VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 48215

Last change on this file since 48215 was 48213, checked in by vboxsync, 11 years ago

VMM: Naming fixes and log cosmetics.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 73.7 KB
Line 
1/* $Id: HMR0.cpp 48213 2013-08-30 23:17:51Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31#include <iprt/assert.h>
32#include <iprt/asm.h>
33#include <iprt/asm-amd64-x86.h>
34#include <iprt/cpuset.h>
35#include <iprt/mem.h>
36#include <iprt/memobj.h>
37#include <iprt/once.h>
38#include <iprt/param.h>
39#include <iprt/power.h>
40#include <iprt/string.h>
41#include <iprt/thread.h>
42#include <iprt/x86.h>
43#include "HMVMXR0.h"
44#include "HMSVMR0.h"
45
46
47/*******************************************************************************
48* Internal Functions *
49*******************************************************************************/
50static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
51static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
55static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
56
57
58/*******************************************************************************
59* Structures and Typedefs *
60*******************************************************************************/
61/**
62 * This is used to manage the status code of a RTMpOnAll in HM.
63 */
64typedef struct HMR0FIRSTRC
65{
66 /** The status code. */
67 int32_t volatile rc;
68 /** The ID of the CPU reporting the first failure. */
69 RTCPUID volatile idCpu;
70} HMR0FIRSTRC;
71/** Pointer to a first return code structure. */
72typedef HMR0FIRSTRC *PHMR0FIRSTRC;
73
74
75/*******************************************************************************
76* Global Variables *
77*******************************************************************************/
78/**
79 * Global data.
80 */
81static struct
82{
83 /** Per CPU globals. */
84 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
85
86 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
87 * @{ */
88 DECLR0CALLBACKMEMBER(int, pfnEnterSession,(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
89 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback,(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
90 DECLR0CALLBACKMEMBER(int, pfnSaveHostState,(PVM pVM, PVMCPU pVCpu));
91 DECLR0CALLBACKMEMBER(int, pfnRunGuestCode,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
92 DECLR0CALLBACKMEMBER(int, pfnEnableCpu,(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
93 bool fEnabledByHost));
94 DECLR0CALLBACKMEMBER(int, pfnDisableCpu,(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
95 DECLR0CALLBACKMEMBER(int, pfnInitVM,(PVM pVM));
96 DECLR0CALLBACKMEMBER(int, pfnTermVM,(PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnSetupVM,(PVM pVM));
98 /** @} */
99
100 /** Maximum ASID allowed. */
101 uint32_t uMaxAsid;
102
103 /** VT-x data. */
104 struct
105 {
106 /** Set to by us to indicate VMX is supported by the CPU. */
107 bool fSupported;
108 /** Whether we're using SUPR0EnableVTx or not. */
109 bool fUsingSUPR0EnableVTx;
110 /** Whether we're using the preemption timer or not. */
111 bool fUsePreemptTimer;
112 /** The shift mask employed by the VMX-Preemption timer. */
113 uint8_t cPreemptTimerShift;
114
115 /** Host CR4 value (set by ring-0 VMX init) */
116 /** @todo This isn't used for anything relevant. Remove later? */
117 uint64_t u64HostCr4;
118
119 /** Host EFER value (set by ring-0 VMX init) */
120 uint64_t u64HostEfer;
121
122 /** VMX MSR values */
123 struct
124 {
125 uint64_t u64FeatureCtrl;
126 uint64_t u64BasicInfo;
127 VMX_CAPABILITY VmxPinCtls;
128 VMX_CAPABILITY VmxProcCtls;
129 VMX_CAPABILITY VmxProcCtls2;
130 VMX_CAPABILITY VmxExit;
131 VMX_CAPABILITY VmxEntry;
132 uint64_t u64Misc;
133 uint64_t u64Cr0Fixed0;
134 uint64_t u64Cr0Fixed1;
135 uint64_t u64Cr4Fixed0;
136 uint64_t u64Cr4Fixed1;
137 uint64_t u64VmcsEnum;
138 uint64_t u64Vmfunc;
139 uint64_t u64EptVpidCaps;
140 } msr;
141 /* Last instruction error */
142 uint32_t ulLastInstrError;
143 } vmx;
144
145 /** AMD-V information. */
146 struct
147 {
148 /* HWCR MSR (for diagnostics) */
149 uint64_t u64MsrHwcr;
150
151 /** SVM revision. */
152 uint32_t u32Rev;
153
154 /** SVM feature bits from cpuid 0x8000000a */
155 uint32_t u32Features;
156
157 /** Set by us to indicate SVM is supported by the CPU. */
158 bool fSupported;
159 } svm;
160 /** Saved error from detection */
161 int32_t lLastError;
162
163 struct
164 {
165 uint32_t u32AMDFeatureECX;
166 uint32_t u32AMDFeatureEDX;
167 } cpuid;
168
169 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
170 * enabled and disabled each time it's used to execute guest code. */
171 bool fGlobalInit;
172 /** Indicates whether the host is suspending or not. We'll refuse a few
173 * actions when the host is being suspended to speed up the suspending and
174 * avoid trouble. */
175 volatile bool fSuspended;
176
177 /** Whether we've already initialized all CPUs.
178 * @remarks We could check the EnableAllCpusOnce state, but this is
179 * simpler and hopefully easier to understand. */
180 bool fEnabled;
181 /** Serialize initialization in HMR0EnableAllCpus. */
182 RTONCE EnableAllCpusOnce;
183} g_HvmR0;
184
185
186
187/**
188 * Initializes a first return code structure.
189 *
190 * @param pFirstRc The structure to init.
191 */
192static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
193{
194 pFirstRc->rc = VINF_SUCCESS;
195 pFirstRc->idCpu = NIL_RTCPUID;
196}
197
198
199/**
200 * Try set the status code (success ignored).
201 *
202 * @param pFirstRc The first return code structure.
203 * @param rc The status code.
204 */
205static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
206{
207 if ( RT_FAILURE(rc)
208 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
209 pFirstRc->idCpu = RTMpCpuId();
210}
211
212
213/**
214 * Get the status code of a first return code structure.
215 *
216 * @returns The status code; VINF_SUCCESS or error status, no informational or
217 * warning errors.
218 * @param pFirstRc The first return code structure.
219 */
220static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
221{
222 return pFirstRc->rc;
223}
224
225
226#ifdef VBOX_STRICT
227/**
228 * Get the CPU ID on which the failure status code was reported.
229 *
230 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
231 * @param pFirstRc The first return code structure.
232 */
233static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
234{
235 return pFirstRc->idCpu;
236}
237#endif /* VBOX_STRICT */
238
239
240/** @name Dummy callback handlers.
241 * @{ */
242
243static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
244{
245 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
246 return VINF_SUCCESS;
247}
248
249static DECLCALLBACK(int) hmR0DummyLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
250{
251 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
252 return VINF_SUCCESS;
253}
254
255static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
256{
257 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
258}
259
260static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
261 bool fEnabledBySystem)
262{
263 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem);
264 return VINF_SUCCESS;
265}
266
267static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
268{
269 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
270 return VINF_SUCCESS;
271}
272
273static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
274{
275 NOREF(pVM);
276 return VINF_SUCCESS;
277}
278
279static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
280{
281 NOREF(pVM);
282 return VINF_SUCCESS;
283}
284
285static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
286{
287 NOREF(pVM);
288 return VINF_SUCCESS;
289}
290
291static DECLCALLBACK(int) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
292{
293 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
294 return VINF_SUCCESS;
295}
296
297static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
298{
299 NOREF(pVM); NOREF(pVCpu);
300 return VINF_SUCCESS;
301}
302
303static DECLCALLBACK(int) hmR0DummyLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
304{
305 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
306 return VINF_SUCCESS;
307}
308
309/** @} */
310
311
312/**
313 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
314 * Down at the Rate Specified" erratum.
315 *
316 * Errata names and related steppings:
317 * - BA86 - D0.
318 * - AAX65 - C2.
319 * - AAU65 - C2, K0.
320 * - AAO95 - B1.
321 * - AAT59 - C2.
322 * - AAK139 - D0.
323 * - AAM126 - C0, C1, D0.
324 * - AAN92 - B1.
325 * - AAJ124 - C0, D0.
326 *
327 * - AAP86 - B1.
328 *
329 * Steppings: B1, C0, C1, C2, D0, K0.
330 *
331 * @returns true if subject to it, false if not.
332 */
333static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
334{
335 uint32_t u = ASMCpuId_EAX(1);
336 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
337 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
338 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
339 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
340 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
341 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
342 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
343 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
344 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
345 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
346 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
347 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
348 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
349 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
350 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
351 )
352 return true;
353 return false;
354}
355
356
357/**
358 * Intel specific initialization code.
359 *
360 * @returns VBox status code (will only fail if out of memory).
361 */
362static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
363{
364 /*
365 * Check that all the required VT-x features are present.
366 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
367 */
368 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
369 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
370 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
371 )
372 {
373 /** @todo move this into a separate function. */
374 g_HvmR0.vmx.msr.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
375
376 /*
377 * First try use native kernel API for controlling VT-x.
378 * (This is only supported by some Mac OS X kernels atm.)
379 */
380 int rc = g_HvmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
381 g_HvmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
382 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
383 {
384 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
385 if (RT_SUCCESS(rc))
386 {
387 g_HvmR0.vmx.fSupported = true;
388 rc = SUPR0EnableVTx(false /* fEnable */);
389 AssertLogRelRC(rc);
390 }
391 }
392 else
393 {
394 /* We need to check if VT-x has been properly initialized on all
395 CPUs. Some BIOSes do a lousy job. */
396 HMR0FIRSTRC FirstRc;
397 hmR0FirstRcInit(&FirstRc);
398 g_HvmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
399 if (RT_SUCCESS(g_HvmR0.lLastError))
400 g_HvmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
401 }
402 if (RT_SUCCESS(g_HvmR0.lLastError))
403 {
404 /* Reread in case we've changed it. */
405 g_HvmR0.vmx.msr.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
406
407 if ( (g_HvmR0.vmx.msr.u64FeatureCtrl & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
408 == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
409 {
410 /*
411 * Read all relevant MSRs.
412 */
413 g_HvmR0.vmx.msr.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
414 g_HvmR0.vmx.msr.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
415 g_HvmR0.vmx.msr.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
416 g_HvmR0.vmx.msr.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
417 g_HvmR0.vmx.msr.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
418 g_HvmR0.vmx.msr.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
419 g_HvmR0.vmx.msr.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
420 g_HvmR0.vmx.msr.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
421 g_HvmR0.vmx.msr.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
422 g_HvmR0.vmx.msr.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
423 g_HvmR0.vmx.msr.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
424 g_HvmR0.vmx.u64HostCr4 = ASMGetCR4();
425 g_HvmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
426 /* VPID 16 bits ASID. */
427 g_HvmR0.uMaxAsid = 0x10000; /* exclusive */
428
429 if (g_HvmR0.vmx.msr.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
430 {
431 g_HvmR0.vmx.msr.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
432 if (g_HvmR0.vmx.msr.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
433 g_HvmR0.vmx.msr.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
434
435 if (g_HvmR0.vmx.msr.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
436 g_HvmR0.vmx.msr.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
437 }
438
439 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
440 {
441 /*
442 * Enter root mode
443 */
444 RTR0MEMOBJ hScatchMemObj;
445 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
446 if (RT_FAILURE(rc))
447 {
448 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,true) -> %Rrc\n", rc));
449 return rc;
450 }
451
452 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
453 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
454 ASMMemZeroPage(pvScatchPage);
455
456 /* Set revision dword at the beginning of the structure. */
457 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HvmR0.vmx.msr.u64BasicInfo);
458
459 /* Make sure we don't get rescheduled to another cpu during this probe. */
460 RTCCUINTREG fFlags = ASMIntDisableFlags();
461
462 /*
463 * Check CR4.VMXE
464 */
465 g_HvmR0.vmx.u64HostCr4 = ASMGetCR4();
466 if (!(g_HvmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
467 {
468 /* In theory this bit could be cleared behind our back. Which would cause
469 #UD faults when we try to execute the VMX instructions... */
470 ASMSetCR4(g_HvmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
471 }
472
473 /*
474 * The only way of checking if we're in VMX root mode or not is to try and enter it.
475 * There is no instruction or control bit that tells us if we're in VMX root mode.
476 * Therefore, try and enter VMX root mode here.
477 */
478 rc = VMXEnable(HCPhysScratchPage);
479 if (RT_SUCCESS(rc))
480 {
481 g_HvmR0.vmx.fSupported = true;
482 VMXDisable();
483 }
484 else
485 {
486 /*
487 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
488 * it will crash the host when we enter raw mode, because:
489 *
490 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
491 * this bit), and
492 * (b) turning off paging causes a #GP (unavoidable when switching
493 * from long to 32 bits mode or 32 bits to PAE).
494 *
495 * They should fix their code, but until they do we simply refuse to run.
496 */
497 g_HvmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
498 }
499
500 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
501 if it wasn't so before (some software could incorrectly
502 think it's in VMX mode). */
503 ASMSetCR4(g_HvmR0.vmx.u64HostCr4);
504 ASMSetFlags(fFlags);
505
506 RTR0MemObjFree(hScatchMemObj, false);
507 }
508 }
509 else
510 {
511 AssertFailed(); /* can't hit this case anymore */
512 g_HvmR0.lLastError = VERR_VMX_ILLEGAL_FEATURE_CONTROL_MSR;
513 }
514
515 if (g_HvmR0.vmx.fSupported)
516 {
517 /* Call the global VT-x initialization routine. */
518 rc = VMXR0GlobalInit();
519 if (RT_FAILURE(rc))
520 g_HvmR0.lLastError = rc;
521
522 /*
523 * Install the VT-x methods.
524 */
525 g_HvmR0.pfnEnterSession = VMXR0Enter;
526 g_HvmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
527 g_HvmR0.pfnSaveHostState = VMXR0SaveHostState;
528 g_HvmR0.pfnRunGuestCode = VMXR0RunGuestCode;
529 g_HvmR0.pfnEnableCpu = VMXR0EnableCpu;
530 g_HvmR0.pfnDisableCpu = VMXR0DisableCpu;
531 g_HvmR0.pfnInitVM = VMXR0InitVM;
532 g_HvmR0.pfnTermVM = VMXR0TermVM;
533 g_HvmR0.pfnSetupVM = VMXR0SetupVM;
534
535 /*
536 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
537 * Timer Does Not Count Down at the Rate Specified" erratum.
538 */
539 if (g_HvmR0.vmx.msr.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
540 {
541 g_HvmR0.vmx.fUsePreemptTimer = true;
542 g_HvmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HvmR0.vmx.msr.u64Misc);
543 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
544 g_HvmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
545 }
546 }
547 }
548#ifdef LOG_ENABLED
549 else
550 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HvmR0.lLastError);
551#endif
552 }
553 else
554 g_HvmR0.lLastError = VERR_VMX_NO_VMX;
555 return VINF_SUCCESS;
556}
557
558
559/**
560 * AMD-specific initialization code.
561 *
562 * @returns VBox status code.
563 */
564static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
565{
566 /*
567 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
568 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
569 */
570 int rc;
571 if ( (g_HvmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
572 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
573 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
574 && ASMIsValidExtRange(uMaxExtLeaf)
575 && uMaxExtLeaf >= 0x8000000a
576 )
577 {
578 /* Call the global AMD-V initialization routine. */
579 rc = SVMR0GlobalInit();
580 if (RT_FAILURE(rc))
581 {
582 g_HvmR0.lLastError = rc;
583 return rc;
584 }
585
586 /*
587 * Install the AMD-V methods.
588 */
589 g_HvmR0.pfnEnterSession = SVMR0Enter;
590 g_HvmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
591 g_HvmR0.pfnSaveHostState = SVMR0SaveHostState;
592 g_HvmR0.pfnRunGuestCode = SVMR0RunGuestCode;
593 g_HvmR0.pfnEnableCpu = SVMR0EnableCpu;
594 g_HvmR0.pfnDisableCpu = SVMR0DisableCpu;
595 g_HvmR0.pfnInitVM = SVMR0InitVM;
596 g_HvmR0.pfnTermVM = SVMR0TermVM;
597 g_HvmR0.pfnSetupVM = SVMR0SetupVM;
598
599 /* Query AMD features. */
600 uint32_t u32Dummy;
601 ASMCpuId(0x8000000a, &g_HvmR0.svm.u32Rev, &g_HvmR0.uMaxAsid, &u32Dummy, &g_HvmR0.svm.u32Features);
602
603 /*
604 * We need to check if AMD-V has been properly initialized on all CPUs.
605 * Some BIOSes might do a poor job.
606 */
607 HMR0FIRSTRC FirstRc;
608 hmR0FirstRcInit(&FirstRc);
609 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
610 AssertRC(rc);
611 if (RT_SUCCESS(rc))
612 rc = hmR0FirstRcGetStatus(&FirstRc);
613#ifndef DEBUG_bird
614 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
615 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
616#endif
617 if (RT_SUCCESS(rc))
618 {
619 /* Read the HWCR MSR for diagnostics. */
620 g_HvmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
621 g_HvmR0.svm.fSupported = true;
622 }
623 else
624 g_HvmR0.lLastError = rc;
625 }
626 else
627 {
628 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
629 g_HvmR0.lLastError = VERR_SVM_NO_SVM;
630 }
631 return rc;
632}
633
634
635/**
636 * Does global Ring-0 HM initialization (at module init).
637 *
638 * @returns VBox status code.
639 */
640VMMR0_INT_DECL(int) HMR0Init(void)
641{
642 /*
643 * Initialize the globals.
644 */
645 g_HvmR0.fEnabled = false;
646 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
647 g_HvmR0.EnableAllCpusOnce = s_OnceInit;
648 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
649 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
650
651 /* Fill in all callbacks with placeholders. */
652 g_HvmR0.pfnEnterSession = hmR0DummyEnter;
653 g_HvmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
654 g_HvmR0.pfnSaveHostState = hmR0DummySaveHostState;
655 g_HvmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
656 g_HvmR0.pfnEnableCpu = hmR0DummyEnableCpu;
657 g_HvmR0.pfnDisableCpu = hmR0DummyDisableCpu;
658 g_HvmR0.pfnInitVM = hmR0DummyInitVM;
659 g_HvmR0.pfnTermVM = hmR0DummyTermVM;
660 g_HvmR0.pfnSetupVM = hmR0DummySetupVM;
661
662 /* Default is global VT-x/AMD-V init. */
663 g_HvmR0.fGlobalInit = true;
664
665 /*
666 * Make sure aCpuInfo is big enough for all the CPUs on this system.
667 */
668 if (RTMpGetArraySize() > RT_ELEMENTS(g_HvmR0.aCpuInfo))
669 {
670 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HvmR0.aCpuInfo)));
671 return VERR_TOO_MANY_CPUS;
672 }
673
674 /*
675 * Check for VT-x and AMD-V capabilities.
676 */
677 int rc;
678 if (ASMHasCpuId())
679 {
680 /* Standard features. */
681 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
682 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
683 if (ASMIsValidStdRange(uMaxLeaf))
684 {
685 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
686 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
687
688 /* Query AMD features. */
689 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
690 if (ASMIsValidExtRange(uMaxExtLeaf))
691 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
692 &g_HvmR0.cpuid.u32AMDFeatureECX,
693 &g_HvmR0.cpuid.u32AMDFeatureEDX);
694 else
695 g_HvmR0.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureEDX = 0;
696
697 /* Go to CPU specific initialization code. */
698 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
699 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
700 {
701 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
702 if (RT_FAILURE(rc))
703 return rc;
704 }
705 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
706 {
707 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
708 if (RT_FAILURE(rc))
709 return rc;
710 }
711 else
712 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
713 }
714 else
715 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
716 }
717 else
718 g_HvmR0.lLastError = VERR_HM_NO_CPUID;
719
720 /*
721 * Register notification callbacks that we can use to disable/enable CPUs
722 * when brought offline/online or suspending/resuming.
723 */
724 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
725 {
726 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
727 AssertRC(rc);
728
729 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
730 AssertRC(rc);
731 }
732
733 /* We return success here because module init shall not fail if HM
734 fails to initialize. */
735 return VINF_SUCCESS;
736}
737
738
739/**
740 * Does global Ring-0 HM termination (at module termination).
741 *
742 * @returns VBox status code.
743 */
744VMMR0_INT_DECL(int) HMR0Term(void)
745{
746 int rc;
747 if ( g_HvmR0.vmx.fSupported
748 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
749 {
750 /*
751 * Simple if the host OS manages VT-x.
752 */
753 Assert(g_HvmR0.fGlobalInit);
754 rc = SUPR0EnableVTx(false /* fEnable */);
755
756 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++)
757 {
758 g_HvmR0.aCpuInfo[iCpu].fConfigured = false;
759 Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
760 }
761 }
762 else
763 {
764 Assert(!g_HvmR0.vmx.fUsingSUPR0EnableVTx);
765 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
766 {
767 /* Doesn't really matter if this fails. */
768 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
769 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
770 }
771 else
772 rc = VINF_SUCCESS;
773
774 /*
775 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
776 */
777 if (g_HvmR0.fGlobalInit)
778 {
779 HMR0FIRSTRC FirstRc;
780 hmR0FirstRcInit(&FirstRc);
781 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
782 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
783 if (RT_SUCCESS(rc))
784 {
785 rc = hmR0FirstRcGetStatus(&FirstRc);
786 AssertMsgRC(rc, ("%u: %Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
787 }
788 }
789
790 /*
791 * Free the per-cpu pages used for VT-x and AMD-V.
792 */
793 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
794 {
795 if (g_HvmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
796 {
797 RTR0MemObjFree(g_HvmR0.aCpuInfo[i].hMemObj, false);
798 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
799 }
800 }
801 }
802
803 /** @todo This needs cleaning up. There's no matching
804 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
805 * should move into their respective modules. */
806 /* Finally, call global VT-x/AMD-V termination. */
807 if (g_HvmR0.vmx.fSupported)
808 VMXR0GlobalTerm();
809 else if (g_HvmR0.svm.fSupported)
810 SVMR0GlobalTerm();
811
812 return rc;
813}
814
815
816/**
817 * Worker function used by hmR0PowerCallback and HMR0Init to initalize
818 * VT-x on a CPU.
819 *
820 * @param idCpu The identifier for the CPU the function is called on.
821 * @param pvUser1 Pointer to the first RC structure.
822 * @param pvUser2 Ignored.
823 */
824static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
825{
826 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
827 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
828 NOREF(pvUser2);
829
830 /*
831 * Both the LOCK and VMXON bit must be set; otherwise VMXON will generate a #GP.
832 * Once the lock bit is set, this MSR can no longer be modified.
833 */
834 uint64_t fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
835 if ( !(fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
836 || ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
837 == MSR_IA32_FEATURE_CONTROL_VMXON ) /* Some BIOSes forget to set the locked bit. */
838 )
839 {
840 /* MSR is not yet locked; we can change it ourselves here. */
841 ASMWrMsr(MSR_IA32_FEATURE_CONTROL,
842 g_HvmR0.vmx.msr.u64FeatureCtrl | MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK);
843 fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
844 }
845
846 int rc;
847 if ((fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
848 == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
849 {
850 rc = VINF_SUCCESS;
851 }
852 else
853 rc = VERR_VMX_MSR_LOCKED_OR_DISABLED;
854
855 hmR0FirstRcSetStatus(pFirstRc, rc);
856}
857
858
859/**
860 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
861 * on a CPU.
862 *
863 * @param idCpu The identifier for the CPU the function is called on.
864 * @param pvUser1 Pointer to the first RC structure.
865 * @param pvUser2 Ignored.
866 */
867static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
868{
869 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
870 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
871 NOREF(pvUser2);
872
873 /* Check if SVM is disabled. */
874 int rc;
875 uint64_t fVmCr = ASMRdMsr(MSR_K8_VM_CR);
876 if (!(fVmCr & MSR_K8_VM_CR_SVM_DISABLE))
877 {
878 /* Turn on SVM in the EFER MSR. */
879 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
880 if (fEfer & MSR_K6_EFER_SVME)
881 rc = VERR_SVM_IN_USE;
882 else
883 {
884 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
885
886 /* Paranoia. */
887 fEfer = ASMRdMsr(MSR_K6_EFER);
888 if (fEfer & MSR_K6_EFER_SVME)
889 {
890 /* Restore previous value. */
891 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
892 rc = VINF_SUCCESS;
893 }
894 else
895 rc = VERR_SVM_ILLEGAL_EFER_MSR;
896 }
897 }
898 else
899 rc = VERR_SVM_DISABLED;
900
901 hmR0FirstRcSetStatus(pFirstRc, rc);
902}
903
904
905/**
906 * Enable VT-x or AMD-V on the current CPU
907 *
908 * @returns VBox status code.
909 * @param pVM Pointer to the VM (can be NULL).
910 * @param idCpu The identifier for the CPU the function is called on.
911 */
912static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
913{
914 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
915
916 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
917 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
918 Assert(!pCpu->fConfigured);
919
920 pCpu->idCpu = idCpu;
921 pCpu->uCurrentAsid = 0; /* we'll aways increment this the first time (host uses ASID 0) */
922 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
923
924 int rc;
925 if (g_HvmR0.vmx.fSupported && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
926 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true);
927 else
928 {
929 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
930 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
931 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
932 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false);
933 }
934 AssertRC(rc);
935 if (RT_SUCCESS(rc))
936 pCpu->fConfigured = true;
937
938 return rc;
939}
940
941
942/**
943 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
944 * is to be called on the target cpus.
945 *
946 * @param idCpu The identifier for the CPU the function is called on.
947 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
948 * @param pvUser2 The 2nd user argument.
949 */
950static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
951{
952 PVM pVM = (PVM)pvUser1; /* can be NULL! */
953 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
954 AssertReturnVoid(g_HvmR0.fGlobalInit);
955 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
956}
957
958
959/**
960 * RTOnce callback employed by HMR0EnableAllCpus.
961 *
962 * @returns VBox status code.
963 * @param pvUser Pointer to the VM.
964 * @param pvUserIgnore NULL, ignored.
965 */
966static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
967{
968 PVM pVM = (PVM)pvUser;
969
970 /*
971 * Indicate that we've initialized.
972 *
973 * Note! There is a potential race between this function and the suspend
974 * notification. Kind of unlikely though, so ignored for now.
975 */
976 AssertReturn(!g_HvmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
977 ASMAtomicWriteBool(&g_HvmR0.fEnabled, true);
978
979 /*
980 * The global init variable is set by the first VM.
981 */
982 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
983
984 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
985 {
986 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
987 g_HvmR0.aCpuInfo[i].fConfigured = false;
988 g_HvmR0.aCpuInfo[i].cTlbFlushes = 0;
989 g_HvmR0.aCpuInfo[i].uCurrentAsid = 0;
990 }
991
992 int rc;
993 if ( g_HvmR0.vmx.fSupported
994 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
995 {
996 /*
997 * Global VT-x initialization API (only darwin for now).
998 */
999 rc = SUPR0EnableVTx(true /* fEnable */);
1000 if (RT_SUCCESS(rc))
1001 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
1002 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
1003 else
1004 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
1005 }
1006 else
1007 {
1008 /*
1009 * We're doing the job ourselves.
1010 */
1011 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
1012 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
1013 {
1014 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
1015
1016 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
1017 {
1018 rc = RTR0MemObjAllocCont(&g_HvmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, true /* executable R0 mapping */);
1019 AssertLogRelRCReturn(rc, rc);
1020
1021 void *pvR0 = RTR0MemObjAddress(g_HvmR0.aCpuInfo[i].hMemObj); Assert(pvR0);
1022 ASMMemZeroPage(pvR0);
1023 }
1024 }
1025
1026 rc = VINF_SUCCESS;
1027 }
1028
1029 if ( RT_SUCCESS(rc)
1030 && g_HvmR0.fGlobalInit)
1031 {
1032 /* First time, so initialize each cpu/core. */
1033 HMR0FIRSTRC FirstRc;
1034 hmR0FirstRcInit(&FirstRc);
1035 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
1036 if (RT_SUCCESS(rc))
1037 rc = hmR0FirstRcGetStatus(&FirstRc);
1038 AssertMsgRC(rc, ("hmR0EnableAllCpuOnce failed for cpu %d with rc=%d\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
1039 }
1040
1041 return rc;
1042}
1043
1044
1045/**
1046 * Sets up HM on all cpus.
1047 *
1048 * @returns VBox status code.
1049 * @param pVM Pointer to the VM.
1050 */
1051VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
1052{
1053 /* Make sure we don't touch HM after we've disabled HM in
1054 preparation of a suspend. */
1055 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1056 return VERR_HM_SUSPEND_PENDING;
1057
1058 return RTOnce(&g_HvmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1059}
1060
1061
1062/**
1063 * Disable VT-x or AMD-V on the current CPU.
1064 *
1065 * @returns VBox status code.
1066 * @param idCpu The identifier for the CPU the function is called on.
1067 */
1068static int hmR0DisableCpu(RTCPUID idCpu)
1069{
1070 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1071
1072 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1073 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
1074 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1075 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1076
1077 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1078 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1079
1080 int rc;
1081 if (pCpu->fConfigured)
1082 {
1083 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1084 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1085 if (idCpu == RTMpCpuId())
1086 {
1087 rc = g_HvmR0.pfnDisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1088 AssertRC(rc);
1089 }
1090 else
1091 {
1092 pCpu->fIgnoreAMDVInUseError = true;
1093 rc = VINF_SUCCESS;
1094 }
1095
1096 pCpu->fConfigured = false;
1097 }
1098 else
1099 rc = VINF_SUCCESS; /* nothing to do */
1100
1101 pCpu->uCurrentAsid = 0;
1102 return rc;
1103}
1104
1105
1106/**
1107 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
1108 * is to be called on the target CPUs.
1109 *
1110 * @param idCpu The identifier for the CPU the function is called on.
1111 * @param pvUser1 The 1st user argument.
1112 * @param pvUser2 Opaque pointer to the FirstRc.
1113 */
1114static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1115{
1116 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1117 AssertReturnVoid(g_HvmR0.fGlobalInit);
1118 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1119}
1120
1121
1122/**
1123 * Callback function invoked when a cpu goes online or offline.
1124 *
1125 * @param enmEvent The Mp event.
1126 * @param idCpu The identifier for the CPU the function is called on.
1127 * @param pvData Opaque data (PVM pointer).
1128 */
1129static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1130{
1131 NOREF(pvData);
1132
1133 /*
1134 * We only care about uninitializing a CPU that is going offline. When a
1135 * CPU comes online, the initialization is done lazily in HMR0Enter().
1136 */
1137 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1138 switch (enmEvent)
1139 {
1140 case RTMPEVENT_OFFLINE:
1141 {
1142 int rc = hmR0DisableCpu(idCpu);
1143 AssertRC(rc);
1144 break;
1145 }
1146
1147 default:
1148 break;
1149 }
1150}
1151
1152
1153/**
1154 * Called whenever a system power state change occurs.
1155 *
1156 * @param enmEvent The Power event.
1157 * @param pvUser User argument.
1158 */
1159static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1160{
1161 NOREF(pvUser);
1162 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1163
1164#ifdef LOG_ENABLED
1165 if (enmEvent == RTPOWEREVENT_SUSPEND)
1166 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1167 else
1168 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1169#endif
1170
1171 if (enmEvent == RTPOWEREVENT_SUSPEND)
1172 ASMAtomicWriteBool(&g_HvmR0.fSuspended, true);
1173
1174 if (g_HvmR0.fEnabled)
1175 {
1176 int rc;
1177 HMR0FIRSTRC FirstRc;
1178 hmR0FirstRcInit(&FirstRc);
1179
1180 if (enmEvent == RTPOWEREVENT_SUSPEND)
1181 {
1182 if (g_HvmR0.fGlobalInit)
1183 {
1184 /* Turn off VT-x or AMD-V on all CPUs. */
1185 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1186 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1187 }
1188 /* else nothing to do here for the local init case */
1189 }
1190 else
1191 {
1192 /* Reinit the CPUs from scratch as the suspend state might have
1193 messed with the MSRs. (lousy BIOSes as usual) */
1194 if (g_HvmR0.vmx.fSupported)
1195 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1196 else
1197 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1198 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1199 if (RT_SUCCESS(rc))
1200 rc = hmR0FirstRcGetStatus(&FirstRc);
1201#ifdef LOG_ENABLED
1202 if (RT_FAILURE(rc))
1203 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1204#endif
1205 if (g_HvmR0.fGlobalInit)
1206 {
1207 /* Turn VT-x or AMD-V back on on all CPUs. */
1208 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1209 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1210 }
1211 /* else nothing to do here for the local init case */
1212 }
1213 }
1214
1215 if (enmEvent == RTPOWEREVENT_RESUME)
1216 ASMAtomicWriteBool(&g_HvmR0.fSuspended, false);
1217}
1218
1219
1220/**
1221 * Does Ring-0 per VM HM initialization.
1222 *
1223 * This will copy HM global into the VM structure and call the CPU specific
1224 * init routine which will allocate resources for each virtual CPU and such.
1225 *
1226 * @returns VBox status code.
1227 * @param pVM Pointer to the VM.
1228 */
1229VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1230{
1231 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1232
1233#ifdef LOG_ENABLED
1234 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1235#endif
1236
1237 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1238 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1239 return VERR_HM_SUSPEND_PENDING;
1240
1241 /*
1242 * Copy globals to the VM structure.
1243 */
1244 /** @todo r=ramshankar: Why do we do this for MSRs? We never change them in the
1245 * per-VM structures anyway... */
1246 pVM->hm.s.vmx.fSupported = g_HvmR0.vmx.fSupported;
1247 pVM->hm.s.svm.fSupported = g_HvmR0.svm.fSupported;
1248
1249 pVM->hm.s.vmx.fUsePreemptTimer = g_HvmR0.vmx.fUsePreemptTimer;
1250 pVM->hm.s.vmx.cPreemptTimerShift = g_HvmR0.vmx.cPreemptTimerShift;
1251 pVM->hm.s.vmx.msr.u64FeatureCtrl = g_HvmR0.vmx.msr.u64FeatureCtrl;
1252 pVM->hm.s.vmx.u64HostCr4 = g_HvmR0.vmx.u64HostCr4;
1253 pVM->hm.s.vmx.u64HostEfer = g_HvmR0.vmx.u64HostEfer;
1254 pVM->hm.s.vmx.msr.u64BasicInfo = g_HvmR0.vmx.msr.u64BasicInfo;
1255 pVM->hm.s.vmx.msr.VmxPinCtls = g_HvmR0.vmx.msr.VmxPinCtls;
1256 pVM->hm.s.vmx.msr.VmxProcCtls = g_HvmR0.vmx.msr.VmxProcCtls;
1257 pVM->hm.s.vmx.msr.VmxProcCtls2 = g_HvmR0.vmx.msr.VmxProcCtls2;
1258 pVM->hm.s.vmx.msr.VmxExit = g_HvmR0.vmx.msr.VmxExit;
1259 pVM->hm.s.vmx.msr.VmxEntry = g_HvmR0.vmx.msr.VmxEntry;
1260 pVM->hm.s.vmx.msr.u64Misc = g_HvmR0.vmx.msr.u64Misc;
1261 pVM->hm.s.vmx.msr.u64Cr0Fixed0 = g_HvmR0.vmx.msr.u64Cr0Fixed0;
1262 pVM->hm.s.vmx.msr.u64Cr0Fixed1 = g_HvmR0.vmx.msr.u64Cr0Fixed1;
1263 pVM->hm.s.vmx.msr.u64Cr4Fixed0 = g_HvmR0.vmx.msr.u64Cr4Fixed0;
1264 pVM->hm.s.vmx.msr.u64Cr4Fixed1 = g_HvmR0.vmx.msr.u64Cr4Fixed1;
1265 pVM->hm.s.vmx.msr.u64VmcsEnum = g_HvmR0.vmx.msr.u64VmcsEnum;
1266 pVM->hm.s.vmx.msr.u64Vmfunc = g_HvmR0.vmx.msr.u64Vmfunc;
1267 pVM->hm.s.vmx.msr.u64EptVpidCaps = g_HvmR0.vmx.msr.u64EptVpidCaps;
1268 pVM->hm.s.svm.u64MsrHwcr = g_HvmR0.svm.u64MsrHwcr;
1269 pVM->hm.s.svm.u32Rev = g_HvmR0.svm.u32Rev;
1270 pVM->hm.s.svm.u32Features = g_HvmR0.svm.u32Features;
1271 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureECX;
1272 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HvmR0.cpuid.u32AMDFeatureEDX;
1273 pVM->hm.s.lLastError = g_HvmR0.lLastError;
1274
1275 pVM->hm.s.uMaxAsid = g_HvmR0.uMaxAsid;
1276
1277
1278 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1279 {
1280 pVM->hm.s.cMaxResumeLoops = 1024;
1281 if (RTThreadPreemptIsPendingTrusty())
1282 pVM->hm.s.cMaxResumeLoops = 8192;
1283 }
1284
1285 /*
1286 * Initialize some per CPU fields.
1287 */
1288 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1289 {
1290 PVMCPU pVCpu = &pVM->aCpus[i];
1291
1292 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1293
1294 /* Invalidate the last cpu we were running on. */
1295 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1296
1297 /* We'll aways increment this the first time (host uses ASID 0) */
1298 pVCpu->hm.s.uCurrentAsid = 0;
1299 }
1300
1301 /*
1302 * Call the hardware specific initialization method.
1303 */
1304 RTCCUINTREG fFlags = ASMIntDisableFlags();
1305 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1306 ASMSetFlags(fFlags);
1307
1308 int rc = g_HvmR0.pfnInitVM(pVM);
1309 return rc;
1310}
1311
1312
1313/**
1314 * Does Ring-0 per VM HM termination.
1315 *
1316 * @returns VBox status code.
1317 * @param pVM Pointer to the VM.
1318 */
1319VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1320{
1321 Log(("HMR0TermVM: %p\n", pVM));
1322 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1323
1324 /* Make sure we don't touch HM after we've disabled HM in preparation
1325 of a suspend. */
1326 /** @todo r=bird: This cannot be right, the termination functions are
1327 * just freeing memory and resetting pVM/pVCpu members...
1328 * ==> memory leak. */
1329 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1330
1331 /*
1332 * Call the hardware specific method.
1333 */
1334 RTCCUINTREG fFlags = ASMIntDisableFlags();
1335 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1336 ASMSetFlags(fFlags);
1337
1338 int rc = g_HvmR0.pfnTermVM(pVM);
1339 return rc;
1340}
1341
1342
1343/**
1344 * Sets up a VT-x or AMD-V session.
1345 *
1346 * This is mostly about setting up the hardware VM state.
1347 *
1348 * @returns VBox status code.
1349 * @param pVM Pointer to the VM.
1350 */
1351VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1352{
1353 Log(("HMR0SetupVM: %p\n", pVM));
1354 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1355
1356 /* Make sure we don't touch HM after we've disabled HM in
1357 preparation of a suspend. */
1358 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1359
1360 /*
1361 * Call the hardware specific setup VM method. This requires the CPU to be
1362 * enabled for AMD-V/VT-x and preemption to be prevented.
1363 */
1364 RTCCUINTREG fFlags = ASMIntDisableFlags();
1365 RTCPUID idCpu = RTMpCpuId();
1366 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1367
1368 /* On first entry we'll sync everything. */
1369 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1370 pVM->aCpus[i].hm.s.fContextUseFlags = (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1371
1372 /* Enable VT-x or AMD-V if local init is required. */
1373 int rc;
1374 if (!g_HvmR0.fGlobalInit)
1375 {
1376 rc = hmR0EnableCpu(pVM, idCpu);
1377 AssertReturnStmt(RT_SUCCESS_NP(rc), ASMSetFlags(fFlags), rc);
1378 }
1379
1380 /* Setup VT-x or AMD-V. */
1381 rc = g_HvmR0.pfnSetupVM(pVM);
1382
1383 /* Disable VT-x or AMD-V if local init was done before. */
1384 if (!g_HvmR0.fGlobalInit)
1385 {
1386 int rc2 = hmR0DisableCpu(idCpu);
1387 AssertRC(rc2);
1388 }
1389
1390 ASMSetFlags(fFlags);
1391 return rc;
1392}
1393
1394
1395/**
1396 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1397 * required for entering HM context.
1398 *
1399 * @returns VBox status code.
1400 * @param pvCpu Pointer to the VMCPU.
1401 *
1402 * @remarks No-long-jump zone!!!
1403 */
1404VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1405{
1406 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1407
1408 int rc = VINF_SUCCESS;
1409 RTCPUID idCpu = RTMpCpuId();
1410 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1411 AssertPtr(pCpu);
1412
1413 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1414 if (!pCpu->fConfigured)
1415 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1416
1417 /* Reload host-context (back from ring-3/migrated CPUs), reload host context & shared bits. */
1418 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE;
1419 pVCpu->hm.s.idEnteredCpu = idCpu;
1420 return rc;
1421}
1422
1423
1424/**
1425 * Enters the VT-x or AMD-V session.
1426 *
1427 * @returns VBox status code.
1428 * @param pVM Pointer to the VM.
1429 * @param pVCpu Pointer to the VMCPU.
1430 *
1431 * @remarks This is called with preemption disabled.
1432 */
1433VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1434{
1435 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1436 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1437 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1438
1439 /* Load the bare minimum state required for entering HM. */
1440 int rc = HMR0EnterCpu(pVCpu);
1441 AssertRCReturn(rc, rc);
1442
1443#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1444 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_5);
1445 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1446#endif
1447
1448 RTCPUID idCpu = RTMpCpuId();
1449 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1450 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1451 Assert(pCpu);
1452 Assert(pCtx);
1453 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1454
1455 rc = g_HvmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1456 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1457
1458 /* Load the host as we may be resuming code after a longjmp and quite
1459 possibly now be scheduled on a different CPU. */
1460 rc = g_HvmR0.pfnSaveHostState(pVM, pVCpu);
1461 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1462
1463#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1464 if (fStartedSet)
1465 PGMRZDynMapReleaseAutoSet(pVCpu);
1466#endif
1467
1468 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness
1469 and ring-3 calls. */
1470 if (RT_FAILURE(rc))
1471 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1472 return rc;
1473}
1474
1475
1476/**
1477 * Deinitializes the bare minimum state used for HM context and if necessary
1478 * disable HM on the CPU.
1479 *
1480 * @returns VBox status code.
1481 * @param pVCpu Pointer to the VMCPU.
1482 *
1483 * @remarks No-long-jump zone!!!
1484 */
1485VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1486{
1487 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1488
1489 RTCPUID idCpu = RTMpCpuId();
1490 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1491
1492 if ( !g_HvmR0.fGlobalInit
1493 && pCpu->fConfigured)
1494 {
1495 int rc = hmR0DisableCpu(idCpu);
1496 AssertRCReturn(rc, rc);
1497 Assert(!pCpu->fConfigured);
1498 }
1499
1500 /* Reset these to force a TLB flush for the next entry. */
1501 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1502 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1503 pVCpu->hm.s.uCurrentAsid = 0;
1504 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1505
1506 /* Clear the VCPU <-> host CPU mapping as we've left HM context. */
1507 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1508
1509 return VINF_SUCCESS;
1510}
1511
1512
1513/**
1514 * Thread-context hook for HM.
1515 *
1516 * @param enmEvent The thread-context event.
1517 * @param pvUser Opaque pointer to the VMCPU.
1518 */
1519VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1520{
1521 PVMCPU pVCpu = (PVMCPU)pvUser;
1522 Assert(pVCpu);
1523 Assert(g_HvmR0.pfnThreadCtxCallback);
1524
1525 g_HvmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HvmR0.fGlobalInit);
1526}
1527
1528
1529/**
1530 * Runs guest code in a hardware accelerated VM.
1531 *
1532 * @returns VBox status code.
1533 * @param pVM Pointer to the VM.
1534 * @param pVCpu Pointer to the VMCPU.
1535 *
1536 * @remarks Called with preemption disabled and after first having called
1537 * HMR0Enter.
1538 */
1539VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1540{
1541#ifdef VBOX_STRICT
1542 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[RTMpCpuId()];
1543 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1544 Assert(pCpu->fConfigured);
1545 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1546#endif
1547
1548#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1549 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_4);
1550 PGMRZDynMapStartAutoSet(pVCpu);
1551#endif
1552
1553 int rc = g_HvmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1554
1555#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1556 PGMRZDynMapReleaseAutoSet(pVCpu);
1557#endif
1558 return rc;
1559}
1560
1561#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1562
1563/**
1564 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1565 *
1566 * @returns VBox status code.
1567 * @param pVM Pointer to the VM.
1568 * @param pVCpu Pointer to the VMCPU.
1569 * @param pCtx Pointer to the guest CPU context.
1570 */
1571VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1572{
1573 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1574 if (pVM->hm.s.vmx.fSupported)
1575 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1576 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1577}
1578
1579
1580/**
1581 * Save guest debug state (64 bits guest mode & 32 bits host only)
1582 *
1583 * @returns VBox status code.
1584 * @param pVM Pointer to the VM.
1585 * @param pVCpu Pointer to the VMCPU.
1586 * @param pCtx Pointer to the guest CPU context.
1587 */
1588VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1589{
1590 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1591 if (pVM->hm.s.vmx.fSupported)
1592 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1593 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1594}
1595
1596
1597/**
1598 * Test the 32->64 bits switcher.
1599 *
1600 * @returns VBox status code.
1601 * @param pVM Pointer to the VM.
1602 */
1603VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1604{
1605 PVMCPU pVCpu = &pVM->aCpus[0];
1606 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1607 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1608 int rc;
1609
1610 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1611 if (pVM->hm.s.vmx.fSupported)
1612 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1613 else
1614 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1615 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1616
1617 return rc;
1618}
1619
1620#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
1621
1622/**
1623 * Returns suspend status of the host.
1624 *
1625 * @returns Suspend pending or not.
1626 */
1627VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1628{
1629 return ASMAtomicReadBool(&g_HvmR0.fSuspended);
1630}
1631
1632
1633/**
1634 * Returns the cpu structure for the current cpu.
1635 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1636 *
1637 * @returns The cpu structure pointer.
1638 */
1639VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpu(void)
1640{
1641 RTCPUID idCpu = RTMpCpuId();
1642 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1643 return &g_HvmR0.aCpuInfo[idCpu];
1644}
1645
1646
1647/**
1648 * Returns the cpu structure for the current cpu.
1649 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1650 *
1651 * @returns The cpu structure pointer.
1652 * @param idCpu id of the VCPU.
1653 */
1654VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpuEx(RTCPUID idCpu)
1655{
1656 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1657 return &g_HvmR0.aCpuInfo[idCpu];
1658}
1659
1660
1661/**
1662 * Save a pending IO read.
1663 *
1664 * @param pVCpu Pointer to the VMCPU.
1665 * @param GCPtrRip Address of IO instruction.
1666 * @param GCPtrRipNext Address of the next instruction.
1667 * @param uPort Port address.
1668 * @param uAndVal AND mask for saving the result in eax.
1669 * @param cbSize Read size.
1670 */
1671VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1672 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1673{
1674 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1675 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1676 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1677 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1678 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1679 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1680 return;
1681}
1682
1683
1684/**
1685 * Save a pending IO write.
1686 *
1687 * @param pVCpu Pointer to the VMCPU.
1688 * @param GCPtrRIP Address of IO instruction.
1689 * @param uPort Port address.
1690 * @param uAndVal AND mask for fetching the result from eax.
1691 * @param cbSize Read size.
1692 */
1693VMMR0_INT_DECL(void) HMR0SavePendingIOPortWrite(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1694 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1695{
1696 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_WRITE;
1697 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1698 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1699 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1700 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1701 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1702 return;
1703}
1704
1705
1706/**
1707 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1708 * switcher turns off paging.
1709 *
1710 * @returns VBox status code.
1711 * @param pVM Pointer to the VM.
1712 * @param enmSwitcher The switcher we're about to use.
1713 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1714 */
1715VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1716{
1717 Assert(!(ASMGetFlags() & X86_EFL_IF) || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1718
1719 *pfVTxDisabled = false;
1720
1721 /* No such issues with AMD-V */
1722 if (!g_HvmR0.vmx.fSupported)
1723 return VINF_SUCCESS;
1724
1725 /* Check if the swithcing we're up to is safe. */
1726 switch (enmSwitcher)
1727 {
1728 case VMMSWITCHER_32_TO_32:
1729 case VMMSWITCHER_PAE_TO_PAE:
1730 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1731
1732 case VMMSWITCHER_32_TO_PAE:
1733 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1734 case VMMSWITCHER_AMD64_TO_32:
1735 case VMMSWITCHER_AMD64_TO_PAE:
1736 break; /* unsafe switchers */
1737
1738 default:
1739 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1740 }
1741
1742 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1743 regardless of whether we're currently using VT-x or not. */
1744 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1745 {
1746 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1747 return VINF_SUCCESS;
1748 }
1749
1750 /** @todo Check if this code is presumtive wrt other VT-x users on the
1751 * system... */
1752
1753 /* Nothing to do if we haven't enabled VT-x. */
1754 if (!g_HvmR0.fEnabled)
1755 return VINF_SUCCESS;
1756
1757 /* Local init implies the CPU is currently not in VMX root mode. */
1758 if (!g_HvmR0.fGlobalInit)
1759 return VINF_SUCCESS;
1760
1761 /* Ok, disable VT-x. */
1762 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1763 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2);
1764
1765 *pfVTxDisabled = true;
1766 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1767 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1768 return VMXR0DisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1769}
1770
1771
1772/**
1773 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1774 * switcher turned off paging.
1775 *
1776 * @param pVM Pointer to the VM.
1777 * @param fVTxDisabled Whether VT-x was disabled or not.
1778 */
1779VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1780{
1781 Assert(!(ASMGetFlags() & X86_EFL_IF));
1782
1783 if (!fVTxDisabled)
1784 return; /* nothing to do */
1785
1786 Assert(g_HvmR0.vmx.fSupported);
1787 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1788 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1789 else
1790 {
1791 Assert(g_HvmR0.fEnabled);
1792 Assert(g_HvmR0.fGlobalInit);
1793
1794 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1795 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ);
1796
1797 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1798 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1799 VMXR0EnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false);
1800 }
1801}
1802
1803#ifdef VBOX_STRICT
1804
1805/**
1806 * Dumps a descriptor.
1807 *
1808 * @param pDesc Descriptor to dump.
1809 * @param Sel Selector number.
1810 * @param pszMsg Message to prepend the log entry with.
1811 */
1812VMMR0DECL(void) HMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1813{
1814 /*
1815 * Make variable description string.
1816 */
1817 static struct
1818 {
1819 unsigned cch;
1820 const char *psz;
1821 } const s_aTypes[32] =
1822 {
1823# define STRENTRY(str) { sizeof(str) - 1, str }
1824
1825 /* system */
1826# if HC_ARCH_BITS == 64
1827 STRENTRY("Reserved0 "), /* 0x00 */
1828 STRENTRY("Reserved1 "), /* 0x01 */
1829 STRENTRY("LDT "), /* 0x02 */
1830 STRENTRY("Reserved3 "), /* 0x03 */
1831 STRENTRY("Reserved4 "), /* 0x04 */
1832 STRENTRY("Reserved5 "), /* 0x05 */
1833 STRENTRY("Reserved6 "), /* 0x06 */
1834 STRENTRY("Reserved7 "), /* 0x07 */
1835 STRENTRY("Reserved8 "), /* 0x08 */
1836 STRENTRY("TSS64Avail "), /* 0x09 */
1837 STRENTRY("ReservedA "), /* 0x0a */
1838 STRENTRY("TSS64Busy "), /* 0x0b */
1839 STRENTRY("Call64 "), /* 0x0c */
1840 STRENTRY("ReservedD "), /* 0x0d */
1841 STRENTRY("Int64 "), /* 0x0e */
1842 STRENTRY("Trap64 "), /* 0x0f */
1843# else
1844 STRENTRY("Reserved0 "), /* 0x00 */
1845 STRENTRY("TSS16Avail "), /* 0x01 */
1846 STRENTRY("LDT "), /* 0x02 */
1847 STRENTRY("TSS16Busy "), /* 0x03 */
1848 STRENTRY("Call16 "), /* 0x04 */
1849 STRENTRY("Task "), /* 0x05 */
1850 STRENTRY("Int16 "), /* 0x06 */
1851 STRENTRY("Trap16 "), /* 0x07 */
1852 STRENTRY("Reserved8 "), /* 0x08 */
1853 STRENTRY("TSS32Avail "), /* 0x09 */
1854 STRENTRY("ReservedA "), /* 0x0a */
1855 STRENTRY("TSS32Busy "), /* 0x0b */
1856 STRENTRY("Call32 "), /* 0x0c */
1857 STRENTRY("ReservedD "), /* 0x0d */
1858 STRENTRY("Int32 "), /* 0x0e */
1859 STRENTRY("Trap32 "), /* 0x0f */
1860# endif
1861 /* non system */
1862 STRENTRY("DataRO "), /* 0x10 */
1863 STRENTRY("DataRO Accessed "), /* 0x11 */
1864 STRENTRY("DataRW "), /* 0x12 */
1865 STRENTRY("DataRW Accessed "), /* 0x13 */
1866 STRENTRY("DataDownRO "), /* 0x14 */
1867 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1868 STRENTRY("DataDownRW "), /* 0x16 */
1869 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1870 STRENTRY("CodeEO "), /* 0x18 */
1871 STRENTRY("CodeEO Accessed "), /* 0x19 */
1872 STRENTRY("CodeER "), /* 0x1a */
1873 STRENTRY("CodeER Accessed "), /* 0x1b */
1874 STRENTRY("CodeConfEO "), /* 0x1c */
1875 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1876 STRENTRY("CodeConfER "), /* 0x1e */
1877 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1878# undef SYSENTRY
1879 };
1880# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1881 char szMsg[128];
1882 char *psz = &szMsg[0];
1883 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1884 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1885 psz += s_aTypes[i].cch;
1886
1887 if (pDesc->Gen.u1Present)
1888 ADD_STR(psz, "Present ");
1889 else
1890 ADD_STR(psz, "Not-Present ");
1891# if HC_ARCH_BITS == 64
1892 if (pDesc->Gen.u1Long)
1893 ADD_STR(psz, "64-bit ");
1894 else
1895 ADD_STR(psz, "Comp ");
1896# else
1897 if (pDesc->Gen.u1Granularity)
1898 ADD_STR(psz, "Page ");
1899 if (pDesc->Gen.u1DefBig)
1900 ADD_STR(psz, "32-bit ");
1901 else
1902 ADD_STR(psz, "16-bit ");
1903# endif
1904# undef ADD_STR
1905 *psz = '\0';
1906
1907 /*
1908 * Limit and Base and format the output.
1909 */
1910 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1911
1912# if HC_ARCH_BITS == 64
1913 uint64_t u32Base = X86DESC64_BASE(pDesc);
1914
1915 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1916 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1917# else
1918 uint32_t u32Base = X86DESC_BASE(pDesc);
1919
1920 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1921 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1922# endif
1923}
1924
1925
1926/**
1927 * Formats a full register dump.
1928 *
1929 * @param pVM Pointer to the VM.
1930 * @param pVCpu Pointer to the VMCPU.
1931 * @param pCtx Pointer to the CPU context.
1932 */
1933VMMR0DECL(void) HMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1934{
1935 NOREF(pVM);
1936
1937 /*
1938 * Format the flags.
1939 */
1940 static struct
1941 {
1942 const char *pszSet; const char *pszClear; uint32_t fFlag;
1943 } const s_aFlags[] =
1944 {
1945 { "vip",NULL, X86_EFL_VIP },
1946 { "vif",NULL, X86_EFL_VIF },
1947 { "ac", NULL, X86_EFL_AC },
1948 { "vm", NULL, X86_EFL_VM },
1949 { "rf", NULL, X86_EFL_RF },
1950 { "nt", NULL, X86_EFL_NT },
1951 { "ov", "nv", X86_EFL_OF },
1952 { "dn", "up", X86_EFL_DF },
1953 { "ei", "di", X86_EFL_IF },
1954 { "tf", NULL, X86_EFL_TF },
1955 { "nt", "pl", X86_EFL_SF },
1956 { "nz", "zr", X86_EFL_ZF },
1957 { "ac", "na", X86_EFL_AF },
1958 { "po", "pe", X86_EFL_PF },
1959 { "cy", "nc", X86_EFL_CF },
1960 };
1961 char szEFlags[80];
1962 char *psz = szEFlags;
1963 uint32_t efl = pCtx->eflags.u32;
1964 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1965 {
1966 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1967 if (pszAdd)
1968 {
1969 strcpy(psz, pszAdd);
1970 psz += strlen(pszAdd);
1971 *psz++ = ' ';
1972 }
1973 }
1974 psz[-1] = '\0';
1975
1976
1977 /*
1978 * Format the registers.
1979 */
1980 if (CPUMIsGuestIn64BitCode(pVCpu))
1981 {
1982 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1983 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1984 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1985 "r14=%016RX64 r15=%016RX64\n"
1986 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1987 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1988 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1989 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1990 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1991 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1992 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1993 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1994 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1995 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1996 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1997 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1998 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1999 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2000 ,
2001 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
2002 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
2003 pCtx->r14, pCtx->r15,
2004 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
2005 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2006 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2007 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2008 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2009 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2010 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2011 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
2012 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
2013 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
2014 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
2015 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2016 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2017 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2018 }
2019 else
2020 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
2021 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
2022 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
2023 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
2024 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
2025 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
2026 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
2027 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
2028 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
2029 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2030 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2031 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2032 ,
2033 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
2034 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
2035 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
2036 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
2037 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
2038 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
2039 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
2040 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
2041 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
2042 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2043 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2044 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2045
2046 Log(("FPU:\n"
2047 "FCW=%04x FSW=%04x FTW=%02x\n"
2048 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
2049 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
2050 ,
2051 pCtx->fpu.FCW, pCtx->fpu.FSW, pCtx->fpu.FTW,
2052 pCtx->fpu.FOP, pCtx->fpu.FPUIP, pCtx->fpu.CS, pCtx->fpu.Rsrvd1,
2053 pCtx->fpu.FPUDP, pCtx->fpu.DS, pCtx->fpu.Rsrvd2,
2054 pCtx->fpu.MXCSR, pCtx->fpu.MXCSR_MASK));
2055
2056
2057 Log(("MSR:\n"
2058 "EFER =%016RX64\n"
2059 "PAT =%016RX64\n"
2060 "STAR =%016RX64\n"
2061 "CSTAR =%016RX64\n"
2062 "LSTAR =%016RX64\n"
2063 "SFMASK =%016RX64\n"
2064 "KERNELGSBASE =%016RX64\n",
2065 pCtx->msrEFER,
2066 pCtx->msrPAT,
2067 pCtx->msrSTAR,
2068 pCtx->msrCSTAR,
2069 pCtx->msrLSTAR,
2070 pCtx->msrSFMASK,
2071 pCtx->msrKERNELGSBASE));
2072
2073}
2074
2075#endif /* VBOX_STRICT */
2076
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette