VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 48402

Last change on this file since 48402 was 48328, checked in by vboxsync, 11 years ago

VMM: Assert, doxygen, todo question.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 72.1 KB
Line 
1/* $Id: HMR0.cpp 48328 2013-09-05 22:20:18Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31#include <iprt/assert.h>
32#include <iprt/asm.h>
33#include <iprt/asm-amd64-x86.h>
34#include <iprt/cpuset.h>
35#include <iprt/mem.h>
36#include <iprt/memobj.h>
37#include <iprt/once.h>
38#include <iprt/param.h>
39#include <iprt/power.h>
40#include <iprt/string.h>
41#include <iprt/thread.h>
42#include <iprt/x86.h>
43#include "HMVMXR0.h"
44#include "HMSVMR0.h"
45
46
47/*******************************************************************************
48* Internal Functions *
49*******************************************************************************/
50static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
51static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
55static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
56
57
58/*******************************************************************************
59* Structures and Typedefs *
60*******************************************************************************/
61/**
62 * This is used to manage the status code of a RTMpOnAll in HM.
63 */
64typedef struct HMR0FIRSTRC
65{
66 /** The status code. */
67 int32_t volatile rc;
68 /** The ID of the CPU reporting the first failure. */
69 RTCPUID volatile idCpu;
70} HMR0FIRSTRC;
71/** Pointer to a first return code structure. */
72typedef HMR0FIRSTRC *PHMR0FIRSTRC;
73
74
75/*******************************************************************************
76* Global Variables *
77*******************************************************************************/
78/**
79 * Global data.
80 */
81static struct
82{
83 /** Per CPU globals. */
84 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
85
86 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
87 * @{ */
88 DECLR0CALLBACKMEMBER(int, pfnEnterSession,(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
89 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback,(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
90 DECLR0CALLBACKMEMBER(int, pfnSaveHostState,(PVM pVM, PVMCPU pVCpu));
91 DECLR0CALLBACKMEMBER(int, pfnRunGuestCode,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
92 DECLR0CALLBACKMEMBER(int, pfnEnableCpu,(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
93 bool fEnabledByHost, void *pvArg));
94 DECLR0CALLBACKMEMBER(int, pfnDisableCpu,(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
95 DECLR0CALLBACKMEMBER(int, pfnInitVM,(PVM pVM));
96 DECLR0CALLBACKMEMBER(int, pfnTermVM,(PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnSetupVM,(PVM pVM));
98 /** @} */
99
100 /** Maximum ASID allowed. */
101 uint32_t uMaxAsid;
102
103 /** VT-x data. */
104 struct
105 {
106 /** Set to by us to indicate VMX is supported by the CPU. */
107 bool fSupported;
108 /** Whether we're using SUPR0EnableVTx or not. */
109 bool fUsingSUPR0EnableVTx;
110 /** Whether we're using the preemption timer or not. */
111 bool fUsePreemptTimer;
112 /** The shift mask employed by the VMX-Preemption timer. */
113 uint8_t cPreemptTimerShift;
114
115 /** Host CR4 value (set by ring-0 VMX init) */
116 /** @todo This isn't used for anything relevant. Remove later? */
117 uint64_t u64HostCr4;
118
119 /** Host EFER value (set by ring-0 VMX init) */
120 uint64_t u64HostEfer;
121
122 /** VMX MSR values */
123 VMXMSRS Msrs;
124
125 /* Last instruction error */
126 uint32_t ulLastInstrError;
127 } vmx;
128
129 /** AMD-V information. */
130 struct
131 {
132 /* HWCR MSR (for diagnostics) */
133 uint64_t u64MsrHwcr;
134
135 /** SVM revision. */
136 uint32_t u32Rev;
137
138 /** SVM feature bits from cpuid 0x8000000a */
139 uint32_t u32Features;
140
141 /** Set by us to indicate SVM is supported by the CPU. */
142 bool fSupported;
143 } svm;
144 /** Saved error from detection */
145 int32_t lLastError;
146
147 struct
148 {
149 uint32_t u32AMDFeatureECX;
150 uint32_t u32AMDFeatureEDX;
151 } cpuid;
152
153 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
154 * enabled and disabled each time it's used to execute guest code. */
155 bool fGlobalInit;
156 /** Indicates whether the host is suspending or not. We'll refuse a few
157 * actions when the host is being suspended to speed up the suspending and
158 * avoid trouble. */
159 volatile bool fSuspended;
160
161 /** Whether we've already initialized all CPUs.
162 * @remarks We could check the EnableAllCpusOnce state, but this is
163 * simpler and hopefully easier to understand. */
164 bool fEnabled;
165 /** Serialize initialization in HMR0EnableAllCpus. */
166 RTONCE EnableAllCpusOnce;
167} g_HvmR0;
168
169
170
171/**
172 * Initializes a first return code structure.
173 *
174 * @param pFirstRc The structure to init.
175 */
176static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
177{
178 pFirstRc->rc = VINF_SUCCESS;
179 pFirstRc->idCpu = NIL_RTCPUID;
180}
181
182
183/**
184 * Try set the status code (success ignored).
185 *
186 * @param pFirstRc The first return code structure.
187 * @param rc The status code.
188 */
189static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
190{
191 if ( RT_FAILURE(rc)
192 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
193 pFirstRc->idCpu = RTMpCpuId();
194}
195
196
197/**
198 * Get the status code of a first return code structure.
199 *
200 * @returns The status code; VINF_SUCCESS or error status, no informational or
201 * warning errors.
202 * @param pFirstRc The first return code structure.
203 */
204static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
205{
206 return pFirstRc->rc;
207}
208
209
210#ifdef VBOX_STRICT
211/**
212 * Get the CPU ID on which the failure status code was reported.
213 *
214 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
215 * @param pFirstRc The first return code structure.
216 */
217static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
218{
219 return pFirstRc->idCpu;
220}
221#endif /* VBOX_STRICT */
222
223
224/** @name Dummy callback handlers.
225 * @{ */
226
227static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
228{
229 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
230 return VINF_SUCCESS;
231}
232
233static DECLCALLBACK(int) hmR0DummyLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
234{
235 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
236 return VINF_SUCCESS;
237}
238
239static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
240{
241 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
242}
243
244static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
245 bool fEnabledBySystem, void *pvArg)
246{
247 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem); NOREF(pvArg);
248 return VINF_SUCCESS;
249}
250
251static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
252{
253 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
254 return VINF_SUCCESS;
255}
256
257static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
258{
259 NOREF(pVM);
260 return VINF_SUCCESS;
261}
262
263static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
264{
265 NOREF(pVM);
266 return VINF_SUCCESS;
267}
268
269static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
270{
271 NOREF(pVM);
272 return VINF_SUCCESS;
273}
274
275static DECLCALLBACK(int) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
276{
277 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
278 return VINF_SUCCESS;
279}
280
281static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
282{
283 NOREF(pVM); NOREF(pVCpu);
284 return VINF_SUCCESS;
285}
286
287static DECLCALLBACK(int) hmR0DummyLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
288{
289 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
290 return VINF_SUCCESS;
291}
292
293/** @} */
294
295
296/**
297 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
298 * Down at the Rate Specified" erratum.
299 *
300 * Errata names and related steppings:
301 * - BA86 - D0.
302 * - AAX65 - C2.
303 * - AAU65 - C2, K0.
304 * - AAO95 - B1.
305 * - AAT59 - C2.
306 * - AAK139 - D0.
307 * - AAM126 - C0, C1, D0.
308 * - AAN92 - B1.
309 * - AAJ124 - C0, D0.
310 *
311 * - AAP86 - B1.
312 *
313 * Steppings: B1, C0, C1, C2, D0, K0.
314 *
315 * @returns true if subject to it, false if not.
316 */
317static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
318{
319 uint32_t u = ASMCpuId_EAX(1);
320 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
321 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
322 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
323 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
324 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
325 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
326 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
327 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
328 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
329 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
330 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
331 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
332 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
333 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
334 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
335 )
336 return true;
337 return false;
338}
339
340
341/**
342 * Intel specific initialization code.
343 *
344 * @returns VBox status code (will only fail if out of memory).
345 */
346static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
347{
348 /*
349 * Check that all the required VT-x features are present.
350 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
351 */
352 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
353 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
354 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
355 )
356 {
357 /** @todo move this into a separate function. */
358 g_HvmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
359
360 /*
361 * First try use native kernel API for controlling VT-x.
362 * (This is only supported by some Mac OS X kernels atm.)
363 */
364 int rc = g_HvmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
365 g_HvmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
366 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
367 {
368 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
369 if (RT_SUCCESS(rc))
370 {
371 g_HvmR0.vmx.fSupported = true;
372 rc = SUPR0EnableVTx(false /* fEnable */);
373 AssertLogRelRC(rc);
374 }
375 }
376 else
377 {
378 /* We need to check if VT-x has been properly initialized on all
379 CPUs. Some BIOSes do a lousy job. */
380 HMR0FIRSTRC FirstRc;
381 hmR0FirstRcInit(&FirstRc);
382 g_HvmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
383 if (RT_SUCCESS(g_HvmR0.lLastError))
384 g_HvmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
385 }
386 if (RT_SUCCESS(g_HvmR0.lLastError))
387 {
388 /* Reread in case it was changed by hmR0InitIntelCpu(). */
389 g_HvmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
390
391 /*
392 * Read all relevant registers and MSRs.
393 */
394 g_HvmR0.vmx.u64HostCr4 = ASMGetCR4();
395 g_HvmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
396 g_HvmR0.vmx.Msrs.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
397 g_HvmR0.vmx.Msrs.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
398 g_HvmR0.vmx.Msrs.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
399 g_HvmR0.vmx.Msrs.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
400 g_HvmR0.vmx.Msrs.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
401 g_HvmR0.vmx.Msrs.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
402 g_HvmR0.vmx.Msrs.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
403 g_HvmR0.vmx.Msrs.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
404 g_HvmR0.vmx.Msrs.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
405 g_HvmR0.vmx.Msrs.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
406 g_HvmR0.vmx.Msrs.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
407 /* VPID 16 bits ASID. */
408 g_HvmR0.uMaxAsid = 0x10000; /* exclusive */
409
410 if (g_HvmR0.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
411 {
412 g_HvmR0.vmx.Msrs.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
413 if (g_HvmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
414 g_HvmR0.vmx.Msrs.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
415
416 if (g_HvmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
417 g_HvmR0.vmx.Msrs.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
418 }
419
420 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
421 {
422 /*
423 * Enter root mode
424 */
425 RTR0MEMOBJ hScatchMemObj;
426 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
427 if (RT_FAILURE(rc))
428 {
429 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,true) -> %Rrc\n", rc));
430 return rc;
431 }
432
433 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
434 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
435 ASMMemZeroPage(pvScatchPage);
436
437 /* Set revision dword at the beginning of the structure. */
438 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HvmR0.vmx.Msrs.u64BasicInfo);
439
440 /* Make sure we don't get rescheduled to another cpu during this probe. */
441 RTCCUINTREG fFlags = ASMIntDisableFlags();
442
443 /*
444 * Check CR4.VMXE
445 */
446 g_HvmR0.vmx.u64HostCr4 = ASMGetCR4();
447 if (!(g_HvmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
448 {
449 /* In theory this bit could be cleared behind our back. Which would cause
450 #UD faults when we try to execute the VMX instructions... */
451 ASMSetCR4(g_HvmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
452 }
453
454 /*
455 * The only way of checking if we're in VMX root mode or not is to try and enter it.
456 * There is no instruction or control bit that tells us if we're in VMX root mode.
457 * Therefore, try and enter VMX root mode here.
458 */
459 rc = VMXEnable(HCPhysScratchPage);
460 if (RT_SUCCESS(rc))
461 {
462 g_HvmR0.vmx.fSupported = true;
463 VMXDisable();
464 }
465 else
466 {
467 /*
468 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
469 * it will crash the host when we enter raw mode, because:
470 *
471 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
472 * this bit), and
473 * (b) turning off paging causes a #GP (unavoidable when switching
474 * from long to 32 bits mode or 32 bits to PAE).
475 *
476 * They should fix their code, but until they do we simply refuse to run.
477 */
478 g_HvmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
479 Assert(g_HvmR0.vmx.fSupported == false);
480 }
481
482 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
483 if it wasn't so before (some software could incorrectly
484 think it's in VMX mode). */
485 ASMSetCR4(g_HvmR0.vmx.u64HostCr4);
486 ASMSetFlags(fFlags);
487
488 RTR0MemObjFree(hScatchMemObj, false);
489 }
490
491 if (g_HvmR0.vmx.fSupported)
492 {
493 rc = VMXR0GlobalInit();
494 if (RT_FAILURE(rc))
495 g_HvmR0.lLastError = rc;
496
497 /*
498 * Install the VT-x methods.
499 */
500 g_HvmR0.pfnEnterSession = VMXR0Enter;
501 g_HvmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
502 g_HvmR0.pfnSaveHostState = VMXR0SaveHostState;
503 g_HvmR0.pfnRunGuestCode = VMXR0RunGuestCode;
504 g_HvmR0.pfnEnableCpu = VMXR0EnableCpu;
505 g_HvmR0.pfnDisableCpu = VMXR0DisableCpu;
506 g_HvmR0.pfnInitVM = VMXR0InitVM;
507 g_HvmR0.pfnTermVM = VMXR0TermVM;
508 g_HvmR0.pfnSetupVM = VMXR0SetupVM;
509
510 /*
511 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
512 * Timer Does Not Count Down at the Rate Specified" erratum.
513 */
514 if (g_HvmR0.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
515 {
516 g_HvmR0.vmx.fUsePreemptTimer = true;
517 g_HvmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HvmR0.vmx.Msrs.u64Misc);
518 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
519 g_HvmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
520 }
521 }
522 }
523#ifdef LOG_ENABLED
524 else
525 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HvmR0.lLastError);
526#endif
527 }
528 else
529 g_HvmR0.lLastError = VERR_VMX_NO_VMX;
530 return VINF_SUCCESS;
531}
532
533
534/**
535 * AMD-specific initialization code.
536 *
537 * @returns VBox status code.
538 */
539static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
540{
541 /*
542 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
543 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
544 */
545 int rc;
546 if ( (g_HvmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
547 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
548 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
549 && ASMIsValidExtRange(uMaxExtLeaf)
550 && uMaxExtLeaf >= 0x8000000a
551 )
552 {
553 /* Call the global AMD-V initialization routine. */
554 rc = SVMR0GlobalInit();
555 if (RT_FAILURE(rc))
556 {
557 g_HvmR0.lLastError = rc;
558 return rc;
559 }
560
561 /*
562 * Install the AMD-V methods.
563 */
564 g_HvmR0.pfnEnterSession = SVMR0Enter;
565 g_HvmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
566 g_HvmR0.pfnSaveHostState = SVMR0SaveHostState;
567 g_HvmR0.pfnRunGuestCode = SVMR0RunGuestCode;
568 g_HvmR0.pfnEnableCpu = SVMR0EnableCpu;
569 g_HvmR0.pfnDisableCpu = SVMR0DisableCpu;
570 g_HvmR0.pfnInitVM = SVMR0InitVM;
571 g_HvmR0.pfnTermVM = SVMR0TermVM;
572 g_HvmR0.pfnSetupVM = SVMR0SetupVM;
573
574 /* Query AMD features. */
575 uint32_t u32Dummy;
576 ASMCpuId(0x8000000a, &g_HvmR0.svm.u32Rev, &g_HvmR0.uMaxAsid, &u32Dummy, &g_HvmR0.svm.u32Features);
577
578 /*
579 * We need to check if AMD-V has been properly initialized on all CPUs.
580 * Some BIOSes might do a poor job.
581 */
582 HMR0FIRSTRC FirstRc;
583 hmR0FirstRcInit(&FirstRc);
584 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
585 AssertRC(rc);
586 if (RT_SUCCESS(rc))
587 rc = hmR0FirstRcGetStatus(&FirstRc);
588#ifndef DEBUG_bird
589 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
590 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
591#endif
592 if (RT_SUCCESS(rc))
593 {
594 /* Read the HWCR MSR for diagnostics. */
595 g_HvmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
596 g_HvmR0.svm.fSupported = true;
597 }
598 else
599 g_HvmR0.lLastError = rc;
600 }
601 else
602 {
603 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
604 g_HvmR0.lLastError = VERR_SVM_NO_SVM;
605 }
606 return rc;
607}
608
609
610/**
611 * Does global Ring-0 HM initialization (at module init).
612 *
613 * @returns VBox status code.
614 */
615VMMR0_INT_DECL(int) HMR0Init(void)
616{
617 /*
618 * Initialize the globals.
619 */
620 g_HvmR0.fEnabled = false;
621 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
622 g_HvmR0.EnableAllCpusOnce = s_OnceInit;
623 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
624 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
625
626 /* Fill in all callbacks with placeholders. */
627 g_HvmR0.pfnEnterSession = hmR0DummyEnter;
628 g_HvmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
629 g_HvmR0.pfnSaveHostState = hmR0DummySaveHostState;
630 g_HvmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
631 g_HvmR0.pfnEnableCpu = hmR0DummyEnableCpu;
632 g_HvmR0.pfnDisableCpu = hmR0DummyDisableCpu;
633 g_HvmR0.pfnInitVM = hmR0DummyInitVM;
634 g_HvmR0.pfnTermVM = hmR0DummyTermVM;
635 g_HvmR0.pfnSetupVM = hmR0DummySetupVM;
636
637 /* Default is global VT-x/AMD-V init. */
638 g_HvmR0.fGlobalInit = true;
639
640 /*
641 * Make sure aCpuInfo is big enough for all the CPUs on this system.
642 */
643 if (RTMpGetArraySize() > RT_ELEMENTS(g_HvmR0.aCpuInfo))
644 {
645 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HvmR0.aCpuInfo)));
646 return VERR_TOO_MANY_CPUS;
647 }
648
649 /*
650 * Check for VT-x and AMD-V capabilities.
651 */
652 int rc;
653 if (ASMHasCpuId())
654 {
655 /* Standard features. */
656 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
657 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
658 if (ASMIsValidStdRange(uMaxLeaf))
659 {
660 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
661 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
662
663 /* Query AMD features. */
664 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
665 if (ASMIsValidExtRange(uMaxExtLeaf))
666 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
667 &g_HvmR0.cpuid.u32AMDFeatureECX,
668 &g_HvmR0.cpuid.u32AMDFeatureEDX);
669 else
670 g_HvmR0.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureEDX = 0;
671
672 /* Go to CPU specific initialization code. */
673 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
674 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
675 {
676 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
677 if (RT_FAILURE(rc))
678 return rc;
679 }
680 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
681 {
682 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
683 if (RT_FAILURE(rc))
684 return rc;
685 }
686 else
687 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
688 }
689 else
690 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
691 }
692 else
693 g_HvmR0.lLastError = VERR_HM_NO_CPUID;
694
695 /*
696 * Register notification callbacks that we can use to disable/enable CPUs
697 * when brought offline/online or suspending/resuming.
698 */
699 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
700 {
701 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
702 AssertRC(rc);
703
704 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
705 AssertRC(rc);
706 }
707
708 /* We return success here because module init shall not fail if HM
709 fails to initialize. */
710 return VINF_SUCCESS;
711}
712
713
714/**
715 * Does global Ring-0 HM termination (at module termination).
716 *
717 * @returns VBox status code.
718 */
719VMMR0_INT_DECL(int) HMR0Term(void)
720{
721 int rc;
722 if ( g_HvmR0.vmx.fSupported
723 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
724 {
725 /*
726 * Simple if the host OS manages VT-x.
727 */
728 Assert(g_HvmR0.fGlobalInit);
729 rc = SUPR0EnableVTx(false /* fEnable */);
730
731 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++)
732 {
733 g_HvmR0.aCpuInfo[iCpu].fConfigured = false;
734 Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
735 }
736 }
737 else
738 {
739 Assert(!g_HvmR0.vmx.fUsingSUPR0EnableVTx);
740 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
741 {
742 /* Doesn't really matter if this fails. */
743 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
744 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
745 }
746 else
747 rc = VINF_SUCCESS;
748
749 /*
750 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
751 */
752 if (g_HvmR0.fGlobalInit)
753 {
754 HMR0FIRSTRC FirstRc;
755 hmR0FirstRcInit(&FirstRc);
756 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
757 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
758 if (RT_SUCCESS(rc))
759 {
760 rc = hmR0FirstRcGetStatus(&FirstRc);
761 AssertMsgRC(rc, ("%u: %Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
762 }
763 }
764
765 /*
766 * Free the per-cpu pages used for VT-x and AMD-V.
767 */
768 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
769 {
770 if (g_HvmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
771 {
772 RTR0MemObjFree(g_HvmR0.aCpuInfo[i].hMemObj, false);
773 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
774 }
775 }
776 }
777
778 /** @todo This needs cleaning up. There's no matching
779 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
780 * should move into their respective modules. */
781 /* Finally, call global VT-x/AMD-V termination. */
782 if (g_HvmR0.vmx.fSupported)
783 VMXR0GlobalTerm();
784 else if (g_HvmR0.svm.fSupported)
785 SVMR0GlobalTerm();
786
787 return rc;
788}
789
790
791/**
792 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
793 * on a CPU.
794 *
795 * @param idCpu The identifier for the CPU the function is called on.
796 * @param pvUser1 Pointer to the first RC structure.
797 * @param pvUser2 Ignored.
798 */
799static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
800{
801 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
802 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
803 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
804 NOREF(pvUser2);
805
806 uint64_t fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
807 bool const fInSmxMode = !!(ASMGetCR4() & X86_CR4_SMXE);
808 bool fMsrLocked = !!(fFC & MSR_IA32_FEATURE_CONTROL_LOCK);
809 bool fSmxVmxAllowed = !!(fFC & MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
810 bool fVmxAllowed = !!(fFC & MSR_IA32_FEATURE_CONTROL_VMXON);
811
812 /* Check if the LOCK bit is set but excludes the required VMXON bit. */
813 int rc = VERR_HM_IPE_1;
814 if (fMsrLocked)
815 {
816 if (fInSmxMode && !fSmxVmxAllowed)
817 rc = VERR_VMX_MSR_SMX_VMXON_DISABLED;
818 else if (!fVmxAllowed)
819 rc = VERR_VMX_MSR_VMXON_DISABLED;
820 else
821 rc = VINF_SUCCESS;
822 }
823 else
824 {
825 /*
826 * MSR is not yet locked; we can change it ourselves here.
827 * Once the lock bit is set, this MSR can no longer be modified.
828 */
829 fFC |= MSR_IA32_FEATURE_CONTROL_LOCK;
830 if (fInSmxMode)
831 fFC |= MSR_IA32_FEATURE_CONTROL_SMX_VMXON;
832 else
833 fFC |= MSR_IA32_FEATURE_CONTROL_VMXON;
834
835 ASMWrMsr(MSR_IA32_FEATURE_CONTROL, fFC);
836
837 /* Verify. */
838 fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
839 fMsrLocked = !!(fFC & MSR_IA32_FEATURE_CONTROL_LOCK);
840 fSmxVmxAllowed = fMsrLocked && !!(fFC & MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
841 fVmxAllowed = fMsrLocked && !!(fFC & MSR_IA32_FEATURE_CONTROL_VMXON);
842 bool const fAllowed = fInSmxMode ? fSmxVmxAllowed : fVmxAllowed;
843 if (fAllowed)
844 rc = VINF_SUCCESS;
845 else
846 rc = VERR_VMX_MSR_LOCKING_FAILED;
847 }
848
849 hmR0FirstRcSetStatus(pFirstRc, rc);
850}
851
852
853/**
854 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
855 * on a CPU.
856 *
857 * @param idCpu The identifier for the CPU the function is called on.
858 * @param pvUser1 Pointer to the first RC structure.
859 * @param pvUser2 Ignored.
860 */
861static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
862{
863 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
864 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
865 NOREF(pvUser2);
866
867 /* Check if SVM is disabled. */
868 int rc;
869 uint64_t fVmCr = ASMRdMsr(MSR_K8_VM_CR);
870 if (!(fVmCr & MSR_K8_VM_CR_SVM_DISABLE))
871 {
872 /* Turn on SVM in the EFER MSR. */
873 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
874 if (fEfer & MSR_K6_EFER_SVME)
875 rc = VERR_SVM_IN_USE;
876 else
877 {
878 ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME);
879
880 /* Paranoia. */
881 fEfer = ASMRdMsr(MSR_K6_EFER);
882 if (fEfer & MSR_K6_EFER_SVME)
883 {
884 /* Restore previous value. */
885 ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME);
886 rc = VINF_SUCCESS;
887 }
888 else
889 rc = VERR_SVM_ILLEGAL_EFER_MSR;
890 }
891 }
892 else
893 rc = VERR_SVM_DISABLED;
894
895 hmR0FirstRcSetStatus(pFirstRc, rc);
896}
897
898
899/**
900 * Enable VT-x or AMD-V on the current CPU
901 *
902 * @returns VBox status code.
903 * @param pVM Pointer to the VM (can be NULL).
904 * @param idCpu The identifier for the CPU the function is called on.
905 */
906static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
907{
908 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
909
910 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
911 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
912 Assert(!pCpu->fConfigured);
913
914 pCpu->idCpu = idCpu;
915 pCpu->uCurrentAsid = 0; /* we'll aways increment this the first time (host uses ASID 0) */
916 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
917
918 int rc;
919 if (g_HvmR0.vmx.fSupported && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
920 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HvmR0.vmx.Msrs);
921 else
922 {
923 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
924 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
925 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
926
927 if (g_HvmR0.vmx.fSupported)
928 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, &g_HvmR0.vmx.Msrs);
929 else
930 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, NULL /* pvArg */);
931 }
932 AssertRC(rc);
933 if (RT_SUCCESS(rc))
934 pCpu->fConfigured = true;
935
936 return rc;
937}
938
939
940/**
941 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
942 *
943 * @param idCpu The identifier for the CPU the function is called on.
944 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
945 * @param pvUser2 The 2nd user argument.
946 */
947static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
948{
949 PVM pVM = (PVM)pvUser1; /* can be NULL! */
950 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
951 AssertReturnVoid(g_HvmR0.fGlobalInit);
952 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
953}
954
955
956/**
957 * RTOnce callback employed by HMR0EnableAllCpus.
958 *
959 * @returns VBox status code.
960 * @param pvUser Pointer to the VM.
961 * @param pvUserIgnore NULL, ignored.
962 */
963static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
964{
965 PVM pVM = (PVM)pvUser;
966
967 /*
968 * Indicate that we've initialized.
969 *
970 * Note! There is a potential race between this function and the suspend
971 * notification. Kind of unlikely though, so ignored for now.
972 */
973 AssertReturn(!g_HvmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
974 ASMAtomicWriteBool(&g_HvmR0.fEnabled, true);
975
976 /*
977 * The global init variable is set by the first VM.
978 */
979 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
980
981 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
982 {
983 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
984 g_HvmR0.aCpuInfo[i].fConfigured = false;
985 g_HvmR0.aCpuInfo[i].cTlbFlushes = 0;
986 g_HvmR0.aCpuInfo[i].uCurrentAsid = 0;
987 }
988
989 int rc;
990 if ( g_HvmR0.vmx.fSupported
991 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
992 {
993 /*
994 * Global VT-x initialization API (only darwin for now).
995 */
996 rc = SUPR0EnableVTx(true /* fEnable */);
997 if (RT_SUCCESS(rc))
998 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
999 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
1000 else
1001 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
1002 }
1003 else
1004 {
1005 /*
1006 * We're doing the job ourselves.
1007 */
1008 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
1009 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
1010 {
1011 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
1012
1013 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
1014 {
1015 rc = RTR0MemObjAllocCont(&g_HvmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, true /* executable R0 mapping */);
1016 AssertLogRelRCReturn(rc, rc);
1017
1018 void *pvR0 = RTR0MemObjAddress(g_HvmR0.aCpuInfo[i].hMemObj); Assert(pvR0);
1019 ASMMemZeroPage(pvR0);
1020 }
1021 }
1022
1023 rc = VINF_SUCCESS;
1024 }
1025
1026 if ( RT_SUCCESS(rc)
1027 && g_HvmR0.fGlobalInit)
1028 {
1029 /* First time, so initialize each cpu/core. */
1030 HMR0FIRSTRC FirstRc;
1031 hmR0FirstRcInit(&FirstRc);
1032 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
1033 if (RT_SUCCESS(rc))
1034 rc = hmR0FirstRcGetStatus(&FirstRc);
1035 AssertMsgRC(rc, ("hmR0EnableAllCpuOnce failed for cpu %d with rc=%d\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
1036 }
1037
1038 return rc;
1039}
1040
1041
1042/**
1043 * Sets up HM on all cpus.
1044 *
1045 * @returns VBox status code.
1046 * @param pVM Pointer to the VM.
1047 */
1048VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
1049{
1050 /* Make sure we don't touch HM after we've disabled HM in
1051 preparation of a suspend. */
1052 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1053 return VERR_HM_SUSPEND_PENDING;
1054
1055 return RTOnce(&g_HvmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1056}
1057
1058
1059/**
1060 * Disable VT-x or AMD-V on the current CPU.
1061 *
1062 * @returns VBox status code.
1063 * @param idCpu The identifier for the CPU the function is called on.
1064 */
1065static int hmR0DisableCpu(RTCPUID idCpu)
1066{
1067 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1068
1069 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1070 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day)
1071 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1072 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1073
1074 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1075 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1076
1077 int rc;
1078 if (pCpu->fConfigured)
1079 {
1080 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1081 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1082 if (idCpu == RTMpCpuId())
1083 {
1084 rc = g_HvmR0.pfnDisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1085 AssertRCReturn(rc, rc);
1086 }
1087 else
1088 {
1089 pCpu->fIgnoreAMDVInUseError = true;
1090 rc = VINF_SUCCESS;
1091 }
1092
1093 pCpu->fConfigured = false;
1094 }
1095 else
1096 rc = VINF_SUCCESS; /* nothing to do */
1097
1098 pCpu->uCurrentAsid = 0;
1099 return rc;
1100}
1101
1102
1103/**
1104 * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that
1105 * is to be called on the target CPUs.
1106 *
1107 * @param idCpu The identifier for the CPU the function is called on.
1108 * @param pvUser1 The 1st user argument.
1109 * @param pvUser2 Opaque pointer to the FirstRc.
1110 */
1111static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1112{
1113 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1114 AssertReturnVoid(g_HvmR0.fGlobalInit);
1115 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1116}
1117
1118
1119/**
1120 * Callback function invoked when a cpu goes online or offline.
1121 *
1122 * @param enmEvent The Mp event.
1123 * @param idCpu The identifier for the CPU the function is called on.
1124 * @param pvData Opaque data (PVM pointer).
1125 */
1126static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1127{
1128 NOREF(pvData);
1129
1130 /*
1131 * We only care about uninitializing a CPU that is going offline. When a
1132 * CPU comes online, the initialization is done lazily in HMR0Enter().
1133 */
1134 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1135 switch (enmEvent)
1136 {
1137 case RTMPEVENT_OFFLINE:
1138 {
1139 int rc = hmR0DisableCpu(idCpu);
1140 AssertRC(rc);
1141 break;
1142 }
1143
1144 default:
1145 break;
1146 }
1147}
1148
1149
1150/**
1151 * Called whenever a system power state change occurs.
1152 *
1153 * @param enmEvent The Power event.
1154 * @param pvUser User argument.
1155 */
1156static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1157{
1158 NOREF(pvUser);
1159 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1160
1161#ifdef LOG_ENABLED
1162 if (enmEvent == RTPOWEREVENT_SUSPEND)
1163 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1164 else
1165 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1166#endif
1167
1168 if (enmEvent == RTPOWEREVENT_SUSPEND)
1169 ASMAtomicWriteBool(&g_HvmR0.fSuspended, true);
1170
1171 if (g_HvmR0.fEnabled)
1172 {
1173 int rc;
1174 HMR0FIRSTRC FirstRc;
1175 hmR0FirstRcInit(&FirstRc);
1176
1177 if (enmEvent == RTPOWEREVENT_SUSPEND)
1178 {
1179 if (g_HvmR0.fGlobalInit)
1180 {
1181 /* Turn off VT-x or AMD-V on all CPUs. */
1182 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1183 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1184 }
1185 /* else nothing to do here for the local init case */
1186 }
1187 else
1188 {
1189 /* Reinit the CPUs from scratch as the suspend state might have
1190 messed with the MSRs. (lousy BIOSes as usual) */
1191 if (g_HvmR0.vmx.fSupported)
1192 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1193 else
1194 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1195 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1196 if (RT_SUCCESS(rc))
1197 rc = hmR0FirstRcGetStatus(&FirstRc);
1198#ifdef LOG_ENABLED
1199 if (RT_FAILURE(rc))
1200 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1201#endif
1202 if (g_HvmR0.fGlobalInit)
1203 {
1204 /* Turn VT-x or AMD-V back on on all CPUs. */
1205 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1206 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1207 }
1208 /* else nothing to do here for the local init case */
1209 }
1210 }
1211
1212 if (enmEvent == RTPOWEREVENT_RESUME)
1213 ASMAtomicWriteBool(&g_HvmR0.fSuspended, false);
1214}
1215
1216
1217/**
1218 * Does Ring-0 per VM HM initialization.
1219 *
1220 * This will copy HM global into the VM structure and call the CPU specific
1221 * init routine which will allocate resources for each virtual CPU and such.
1222 *
1223 * @returns VBox status code.
1224 * @param pVM Pointer to the VM.
1225 */
1226VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1227{
1228 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1229
1230#ifdef LOG_ENABLED
1231 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1232#endif
1233
1234 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1235 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1236 return VERR_HM_SUSPEND_PENDING;
1237
1238 /*
1239 * Copy globals to the VM structure.
1240 */
1241 /** @todo r=ramshankar: Why do we do this for MSRs? We never change them in the
1242 * per-VM structures anyway... */
1243 pVM->hm.s.vmx.fSupported = g_HvmR0.vmx.fSupported;
1244 pVM->hm.s.svm.fSupported = g_HvmR0.svm.fSupported;
1245
1246 pVM->hm.s.vmx.fUsePreemptTimer = g_HvmR0.vmx.fUsePreemptTimer;
1247 pVM->hm.s.vmx.cPreemptTimerShift = g_HvmR0.vmx.cPreemptTimerShift;
1248 pVM->hm.s.vmx.u64HostCr4 = g_HvmR0.vmx.u64HostCr4;
1249 pVM->hm.s.vmx.u64HostEfer = g_HvmR0.vmx.u64HostEfer;
1250 pVM->hm.s.vmx.Msrs = g_HvmR0.vmx.Msrs;
1251 pVM->hm.s.svm.u64MsrHwcr = g_HvmR0.svm.u64MsrHwcr;
1252 pVM->hm.s.svm.u32Rev = g_HvmR0.svm.u32Rev;
1253 pVM->hm.s.svm.u32Features = g_HvmR0.svm.u32Features;
1254 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureECX;
1255 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HvmR0.cpuid.u32AMDFeatureEDX;
1256 pVM->hm.s.lLastError = g_HvmR0.lLastError;
1257
1258 pVM->hm.s.uMaxAsid = g_HvmR0.uMaxAsid;
1259
1260
1261 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1262 {
1263 pVM->hm.s.cMaxResumeLoops = 1024;
1264 if (RTThreadPreemptIsPendingTrusty())
1265 pVM->hm.s.cMaxResumeLoops = 8192;
1266 }
1267
1268 /*
1269 * Initialize some per CPU fields.
1270 */
1271 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1272 {
1273 PVMCPU pVCpu = &pVM->aCpus[i];
1274
1275 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1276
1277 /* Invalidate the last cpu we were running on. */
1278 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1279
1280 /* We'll aways increment this the first time (host uses ASID 0) */
1281 pVCpu->hm.s.uCurrentAsid = 0;
1282 }
1283
1284 /*
1285 * Call the hardware specific initialization method.
1286 */
1287 RTCCUINTREG fFlags = ASMIntDisableFlags();
1288 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1289 ASMSetFlags(fFlags);
1290
1291 int rc = g_HvmR0.pfnInitVM(pVM);
1292 return rc;
1293}
1294
1295
1296/**
1297 * Does Ring-0 per VM HM termination.
1298 *
1299 * @returns VBox status code.
1300 * @param pVM Pointer to the VM.
1301 */
1302VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1303{
1304 Log(("HMR0TermVM: %p\n", pVM));
1305 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1306
1307 /* Make sure we don't touch HM after we've disabled HM in preparation
1308 of a suspend. */
1309 /** @todo r=bird: This cannot be right, the termination functions are
1310 * just freeing memory and resetting pVM/pVCpu members...
1311 * ==> memory leak. */
1312 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1313
1314 /*
1315 * Call the hardware specific method.
1316 */
1317 RTCCUINTREG fFlags = ASMIntDisableFlags();
1318 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1319 ASMSetFlags(fFlags);
1320
1321 int rc = g_HvmR0.pfnTermVM(pVM);
1322 return rc;
1323}
1324
1325
1326/**
1327 * Sets up a VT-x or AMD-V session.
1328 *
1329 * This is mostly about setting up the hardware VM state.
1330 *
1331 * @returns VBox status code.
1332 * @param pVM Pointer to the VM.
1333 */
1334VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1335{
1336 Log(("HMR0SetupVM: %p\n", pVM));
1337 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1338
1339 /* Make sure we don't touch HM after we've disabled HM in
1340 preparation of a suspend. */
1341 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1342
1343 /*
1344 * Call the hardware specific setup VM method. This requires the CPU to be
1345 * enabled for AMD-V/VT-x and preemption to be prevented.
1346 */
1347 RTCCUINTREG fFlags = ASMIntDisableFlags();
1348 RTCPUID idCpu = RTMpCpuId();
1349 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1350
1351 /* On first entry we'll sync everything. */
1352 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1353 pVM->aCpus[i].hm.s.fContextUseFlags = (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1354
1355 /* Enable VT-x or AMD-V if local init is required. */
1356 int rc;
1357 if (!g_HvmR0.fGlobalInit)
1358 {
1359 rc = hmR0EnableCpu(pVM, idCpu);
1360 AssertReturnStmt(RT_SUCCESS_NP(rc), ASMSetFlags(fFlags), rc);
1361 }
1362
1363 /* Setup VT-x or AMD-V. */
1364 rc = g_HvmR0.pfnSetupVM(pVM);
1365
1366 /* Disable VT-x or AMD-V if local init was done before. */
1367 if (!g_HvmR0.fGlobalInit)
1368 {
1369 int rc2 = hmR0DisableCpu(idCpu);
1370 AssertRC(rc2);
1371 }
1372
1373 ASMSetFlags(fFlags);
1374 return rc;
1375}
1376
1377
1378/**
1379 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1380 * required for entering HM context.
1381 *
1382 * @returns VBox status code.
1383 * @param pvCpu Pointer to the VMCPU.
1384 *
1385 * @remarks No-long-jump zone!!!
1386 */
1387VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1388{
1389 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1390
1391 int rc = VINF_SUCCESS;
1392 RTCPUID idCpu = RTMpCpuId();
1393 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1394 AssertPtr(pCpu);
1395
1396 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1397 if (!pCpu->fConfigured)
1398 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1399
1400 /* Reload host-context (back from ring-3/migrated CPUs), reload host context & shared bits. */
1401 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE;
1402 pVCpu->hm.s.idEnteredCpu = idCpu;
1403 return rc;
1404}
1405
1406
1407/**
1408 * Enters the VT-x or AMD-V session.
1409 *
1410 * @returns VBox status code.
1411 * @param pVM Pointer to the VM.
1412 * @param pVCpu Pointer to the VMCPU.
1413 *
1414 * @remarks This is called with preemption disabled.
1415 */
1416VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1417{
1418 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1419 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1420 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1421
1422 /* Load the bare minimum state required for entering HM. */
1423 int rc = HMR0EnterCpu(pVCpu);
1424 AssertRCReturn(rc, rc);
1425
1426#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1427 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_5);
1428 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1429#endif
1430
1431 RTCPUID idCpu = RTMpCpuId();
1432 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1433 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1434 Assert(pCpu);
1435 Assert(pCtx);
1436 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1437
1438 rc = g_HvmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1439 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1440
1441 /* Load the host as we may be resuming code after a longjmp and quite
1442 possibly now be scheduled on a different CPU. */
1443 rc = g_HvmR0.pfnSaveHostState(pVM, pVCpu);
1444 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1445
1446#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1447 if (fStartedSet)
1448 PGMRZDynMapReleaseAutoSet(pVCpu);
1449#endif
1450
1451 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness
1452 and ring-3 calls. */
1453 if (RT_FAILURE(rc))
1454 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1455 return rc;
1456}
1457
1458
1459/**
1460 * Deinitializes the bare minimum state used for HM context and if necessary
1461 * disable HM on the CPU.
1462 *
1463 * @returns VBox status code.
1464 * @param pVCpu Pointer to the VMCPU.
1465 *
1466 * @remarks No-long-jump zone!!!
1467 */
1468VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1469{
1470 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1471
1472 RTCPUID idCpu = RTMpCpuId();
1473 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1474
1475 if ( !g_HvmR0.fGlobalInit
1476 && pCpu->fConfigured)
1477 {
1478 int rc = hmR0DisableCpu(idCpu);
1479 AssertRCReturn(rc, rc);
1480 Assert(!pCpu->fConfigured);
1481 }
1482
1483 /* Reset these to force a TLB flush for the next entry. */
1484 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1485 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1486 pVCpu->hm.s.uCurrentAsid = 0;
1487 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1488
1489 /* Clear the VCPU <-> host CPU mapping as we've left HM context. */
1490 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1491
1492 return VINF_SUCCESS;
1493}
1494
1495
1496/**
1497 * Thread-context hook for HM.
1498 *
1499 * @param enmEvent The thread-context event.
1500 * @param pvUser Opaque pointer to the VMCPU.
1501 */
1502VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1503{
1504 PVMCPU pVCpu = (PVMCPU)pvUser;
1505 Assert(pVCpu);
1506 Assert(g_HvmR0.pfnThreadCtxCallback);
1507
1508 g_HvmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HvmR0.fGlobalInit);
1509}
1510
1511
1512/**
1513 * Runs guest code in a hardware accelerated VM.
1514 *
1515 * @returns VBox status code.
1516 * @param pVM Pointer to the VM.
1517 * @param pVCpu Pointer to the VMCPU.
1518 *
1519 * @remarks Called with preemption disabled and after first having called
1520 * HMR0Enter.
1521 */
1522VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1523{
1524#ifdef VBOX_STRICT
1525 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[RTMpCpuId()];
1526 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1527 Assert(pCpu->fConfigured);
1528 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1529#endif
1530
1531#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1532 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_4);
1533 PGMRZDynMapStartAutoSet(pVCpu);
1534#endif
1535
1536 int rc = g_HvmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1537
1538#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1539 PGMRZDynMapReleaseAutoSet(pVCpu);
1540#endif
1541 return rc;
1542}
1543
1544#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1545
1546/**
1547 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1548 *
1549 * @returns VBox status code.
1550 * @param pVM Pointer to the VM.
1551 * @param pVCpu Pointer to the VMCPU.
1552 * @param pCtx Pointer to the guest CPU context.
1553 */
1554VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1555{
1556 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1557 if (pVM->hm.s.vmx.fSupported)
1558 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1559 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1560}
1561
1562
1563/**
1564 * Save guest debug state (64 bits guest mode & 32 bits host only)
1565 *
1566 * @returns VBox status code.
1567 * @param pVM Pointer to the VM.
1568 * @param pVCpu Pointer to the VMCPU.
1569 * @param pCtx Pointer to the guest CPU context.
1570 */
1571VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1572{
1573 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1574 if (pVM->hm.s.vmx.fSupported)
1575 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1576 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1577}
1578
1579
1580/**
1581 * Test the 32->64 bits switcher.
1582 *
1583 * @returns VBox status code.
1584 * @param pVM Pointer to the VM.
1585 */
1586VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1587{
1588 PVMCPU pVCpu = &pVM->aCpus[0];
1589 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1590 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1591 int rc;
1592
1593 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1594 if (pVM->hm.s.vmx.fSupported)
1595 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1596 else
1597 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1598 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1599
1600 return rc;
1601}
1602
1603#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
1604
1605/**
1606 * Returns suspend status of the host.
1607 *
1608 * @returns Suspend pending or not.
1609 */
1610VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1611{
1612 return ASMAtomicReadBool(&g_HvmR0.fSuspended);
1613}
1614
1615
1616/**
1617 * Returns the cpu structure for the current cpu.
1618 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1619 *
1620 * @returns The cpu structure pointer.
1621 */
1622VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpu(void)
1623{
1624 RTCPUID idCpu = RTMpCpuId();
1625 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1626 return &g_HvmR0.aCpuInfo[idCpu];
1627}
1628
1629
1630/**
1631 * Returns the cpu structure for the current cpu.
1632 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1633 *
1634 * @returns The cpu structure pointer.
1635 * @param idCpu id of the VCPU.
1636 */
1637VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpuEx(RTCPUID idCpu)
1638{
1639 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1640 return &g_HvmR0.aCpuInfo[idCpu];
1641}
1642
1643
1644/**
1645 * Save a pending IO read.
1646 *
1647 * @param pVCpu Pointer to the VMCPU.
1648 * @param GCPtrRip Address of IO instruction.
1649 * @param GCPtrRipNext Address of the next instruction.
1650 * @param uPort Port address.
1651 * @param uAndVal AND mask for saving the result in eax.
1652 * @param cbSize Read size.
1653 */
1654VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1655 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1656{
1657 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1658 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1659 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1660 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1661 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1662 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1663 return;
1664}
1665
1666
1667/**
1668 * Save a pending IO write.
1669 *
1670 * @param pVCpu Pointer to the VMCPU.
1671 * @param GCPtrRIP Address of IO instruction.
1672 * @param uPort Port address.
1673 * @param uAndVal AND mask for fetching the result from eax.
1674 * @param cbSize Read size.
1675 */
1676VMMR0_INT_DECL(void) HMR0SavePendingIOPortWrite(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1677 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1678{
1679 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_WRITE;
1680 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1681 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1682 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1683 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1684 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1685 return;
1686}
1687
1688
1689/**
1690 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1691 * switcher turns off paging.
1692 *
1693 * @returns VBox status code.
1694 * @param pVM Pointer to the VM.
1695 * @param enmSwitcher The switcher we're about to use.
1696 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1697 */
1698VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1699{
1700 Assert(!(ASMGetFlags() & X86_EFL_IF) || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1701
1702 *pfVTxDisabled = false;
1703
1704 /* No such issues with AMD-V */
1705 if (!g_HvmR0.vmx.fSupported)
1706 return VINF_SUCCESS;
1707
1708 /* Check if the swithcing we're up to is safe. */
1709 switch (enmSwitcher)
1710 {
1711 case VMMSWITCHER_32_TO_32:
1712 case VMMSWITCHER_PAE_TO_PAE:
1713 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1714
1715 case VMMSWITCHER_32_TO_PAE:
1716 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1717 case VMMSWITCHER_AMD64_TO_32:
1718 case VMMSWITCHER_AMD64_TO_PAE:
1719 break; /* unsafe switchers */
1720
1721 default:
1722 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1723 }
1724
1725 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1726 regardless of whether we're currently using VT-x or not. */
1727 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1728 {
1729 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1730 return VINF_SUCCESS;
1731 }
1732
1733 /** @todo Check if this code is presumtive wrt other VT-x users on the
1734 * system... */
1735
1736 /* Nothing to do if we haven't enabled VT-x. */
1737 if (!g_HvmR0.fEnabled)
1738 return VINF_SUCCESS;
1739
1740 /* Local init implies the CPU is currently not in VMX root mode. */
1741 if (!g_HvmR0.fGlobalInit)
1742 return VINF_SUCCESS;
1743
1744 /* Ok, disable VT-x. */
1745 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1746 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2);
1747
1748 *pfVTxDisabled = true;
1749 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1750 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1751 return VMXR0DisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1752}
1753
1754
1755/**
1756 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1757 * switcher turned off paging.
1758 *
1759 * @param pVM Pointer to the VM.
1760 * @param fVTxDisabled Whether VT-x was disabled or not.
1761 */
1762VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1763{
1764 Assert(!(ASMGetFlags() & X86_EFL_IF));
1765
1766 if (!fVTxDisabled)
1767 return; /* nothing to do */
1768
1769 Assert(g_HvmR0.vmx.fSupported);
1770 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1771 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1772 else
1773 {
1774 Assert(g_HvmR0.fEnabled);
1775 Assert(g_HvmR0.fGlobalInit);
1776
1777 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1778 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ);
1779
1780 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1781 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1782 VMXR0EnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, &g_HvmR0.vmx.Msrs);
1783 }
1784}
1785
1786#ifdef VBOX_STRICT
1787
1788/**
1789 * Dumps a descriptor.
1790 *
1791 * @param pDesc Descriptor to dump.
1792 * @param Sel Selector number.
1793 * @param pszMsg Message to prepend the log entry with.
1794 */
1795VMMR0DECL(void) HMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1796{
1797 /*
1798 * Make variable description string.
1799 */
1800 static struct
1801 {
1802 unsigned cch;
1803 const char *psz;
1804 } const s_aTypes[32] =
1805 {
1806# define STRENTRY(str) { sizeof(str) - 1, str }
1807
1808 /* system */
1809# if HC_ARCH_BITS == 64
1810 STRENTRY("Reserved0 "), /* 0x00 */
1811 STRENTRY("Reserved1 "), /* 0x01 */
1812 STRENTRY("LDT "), /* 0x02 */
1813 STRENTRY("Reserved3 "), /* 0x03 */
1814 STRENTRY("Reserved4 "), /* 0x04 */
1815 STRENTRY("Reserved5 "), /* 0x05 */
1816 STRENTRY("Reserved6 "), /* 0x06 */
1817 STRENTRY("Reserved7 "), /* 0x07 */
1818 STRENTRY("Reserved8 "), /* 0x08 */
1819 STRENTRY("TSS64Avail "), /* 0x09 */
1820 STRENTRY("ReservedA "), /* 0x0a */
1821 STRENTRY("TSS64Busy "), /* 0x0b */
1822 STRENTRY("Call64 "), /* 0x0c */
1823 STRENTRY("ReservedD "), /* 0x0d */
1824 STRENTRY("Int64 "), /* 0x0e */
1825 STRENTRY("Trap64 "), /* 0x0f */
1826# else
1827 STRENTRY("Reserved0 "), /* 0x00 */
1828 STRENTRY("TSS16Avail "), /* 0x01 */
1829 STRENTRY("LDT "), /* 0x02 */
1830 STRENTRY("TSS16Busy "), /* 0x03 */
1831 STRENTRY("Call16 "), /* 0x04 */
1832 STRENTRY("Task "), /* 0x05 */
1833 STRENTRY("Int16 "), /* 0x06 */
1834 STRENTRY("Trap16 "), /* 0x07 */
1835 STRENTRY("Reserved8 "), /* 0x08 */
1836 STRENTRY("TSS32Avail "), /* 0x09 */
1837 STRENTRY("ReservedA "), /* 0x0a */
1838 STRENTRY("TSS32Busy "), /* 0x0b */
1839 STRENTRY("Call32 "), /* 0x0c */
1840 STRENTRY("ReservedD "), /* 0x0d */
1841 STRENTRY("Int32 "), /* 0x0e */
1842 STRENTRY("Trap32 "), /* 0x0f */
1843# endif
1844 /* non system */
1845 STRENTRY("DataRO "), /* 0x10 */
1846 STRENTRY("DataRO Accessed "), /* 0x11 */
1847 STRENTRY("DataRW "), /* 0x12 */
1848 STRENTRY("DataRW Accessed "), /* 0x13 */
1849 STRENTRY("DataDownRO "), /* 0x14 */
1850 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1851 STRENTRY("DataDownRW "), /* 0x16 */
1852 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1853 STRENTRY("CodeEO "), /* 0x18 */
1854 STRENTRY("CodeEO Accessed "), /* 0x19 */
1855 STRENTRY("CodeER "), /* 0x1a */
1856 STRENTRY("CodeER Accessed "), /* 0x1b */
1857 STRENTRY("CodeConfEO "), /* 0x1c */
1858 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1859 STRENTRY("CodeConfER "), /* 0x1e */
1860 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1861# undef SYSENTRY
1862 };
1863# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1864 char szMsg[128];
1865 char *psz = &szMsg[0];
1866 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1867 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1868 psz += s_aTypes[i].cch;
1869
1870 if (pDesc->Gen.u1Present)
1871 ADD_STR(psz, "Present ");
1872 else
1873 ADD_STR(psz, "Not-Present ");
1874# if HC_ARCH_BITS == 64
1875 if (pDesc->Gen.u1Long)
1876 ADD_STR(psz, "64-bit ");
1877 else
1878 ADD_STR(psz, "Comp ");
1879# else
1880 if (pDesc->Gen.u1Granularity)
1881 ADD_STR(psz, "Page ");
1882 if (pDesc->Gen.u1DefBig)
1883 ADD_STR(psz, "32-bit ");
1884 else
1885 ADD_STR(psz, "16-bit ");
1886# endif
1887# undef ADD_STR
1888 *psz = '\0';
1889
1890 /*
1891 * Limit and Base and format the output.
1892 */
1893 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1894
1895# if HC_ARCH_BITS == 64
1896 uint64_t u32Base = X86DESC64_BASE(pDesc);
1897
1898 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1899 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1900# else
1901 uint32_t u32Base = X86DESC_BASE(pDesc);
1902
1903 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1904 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1905# endif
1906}
1907
1908
1909/**
1910 * Formats a full register dump.
1911 *
1912 * @param pVM Pointer to the VM.
1913 * @param pVCpu Pointer to the VMCPU.
1914 * @param pCtx Pointer to the CPU context.
1915 */
1916VMMR0DECL(void) HMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1917{
1918 NOREF(pVM);
1919
1920 /*
1921 * Format the flags.
1922 */
1923 static struct
1924 {
1925 const char *pszSet; const char *pszClear; uint32_t fFlag;
1926 } const s_aFlags[] =
1927 {
1928 { "vip",NULL, X86_EFL_VIP },
1929 { "vif",NULL, X86_EFL_VIF },
1930 { "ac", NULL, X86_EFL_AC },
1931 { "vm", NULL, X86_EFL_VM },
1932 { "rf", NULL, X86_EFL_RF },
1933 { "nt", NULL, X86_EFL_NT },
1934 { "ov", "nv", X86_EFL_OF },
1935 { "dn", "up", X86_EFL_DF },
1936 { "ei", "di", X86_EFL_IF },
1937 { "tf", NULL, X86_EFL_TF },
1938 { "nt", "pl", X86_EFL_SF },
1939 { "nz", "zr", X86_EFL_ZF },
1940 { "ac", "na", X86_EFL_AF },
1941 { "po", "pe", X86_EFL_PF },
1942 { "cy", "nc", X86_EFL_CF },
1943 };
1944 char szEFlags[80];
1945 char *psz = szEFlags;
1946 uint32_t efl = pCtx->eflags.u32;
1947 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1948 {
1949 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1950 if (pszAdd)
1951 {
1952 strcpy(psz, pszAdd);
1953 psz += strlen(pszAdd);
1954 *psz++ = ' ';
1955 }
1956 }
1957 psz[-1] = '\0';
1958
1959
1960 /*
1961 * Format the registers.
1962 */
1963 if (CPUMIsGuestIn64BitCode(pVCpu))
1964 {
1965 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1966 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1967 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1968 "r14=%016RX64 r15=%016RX64\n"
1969 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1970 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1971 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1972 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1973 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1974 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1975 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1976 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1977 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1978 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1979 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1980 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1981 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1982 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1983 ,
1984 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1985 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1986 pCtx->r14, pCtx->r15,
1987 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
1988 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1989 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1990 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1991 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1992 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1993 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1994 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1995 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1996 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1997 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
1998 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1999 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2000 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2001 }
2002 else
2003 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
2004 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
2005 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
2006 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
2007 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
2008 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
2009 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
2010 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
2011 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
2012 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2013 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2014 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2015 ,
2016 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
2017 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), 31, szEFlags,
2018 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
2019 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
2020 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
2021 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
2022 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
2023 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
2024 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl,
2025 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2026 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2027 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2028
2029 Log(("FPU:\n"
2030 "FCW=%04x FSW=%04x FTW=%02x\n"
2031 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
2032 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
2033 ,
2034 pCtx->fpu.FCW, pCtx->fpu.FSW, pCtx->fpu.FTW,
2035 pCtx->fpu.FOP, pCtx->fpu.FPUIP, pCtx->fpu.CS, pCtx->fpu.Rsrvd1,
2036 pCtx->fpu.FPUDP, pCtx->fpu.DS, pCtx->fpu.Rsrvd2,
2037 pCtx->fpu.MXCSR, pCtx->fpu.MXCSR_MASK));
2038
2039
2040 Log(("MSR:\n"
2041 "EFER =%016RX64\n"
2042 "PAT =%016RX64\n"
2043 "STAR =%016RX64\n"
2044 "CSTAR =%016RX64\n"
2045 "LSTAR =%016RX64\n"
2046 "SFMASK =%016RX64\n"
2047 "KERNELGSBASE =%016RX64\n",
2048 pCtx->msrEFER,
2049 pCtx->msrPAT,
2050 pCtx->msrSTAR,
2051 pCtx->msrCSTAR,
2052 pCtx->msrLSTAR,
2053 pCtx->msrSFMASK,
2054 pCtx->msrKERNELGSBASE));
2055
2056}
2057
2058#endif /* VBOX_STRICT */
2059
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette