VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 48227

Last change on this file since 48227 was 48218, checked in by vboxsync, 11 years ago

VMM: Addressed a rare corner case stale TLB entry issue.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 72.3 KB
Line 
1/* $Id: HMR0.cpp 48218 2013-09-01 16:31:26Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31#include <iprt/assert.h>
32#include <iprt/asm.h>
33#include <iprt/asm-amd64-x86.h>
34#include <iprt/cpuset.h>
35#include <iprt/mem.h>
36#include <iprt/memobj.h>
37#include <iprt/once.h>
38#include <iprt/param.h>
39#include <iprt/power.h>
40#include <iprt/string.h>
41#include <iprt/thread.h>
42#include <iprt/x86.h>
43#include "HMVMXR0.h"
44#include "HMSVMR0.h"
45
46
47/*******************************************************************************
48* Internal Functions *
49*******************************************************************************/
50static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
51static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
55static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
56
57
58/*******************************************************************************
59* Structures and Typedefs *
60*******************************************************************************/
61/**
62 * This is used to manage the status code of a RTMpOnAll in HM.
63 */
64typedef struct HMR0FIRSTRC
65{
66 /** The status code. */
67 int32_t volatile rc;
68 /** The ID of the CPU reporting the first failure. */
69 RTCPUID volatile idCpu;
70} HMR0FIRSTRC;
71/** Pointer to a first return code structure. */
72typedef HMR0FIRSTRC *PHMR0FIRSTRC;
73
74
75/*******************************************************************************
76* Global Variables *
77*******************************************************************************/
78/**
79 * Global data.
80 */
81static struct
82{
83 /** Per CPU globals. */
84 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
85
86 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
87 * @{ */
88 DECLR0CALLBACKMEMBER(int, pfnEnterSession,(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
89 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback,(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
90 DECLR0CALLBACKMEMBER(int, pfnSaveHostState,(PVM pVM, PVMCPU pVCpu));
91 DECLR0CALLBACKMEMBER(int, pfnRunGuestCode,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
92 DECLR0CALLBACKMEMBER(int, pfnEnableCpu,(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
93 bool fEnabledByHost, void *pvArg));
94 DECLR0CALLBACKMEMBER(int, pfnDisableCpu,(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
95 DECLR0CALLBACKMEMBER(int, pfnInitVM,(PVM pVM));
96 DECLR0CALLBACKMEMBER(int, pfnTermVM,(PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnSetupVM,(PVM pVM));
98 /** @} */
99
100 /** Maximum ASID allowed. */
101 uint32_t uMaxAsid;
102
103 /** VT-x data. */
104 struct
105 {
106 /** Set to by us to indicate VMX is supported by the CPU. */
107 bool fSupported;
108 /** Whether we're using SUPR0EnableVTx or not. */
109 bool fUsingSUPR0EnableVTx;
110 /** Whether we're using the preemption timer or not. */
111 bool fUsePreemptTimer;
112 /** The shift mask employed by the VMX-Preemption timer. */
113 uint8_t cPreemptTimerShift;
114
115 /** Host CR4 value (set by ring-0 VMX init) */
116 /** @todo This isn't used for anything relevant. Remove later? */
117 uint64_t u64HostCr4;
118
119 /** Host EFER value (set by ring-0 VMX init) */
120 uint64_t u64HostEfer;
121
122 /** VMX MSR values */
123 VMXMSRS Msrs;
124
125 /* Last instruction error */
126 uint32_t ulLastInstrError;
127 } vmx;
128
129 /** AMD-V information. */
130 struct
131 {
132 /* HWCR MSR (for diagnostics) */
133 uint64_t u64MsrHwcr;
134
135 /** SVM revision. */
136 uint32_t u32Rev;
137
138 /** SVM feature bits from cpuid 0x8000000a */
139 uint32_t u32Features;
140
141 /** Set by us to indicate SVM is supported by the CPU. */
142 bool fSupported;
143 } svm;
144 /** Saved error from detection */
145 int32_t lLastError;
146
147 struct
148 {
149 uint32_t u32AMDFeatureECX;
150 uint32_t u32AMDFeatureEDX;
151 } cpuid;
152
153 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
154 * enabled and disabled each time it's used to execute guest code. */
155 bool fGlobalInit;
156 /** Indicates whether the host is suspending or not. We'll refuse a few
157 * actions when the host is being suspended to speed up the suspending and
158 * avoid trouble. */
159 volatile bool fSuspended;
160
161 /** Whether we've already initialized all CPUs.
162 * @remarks We could check the EnableAllCpusOnce state, but this is
163 * simpler and hopefully easier to understand. */
164 bool fEnabled;
165 /** Serialize initialization in HMR0EnableAllCpus. */
166 RTONCE EnableAllCpusOnce;
167} g_HvmR0;
168
169
170
171/**
172 * Initializes a first return code structure.
173 *
174 * @param pFirstRc The structure to init.
175 */
176static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
177{
178 pFirstRc->rc = VINF_SUCCESS;
179 pFirstRc->idCpu = NIL_RTCPUID;
180}
181
182
183/**
184 * Try set the status code (success ignored).
185 *
186 * @param pFirstRc The first return code structure.
187 * @param rc The status code.
188 */
189static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
190{
191 if ( RT_FAILURE(rc)
192 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
193 pFirstRc->idCpu = RTMpCpuId();
194}
195
196
197/**
198 * Get the status code of a first return code structure.
199 *
200 * @returns The status code; VINF_SUCCESS or error status, no informational or
201 * warning errors.
202 * @param pFirstRc The first return code structure.
203 */
204static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
205{
206 return pFirstRc->rc;
207}
208
209
210#ifdef VBOX_STRICT
211/**
212 * Get the CPU ID on which the failure status code was reported.
213 *
214 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
215 * @param pFirstRc The first return code structure.
216 */
217static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
218{
219 return pFirstRc->idCpu;
220}
221#endif /* VBOX_STRICT */
222
223
224/** @name Dummy callback handlers.
225 * @{ */
226
227static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
228{
229 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
230 return VINF_SUCCESS;
231}
232
233static DECLCALLBACK(int) hmR0DummyLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
234{
235 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
236 return VINF_SUCCESS;
237}
238
239static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
240{
241 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
242}
243
244static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
245 bool fEnabledBySystem, void *pvArg)
246{
247 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem); NOREF(pvArg);
248 return VINF_SUCCESS;
249}
250
251static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
252{
253 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
254 return VINF_SUCCESS;
255}
256
257static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
258{
259 NOREF(pVM);
260 return VINF_SUCCESS;
261}
262
263static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
264{
265 NOREF(pVM);
266 return VINF_SUCCESS;
267}
268
269static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
270{
271 NOREF(pVM);
272 return VINF_SUCCESS;
273}
274
275static DECLCALLBACK(int) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
276{
277 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
278 return VINF_SUCCESS;
279}
280
281static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
282{
283 NOREF(pVM); NOREF(pVCpu);
284 return VINF_SUCCESS;
285}
286
287static DECLCALLBACK(int) hmR0DummyLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
288{
289 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
290 return VINF_SUCCESS;
291}
292
293/** @} */
294
295
296/**
297 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
298 * Down at the Rate Specified" erratum.
299 *
300 * Errata names and related steppings:
301 * - BA86 - D0.
302 * - AAX65 - C2.
303 * - AAU65 - C2, K0.
304 * - AAO95 - B1.
305 * - AAT59 - C2.
306 * - AAK139 - D0.
307 * - AAM126 - C0, C1, D0.
308 * - AAN92 - B1.
309 * - AAJ124 - C0, D0.
310 *
311 * - AAP86 - B1.
312 *
313 * Steppings: B1, C0, C1, C2, D0, K0.
314 *
315 * @returns true if subject to it, false if not.
316 */
317static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
318{
319 uint32_t u = ASMCpuId_EAX(1);
320 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
321 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
322 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
323 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
324 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
325 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
326 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
327 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
328 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
329 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
330 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
331 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
332 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
333 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
334 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
335 )
336 return true;
337 return false;
338}
339
340
341/**
342 * Intel specific initialization code.
343 *
344 * @returns VBox status code (will only fail if out of memory).
345 */
346static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
347{
348 /*
349 * Check that all the required VT-x features are present.
350 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
351 */
352 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
353 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
354 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
355 )
356 {
357 /** @todo move this into a separate function. */
358 g_HvmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
359
360 /*
361 * First try use native kernel API for controlling VT-x.
362 * (This is only supported by some Mac OS X kernels atm.)
363 */
364 int rc = g_HvmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
365 g_HvmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
366 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
367 {
368 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
369 if (RT_SUCCESS(rc))
370 {
371 g_HvmR0.vmx.fSupported = true;
372 rc = SUPR0EnableVTx(false /* fEnable */);
373 AssertLogRelRC(rc);
374 }
375 }
376 else
377 {
378 /* We need to check if VT-x has been properly initialized on all
379 CPUs. Some BIOSes do a lousy job. */
380 HMR0FIRSTRC FirstRc;
381 hmR0FirstRcInit(&FirstRc);
382 g_HvmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
383 if (RT_SUCCESS(g_HvmR0.lLastError))
384 g_HvmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
385 }
386 if (RT_SUCCESS(g_HvmR0.lLastError))
387 {
388 /* Reread in case we've changed it. */
389 g_HvmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
390
391 if ( (g_HvmR0.vmx.Msrs.u64FeatureCtrl & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
392 == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
393 {
394 /*
395 * Read all relevant registers and MSRs.
396 */
397 g_HvmR0.vmx.u64HostCr4 = ASMGetCR4();
398 g_HvmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
399 g_HvmR0.vmx.Msrs.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
400 g_HvmR0.vmx.Msrs.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
401 g_HvmR0.vmx.Msrs.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
402 g_HvmR0.vmx.Msrs.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
403 g_HvmR0.vmx.Msrs.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
404 g_HvmR0.vmx.Msrs.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
405 g_HvmR0.vmx.Msrs.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
406 g_HvmR0.vmx.Msrs.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
407 g_HvmR0.vmx.Msrs.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
408 g_HvmR0.vmx.Msrs.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
409 g_HvmR0.vmx.Msrs.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
410 /* VPID 16 bits ASID. */
411 g_HvmR0.uMaxAsid = 0x10000; /* exclusive */
412
413 if (g_HvmR0.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
414 {
415 g_HvmR0.vmx.Msrs.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
416 if (g_HvmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
417 g_HvmR0.vmx.Msrs.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
418
419 if (g_HvmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
420 g_HvmR0.vmx.Msrs.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
421 }
422
423 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
424 {
425 /*
426 * Enter root mode
427 */
428 RTR0MEMOBJ hScatchMemObj;
429 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
430 if (RT_FAILURE(rc))
431 {
432 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,true) -> %Rrc\n", rc));
433 return rc;
434 }
435
436 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
437 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
438 ASMMemZeroPage(pvScatchPage);
439
440 /* Set revision dword at the beginning of the structure. */
441 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HvmR0.vmx.Msrs.u64BasicInfo);
442
443 /* Make sure we don't get rescheduled to another cpu during this probe. */
444 RTCCUINTREG fFlags = ASMIntDisableFlags();
445
446 /*
447 * Check CR4.VMXE
448 */
449 g_HvmR0.vmx.u64HostCr4 = ASMGetCR4();
450 if (!(g_HvmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
451 {
452 /* In theory this bit could be cleared behind our back. Which would cause
453 #UD faults when we try to execute the VMX instructions... */
454 ASMSetCR4(g_HvmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
455 }
456
457 /*
458 * The only way of checking if we're in VMX root mode or not is to try and enter it.
459 * There is no instruction or control bit that tells us if we're in VMX root mode.
460 * Therefore, try and enter VMX root mode here.
461 */
462 rc = VMXEnable(HCPhysScratchPage);
463 if (RT_SUCCESS(rc))
464 {
465 g_HvmR0.vmx.fSupported = true;
466 VMXDisable();
467 }
468 else
469 {
470 /*
471 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
472 * it will crash the host when we enter raw mode, because:
473 *
474 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
475 * this bit), and
476 * (b) turning off paging causes a #GP (unavoidable when switching
477 * from long to 32 bits mode or 32 bits to PAE).
478 *
479 * They should fix their code, but until they do we simply refuse to run.
480 */
481 g_HvmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
482 }
483
484 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
485 if it wasn't so before (some software could incorrectly
486 think it's in VMX mode). */
487 ASMSetCR4(g_HvmR0.vmx.u64HostCr4);
488 ASMSetFlags(fFlags);
489
490 RTR0MemObjFree(hScatchMemObj, false);
491 }
492 }
493 else
494 {
495 AssertFailed(); /* can't hit this case anymore */
496 g_HvmR0.lLastError = VERR_VMX_ILLEGAL_FEATURE_CONTROL_MSR;
497 }
498
499 if (g_HvmR0.vmx.fSupported)
500 {
501 /* Call the global VT-x initialization routine. */
502 rc = VMXR0GlobalInit();
503 if (RT_FAILURE(rc))
504 g_HvmR0.lLastError = rc;
505
506 /*
507 * Install the VT-x methods.
508 */
509 g_HvmR0.pfnEnterSession = VMXR0Enter;
510 g_HvmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
511 g_HvmR0.pfnSaveHostState = VMXR0SaveHostState;
512 g_HvmR0.pfnRunGuestCode = VMXR0RunGuestCode;
513 g_HvmR0.pfnEnableCpu = VMXR0EnableCpu;
514 g_HvmR0.pfnDisableCpu = VMXR0DisableCpu;
515 g_HvmR0.pfnInitVM = VMXR0InitVM;
516 g_HvmR0.pfnTermVM = VMXR0TermVM;
517 g_HvmR0.pfnSetupVM = VMXR0SetupVM;
518
519 /*
520 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
521 * Timer Does Not Count Down at the Rate Specified" erratum.
522 */
523 if (g_HvmR0.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
524 {
525 g_HvmR0.vmx.fUsePreemptTimer = true;
526 g_HvmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HvmR0.vmx.Msrs.u64Misc);
527 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
528 g_HvmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
529 }
530 }
531 }
532#ifdef LOG_ENABLED
533 else
534 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HvmR0.lLastError);
535#endif
536 }
537 else
538 g_HvmR0.lLastError = VERR_VMX_NO_VMX;
539 return VINF_SUCCESS;
540}
541
542
543/**
544 * AMD-specific initialization code.
545 *
546 * @returns VBox status code.
547 */
548static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
549{
550 /*
551 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
552 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
553 */
554 int rc;
555 if ( (g_HvmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
556 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
557 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
558 && ASMIsValidExtRange(uMaxExtLeaf)
559 && uMaxExtLeaf >= 0x8000000a
560 )
561 {
562 /* Call the global AMD-V initialization routine. */
563 rc = SVMR0GlobalInit();
564 if (RT_FAILURE(rc))
565 {
566 g_HvmR0.lLastError = rc;
567 return rc;
568 }
569
570 /*
571 * Install the AMD-V methods.
572 */
573 g_HvmR0.pfnEnterSession = SVMR0Enter;
574 g_HvmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
575 g_HvmR0.pfnSaveHostState = SVMR0SaveHostState;
576 g_HvmR0.pfnRunGuestCode = SVMR0RunGuestCode;
577 g_HvmR0.pfnEnableCpu = SVMR0EnableCpu;
578 g_HvmR0.pfnDisableCpu = SVMR0DisableCpu;
579 g_HvmR0.pfnInitVM = SVMR0InitVM;
580 g_HvmR0.pfnTermVM = SVMR0TermVM;
581 g_HvmR0.pfnSetupVM = SVMR0SetupVM;
582
583 /* Query AMD features. */
584 uint32_t u32Dummy;
585 ASMCpuId(0x8000000a, &g_HvmR0.svm.u32Rev, &g_HvmR0.uMaxAsid, &u32Dummy, &g_HvmR0.svm.u32Features);
586
587 /*
588 * We need to check if AMD-V has been properly initialized on all CPUs.
589 * Some BIOSes might do a poor job.
590 */
591 HMR0FIRSTRC FirstRc;
592 hmR0FirstRcInit(&FirstRc);
593 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
594 AssertRC(rc);
595 if (RT_SUCCESS(rc))
596 rc = hmR0FirstRcGetStatus(&FirstRc);
597#ifndef DEBUG_bird
598 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
599 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
600#endif
601 if (RT_SUCCESS(rc))
602 {
603 /* Read the HWCR MSR for diagnostics. */
604 g_HvmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
605 g_HvmR0.svm.fSupported = true;
606 }
607 else
608 g_HvmR0.lLastError = rc;
609 }
610 else
611 {
612 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
613 g_HvmR0.lLastError = VERR_SVM_NO_SVM;
614 }
615 return rc;
616}
617
618
619/**
620 * Does global Ring-0 HM initialization (at module init).
621 *
622 * @returns VBox status code.
623 */
624VMMR0_INT_DECL(int) HMR0Init(void)
625{
626 /*
627 * Initialize the globals.
628 */
629 g_HvmR0.fEnabled = false;
630 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
631 g_HvmR0.EnableAllCpusOnce = s_OnceInit;
632 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
633 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
634
635 /* Fill in all callbacks with placeholders. */
636 g_HvmR0.pfnEnterSession = hmR0DummyEnter;
637 g_HvmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
638 g_HvmR0.pfnSaveHostState = hmR0DummySaveHostState;
639 g_HvmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
640 g_HvmR0.pfnEnableCpu = hmR0DummyEnableCpu;
641 g_HvmR0.pfnDisableCpu = hmR0DummyDisableCpu;
642 g_HvmR0.pfnInitVM = hmR0DummyInitVM;
643 g_HvmR0.pfnTermVM = hmR0DummyTermVM;
644 g_HvmR0.pfnSetupVM = hmR0DummySetupVM;
645
646 /* Default is global VT-x/AMD-V init. */
647 g_HvmR0.fGlobalInit = true;
648
649 /*
650 * Make sure aCpuInfo is big enough for all the CPUs on this system.
651 */
652 if (RTMpGetArraySize() > RT_ELEMENTS(g_HvmR0.aCpuInfo))
653 {
654 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HvmR0.aCpuInfo)));
655 return VERR_TOO_MANY_CPUS;
656 }
657
658 /*
659 * Check for VT-x and AMD-V capabilities.
660 */
661 int rc;
662 if (ASMHasCpuId())
663 {
664 /* Standard features. */
665 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
666 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
667 if (ASMIsValidStdRange(uMaxLeaf))
668 {
669 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
670 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
671
672 /* Query AMD features. */
673 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
674 if (ASMIsValidExtRange(uMaxExtLeaf))
675 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
676 &g_HvmR0.cpuid.u32AMDFeatureECX,
677 &g_HvmR0.cpuid.u32AMDFeatureEDX);
678 else
679 g_HvmR0.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureEDX = 0;
680
681 /* Go to CPU specific initialization code. */
682 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
683 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
684 {
685 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
686 if (RT_FAILURE(rc))
687 return rc;
688 }
689 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
690 {
691 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
692 if (RT_FAILURE(rc))
693 return rc;
694 }
695 else
696 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
697 }
698 else
699 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
700 }
701 else
702 g_HvmR0.lLastError = VERR_HM_NO_CPUID;
703
704 /*
705 * Register notification callbacks that we can use to disable/enable CPUs
706 * when brought offline/online or suspending/resuming.
707 */
708 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
709 {
710 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
711 AssertRC(rc);
712
713 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
714 AssertRC(rc);
715 }
716
717 /* We return success here because module init shall not fail if HM
718 fails to initialize. */
719 return VINF_SUCCESS;
720}
721
722
723/**
724 * Does global Ring-0 HM termination (at module termination).
725 *
726 * @returns VBox status code.
727 */
728VMMR0_INT_DECL(int) HMR0Term(void)
729{
730 int rc;
731 if ( g_HvmR0.vmx.fSupported
732 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
733 {
734 /*
735 * Simple if the host OS manages VT-x.
736 */
737 Assert(g_HvmR0.fGlobalInit);
738 rc = SUPR0EnableVTx(false /* fEnable */);
739
740 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++)
741 {
742 g_HvmR0.aCpuInfo[iCpu].fConfigured = false;
743 Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
744 }
745 }
746 else
747 {
748 Assert(!g_HvmR0.vmx.fUsingSUPR0EnableVTx);
749 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
750 {
751 /* Doesn't really matter if this fails. */
752 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
753 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
754 }
755 else
756 rc = VINF_SUCCESS;
757
758 /*
759 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
760 */
761 if (g_HvmR0.fGlobalInit)
762 {
763 HMR0FIRSTRC FirstRc;
764 hmR0FirstRcInit(&FirstRc);
765 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
766 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
767 if (RT_SUCCESS(rc))
768 {
769 rc = hmR0FirstRcGetStatus(&FirstRc);
770 AssertMsgRC(rc, ("%u: %Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
771 }
772 }
773
774 /*
775 * Free the per-cpu pages used for VT-x and AMD-V.
776 */
777 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
778 {
779 if (g_HvmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
780 {
781 RTR0MemObjFree(g_HvmR0.aCpuInfo[i].hMemObj, false);
782 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
783 }
784 }
785 }
786
787 /** @todo This needs cleaning up. There's no matching
788 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
789 * should move into their respective modules. */
790 /* Finally, call global VT-x/AMD-V termination. */
791 if (g_HvmR0.vmx.fSupported)
792 VMXR0GlobalTerm();
793 else if (g_HvmR0.svm.fSupported)
794 SVMR0GlobalTerm();
795
796 return rc;
797}
798
799
800/**
801 * Worker function used by hmR0PowerCallback and HMR0Init to initalize
802 * VT-x on a CPU.
803 *
804 * @param idCpu The identifier for the CPU the function is called on.
805 * @param pvUser1 Pointer to the first RC structure.
806 * @param pvUser2 Ignored.
807 */
808static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
809{
810 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
811 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
812 NOREF(pvUser2);
813
814 /*
815 * Both the LOCK and VMXON bit must be set; otherwise VMXON will generate a #GP.
816 * Once the lock bit is set, this MSR can no longer be modified.
817 */
818 uint64_t fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
819 if ( !(fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
820 || ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
821 == MSR_IA32_FEATURE_CONTROL_VMXON ) /* Some BIOSes forget to set the locked bit. */
822 )
823 {
824 /* MSR is not yet locked; we can change it ourselves here. */
825 ASMWrMsr(MSR_IA32_FEATURE_CONTROL,
826 g_HvmR0.vmx.Msrs.u64FeatureCtrl | MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK);
827 fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
828 }
829
830 int rc;
831 if ((fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
832 == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK))
833 {
834 rc = VINF_SUCCESS;
835 }
836 else
837 rc = VERR_VMX_MSR_LOCKED_OR_DISABLED;
838
839 hmR0FirstRcSetStatus(pFirstRc, rc);
840}
841
842
843/**
844 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
845 * on a CPU.
846 *
847 * @param idCpu The identifier for the CPU the function is called on.
848 * @param pvUser1 Pointer to the first RC structure.
849 * @param pvUser2 Ignored.
850 */
851static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
852{
853 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
854 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
855 NOREF(pvUser2);
856
857 /* Check if SVM is disabled. */
858 int rc;
859 uint64_t fVmCr = ASMRdMsr(MSR_K8_VM_CR);
860 if (!(fVmCr & MSR_K8_VM_CR_SVM_DISABLE))
861 {
862 /* Turn on SVM in the EFER MSR. */
863 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
864 if (fEfer & MSR_K6_EFER_SVME)
865 rc = VERR_SVM_IN_USE;
866 else
867 {
868 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
869
870 /* Paranoia. */
871 fEfer = ASMRdMsr(MSR_K6_EFER);
872 if (fEfer & MSR_K6_EFER_SVME)
873 {
874 /* Restore previous value. */
875 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
876 rc = VINF_SUCCESS;
877 }
878 else
879 rc = VERR_SVM_ILLEGAL_EFER_MSR;
880 }
881 }
882 else
883 rc = VERR_SVM_DISABLED;
884
885 hmR0FirstRcSetStatus(pFirstRc, rc);
886}
887
888
889/**
890 * Enable VT-x or AMD-V on the current CPU
891 *
892 * @returns VBox status code.
893 * @param pVM Pointer to the VM (can be NULL).
894 * @param idCpu The identifier for the CPU the function is called on.
895 */
896static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
897{
898 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
899
900 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
901 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
902 Assert(!pCpu->fConfigured);
903
904 pCpu->idCpu = idCpu;
905 pCpu->uCurrentAsid = 0; /* we'll aways increment this the first time (host uses ASID 0) */
906 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
907
908 int rc;
909 if (g_HvmR0.vmx.fSupported && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
910 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HvmR0.vmx.Msrs);
911 else
912 {
913 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
914 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
915 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
916
917 if (g_HvmR0.vmx.fSupported)
918 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, &g_HvmR0.vmx.Msrs);
919 else
920 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, NULL /* pvArg */);
921 }
922 AssertRC(rc);
923 if (RT_SUCCESS(rc))
924 pCpu->fConfigured = true;
925
926 return rc;
927}
928
929
930/**
931 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
932 * is to be called on the target cpus.
933 *
934 * @param idCpu The identifier for the CPU the function is called on.
935 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
936 * @param pvUser2 The 2nd user argument.
937 */
938static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
939{
940 PVM pVM = (PVM)pvUser1; /* can be NULL! */
941 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
942 AssertReturnVoid(g_HvmR0.fGlobalInit);
943 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
944}
945
946
947/**
948 * RTOnce callback employed by HMR0EnableAllCpus.
949 *
950 * @returns VBox status code.
951 * @param pvUser Pointer to the VM.
952 * @param pvUserIgnore NULL, ignored.
953 */
954static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
955{
956 PVM pVM = (PVM)pvUser;
957
958 /*
959 * Indicate that we've initialized.
960 *
961 * Note! There is a potential race between this function and the suspend
962 * notification. Kind of unlikely though, so ignored for now.
963 */
964 AssertReturn(!g_HvmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
965 ASMAtomicWriteBool(&g_HvmR0.fEnabled, true);
966
967 /*
968 * The global init variable is set by the first VM.
969 */
970 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
971
972 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
973 {
974 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
975 g_HvmR0.aCpuInfo[i].fConfigured = false;
976 g_HvmR0.aCpuInfo[i].cTlbFlushes = 0;
977 g_HvmR0.aCpuInfo[i].uCurrentAsid = 0;
978 }
979
980 int rc;
981 if ( g_HvmR0.vmx.fSupported
982 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
983 {
984 /*
985 * Global VT-x initialization API (only darwin for now).
986 */
987 rc = SUPR0EnableVTx(true /* fEnable */);
988 if (RT_SUCCESS(rc))
989 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
990 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
991 else
992 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
993 }
994 else
995 {
996 /*
997 * We're doing the job ourselves.
998 */
999 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
1000 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
1001 {
1002 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
1003
1004 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
1005 {
1006 rc = RTR0MemObjAllocCont(&g_HvmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, true /* executable R0 mapping */);
1007 AssertLogRelRCReturn(rc, rc);
1008
1009 void *pvR0 = RTR0MemObjAddress(g_HvmR0.aCpuInfo[i].hMemObj); Assert(pvR0);
1010 ASMMemZeroPage(pvR0);
1011 }
1012 }
1013
1014 rc = VINF_SUCCESS;
1015 }
1016
1017 if ( RT_SUCCESS(rc)
1018 && g_HvmR0.fGlobalInit)
1019 {
1020 /* First time, so initialize each cpu/core. */
1021 HMR0FIRSTRC FirstRc;
1022 hmR0FirstRcInit(&FirstRc);
1023 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
1024 if (RT_SUCCESS(rc))
1025 rc = hmR0FirstRcGetStatus(&FirstRc);
1026 AssertMsgRC(rc, ("hmR0EnableAllCpuOnce failed for cpu %d with rc=%d\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
1027 }
1028
1029 return rc;
1030}
1031
1032
1033/**
1034 * Sets up HM on all cpus.
1035 *
1036 * @returns VBox status code.
1037 * @param pVM Pointer to the VM.
1038 */
1039VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
1040{
1041 /* Make sure we don't touch HM after we've disabled HM in
1042 preparation of a suspend. */
1043 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1044 return VERR_HM_SUSPEND_PENDING;
1045
1046 return RTOnce(&g_HvmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1047}
1048
1049
1050/**
1051 * Disable VT-x or AMD-V on the current CPU.
1052 *
1053 * @returns VBox status code.
1054 * @param idCpu The identifier for the CPU the function is called on.
1055 */
1056static int hmR0DisableCpu(RTCPUID idCpu)
1057{
1058 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1059
1060 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1061 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
1062 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1063 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1064
1065 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1066 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1067
1068 int rc;
1069 if (pCpu->fConfigured)
1070 {
1071 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1072 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1073 if (idCpu == RTMpCpuId())
1074 {
1075 rc = g_HvmR0.pfnDisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1076 AssertRC(rc);
1077 }
1078 else
1079 {
1080 pCpu->fIgnoreAMDVInUseError = true;
1081 rc = VINF_SUCCESS;
1082 }
1083
1084 pCpu->fConfigured = false;
1085 }
1086 else
1087 rc = VINF_SUCCESS; /* nothing to do */
1088
1089 pCpu->uCurrentAsid = 0;
1090 return rc;
1091}
1092
1093
1094/**
1095 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
1096 * is to be called on the target CPUs.
1097 *
1098 * @param idCpu The identifier for the CPU the function is called on.
1099 * @param pvUser1 The 1st user argument.
1100 * @param pvUser2 Opaque pointer to the FirstRc.
1101 */
1102static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1103{
1104 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1105 AssertReturnVoid(g_HvmR0.fGlobalInit);
1106 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1107}
1108
1109
1110/**
1111 * Callback function invoked when a cpu goes online or offline.
1112 *
1113 * @param enmEvent The Mp event.
1114 * @param idCpu The identifier for the CPU the function is called on.
1115 * @param pvData Opaque data (PVM pointer).
1116 */
1117static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1118{
1119 NOREF(pvData);
1120
1121 /*
1122 * We only care about uninitializing a CPU that is going offline. When a
1123 * CPU comes online, the initialization is done lazily in HMR0Enter().
1124 */
1125 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1126 switch (enmEvent)
1127 {
1128 case RTMPEVENT_OFFLINE:
1129 {
1130 int rc = hmR0DisableCpu(idCpu);
1131 AssertRC(rc);
1132 break;
1133 }
1134
1135 default:
1136 break;
1137 }
1138}
1139
1140
1141/**
1142 * Called whenever a system power state change occurs.
1143 *
1144 * @param enmEvent The Power event.
1145 * @param pvUser User argument.
1146 */
1147static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1148{
1149 NOREF(pvUser);
1150 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1151
1152#ifdef LOG_ENABLED
1153 if (enmEvent == RTPOWEREVENT_SUSPEND)
1154 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1155 else
1156 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1157#endif
1158
1159 if (enmEvent == RTPOWEREVENT_SUSPEND)
1160 ASMAtomicWriteBool(&g_HvmR0.fSuspended, true);
1161
1162 if (g_HvmR0.fEnabled)
1163 {
1164 int rc;
1165 HMR0FIRSTRC FirstRc;
1166 hmR0FirstRcInit(&FirstRc);
1167
1168 if (enmEvent == RTPOWEREVENT_SUSPEND)
1169 {
1170 if (g_HvmR0.fGlobalInit)
1171 {
1172 /* Turn off VT-x or AMD-V on all CPUs. */
1173 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1174 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1175 }
1176 /* else nothing to do here for the local init case */
1177 }
1178 else
1179 {
1180 /* Reinit the CPUs from scratch as the suspend state might have
1181 messed with the MSRs. (lousy BIOSes as usual) */
1182 if (g_HvmR0.vmx.fSupported)
1183 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1184 else
1185 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1186 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1187 if (RT_SUCCESS(rc))
1188 rc = hmR0FirstRcGetStatus(&FirstRc);
1189#ifdef LOG_ENABLED
1190 if (RT_FAILURE(rc))
1191 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1192#endif
1193 if (g_HvmR0.fGlobalInit)
1194 {
1195 /* Turn VT-x or AMD-V back on on all CPUs. */
1196 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1197 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1198 }
1199 /* else nothing to do here for the local init case */
1200 }
1201 }
1202
1203 if (enmEvent == RTPOWEREVENT_RESUME)
1204 ASMAtomicWriteBool(&g_HvmR0.fSuspended, false);
1205}
1206
1207
1208/**
1209 * Does Ring-0 per VM HM initialization.
1210 *
1211 * This will copy HM global into the VM structure and call the CPU specific
1212 * init routine which will allocate resources for each virtual CPU and such.
1213 *
1214 * @returns VBox status code.
1215 * @param pVM Pointer to the VM.
1216 */
1217VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1218{
1219 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1220
1221#ifdef LOG_ENABLED
1222 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1223#endif
1224
1225 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1226 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1227 return VERR_HM_SUSPEND_PENDING;
1228
1229 /*
1230 * Copy globals to the VM structure.
1231 */
1232 /** @todo r=ramshankar: Why do we do this for MSRs? We never change them in the
1233 * per-VM structures anyway... */
1234 pVM->hm.s.vmx.fSupported = g_HvmR0.vmx.fSupported;
1235 pVM->hm.s.svm.fSupported = g_HvmR0.svm.fSupported;
1236
1237 pVM->hm.s.vmx.fUsePreemptTimer = g_HvmR0.vmx.fUsePreemptTimer;
1238 pVM->hm.s.vmx.cPreemptTimerShift = g_HvmR0.vmx.cPreemptTimerShift;
1239 pVM->hm.s.vmx.u64HostCr4 = g_HvmR0.vmx.u64HostCr4;
1240 pVM->hm.s.vmx.u64HostEfer = g_HvmR0.vmx.u64HostEfer;
1241 pVM->hm.s.vmx.Msrs = g_HvmR0.vmx.Msrs;
1242 pVM->hm.s.svm.u64MsrHwcr = g_HvmR0.svm.u64MsrHwcr;
1243 pVM->hm.s.svm.u32Rev = g_HvmR0.svm.u32Rev;
1244 pVM->hm.s.svm.u32Features = g_HvmR0.svm.u32Features;
1245 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureECX;
1246 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HvmR0.cpuid.u32AMDFeatureEDX;
1247 pVM->hm.s.lLastError = g_HvmR0.lLastError;
1248
1249 pVM->hm.s.uMaxAsid = g_HvmR0.uMaxAsid;
1250
1251
1252 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1253 {
1254 pVM->hm.s.cMaxResumeLoops = 1024;
1255 if (RTThreadPreemptIsPendingTrusty())
1256 pVM->hm.s.cMaxResumeLoops = 8192;
1257 }
1258
1259 /*
1260 * Initialize some per CPU fields.
1261 */
1262 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1263 {
1264 PVMCPU pVCpu = &pVM->aCpus[i];
1265
1266 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1267
1268 /* Invalidate the last cpu we were running on. */
1269 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1270
1271 /* We'll aways increment this the first time (host uses ASID 0) */
1272 pVCpu->hm.s.uCurrentAsid = 0;
1273 }
1274
1275 /*
1276 * Call the hardware specific initialization method.
1277 */
1278 RTCCUINTREG fFlags = ASMIntDisableFlags();
1279 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1280 ASMSetFlags(fFlags);
1281
1282 int rc = g_HvmR0.pfnInitVM(pVM);
1283 return rc;
1284}
1285
1286
1287/**
1288 * Does Ring-0 per VM HM termination.
1289 *
1290 * @returns VBox status code.
1291 * @param pVM Pointer to the VM.
1292 */
1293VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1294{
1295 Log(("HMR0TermVM: %p\n", pVM));
1296 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1297
1298 /* Make sure we don't touch HM after we've disabled HM in preparation
1299 of a suspend. */
1300 /** @todo r=bird: This cannot be right, the termination functions are
1301 * just freeing memory and resetting pVM/pVCpu members...
1302 * ==> memory leak. */
1303 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1304
1305 /*
1306 * Call the hardware specific method.
1307 */
1308 RTCCUINTREG fFlags = ASMIntDisableFlags();
1309 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1310 ASMSetFlags(fFlags);
1311
1312 int rc = g_HvmR0.pfnTermVM(pVM);
1313 return rc;
1314}
1315
1316
1317/**
1318 * Sets up a VT-x or AMD-V session.
1319 *
1320 * This is mostly about setting up the hardware VM state.
1321 *
1322 * @returns VBox status code.
1323 * @param pVM Pointer to the VM.
1324 */
1325VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1326{
1327 Log(("HMR0SetupVM: %p\n", pVM));
1328 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1329
1330 /* Make sure we don't touch HM after we've disabled HM in
1331 preparation of a suspend. */
1332 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1333
1334 /*
1335 * Call the hardware specific setup VM method. This requires the CPU to be
1336 * enabled for AMD-V/VT-x and preemption to be prevented.
1337 */
1338 RTCCUINTREG fFlags = ASMIntDisableFlags();
1339 RTCPUID idCpu = RTMpCpuId();
1340 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1341
1342 /* On first entry we'll sync everything. */
1343 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1344 pVM->aCpus[i].hm.s.fContextUseFlags = (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1345
1346 /* Enable VT-x or AMD-V if local init is required. */
1347 int rc;
1348 if (!g_HvmR0.fGlobalInit)
1349 {
1350 rc = hmR0EnableCpu(pVM, idCpu);
1351 AssertReturnStmt(RT_SUCCESS_NP(rc), ASMSetFlags(fFlags), rc);
1352 }
1353
1354 /* Setup VT-x or AMD-V. */
1355 rc = g_HvmR0.pfnSetupVM(pVM);
1356
1357 /* Disable VT-x or AMD-V if local init was done before. */
1358 if (!g_HvmR0.fGlobalInit)
1359 {
1360 int rc2 = hmR0DisableCpu(idCpu);
1361 AssertRC(rc2);
1362 }
1363
1364 ASMSetFlags(fFlags);
1365 return rc;
1366}
1367
1368
1369/**
1370 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1371 * required for entering HM context.
1372 *
1373 * @returns VBox status code.
1374 * @param pvCpu Pointer to the VMCPU.
1375 *
1376 * @remarks No-long-jump zone!!!
1377 */
1378VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1379{
1380 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1381
1382 int rc = VINF_SUCCESS;
1383 RTCPUID idCpu = RTMpCpuId();
1384 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1385 AssertPtr(pCpu);
1386
1387 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1388 if (!pCpu->fConfigured)
1389 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1390
1391 /* Reload host-context (back from ring-3/migrated CPUs), reload host context & shared bits. */
1392 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE;
1393 pVCpu->hm.s.idEnteredCpu = idCpu;
1394 return rc;
1395}
1396
1397
1398/**
1399 * Enters the VT-x or AMD-V session.
1400 *
1401 * @returns VBox status code.
1402 * @param pVM Pointer to the VM.
1403 * @param pVCpu Pointer to the VMCPU.
1404 *
1405 * @remarks This is called with preemption disabled.
1406 */
1407VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1408{
1409 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1410 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1411 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1412
1413 /* Load the bare minimum state required for entering HM. */
1414 int rc = HMR0EnterCpu(pVCpu);
1415 AssertRCReturn(rc, rc);
1416
1417#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1418 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_5);
1419 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1420#endif
1421
1422 RTCPUID idCpu = RTMpCpuId();
1423 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1424 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1425 Assert(pCpu);
1426 Assert(pCtx);
1427 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1428
1429 rc = g_HvmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1430 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1431
1432 /* Load the host as we may be resuming code after a longjmp and quite
1433 possibly now be scheduled on a different CPU. */
1434 rc = g_HvmR0.pfnSaveHostState(pVM, pVCpu);
1435 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1436
1437#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1438 if (fStartedSet)
1439 PGMRZDynMapReleaseAutoSet(pVCpu);
1440#endif
1441
1442 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness
1443 and ring-3 calls. */
1444 if (RT_FAILURE(rc))
1445 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1446 return rc;
1447}
1448
1449
1450/**
1451 * Deinitializes the bare minimum state used for HM context and if necessary
1452 * disable HM on the CPU.
1453 *
1454 * @returns VBox status code.
1455 * @param pVCpu Pointer to the VMCPU.
1456 *
1457 * @remarks No-long-jump zone!!!
1458 */
1459VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1460{
1461 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1462
1463 RTCPUID idCpu = RTMpCpuId();
1464 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1465
1466 if ( !g_HvmR0.fGlobalInit
1467 && pCpu->fConfigured)
1468 {
1469 int rc = hmR0DisableCpu(idCpu);
1470 AssertRCReturn(rc, rc);
1471 Assert(!pCpu->fConfigured);
1472 }
1473
1474 /* Reset these to force a TLB flush for the next entry. */
1475 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1476 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1477 pVCpu->hm.s.uCurrentAsid = 0;
1478 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1479
1480 /* Clear the VCPU <-> host CPU mapping as we've left HM context. */
1481 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1482
1483 return VINF_SUCCESS;
1484}
1485
1486
1487/**
1488 * Thread-context hook for HM.
1489 *
1490 * @param enmEvent The thread-context event.
1491 * @param pvUser Opaque pointer to the VMCPU.
1492 */
1493VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1494{
1495 PVMCPU pVCpu = (PVMCPU)pvUser;
1496 Assert(pVCpu);
1497 Assert(g_HvmR0.pfnThreadCtxCallback);
1498
1499 g_HvmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HvmR0.fGlobalInit);
1500}
1501
1502
1503/**
1504 * Runs guest code in a hardware accelerated VM.
1505 *
1506 * @returns VBox status code.
1507 * @param pVM Pointer to the VM.
1508 * @param pVCpu Pointer to the VMCPU.
1509 *
1510 * @remarks Called with preemption disabled and after first having called
1511 * HMR0Enter.
1512 */
1513VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1514{
1515#ifdef VBOX_STRICT
1516 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[RTMpCpuId()];
1517 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1518 Assert(pCpu->fConfigured);
1519 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1520#endif
1521
1522#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1523 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_4);
1524 PGMRZDynMapStartAutoSet(pVCpu);
1525#endif
1526
1527 int rc = g_HvmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1528
1529#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1530 PGMRZDynMapReleaseAutoSet(pVCpu);
1531#endif
1532 return rc;
1533}
1534
1535#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1536
1537/**
1538 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1539 *
1540 * @returns VBox status code.
1541 * @param pVM Pointer to the VM.
1542 * @param pVCpu Pointer to the VMCPU.
1543 * @param pCtx Pointer to the guest CPU context.
1544 */
1545VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1546{
1547 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1548 if (pVM->hm.s.vmx.fSupported)
1549 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1550 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1551}
1552
1553
1554/**
1555 * Save guest debug state (64 bits guest mode & 32 bits host only)
1556 *
1557 * @returns VBox status code.
1558 * @param pVM Pointer to the VM.
1559 * @param pVCpu Pointer to the VMCPU.
1560 * @param pCtx Pointer to the guest CPU context.
1561 */
1562VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1563{
1564 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1565 if (pVM->hm.s.vmx.fSupported)
1566 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1567 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1568}
1569
1570
1571/**
1572 * Test the 32->64 bits switcher.
1573 *
1574 * @returns VBox status code.
1575 * @param pVM Pointer to the VM.
1576 */
1577VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1578{
1579 PVMCPU pVCpu = &pVM->aCpus[0];
1580 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1581 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1582 int rc;
1583
1584 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1585 if (pVM->hm.s.vmx.fSupported)
1586 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1587 else
1588 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1589 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1590
1591 return rc;
1592}
1593
1594#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
1595
1596/**
1597 * Returns suspend status of the host.
1598 *
1599 * @returns Suspend pending or not.
1600 */
1601VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1602{
1603 return ASMAtomicReadBool(&g_HvmR0.fSuspended);
1604}
1605
1606
1607/**
1608 * Returns the cpu structure for the current cpu.
1609 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1610 *
1611 * @returns The cpu structure pointer.
1612 */
1613VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpu(void)
1614{
1615 RTCPUID idCpu = RTMpCpuId();
1616 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1617 return &g_HvmR0.aCpuInfo[idCpu];
1618}
1619
1620
1621/**
1622 * Returns the cpu structure for the current cpu.
1623 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1624 *
1625 * @returns The cpu structure pointer.
1626 * @param idCpu id of the VCPU.
1627 */
1628VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpuEx(RTCPUID idCpu)
1629{
1630 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1631 return &g_HvmR0.aCpuInfo[idCpu];
1632}
1633
1634
1635/**
1636 * Save a pending IO read.
1637 *
1638 * @param pVCpu Pointer to the VMCPU.
1639 * @param GCPtrRip Address of IO instruction.
1640 * @param GCPtrRipNext Address of the next instruction.
1641 * @param uPort Port address.
1642 * @param uAndVal AND mask for saving the result in eax.
1643 * @param cbSize Read size.
1644 */
1645VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1646 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1647{
1648 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1649 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1650 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1651 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1652 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1653 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1654 return;
1655}
1656
1657
1658/**
1659 * Save a pending IO write.
1660 *
1661 * @param pVCpu Pointer to the VMCPU.
1662 * @param GCPtrRIP Address of IO instruction.
1663 * @param uPort Port address.
1664 * @param uAndVal AND mask for fetching the result from eax.
1665 * @param cbSize Read size.
1666 */
1667VMMR0_INT_DECL(void) HMR0SavePendingIOPortWrite(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1668 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1669{
1670 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_WRITE;
1671 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1672 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1673 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1674 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1675 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1676 return;
1677}
1678
1679
1680/**
1681 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1682 * switcher turns off paging.
1683 *
1684 * @returns VBox status code.
1685 * @param pVM Pointer to the VM.
1686 * @param enmSwitcher The switcher we're about to use.
1687 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1688 */
1689VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1690{
1691 Assert(!(ASMGetFlags() & X86_EFL_IF) || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1692
1693 *pfVTxDisabled = false;
1694
1695 /* No such issues with AMD-V */
1696 if (!g_HvmR0.vmx.fSupported)
1697 return VINF_SUCCESS;
1698
1699 /* Check if the swithcing we're up to is safe. */
1700 switch (enmSwitcher)
1701 {
1702 case VMMSWITCHER_32_TO_32:
1703 case VMMSWITCHER_PAE_TO_PAE:
1704 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1705
1706 case VMMSWITCHER_32_TO_PAE:
1707 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1708 case VMMSWITCHER_AMD64_TO_32:
1709 case VMMSWITCHER_AMD64_TO_PAE:
1710 break; /* unsafe switchers */
1711
1712 default:
1713 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1714 }
1715
1716 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1717 regardless of whether we're currently using VT-x or not. */
1718 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1719 {
1720 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1721 return VINF_SUCCESS;
1722 }
1723
1724 /** @todo Check if this code is presumtive wrt other VT-x users on the
1725 * system... */
1726
1727 /* Nothing to do if we haven't enabled VT-x. */
1728 if (!g_HvmR0.fEnabled)
1729 return VINF_SUCCESS;
1730
1731 /* Local init implies the CPU is currently not in VMX root mode. */
1732 if (!g_HvmR0.fGlobalInit)
1733 return VINF_SUCCESS;
1734
1735 /* Ok, disable VT-x. */
1736 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1737 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2);
1738
1739 *pfVTxDisabled = true;
1740 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1741 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1742 return VMXR0DisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1743}
1744
1745
1746/**
1747 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1748 * switcher turned off paging.
1749 *
1750 * @param pVM Pointer to the VM.
1751 * @param fVTxDisabled Whether VT-x was disabled or not.
1752 */
1753VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1754{
1755 Assert(!(ASMGetFlags() & X86_EFL_IF));
1756
1757 if (!fVTxDisabled)
1758 return; /* nothing to do */
1759
1760 Assert(g_HvmR0.vmx.fSupported);
1761 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1762 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1763 else
1764 {
1765 Assert(g_HvmR0.fEnabled);
1766 Assert(g_HvmR0.fGlobalInit);
1767
1768 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1769 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ);
1770
1771 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1772 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1773 VMXR0EnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, &g_HvmR0.vmx.Msrs);
1774 }
1775}
1776
1777#ifdef VBOX_STRICT
1778
1779/**
1780 * Dumps a descriptor.
1781 *
1782 * @param pDesc Descriptor to dump.
1783 * @param Sel Selector number.
1784 * @param pszMsg Message to prepend the log entry with.
1785 */
1786VMMR0DECL(void) HMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1787{
1788 /*
1789 * Make variable description string.
1790 */
1791 static struct
1792 {
1793 unsigned cch;
1794 const char *psz;
1795 } const s_aTypes[32] =
1796 {
1797# define STRENTRY(str) { sizeof(str) - 1, str }
1798
1799 /* system */
1800# if HC_ARCH_BITS == 64
1801 STRENTRY("Reserved0 "), /* 0x00 */
1802 STRENTRY("Reserved1 "), /* 0x01 */
1803 STRENTRY("LDT "), /* 0x02 */
1804 STRENTRY("Reserved3 "), /* 0x03 */
1805 STRENTRY("Reserved4 "), /* 0x04 */
1806 STRENTRY("Reserved5 "), /* 0x05 */
1807 STRENTRY("Reserved6 "), /* 0x06 */
1808 STRENTRY("Reserved7 "), /* 0x07 */
1809 STRENTRY("Reserved8 "), /* 0x08 */
1810 STRENTRY("TSS64Avail "), /* 0x09 */
1811 STRENTRY("ReservedA "), /* 0x0a */
1812 STRENTRY("TSS64Busy "), /* 0x0b */
1813 STRENTRY("Call64 "), /* 0x0c */
1814 STRENTRY("ReservedD "), /* 0x0d */
1815 STRENTRY("Int64 "), /* 0x0e */
1816 STRENTRY("Trap64 "), /* 0x0f */
1817# else
1818 STRENTRY("Reserved0 "), /* 0x00 */
1819 STRENTRY("TSS16Avail "), /* 0x01 */
1820 STRENTRY("LDT "), /* 0x02 */
1821 STRENTRY("TSS16Busy "), /* 0x03 */
1822 STRENTRY("Call16 "), /* 0x04 */
1823 STRENTRY("Task "), /* 0x05 */
1824 STRENTRY("Int16 "), /* 0x06 */
1825 STRENTRY("Trap16 "), /* 0x07 */
1826 STRENTRY("Reserved8 "), /* 0x08 */
1827 STRENTRY("TSS32Avail "), /* 0x09 */
1828 STRENTRY("ReservedA "), /* 0x0a */
1829 STRENTRY("TSS32Busy "), /* 0x0b */
1830 STRENTRY("Call32 "), /* 0x0c */
1831 STRENTRY("ReservedD "), /* 0x0d */
1832 STRENTRY("Int32 "), /* 0x0e */
1833 STRENTRY("Trap32 "), /* 0x0f */
1834# endif
1835 /* non system */
1836 STRENTRY("DataRO "), /* 0x10 */
1837 STRENTRY("DataRO Accessed "), /* 0x11 */
1838 STRENTRY("DataRW "), /* 0x12 */
1839 STRENTRY("DataRW Accessed "), /* 0x13 */
1840 STRENTRY("DataDownRO "), /* 0x14 */
1841 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1842 STRENTRY("DataDownRW "), /* 0x16 */
1843 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1844 STRENTRY("CodeEO "), /* 0x18 */
1845 STRENTRY("CodeEO Accessed "), /* 0x19 */
1846 STRENTRY("CodeER "), /* 0x1a */
1847 STRENTRY("CodeER Accessed "), /* 0x1b */
1848 STRENTRY("CodeConfEO "), /* 0x1c */
1849 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1850 STRENTRY("CodeConfER "), /* 0x1e */
1851 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1852# undef SYSENTRY
1853 };
1854# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1855 char szMsg[128];
1856 char *psz = &szMsg[0];
1857 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1858 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1859 psz += s_aTypes[i].cch;
1860
1861 if (pDesc->Gen.u1Present)
1862 ADD_STR(psz, "Present ");
1863 else
1864 ADD_STR(psz, "Not-Present ");
1865# if HC_ARCH_BITS == 64
1866 if (pDesc->Gen.u1Long)
1867 ADD_STR(psz, "64-bit ");
1868 else
1869 ADD_STR(psz, "Comp ");
1870# else
1871 if (pDesc->Gen.u1Granularity)
1872 ADD_STR(psz, "Page ");
1873 if (pDesc->Gen.u1DefBig)
1874 ADD_STR(psz, "32-bit ");
1875 else
1876 ADD_STR(psz, "16-bit ");
1877# endif
1878# undef ADD_STR
1879 *psz = '\0';
1880
1881 /*
1882 * Limit and Base and format the output.
1883 */
1884 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1885
1886# if HC_ARCH_BITS == 64
1887 uint64_t u32Base = X86DESC64_BASE(pDesc);
1888
1889 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1890 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1891# else
1892 uint32_t u32Base = X86DESC_BASE(pDesc);
1893
1894 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1895 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1896# endif
1897}
1898
1899
1900/**
1901 * Formats a full register dump.
1902 *
1903 * @param pVM Pointer to the VM.
1904 * @param pVCpu Pointer to the VMCPU.
1905 * @param pCtx Pointer to the CPU context.
1906 */
1907VMMR0DECL(void) HMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1908{
1909 NOREF(pVM);
1910
1911 /*
1912 * Format the flags.
1913 */
1914 static struct
1915 {
1916 const char *pszSet; const char *pszClear; uint32_t fFlag;
1917 } const s_aFlags[] =
1918 {
1919 { "vip",NULL, X86_EFL_VIP },
1920 { "vif",NULL, X86_EFL_VIF },
1921 { "ac", NULL, X86_EFL_AC },
1922 { "vm", NULL, X86_EFL_VM },
1923 { "rf", NULL, X86_EFL_RF },
1924 { "nt", NULL, X86_EFL_NT },
1925 { "ov", "nv", X86_EFL_OF },
1926 { "dn", "up", X86_EFL_DF },
1927 { "ei", "di", X86_EFL_IF },
1928 { "tf", NULL, X86_EFL_TF },
1929 { "nt", "pl", X86_EFL_SF },
1930 { "nz", "zr", X86_EFL_ZF },
1931 { "ac", "na", X86_EFL_AF },
1932 { "po", "pe", X86_EFL_PF },
1933 { "cy", "nc", X86_EFL_CF },
1934 };
1935 char szEFlags[80];
1936 char *psz = szEFlags;
1937 uint32_t efl = pCtx->eflags.u32;
1938 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1939 {
1940 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1941 if (pszAdd)
1942 {
1943 strcpy(psz, pszAdd);
1944 psz += strlen(pszAdd);
1945 *psz++ = ' ';
1946 }
1947 }
1948 psz[-1] = '\0';
1949
1950
1951 /*
1952 * Format the registers.
1953 */
1954 if (CPUMIsGuestIn64BitCode(pVCpu))
1955 {
1956 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1957 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1958 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1959 "r14=%016RX64 r15=%016RX64\n"
1960 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1961 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1962 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1963 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1964 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1965 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1966 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1967 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1968 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1969 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1970 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1971 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1972 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1973 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1974 ,
1975 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1976 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1977 pCtx->r14, pCtx->r15,
1978 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
1979 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1980 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1981 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1982 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1983 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1984 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1985 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1986 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1987 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1988 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
1989 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1990 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1991 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1992 }
1993 else
1994 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1995 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1996 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1997 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1998 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1999 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
2000 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
2001 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
2002 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
2003 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2004 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2005 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2006 ,
2007 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
2008 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
2009 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
2010 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
2011 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
2012 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
2013 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
2014 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
2015 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
2016 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2017 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2018 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2019
2020 Log(("FPU:\n"
2021 "FCW=%04x FSW=%04x FTW=%02x\n"
2022 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
2023 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
2024 ,
2025 pCtx->fpu.FCW, pCtx->fpu.FSW, pCtx->fpu.FTW,
2026 pCtx->fpu.FOP, pCtx->fpu.FPUIP, pCtx->fpu.CS, pCtx->fpu.Rsrvd1,
2027 pCtx->fpu.FPUDP, pCtx->fpu.DS, pCtx->fpu.Rsrvd2,
2028 pCtx->fpu.MXCSR, pCtx->fpu.MXCSR_MASK));
2029
2030
2031 Log(("MSR:\n"
2032 "EFER =%016RX64\n"
2033 "PAT =%016RX64\n"
2034 "STAR =%016RX64\n"
2035 "CSTAR =%016RX64\n"
2036 "LSTAR =%016RX64\n"
2037 "SFMASK =%016RX64\n"
2038 "KERNELGSBASE =%016RX64\n",
2039 pCtx->msrEFER,
2040 pCtx->msrPAT,
2041 pCtx->msrSTAR,
2042 pCtx->msrCSTAR,
2043 pCtx->msrLSTAR,
2044 pCtx->msrSFMASK,
2045 pCtx->msrKERNELGSBASE));
2046
2047}
2048
2049#endif /* VBOX_STRICT */
2050
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette