc);
397 g_HvmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
398 if (RT_SUCCESS(g_HvmR0.lLastError))
399 g_HvmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
400 }
401 if (RT_SUCCESS(g_HvmR0.lLastError))
402 {
403 /* Reread in case we've changed it. */
404 g_HvmR0.vmx.msr.feature_ctrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
405
406 if ( (g_HvmR0.vmx.msr.feature_ctrl & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
407 == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
408 {
409 /*
410 * Read all relevant MSR.
411 */
412 g_HvmR0.vmx.msr.vmx_basic_info = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
413 g_HvmR0.vmx.msr.vmx_pin_ctls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
414 g_HvmR0.vmx.msr.vmx_proc_ctls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
415 g_HvmR0.vmx.msr.vmx_exit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
416 g_HvmR0.vmx.msr.vmx_entry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
417 g_HvmR0.vmx.msr.vmx_misc = ASMRdMsr(MSR_IA32_VMX_MISC);
418 g_HvmR0.vmx.msr.vmx_cr0_fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
419 g_HvmR0.vmx.msr.vmx_cr0_fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
420 g_HvmR0.vmx.msr.vmx_cr4_fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
421 g_HvmR0.vmx.msr.vmx_cr4_fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
422 g_HvmR0.vmx.msr.vmx_vmcs_enum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
423 g_HvmR0.vmx.hostCR4 = ASMGetCR4();
424 g_HvmR0.vmx.hostEFER = ASMRdMsr(MSR_K6_EFER);
425 /* VPID 16 bits ASID. */
426 g_HvmR0.uMaxAsid = 0x10000; /* exclusive */
427
428 if (g_HvmR0.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
429 {
430 g_HvmR0.vmx.msr.vmx_proc_ctls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
431 if ( g_HvmR0.vmx.msr.vmx_proc_ctls2.n.allowed1
432 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
433 {
434 g_HvmR0.vmx.msr.vmx_ept_vpid_caps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
435 }
436
437 if (g_HvmR0.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
438 g_HvmR0.vmx.msr.vmx_vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
439 }
440
441 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
442 {
443 /*
444 * Enter root mode
445 */
446 RTR0MEMOBJ hScatchMemObj;
447 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
448 if (RT_FAILURE(rc))
449 {
450 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,true) -> %Rrc\n", rc));
451 return rc;
452 }
453
454 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
455 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
456 ASMMemZeroPage(pvScatchPage);
457
458 /* Set revision dword at the beginning of the structure. */
459 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HvmR0.vmx.msr.vmx_basic_info);
460
461 /* Make sure we don't get rescheduled to another cpu during this probe. */
462 RTCCUINTREG fFlags = ASMIntDisableFlags();
463
464 /*
465 * Check CR4.VMXE
466 */
467 g_HvmR0.vmx.hostCR4 = ASMGetCR4();
468 if (!(g_HvmR0.vmx.hostCR4 & X86_CR4_VMXE))
469 {
470 /* In theory this bit could be cleared behind our back. Which would cause
471 #UD faults when we try to execute the VMX instructions... */
472 ASMSetCR4(g_HvmR0.vmx.hostCR4 | X86_CR4_VMXE);
473 }
474
475 /*
476 * The only way of checking if we're in VMX root mode or not is to try and enter it.
477 * There is no instruction or control bit that tells us if we're in VMX root mode.
478 * Therefore, try and enter VMX root mode here.
479 */
480 rc = VMXEnable(HCPhysScratchPage);
481 if (RT_SUCCESS(rc))
482 {
483 g_HvmR0.vmx.fSupported = true;
484 VMXDisable();
485 }
486 else
487 {
488 /*
489 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
490 * it will crash the host when we enter raw mode, because:
491 *
492 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
493 * this bit), and
494 * (b) turning off paging causes a #GP (unavoidable when switching
495 * from long to 32 bits mode or 32 bits to PAE).
496 *
497 * They should fix their code, but until they do we simply refuse to run.
498 */
499 g_HvmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
500 }
501
502 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
503 if it wasn't so before (some software could incorrectly
504 think it's in VMX mode). */
505 ASMSetCR4(g_HvmR0.vmx.hostCR4);
506 ASMSetFlags(fFlags);
507
508 RTR0MemObjFree(hScatchMemObj, false);
509 }
510 }
511 else
512 {
513 AssertFailed(); /* can't hit this case anymore */
514 g_HvmR0.lLastError = VERR_VMX_ILLEGAL_FEATURE_CONTROL_MSR;
515 }
516
517 if (g_HvmR0.vmx.fSupported)
518 {
519 /* Call the global VT-x initialization routine. */
520 rc = VMXR0GlobalInit();
521 if (RT_FAILURE(rc))
522 g_HvmR0.lLastError = rc;
523
524 /*
525 * Install the VT-x methods.
526 */
527 g_HvmR0.pfnEnterSession = VMXR0Enter;
528 g_HvmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
529 g_HvmR0.pfnSaveHostState = VMXR0SaveHostState;
530 g_HvmR0.pfnRunGuestCode = VMXR0RunGuestCode;
531 g_HvmR0.pfnEnableCpu = VMXR0EnableCpu;
532 g_HvmR0.pfnDisableCpu = VMXR0DisableCpu;
533 g_HvmR0.pfnInitVM = VMXR0InitVM;
534 g_HvmR0.pfnTermVM = VMXR0TermVM;
535 g_HvmR0.pfnSetupVM = VMXR0SetupVM;
536
537 /*
538 * Check for the VMX-Preemption Timer and adjust for the * "VMX-Preemption
539 * Timer Does Not Count Down at the Rate Specified" erratum.
540 */
541 if (g_HvmR0.vmx.msr.vmx_pin_ctls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
542 {
543 g_HvmR0.vmx.fUsePreemptTimer = true;
544 g_HvmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HvmR0.vmx.msr.vmx_misc);
545 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
546 g_HvmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
547 }
548 }
549 }
550#ifdef LOG_ENABLED
551 else
552 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HvmR0.lLastError);
553#endif
554 }
555 else
556 g_HvmR0.lLastError = VERR_VMX_NO_VMX;
557 return VINF_SUCCESS;
558}
559
560
561/**
562 * AMD-specific initialization code.
563 *
564 * @returns VBox status code.
565 */
566static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
567{
568 /*
569 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
570 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
571 */
572 int rc;
573 if ( (g_HvmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
574 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
575 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
576 && ASMIsValidExtRange(uMaxExtLeaf)
577 && uMaxExtLeaf >= 0x8000000a
578 )
579 {
580 /* Call the global AMD-V initialization routine. */
581 rc = SVMR0GlobalInit();
582 if (RT_FAILURE(rc))
583 {
584 g_HvmR0.lLastError = rc;
585 return rc;
586 }
587
588 /*
589 * Install the AMD-V methods.
590 */
591 g_HvmR0.pfnEnterSession = SVMR0Enter;
592 g_HvmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
593 g_HvmR0.pfnSaveHostState = SVMR0SaveHostState;
594 g_HvmR0.pfnRunGuestCode = SVMR0RunGuestCode;
595 g_HvmR0.pfnEnableCpu = SVMR0EnableCpu;
596 g_HvmR0.pfnDisableCpu = SVMR0DisableCpu;
597 g_HvmR0.pfnInitVM = SVMR0InitVM;
598 g_HvmR0.pfnTermVM = SVMR0TermVM;
599 g_HvmR0.pfnSetupVM = SVMR0SetupVM;
600
601 /* Query AMD features. */
602 uint32_t u32Dummy;
603 ASMCpuId(0x8000000a, &g_HvmR0.svm.u32Rev, &g_HvmR0.uMaxAsid, &u32Dummy, &g_HvmR0.svm.u32Features);
604
605 /*
606 * We need to check if AMD-V has been properly initialized on all CPUs.
607 * Some BIOSes might do a poor job.
608 */
609 HMR0FIRSTRC FirstRc;
610 hmR0FirstRcInit(&FirstRc);
611 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
612 AssertRC(rc);
613 if (RT_SUCCESS(rc))
614 rc = hmR0FirstRcGetStatus(&FirstRc);
615#ifndef DEBUG_bird
616 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
617 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
618#endif
619 if (RT_SUCCESS(rc))
620 {
621 /* Read the HWCR MSR for diagnostics. */
622 g_HvmR0.svm.msrHwcr = ASMRdMsr(MSR_K8_HWCR);
623 g_HvmR0.svm.fSupported = true;
624 }
625 else
626 g_HvmR0.lLastError = rc;
627 }
628 else
629 {
630 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
631 g_HvmR0.lLastError = VERR_SVM_NO_SVM;
632 }
633 return rc;
634}
635
636
637/**
638 * Does global Ring-0 HM initialization (at module init).
639 *
640 * @returns VBox status code.
641 */
642VMMR0_INT_DECL(int) HMR0Init(void)
643{
644 /*
645 * Initialize the globals.
646 */
647 g_HvmR0.fEnabled = false;
648 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
649 g_HvmR0.EnableAllCpusOnce = s_OnceInit;
650 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
651 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
652
653 /* Fill in all callbacks with placeholders. */
654 g_HvmR0.pfnEnterSession = hmR0DummyEnter;
655 g_HvmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
656 g_HvmR0.pfnSaveHostState = hmR0DummySaveHostState;
657 g_HvmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
658 g_HvmR0.pfnEnableCpu = hmR0DummyEnableCpu;
659 g_HvmR0.pfnDisableCpu = hmR0DummyDisableCpu;
660 g_HvmR0.pfnInitVM = hmR0DummyInitVM;
661 g_HvmR0.pfnTermVM = hmR0DummyTermVM;
662 g_HvmR0.pfnSetupVM = hmR0DummySetupVM;
663
664 /* Default is global VT-x/AMD-V init. */
665 g_HvmR0.fGlobalInit = true;
666
667 /*
668 * Make sure aCpuInfo is big enough for all the CPUs on this system.
669 */
670 if (RTMpGetArraySize() > RT_ELEMENTS(g_HvmR0.aCpuInfo))
671 {
672 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HvmR0.aCpuInfo)));
673 return VERR_TOO_MANY_CPUS;
674 }
675
676 /*
677 * Check for VT-x and AMD-V capabilities.
678 */
679 int rc;
680 if (ASMHasCpuId())
681 {
682 /* Standard features. */
683 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
684 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
685 if (ASMIsValidStdRange(uMaxLeaf))
686 {
687 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
688 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
689
690 /* Query AMD features. */
691 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
692 if (ASMIsValidExtRange(uMaxExtLeaf))
693 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
694 &g_HvmR0.cpuid.u32AMDFeatureECX,
695 &g_HvmR0.cpuid.u32AMDFeatureEDX);
696 else
697 g_HvmR0.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureEDX = 0;
698
699 /* Go to CPU specific initialization code. */
700 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
701 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
702 {
703 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
704 if (RT_FAILURE(rc))
705 return rc;
706 }
707 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
708 {
709 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
710 if (RT_FAILURE(rc))
711 return rc;
712 }
713 else
714 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
715 }
716 else
717 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
718 }
719 else
720 g_HvmR0.lLastError = VERR_HM_NO_CPUID;
721
722 /*
723 * Register notification callbacks that we can use to disable/enable CPUs
724 * when brought offline/online or suspending/resuming.
725 */
726 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
727 {
728 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
729 AssertRC(rc);
730
731 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
732 AssertRC(rc);
733 }
734
735 /* We return success here because module init shall not fail if HM
736 fails to initialize. */
737 return VINF_SUCCESS;
738}
739
740
741/**
742 * Does global Ring-0 HM termination (at module termination).
743 *
744 * @returns VBox status code.
745 */
746VMMR0_INT_DECL(int) HMR0Term(void)
747{
748 int rc;
749 if ( g_HvmR0.vmx.fSupported
750 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
751 {
752 /*
753 * Simple if the host OS manages VT-x.
754 */
755 Assert(g_HvmR0.fGlobalInit);
756 rc = SUPR0EnableVTx(false /* fEnable */);
757
758 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++)
759 {
760 g_HvmR0.aCpuInfo[iCpu].fConfigured = false;
761 Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
762 }
763 }
764 else
765 {
766 Assert(!g_HvmR0.vmx.fUsingSUPR0EnableVTx);
767 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
768 {
769 /* Doesn't really matter if this fails. */
770 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
771 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
772 }
773 else
774 rc = VINF_SUCCESS;
775
776 /*
777 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
778 */
779 if (g_HvmR0.fGlobalInit)
780 {
781 HMR0FIRSTRC FirstRc;
782 hmR0FirstRcInit(&FirstRc);
783 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL, &FirstRc);
784 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
785 if (RT_SUCCESS(rc))
786 {
787 rc = hmR0FirstRcGetStatus(&FirstRc);
788 AssertMsgRC(rc, ("%u: %Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
789 }
790 }
791
792 /*
793 * Free the per-cpu pages used for VT-x and AMD-V.
794 */
795 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
796 {
797 if (g_HvmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
798 {
799 RTR0MemObjFree(g_HvmR0.aCpuInfo[i].hMemObj, false);
800 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
801 }
802 }
803 }
804
805 /** @todo This needs cleaning up. There's no matching
806 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
807 * should move into their respective modules. */
808 /* Finally, call global VT-x/AMD-V termination. */
809 if (g_HvmR0.vmx.fSupported)
810 VMXR0GlobalTerm();
811 else if (g_HvmR0.svm.fSupported)
812 SVMR0GlobalTerm();
813
814 return rc;
815}
816
817
818/**
819 * Worker function used by hmR0PowerCallback and HMR0Init to initalize
820 * VT-x on a CPU.
821 *
822 * @param idCpu The identifier for the CPU the function is called on.
823 * @param pvUser1 Pointer to the first RC structure.
824 * @param pvUser2 Ignored.
825 */
826static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
827{
828 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
829 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
830 NOREF(pvUser2);
831
832 /*
833 * Both the LOCK and VMXON bit must be set; otherwise VMXON will generate a #GP.
834 * Once the lock bit is set, this MSR can no longer be modified.
835 */
836 uint64_t fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
837 if ( !(fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
838 || ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
839 == MSR_IA32_FEATURE_CONTROL_VMXON ) /* Some BIOSes forget to set the locked bit. */
840 )
841 {
842 /* MSR is not yet locked; we can change it ourselves here. */
843 ASMWrMsr(MSR_IA32_FEATURE_CONTROL,
844 g_HvmR0.vmx.msr.feature_ctrl | MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK);
845 fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
846 }
847
848 int rc;
849 if ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
850 == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
851 rc = VINF_SUCCESS;
852 else
853 rc = VERR_VMX_MSR_LOCKED_OR_DISABLED;
854
855 hmR0FirstRcSetStatus(pFirstRc, rc);
856}
857
858
859/**
860 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
861 * on a CPU.
862 *
863 * @param idCpu The identifier for the CPU the function is called on.
864 * @param pvUser1 Pointer to the first RC structure.
865 * @param pvUser2 Ignored.
866 */
867static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
868{
869 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
870 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
871 NOREF(pvUser2);
872
873 /* Check if SVM is disabled. */
874 int rc;
875 uint64_t fVmCr = ASMRdMsr(MSR_K8_VM_CR);
876 if (!(fVmCr & MSR_K8_VM_CR_SVM_DISABLE))
877 {
878 /* Turn on SVM in the EFER MSR. */
879 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
880 if (fEfer & MSR_K6_EFER_SVME)
881 rc = VERR_SVM_IN_USE;
882 else
883 {
884 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
885
886 /* Paranoia. */
887 fEfer = ASMRdMsr(MSR_K6_EFER);
888 if (fEfer & MSR_K6_EFER_SVME)
889 {
890 /* Restore previous value. */
891 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
892 rc = VINF_SUCCESS;
893 }
894 else
895 rc = VERR_SVM_ILLEGAL_EFER_MSR;
896 }
897 }
898 else
899 rc = VERR_SVM_DISABLED;
900
901 hmR0FirstRcSetStatus(pFirstRc, rc);
902}
903
904
905/**
906 * Enable VT-x or AMD-V on the current CPU
907 *
908 * @returns VBox status code.
909 * @param pVM Pointer to the VM (can be 0).
910 * @param idCpu The identifier for the CPU the function is called on.
911 */
912static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
913{
914 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
915
916 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
917 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
918 Assert(!pCpu->fConfigured);
919
920 pCpu->idCpu = idCpu;
921 pCpu->uCurrentAsid = 0; /* we'll aways increment this the first time (host uses ASID 0) */
922 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
923
924 int rc;
925 if (g_HvmR0.vmx.fSupported && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
926 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, NULL, NIL_RTHCPHYS, true);
927 else
928 {
929 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
930 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
931 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
932 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false);
933 }
934 AssertRC(rc);
935 if (RT_SUCCESS(rc))
936 pCpu->fConfigured = true;
937
938 return rc;
939}
940
941
942/**
943 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
944 * is to be called on the target cpus.
945 *
946 * @param idCpu The identifier for the CPU the function is called on.
947 * @param pvUser1 The 1st user argument.
948 * @param pvUser2 The 2nd user argument.
949 */
950static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
951{
952 PVM pVM = (PVM)pvUser1; /* can be NULL! */
953 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
954 AssertReturnVoid(g_HvmR0.fGlobalInit);
955 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
956}
957
958
959/**
960 * RTOnce callback employed by HMR0EnableAllCpus.
961 *
962 * @returns VBox status code.
963 * @param pvUser Pointer to the VM.
964 * @param pvUserIgnore NULL, ignored.
965 */
966static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
967{
968 PVM pVM = (PVM)pvUser;
969
970 /*
971 * Indicate that we've initialized.
972 *
973 * Note! There is a potential race between this function and the suspend
974 * notification. Kind of unlikely though, so ignored for now.
975 */
976 AssertReturn(!g_HvmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
977 ASMAtomicWriteBool(&g_HvmR0.fEnabled, true);
978
979 /*
980 * The global init variable is set by the first VM.
981 */
982 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
983
984 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
985 {
986 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
987 g_HvmR0.aCpuInfo[i].fConfigured = false;
988 g_HvmR0.aCpuInfo[i].cTlbFlushes = 0;
989 g_HvmR0.aCpuInfo[i].uCurrentAsid = 0;
990 }
991
992 int rc;
993 if ( g_HvmR0.vmx.fSupported
994 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
995 {
996 /*
997 * Global VT-x initialization API (only darwin for now).
998 */
999 rc = SUPR0EnableVTx(true /* fEnable */);
1000 if (RT_SUCCESS(rc))
1001 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
1002 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
1003 else
1004 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
1005 }
1006 else
1007 {
1008 /*
1009 * We're doing the job ourselves.
1010 */
1011 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
1012 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
1013 {
1014 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
1015
1016 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
1017 {
1018 rc = RTR0MemObjAllocCont(&g_HvmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, true /* executable R0 mapping */);
1019 AssertLogRelRCReturn(rc, rc);
1020
1021 void *pvR0 = RTR0MemObjAddress(g_HvmR0.aCpuInfo[i].hMemObj); Assert(pvR0);
1022 ASMMemZeroPage(pvR0);
1023 }
1024 }
1025
1026 rc = VINF_SUCCESS;
1027 }
1028
1029 if ( RT_SUCCESS(rc)
1030 && g_HvmR0.fGlobalInit)
1031 {
1032 /* First time, so initialize each cpu/core. */
1033 HMR0FIRSTRC FirstRc;
1034 hmR0FirstRcInit(&FirstRc);
1035 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
1036 if (RT_SUCCESS(rc))
1037 rc = hmR0FirstRcGetStatus(&FirstRc);
1038 AssertMsgRC(rc, ("hmR0EnableAllCpuOnce failed for cpu %d with rc=%d\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
1039 }
1040
1041 return rc;
1042}
1043
1044
1045/**
1046 * Sets up HM on all cpus.
1047 *
1048 * @returns VBox status code.
1049 * @param pVM Pointer to the VM.
1050 */
1051VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
1052{
1053 /* Make sure we don't touch HM after we've disabled HM in
1054 preparation of a suspend. */
1055 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1056 return VERR_HM_SUSPEND_PENDING;
1057
1058 return RTOnce(&g_HvmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1059}
1060
1061
1062/**
1063 * Disable VT-x or AMD-V on the current CPU.
1064 *
1065 * @returns VBox status code.
1066 * @param idCpu The identifier for the CPU the function is called on.
1067 */
1068static int hmR0DisableCpu(RTCPUID idCpu)
1069{
1070 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1071
1072 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1073 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
1074 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1075 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1076
1077 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1078 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1079
1080 int rc;
1081 if (pCpu->fConfigured)
1082 {
1083 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1084 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1085 if (idCpu == RTMpCpuId())
1086 {
1087 rc = g_HvmR0.pfnDisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1088 AssertRC(rc);
1089 }
1090 else
1091 {
1092 pCpu->fIgnoreAMDVInUseError = true;
1093 rc = VINF_SUCCESS;
1094 }
1095
1096 pCpu->fConfigured = false;
1097 }
1098 else
1099 rc = VINF_SUCCESS; /* nothing to do */
1100
1101 pCpu->uCurrentAsid = 0;
1102 return rc;
1103}
1104
1105
1106/**
1107 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
1108 * is to be called on the target cpus.
1109 *
1110 * @param idCpu The identifier for the CPU the function is called on.
1111 * @param pvUser1 The 1st user argument.
1112 * @param pvUser2 The 2nd user argument.
1113 */
1114static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1115{
1116 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1117 AssertReturnVoid(g_HvmR0.fGlobalInit);
1118 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1119}
1120
1121
1122/**
1123 * Callback function invoked when a cpu goes online or offline.
1124 *
1125 * @param enmEvent The Mp event.
1126 * @param idCpu The identifier for the CPU the function is called on.
1127 * @param pvData Opaque data (PVM pointer).
1128 */
1129static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1130{
1131 NOREF(pvData);
1132
1133 /*
1134 * We only care about uninitializing a CPU that is going offline. When a
1135 * CPU comes online, the initialization is done lazily in HMR0Enter().
1136 */
1137 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1138 switch (enmEvent)
1139 {
1140 case RTMPEVENT_OFFLINE:
1141 {
1142 int rc = hmR0DisableCpu(idCpu);
1143 AssertRC(rc);
1144 break;
1145 }
1146
1147 default:
1148 break;
1149 }
1150}
1151
1152
1153/**
1154 * Called whenever a system power state change occurs.
1155 *
1156 * @param enmEvent The Power event.
1157 * @param pvUser User argument.
1158 */
1159static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1160{
1161 NOREF(pvUser);
1162 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1163
1164#ifdef LOG_ENABLED
1165 if (enmEvent == RTPOWEREVENT_SUSPEND)
1166 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1167 else
1168 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1169#endif
1170
1171 if (enmEvent == RTPOWEREVENT_SUSPEND)
1172 ASMAtomicWriteBool(&g_HvmR0.fSuspended, true);
1173
1174 if (g_HvmR0.fEnabled)
1175 {
1176 int rc;
1177 HMR0FIRSTRC FirstRc;
1178 hmR0FirstRcInit(&FirstRc);
1179
1180 if (enmEvent == RTPOWEREVENT_SUSPEND)
1181 {
1182 if (g_HvmR0.fGlobalInit)
1183 {
1184 /* Turn off VT-x or AMD-V on all CPUs. */
1185 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL, &FirstRc);
1186 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1187 }
1188 /* else nothing to do here for the local init case */
1189 }
1190 else
1191 {
1192 /* Reinit the CPUs from scratch as the suspend state might have
1193 messed with the MSRs. (lousy BIOSes as usual) */
1194 if (g_HvmR0.vmx.fSupported)
1195 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1196 else
1197 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1198 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1199 if (RT_SUCCESS(rc))
1200 rc = hmR0FirstRcGetStatus(&FirstRc);
1201#ifdef LOG_ENABLED
1202 if (RT_FAILURE(rc))
1203 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1204#endif
1205 if (g_HvmR0.fGlobalInit)
1206 {
1207 /* Turn VT-x or AMD-V back on on all CPUs. */
1208 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL, &FirstRc /* output ignored */);
1209 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1210 }
1211 /* else nothing to do here for the local init case */
1212 }
1213 }
1214
1215 if (enmEvent == RTPOWEREVENT_RESUME)
1216 ASMAtomicWriteBool(&g_HvmR0.fSuspended, false);
1217}
1218
1219
1220/**
1221 * Does Ring-0 per VM HM initialization.
1222 *
1223 * This will copy HM global into the VM structure and call the CPU specific
1224 * init routine which will allocate resources for each virtual CPU and such.
1225 *
1226 * @returns VBox status code.
1227 * @param pVM Pointer to the VM.
1228 */
1229VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1230{
1231 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1232
1233#ifdef LOG_ENABLED
1234 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1235#endif
1236
1237 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1238 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1239 return VERR_HM_SUSPEND_PENDING;
1240
1241 /*
1242 * Copy globals to the VM structure.
1243 */
1244 pVM->hm.s.vmx.fSupported = g_HvmR0.vmx.fSupported;
1245 pVM->hm.s.svm.fSupported = g_HvmR0.svm.fSupported;
1246
1247 pVM->hm.s.vmx.fUsePreemptTimer = g_HvmR0.vmx.fUsePreemptTimer;
1248 pVM->hm.s.vmx.cPreemptTimerShift = g_HvmR0.vmx.cPreemptTimerShift;
1249 pVM->hm.s.vmx.msr.feature_ctrl = g_HvmR0.vmx.msr.feature_ctrl;
1250 pVM->hm.s.vmx.hostCR4 = g_HvmR0.vmx.hostCR4;
1251 pVM->hm.s.vmx.hostEFER = g_HvmR0.vmx.hostEFER;
1252 pVM->hm.s.vmx.msr.vmx_basic_info = g_HvmR0.vmx.msr.vmx_basic_info;
1253 pVM->hm.s.vmx.msr.vmx_pin_ctls = g_HvmR0.vmx.msr.vmx_pin_ctls;
1254 pVM->hm.s.vmx.msr.vmx_proc_ctls = g_HvmR0.vmx.msr.vmx_proc_ctls;
1255 pVM->hm.s.vmx.msr.vmx_proc_ctls2 = g_HvmR0.vmx.msr.vmx_proc_ctls2;
1256 pVM->hm.s.vmx.msr.vmx_exit = g_HvmR0.vmx.msr.vmx_exit;
1257 pVM->hm.s.vmx.msr.vmx_entry = g_HvmR0.vmx.msr.vmx_entry;
1258 pVM->hm.s.vmx.msr.vmx_misc = g_HvmR0.vmx.msr.vmx_misc;
1259 pVM->hm.s.vmx.msr.vmx_cr0_fixed0 = g_HvmR0.vmx.msr.vmx_cr0_fixed0;
1260 pVM->hm.s.vmx.msr.vmx_cr0_fixed1 = g_HvmR0.vmx.msr.vmx_cr0_fixed1;
1261 pVM->hm.s.vmx.msr.vmx_cr4_fixed0 = g_HvmR0.vmx.msr.vmx_cr4_fixed0;
1262 pVM->hm.s.vmx.msr.vmx_cr4_fixed1 = g_HvmR0.vmx.msr.vmx_cr4_fixed1;
1263 pVM->hm.s.vmx.msr.vmx_vmcs_enum = g_HvmR0.vmx.msr.vmx_vmcs_enum;
1264 pVM->hm.s.vmx.msr.vmx_vmfunc = g_HvmR0.vmx.msr.vmx_vmfunc;
1265 pVM->hm.s.vmx.msr.vmx_ept_vpid_caps = g_HvmR0.vmx.msr.vmx_ept_vpid_caps;
1266 pVM->hm.s.svm.msrHwcr = g_HvmR0.svm.msrHwcr;
1267 pVM->hm.s.svm.u32Rev = g_HvmR0.svm.u32Rev;
1268 pVM->hm.s.svm.u32Features = g_HvmR0.svm.u32Features;
1269 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureECX;
1270 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HvmR0.cpuid.u32AMDFeatureEDX;
1271 pVM->hm.s.lLastError = g_HvmR0.lLastError;
1272
1273 pVM->hm.s.uMaxAsid = g_HvmR0.uMaxAsid;
1274
1275
1276 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1277 {
1278 pVM->hm.s.cMaxResumeLoops = 1024;
1279 if (RTThreadPreemptIsPendingTrusty())
1280 pVM->hm.s.cMaxResumeLoops = 8192;
1281 }
1282
1283 /*
1284 * Initialize some per CPU fields.
1285 */
1286 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1287 {
1288 PVMCPU pVCpu = &pVM->aCpus[i];
1289
1290 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1291
1292 /* Invalidate the last cpu we were running on. */
1293 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1294
1295 /* We'll aways increment this the first time (host uses ASID 0) */
1296 pVCpu->hm.s.uCurrentAsid = 0;
1297 }
1298
1299 /*
1300 * Call the hardware specific initialization method.
1301 */
1302 RTCCUINTREG fFlags = ASMIntDisableFlags();
1303 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1304 ASMSetFlags(fFlags);
1305
1306 int rc = g_HvmR0.pfnInitVM(pVM);
1307 return rc;
1308}
1309
1310
1311/**
1312 * Does Ring-0 per VM HM termination.
1313 *
1314 * @returns VBox status code.
1315 * @param pVM Pointer to the VM.
1316 */
1317VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1318{
1319 Log(("HMR0TermVM: %p\n", pVM));
1320 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1321
1322 /* Make sure we don't touch HM after we've disabled HM in preparation
1323 of a suspend. */
1324 /** @todo r=bird: This cannot be right, the termination functions are
1325 * just freeing memory and resetting pVM/pVCpu members...
1326 * ==> memory leak. */
1327 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1328
1329 /*
1330 * Call the hardware specific method.
1331 */
1332 RTCCUINTREG fFlags = ASMIntDisableFlags();
1333 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1334 ASMSetFlags(fFlags);
1335
1336 int rc = g_HvmR0.pfnTermVM(pVM);
1337 return rc;
1338}
1339
1340
1341/**
1342 * Sets up a VT-x or AMD-V session.
1343 *
1344 * This is mostly about setting up the hardware VM state.
1345 *
1346 * @returns VBox status code.
1347 * @param pVM Pointer to the VM.
1348 */
1349VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1350{
1351 Log(("HMR0SetupVM: %p\n", pVM));
1352 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1353
1354 /* Make sure we don't touch HM after we've disabled HM in
1355 preparation of a suspend. */
1356 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1357
1358 /*
1359 * Call the hardware specific setup VM method. This requires the CPU to be
1360 * enabled for AMD-V/VT-x and preemption to be prevented.
1361 */
1362 RTCCUINTREG fFlags = ASMIntDisableFlags();
1363 RTCPUID idCpu = RTMpCpuId();
1364 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1365
1366 /* On first entry we'll sync everything. */
1367 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1368 pVM->aCpus[i].hm.s.fContextUseFlags = (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1369
1370 /* Enable VT-x or AMD-V if local init is required. */
1371 int rc;
1372 if (!g_HvmR0.fGlobalInit)
1373 {
1374 rc = hmR0EnableCpu(pVM, idCpu);
1375 AssertReturnStmt(RT_SUCCESS_NP(rc), ASMSetFlags(fFlags), rc);
1376 }
1377
1378 /* Setup VT-x or AMD-V. */
1379 rc = g_HvmR0.pfnSetupVM(pVM);
1380
1381 /* Disable VT-x or AMD-V if local init was done before. */
1382 if (!g_HvmR0.fGlobalInit)
1383 {
1384 int rc2 = hmR0DisableCpu(idCpu);
1385 AssertRC(rc2);
1386 }
1387
1388 ASMSetFlags(fFlags);
1389 return rc;
1390}
1391
1392
1393/**
1394 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1395 * required for entering HM context.
1396 *
1397 * @returns VBox status code.
1398 * @param pvCpu Pointer to the VMCPU.
1399 *
1400 * @remarks No-long-jump zone!!!
1401 */
1402VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1403{
1404 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1405
1406 int rc = VINF_SUCCESS;
1407 RTCPUID idCpu = RTMpCpuId();
1408 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1409 AssertPtr(pCpu);
1410
1411 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1412 if (!pCpu->fConfigured)
1413 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1414
1415 /* Reload host-context (back from ring-3/migrated CPUs), reload host context & shared bits. */
1416 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE;
1417 pVCpu->hm.s.idEnteredCpu = idCpu;
1418 return rc;
1419}
1420
1421
1422/**
1423 * Enters the VT-x or AMD-V session.
1424 *
1425 * @returns VBox status code.
1426 * @param pVM Pointer to the VM.
1427 * @param pVCpu Pointer to the VMCPU.
1428 *
1429 * @remarks This is called with preemption disabled.
1430 */
1431VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1432{
1433 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1434 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1435 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1436
1437 /* Load the bare minimum state required for entering HM. */
1438 int rc = HMR0EnterCpu(pVCpu);
1439 AssertRCReturn(rc, rc);
1440
1441#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1442 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_5);
1443 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1444#endif
1445
1446 RTCPUID idCpu = RTMpCpuId();
1447 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1448 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1449 Assert(pCpu);
1450 Assert(pCtx);
1451 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1452
1453 rc = g_HvmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1454 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1455
1456 /* Load the host as we may be resuming code after a longjmp and quite
1457 possibly now be scheduled on a different CPU. */
1458 rc = g_HvmR0.pfnSaveHostState(pVM, pVCpu);
1459 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1460
1461#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1462 if (fStartedSet)
1463 PGMRZDynMapReleaseAutoSet(pVCpu);
1464#endif
1465
1466 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness
1467 and ring-3 calls. */
1468 if (RT_FAILURE(rc))
1469 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1470 return rc;
1471}
1472
1473
1474/**
1475 * Deinitializes the bare minimum state used for HM context and if necessary
1476 * disable HM on the CPU.
1477 *
1478 * @returns VBox status code.
1479 * @param pVCpu Pointer to the VMCPU.
1480 *
1481 * @remarks No-long-jump zone!!!
1482 */
1483VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1484{
1485 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1486
1487 RTCPUID idCpu = RTMpCpuId();
1488 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1489
1490 if ( !g_HvmR0.fGlobalInit
1491 && pCpu->fConfigured)
1492 {
1493 int rc = hmR0DisableCpu(idCpu);
1494 AssertRCReturn(rc, rc);
1495 Assert(!pCpu->fConfigured);
1496 }
1497
1498 /* Reset these to force a TLB flush for the next entry. */
1499 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1500 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1501 pVCpu->hm.s.uCurrentAsid = 0;
1502 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1503
1504 /* Clear the VCPU <-> host CPU mapping as we've left HM context. */
1505 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1506
1507 return VINF_SUCCESS;
1508}
1509
1510
1511/**
1512 * Thread-context hook for HM.
1513 *
1514 * @param enmEvent The thread-context event.
1515 * @param pvUser Opaque pointer to the VMCPU.
1516 */
1517VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1518{
1519 PVMCPU pVCpu = (PVMCPU)pvUser;
1520 Assert(pVCpu);
1521 Assert(g_HvmR0.pfnThreadCtxCallback);
1522
1523 g_HvmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HvmR0.fGlobalInit);
1524}
1525
1526
1527/**
1528 * Runs guest code in a hardware accelerated VM.
1529 *
1530 * @returns VBox status code.
1531 * @param pVM Pointer to the VM.
1532 * @param pVCpu Pointer to the VMCPU.
1533 *
1534 * @remarks Called with preemption disabled and after first having called
1535 * HMR0Enter.
1536 */
1537VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1538{
1539#ifdef VBOX_STRICT
1540 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[RTMpCpuId()];
1541 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1542 Assert(pCpu->fConfigured);
1543 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1544#endif
1545
1546#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1547 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_4);
1548 PGMRZDynMapStartAutoSet(pVCpu);
1549#endif
1550
1551 int rc = g_HvmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1552
1553#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1554 PGMRZDynMapReleaseAutoSet(pVCpu);
1555#endif
1556 return rc;
1557}
1558
1559#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1560
1561/**
1562 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1563 *
1564 * @returns VBox status code.
1565 * @param pVM Pointer to the VM.
1566 * @param pVCpu Pointer to the VMCPU.
1567 * @param pCtx Pointer to the guest CPU context.
1568 */
1569VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1570{
1571 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1572 if (pVM->hm.s.vmx.fSupported)
1573 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1574 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1575}
1576
1577
1578/**
1579 * Save guest debug state (64 bits guest mode & 32 bits host only)
1580 *
1581 * @returns VBox status code.
1582 * @param pVM Pointer to the VM.
1583 * @param pVCpu Pointer to the VMCPU.
1584 * @param pCtx Pointer to the guest CPU context.
1585 */
1586VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1587{
1588 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1589 if (pVM->hm.s.vmx.fSupported)
1590 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1591 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1592}
1593
1594
1595/**
1596 * Test the 32->64 bits switcher.
1597 *
1598 * @returns VBox status code.
1599 * @param pVM Pointer to the VM.
1600 */
1601VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1602{
1603 PVMCPU pVCpu = &pVM->aCpus[0];
1604 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1605 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1606 int rc;
1607
1608 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1609 if (pVM->hm.s.vmx.fSupported)
1610 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1611 else
1612 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1613 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1614
1615 return rc;
1616}
1617
1618#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
1619
1620/**
1621 * Returns suspend status of the host.
1622 *
1623 * @returns Suspend pending or not.
1624 */
1625VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1626{
1627 return ASMAtomicReadBool(&g_HvmR0.fSuspended);
1628}
1629
1630
1631/**
1632 * Returns the cpu structure for the current cpu.
1633 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1634 *
1635 * @returns The cpu structure pointer.
1636 */
1637VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpu(void)
1638{
1639 RTCPUID idCpu = RTMpCpuId();
1640 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1641 return &g_HvmR0.aCpuInfo[idCpu];
1642}
1643
1644
1645/**
1646 * Returns the cpu structure for the current cpu.
1647 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1648 *
1649 * @returns The cpu structure pointer.
1650 * @param idCpu id of the VCPU.
1651 */
1652VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpuEx(RTCPUID idCpu)
1653{
1654 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1655 return &g_HvmR0.aCpuInfo[idCpu];
1656}
1657
1658
1659/**
1660 * Save a pending IO read.
1661 *
1662 * @param pVCpu Pointer to the VMCPU.
1663 * @param GCPtrRip Address of IO instruction.
1664 * @param GCPtrRipNext Address of the next instruction.
1665 * @param uPort Port address.
1666 * @param uAndVal AND mask for saving the result in eax.
1667 * @param cbSize Read size.
1668 */
1669VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1670 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1671{
1672 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1673 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1674 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1675 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1676 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1677 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1678 return;
1679}
1680
1681
1682/**
1683 * Save a pending IO write.
1684 *
1685 * @param pVCpu Pointer to the VMCPU.
1686 * @param GCPtrRIP Address of IO instruction.
1687 * @param uPort Port address.
1688 * @param uAndVal AND mask for fetching the result from eax.
1689 * @param cbSize Read size.
1690 */
1691VMMR0_INT_DECL(void) HMR0SavePendingIOPortWrite(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1692 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1693{
1694 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_WRITE;
1695 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1696 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1697 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1698 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1699 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1700 return;
1701}
1702
1703
1704/**
1705 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1706 * switcher turns off paging.
1707 *
1708 * @returns VBox status code.
1709 * @param pVM Pointer to the VM.
1710 * @param enmSwitcher The switcher we're about to use.
1711 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1712 */
1713VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1714{
1715 Assert(!(ASMGetFlags() & X86_EFL_IF) || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1716
1717 *pfVTxDisabled = false;
1718
1719 /* No such issues with AMD-V */
1720 if (!g_HvmR0.vmx.fSupported)
1721 return VINF_SUCCESS;
1722
1723 /* Check if the swithcing we're up to is safe. */
1724 switch (enmSwitcher)
1725 {
1726 case VMMSWITCHER_32_TO_32:
1727 case VMMSWITCHER_PAE_TO_PAE:
1728 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1729
1730 case VMMSWITCHER_32_TO_PAE:
1731 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1732 case VMMSWITCHER_AMD64_TO_32:
1733 case VMMSWITCHER_AMD64_TO_PAE:
1734 break; /* unsafe switchers */
1735
1736 default:
1737 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1738 }
1739
1740 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1741 regardless of whether we're currently using VT-x or not. */
1742 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1743 {
1744 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1745 return VINF_SUCCESS;
1746 }
1747
1748 /** @todo Check if this code is presumtive wrt other VT-x users on the
1749 * system... */
1750
1751 /* Nothing to do if we haven't enabled VT-x. */
1752 if (!g_HvmR0.fEnabled)
1753 return VINF_SUCCESS;
1754
1755 /* Local init implies the CPU is currently not in VMX root mode. */
1756 if (!g_HvmR0.fGlobalInit)
1757 return VINF_SUCCESS;
1758
1759 /* Ok, disable VT-x. */
1760 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1761 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2);
1762
1763 *pfVTxDisabled = true;
1764 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1765 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1766 return VMXR0DisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1767}
1768
1769
1770/**
1771 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1772 * switcher turned off paging.
1773 *
1774 * @param pVM Pointer to the VM.
1775 * @param fVTxDisabled Whether VT-x was disabled or not.
1776 */
1777VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1778{
1779 Assert(!(ASMGetFlags() & X86_EFL_IF));
1780
1781 if (!fVTxDisabled)
1782 return; /* nothing to do */
1783
1784 Assert(g_HvmR0.vmx.fSupported);
1785 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1786 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1787 else
1788 {
1789 Assert(g_HvmR0.fEnabled);
1790 Assert(g_HvmR0.fGlobalInit);
1791
1792 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1793 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ);
1794
1795 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1796 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1797 VMXR0EnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false);
1798 }
1799}
1800
1801#ifdef VBOX_STRICT
1802
1803/**
1804 * Dumps a descriptor.
1805 *
1806 * @param pDesc Descriptor to dump.
1807 * @param Sel Selector number.
1808 * @param pszMsg Message to prepend the log entry with.
1809 */
1810VMMR0DECL(void) HMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1811{
1812 /*
1813 * Make variable description string.
1814 */
1815 static struct
1816 {
1817 unsigned cch;
1818 const char *psz;
1819 } const s_aTypes[32] =
1820 {
1821# define STRENTRY(str) { sizeof(str) - 1, str }
1822
1823 /* system */
1824# if HC_ARCH_BITS == 64
1825 STRENTRY("Reserved0 "), /* 0x00 */
1826 STRENTRY("Reserved1 "), /* 0x01 */
1827 STRENTRY("LDT "), /* 0x02 */
1828 STRENTRY("Reserved3 "), /* 0x03 */
1829 STRENTRY("Reserved4 "), /* 0x04 */
1830 STRENTRY("Reserved5 "), /* 0x05 */
1831 STRENTRY("Reserved6 "), /* 0x06 */
1832 STRENTRY("Reserved7 "), /* 0x07 */
1833 STRENTRY("Reserved8 "), /* 0x08 */
1834 STRENTRY("TSS64Avail "), /* 0x09 */
1835 STRENTRY("ReservedA "), /* 0x0a */
1836 STRENTRY("TSS64Busy "), /* 0x0b */
1837 STRENTRY("Call64 "), /* 0x0c */
1838 STRENTRY("ReservedD "), /* 0x0d */
1839 STRENTRY("Int64 "), /* 0x0e */
1840 STRENTRY("Trap64 "), /* 0x0f */
1841# else
1842 STRENTRY("Reserved0 "), /* 0x00 */
1843 STRENTRY("TSS16Avail "), /* 0x01 */
1844 STRENTRY("LDT "), /* 0x02 */
1845 STRENTRY("TSS16Busy "), /* 0x03 */
1846 STRENTRY("Call16 "), /* 0x04 */
1847 STRENTRY("Task "), /* 0x05 */
1848 STRENTRY("Int16 "), /* 0x06 */
1849 STRENTRY("Trap16 "), /* 0x07 */
1850 STRENTRY("Reserved8 "), /* 0x08 */
1851 STRENTRY("TSS32Avail "), /* 0x09 */
1852 STRENTRY("ReservedA "), /* 0x0a */
1853 STRENTRY("TSS32Busy "), /* 0x0b */
1854 STRENTRY("Call32 "), /* 0x0c */
1855 STRENTRY("ReservedD "), /* 0x0d */
1856 STRENTRY("Int32 "), /* 0x0e */
1857 STRENTRY("Trap32 "), /* 0x0f */
1858# endif
1859 /* non system */
1860 STRENTRY("DataRO "), /* 0x10 */
1861 STRENTRY("DataRO Accessed "), /* 0x11 */
1862 STRENTRY("DataRW "), /* 0x12 */
1863 STRENTRY("DataRW Accessed "), /* 0x13 */
1864 STRENTRY("DataDownRO "), /* 0x14 */
1865 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1866 STRENTRY("DataDownRW "), /* 0x16 */
1867 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1868 STRENTRY("CodeEO "), /* 0x18 */
1869 STRENTRY("CodeEO Accessed "), /* 0x19 */
1870 STRENTRY("CodeER "), /* 0x1a */
1871 STRENTRY("CodeER Accessed "), /* 0x1b */
1872 STRENTRY("CodeConfEO "), /* 0x1c */
1873 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1874 STRENTRY("CodeConfER "), /* 0x1e */
1875 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1876# undef SYSENTRY
1877 };
1878# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1879 char szMsg[128];
1880 char *psz = &szMsg[0];
1881 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1882 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1883 psz += s_aTypes[i].cch;
1884
1885 if (pDesc->Gen.u1Present)
1886 ADD_STR(psz, "Present ");
1887 else
1888 ADD_STR(psz, "Not-Present ");
1889# if HC_ARCH_BITS == 64
1890 if (pDesc->Gen.u1Long)
1891 ADD_STR(psz, "64-bit ");
1892 else
1893 ADD_STR(psz, "Comp ");
1894# else
1895 if (pDesc->Gen.u1Granularity)
1896 ADD_STR(psz, "Page ");
1897 if (pDesc->Gen.u1DefBig)
1898 ADD_STR(psz, "32-bit ");
1899 else
1900 ADD_STR(psz, "16-bit ");
1901# endif
1902# undef ADD_STR
1903 *psz = '\0';
1904
1905 /*
1906 * Limit and Base and format the output.
1907 */
1908 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1909
1910# if HC_ARCH_BITS == 64
1911 uint64_t u32Base = X86DESC64_BASE(pDesc);
1912
1913 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1914 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1915# else
1916 uint32_t u32Base = X86DESC_BASE(pDesc);
1917
1918 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1919 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1920# endif
1921}
1922
1923
1924/**
1925 * Formats a full register dump.
1926 *
1927 * @param pVM Pointer to the VM.
1928 * @param pVCpu Pointer to the VMCPU.
1929 * @param pCtx Pointer to the CPU context.
1930 */
1931VMMR0DECL(void) HMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1932{
1933 NOREF(pVM);
1934
1935 /*
1936 * Format the flags.
1937 */
1938 static struct
1939 {
1940 const char *pszSet; const char *pszClear; uint32_t fFlag;
1941 } const s_aFlags[] =
1942 {
1943 { "vip",NULL, X86_EFL_VIP },
1944 { "vif",NULL, X86_EFL_VIF },
1945 { "ac", NULL, X86_EFL_AC },
1946 { "vm", NULL, X86_EFL_VM },
1947 { "rf", NULL, X86_EFL_RF },
1948 { "nt", NULL, X86_EFL_NT },
1949 { "ov", "nv", X86_EFL_OF },
1950 { "dn", "up", X86_EFL_DF },
1951 { "ei", "di", X86_EFL_IF },
1952 { "tf", NULL, X86_EFL_TF },
1953 { "nt", "pl", X86_EFL_SF },
1954 { "nz", "zr", X86_EFL_ZF },
1955 { "ac", "na", X86_EFL_AF },
1956 { "po", "pe", X86_EFL_PF },
1957 { "cy", "nc", X86_EFL_CF },
1958 };
1959 char szEFlags[80];
1960 char *psz = szEFlags;
1961 uint32_t efl = pCtx->eflags.u32;
1962 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1963 {
1964 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1965 if (pszAdd)
1966 {
1967 strcpy(psz, pszAdd);
1968 psz += strlen(pszAdd);
1969 *psz++ = ' ';
1970 }
1971 }
1972 psz[-1] = '\0';
1973
1974
1975 /*
1976 * Format the registers.
1977 */
1978 if (CPUMIsGuestIn64BitCode(pVCpu))
1979 {
1980 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1981 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1982 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1983 "r14=%016RX64 r15=%016RX64\n"
1984 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1985 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1986 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1987 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1988 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1989 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1990 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1991 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1992 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1993 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1994 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1995 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1996 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1997 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1998 ,
1999 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
2000 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
2001 pCtx->r14, pCtx->r15,
2002 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
2003 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2004 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2005 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2006 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2007 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2008 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2009 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
2010 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
2011 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
2012 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
2013 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2014 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2015 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2016 }
2017 else
2018 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
2019 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
2020 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
2021 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
2022 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
2023 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
2024 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
2025 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
2026 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
2027 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2028 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2029 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2030 ,
2031 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
2032 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
2033 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
2034 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
2035 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
2036 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
2037 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
2038 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
2039 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
2040 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2041 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2042 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2043
2044 Log(("FPU:\n"
2045 "FCW=%04x FSW=%04x FTW=%02x\n"
2046 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
2047 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
2048 ,
2049 pCtx->fpu.FCW, pCtx->fpu.FSW, pCtx->fpu.FTW,
2050 pCtx->fpu.FOP, pCtx->fpu.FPUIP, pCtx->fpu.CS, pCtx->fpu.Rsrvd1,
2051 pCtx->fpu.FPUDP, pCtx->fpu.DS, pCtx->fpu.Rsrvd2,
2052 pCtx->fpu.MXCSR, pCtx->fpu.MXCSR_MASK));
2053
2054
2055 Log(("MSR:\n"
2056 "EFER =%016RX64\n"
2057 "PAT =%016RX64\n"
2058 "STAR =%016RX64\n"
2059 "CSTAR =%016RX64\n"
2060 "LSTAR =%016RX64\n"
2061 "SFMASK =%016RX64\n"
2062 "KERNELGSBASE =%016RX64\n",
2063 pCtx->msrEFER,
2064 pCtx->msrPAT,
2065 pCtx->msrSTAR,
2066 pCtx->msrCSTAR,
2067 pCtx->msrLSTAR,
2068 pCtx->msrSFMASK,
2069 pCtx->msrKERNELGSBASE));
2070
2071}
2072
2073#endif /* VBOX_STRICT */
2074
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette